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“Time is a drug. Too much of it kills you.” 

― Terry Pratchett, Small Gods 
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enough - we live with the consequences.” 
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Summary 

Work on Drosophila melanogaster paved the way to our current understanding of modern 

genetics. Since then, this model organism has contributed greatly to various fields such as 

neurobiology, development, and immunology. The discovery and analysis of the various 

pathways of the Drosophila immune response led the way to the in-depth characterization of 

the gut immune response. Furthermore, a genome-wide association study on a population of 

Drosophila identified resistance to infection by the entomopathogenic bacteria Pseudomonas 

entomophila (P.e.) as a complex phenotype, with highly resistant and susceptible lines, and 

highlighted genes and pathways mediating inter-individual differences. However, the molecular 

mechanisms mediating the resistance to enteric infection remain largely uncharacterized.  This 

study uses the same Drosophila population to analyze what are the molecular mechanisms 

mediating the resistance to enteric infection. We analyzed the genetic determinants of gene 

expression variation among the most resistant and susceptible lines in response to infection 

using expression quantitative trait loci (eQTL) analysis. We also characterized the mode of 

action of these eQTLs into cis- and trans-acting. Furthermore, we identified the gene 

nutcracker (ntc) as the only differentially-expressed gene between resistance classes. We then 

demonstrate that loss of function ntc mutants are significantly more susceptible to infection 

and then identify a single nucleotide polymorphism (SNP) located in a transcription factor 

binding site (TFBS) which affects the binding affinity of the transcription factor Broad leading 

to allele-specific expression variation of the gene ntc.  

 

If the transcriptomic response to infection has been thoroughly characterized, it is not the case 

for the proteomic response. We thus sought to characterize for the first time the proteomic 

response of the Drosophila to enteric infection. We performed mass spectrometry and RNA 

sequencing on dissected guts from flies infected by two Gram-negative bacteria, Erwinia 

carotovora carotovora 15 (Ecc15) or Pseudomonas entomophila, 4h and 16h after infection. 

We found that a large portion of the measurable proteome (12%) varies after infection and that 

protein changes are strongly time- and infection-dependent. We showed the relatively poor 

correlation between gene expression and protein abundance in the Drosophila enteric immune 

response. Finally, we performed a screen of several proteins that were identified in our 

proteomics work but had previously not been found when assessing the gene expression 

response to infection using loss-of-function mutants and identifying 7 genes that modulate 

overall susceptibility to P.e. infection.  
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In summary, this work analyze the genetic determinants of gene expression variation in the 

DGRP population upon infection and characterize them according to their mode of action. 

Furthermore, we describe how a non-coding variant lowers resistance to infection by 

modulating ntc gene expression through altered Broad repressor binding.    

 

Finally, it provides the first comprehensive characterization of the Drosophila gut proteome 

upon infection by Gram-negative bacteria which can be the basis of future proteomic analysis 

of the enteric immune response  

 

Keywords 

Systems Genetics – Genomics – Proteomics – QTL – Natural Variation – Drosophila 

melanogaster – DGRP– Immune response – Gut – Allele specific expression 
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Résumé 

 Les travaux sur Drosophila melanogaster ont ouvert la voie à notre compréhension 

actuelle de la génétique moderne. Depuis lors, cet organisme modèle a grandement contribué 

à divers domaines tels que la neurobiologie, le développement et l’immunologie. La 

découverte et l'analyse des différentes voies de régulation de la réponse immunitaire ont 

ouvert la voie à une caractérisation approfondie de la réponse immunitaire de l'intestin. En 

outre, une étude d'association pangénomique sur une population de Drosophila (DGRP) a 

identifié la résistance à l'infection par la bactérie entomopathogène Pseudomonas 

entomophila (P.e.) comme un phénotype complexe, avec des lignées hautement résistantes 

et sensibles, et a mis en évidence des gènes et des voies de transmission des différences 

interindividuelles. Cependant, les mécanismes moléculaires impliqués dans la résistance à 

l'infection entérique restent largement inconnus. Cette étude utilise la même population de 

drosophiles pour analyser quels sont les mécanismes moléculaires impliqués dans la 

résistance à l'infection entérique. Nous avons analysé les déterminants génétiques de la 

variation de l’expression des gènes parmi les lignées les plus résistantes et les plus sensibles 

en réponse à une infection, en utilisant une analyse des locus d’expression de caractère 

quantitatif (LeCQ). Nous avons également caractérisé le mode d'action, cis- ou trans-, de ces 

LeCQ. De plus, nous avons identifié le gène nutcracker (ntc) comme étant le seul gène 

exprimé de manière différentielle entre les classes de résistance. Nous démontrons ensuite 

que les mouches mutantes pour ntc sont significativement plus sensibles à l’infection, puis 

nous identifions un polymorphisme d'un seul nucléotide (PSN) situé dans un site de liaison au 

facteur de transcription (SLFT) qui affecte l’affinité de liaison du facteur de transcription Broad 

conduisant à une variation spécifique de chaque allèle du gène ntc. 

 

Si la réponse transcriptomique à l'infection a été complètement caractérisée, ce n'est pas le 

cas pour la réponse protéinique. Nous avons donc cherché à caractériser pour la première fois 

la réponse protéinique de la drosophile à une infection entérique. Nous avons utilisé la 

spectrométrie de masse et le séquençage de l'ARN sur les intestins disséqués de mouches 

infectées par deux bactéries Gram-négative, Erwinia carotovora carotovora 15 (Ecc15) or 

Pseudomonas entomophila 4h et 16h après l'infection. Nous avons constaté qu'une grande 

partie du protéome mesurable (12%) varie après l'infection et que les modifications protéiques 

dépendent fortement du temps et de l'infection. Nous avons montré la corrélation relativement 

faible entre l'expression des gènes et l'abondance des protéines dans la réponse immunitaire 

entérique de Drosophila. Enfin, nous avons effectué un criblage de plusieurs protéines 

identifiées dans notre travail de protéinique mais qui n’avaient pas été découvertes auparavant 
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lors de l’évaluation de la réponse de l’expression génique à une infection à l’aide de plusieurs 

mutantes pertes de fonction identifiant 7 gènes modulant la susceptibilité globale à l’infection 

par P.e. 

 

En résumé, ces travaux analysent les déterminants génétiques de la variation de l'expression 

des gènes dans la population de DGRP après infection et les caractérisent en fonction de leur 

mode d'action. En outre, nous décrivons comment un variant non codant réduit la résistance 

à l'infection en modulant l'expression du gène ntc par le biais d'une liaison de répresseur large 

modifiée. 

 

Enfin, il fournit la première caractérisation complète du protéome de l'intestin de Drosophila 

après infection par une bactérie à Gram négatif, qui peut constituer la base d'une future 

analyse protéinique de la réponse immunitaire entérique. 

 

Mots-clefs 

Génétique des systèmes – Génomique– Protéomique – LCQ – Variation naturel – Drosophila 

melanogaster – DGRP– réponse immunitaire – Gut – Expression spécifique à un allèle 
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Chapter 1: General introduction 

1.1 Quantitative traits 

One of the key aims of biological research is to decipher the phenotype-genotype 

interaction to understand how variation in the genome affect the phenotype. The phenotype is 

the sum of all observable traits of an organism and is the combined result of its genotype, its 

hereditary material, and the environment (Dawkins, 1978). The complete phenotype of an 

individual is therfore composed of many discrete or quantifiable traits. While the phenotype 

indeed is the ensemble of traits of an individual, it should be highlighted that the word 

phenotype can also be used to describe the outcome of a specific trait. The phenotype-

genotype relation is at the crux of biological research where researcher try to understand how 

variation in the hereditary material (genomic variation) affect a given phenotype. Some traits 

are classified as categorical, such as the ABO blood group system where someone can have 

one of the four existing blood types; , A, B, O and AB (Ferguson-Smith, Aitken, Turleau, & de 

Grouchy, 1976). The majority of traits, however, are quantitative traits, a good example of a 

quantitative trait would be height in humans (Visscher, McEvoy, & Yang, 2010). In that case, 

the phenotype is defined on a scale and cannot be separated in specific categories. Whereas 

categorical traits can sometimes be explained by an association with a single gene, or genetic 

locus (a stretch of DNA), complex traits are usually the result of a combination of multiple 

genes and/or loci interacting with each other. Moreover, we can note that complex traits do not 

usually follow the Mendelian laws of inheritance. 

 

The first step undertaken to understand how a phenotype can be explained by the genotype is 

to research which loci are affecting the trait of interest. Then we can understand how these 

loci interact with each other and with the environment. We can then assess the strength of 

each loci, usually called the effect size. The effect size can be defined as “a measure of the 

magnitude of a phenomenon” (Kelley & Preacher, 2012) and is derived from statistical analysis. 

Taken together, these results form the genetic architecture of a trait (Hansen, 2006). Although 

some traits can be relatively easily deciphered, it can still take many years of research before 

the entirety of the molecular mechanisms underlying a complex trait are understood. 

Therefore, one can study intermediate phenotypes such as gene expression and proteins 

abundance that may explain in part some more complex phenotypes. Indeed, with the recent 

advances in technologies, it is possible to probe for these intermediate phenotypes on a large 

scale. A very popular method is to link variation in gene expression or another trait in a 

population to genomic variation. The result is that for a given trait, several loci in the genome 
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can be associated with the trait, forming a quantitative trait loci (QTL). A QTL can be linked to 

different type of trait, such as gene expression. In that case, the QTL is dubbed an expression 

QTL or eQTL, meaning that loci in the genome explain the variation in the expression of a 

gene. eQTL mapping is a popular type of analysis in which researchers measure the gene 

expression in as many individuals and correlate changes in gene expression with genetic 

molecular markers such as single-nucleotide polymorphism (SNP), insertion or deletions 

(indels), microsatellites or transposable elements (A. Y. K. Albert et al., 2008; F. W. Albert & 

Kruglyak, 2015). The researchers are then able to link variation in gene expression with genetic 

markers and phenotypes, explaining in this way how genomic variation affect the expression 

of genes. In general, these analyses are relying on large populations consisting of individuals 

with different genotypes and phenotypes. Because these analysis rely on large population of 

individuals (Nica & Dermitzakis, 2013), it is sometimes preferable to use model organism such 

as the Drosophila melanogaster to study a given trait (Gilad, Rifkin, & Pritchard, 2008).   

 

1.2 Drosophila melanogaster 

Drosophila melanogaster, 

commonly known as the fruit fly, was first 

reared at the beginning of the twentieth 

century by Charles W. Woodworth but 

only when it was picked up by Thomas H. 

Morgan around 1908 is when the fruit fly 

started its illustrious career in science as 

a model organism (Therese Ann Markow, 

2015; Morgan, 1910) (Fig. 1-1). It was 

originally used to study the Charles 

Darwin theory of evolution by mutating 

the hereditary material of the fly using 

various mutagens. The goal was to find a 

heritable trait to test the heredity of this trait in subsequent generation. The observation of the 

white mutant, that change the color of the eye of the Drosophila from bright red to white led 

the way to our current knowledge in the modern genetic field. A direct consequence of this 

research was the dissemination of the Drosophila as a model organism throughout 

universities around the world where it started being commonly used for research other than 

evolution due to its ease of use. More than a century of Drosophila research later, there is a 

wealth of knowledge gathered about the fruit fly, ranging from development and physiology, 

Figure 1-1 : The Drosophila Pioneers 

Charles W. Woodworth (left) and Thomas H. 

Morgan in his fly room (right) 
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to sexual behavior (Miguel-Aliaga, Jasper, & Lemaitre, 2018; Tolwinski, 2017; D. Yamamoto, 

Jallon, & Komatsu, 1997). A by-product of this research is a staggering amount of 

characterized mutants and genetic tools available  (Bellen, Tong, & Tsuda, 2010; Rubin & 

Lewis, 2000).  

 

It is important to highlight several characteristics of this organisms to outline its relevance in 

science and for this work particularly. First, the fly is ideal to perform large scale experiments 

which require a lot of material due to its ease of manipulation. Indeed, the space needed to 

rear flies is small, it has a short generation time of 10 days at standard rearing conditions and 

flies generate a high numbers of offsprings in a short time period, meaning it is relatively easy 

to expand a population for large experiments (T. A. Markow, Beall, & Matzkin, 2009; Therese 

Ann Markow, 2011; St Johnston, 2002). Moreover, the creation of balancer chromosomes 

harboring dominant phenotypic mutants and recessive death-inducing genes allows easily 

traceable mutations (Kaufman, 2017). Balancer chromosome are one of the many tools 

developed, and are widely used, by the Drosophila community which greatly simplifies working 

with mutant strains. Another example of extremely useful tool is the GAL4/UAS system, a 

system which allows the expression of specific genetic constructs in a spatially controlled way. 

Furthermore, this system coupled with the GAL80 protein allow for temporal control of 

transgene expression (Harrison & Perrimon, 1993; Ma & Ptashne, 1987). 

 

The Drosophila genome consists of 4 chromosomes and was sequenced in its entirety for the 

first time in 2000 (Adams et al., 2000). This unveiled a genome of lower complexity than the 

human one, with approximately 165’000’000 base pairs and roughly 15’000 genes, though this 

number increased as newer version of the genome were released. Currently, the latest 

assembly (assembly Release 6 plus ISO1 MT) contains 17738 genes (Hoskins et al., 2015; 

NCBI, 2015). Interestingly, there is relatively high similarity between the fruit fly and the human 

genome regarding the genes involved in disease development in humans. Indeed, up to 65% 

of human-disease related genes have a homolog in the fly (Chintapalli, Wang, & Dow, 2007; 

Millburn, Crosby, Gramates, & Tweedie, 2016; Ugur, Chen, & Bellen, 2016; S. Yamamoto et 

al., 2014). This similarity was leveraged to study several human disorders in the fly ranging 

from neurodegenerative disorders such as Alzheimer (Tan & Azzam, 2017) and Parkinson 

disease (Feany & Bender, 2000; Moyerbrailean et al., 2016; Xiong & Yu, 2018) as well as 

cancer progression/development (Enomoto & Siow, 2018).  

 

Moreover, aside from classical genetics, the fruit fly has also been extensively studied in the 

field of population and quantitative genetics (Coyne & Orr, 1997; Roff D.A. & Mousseau T.A., 

1987; Wright, 2006). As this field depends on the use of large populations, various populations 
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were developed. First flies collected from the wild were isogenized and formed the Drosophila 

Genetic Reference Panel (DGRP) (W. Huang et al., 2015; Mackay et al., 2012). Then, 

recombinant inbred lines were used to create the Drosophila Synthetic Population Resource 

(DSPR) (King, Sanderson, McNeil, Long, & Macdonald, 2014; Qu, Gurdziel, Pique-Regi, & 

Ruden, 2018; Stanley, Ng’oma, O’Day, & King, 2017). Both these resources allow for the 

measurement of various quantitative, or discrete, phenotypes which can be measured in 

relative high-throughput such as olfactory behavior (Arya et al., 2015), pigmentation (Dembeck 

et al., 2015) food intake (Garlapow, Huang, Yarboro, Peterson, & Mackay, 2015), lifespan and 

fecundity (Durham, Magwire, Stone, & Leips, 2014) or innate immunity (Bou Sleiman et al., 

2015). Moreover some other flies collected from the wild were kept in the lab for several 

decades of experimental evolution aimed at understanding genetic determinants of complex 

phenotypes through isolation of rare variants (Burke & Rose, 2009) for traits such as adaptation 

to temperature variation (Klepsatel et al., 2013), egg-size variation (Jha et al., 2015) or 

adaptation to darkness (Izutsu, Toyoda, Fujiyama, Agata, & Fuse, 2016).  

Furthermore, to collect and organize the wealth of information created, several online 

resources and database have been developed by the fly community, with the most prominent 

one being FlyBase and is freely accessible (for now). This website aims to integrate all 

knowledge garnered on the fly from as many sources as possible and is carefully curated to 

remain up to date, giving researchers access to highly detailed information on specific genes 

such as their (putative) function, expression patterns, mutant phenotypes, and whether mutant 

stocks are available and where (McQuilton, St Pierre, & FlyBase Consortium, 2012; Thurmond 

et al., 2018). 

 

All these resources have helped keeping the Drosophila melanogaster as one of the main 

model organism in science. Indeed, insight from Drosophila have helped understand molecular 

mechanisms in the human. For example, the fly innate immunity which can also be considered 

as a quantitative trait, was extensively studied because, as in humans, where one person gets 

sick easily, another one may not. However, it is still largely unknown what drives this variability. 

Drosophila, with all advantages mentioned before, can thus be an exceptional model to study 

these aspects of immunity. 
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1.3 The Drosophila immune system 

1.3.1 General introduction to the immune system 

The immune system can be defined as a collective of mechanisms that an organism 

can muster to prevent infection by pathogenic agents and to defend itself against them. To 

prevent infection, organisms, possess a physical barrier that acts as an outer defense inhibiting 

the entry of pathogens. This can include the human skin, or, for the Drosophila, its cuticle. Both 

of these organs help keeping pathogens outside of the body. We often find a mucus layer that 

cover some of the internal exposed area, such as the digestive track or the respiratory tract, 

that act in complement to these physical barriers by entrapping pathogens (B. Alberts et al., 

2002; Janeway, Travers, & Walport, 2001; Nochi & Kiyono., 2006). When a pathogen breaches 

through these barriers, the organism must mount a successful immune response to survive. 

First the organism must be able to recognize the pathogen before it can neutralize him using 

various means and, finally, restore the homeostasis of the organism.  

 

The immune response (Figure 1-2) can be divided into two types of responses, first the innate 

immune response, and second, the adaptive immune response (B. Alberts et al., 2002; Fearon 

DT & Locksley RM, 1996). Whereas the adaptive immune response relies on specifically 

tailored responses to a particular pathogen and is able to ”memorize” this response for future 

infections, the innate immune response provides a rapid response against many pathogens, 

and is thus more general. Besides eliminating the pathogens, the elements of the innate 

immune response can also activate the adaptive immunity by presenting antigens for 

recognition. Then, the adaptive immune response will produce highly specific compounds 

(antibodies) and cells against the detected pathogen (B. Alberts et al., 2002; Janeway et al., 

2001). However, the adaptive immune response is not found in all organisms, and has mostly 

been shown in vertebrates whereas Drosophila and other invertebrates lack any adaptive 

immune system.  
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Figure 1-2 : Schematic of the Drosophila immune response 

Adapted from (E. Bier & Guichard, 2012) 

(a) The various physical barriers 

(b) Cellular immune response 

(c) Toll pathway - Imd pathway - JAK-STAT pathway 

1.3.2 The Drosophila immune response 

The Drosophila immune system has been extensively characterized and possess both 

a cellular response and a cell-free, or humoral, response. The cellular immune response 

encompasses mechanisms such as phagocytosis, cellular encapsulation, melanization and 

coagulation. The humoral response refer to the expression of anti-microbial peptides (AMPs) 

and reactive oxygen species (ROS) by cells triggered by the recognition of pathogens 

(Lemaitre & Hoffmann, 2007). 

 

1.3.3 The cellular immune response 

The cellular immune response effectors are hemocytes which comprises of 

plasmatocytes, crystal cells and lamellocytes. Plasmatocytes are cells involved in 

phagocytosis of pathogens. They recognize foreign or dead cells, to which they attach and 

finally, through cytoskeletal and internal reorganization, internalize the object. The foreign 

object is kept in a vesicle dubbed the phagosome, where it will eventually be destroyed through 
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acidification of the internal environment after the phagosome fuse with a lysosome (Kinchen & 

Ravichandran, 2008; Kounatidis & Ligoxygakis, 2012; Lemaitre & Hoffmann, 2007). Crystal 

cells are responsible for the melanization, a process by which the fly encapsulates invading 

microorganisms at the site of the injury by secreting melanin. It is a defense mechanism aimed 

at protecting the insect against breaching of the cuticle. Moreover, some of the byproducts of 

the chemical reaction needed for melanin synthesis, such as quinones, are toxic to the 

pathogens. This process is easily visible as it produces a dark patch on the fly at the site of 

injury (Tang, 2009). Next, lamellocytes encapsulate foreign objects that cannot be internalized 

due to their large size. It is a potent reaction to the detection of a large foreign object in the 

body, such as the egg of parasitoid wasps. Upon detection of the foreign object, the fly will 

induce the production of lamellocytes through differentiation of prohemocyte precursors. These 

lamellocytes will bind to each other around the foreign object in several layers, thus creating a 

capsule around the invader which will be eventually killed inside it (Kounatidis & Ligoxygakis, 

2012; Lemaitre & Hoffmann, 2007; Vlisidou & Wood, 2015). Finally, coagulation or clotting is 

a mechanism that prevent the spread of microorganisms by using filaments to attach them 

together, thus creating a clot. Clotting is mediated by plasmatocytes and crystal cells and 

involves many pathways and secreted proteins. The most prominent proteins are Hemolectin, 

Fondue and Transglutaminase. These together create a matrix of filaments (Hemolectin) linked 

together by Fondue and connected to bacteria via Transglutaminases (Kounatidis & 

Ligoxygakis, 2012; Lemaitre & Hoffmann, 2007; Vlisidou & Wood, 2015). However, the cellular 

immune response alone is not capable of repelling all threats to the organisms and need the 

help of the humoral immune response to effectively fight some pathogens. 

 

1.3.4 The humoral immune response 

The humoral immune response is responsible for expressing and secreting proteins 

and other products to fight the pathogens. The most important ones are the antimicrobial 

peptides (AMPs) and the components to produce reactive oxygen species. The AMPs are 

generally small proteins with an anti-bacterial or anti-fungal activity.  

 

To recognize a pathogen, the innate immune system use pattern recognition receptors (PRRs) 

to detect pathogen-associated molecular patterns (PAMPs) (Suresh & Mosser, 2013). 

Successful detection of a PAMPs will trigger a signaling cascade which will induce the 

production of AMPs (Lemaitre & Hoffmann, 2007; Zasloff, 2002). The two main pathways 

regulating the expression of AMPs are the Toll and immune deficiency (Imd) pathways. Each 

of these pathways recognize different types of pathogens. For instance, the Toll pathway 
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recognizes yeast, fungi, and bacteria with Lysin-type peptidoglycan, which come from the cell 

wall of primarily gram-positive bacteria. On the other hand, the Imd pathway recognizes 

Diaminopimelic acid (DAP) type peptidoglycan, mostly present when an infection with gram-

negative bacteria occurs. Both pathway cascades lead to the activation of various transcription 

factors of the NF-κB family (Toll: Dif and Dorsal; Imd: Relish) which then translocate to the 

nucleus and regulate gene expression, particularly AMPs (Kounatidis & Ligoxygakis, 2012; 

Lemaitre & Hoffmann, 2007). However, AMPs are not the only response as cells are also able 

to produce reactive oxygen species (ROS), which consist of a wide assortment of microbicidal 

compounds containing oxygen which are released upon infection. They damage pathogens 

through oxidative damage to biological molecules (Paiva & Bozza, 2014). A basal level of ROS 

production is nevertheless kept in the gut to control for the microbiota (S.-H. Kim & Lee, 2014; 

Lemaitre & Hoffmann, 2007).  

The Toll pathway 

The detection of pathogens leading to Toll activation is mediated by the Nerve Growth 

Factor-related cytokine Spz. Specific detection of infectious agents by the Toll pathway is 

mediated upstream of Spz by the recognition molecules that recognize different substrates. 

PGRP-SA, PGRP-SD and GNBP1 recognize Gram-positive bacteria, GNBP3 recognizes 

yeasts and Persephone recognizes fungi. Their signals are integrated by Spe that then activate 

Spz. Spz is linked to Toll and upon detection will then form a dimer, thus creating a dimerized 

version of Toll. This will create a complex to transmit the signal composed of MyD88, Tube 

and Pelle. This complex can then phosphorylate Cactus, a protein binding Dif and Dorsal and 

preventing them to reach the nucleus. The phosphorylation of Cactus leads to its degradation, 

freeing both NF-κB homologs to relocate to the nucleus to trigger expression of targets genes.  

The Imd pathway 

The Imd pathway is activated by the transmembrane receptor PGRP-LC and the 

intracellular receptor PGRP-LE. Upon detection of DAP-type peptidoglycan, both receptor 

recruit Imd, which itself recruit and interact with FADD which does the same with DREDD. 

DREDD unmasks another interaction domain of Imd which allow for the recruitment of dIAP-

2. The latter will ubiquitinate Imd, allowing it to trigger a cascade involving TAK1 and IKK and 

finally leading to the cleavage of Relish which then translocate to the nucleus to trigger the 

expression of several genes. 
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The JAK/STAT pathway 

The JAK/STAT pathway is composed of the ligands unpaired 1-3 (Upd1-3) which bind 

the transmembrane receptor Dome which in turn activates Hop (a human JAK2 homologue) 

and Stat92E, a transcription factor. Upon activation, Stat92E will translocate to the nucleus 

and alter the expression of several genes, among them tep1, a thioester-containing protein 

(TEP) with anti-microbial activity (Agaisse & Perrimon, 2004; Bou Aoun et al., 2011; Dostálová, 

Rommelaere, Poidevin, & Lemaitre, 2017). However, it was shown that the JAK/STAT pathway 

play an important role in the local immune response of the Drosophila gut (Nicolas Buchon, 

Broderick, Poidevin, Pradervand, & Lemaitre, 2009). 

Negative regulation of the immune response 

While the immune response is of course advantageous to the survival of an organism, 

there are downsides to it when it goes on uncontrolled. Indeed, control of the immune response 

is critical as it can be detrimental to the host over time. It was shown in Drosophila that 

uncontrolled immune response is detrimental to the fly (Paredes, Welchman, Poidevin, & 

Lemaitre, 2011). Several negative regulators of the Imd pathway have been identified with 

different modes of action. For example, PGRP-LB is a secreted molecule that cleaves DAP-

type PG and leads to a dampening of the immune response (Zaidman-Rémy et al., 2006). In 

another case, Pirk was shown to limit the activation of the pathway by interacting with PGRP-

LC. (Kleino et al., 2008). And for the Toll pathway, it was shown that WntD negatively regulates 

the pathway by preventing translocation of Dorsal to the nucleus (Gordon, Dionne, Schneider, 

& Nusse, 2005). These are just a set of examples which can prevent overregulation of the 

immune response which could ultimately harm the organism. 

 

If the negative regulation of the immune system is critical for host survival, it has another 

important role in the intestine of the fly. Indeed, the Drosophila gut, like its human counterpart, 

is host to a thousands of bacteria forming the microbiota (N Buchon, Broderick, & Lemaitre, 

2013; Walton, 2015) and must thus accommodate them in the gut lumen. 
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1.4 The Drosophila gut 

One of the major evolution in the animal was the emergence of a gastrointestinal tract 

within the body cavity which allowed the transition from an intra- to an extracellular mode of 

digestion (Lemaitre & Miguel-Aliaga, 2013; Stainier, 2005). The Drosophila gut (Figure 1-3) is 

composed of a simple epithelium surrounded by trachea, visceral muscle and enteric nerves. 

It is relatively close to its human counterpart, and, like it, is constantly renewed during the 

lifespan of the fly. The gut is divided into three parts, the foregut, the midgut and the hindgut 

surrounded by visceral muscles, trachea and enteric nerves. Each of these parts have been 

shown to be highly compartmentalized with each compartment showing very different genes 

expression patterns as well as different cellular, chemical and physiological characteristics 

(Nicolas Buchon & Osman, 2015; Nicolas Buchon et al., 2013; Marianes & Spradling, 2013). 

The gut epithelium is composed of four types of cells: large absorptive enterocytes (ECs), small 

secretory enteroendocrine cells (EECs), pluripotent intestinal stem cells (ISCs) and 

enteroblasts (EBs). Enterocytes are large polypoid cells and constitute the majority of the cells 

present in the gut. Their main role is to absorb nutrients, although they also have a secretory 

role. Enteroendocrine cells secrete small peptides that are thought to control the physiology of 

the lumen (Veenstra, Agricola, & Sellami, 2008). ISCs ensure the renewal of the gut by 

replenishing both the ECs and EECs (Micchelli & Perrimon, 2006; Ohlstein & Spradling, 2006). 

It can divide symmetrically or asymmetrically thus producing an ISC and an enteroblast. The 

enteroblast is a transient precursor to both enteroendocrine cells and enterocyte and signaling 

by Notch determines the fate of the enteroblast (Ohlstein & Spradling, 2007). 
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Figure 1-3 : The Drosophila gut 

adapted from (Miguel-Aliaga et al., 2018) 

(a) The main subdivision of the gut 

(b) The different cell forming the gut 

1.4.1 The Drosophila enteric immune response 

Because the gut evolved to be exposed to the exterior environment, this also opened 

the opportunity for pathogens to exploit this route of infection. Therefore, Gut-bearing 

organisms evolved complex mechanisms to defend themselves against these agents, making 

them “gut immunocompetent”. However, the gut immune response must be tightly controlled 

to allow for the microbiota to survive. Interestingly, there are marked difference in the immune 

response of the fly depending on whether the infection is contained on the site of entry or if it 

spreads to the whole fly. In the case of a systemic infection, the immune response is under the 

control of the fat body, whereas the local immune response is mediated by the locally affected 

epithelia (Kounatidis & Ligoxygakis, 2012; Liehl, Blight, Vodovar, Boccard, & Lemaitre, 2006).  
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The gut is permanently exposed to the commensal bacteria (microbiota) and to the 

environment, making it one of the main paths of infection by external pathogens. It must 

though carefully regulate its immune response to accommodate the microbiota and fight 

pathogens at the same time. This tight balance is done through the secretion of AMPs as 

well as through the production of ROS. The production of AMPs in the gut is mediated 

through the Imd pathway and its effector, NF-κB-like transcription factor (TF), Relish. 

 

Another important part of the gut immune response is the production of ROS which is 

mediated by the NADPH oxidase Duox (E.-M. Ha et al., 2009; E. M. Ha et al., 2005). The 

Duox pathway is activated by the detection of Uracil, a compound only produced by 

opportunistic bacteria, through the Gαq-phospholipase C-ß-Ca2+ pathway (K. A. Lee, Kim, 

Bhin, et al., 2015; K. A. Lee, Kim, You, & Lee, 2015). The detection of Uracil directs a 

constant expression of ROS that control microbiota level and is strongly induced when the 

gut is colonized by pathogenic bacteria due to an increase amount of Uracil. Moreover, the 

Imd pathway is activated upon infection and further increases Duox expression. DUOX 

activity is directly controlled by PLC who regulates both the expression and the activity of 

DUOX. To avoid damage due to excessive oxidative stress, the immune-regulated catalase 

(IRC) removes ROS in a dynamic way Duox transcription is regulated by the TF ATF2 

downstream of the p38a-Mkk3-Mekk1 pathway (Sveta Chakrabarti, Poidevin, & Lemaitre, 

2014).  
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1.5 Proteomics 

The previous decade has seen a tremendous rise in the technologies available to probe 

large biological datasets. Along with them came sophisticated informatics tool needed to treat 

and analyze the amount of information generated. This led to more and more work aimed at 

understanding how complex biological systems react to changes. Indeed, with the rise of high-

throughput sequencing technologies and the decrease in cost, experiments such as mRNA 

sequencing (RNA-seq) or chromatin immunoprecipitation followed by sequencing (ChIP-seq) 

allowed the researchers to probe genome wide changes. It is interesting to note that all of 

these technologies rely on the PCR reaction, first developed by Kary Mullis in 1985 (Saiki et 

al., 1985). However, these methods all measure changes happening at the nucleic acid level 

and not at the protein level. Interestingly, the development of mass spectrometry, one of the 

methods to investigate changes at the protein level, predates even the modern genetics 

(Thomson, 1913). It was pioneered at the beginning of the 20th century By Sir Joseph John 

Thomson and has since then been used in many fields, such as physics, chemistry, biology, 

etc. A mass spectrometer analyzes the mass-to-charge ratio (m/z) of elements. This allow to 

both qualify and quantify each element that is present in a sample. The element must first be 

ionized after which all subsequent steps are to be carried out in a vacuum. There have been 

many types of mass spectrometers and ionization methods developed, but all of them use 

electric and magnetic fields to separate the ions and measure their m/z ratio. Another critical 

technological development, and advancement, was the Fourier transformation that allowed the 

deconvolution of signals into individual signals, thus allowing for an improved analysis of the 

output by reaching a higher resolution. However, it is only recently that these techniques have 

matured enough and have become more cost-effective to be applied to large biological 

datasets, mainly by increasing the weight range of the molecules that can be ionized (Tanaka, 

2003; Tanaka et al., 1988), thus opening the door to the analysis of large biological molecules 

(Maher, Jjunju, & Taylor, 2015).  

 

The standard modus operandi of mass spectrometry analyses using biological samples include 

two critical steps before the data acquisition: a digestion step and a separation step (Zhang et 

al., 2010). During the digestion steps, researchers used different methods and enzymes to 

break proteins into smaller peptides (Gundry et al., 2009). Then, the goal of these separation 

steps is to divide the digested samples into different fractions. The goal is to separate the 

peptides to such extent that they can be injected in the mass spectrometer in small quantities 

to allow for an improved signal acquisition. One of the most technically challenging steps in 

mass spectrometry is the analysis of the results. Compared to a DNA or cDNA sequencing run 

which yields a relatively simple text file of DNA sequences, the output of a mass spectrometer 
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is a set of m/z spectra. Similarly to sequencing analysis, where one must match the DNA 

segment to a part of the genome, the m/z spectra generated must be matched to known 

spectra. Most of the proteomics software will thus generate spectra for each putative peptide. 

These software will generate these spectra not only based on the underlying genome specific 

to the source of each sample, but also based on the digestion methods that were used. Finally, 

the quantification is also technically complicated. It is indeed not possible to count the number 

of peptides, thus forcing the researchers to derive the number of peptides based on other 

quantification methods. We can here distinguish between two types of experiment, label-free 

quantification and quantification with label. The labelling methods require mixing of the 

samples with stable isotopes. Isotopes marked proteins then crate a specific mass tag which 

is easily recognizable by the spectrometer and is then used as an internal control to infer the 

amount measured (Bantscheff, Schirle, Sweetman, Rick, & Kuster, 2007). Label-free 

quantification relies on data-derived methods that assess the relative amount of peptides 

compared to other peptides (Asara, Christofk, Freimark, & Cantley, 2008; Bridges et al., 2007). 

 

Despite the relative hurdles of mass spectrometry, it offers many advantages. The most 

obvious one is that it allows the observation of the proteome, which none other methods 

currently can provide. Although extremely instructive, the analysis of the transcriptome 

provides an imperfect view of the changes happening in an organism. Thus, connecting both 

transcriptome and proteome may therefore aid in our understanding of gene regulatory 

networks, or molecular mechanisms, underlying the various immune responses. While indeed 

many studies have found that the correlation between transcriptome and proteome is rather 

low (Bonaldi et al., 2008; Butter et al., 2013; Casas-Vila et al., 2017; Griffin et al., 2002; Grün 

et al., 2014; Li, Bickel, & Biggin, 2014; Schwanhäusser et al., 2011), combining such data can 

still provide us with a better understanding of specific molecular mechanisms. Indeed, because 

the proteins are generally the effectors of the cell, directly studying their variation could provide 

new insight into molecular mechanisms not detected by transcriptomics studies. 
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1.6 The scope of this thesis 

In this thesis, I expand on previous work on the genetic determinants of the resistance 

to enteric infection in the DGRP after infection by Pseudomonas entomophila and further 

explore the enteric immune response by looking at the proteome of the gut after enteric 

infection. 

 

In Chapter 2, I use RNA-sequencing to analyze the genetic determinants of gene expression 

variation in the DGRP population. Then, we use F1 offsprings to measure the extent of eQTLs-

driven allele specific expression we performed a large in-depth characterization of gene-

expression variation eQTLs identified in a subset of the DGRP population and discuss the 

characterization of their effects. Further analyses of differentially expressed genes between 

different resistance classes interestingly reveal only one gene, Nutcracker (ntc). The effect of 

this gene on the resistance of the fly to enteric infection is then confirmed using other various 

mutants and molecular tools. Finally, I identify, and show, how an infection specific eQTL linked 

with ntc decreases the binding affinity of the transcription factor Broad, and ultimately leads to 

an increased expression of ntc. 

 

In Chapter 3, we characterize the proteome of the Drosophila gut upon infection. I described 

how the proteome react to the ingestion of both P.e. and Ecc15 and the differences between 

these two responses. I then highlight differences between transcriptome and proteome 

changes at the individual gene level. Finally, I select several candidates genes that may have 

been overlooked in previous transcriptome studies for further analysis of their impact on 

resistance to infection and perform survival analysis on mutants of these genes to identify 

potential new players in the gut enteric immune response.  

 

Finally, I summarize my findings in Chapter 4 and provides future directions and outlooks. 

  



31 
 

Chapter 2: cis-regulatory variation modulates 

susceptibility to enteric infection in the 

Drosophila Genetic Reference Panel 

 

 

Michael V. Frochaux1*, Maroun Bou Sleiman2*, Vincent R. J. Gardeux3, Riccardo Dainese4, 

Brian Hollis5, Maria Litovchenko6, Virginie S. Braman7, Dani Osman8, Bart Deplancke9+ 

 

1. Michael Vincent Frochaux, Laboratory of System Biology and Genetics, Institute of 

Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss 

Institute of Bioinformatics, Lausanne, Switzerland, michael.frochaux@epfl.ch 

2. Maroun Bou Sleiman, Laboratory of Metabolic Signaling, Institute of Bioengineering, 

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 

maroun.bousleiman@epfl.ch 

3. Vincent Roland Julien Gardeux, Laboratory of System Biology and Genetics, Institute 

of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss 

Institute of Bioinformatics, Lausanne, Switzerland, vincent.gardeux@epfl.ch 

4. Riccardo Dainese, Laboratory of System Biology and Genetics, Institute of 

Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss 

Institute of Bioinformatics, Lausanne, Switzerland, riccardo.dainese@epfl.ch 

5. Brian Hollis, Laboratory of System Biology and Genetics, Institute of Bioengineering, 

Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of 

Bioinformatics, Lausanne, Switzerland, brian.hollis@epfl.ch 

6. Maria Litovchenko, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss 

Institute of Bioinformatics, Lausanne, Switzerland, maria.litovchenko@epfl.ch 

7. Virginie Braman, Laboratory of System Biology and Genetics, Institute of 

Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 

Switzerland, virginie.braman@epfl.ch 

8. Dani Osman, Faculty of Sciences III and Azm Center for Research in Biotechnology 

and its Applications, LBA3B, EDST, Lebanese University, 1300, Tripoli, Lebanon, 

daniosmanlb@gmail.com 

mailto:virginie.braman@epfl.ch


32 
 

9. Bart Deplancke, Laboratory of System Biology and Genetics, Institute of 

Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 

Switzerland, bart.deplancke@epfl.ch 

*: These people contributed equally to the paper 

+: Corresponding author 

 

 

 

 

 

Note 

This chapter is a draft submitted to genome biology April 15th, 2019. 

 

Author contributions: Michael Frochaux, Maroun Bou Sleiman and Bart Deplancke designed 

the study with the help of Dani Osman for the RNA-seq. Maroun Bou Sleiman and Dani Osman 

prepared the RNA-sequencing samples. Maroun Bou Sleiman performed the statistical and 

computational analyses on the RNA-seq data with assistance from Tommaso Andreani and 

Maria Litovchenko. Michael Frochaux and Maroun Bou Sleiman performed infection and RT-

qPCR experiments. Michael Frochaux, Maroun Bou Sleiman and Virginie Braman performed 

the round robin experiment. Michael Frochaux validated the eQTLs with assistance from 

Vincent Gardeux and Brian Hollis. Riccardo Dainese performed the MITOMI experiment.  

  



33 
 

2.1 Abstract  

2.1.1 Background 

Resistance to enteric pathogens is a complex trait at the crossroads of multiple 

biological processes. We have previously shown in the Drosophila Genetic Reference Panel 

(DGRP) that resistance to infection is highly heritable, but our understanding of how the effects 

of genetic variants are channeled through distinct molecular layers to determine gut 

immunocompetence is still limited.  

 

2.1.2 Results 

To address this, we performed a systems genetics analysis of the gut transcriptomes 

from 38 DGRP lines that were orally infected with Pseudomonas entomophila (P.e.), identifying 

a large number of condition-specific expression quantitative trait loci (local-eQTLs) that were 

enriched for the Atf-2 and Disco transcription factor motifs. By assessing the allelic imbalance 

in the transcriptomes of 19 F1 hybrid lines from a large round-robin design, we could 

independently attribute a robust cis-regulatory effect to only 10% of these detected local-

eQTLs. However, additional analyses indicated that many local-eQTLs (10%) may act in trans 

instead. Comparison of the transcriptomes of DGRP lines that were either susceptible or 

resistant to P.e. infection revealed Nutcracker (ntc) as the only differentially expressed gene. 

Interestingly, we found that ntc is linked to infection-specific eQTLs that not only correlate with 

its expression level, but also to enteric infection susceptibility. This is consistent with our 

findings that ntc expression is induced upon infection, whereas loss of ntc confers an overall 

greater susceptibility to infection. Further regulatory analysis revealed one particular ntc eQTL 

that significantly decreases the binding affinity for the repressor Broad, driving differential 

allele-specific ntc expression.  

 

2.1.3 Conclusion 

Our collective findings point to a large number of infection-specific cis- and trans-acting 

eQTLs in the DGRP, including one common non-coding variant that lowers enteric infection 

susceptibility by modulating ntc gene regulation through altered Broad repressor binding. 
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2.2 Background 

Deciphering the relationship between genomic and phenotypic variation is a central 

question in genetics. Genome Wide Association Studies (GWAS) have been extensively used 

to address this question by looking for variants that could explain a certain fraction of the 

genetic variance of phenotypes (Manolio, 2010; Visscher et al., 2017). More often than not, 

those variants are located in non-coding regions of the genome, rendering the inference of 

their putative function difficult (F. W. Albert & Kruglyak, 2015; Gan, Pro, Sewell, & Fuxman 

Bass, 2018; Hindorff et al., 2009; Rojano, Seoane, Ranea, & Perkins, 2018). Therefore, the 

study of intermediate molecular traits, such as gene expression levels, and how they are 

affected by genomic variation is a powerful complementary approach to linking geno- to 

phenotype (Deplancke, Alpern, & Gardeux, 2016; Nica & Dermitzakis, 2013).  

 

Ever since the first expression quantitative trait locus (eQTL) report in yeast (Brem, Yvert et al. 

2002), it became clear that eQTLs could account for a substantial proportion of variability in 

gene expression following a cellular or organismal response to external stimuli. These eQTLs 

in turn advanced our understanding of the genetic basis of disease susceptibility. Indeed, eQTL 

studies in both mouse and human using monocytes, macrophages, dendritic cells or other 

immune cells have been useful to better understand how genetic regulatory effects affect auto-

immune disease (R. Alberts et al., 2011; Kim-Hellmuth et al., 2017; Raj et al., 2014), 

inflammatory bowel disease (Peters et al., 2016), resistance to Salmonella (Gilchrist et al., 

2015) and the molecular response to an infection stimulus (Fairfax et al., 2014, 2012; M. N. 

Lee et al., 2014; Orozco et al., 2012). These advances motivated the establishment of even 

larger-scale projects such as DICE (Database of Immune Cell Expression, eQTL and 

Epigenomics) to characterize gene expression in all human immune cell types and to study 

how genetic variants affect these immune cell-related transcriptomes (Schmiedel et al., 2018). 

However, eQTL-related studies aimed at better understanding the genetic and molecular basis 

underlying gut immunocompetence have been lacking for practical and ethical reasons. 

Indeed, human intestine eQTL studies have to our knowledge so far been restricted to 

inflammatory bowel disease (Di Narzo et al., 2016; Hulur et al., 2015; Kabakchiev & Silverberg, 

2013; Peters et al., 2016; Singh et al., 2015).  

 

A valuable alternative model to uncover the genetic and molecular mechanisms underlying 

variation in gut immunocompetence is Drosophila melanogaster given that this organism is by 

now widely used to study the biological processes mediating the response to enteric infection 

(Galenza & Foley, 2019; Gupta, Stewart, Rund, Monteith, & Vale, 2017; Lemaitre & Hoffmann, 

2007; Mistry, Kounatidis, & Ligoxygakis, 2015; Mondotte et al., 2018). Moreover, previous work 
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including ours has shown that gut immunocompetence is a highly variable and heritable trait, 

not only in human (Gundogdu & Nalbantoglu, 2017) and mouse (Davenport et al., 2015), but 

also in Drosophila (Bou Sleiman et al., 2015; Early, Shanmugarajah, Buchon, & Clark, 2017). 

Consequently, population resources such as the Drosophila Genetic Reference Panel (DGRP) 

can be effectively used to study the molecular nature of enteric infection-induced gene 

expression variation. In this study, we therefore explored the effect of genetic variation on gene 

expression and organismal phenotypes in the context of in vivo enteric infection in the DGRP. 

Despite several valuable eQTL studies in Drosophila involving the DGRP (Cannavò et al., 

2016; W. Huang et al., 2015; W. Huang, Massouras, & Inoue, 2014; Massouras et al., 2012; 

Zichner et al., 2012) and the Drosophila Synthetic Population Resource (DSPR) (King et al., 

2014; Qu et al., 2018; Stanley et al., 2017), none have so far focused on the response to 

infection.  

 

To do so, we generated a large set of Drosophila control and P.e.-infected gut transcriptomes 

to systematically investigate the link between gut gene expression levels and genetic variation. 

We showed that genotype is a major determinant of global gene expression levels, revealing 

a large number of both shared and condition-specific local-eQTLs (Hasin-Brumshtein et al., 

2014; Khansefid et al., 2018; Rockman & Kruglyak, 2006). We then validated and catalogued 

these local-eQTLs into cis and trans-acting eQTLs using allele-specific expression on a set of 

F1 siblings from crosses between isogenic DGRP lines. Importantly, we identified nutcracker 

(ntc) as a gene that is differentially expressed between susceptible and resistant DGRP lines. 

Through classical genetic analyses, we found that it affects the immunodeficiency (Imd)-

dependent enteric immune response through the induction of the major effector Diptericin 

(Dipt). We also identified and in vivo validated a cis-regulatory variant in a predicted 

transcription factor (TF) binding site responsible for the difference in ntc expression between 

the resistance classes and validated the effect of the SNP on allele-specific gene expression 

in vivo. In this study, we thus leveraged the genetic tractability of the fruitfly, the ability to easily 

replicate experiments on the same genetic backgrounds and the study at the whole organism 

level to characterize in depth the genetic and molecular mechanisms that contribute to gut 

immunocompetence variation in Drosophila.  
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2.3 Results 

2.3.1 Genetic analysis reveals pervasive, condition-specific gene 

expression variation  

To study global gene expression variation between two enteric infection resistance 

classes, we selected 38 DGRP lines from the phenotypic extremes from our previous study 

(Bou Sleiman et al., 2015) with 20 being highly susceptible and 18 being highly resistant to 

enteric infection by Pseudomonas entomophila (P.e.) (Fig. 1a). Adult female flies were infected 

and mRNA sequencing (mRNA-seq) performed on dissected guts 4 hours post infection. In 

parallel, for each line, we also sequenced guts of sucrose-fed flies as controls. Each genotype 

and condition were replicated once. Since the DGRP lines are highly polymorphic, we opted 

for analyses on individualized genomes. For that, we used the available genotype data (W. 

Huang et al., 2014), including single nucleotide variants as well as indels and structural 

variations, to generate individualized genomes and gene annotations (see Methods) which 

we used throughout the analyses. Seven of the lines were already included in our previous 

study (Bou Sleiman et al., 2015), which allowed us to assess the biological reproducibility of 

the mRNA-seq experiment. After combining the expression count data from the two 

experiments and performing normalization and removal of batch effects, we performed 

conventional hierarchical clustering (Supplementary fig. 2-1a). This revealed that the 

samples from the same line and condition always cluster together, indicating that genotypic 

differences mediate expression-level differences and that batch effects are weaker than the 

infection or genotype effects. Principal Component Analysis (PCA) on the same data also 

supported this observation (Supplementary fig. 2-1b-c).  

 

We then sought to catalogue the effect of genetic variation on gene expression levels for the 

two treatment conditions. To do so, we used Matrix-eQTL (Shabalin, 2012) to identify local-

expression Quantitative Trait Loci (eQTLs) (i.e. within a window of 10 kb up- and downstream 

of genes) whose alleles correlate with the expression levels of nearby genes. We performed 

the analysis separately for the control and infected conditions and identified 7583 and 6644 

local-eQTLs (p-value < 0.05) for 1459 and 1475 genes in the control and infected condition 

respectively (Fig. 2-1b). Interestingly, while 26% of local-eQTL-associated genes were shared 

between the two treatment conditions, the majority of detected local-eQTLs were condition-

specific, emphasizing the substantial contribution of cryptic genetic variants to gene expression 

variation, especially in the presence of a strong transcriptome-altering stimulus such as 

infection. However, we found that the meta-distribution of detected local-eQTLs around the 

respective transcription start sites (TSSs) was similar between the two conditions. The 
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distribution also followed the expected pattern in that their density was highest around the TSS 

with a peak immediately downstream of the TSS, also involving the most significant 

associations (Fig. 2-1c). 26% of the genes expressed in the gut could also be linked to at least 

one eQTL, reflecting pervasive genomic variation-mediated gene expression differences.  

 

To uncover pathways affected by genetic variation, we performed Gene Ontology analyses on 

the control, infected, and shared set of local-eQTL genes. This analysis revealed that the 

shared local-eQTL-associated genes are most enriched for the chitin metabolic process, 

possibly suggesting that genetic variation could be mediating differences in genes that are 

essential in maintaining the intestinal epithelium (Fig. 2-1d). Genes linked to control-specific 

local-eQTLs tended to be involved in the establishment of cell polarity, while infection-specific 

terms included a “response to endogenous stimuli” and the regulation of the ERK1/ERK2 

cascade. This suggests that genetic regulatory variation in the infected condition might be 

affecting distinct biological processes. To provide an additional layer of characterization, we 

next explored whether infection-specific local-eQTLs are preferentially located in the proximity 

of specific transcription factor (TF) binding sites. To do so, we considered a region of 200bp 

around each eQTL and used AME from the MEME suite (Bailey et al., 2009; McLeay & Bailey, 

2010) to test for TF motif enrichment in infection-specific compared to control-specific regions. 

These analyses revealed only two TF motifs, for Atf-2 and Disco (Fig. 2-1e), that passed the 

5% FDR threshold. Interestingly, Atf-2 is a known downstream effector of the p38 pathway that 

has already been identified as a major player controlling gut immunity (Sveta Chakrabarti et 

al., 2014; E.-M. Ha et al., 2009; Sano et al., 2005), suggesting that infection-specific gene 

expression variation is in part driven by inter-individual Atf2 DNA binding differences. For 

Disco, no link with gut immunity has so far been reported. Taken together, our analyses 

catalogued a large set of genomic loci that affect gene expression levels only in the infected 

condition, collectively rendering them interesting candidates for examining their role in 

influencing the overall susceptibility of Drosophila to infection. 
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Figure 2-1 : Expression profiling of phenotypic extremes does not reveal consistently 

differentially expressed genes between classes 

(a) Study design: 30 adult female flies from two phenotypic extremes (18 resistant and 20 

susceptible) of the DGRP were infected orally with Pe or fed sucrose. Whole guts of 

~30 flies were dissected per condition and line, then RNA-sequencing was performed. 

Sequencing reads were mapped to individualized genomes, and the number of reads 

was counted per gene.  

(b) Infection leads to the differential expression of around 2400 genes (BH-corrected p-

value < 0.05, fold change > 2).  

(c) Metaplot of locations of cis-eQTLs with respect to their associated genes’ transcription 

start sites (TSS). Solid grey line and dashed orange line are for the control and infected 

conditions respectively.  

(d) Graphical representation of enriched biological process gene ontology terms based on 

the lists of genes with significant cis-eQTL associations. The GO analysis was 

performed using the GOstats (Falcon & Gentleman, 2007) R package (Hypergeometric 

test p-value < 0.005), and REVIGO (Supek, Bošnjak, Škunca, & Šmuc, 2011) was used 

to reduce redundancy in the ontology groups and plot them by semantic similarity 

(allowed similarity = 0.7). The size of the circle indicates the number of genes belonging 

to a certain GO category, and the color indicates enrichment significance. 

(e) TF motifs that are enriched within local-eQTLs in the infected compared to the control 

condition. 
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2.3.2 Large-scale in vivo local-eQTL characterization via allele-specific 

expression 

We have so far uncovered many shared and condition-specific local-eQTLs, but our 

analyses did not inform on the validity of the identified eQTLs nor whether these are cis- or 

trans-acting. eQTL studies have often focused on validating the effect of a particular variant 

on relevant genes using molecular biology techniques such as chromatin immunoprecipitation 

and small-scale reporter assays to measure the effect of an eQTL (Jin, Jung, DebRoy, & 

Davuluri, 2016; Lawrenson et al., 2015). While the recent emergence of Massively Parallel 

Reporter Assays allows for a much more systematic analysis of the regulatory effect of variants 

in transcriptional elements (Inoue & Ahituv, 2015; Maricque, Chaudhari, & Cohen, 2019; 

Tewhey et al., 2016), these assays are still unable to consider the complex interaction between 

genetic variation and gene expression. We therefore decided to exploit our experimental 

setting to thoroughly validate the detected local-eQTLs and explore their cis-regulatory nature 

by investigating their effect in a different genetic background. Specifically, by implementing a 

large-scale allele-specific expression analysis, we aimed at examining whether local-eQTLs 

induce the expected imbalance in expression between maternal and paternal alleles in an F1 

cross (Hu, Sun, Tzeng, & Perou, 2015; Zou et al., 2018).  

 

To achieve this, we selected 19 DGRP lines and crossed them in a round robin scheme (Fig. 

2-2a and Supplementary fig. 2-2a) to maximize the number of F1 offspring that feature 

heterozygous genotypes for our set of predicted local- eQTLs such that we could assess allele-

specific gene expression and infer cis-regulatory effects. Using the F1 individuals, we infected 

2-3 days old adult females for 4 hours and extracted RNA from their dissected guts. As a 

control, a similar number of female adults were fed sucrose and processed in similar fashion. 

We replicated this experiment a second time to obtain two biological replicates and 

subsequently used BRB-seq, the high-throughput transcriptomics approach developed by our 

lab (Alpern, Gardeux, Russeil, & Deplancke, 2018) to derive gene expression profiles for each 

of the processed samples (see Methods). We assessed the quality of the replicas by 

performing PCA and correlation analysis on the gene count matrix which revealed no major 

batch effects between replicate experiments and strong separation between infected and 

control samples (Supplementary fig. 2-2b – 2-2e). 

 

We selected a subset of 19,121 eQTLs from the control condition and 19,166 ones from the 

infected condition among our detected local-eQTLs, with an FDR < 0.1 for further validation. 

To detect differential allele expression as driven by an eQTL-linked variant, we required at 

least one cross whose offspring would be heterozygous for the selected variant to assess 
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allelic expression imbalance. To identify those crosses, we used the DGRP freeze 2 genomic 

data resource (W. Huang et al., 2014). Even though we used only 19 DGRP lines, our design 

allowed us to comprehensively interrogate the majority of detected local-eQTLs on the subset 

of 38 lines. For instance, only 67 and 66 local-eQTLs from the control and infected conditions 

(0.35% of local-eQTLs in both conditions) could not be tested due to the absence of any F1 

that is heterozygous at these loci. The average number of heterozygous crosses per eQTL 

variant was 6.5 and 6.4 for the control and infected conditions respectively (Fig. 2-2b). 

Although one eQTL is linked to one gene, it is possible that one gene may be affected by 

multiple eQTLs. The distribution of the number of eQTLs linked to each gene revealed that 

most genes are linked to one or two variants, with a maximum of 123 eQTLs linked to one 

gene. Moreover, we did not detect any difference in the distribution of eQTLs per gene between 

control and infected condition-linked eQTLs (Supplementary fig. 2-2f). 

 

To detect cis-eQTL variant-driven allele-specific expression (ASE) over several different 

genetic backgrounds, we applied a generalized linear mixed model (GLMM) with the response 

modelled by a binomial test of maternal vs paternal reads and crosses as random effect. The 

binomial test has been widely used to detect allelic imbalance (J. Chen et al., 2016; Degner et 

al., 2009; Kukurba et al., 2014; McManus et al., 2010) and by adding the genetic background 

as a random effect, we can detect consistent allelic imbalance over multiple crosses. Thus, 

variants validated by our model are able to drive allelic imbalance across several genetic 

backgrounds. We applied strict cutoff parameters to the samples that were passed to the 

GLMM which eliminated approximately 16% and 18% of the local-eQTLs from the control and 

infected conditions respectively because those variants did not have sufficient reads to be 

considered in the analysis (Fig. 2-2c and Supplementary fig. 2-2g – 2-2h). At the end, our 

model allowed us to uncover 11.8% of the control (2023 local-eQTLs with FDR < 0.1) and 

11.5% of the infected (1990 local-eQTLs with FDR < 0.1) condition-linked local-eQTLs across 

all tested genetic backgrounds as cis-acting eQTLs. We next assessed if an increased number 

of F1 hybrids would result in a higher probability for a local-eQTL to be validated, but found no 

evidence for this (Fig. 2-2b). Interestingly, when we compared the adjusted p-values computed 

by Matrix-eQTL for the local-eQTLs to the adjusted p-values from the F1 data, we observed 

only a very modest correlation, indicating that a low p-value for a local-eQTL is not necessarily 

a good predictor of an actual cis-effect across mixed genetic backgrounds (Fig. 2d and 2e). 

Furthermore, we found no correlation between the computed effect size and the measured 

effect size in both control and infected conditions (Supplementary fig. 2-3a and 2-3d). 

However, we observed that when a local-eQTL is found to act in cis, there is a high probability 

that the computed beta accurately predicts the direction of the measured effect 

(Supplementary fig. 2-3b – 2-3c and 2-3e – 2-3f). We subsequently tested for a difference in 
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the meta-distribution around the TSS between local and cis-eQTLs but found again no striking 

difference when all variant positions were compared (Supplementary fig. 2-3g and 2-3j). To 

test if more variants linked to one gene would lead to variants situated further away from the 

TSS, we separated eQTLs into “single eQTL per gene” and “multiple eQTLs per gene” 

categories and tested whether these two categories where distributed differently, but found no 

difference in either case (Supplementary fig. 2-3h – 2-3i and 2-3k – 2-3l, Kolmogorov-

Smirnov p-value = 1 and 0.1 in Control condition for unique and multiple eQTLs respectively 

and 0.35 and 0.55 in Infected condition).  

 

We then tested if local-eQTLs that were not characterized as cis could have a measurable 

trans-effect instead. To do so, we applied a linear mixed model to the crosses that were 

homozygous for each variant, using the crosses as a random effect (see Methods). We were 

able to detect a trans effect for 7.5% of control and 11.9% infected condition non-cis local-

eQTLs (1190 and 1833 trans-eQTLs with FDR < 0.1 in control and infected conditions 

respectively) (Fig. 3f). However, due to the restricted number of available, homozygous 

crosses, we could only test 62% and 61% of the non-cis local-eQTLs in control and infected 

conditions respectively, while also being relatively underpowered. In summary, we detected a 

large number of local-eQTLs across conditions, but the majority of those cannot be defined as 

cis-eQTLs in a mixed heterozygous background. Rather, we found that, even within a 

conservative and underpowered analytical framework for trans-effect analysis, already a non-

negligible portion of these non-cis local-eQTLs feature a robust, measurable trans-effect.  
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Figure 2-2 : Predicted cis-eQTL validation by allele-specific gene expression 

(a) Schematic of the round robin design: isogenic parental lines (blue) were crossed to two 

different lines and heterozygote F1 female offspring (grey) were used for infection and 

further processing. 

(b) Distribution of the number of heterozygous crosses per eQTL in control (grey) and 

infected (orange) conditions. The distribution of cis-eQTLs (dark grey and dark orange) 

are not affected by the number of heterozygous crosses that are available to perform 

the calculations. 

(c) Number of eQTLs passing the data cutoff for cis- and trans-characterization (light 

green) and rejected (red) in control (16%) and infected (17%) conditions. Cis-eQTLs 

are indicated in dark green with 6.8% and 6% of local-eQTLs in infected and control 

conditions respectively. 

(d) And (e) Correlation between local-eQTL p-values (x-axis, -log10(Benjamini-Hochberg 

adjusted p-value)) compared to cis-eQTL calculated p-values (y-axis, -

log10(Benjamini-Hochberg adjusted p-value)). Vertical and horizontal lines represent 

the 0.05 cutoff in control and infected Conditions 

(f) Number of eQTLs passing the data cutoff for cis- and trans- haracterization (light green) 

and rejected (red) in control (16%) and infected (18%) conditions. cis-eQTLs are 

indicated in dark green with 11.8% and 11.5% of local-eQTLs in infected and control 

conditions respectively. 
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2.3.3 Few genes are significantly differently expressed between 

resistance classes  

In a next step, we aimed to investigate how genetic variation influences the molecular 

and phenotypic differences between resistance classes. To first gain an unbiased, overall 

insight into the relatedness of the transcriptomes of the homozygous lines, we performed PCA 

on gene expression levels (Fig. 2-3a and Supplementary fig. 2-1b). While the infection effect 

is obvious and recapitulated by the first principal component (PC), lines from different 

resistance classes did not show any clear separation on the first two PCs. This is in contrast 

to our previous study, where we were able to see a modest separation on the second PC (Bou 

Sleiman et al., 2015). Furthermore, performing PCA on the expression levels within conditions 

yielded a similar result, with no obvious separation of the resistance classes on the first two 

principal components. A rationale for the disappearance of any separation compared to our 

previous study may include i) our expansion of the number of lines (from 8 to 20 per extreme), 

therefore reducing the phenotypic spread, or ii) the fact that the separation observed with the 

eight lines in our previous study may have been dominated by genotypic rather than treatment 

effects. Taken together, our findings suggest that, while the molecular impact of infection is 

similar among all tested lines and while the phenotypic differences are striking between the 

two resistance classes, the underlying transcriptomic differences are neither evident at the 

single gene- nor transcriptome-wide levels. This is in line with our previous findings that higher-

level modules related to specific biological processes such as stress response, ROS 

metabolism and intestinal homeostasis (Bou Sleiman et al., 2015) could explain differences 

between resistance classes. 

 

Using standard gene-based differential expression analysis, we identified around 2400 genes 

that are either up- or down-regulated 4 hours post P.e. infection (FDR<0.05, log fold change > 

2, Fig. 2-3b). This is consistent with previous RNA sequencing and microarray results (Bou 

Sleiman et al., 2015; S Chakrabarti, Liehl, Buchon, & Lemaitre, 2012). Next, we explored gene 

expression differences between the resistance classes in the two experimental conditions. In 

our previous study, we had only found five and 34 mostly uncharacterized, differentially 

expressed genes in the control and infected conditions respectively. We reasoned that this low 

number may reflect either the underpowered nature of our previous study, involving only four 

lines from each resistance class, or that there are effectively few consistent differences 

between the resistance classes at the single gene level. Strikingly, when considering 38 lines, 

we found again no differentially expressed genes in the control condition, and only one gene, 

nutcracker (ntc), in the infected condition (Fig. 2-3c). This observation supports the notion that 

the differences between the classes, while being overt at the physiological level (i.e. being 
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alive vs dead), cannot be fully explained at the single gene level using standard differential 

expression approaches. 
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Figure 2-3 : local-eQTL analysis links natural variation to gene expression levels.  

(a) Principal component analysis plots of all the samples (left), the control condition 

(middle), and the infected condition alone (right). The R package FactomineR was used 

to obtain the coordinates of each sample in the first two components, as well as the 

variance explained by each component (in parentheses).  

(b) Variants with a minor allele frequency greater than 5 in the 38 lines and that are within 

a 10kb window of each expressed gene were tested for their association with gene 

expression levels. Results of two local-eQTL analyses (one for each infected condition) 

using Matrix eQTL (43) are presented in a Venn diagram (FDR < 0.05). The number of 

genes with significant associations is indicated in parentheses.  

(c) When lines of the two resistance classes are compared within condition, no genes are 

significantly differentially expressed in the control condition, and only one gene in the 

infected condition.  
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2.3.4 The gene nutcracker is induced in resistant lines, has a validated cis-

eQTL, and is involved in the gut immune response  

As reported above, ntc was the only differentially expressed gene between the resistant 

and susceptible lines (Fig. 2-3c). Mining of our local-eQTL data revealed five infected 

condition-specific eQTLs belonging to two linkage groups, one group consisting of two eQTLs 

7.6kb upstream and the other group composed of three 4.5kb downstream of its TSS (Fig. 2-

4a), raising the question whether the cis-regulatory variation of ntc expression is one of the 

likely several mechanisms that contribute to resistance class stratification. This is further 

supported by our observations that ntc expression is induced in the gut after infection and that 

resistant lines tend to have greater ntc expression than susceptible ones (Fig. 2-4b) 

 

We therefore first explored whether ntc affects gut immunocompetence given that its only 

described role so far is in sperm differentiation (Bader, Arama, & Steller, 2010). To do so, we 

used a null mutant line that harbors a point mutation in the F-box domain of ntc, ntcms771 and 

tested its susceptibility to P.e. infection. Because flies homozygous for ntcms771 are fragile and 

have a short lifespan (Supplementary fig. 2-4a and 2-4b) in both wildtype and infected 

conditions, we backcrossed them to their background line (bw;st). We assessed the survival 

of F1 offspring compared to their control, i.e., we compared the survival of bw;st,+/TM6b to 

bw;st,ntcms771/TM6b and bw;st,+/+ to bw;st,+/ntcms771. We observed decreased survival in all 

offspring flies harboring the ntc mutant allele. However, this decrease was stronger in the 

balancer line compared to the one without a balancer chromosome, suggesting that the ntc 

effect is stronger in weaker lines (Fig. 2-4c, p < 0,0001 and p=0.081, log-rank test). 

Furthermore, we performed RT-qPCR on dissected guts from the same lines and found that 

ntc expression is strongly reduced in mutant allele lines compared to control. Concurrently, the 

expression of the anti-microbial peptide Dipt was severely reduced in flies harboring the ntc 

mutant allele compared to controls (Fig. 2-4d and 2-4e). We replicated these findings using 

two lines harboring P-element-induced mutations, ntcf03797 and ntcf07259, in or around the ntc 

locus (Supplementary fig. 2-4c and 2-4f). Interestingly, we also found that ntc is not 

expressed in the RelE20 mutant line, a Relish loss of function line that disrupt the Imd pathway, 

upon infection (Supplementary fig. 2-4f). Together, these results suggest that loss of or 

decreased ntc expression negatively influences the enteric immune response through 

downregulation of the Imd pathway effectors upon P.e. infection.  
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Figure 2-4 : The gene nutcracker is induced in resistant lines, has cis-eQTLs, and is 

involved in the gut response. 

(a) Top panel: schematic of the ntc gene with specific annotations: cis-eQTLs around the 

ntc locus, and their overlap with predicted transcription factor binding sites (TFBS). 

TFBS prediction was done using FIMO (86) and motifs from the Fly Factor Survey (87) 

and OnTheFly (88) databases. The expression fold change by resistance class and 

two of those alleles (termed the broad/daughterless allele (right panel), and the relish 

allele(left panel)) is plotted, as well as the percentage death of 140 DGRP lines (30).  

(b) Left panel: Expression level (in log2(cpm)) of the ntc gene by resistance class and 

infected condition. Right panel: Fold change of ntc by resistance class. 

(c) Survival of lines harboring a null mutant allele ntcms771 with (top panel) and without 

(bottom panel) TM6B balancer upon Pe infection compared to control. Log ranked test 

p < 0,0001 and p=0.081 for lines with and without balancer chromosome respectively. 

Shaded area represent 95% confidence interval. 

(d) Gene expression of ntc and Dipt as measured by qPCR, normalized to Rpl32. Control: 

bw;st,+/TM6B and Test: bw;st,ntcms771/TM6B. 

(e) Gene expression of ntc and Dipt as measured by qPCR, normalized to Rpl32. Control: 

bw;st,+/+ and Test: bw;st,+/ntcms771. 

(f) Data presented in (c), (d) and (e) are based on at least three biological replicates. 
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2.3.5 Determining the cis-regulatory mechanism underlying differential ntc 

expression among resistant and susceptible DGRP lines 

Given the potential phenotypic consequences of differential ntc expression between 

the two resistance classes, we next set out to better understand the genetic and molecular 

mechanisms underlying differential expression of the gene. A transcription factor motif 

scanning analysis of the ntc locus revealed several potential binding sites that overlapped with 

the ntc-linked local-eQTLs, including Broad Complex and Daughterless TF binding sites for 

the upstream local-eQTLs, and a Relish/NF-kB one for a downstream local-eQTL. The alleles 

at both sites showed a high correlation with ntc expression for the studied 38 lines, but when 

associated with enteric infection susceptibility variation among the 140 DGRP lines, the allele 

at the Broad/Daughterless site was more significant than the Relish/NF-κB binding site one 

(GWAS p-value of 6.1*10-5 vs. 0.024 respectively). However, both failed to pass the stringent, 

implemented nominal 1*10-5 p-value (Bou Sleiman et al., 2015), although the Broad allele was 

obviously very close. In addition, since the gene IntS10 is physically closer to these variants 

than ntc, we would not intuitively have linked these variants to ntc.  

 

Next, we investigated the impact of the local-eQTL variant on the binding activity of four 

different TFs predicted to bind the sites overlapping ntc-linked local-eQTL sites: Broad, 

Daughterless, Sage, and Relish. To do so and given the difficulty in performing line-specific 

ChIP on these TFs, we used our in-house MITOMI setup (Maerkl & Quake, 2007) to measure 

in vitro the binding affinity of the selected TFs to double-stranded 20-mers that encompassed 

the respective binding site and that represented either the reference or alternate alleles. These 

analyses showed that among all four tested TFs, only Broad, a protein able to act as both a 

repressor and an activator (Bayer, Holley, & Fristrom, 1996; Mugat et al., 2000), exhibited a 

differential binding activity (Fig. 2-5a and Supplementary fig. 2-5, Welch’s t-test p-value = 

0.0063 ), showing substantially reduced binding to the alternate compared to the reference 

binding site allele. 

 

Because the increase in ntc expression upon infection is substantially higher in DGRP lines 

harboring the alternate Broad binding site allele and because the alternate allele has a weaker 

affinity for Broad, we hypothesized that Broad, in our study, acts as a repressor on ntc. 

Consequently, a decrease in Broad binding affinity would lead to less repression and thus 

increased ntc expression. To verify this hypothesis in vivo, we again turned to the round-robin 

BRB-seq data to measure the ASE at each variant, with 14 F1 lines being heterozygous for 

the variant (Fig. 2-5b). In the control condition, we detected no significant difference between 

the ratio of alternate read count over reference read count (Fig. 2-5c, t-test p-value = 0.21) in 
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the few samples in which ntc expression was detected, which was expected due to the low 

expression of ntc in wildtype flies. However, we found that, in the infected condition, the ratio 

was significantly skewed towards the alternate allele (Fig. 2-5c, t-test p-value = 0.04), 

supporting our hypothesis that the variant in the Broad TF binding site is a cis-acting eQTL that 

affects ntc expression. Together, these results present a compelling mechanism explaining 

how a variant located in a TF binding site contributes to variation in gut immunocompetence 

by altering the expression level of a particular gene that itself influences an organism’s 

resistance to infection. 
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Figure 2-5 : Broad affinity and ntc expression is lowered for the alternate allele 

(a) Measure of the binding affinity between Broad and the reference or alternate allele as 

measured by MITOMI in three different replicates. 

(b) Repartition of lines in the round robin scheme based on reference or alternate Broad 

TFBS alleles. 

(c) Ratios of read count mapping to the alternate over the reference allele reveal no 

difference in control condition (T-test, p-value = 0.21) but is significant in infected 

condition (T-test p-value = 0.04).  

(d) Proposed model of ntc-mediated variation in gut immunocompetence: an enteric 

immune challenge increases ntc expression, while Broad acts as a repressor of ntc 

expression. The SNP in the Broad binding site decreases the binding affinity for Broad 

and thus the extent of ntc repression, resulting in greater ntc expression, which in turn 

increases Dipt expression. 
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2.4 Discussion  

This study aimed at elucidating the effect of genetic variation on gene expression and 

organismal phenotypes in the context of in vivo enteric infection in the DGRP. One of the major 

findings that emerged is that DGRP lines with diametrically opposite resistance to infection all 

have a similar response after ingestion of a pathogenic bacterium, at least at an early timepoint 

after infection (Fig. 2-1). We show that this is not due to our inability to detect genotype-specific 

differences, since lines of the same genotype cluster together at the transcriptional level 

(Supplementary fig. 1). It is therefore clear that genomic variation imparts line-specific 

systemic differences on the transcriptome, yet only a small subset of those differences appears 

to be relevant in determining resistance.  

 

To directly assess the effect of genomic variation on gene expression levels, we catalogued 

the possible local-eQTLs around all expressed genes. We found that in both the control and 

infected conditions, around a third of all associations are unchanged, confirming that genotypic 

differences indeed drive gene expression differences. However, the majority of local-eQTLs 

proved to be condition-specific, including the local-eQTLs at the ntc locus, suggesting an 

important contribution of cryptic variation to infection resistance (Gibson & Dworkin, 2004; 

Gibson, Powell, & Marigorta, 2015). Furthermore, our study allowed us to acquire unique 

insights into the regulatory nature of detected local-eQTLs. Most notable is that our study, to 

our knowledge the most comprehensive and systematic in vivo local-eQTL characterization 

effort to date, indicates that we tend to vastly overestimate the frequency of cis-eQTLs. This 

conclusion is in line with a previous study on mice in which only 17% of local-eQTLs could be 

defined as cis-eQTLs (Hasin-Brumshtein et al., 2014). Moreover, while we were able to still 

classify many local-eQTLs as trans, the majority of local-eQTLs remained unvalidated in 

variable genetic backgrounds. Of course, it is possible that the cis effect of a local-eQTL may 

be masked by other trans-acting eQTLs affecting the same gene (F. W. Albert & Kruglyak, 

2015). Indeed, when several eQTLs were predicted to affect one gene, we were not able to 

disentangle their effects. In addition, a single polymorphism may drive differential expression 

and the other eQTLs may be merely in linkage disequilibrium (LD) with the effector SNP. It is 

also possible that a given variant is able to affect a gene only in a small set of genetic 

backgrounds and thus even more crosses would be required to increase the number of testable 

heterozygous genomic sites. Several confounding factors may also influence these validation 

numbers, including the fact i) that some variants may affect different target genes that are 

located farther away (e.g. in the case of intergenic variants) or that are even separated from 

the variant by other genes and ii) that some variants only affect a gene in combination with 

other variants (Y.-T. Huang, VanderWeele, & Lin, 2014). Importantly though, even if only 
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considering the validated cis-eQTLs, our earlier statement of pervasive, condition-specific 

gene expression variation between genotypes remains intact, since 10% of the validated cis-

eQTLs were condition-specific. Interestingly, we found that highly significant local-eQTLs were 

not necessarily more likely to act in cis. However, when a variant was characterized as a cis-

eQTL, then the local-eQTL measured directionality effect size was a good indicator of the cis-

eQTL measured effect size.  

 

Strikingly, we found only one gene differentially expressed between the resistant and 

susceptible lines, nutcracker (ntc). This gene was initially identified in a screen for mutants that 

failed to undergo sperm individualization due to their inability to activate caspases (Bader et 

al., 2010). Through its F-box domain, ntc interacts with other partners to form an SCF (Skp, 

Cullin, F-box) ubiquitin ligase (E3) complex that controls caspase activity in Drosophila (Bader 

et al., 2011). Caspases play important roles in insect immunity and homeostasis through both 

apoptotic and non-apoptotic pathways. For instance, Dredd, the homolog of human Caspase-

8 is required for Relish cleavage and activation (Leulier, Rodriguez, Khush, Abrams, & 

Lemaitre, 2000). Furthermore, activation of the IKK complex is dependent on ubiquitination (R. 

Zhou et al., 2005), and studies in mammals have shown that commensal bacteria can affect 

ROS levels, leading to modification of the activity of the SCF complex, thus affecting NF-κB 

signaling (Kumar et al., 2007). While there are therefore several possible functional scenarios, 

the exact function of ntc in the gut and specifically enteric infection remains unclear and should 

be the subject of a more mechanistic, follow-up study. However, we were able to demonstrate 

that impaired ntc expression and null mutants of ntc negatively impact the survival of flies 

harboring these mutations. This effect is stronger in flies with a genetic background that is itself 

more susceptible to infection, such as lines harboring balancer chromosomes. This could be 

interpreted as a result of the sum of several different factors that are, when taken individually, 

not impactful, but lead to an increase in susceptibility when combined, as is suggested by our 

RNA-seq results not displaying strong separation between resistant and susceptible lines. 

Moreover, we were able to show that Dipt expression is severely reduced in the absence of 

ntc, showing a direct impact of ntc expression on potent immune response effectors. 

 

We thereby uncovered how a SNP in a TF binding site proximal to ntc may impact its 

expression upon enteric infection. It is by now well-established that variants in TF binding sites 

can impact binding affinity and in turn the expression of the respective target gene (Deplancke 

et al., 2016; Haldane, Manhart, & Morozov, 2014). Here, we found that only one mutated 

binding site out of two possible local-eQTL sites displays variable binding affinity to a TF, 

namely Broad. Furthermore, allele-specific expression of F1 hybrids carrying the two alleles 

showed that the two copies of ntc are being induced differently, demonstrating a cis effect of 
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the SNP on the expression of ntc. These results establish a causal relationship between the 

binding site variant and variable ntc expression through differential binding of the TF Broad, 

constituting to our knowledge a rare example of an eQTL that modifies an ecologically-relevant 

complex trait through its effect on binding of a specific TF in a particular environmental 

condition. That said, it is unlikely that the extreme phenotype observed for ntc mutants reflect 

all of the underlying molecular mechanisms differentiating the resistant and susceptible DGRP 

lines since the difference in ntc expression between susceptible and resistant lines is not as 

severe as those measured in the mutants.  

 

Together, these observations support the following model regarding how the ntc locus 

mediates variation in enteric infection susceptibility (Fig. 2-5d): upon infection, the expression 

of ntc is increased, together with that of Broad as well as several other immune response 

genes, as inferred from (S Chakrabarti et al., 2012; De Gregorio, Spellman, Rubin, & Lemaitre, 

2002). Given Broad’s role as a repressor in metamorphosis (Karim, Guild, & Thummel, 1993), 

we hypothesize that this TF may also act as a negative (feedback) regulator of ntc expression. 

Consequently, in flies harboring the alternate allele showing diminished affinity for Broad 

binding, ntc repression is reduced, resulting in greater ntc expression. This in turn positively 

affects the expression of Dipt through an as yet unknown mechanism, resulting in greater 

infection resistance compared to susceptible lines. 
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2.5 Conclusions 

Our study shows the advantage of allele-specific experiments as a complement to 

standard eQTL approaches to identify causal variants as well as the power of systems genetics 

to assign novel roles to genes in biological processes unrelated to their originally discovered 

roles. During our research, we did not take into account the fact that the gut is a highly 

regionalized organ (Nicolas Buchon & Osman, 2015; Marianes & Spradling, 2013) that 

consists of multiple cell types (Dutta et al., 2015). It is possible that some eQTLs could 

therefore be restricted to a certain cell-type or environment, which cannot be detected using 

our current strategy, but could be investigated in a follow-up study. 
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2.6 Material and Methods 

2.6.1 Fly Stocks 

DGRP lines were obtained from the Bloomington stock center and reared at room 

temperature on a standard fly medium with 12 hours light dark cycle. The fly medium we used 

is composed of (for 1L water): 6.2g Agar powder (ACROS N. 400400050), 58.8g Farigel wheat 

(Westhove N. FMZH1), 58.8g yeast (Springaline BA10), 100ml grape juice; 4.9ml Propionic 

acid (Sigma N. P1386), 26.5 ml of Methyl 4-hydroxybenzoate (VWR N. ALFAA14289.0) 

solution (400g/l) in 95% ethanol, 1L Water. We used w1118 and bw;st flies as wildtype. Various 

DGRP lines, ntcf03797 and ntcf07259 stocks were obtained from the Bloomington Stock Center. 

The bw;st,ntcms771/TM6B mutant stock was a kind gift from the Hermann Steller lab. 

 

2.6.2 RNA sequencing  

RNA extraction 

RNA extraction was performed using Trizol Reagent (Invitrogen) following the standard 

protocol.  

 

Library preparation and sequencing 

Standard Illumina Truseq libraries were prepared from 1ng total RNA as measured by 

a Nanodrop 1000 device (Thermo Scientific) by the Lausanne Genomic Technologies Facility. 

Single end sequencing was performed for 100 cycles. Initially, 80 samples from 40 lines were 

sequenced but we excluded 4 samples from two lines. One of the lines was contaminated, as 

its reads were derived from two genotypes and another DGRP line had a smaller library size 

in one condition, with led to its elimination from the analysis.  

 

Mapping to individualized genome 

For each DGRP line, we generated an individualized fasta genome sequence based 

on homozygous variants in the published Freeze 2 DGRP genotypes and the Release 5 

reference genome. We also generated individualized gene annotations by applying the 

offsetGTF tool included in the mmseq package (Turro et al., 2011) on the Ensembl BDGP5.25. 
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For each sample, reads were mapped to the respective genome using STAR aligner. Reads 

for each gene were counted using HTseq-count.  

 

Normalization and differential expression 

We used the edgeR package to perform TMM normalization, followed by conversion to 

Counts Per Million Voom with quantile normalization. When we combined samples from this 

study and the previous study, we used the same approach, starting from combined gene 

counts, with the addiction of the removeBatchEffect function in the limma package. Differential 

expression was performed in limma using the weights obtained by voom while adjusting for 

intra-line correlations using the duplicate correlation function with the DGRP lines as the 

blocking factor. The following model was used: y = treatment + class + treatment:class. For 

each predictor variable, genes having a fold change of 2 and a Benjamini-Hochberg corrected 

adjusted p-value of 0.05 were deemed differentially expressed.  

 

Principal component analyses 

The FactoMineR package was used to perform the principal component analyses with 

scaling and centering.  

 

cis-eQTL analysis  

We performed separate analyses for each infected condition using Matrix-eQTL 

(Shabalin, 2012). Variants that are within 10kb of an expressed gene and whose minor allele 

frequency is greater than 5 in the 38 tested lines were used. Cis-eQTL associations with an 

FDR corrected p-value that is less than 0.05 were considered significant. Metaplots were 

plotted in R. The GO analysis was performed using the GOstats (Falcon & Gentleman, 2007) 

R package (Hypergeometric test p-value < 0.005), and REVIGO (Supek, Bošnjak, Škunca, & 

Šmuc, 2011) was used to reduce redundancy in the ontology groups and plot them by semantic 

similarity (allowed similarity = 0.7) 

All analysis were performed in R version 3.5.0 
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2.6.3 Round Robin BRB-seq 

RNA extraction 

Flies were killed in cold 70% Ethanol, the Ethanol was wiped and replaced with cold 

RNAse free 1x PBS supplemented with 0.02% Tween-20. 10 guts were dissected for each 

sample and placed in a screw cap Eppendorf tube containing 350 uL Trizol and 10 uL plastic 

beads. Samples were homogenized in a Precellys 24 Tissue Homogenizer at 6000 rpm for 30 

seconds. Samples were then transferred to liquid nitrogen for flash freezing and stored at –

80°C. For RNA extraction, tubes were thawed on ice, supplemented with 350 uL of 100% 

Ethanol before homogenizing again with the same parameters. We then used the Direct-zol™ 

RNA Miniprep R2056 Kit, with the following modifications: we did not perform DNAse I 

treatment, we added another 2 min centrifugation into an empty column after the RNA Wash 

step, finally elution was performed by adding 10 uL of RNAse-free water to the column, 

incubation at room temperature for 2 min and then centrifugation for 2 min. RNA was 

transferred to a low-binding 96 well plate and stored at -80°C. 

 

BRB-seq Library preparation 

RNA quantity was assessed using picogreen. Samples were then diluted to an equal 

concentration in 96 well plates. RNA was then used for gene expression profiling using the 

bulk RNA barcoding and sequencing (BRB-seq) approach recently developed by our lab (see 

Alpern et al., BiorXiv, 2018, for experimental details). This protocol is able to provide high-

quality 3’ transcriptomic data by implementing an early multiplexing scheme as in single-cell 

protocols and at a fraction of the cost of its competitors (e.g. 10-fold lower than Illumina Truseq 

Stranded mRNA-seq). In short, the BRB-seq protocol starts with oligo-dT barcoding, without 

TSO for the first-strand synthesis (reverse transcription), performed on each sample 

separately. Then all samples are pooled together after which the second-strand is synthesized 

using DNA PolII Nick translation. The sequencing library is then prepared using cDNA 

tagmented by an in-house produced Tn5 transposase preloaded with the same adapters (Tn5-

B/B) and further enriched by limited-cycle PCR with Illumina compatible adapters. Libraries 

are then size-selected (200 - 1000 bp), profiled using a High Sensitivity NGS Fragment 

Analysis Kit (Advanced Analytical, #DNF-474), and measured using a Qubit dsDNA HS Assay 

Kit (Invitrogen, #Q32851). Finally, 6-8 pg of libraries were sequenced twice with Illumina 

NextSeq 500 with 21 cycles for read 1 (R1) and 101 cycles for read 2 (R2), only for the second 

sequencing. 
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2.6.4 Allele specific expression analysis 

Alignment 

We first aligned the two libraries, only the R2 file, to the Drosophila reference genome 

release 3 and the BDGP5.25 release annotation using STAR 2.5.3a (Dobin et al., 2013) with 

the following relevant parameters --twopassMode Basic --outFilterMultimapNmax 1 --

outSAMmapqUnique 60.  Then we used an in-house built software 

(https://github.com/DeplanckeLab/BRB-seqTools) to annotate the two aligned BAM files with 

the R1 info (Barcode and UMI if the latter exists), generating read groups for each 

libraryXsample. Then the two BAM files were merged into a unique BAM file that was further 

sorted. Picard was then used to remove the duplicates using the read group information and 

the barcode tag (options BARCODE_TAG=BC READ_ONE_BARCODE_TAG=BX). One of 

the samples failed due to a very low amount of reads and was removed from further analysis 

(Supplementary Fig. 2b). We then used PicardTools (http://broadinstitute.github.io/picard) to 

add read groups, sort, index and remove duplicates using the UMI information (parameter 

BARCODE_TAG=BC READ_ONE_BARCODE_TAG=BX). We then used GATK (Depristo et 

al., 2011) to split N cigars reads and realign the reads following the GATK best practices 

(Depristo et al., 2011). Finally, we used an in-house built software that assigns the reads to 

the maternal or paternal lines based on the variants present in the read, using the DGRP 

Freeze 2.0 VCF file (W. Huang et al., 2014). 

 

Allelic imbalance measurement 

For each local-eQTL and its linked gene, we used the variant information to select only 

crosses that were heterozygous for the respective variant. We then applied a generalized linear 

mixed model (GLMM, R package lme4::glmer, binomial(alternate read count, reference read 

count) ~ (1|cross)) with the response modelled by a binomial distribution with the crosses as 

random effects and no fixed effect. For each local-eQTL, we only selected samples with a 

minimum number of reads superior to the maximum value between 6 or the 25th quantile of the 

total of reads assigned to the lineage lines in each sample. The obtained P-values were then 

adjusted using the Benjamini-Hochberg method. The effect-size was computed as the inverse 

logit of the estimated intercept computed by the GLMM function. 
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Trans effect measurement 

For each local-eQTL and its linked gene, we used the variant information to select only 

crosses that were homozygous for the variant. We used the log2 count per million of total read 

count normalized using voom and assigned them as alternate or reference variant. We then 

applied a linear mixed model (GLMM, R package lme4::lmer, log2(cpm) ~ variant + (1|cross)) 

using the normalized count as a response and modelled by the allele (reference or alternate) 

and the crosses as random effects. For each local-eQTL, we only selected samples with at 

least 2 homozygous crosses for each variant. The obtained P-values were then adjusted using 

the Benjamini-Hochberg method. 

All analysis were performed in R version 3.5.1 

 

2.6.5 Oral infection, Survival and qPCR 

Oral infection was performed as previously described (Neyen, Bretscher, Binggeli, & 

Lemaitre, 2014). Briefly, 1-day old females were transferred to 29°C rearing conditions. When 

the female flies were 2-3 days old, they were starved for 2 hours and then transferred to a tube 

containing bacteria and allowed to feed on the bacteria for a maximum of 24 hours. To prepare 

the P.e. bacterial pellet, bacteria were plated from glycerol stocks on a standard LB-agar plate 

supplemented with 1% milk and grown overnight at room temperature. Two days prior to 

infection, one single colony was transferred to a 50 ml Erlenmeyer with 12.5 ml LB and 

incubated for 8 hours at 29°C with 180 rpm shaking. The pre-culture was then transferred to a 

1L Erlenmeyer with 200 ml LB and the culture was incubated overnight using the same 

conditions as the pre-culture. The culture was then centrifuged at 2500 g at 4°c for 20 min. The 

remaining LB was discarded and the pellet was resuspended by pipetting up and down. The 

OD600 was measured using a CO8000 Cell density meter. The pellet was then diluted to a 

final OD600 of 100 with distilled water and supplemented with Sucrose to a final 

volume/volume of 1.25%. A control solution contained only Sucrose at the same concentration. 

A disc of whatman paper was layered on top of the food and 225 µl of the bacterial or control 

solution was added to the paper. 

 

Survival 

Flies were infected as described previously. 4h after infection, surviving flies were 

scored. After 24 hours of feeding on bacteria, flies were transferred to fresh tubes and survivors 

were scored. Then, every 24 hours, survivors were scored and flies were transferred to fresh 
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tubes every 48 hours. The R package Survival was used to compute the log-rank test to assess 

statistical differences between genotypes. The analysis was performed in R 3.5.1 

 

qPCR 

RNA was extracted using the same method as for the BRB-seq library preparation 

described above. cDNA was synthesized from 500 ng total RNA using SuperScript II enzyme 

(ThermoFisher 18064014). qPCR experiments were performed on a StepOnePlus Real-Time 

PCR system (Applied Biosystems) using the Power SYBR® Green PCR Master Mix (Applied 

Biosystems). Gene expression relative to the housekeeping gene RpL32 was calculated 

separately for each biological replica. Primers used were: ntc_F 

GATCAGGTGGGGAAAAAGCAG and ntc_R : GTTGTTCGCTCAGGATTCGC 

  

2.6.6 MITOMI 

All target DNA fragments were obtained as single-strand oligonucleotides from IDT. 

These oligonucleotides were subsequently used to generate labeled double stranded 

oligonucleotides as described previously (Maerkl & Quake, 2007). TFs were expressed in vitro 

using the TnT SP6 High-Yield Wheat Germ protein expression system (Promega) with a C-

terminal eGFP tag. The surface chemistry, MITOMI and image acquisition were performed as 

described previously (Isakova et al., 2017; Maerkl & Quake, 2007). We quantified the amount 

of each mutated sequence that is bound to the respective TF at the equilibrium state by means 

of fluorescence in a range of six input DNA concentrations. The obtained kinetic binding curves 

for each sequence were then fitted with the non-linear regression function according to the 

Michaelis-Menten law. 
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Supplementary Figure 2-1 : Reproducibility of line-specific transcriptomes  

(a) Hierarchical clustering of the combined samples from this study and the previous one 

(Bou Sleiman et al., 2015). Hclust was used on the Euclidean distance matrix in R.  

(b) Principal component analysis based on the gene expression profiles of the combined 

samples. Samples from the new and old study are represented as circles and squares, 

respectively.  

(c) Three-dimensional representation of the first three principal components based only on 

the samples that belong to lines replicated between the two studies. Corresponding 

samples are connected by a segment that is colored based on susceptibility group. The 

sphere color indicates the batch (blue is new, black is old).  
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Supplementary Figure 2-2 : Quality control of BRB-seq libraries 

(a) Repartition of resistant and susceptible lines in the round robin scheme. 

(b) Distribution of reads in each library. The left-most library was subsequently dropped 

from the analysis. 

(c) Correlation matrix between samples computed on the count matrices displays good 

separation between treatment. 

(d) Principal component analysis of gene expression from F1 lines, showing no major 

batch effect. Treatment-based PCA showing separation between different conditions. 

(e) Principal component analysis of gene expression from F1 lines, showing a separation 

between control and infected conditions. 

(f) Distribution of number of variants per gene. 

(g) Details of errors for tested local-eQTLs in control conditions: Nb_Het: not enough 

heterozygous crosses, cross_cutoff: not enough crosses pass the minimum 

requirement of assigned reads, sample_cutoff: not enough samples pass the minimum 

requirement of assigned reads. 

(h) Details of errors for tested local-eQTLs in infected conditions. 

. 



71 
 

 

  



72 
 

Supplementary Figure 2-3 : Comparison of predicted effect size and validated effect size 

(a) Correlation between local-eQTL effect size (x-axis) and cis-eQTL (y-axis) effect size 

showing poor overall correlation in the control condition. 

(b) and (c) Correlation between local-eQTL effect size (x-axis) and cis-eQTL (y-axis) effect 

size showing good correlation in the control condition. 

(d) Correlation between local-eQTL effect size (x-axis) and cis-eQTL (y-axis) effect size 

showing poor overall correlation in the infected condition. 

(e) and (f) Correlation between local-eQTL effect size (x-axis) and cis-eQTL (y-axis) effect 

size showing a good correlation in the infected condition. 

(g) Distribution of trans- and cis-eQTLs around the TSS for the control condition. 

(h) and (i) Distribution of trans- and cis- eQTLs around TSS based on the number of eQTLs 

linked to a gene (1 (e) or more (f)) in the control condition. 

(j) Distribution of trans- and cis- eQTLs around the TSS from the infected condition. 

(k) and (l) Distribution of trans- and cis- eQTLs around the TSS based on the number of 

eQTLs linked to a gene (1 (g) or more (i)) in the infected condition. 
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Supplementary Figure 2-4 : Analysis of several ntc mutants 

(a) Survival of ntcms771 homozygous flies in the control condition. 

(b) Survival of ntcms771 homozygous flies in the infected condition. 

(c) Top panel: location of p-element insertions; bottom panel: survival of P-element lines 

upon Pe infection. 

(d) Survival of ntcms771 mutants crossed with w1118 with TM6B balancer chromosome. 

(e) Survival of ntcms771 mutants crossed with w1118 without TM6B balancer chromosome. 

(f) qPCR-based expression of ntc and Dipt normalized to Rpl32 in P-element lines, w1118 

and RelE20 in control and infected conditions. Data from at least three biological 

replicates. 

Data presented in (a), (b), (c), (d), (e) and (f) are based on at least three biological 

replicates. 
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Supplementary Figure 2-5 : MITOMI analysis of distinct TFs associated with the ntc 

locus 

(a) Measure of the binding affinity between Sage and the reference or alternate allele in 

one replica as measured by MITOMI (Isakova et al., 2017; Maerkl & Quake, 2007). 

(b) Measure of the binding affinity between Daughterless and the reference or alternate 

allele in one replica as measured by MITOMI (Isakova et al., 2017; Maerkl & Quake, 

2007). 

(c) Measure of the binding affinity between Relish and the reference or alternate allele in 

one replica as measured by MITOMI (Isakova et al., 2017; Maerkl & Quake, 2007). 

(d) Measure of the binding affinity between Sage and the reference or alternate allele in 

one replica as measured by MITOMI (Isakova et al., 2017; Maerkl & Quake, 2007). 
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3.1 Abstract 

The enteric immune response in Drosophila melanogaster is a complex, multilayered 

process, which has been extensively characterized by several genome-wide gene expression 

studies. Surprisingly however, no study has to date investigated the proteomic response, even 

though discordances between gene and protein expression levels are well recognized. To 

address this, we performed mass-spectrometry and RNA sequencing on the guts of flies 

infected with one of two different bacteria, Erwinia carotovora carotovora 15 (Ecc15) or 

Pseudomonas entomophila (P.e.) 4h and 16h post-infection. We found that a large portion of 

the measurable proteome (12%) varies after infection, often related to metabolism and 

immunity-related processes, and that protein changes are strongly time- and infection-

dependent. We confirmed the relatively poor correlation between gene expression and protein 

abundance variation since up to one third of proteins with varying abundance did not show 

altered gene expression levels in the gut immune response. We then analyzed the potential 

role of several of these proteins that may have been overlooked in transcriptomics studies 

using a small loss-of-function screen. We found that out of 19 selected genes, 7 modulated 

the overall susceptibility to P.e. infection. Together, our study provides the first comprehensive 

characterization of the Drosophila gut proteome upon infection by Gram-negative bacteria, 

revealing widespread discordance between gene and protein expression levels as well as 

uncovering several novel gut immune response factors.  
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3.2 Introduction 

Drosophila melanogaster has been used extensively as a model organism for immunity. 

Indeed, its immune system has been the subject of many important studies and seminal 

discoveries. Historically, the molecular mechanisms and pathways regulating the immune 

response were first thoroughly characterized. With the subsequent development of 

transcriptomic approaches, further molecular understanding of especially the fly systemic 

immune response was achieved (Boutros, Agaisse, & Perrimon, 2002; De Gregorio et al., 

2002; Irving et al., 2001), revealing extensive variation at the RNA level and sequential 

activation of different molecular pathways. In these studies, the systemic immune response 

was typically provoked by a bacterial invasion of the fly’s internal compartment, which raised 

the question whether other infection routes would induce a differential response.  

 

Further research was therefore performed focusing on the response to oral infection, in which 

either larvae (Basset et al., 2000; Vodovar et al., 2005), or subsequently adult flies (Liehl et 

al., 2006) were fed infectious bacteria such as the mild pathogen Erwinia carotovora carotovora 

15 (Ecc15) (Basset et al., 2000) and the extremely potent entomopathogenic Pseudomonas 

entomophila (P.e.). Transcriptomic analysis of the adult fly gut after infection by either of these 

two Gram-negative bacteria revealed that the oral response does not rely on the Toll pathway 

and highlighted the importance of gut repair to maintain homeostasis as a critical step for 

survival (Nicolas Buchon et al., 2009; S Chakrabarti et al., 2012). Indeed, gut repair, acting 

through stimulation of intestinal stem cell division via the JAK/STAT and insulin receptor 

signaling pathways, was shown to be highly stimulated upon infection (Chatterjee & Ip, 2009). 

These studies thus shaped our understanding of the gut immune response by profiling the 

genome-wide gene expression changes during oral infection. 

 

However, several studies in different model organisms including Drosophila have shown that 

mRNA level is, at best, an average predictor of protein abundance (Bonaldi et al., 2008; Butter 

et al., 2013; Casas-Vila et al., 2017; Griffin et al., 2002; Grün et al., 2014; Li et al., 2014; 

Schwanhäusser et al., 2011). Indeed, transcriptomic read-outs do not account for post-

transcriptional processes such as regulation of mRNA transcription, miRNA regulation or 

mRNA stability / half-life (Barrett, Fletcher, & Wilton, 2012; Fabian, Sonenberg, & Filipowicz, 

n.d.; Lugowski, Nicholson, & Rissland, 2018). Furthermore, there are many protein-specific 

molecular mechanisms affecting its abundance, such as protein decay and export. 

Interestingly, variation in protein abundance was shown to be heritable in humans and 

Drosophila alike (Okada, Ebhardt, Vonesch, Aebersold, & Hafen, 2016; Ruffieux et al., 2019; 

Wu et al., 2013). Surprisingly however, despite the obvious need for dissecting complex 
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processes such as the Drosophila gut immune response at the proteome level, no such studies 

have to date been performed. In this study, we therefore set out to perform a comprehensive 

analysis of protein abundance changes in the fly gut facing oral infection by Ecc15 or P.e., 

aiming to uncover novel molecular mechanisms underlying the gut immune response.   
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3.3 Results 

3.3.1 Proteomics of the fly gut after oral infection reveals extensive time- 

and infection-specific signatures 

We harvested guts from Ecc15 and P.e.-infected flies after 4h and 16h as well as 

control, sucrose fed flies at the same timepoints, using 4 replicates per condition. We subjected 

the guts to SDS-mediated protein extraction followed by trypsin digestion, liquid 

chromatography and mass spectrometry. The resulting spectra were compared to spectra 

generated from the Release 5 reference genome in MaxQuant (Cox & Mann, 2008). For each 

sample, we also extracted total RNA from dissected guts and performed RNA sequencing 

(RNA-seq) (Figure 3-1a). We first examined the quality of the mass-spectrometry derived 

dataset, looking at depth and reproducibility between samples. The average number of 

peptides identified and matched to the Drosophila proteome was around 45,000 

(Supplementary 3-1a). This allowed us to reliably quantify an average of around 4000 proteins 

per sample with a total of 4503 proteins identified (Supplementary 3-1b), a number similar to 

other fly proteomic datasets from whole animals and guts (Casas-Vila et al., 2017; Tain et al., 

2017). It is worth noting that in all Ecc15-infected samples, less peptides and thus proteins 

were identified and quantified compared to other conditions. As expected, peptides and 

proteins matching each bacterial species were found in the majority of corresponding samples.  

 

To control for missing data, we performed imputation (Välikangas, Suomi, & Elo, 2017; R. Wei 

et al., 2018) following a normal distribution (Supplementary 3-1c, width = 0.3 and down-shift 

= 1.8). We then examined the correlation between samples at each timepoint. We found that 

the correlation is very high between replicas, but also between treatments (Figure 3-1b). 

Although the high correlation values obtained between replicas could be expected, the high 

correlation between treatments was surprising. This is also visible in the principal component 

analysis which failed to stratify samples upon consideration of all detected proteins (Figure 3-

1c). These results suggest that most of the detected proteins are not affected by the immune 

response. 

 

We then used Perseus (Tyanova et al., 2016) to identify proteins that exhibited differential 

expression (DE) after infection. We applied a weighted t-test between infected and control 

samples using the median of the variance and corrected for multiple testing using a 

permutation-based false discovery rate (250 permutations performed in Perseus). We found 

that the percentage of DE proteins depended on the harvesting time and type of infection (i.e. 

the type of pathogen) (Figure 3-2 and Table 3-1). For example, 4h after infection, only 1.6% 
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and 1.8% of the detected proteins were differentially expressed for Ecc15 and P.e. 

respectively. However, 16h after infection, 4.7% and 8.3% of the proteins were DE in Ecc15 

and P.e. infected flies respectively, indicating that proteome alterations were greater 16h 

compared to 4h after infection. Moreover, the impact of P.e. infection, based on the number of 

DE proteins, was stronger than that of Ecc15 16h post-infection, but not yet after 4h. We then 

performed PCA analysis using only DE proteins in at least one of the infection conditions 

(Figure 3-3a). This revealed a strong time- and infection-dependent sample stratification, 

except for the 4h and 16h control samples which clustered together. However, two P.e. infected 

samples did not cluster with the other ones. These two P.e.-infected samples were both 

harvested during our first biological replica. However, the uninfected and Ecc15-infected 

samples from the same replica are clustering accordingly with the same conditions of the other 

biological replicas. Thus, we ruled out any technical biases during the sample preparation or 

measurement phases. We therefore considered the pathogenicity of the utilized P.e. sample 

as a possible source of interference, revealing that it was indeed lower for the first replica as 

measured by the total amount of surviving flies three days post-infection (Supplementary 3-

2a). This finding confirms the existence of a protein signature linked to pathogenicity or type 

of pathogen given the differences in samples reflecting low and high pathogenicity. 

 

We then performed GO ontology analysis on all DE proteins for each condition (Figure 3-3b). 

For all four conditions, we observed an enrichment for immune response and biogenesis 

processes. Interestingly, DE proteins linked to P.e. infection were linked to ROS production 

whereas DE proteins for Ecc15-(16h) infected samples reflected a downregulation of the innate 

immune response. Furthermore, we more generally observed an enrichment for metabolism-

related processes, and in particular mannose metabolism appeared to be downregulated after 

infection (Figure 3-3c). 

 

Finally, we performed clustering on the DE proteins using k-means clustering (Supplementary 

3-3a). To estimate the number of clusters, we used the within group sum of square and 

determined that 8 clusters would correctly separate the clusters. We observed that the 

correlation between clusters is relatively low with a few clusters (Cluster 2 and Cluster 3) being 

relatively close (Supplementary 3-3b). However, clustering supported the notion of strong 

infection- and time-specific proteomic signatures. For example, Clusters 2 and 3 harbored 

Ecc15 specific proteins and Cluster 6 was P.e. specific. Cluster 4 contained proteins that were 

upregulated only at 16h whereas Cluster 8 had only proteins upregulated at 4h. We also 

uncovered a very specific time and pathogen-dependent cluster such as Cluster 7 containing 

proteins that were downregulated 16h after Ecc15 infection and Cluster 5 which showed the 

opposite. Interestingly, Cluster 1 harbored anti-correlated proteins between Ecc15 4h and P.e. 
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16h, meaning that these proteins were downregulated 4h after Ecc15 infection, not expressed 

for both Ecc15 16h and P.e. 4h and upregulated 16h after P.e. infection (Supplementary 3-

3c). 

 

Together, these results suggest that the proteomic gut response to oral infection is highly time- 

and pathogen-specific with various protein sets acting very differently. Moreover, metabolism-

related processes emerged as a strong component of the gut immune response. 
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Figure 3-1: experimental procedure and data quality 

 

(a) Schematic of the experimental protocol. 

(b) Heatmap of the Pearson correlation on LFQ intensities between samples showing 

that the majority of the samples are highly correlated regardless of their treatment or 

time. 

(c) PCA analysis of the samples showing that a few of the are separate from the core. 

Possible explanation may be technical variation during mass spectrometry. 
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Figure 3-2 : Differentially abundant proteins 

All plots display density curves of LFQ difference (bottom) and p-value (left). Dashed line 
represent the boundaries for a weighted t-test with FDR < 0.05 determined by random 
permutation (n=250) 

(a) DE proteins 4 hours after infection with Ecc15. 

(b) DE proteins 16 hours after infection with Ecc15. 

(c) DE proteins 4 hours after infection with P.e. 

(d) DE proteins 16 hours after infection with P.e. 



86 
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Figure 3-3 : Differentially abundant proteins repartition 

(a) PCA using only differentially abundant proteins display tight clustering of samples. 

(b) Repartition of differentially abundant proteins by time and infection. 

(c) GO terms enriched in upregulated (blue) and downregulate (red) for each time- and 

infection-specific samples. 
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3.3.2 Comparison between transcriptomic and proteomic gut immune 

response changes highlight an overall poor correlation 

To explore the extent to which gene and protein expression changes are correlated 

during the gut immune response, we performed differential expression analysis using limma 

on RNA-seq data retrieved from the same samples that were used to assess protein levels. 

For each gene, its mRNA and protein expression can both go up, down, not change, 

differentially change or one (mRNA or protein) may not be detected. We first used these 

qualitative changes to compare variation in both mRNA and protein abundance after infection 

(Figure 3-4 and Table 3-2). We observed a large number of proteins for which we did not 

detect any abundance change (i.e. “stable proteins”) but whose mRNA levels were upregulated 

or downregulated. In Ecc15-infected samples, 16% and 21% of stable proteins were 

differentially expressed after 4h and 16h respectively. Interestingly, these proportions were 

even higher in P.e.-infected samples with 34% and 31% after 4h and 16h respectively, 

suggesting that oral infection induces many transcriptional changes without an obvious impact 

on respective protein levels. In addition, for about 4% of the stable proteins, we did not detect 

the corresponding mRNA. We then performed an in-depth investigation of the mRNA dynamics 

for all DE proteins. In both P.e.-infected samples, we found around 6.5% of DE proteins with 

an anti-correlated gene expression profile. Furthermore, 35% and 32% DE proteins exhibited 

no detectable change in gene expression in P.e.-infected samples at 4h and 16h respectively. 

Finally, 2% of the DE proteins in P.e. samples had no detectable mRNA levels. We found 

similar, but more dampened trends for Ecc15-infected samples. For example, the proportion 

of anti-correlated proteins was 4.2% and 2.8% for 4h and 16h respectively. However, we found 

more DE proteins in Ecc15 samples with no detectable mRNA (4%) compared to P.e. samples.  

 

We then investigated the extent of correlation between mRNA and protein levels (Figure 3-5). 

As expected based on the results discussed above, the correlation was poor between protein 

abundance and mRNA fold change (Spearman pair-wise correlation: Ecc15 4h: 0.23, Ecc15 

16h: 0.35, P.e. 4h: 0.16, P.e. 16h: 0.19). Interestingly, we observed that the correlation is 

overall lower for P.e. compared to Ecc15-infected samples, supporting a previous report of 

P.e.-mediated translation inhibition (S Chakrabarti et al., 2012). We then investigated the same 

extent of correlation but now only involving DE proteins. Strikingly, the correlation was much 

higher for downregulated proteins in P.e. infected samples (Spearman pair-wise correlation 

downregulated proteins: P.e. 4h: 0.09, P.e. 16h: 0.36) compared to upregulated proteins 

(Spearman pair-wise correlation downregulated proteins: P.e. 4h: -0.03, P.e. 16h: 0.14) 

indicating negative regulation of translation on upregulated proteins. Interestingly, P.e. 4h 

showed an anti-correlation correlation whereas the 16h timepoint was positive but low. 
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However, by considering the abundance of bacterial proteins, we found that P.e. but not Ecc15 

is cleared from the gut after 16h (Supplementary 3-4). Thus, we can assume that the P.e. 

induce translational blockage has been effectively removed from the cell. 

 

Non-coding RNA mediated translation control is an important control mechanism (Catalanotto, 

Cogoni, & Zardo, 2016). It was shown to be relevant in the fly immune response with several 

miRNAs being expressed in a time- and infection-type dependent manner (Atilano, Glittenberg, 

Monteiro, Copley, & Ligoxygakis, 2017; G. Wei et al., 2018). We thus sought to determine how 

miRNA regulation could affect DE proteins. We used the microRNA.org resource (Betel, 

Wilson, Gabow, Marks, & Sander, 2008) of miRNA predicted binding and the miRNA 

expression data (Atilano et al., 2017) to identify putative miRNA-regulated mRNAs. 

Specifically, we explored whether DE proteins have a greater likelihood of containing miRNA 

binding sites, and thus of possible stronger post-translational miRNA mediated regulation or 

whether an opposite scenario could occur. To do so, we calculated the enrichment of mRNA 

targets in our samples compared to all mRNAs. We did not find any difference when 

considering all DE proteins (Fisher’s exact test p-value = 1). However, when we separated the 

DE proteins by condition, we found that the probability of a mRNA being less likely to be 

targeted by a miRNA to be higher in P.e.-infected compared to Ecc15-infected samples 

(Fisher’s exact test: Ecc15 4h: 0.22, Ecc15 16h: 0.27, P.e. 4h: 0.06, P.e. 16h: 0.007)(Table 3-

3). These results suggest that the gut immune response to P.e. infection has an overall lower 

level of miRNA regulation than that to Ecc15. 
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Figure 3-4 : Differentially abundant proteins with associated gene expression change 

(a) DE proteins 4 hours after infection with Ecc15 with RNA direction and relationship 

between RNA direction and protein abundance. 

(b) DE proteins 16 hours after infection with Ecc15. 

(c) DE proteins 4 hours after infection with P.e. 

(d) DE proteins 16 hours after infection with P.e. 
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Figure 3-5 : Fold change comparison between mRNA and proteins abundance 

All plots display the Spearman correlation for (from top to bottom):  

- all the proteins 

- the upregulated proteins 

- the downregulated proteins 

 

(a) DE proteins 4 hours after infection with Ecc15, spearman pair-wise correlation. 

(b) DE proteins 16 hours after infection with Ecc15, spearman pair-wise correlation. 

(c) DE proteins 4 hours after infection with P.e., spearman pair-wise correlation. 

(d) DE proteins 16 hours after infection with P.e., spearman pair-wise correlation. 
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3.3.3 Survival of mutant flies highlight new genes mediating resistance to 

enteric infection 

From our cross proteomics and transcriptomics analysis, we selected 19 genes whose 

protein abundance was significantly increased or decreased after infection but whose mRNAs 

were either not detected, downregulated or did not change upon infection. For each gene, we 

ordered a mutant line and we assessed its survival upon P.e. infection compared to the original 

control line. We used the log-odds ratio to determine if the test line was significantly more 

susceptible or resistant than the control one. Each survival dataset thereby reflects three 

biological replica with at least 30 flies per replica (Supplementary 3-5). Unfortunately, our 

control lines harboring the y1 genotype were extremely susceptible to infection, thus we could 

not trust our results when this control was involved, which was the case for 7 proteins which 

effect on resistance could not be assessed. A summary of the genes and results is available 

in Table 3-4. We found that three mutants (CG12576, CG13531 and Mpc1) have severe 

phenotypes. Interestingly, flies harboring mutants for Dab started to die dramatically 10 days 

after infection. In total, we were able to confirm that 7 lines were significantly more susceptible 

to infection (37%). However, we cannot rule out at this point that the P-element insertion may 

alter the fly’s infection susceptibility in other ways than by the sole disruption of the target 

genes. Thus, further analysis with different types of mutants or RNA interference lines may be 

required to validate these results. We can nevertheless conclude that several of these genes 

likely play an important role in the gut immune response.  
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3.4 Discussion 

Response to an external stimulus such as enteric infection involves many processes 

from detecting the invasion, responding to it, and repairing putative damage. The underlying 

molecular mechanisms that mediate these processes act by remodeling the proteome through 

the activation of gene expression and production of different immune effectors to combat the 

infection. While most genes follow the canonical flow from transcription of their mRNA to 

translation of these mRNAs in proteins, there are several complementary mechanisms in place 

that control overall mRNA and protein levels. These include the targeted degradation of mRNA 

or protein, alternative splicing, or miRNA-mediated translation blockage. Thus, read-out of the 

proteome provides the most accurate picture of the molecular nature of the immune response 

against pathogens since it characterizes the final outcome of all regulatory processes. 

 

This well-accepted notion motivated the current study, since no comprehensive proteomic 

analysis of the gut immune response had so far been undertaken. As expected, our analyses 

revealed a large number of differentially expressed (DE) proteins after infection. This number 

was however greater 16h compared to 4h after infection. This may be due to several factors: 

including a likely delay between transcription and translation (Gedeon & Bokes, 2012), and the 

fact that survival and repair mechanisms including pathways regulating stem cell proliferation 

and differentiation may be more protein-intensive than the immediate immune response 

(Nicolas Buchon et al., 2009; S Chakrabarti et al., 2012).  

 

We further remarked not only a strong time- but also pathogen-dependent proteome signature, 

indicating that the general immune response is highly variable between conditions. We also 

observed that the pathogenicity of the bacterial sample strongly influences the immune 

response proteome. However, several pathways and proteins were differentially regulated in 

all conditions. Collectively, these core protein sets were especially enriched for immune, 

biogenesis and metabolism-regulatory processes. While the first of these is rather obvious, the 

two others may be less intuitive. Biogenesis encompasses the synthesis of a biological 

constituent. Thus, this process may directly reflect the attempt of the host to restore gut 

homeostasis and integrity. In terms of metabolism, we observed primarily an overall 

downregulation, which could be a way for cells and gut cells in particular to spare resources to 

respond efficiently to the infection. This hypothesis is in line with previous studies in which 

metabolism and infection were tightly co-regulated. In general, prolonged immune response 

can lead to disruption of metabolic stores and malnutrition can increase the susceptibility to 

disease (Dionne, 2014). Furthermore, Vibrio cholera can induce the death of flies by inducing 

a loss of intestinal acetate that results in lipid accumulation in enterocytes and host death 
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(Hang et al., 2014). Lipid catabolism was also shown to be involved in DUOX regulation in 

Ecc15 infection (K.-A. Lee et al., 2018). 

 

It is widely accepted that the correlation between mRNA and protein levels tends to be poor. It 

thus came not as surprise to observe that many stable proteins exhibited differential mRNA 

expression or vice versa. Many molecular mechanisms can explain these observations, such 

as miRNA translational blockage, regulated ribosome occupancy, elongation speed and 

translational pausing to list just a few. However, we must consider the design of our experiment 

as an important factor as well. Because there is a delay between gene expression and mRNA 

translation, it is reasonable to assume that a snapshot of the transcriptome will be shifted from 

that of the proteome. Furthermore, protein translation dynamics may vary from one mRNA to 

another. For example, mRNA could have a very short half-life while exhibiting a strong burst 

expression dynamic. In this scenario, the mRNA would be highly expressed for a short amount 

of time, immediately translated and then degraded such that protein levels would clearly rise 

while mRNA would be perceived as downregulated or even undetectable. Another scenario 

would be a gene that is expressed at a stable rate. This gene would not be identified as being 

differentially expressed, but it is possible that protein levels could increase through a change 

in ribosome occupancy. In this regard, it may be of interest to perform ribosome profiling, a 

technique allowing inference of ribosome occupancy on an mRNA strand, on control and 

infected Drosophila guts to identify which genes may be regulated through this mechanism. 

Our survival-based validation of putative interesting proteins that had so far been missed given 

their stable mRNA but DE protein signature showed that a high percentage of these targets 

displayed reduced resistance when mutated. One could expect high percentages because of 

the intrinsic nature of the molecule assessed. Indeed, most of the functions of the cells are 

mediated via proteins. Thus, measuring the molecules that are present in virtually all molecular 

processes in the cells makes it more likely to identify a crucial cog in such a process. 

Conversely, variation in gene expression may not indicate whether the associated protein will 

be present. Furthermore, the lack of correlation between gene and protein expression levels 

implies that a gene that may have been overlooked in transcriptomics-based studies is more 

likely to play an important role. Indeed, a proteome analysis is more likely to find key proteins 

because the costs of protein synthesis is higher than that of mRNA metabolism (Bier, 1999). 

Thus, because the cost associated with the production, regulation and disposal of proteins is 

higher than for mRNA, a cell with limited resources will likely be more wary of its protein 

synthesis as to not waste too much resources. 

 



95 
 

3.5 Conclusion 

Our study is, to our knowledge, the most in-depth characterization of the Drosophila 

gut proteome upon infection by Gram-negative bacteria. It paves the way for future studies on 

the link between genetic and protein abundance variation in a population using our dataset as 

a basis. It also identified the regulation of metabolism-related processes as a major target of 

regulation. Finally, we identified putative new proteins involved in the enteric immune response 

whose roles and mechanisms could be subject of a more detailed, mechanistic investigation 

in future studies. 
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3.6 Materials and Methods 

3.6.1 Fly Stocks 

We obtained w1118 and all mutants (see Table 3-4) from the Bloomington stock center. 

All flies were reared at room temperature on a standard fly medium with 12 hours light dark 

cycle. The fly medium composition for 1L of water is as follow: 6.2g Agar powder (ACROS N. 

400400050), 58.8g Farigel wheat (Westhove N. FMZH1), 58.8g yeast (Springaline BA10), 

100ml grape juice; 4.9ml Propionic acid (Sigma N. P1386), 26.5 ml of Methyl 4-

hydroxybenzoate (VWR N. ALFAA14289.0) solution (400g/l) in 95% ethanol, 1L Water.  

 

3.6.2 Infection 

Oral infection was performed as previously described (Neyen et al., 2014). Briefly, 1-

day old females were transferred to 29°C rearing conditions. When the female flies were 2-3 

days old, they were starved for 2 hours and then transferred to a tube containing bacteria and 

allowed to feed on the bacteria for a maximum of 24 hours. To prepare the P.e. bacterial pellet, 

bacteria were plated from glycerol stocks on a standard LB-agar plate supplemented with 1% 

milk and grown overnight at room temperature. Two days prior to infection, one single colony 

was transferred to a 50 ml Erlenmeyer with 12.5 ml LB and incubated for 8 hours at 29°C with 

180 rpm shaking. The pre-culture was then transferred to a 1L Erlenmeyer with 200 ml LB and 

the culture was incubated overnight using the same conditions as the pre-culture. The culture 

was then centrifuged at 2500 g at 4°c for 20 min. The remaining LB was discarded and the 

pellet was resuspended by pipetting up and down. The OD600 was measured using a CO8000 

Cell density meter. The pellet was then diluted to a final OD600 of 100 with distilled water and 

supplemented with Sucrose to a final volume/volume of 1.25%. A control solution contained 

only Sucrose at the same concentration. A disc of whatman paper was layered on top of the 

food and 225 µl of the bacterial or control solution was added to the paper. 

3.6.3 Protein extraction 

Flies were killed by submersion in 70% ice-cold ethanol. The flies were then transferred 

to ice-cold 1x PBS and 30 guts were dissected and transferred to an Eppendorf containing 150 

µl of extraction buffer (100 mM Tris-Cl pH 8, 2% SDS, protease and phosphatase inhibitor). 

The samples were incubated at 95°C for 2 min, then homogenized in a Precellys 24 Tissue 

Homogenizer at 6000 rpm for 30 seconds. Samples were then centrifuged for 10 min at max 

speed and 4°C. We aliquoted the supernatant in three separate tubes (1/5, 2/5 and 2/5 of total 
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volume of supernatant per tube) and stored at -80°C. We quantified the protein using a BCA 

assay and coomassie gel staining. 

3.6.4 Mass Spectrometry 

Samples were digested using trypsin and FASP protocols, then purified by desalting 

and fractionated during 24 hours. 6 fractions were collected and injected in an Orbitrap 

analyser. MaxQuant software was used to identify spectra. 

3.6.5 RNA extraction 

Flies were killed in cold 70% Ethanol then transferred to ice-cold RNAse free 1x PBS 

supplemented with 0.02% Tween-20. 10 guts were dissected for each sample and placed in a 

screw cap Eppendorf tube containing 350 uL Trizol and 10 uL plastic beads then homogenized 

in a Precellys 24 Tissue Homogenizer at 6000 rpm for 30 seconds. Samples were then flash 

frozen in liquid nitrogen and stored at –80°C. Once all samples were collected, tubes were 

thawed on ice, supplemented with 350 uL of 100% Ethanol and homogenized a second time 

with the same parameters as above. We then used the Direct-zol™ RNA Miniprep R2056 Kit, 

with the following modifications: we did not perform DNAse I treatment, we added another 2 

min centrifugation into an empty column after the RNA Wash step, finally elution was 

performed by adding 20 uL of RNAse-free water to the column, incubation at room temperature 

for 2 min and then centrifugation for 2 min. RNA was transferred to a low-binding 96 well plate 

and stored at -80°C. 

3.6.6 Library preparation and sequencing 

Total RNA amount was assessed using picogreen, then standard Illumina Truseq 

libraries were prepared from 1ng total RNA. Single end sequencing was performed for 100 

cycles. 

3.6.7 Survival 

Flies survival was scored 4h after infection, then, after 24 hours flies were transferred 

to fresh tubes without bacteria and survivors were scored. Then, scoring occurred every 24 

hours and flies were transferred to fresh tubes every 48 hours. The R version 3.5.1 and the 

package Survival was used to compute the log-rank test to test for effect compared to control. 
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3.6.8 GO analysis 

The GO analysis was performed using the GOstats (Falcon & Gentleman, 2007) R 

package (Hypergeometric test p-value < 0.05), and REVIGO (Supek et al., 2011) was used to 

reduce redundancy in the ontology groups and plot them by semantic similarity (allowed 

similarity = 0.5). We then manually curated the resulting list. 

All analysis were performed in R version 3.5.0 
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3.7 Supplementary Material 
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Supplementary Figure 3-1 : Peptides and proteins detected 

(a) Number of peptides identified by mass spectrometry in each samples, separated by 

origins. (brown: Drosophila peptides, red: Ecc15 peptides, green: P.e. peptides) 

(b) Number of proteins quantified by mass spectrometry in each samples, separated by 

origins. (brown: Drosophila proteins, red: Ecc15 proteins, green: P.e. proteins) 

(c) Imputation showing that missing values imputed (red) are situated at the low 

expression level compared to all proteins (blue). 
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Supplementary Figure 3-2 : Lethality of baterial pellet and DE protein distribution 

(a) Survival of flies after P.e. infection measured by counting the percentage of flies alive 

3 days after infection showing that the first replica was fed a less lethal P.e. pellet than 

the 3 others. 

(b) Distribution of LFQ intensities, yellow bars represent LFQ intensities from DE proteins. 

Note that the distribution is mostly centered towards low to medium abundant proteins. 

Supplementary 3:  
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Supplementary Figure 3-3 : Clustering of differentially expressed proteins 

(a) Overview of all clusters behavior. 

(b) Pearson coefficient of clusters correlation shows a few cluster closely correlated though 

the majority are loosely correlated. 

(c) All identified clusters. The black line is the core of the cluster. Each line represent a 

gene which correlation with the core is color coded. 
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Supplementary Figure 3-4 : Bacterial proteins abundance  

(a) Comparison of LFQ intensities of Ecc15 proteins at 4h and 16h shows slight reduction 

in abundance. 

(b) Comparison of LFQ intensities of P.e. proteins at 4h and 16h shows complete 

clearance of the bacteria at 16h. 
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Supplementary Figure 3-5 : Survival of mutants flies 

The color of the background indicate the genetic background of the lines, y1: orange 

background, w1118: grey background. Log odds ratio p-values are given in parenthesis. 

 

(a) Pex1 (0.033) 

(b) RpS21 (<0.001) 

(c) RpL22 (<0.001) 

(d) CG42239 (<0.001) 

(e) CG4022 (0.065) 

(f) CG12576 (<0.001) 

(g) CG13531 (<0.001) 

(h) CG3342 (0.07) 

(i) Dnah3 (<0.001) 

(j) CG17083 (0.13) 

(k) Mpc1 (<0.001) 

(l) Zip48C (<0.001) 

(m) Prx2540-2 (<0.001) 

(n) Tsp42Ec (0.064) 

(o) ndl (<0.001) 

(p) CG32113 (<0.001) 

(q) CG32850 (<0.001) 

(r) Lmpt (0.52) 

(s) Dab (<0.001) 

(t) Legend. 
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Table 3-1 : Differentially expressed proteins after infection 
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Table 3-2 : Differentially expressed proteins and their associated mRNA behaviour 
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Table 3-3 : Fisher’s exact test for overrepresentation of miRNA targets among mRNA of 

proteins differentially expressed 
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Table 3-4 : List of differentially expressed proteins selected for screening
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Chapter 4: Overall discussion and conclusion 

 

4.1 Cryptic variants are the main driver behind gene expression 

variation in the gut enteric immune response 

 

To identify the genetic determinants of gene expression variation in the fly we first 

performed RNA sequencing on flies from phenotypic extremes and observed that the response 

is widely similar between the most resistant and susceptible lines. Indeed, it is impossible to 

segregate resistant lines from susceptible lines in both control and infected conditions (Figure 

2-3a) on the basis of gene expression patterns. A possible explanation would be that we are 

not capable of differentiating between lines at the level of the transcriptome. However, this was 

not the case because independent biological replicas clustered together. Thus we concluded 

that systemic differences in gene expression driven by genomic variation impact each line 

specifically but that only a few of these differences significantly impact the resistance of the fly 

to infection. Moreover, because phenotypic differences are not the results of large variation in 

the transcriptome, we could conclude that resistance to infection is a trait with a complex 

architecture, with many loci with small effects adding up to shape resistance. 

 

We then performed an eQTL analysis to understand how genomic variation could impact gene 

expression and lead to variation in resistance to infection. We tested for association between 

SNPs situated in a 10 kb window around genes and gene expression variation. By definition, 

a cis-eQTL affects the expression in an allele-specific way whereas a trans-eQTL affect both 

alleles (Rockman & Kruglyak, 2006). However, because DGRP lines are entirely homozygous, 

it is impossible for us to determine if a variant acts in cis- or trans-, therefore we only detected 

local-eQTL. We found out that most of the local-eQTLs are condition-specific, with about a 

third of them present in both conditions. Because there is a large number of local-eQTLs that 

are infection-specific, we can conclude that cryptic variation is an important contributor to the 

resistance phenotype. This also reflects the fact that immune response is largely repressed in 

normal state since we would see more difference between the control condition if it would not 

be the case. 

 

These results highlights the importance of perturbation to understand how the system reacts 

to it. Indeed, it is not possible to infer resistance based on gene expression in the control state 

only. Furthermore, a large number of eQTLs are infection-dependent, meaning that a large 
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part of the variation in gene expression is hidden in the non-infected state and, thus, that cryptic 

variants are the main drivers behind variation in resistance to infection. Because our study 

used P.e. as a the sole pathogen, we cannot generalize our findings to other pathogens such 

as Gram-positive bacteria, fungus or yeast, but we could hypothesize that the response to 

infection with a different pathogen would also be mediated by cryptic variations. 

 

4.2 A majority of local-eQTLs acts in trans- 

 

To further understand how local-eQTLs affect gene expression, we used allele-specific 

expression of F1 hybrids to categorize local-eQTLs into cis- and trans-eQTLs and found that 

only 17% of local-eQTLs acts as cis-eQTLs. We can think of several factors affecting this 

percentage. First, we study the effect of polymorphic sites detected in homogeneous 

background in various different genetic background, thus we cannot exclude that the new 

genetic background has an effect on the SNP. For example, epistasis may play an important 

role in determining if a the cis- effect of a local-eQTL can be masked by other trans- acting 

eQTLs affecting the same gene from a different genetic background or if a local-eQTL only 

has its effect when surrounded by certain variants. Indeed, when several eQTLs were 

predicted to affect one gene, we were not able to disentangle their effects. Furthermore, our 

statistical test measures the overall effect of the SNP on allele specific expression, thus it is 

possible that the variant is acting in cis- in a certain background and in trans- in another 

background, preventing us from categorizing it as cis-acting. It is also possible that a 

combination of multiple SNPs are necessary to observe an effect on gene expression (Y.-T. 

Huang et al., 2014) or that a single polymorphism drives differential expression and the other 

eQTLs are only in linkage disequilibrium (LD)  with main driver of allele-specific expression. To 

be able to explain these behavior, we would need more crosses to increase the number of 

heterozygotes sites observable. Interestingly, we found a rather large discrepancy between 

the significance of local-eQTLs and their characterization as cis-eQTL. We did not see a link 

between a strong association in population local-eQTLs and their characterization as cis-acting 

eQTL, meaning that a strong local-eQTL is not poised to be cis-acting.  

 

This result shows that many eQTLs experiments that use proximity between SNP and gene as 

a proxy for cis-effect may overestimate the number of variants acting in cis-. It is important to 

differentiate between the two modes of action as a trans-acting eQTL will have a stronger 

effect on overall gene expression compared to a cis-acting eQTL. Thus, a trans-acting variant 

is more likely to strongly affect a given phenotype than a cis-acting eQTL. Furthermore, we 
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found that many genes were linked with several variants. Thus understanding the interplay 

between these variants may be helpful to understand the hierarchy that leads to variation in 

gene expression. Because noncoding regulatory variants plays crucial roles in phenotypic 

difference, differentiating between cis- and trans-acting variants may help identify major 

determinants of gene expression variation. Furthermore, allele-specific experiments could 

allow researcher to finely map epistasis interaction mediated variation in gene expression. 

Finally, if we take into account the physical organization of the chromosome in the nucleus, 

were chromosomes occupy certain territory (Meaburn & Misteli, 2007), it is surprising that such 

a low amount of eQTLs act in cis-. Indeed, if chromosome are separated, it is surprising that a 

variant situated in one chromosome can affect the expression of a gene situated in another 

chromosome in particular if the variant is in a non-coding region. 

 

4.3 Nutcracker is the only differentially-expressed gene between 

resistant and susceptible flies 

 

One of the most striking results of our study is that we found only one gene differentially-

expressed between the resistant and susceptible flies, ntc. Ntc is a part of an SCF ubiquitin 

ligase complex (E3) that recruit an E2 ubiquitin-conjugated enzyme and mediate the transfer 

of the ubiquitin from the E2 complex to the target protein. Ubiquitination is an important 

mechanism in cell biology that regulates various process such as protease degradation, cell 

cycle control (Teixeira & Reed, 2013) and other signaling pathway. Specifically, in the 

Drosophila immune response, it was shown that ubiquitination of DREDD by DIAP2 is required 

for Imd signaling (Meinander et al., 2012). However, it was also shown that Imd and DIAP2 

are ubiquitinated after infection (L. Chen et al., 2017; Paquette et al., 2010). Moreover, there 

are several reports of Imd regulation via proteasome targeted degradation (M. Kim, Lee, Lee, 

Kim, & Chung, 2006). Furthermore, the IKK complex that phosphorylates Relish is also 

dependent on ubiquitination (R. Zhou et al., 2005). Although ntc was not shown to be directly 

involved in any of these interactions, it is possible that it could mediate ubiquitination of these 

proteins. We also show that ntc expression is dependent on Rel (Supplementary 2-4f) since 

ntc expression is strongly reduced in RelE20 mutants. Moreover, our population data indicates 

that an increase in ntc expression is beneficial for survival, therefore, it seems that ntc effect 

on the Imd pathway would be positive, maybe helping to ubiquitinate various members of the 

pathway. Another possible mechanism would be that ntc help in the translocation of the 

cleaved N-terminal domain of Rel into the nucleus. In conclusion, further mechanistic studies 

are needed to understand the role of ntc in the enteric immune response. 
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4.4 A variant in a non-coding region affect nutracker expression 

 

In our eQTLs analysis, we identified two local-eQTLs associated with ntc, the only 

differentially-expressed gene. Further analysis allowed us to establish that a variant located in 

the Broad binding site was significantly affecting the binding affinity between the transcription 

factor and the DNA. Because the binding affinity of Broad to its site is negatively affected by 

the mutation, this indicates that the TF has more difficulty affecting the expression of the gene. 

We showed that the expression of ntc is lower in susceptible flies and in flies with the wild-type 

allele for Broad TFBS. Therefore, a lower binding affinity should decrease the control that 

Broad exert on ntc and since ntc is more expressed in the lines harboring the mutation, this 

indicates that Broad acts as a repressor. Further analysis of the Allele-specific expression in 

the F1 showed altered ratio of both alleles after infection. Indeed, the allele that is in cis- with 

the alternate TFBS is more expressed than the allele in cis- with the reference allele. This 

prove that the mutation is the causal variant of the differential allele expression because the 

allele specific pattern is conserved through several different genetic background. We should 

note however that the effects induced by the mutation in the TFBS on the overall resistance of 

the fly are less severe than the phenotypes of the ntc mutants. Indeed, the expression of ntc 

in flies harboring the altered TFBS is still higher than the expression of the loss-of-function 

mutant. 

 

Overall, this result is a particularly interesting example of how a non-coding variant in the TFBS 

leads to variation in gene expression and phenotypic change. Furthermore, because Broad 

was shown to be both a repressor and an activator depending on the isoforms expressed, it 

would be interesting to further study how alternative splicing of Broad affect the expression of 

ntc. 

 

4.5 The proteome of the gut after infection show strong time- and 

pathogen-dependent variation 

 

The main goal of our study on the gut proteome after infection was to characterize the 

main changes happening at the protein level after infection by a Gram-negative bacteria. The 

variation in gene expression in enteric infection in the adult fly has been characterized at length 

using micro-array (S Chakrabarti et al., 2012; W. J. Lee, 2009) and the variation in gene 



116 
 

expression mediating gut immuncompetence was studied at the population level in the DGRP 

(Bou Sleiman et al., 2015). However, because numerous studies have shown that gene 

expression and protein abundance do not correlate strongly, we wanted to investigate the 

proteome. When compared with the transcriptome, we found that the proteome is less variable 

than gene expression. Indeed, the percentage of differentially-expressed genes is higher than 

the number of proteins upregulated or downregulated at each timepoint and in response to 

each pathogen. Interestingly, we observed a larger number of proteins differentially-expressed 

at 16h than at 4h. Several causes may explain this observation. First, there is a delay between 

transcription and translation (Gedeon & Bokes, 2012). Second, the mechanisms needed to 

reestablish homeostasis during and after the infection may involve more proteins than the 

immune response (Nicolas Buchon et al., 2009; S Chakrabarti et al., 2012). We then noticed 

a strong time- and pathogen-dependent response indicating that the general immune response 

is very variable between the conditions. However, we could also detect several pathways and 

proteins that were affected in all conditions, indicating that a core of proteins, especially 

enriched for immune, biogenesis and metabolism-regulatory processes, mediate the 

resistance to infection. 

 

These results highlight the relevance of proteomics to understanding the immune response in 

the gut. Indeed, proteins occupy the majority of the space in a cell and are the final effectors 

of the cell response to stimulus. However, there are several drawbacks to the technology. For 

example, it is easier to detect highly abundant proteins. These proteins are not always the 

most differentially-expressed proteins as seen in our experiments. But because they are highly 

abundant, these proteins may mask variation in other proteins’ abundance. Furthermore, the 

detection of small proteins and post-transcriptionally modified proteins require different 

extraction methods. It was thus not possible for us to characterize the variation in small protein 

abundance, such as AMPs, nor the post-transcriptional modification of some important 

pathway members, for example DREDD ubiquitination or Relish phosphorylation. 

 

4.6 Poor correlation between gene and protein variation 

 

We also observed that the correlation between mRNA and protein levels was poor. 

Many molecular mechanisms can explain these observations. For example, miRNA 

translational blockage regulates the translation of a specific mRNA into proteins by binding to 

its 3’ untranslated region (UTR) or 5’ UTR and blocking the translation. We can also observe 

difference in ribosome occupancy, meaning that the number of ribosome on a strand of mRNA 
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is not fixed and thus that the amount of proteins produced depend on the number of ribosome 

on the mRNA. Another interesting mechanism is the control of translation via changes in tRNA 

abundance (Wilusz, 2015). These molecular mechanisms are a complement to the gene 

expression regulation but other methods are needed to measure the extent of their effect on 

protein abundance. Indeed, it is possible to measure expression of miRNA using modified 

RNA-seq protocols and to measure ribosome occupancy using ribosome sequencing (Ribo-

seq) (Ingolia, 2014). Measurement of tRNA abundance can be assessed using fluorescent 

labelling as well (Y. Zhou, Goodenbour, Godley, Wickrema, & Pan, 2009). 

However, our experimental design must be considered as well. Because there is a time delay 

between transcription and translation, our snapshot of the transcriptome and proteome are 

shifted as well. Thus a better design would be more timepoint with less time spent between 

them. However, such a design would multiply the cost and the complexity of experiments and 

it is not certain that the advantage obtained would outweigh the cost. Furthermore, the 

translation dynamics may not be the same for different RNA. Indeed, one could imagine that 

an mRNA is expressed and translated in burst, with a low half-life for the mRNA. This would 

lead to the protein being detected but not the mRNA. It is also possible that a protein has a 

very low half-life but its corresponding mRNA is very stably expressed. This would result in 

sharp upregulation of protein followed by rapid degradation and, depending on the time of the 

sample collection, to a protein appearing up- or down-regulated respectively and an mRNA 

level displaying no change. 

 

4.7 Loss-of-function screen identify several proteins affecting 

resistance to infection 

Our screen showed that several proteins that had so far been missed in other 

transcriptomics-based approach given their stable mRNA affect the fly resistance to infection. 

These proteins were selected based on variation in their protein abundance and lack or anti-

correlated mRNA level change. 

 

We found out that a high percentage of mutated proteins displayed reduction in resistance. 

Indeed, one could expect high percentages because of the intrinsic nature of the molecule 

assessed. Because, most of the functions of the cells are mediated via proteins, a direct 

measurement of the molecules that are present in virtually all molecular processes in the cells 

makes it more likely to identify a crucial cog in such a processes. Conversely, variation in gene 

expression may not indicate whether the associated protein will be present, thus 

transcriptomics-based target identification may overestimate the importance of a protein. 
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Furthermore, the lack of correlation between gene expression and variation in protein 

abundance implies that a gene that may have been overlooked in transcriptomics-based 

studies because of its observed downregulation may instead play an important role. Indeed, a 

proteome analysis will likely find key proteins because the costs of protein metabolism is higher 

than mRNA metabolism (Bier, 1999). Because the cost associated with the production, 

regulation and disposal of protein is higher than for mRNA, a cell with limited resources will 

likely be more vigilant of its protein synthesis as to not waste too much resources. 

 

4.8 Conclusions 

 

The immune response of Drosophila melanogaster has been a major field of study in 

science. Following the discovery and analysis of the various pathways of the Drosophila 

immune response, researchers investigated the immune response to oral infection in the gut. 

Then, a genome-wide association study on a Drosophila population identified lines highly 

resistant and susceptible to infection by the entomopathogenic bacteria Pseudomonas 

entomophila and identified key loci mediating this resistance. However, there was no 

knowledge of the genetic variants causing variation in gene expression after infection by this 

pathogen. Are the variants sufficient to explain phenotypic differences? How strong are the 

effects of the variants on gene expression? How different are the gene expression profiles 

between resistant classes? 

 

To answer these questions, we first analyzed the transcriptome of phenotypically extreme 

lines. We did not find class-specific gene expression; instead, we found that it was not possible 

to separate gene expression based on resistance. However, we did find that a majority of local-

eQTLs were condition-specific, showing that resistance to infection is mostly mediated by 

cryptic variation and with many loci with small effects adding up to affect resistance. 

 

We then characterized the mode of action of local-eQTLs using allele-specific expression in 

F1 offspring. We found that the majority of local-eQTLs do not act in cis-. This result highlights 

the fact that most eQTLs analyses overestimate the amount of cis-acting variants. Indeed, a 

common shortcut for these analyses is to consider the proximity between a variant and the 

gene linked as a proxy for cis- or trans-effect where variants located close to the gene are 

thought to be cis-acting whereas variants situated further away are thought to be acting in 

trans-. This highlights the usefulness of allele-specific analysis to understand how a variant 

affects gene regulation. 
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Finally, we identified nutcracker as the sole differentially-expressed gene between resistance 

classes. We showed that ntc loss-of-function mutants were more susceptible to infection and 

discovered that a variant linked with ntc expression change and located in a TFBS affected the 

binding affinity of the TF Broad. We demonstrated that this variant affect ntc gene expression 

through differential binding and was responsible for an increase in expression. This is a prime 

example of a non-coding variant affecting a phenotype through alteration of a gene expression. 

However, if the effect of ntc on the resistance to infection was shown, we still do not know how 

this gene is affecting the resistance. We gave some ideas of potential functions, but further 

mechanistic studies are needed to understand the molecular mechanism by which ntc affect 

the resistance to infection. 

 

Because most of the analyses of the fly gut enteric immune response was based on gene 

expression analysis, we alleviated this by performing an in-depth characterization of the gut 

proteome after infection using mass-spectrometry. We showed that the proteome variation is 

strongly time- and pathogen-dependent although we also detected a core of processes 

conserved in all time and pathogen conditions. Finally, we performed a small screen on 

proteins that may have been overlooked in previous RNA-based analysis of the gut. These 

results demonstrate that a mass-spectrometry analysis of the proteome can bring novel 

insights into an already established topic. Generally, it is the most thorough characterization 

of the Drosophila gut proteome upon infection by Gram-negative bacteria, thus opening the 

way for future studies on protein abundance variation in a population making it a great resource 

for the Drosophila community as a whole. 
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