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ABSTRACT  

We present variable stiffness dielectric elastomer actuators (DEAs), combining a single DEA actuator with embedded 
shape memory polymer (SMP) fibers, which can be electrically addressed to locally reduce the stiffness by a factor of 
100. The device accommodates two SMP fiber sets oriented perpendicularly on both sides of a DEA, which enables a 
selective deformation in two different directions. During electrostatic actuation, one of the SMP fiber sets is softened by 
Joule heating, whereas the unaddressed fiber set remains stiff and determines the actuation direction, principally along 
the direction of the soft fibers. Using SMPs as a latching mechanism allows holding a given actuated position without 
any power, which leads to much longer lifetime in static (DC) conditions. The DEA is made of a prestretched acrylic 
elastomer (VHB, 3M) sandwiched between carbon-loaded polydimethylsiloxane electrodes providing an active area of 
20 mm x 20 mm. The SMP fibers are electrically isolated from the DEA electrodes using 40 µm thick acrylic elastomer 
films. Each SMP fiber is 100 µm thick, 750 µm wide and is on a 6 mm pitch. The ratio of locked strains in the direction 
of the heated and the unheated fibers is measured to be 1.80 for a square DEA. This ratio is increased up to 8 with a 
cross-shape DEA using only two variable width fibers, one aligned vertically and the other horizontally.  

Keywords: Variable stiffness DEAs, DEA modeling for strain locking, reconfigurable DEAs, shape memory polymers 
 

1. INTRODUCTION  

Dielectric elastomer transducers combine a simple structure with high energy density, fast response, and high strain 
capabilities [1]. Improved design and materials  have led to increased actuation performance and to improved load-
bearing capacity, for instance by incorporating stiff fibers [2-4], using bistable electroactive polymers as dielectric 
elastomers [5-7], and integrating flexible but inextensible frames [8-10]. 

Stiff fibers embedded in or on dielectric elastomer reinforce the membrane along the fiber direction and thereby enhance 
the electrically-induced deformation in the transverse direction. Fiber-constrained DEAs enable us i) to obtain high 
unidirectional actuation strain and, ii) to predetermine the actuation direction. The number of fibers and their orientations 
result in different deformation shapes. For example, Shian et al. demonstrated how different deformation shapes can be 
obtained with different fibers configurations [11].  

Variable stiffness materials enable morphological shape change while maintaining structural strength and can reversibly 
alternate between load-bearing and flexible states. This is a promising approach that can be adapted in DEA applications. 
Technologies based on particle jamming, electrorheological fluids, shape memory polymers (SMP) and low-melting-
point alloys have been developed for this purpose. Integrating variable stiffness materials with DEAs generally increases 
the complexity of the overall structure and reduces the actuation strain. Low-melting-point alloys and conductive SMPs 
are appealing as the phase change can be obtained by direct Joule heating, allowing for simple electrical control [12, 13]. 
DEAs taking advantage of this combination have been shown to withstand relatively higher loads [12, 13]. Bistable 
electroactive polymers offer an alternative to dielectric membranes that combine the electrically-induced actuation of 
dielectric elastomers and bistable deformation of shape memory polymers [6]. These materials can find applications in 
tactile displays, adaptive structures, and bio-inspired soft robots [14].  

DEAs have an actuation direction and shape that is defined by the boundary conditions and by any embedded stiff fibers. 
These conditions are imposed when the device is assembled and cannot be changed during device operation. Here, we 
overcome this limitation by integrating DEAs with SMP fibers. We demonstrate that DEAs can be dynamically 
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reconfigured to actuate in different directions and they can be latched in any actuated state. We use thermoplastic 
polyurethane shape memory polymers. Their stiffness changes by two orders of magnitude with small temperature 
fluctuations around its glass transition region. They have high shape fixity ratio.  

2. DESIGN CONCEPT AND WORKING MECHANISM 

2.1 Design concept 

The presented device combines a single DEA between two perpendicular SMP fiber sets (see Fig. 1a). During actuation, 
one of the SMP fiber sets is softened by Joule heating, while the other one remains stiff and determines the direction of 
voltage-induced deformation. Fibers are made of conductive SMPs and the electrical connections to them are made by 
pad-printed silicone electrodes. Two passive elastomer layers are placed between fiber sets and DEA electrodes for 
electrical insulation. These layers also serve as thermal insulation between addressed and unaddressed fibers. Each fiber 
sets has 4 SMP fibers which are optimized for minimum cross-heating using finite element modeling (FEM). The cross-
section of each fiber is optimized for both actuation and latching states using an analytical model.  
 
2.2 Fabrication details  

The fabrication starts by prestretching of acrylic elastomer (VHB 4905 from 3M) and fixing it to a rigid PMMA frame. 
Compliant electrodes based on mixture of carbon-black (Ketjenblack EC-600JD from Akzo Nobel N.V.) and 
polydimethylsiloxane (Silbione LSR 4305 from Elkem Silicones) are then pad-printed on the prestretched membrane 
using a mask for patterning [15]. This stack is put in an oven at 80 °C for 1 hour to cure the electrodes. After curing, two 
insulation layers of thickness 40 µm (467MP from 3M) are placed on both sides. For shape memory polymers, we use 
thermoplastic polyurethane (SMP MM4520 from SMP Technologies Inc.). The conductive SMP layers are fabricated 
separately and then assembled on the DEA. The fabrication process of SMP MM4520 was developed in our lab for 
flexible haptic devices and microfluidic valves [16, 17]. MM4520 comes in pellets form. These pellets are dissolved in a 
container with dimethylformamide (DMF) at a weight ratio of 1:4 at 80 °C for 12 hours. In another container, carbon-
black is ball-mixed with DMF at a weight ratio of 1:20 at 2000 rpm for 5 minutes. The solutions in these two containers 
are then ball-mixed together for 5 minutes at 2000 rpm. This mixture is blade-casted on a PET sheet that was covered 
with a sacrificial layer of Teflon. To evaporate the DMF, a programmable hot plate is used (for 4 h with positive and 
negative ramps of 60 °C/h from 20 °C to 80 °C and a plateau of 4 h at 80 °C). After this, the conductive SMP membrane 
is cured, it is shaped in fiber form using a laser cutter. The SMP fibers are transferred onto insulation layers with 90° of 
alignment between top and bottom fibers. Thanks to stickiness of 467MP, no further surface treatment is required for this 
process. For electrical connection between these fibers and metal contacts, polydimethylsiloxane mixed with carbon 
particle is pad-printed on both sides. The whole stack is finally cured at 80 °C for 1 h.  
The assembled device is shown in Fig. 1b. The device has 6 electrical connections, two of which are used for 
electrostatic actuation of DEA. The remained 4 connections are used to apply voltage for heating top and bottom SMP 
fibers.  

2.3 Working principle 

Figure 1c shows the steps for actuation along the y-axis. The first step is to soften fibers that are aligned in y-direction by 
applying voltage (VJH) through the top electrodes. This increases the temperature of SMP fibers above their glass 
transition region. Once fibers are heated, a high voltage is applied to the DEA electrodes. To lock the device in this 
actuated state, we first remove the heating voltage while keeping the DEA voltage applied for an additional 30s. After 
this shape fixation, we remove the DEA voltage. Thanks to shape memory ability of polyurethane, we can keep the 
device in actuated state even after high voltage is removed. To recover this deformation we simply reheat the same 
fibers. A similar approach can be repeated to actuate and to lack the device in x-direction by electrically addressing the 
fibers in x-axis.  
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DEAs are generally modeled based on the stress equilibrium of the dielectric membrane; the stiffening impact of 
electrodes are neglected. The scale of this stiffening depends on the Young’s modulus of electrodes and their thickness. 
If both the elastic modulus and the thickness are lower than the dielectric material, this stiffening effect can be ignored. 
Otherwise, the stiffening should be taken into account [18]. In our design, we have multiple layers and each layer has a 
comparable thickness and stiffness (see close-ups in Fig. 4). Thus, we consider the effect of these layers in our 
calculation. We use equations for force equilibrium instead of stress equilibrium. The stress generated in the membranes 
are converted into force by multiplying the stress value with cross-sectional areas on which it acts.  

Table 1 shows the stretch values and the cross-sectional areas of all membranes in different states. These are the values 
in the direction of actuation. We assume that there is no deformation in the perpendicular direction. This table helps to 
understand how the membranes deforms and also how the cross-section areas change in these states. As seen from the 
table, each membrane has different stretch values. This is due to the fact that VHB is prestretched and the SMP fibers fix 
their shape upon cooling. For example, the total stretch of the VHB in the actuated state is λpre λact, whereas the total 
stretch of the insulation layers is λact. Upon cooling, the stretch values of the VHB and the insulation layers remain the 
same but the stretch value of the SMP fibers goes from λact to 1. This enables us to lock in the actuation strain.  

The initial thickness of all membranes and their cross-sectional areas are known. As the membranes undergoes different 
states, the thicknesses and the cross-section areas change. Although there are many parameters listed in the table, the 
only unknowns are λact and λcont which stand for the actuation stretch and the contraction value. Thus, we need two 
equations from two different states: one from the actuation state and the other one from the latched state. 

Table 1: Stretch values and cross-sectional area of membranes for different states. 

 Reference state Actuated state 
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(heating off) 
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Figure 4 shows the reference state, where only the dielectric is biaxially prestretched while all other components are at 
rest. The DEA is then actuated by simultaneously applying Joule heating and electrostatic actuation (see the 2nd state in 
Fig. 4). In the actuated state, the elasticity of the elastomers is balanced by the stress due to mechanical prestretch and by 
the Maxwell stress due to electrostatic interaction. We use the Gent hyperelastic material model for strain energy density 
function [19]. We assume that the deformation is completely uniaxial.  Adapting the methodology of  [2] to our case, the 
equilibrium of the forces in the direction of the elongation can be written as follow:  
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where λ1, λ2, µ, J, E, A, N,  and ɛ are the principle stretches in the directions of the heated and the unheated fibers, the 
shear modulus, the limiting stretch of membranes, the applied electric field, the cross-sectional area, the number of fibers 
in one set, and the dielectric constant, respectively. Subscripts pre, a, v, i, s stand for prestretch, actuation, VHB, 
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where cλ  is the ratio of shrink after the DEA voltage is removed. λC can be quantified as the ratio of the final stretch to 

the actuation stretch. Figure 5c shows the surface plot of the holded stretch. Depicted from this plot, one can observe the 
effect of the cross-section of the SMP on the actuation and the holded stretches. If the cross-section of the SMP fibers are 
too small or too big then the holded stretch is lower. This is because very small cross-sections do not resist to membranes 
contraction upon cooling and very large cross-sections introduce more stiffening effect on the actuation which eventually 
reduces the final stretch. A region with λlocked>1.20 is outlined in Fig. 5c. This region gives us a range of prestretch 
values and fiber cross-sectional areas where we can achieve locked strain greater than 20% and we select our design 
parameters accordingly. Figure 5d shows the actuation and locked stretches plotted for VHB prestretch of 3.70 where the 
maximum locked stretch is achievable. The actuation stretch in this graph has a plateau in smaller cross-sectional areas. 
The maximum actuation stretch in this region is limited by dielectric breakdown. For larger cross-sectional areas (>0.075 
mm2), however, the maximum actuation stretch is limited by power supply (we use a 5 kV power supply for the DEA 
actuation).  

4. EXPERIMENTAL RESULTS AND DISCUSSION 

Figure 6a shows the time sequence of the Joule heating and the DEA voltages that are applied to achieve actuation in the 
x and then in the y-directions. The actuation starts with simultaneous applying DEA and heating voltages using a 5kV 
and 240 V power supply [23]. After the DEA and the SMP fibers are simultaneously actuated for 30 seconds, the heating 
voltage is removed while the DEA actuation is kept on for additional 30 s to provide time to cool down the membrane 
and thus to lock in the deformed shape. The device is then held latched for 1 min with no applied voltage. To go back to 
the reference state, we apply a heating voltage to the SMP fibers for 15s. The same procedure is then followed to get 
actuation in the perpendicular direction by softening the other SMP fibers. To measure the evolution of in-plane strain 
components, images of deformed membranes are captured at a frequency of 1 Hz. The deformed images are processed 
using digital image correlation method [24]. 

Figure 6b shows the evolution of the in-plane strains as the DEA is actuated in y and then in x directions. The highest 
strain is achieved in the direction of the softened SMP fibers. However, a significant amount of deformation takes place 
in the transverse direction due to cross-heating between the addressed and the unaddressed SMP fibers. Panel c of Fig. 6 
shows strain mapping of the in-plane components at t = 280s. The warmer colors represent higher strain amplitudes 
whereas the cooler colors show lower strain values. The strain distribution is not completely uniform. This is mostly due 
to non-uniform heating and fabrication imperfections. The fibers heated the most will have the highest actuation strain. 

A polymer under a constant tensile force shrinks upon heating and expands upon cooling. This is due to elasticity 
increase through entropic straightening of polymer chains, followed by recoiling into a conformation of maximum 
entropy. This phenomenon is the Gough-Joule effect [25]. Per actuation cycle, we observe this twice: first when we 
remove the heating voltage, and second when we apply heating to go back to the reference state. When the membrane is 
cooled down at t = 30s, the strains increase. During heating we observe an opposite trend in the strains. The duration 
heating voltage in the recovery step is 15 s, just long enough to go back to reference state. When we increase this 
duration, we observe slightly negative εxx and εyy. 
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multi-degrees of freedom enabling more conformal wrapping of different objects. Combining soft actuation mechanisms 
with different shaped SMPs will enable us to morph planer membranes into more complex 3D structures and to keep the 
deformed shape in a power-free state. Origami-inspired reversibly foldable structures can also be obtained by spatially 
patterning SMP shapes and sequentially addressing them. By changing the order of heated SMPs, a completely different 
folding shape is achievable. Not only the location and the geometry of SMP affects the folding structure but also the 
sequence of addressing. This will allow a spatiotemporal shape control of stretchable surfaces.  
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