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Abstract
Simulations of nuclear reactor physics can disagree significantly from experimental evidence,

even when the most accurate models are used. An important part of this bias from experiment

is caused by nuclear data. The nuclear data have inherent uncertainties due to the way they

are evaluated, which then propagate to nuclear reactor simulations. This creates a bias and an

uncertainty in a predicted reactor parameter like keff or the composition of spent fuel. This

thesis focuses on data assimilation techniques to ameliorate the effects of nuclear data. Data

assimilation takes integral experiments and assimilates them in a Bayesian way to improve

simulations. It can also be used to find trends and areas needing improvement in evaluated

nuclear data. The research focuses on advancing the data assimilation theory and knowledge

used in reactor physics, especially on techniques that require stochastic sampling of the nu-

clear data. Furthermore, the research takes advantage of rich experimental data available from

the Proteus research reactor at the Paul Scherrer Institute.

The thesis showed, for the first time, that two methods based on stochastic sampling (called

MOCABA and BMC) gave equivalent results to each other and to the traditional method called

GLLS. This was corroborated with two independent studies that used different experiments,

neutron transport codes, nuclear data, and processing codes. The first study used the JEZEBEL-

Pu239 benchmark, the Serpent2 neutron transport code, and NUSS. The second study used

reactivity experiments from the LWR-Phase II experiments at Proteus, CASMO-5 for neutron

transport, and SHARK-X. While using Serpent2, several questions pertaining to the stochastic

uncertainty of its sensitivity coefficients arose. To address these, a new method called eXtended

GLLS, or xGLLS, was proposed and tested in the thesis. xGLLS showed that the uncertainties

associated with sensitivity coefficients have a negligible effect on the data assimilation as long

as the calculated integral parameters themselves were converged. The final study focused

on adjusting the fission yields and covariances made by the GEF code with post-irradiation

examination experiments from Proteus. The adjustment improved the accuracy of predicted

nuclide concentrations in spent fuel and improved the agreement between the GEF fission

yields and those of ENDF/B-VIII.0 and JEFF3.3.

Key words: Data Assimilation, Nuclear Data, Reactor Physics, Neutronics, Bayes’ Theory
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Résumé
Les simulations en physique des réacteurs nucléaires pourraient être en désaccord avec les

expériences, même avec des modèles plus sophistiqués. L’un des principaux biais entre les

simulations et les expériences provient des données nucléaires. L’incertitude inhérente à

l’évaluation de données nucléaires se propage aux simulations de réacteurs nucléaires. Ces

données d’entrée introduisent un biais et créent une incertitude sur les paramètres calculés

d’un réacteur, comme la criticité ou la composition des combustibles usés. Cette thèse se

concentre sur l’assimilation de données afin d’améliorer l’impact des données nucléaires.

L’assimilation de données utilise les résultats des expériences intégrales et les intègre de

façon Bayésienne pour améliorer les simulations. Son application permet aussi de mettre en

évidence des tendances dans les données nucléaires évaluées et de rechercher des données

qui ont besoin d’amélioration. Les travaux de recherche menés durant cette thèse se focalisent

sur l’amélioration de la théorie et de la compréhension de l’assimilation de données pour

la neutronique, en particulier avec les techniques utilisant l’échantillonnage stochastique

des données nucléaires. De plus, ces travaux profitent fortement de données expérimentales

provenant du réacteur nucléaire de recherche Proteus à l’Institut Paul Scherrer.

Cette thèse démontre pour la première fois que les deux méthodes basées sur l’échantillon-

nage stochastique (appelées MOCABA et BMC) produisent des résultats équivalents entre

elles, ainsi qu’avec la méthode traditionnelle basée sur les sensibilités (appelée GLLS). La

conclusion est corroborée dans ce travail par deux études indépendantes utilisant des expé-

riences, des codes de transport neutronique, des données nucléaires, et des codes d’analyse,

tous différents entre les études. La première étude est basée sur l’expérience de référence

JEZEBEL-Pu239, le code de transport des neutrons Serpent2, et le code d’échantillonnage

stochastique NUSS. La seconde étude utilise les expériences de réactivité provenant de la

campagne « LWR-Phase II » du réacteur Proteus, le code CASMO-5 pour la neutronique, et

SHARK-X. En utilisant Serpent2, plusieurs questions ont été posées concernant les incerti-

tudes statistiques des coefficients de sensibilité. Afin de répondre à ces questions durant

cette thèse, une nouvelle méthode intitulée « eXtended GLLS » ou xGLLS a été proposée et

testée. Cette méthode a démontré que les incertitudes associées aux coefficients de sensibilité

avaient un effet négligeable sur l’assimilation de données pourvu que les paramètres intégraux

calculés soient suffisamment précis. L’étude finale s’est concentrée sur les rendements de

fission et les matrices de covariance générés avec le code GEF, ainsi que l’assimilation des

expériences de post-irradiation de Proteus. Les ajustements des rendements de fission ont

amélioré la précision des concentrations de nucléides simulées dans les combustibles usés

v



Résumé

ainsi que l’accord entre les rendements de fission produits par GEF et ceux des bases de

données ENDF-B/VIII.0 et de JEFF3.3.

Mots Clés : assimilation de données, données nucléaires, physique de réacteurs, neutronique,

théorie de Bayes
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1 Introduction

The best model of a cat is another, or

preferably the same, cat.

NORBERT WEINER – 1945

1.1 Background and Context

Computational science is the business of making predictions. We describe a system with

mathematical formulae, or models,1 in order to predict its behavior. Through models, we seek

to further understand systems like weather patterns, biochemistry, or nuclear reactors. Then

we can design new technologies, or analyze and improve existing systems. When we compare

a model prediction to reality, there is invariably a bias or a difference between prediction and

reality.2 The never-ending battle in computational science is to minimize the bias of a model

while concurrently minimizing the resources spent on solving it. Resources are things like

time, human effort, computational power, or space on a hard drive. More simply, we strive to

make our predictions as accurate and efficient as possible.

The bias exists, in part, because of the need to economize resources. We often must simplify the

physics of a system so that not only can the models be solved, but also solved in a reasonable

amount of time with available computer power. The bias may also arise because we simply

do not yet know how to fully model a system or how to solve its model. We must then

resort to approximating the physics to have a model that is predictive and solvable. With

the advancement of science, we can make fewer approximations in our models which, in

1For clarity, we can give a more formal definition of a model. In modelling, there is generally a system (it can be
natural or artificial) that is governed by a set of rules. A model is created to describe this system and to predict
its behavior. A model could be a set of differential equations that can be solved using the rules of mathematical
calculus. While the model may follow a set of immutable physical laws, many models may exist to describe the
same system and can be compatible with data or evidence.

2The bias of a model is a metric used in validation. The bias is the degree to which the model is a good represen-
tation. A small bias indicates a good degree of representation and a large bias a poor degree of representation.
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Chapter 1. Introduction

turn, lead to reduced biases. Advancements in technology increase computational power

permitting more complex and accurate models that were previously unfeasible. Although

these modern and more sophisticated models have greatly reduced biases, biases still, and

will forever, exist.

If we imagine a world where the physics of a system are perfectly known and modeled, and we

have infinite computational power, we still could not eliminate the bias. An insurmountable

asymptote blocks the way. Fortunately, we know the culprit: the inputs into our models.

Models need starting conditions to make a prediction, which are often called input parameters

or independent variables. If these input parameters are inaccurate, this will have a knock-on

effect in the model’s output parameters or the dependent variables. As we reduce the parts of

the bias caused by approximations and simplifications, the bias will become more and more

dominated by a single source: the input parameters.

To illustrate this idea, take for example a computational model that predicts the strength and

trajectory of a hurricane. The results of the model have high stakes because they are used to

make decisions about where and when people need to be evacuated. If the bias is too large,

the wrong people may be evacuated and many lives may be in danger. The model needs many

input parameters, one of which is the ocean temperature. To measure the temperature, a buoy

with a thermometer is dropped from an airplane and it then communicates the temperature

with a radiowave. In the hurricane model, the location of the buoy’s measurement and the

temperature itself are input variables.

Unfortunately, inputs such as these are based on measurements and are, therefore, uncertain.

These are aleatoric uncertainties that come from the randomness of the measurement.3 Any

measured value will always have a range of other values that could also be the true value; when

it is repeated ten times, it will have ten different values. Consider the buoy sensor from earlier,

it has aleatoric variations in its measured temperature that are caused by experimental errors

and imperfect instruments. It also has epistemic uncertainties or systematic uncertainties that

could, in theory, be eliminated but in practice cannot. An epistemic uncertainty would exist in

the buoy’s location: how much did it glide in the air before splashing down? How much did

it drift in the tempest’s raging current? How does an imperfection calibration of the buoy’s

equipment affect the reported location?

Depending on which buoy location and which temperature is used as the model input, the

model will give a different output. When considering that a hurricane model may need

many thousands of input temperatures, atmospheric pressures, or wind velocities and that

all of these measurements have uncertain behavior, it is easy to imagine that these input

uncertainties can have an important effect on the model’s prediction. Because we cannot use

the true input parameters in the model, the model will inevitably have a bias.

This thinking lead to the development of two fields in statistics: uncertainty quantification and

3Aleatoric uncertainty comes from the Latin word alea, or dice.
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Figure 1.1 – Predicted trajectories of Hurricane Irma in 2017 using UQ (top) and historical
hurricane data that can be used in DA (bottom).

sensitivity analysis [1]. Uncertainty quantification (UQ) refers to the techniques and processes

that allow us to estimate the uncertainty in a model’s output caused by uncertain inputs. When

the hurricane model predicts the eye’s location in 24 hours to be 25◦ 28’ 7.3956” N and 80◦ 28’

39.1944” W, UQ would say that because of input uncertainties the location is 25◦ 28’ 7.3956” ±
1’ N and 80◦ 28’ 39.1944” ± 2’ W. Authorities may then decide to evacuate everyone within the

uncertainty range, not only those directly in line with the prediction.

Sensitivity Analysis (SA) goes one step further. It is the study of how uncertainty in the output of

a model can be apportioned to different sources of uncertainty in the model’s input.4 It allows

the breakdown of the uncertainty in a hurricane’s predicted location to the different input

measurements. SA might say that 40% of the uncertainty comes from the ocean temperature

4When we use our best-estimate models and do UQ and SA, this approach is called BEPU (best-estimate plus
uncertainties), which is becoming the new standard in nuclear science and engineering.
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input, 20% from the atmospheric pressure input, 10% from satellite imagery, etc. Knowing this,

we could then intelligently invest resources to improve our model predictions. For example, if

the temperature measurements have the largest uncertainty contribution, we could choose

to invest in improving the buoy thermometer and adding a GPS tracker to better know its

location.

While there is always room for improvement in a model’s input uncertainties, the uncertainties

will nevertheless always exist. Furthermore, while we can hope for improvement in the future,

we must ask ourselves what can we do now so that our models have less uncertainty and

smaller biases? Another statistical method called data assimilation addresses this question.

Data assimilation (DA) integrates, or assimilates, how the computational model performed in

past applications to improve how it performs in the current application. By assimilating this

previous experience, we can improve the bias and reduce the uncertainty of our predictions.5

DA requires no re-evaluation of the model inputs nor changes to the complexity of the model;

it can be used now to have more accurate and more precise predictions.

DA was pioneered in the field of meteorology and used extensively to predict meteorological

phenomena like hurricanes [2]. When DA is applied to hurricane modeling, we assimilate

how the model performs when applied to historical hurricanes in order to improve how it

predicts the current hurricane. The historical record of hurricanes is used to train, or calibrate,

the model so that the bias between the true hurricanes’ trajectories and what the model

predicts them to be is minimized. The uncertainty of the model predictions is also reduced. By

assimilating previous experience, the model predictions become more accurate and precise.

1.2 Data Assimilation in Neutronics

The physics of nuclear reactors is extensively modeled with complex computer codes, just like

hurricanes. The outputs of their models are essential to design new reactors, to maximize the

efficiency of existing reactors, to ensure reactor safety, and to manage radioactive waste. The

modern form of these analyses uses best-estimate codes with uncertainty quantification. This

framework is often called Best-Estimate Plus Uncertainties, or BEPU [3, 4, 5]. BEPU allows to

reduce conservatism in safety margins and to improve the quality of safety analysis.

BEPU requires validation, which can be defined as follows [6, 7]:

• Validation: The process of determining the degree to which a model is an accurate

representation of the real world considering the intended uses of the model.

Validation is typically done by comparing the output of a code to experimental observations.

The comparison is traditionally metrized with the bias. Quantifying the bias is so important

5DA is sometimes called inverse uncertainty quantification and UQ is called forward uncertainty quantification.
UQ moves forward through the model, starting with the uncertain inputs and ending with a quantification of
the uncertainty on the outputs. DA moves inversely through the model, starting with the outputs and working
backwards through the model to calibrate the inputs.
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that international standards were created for it (e.g. ANSI/ANS-8.24-2007 for criticality safety

[8]). The bias, bc , between a model’s calculated value, C , and an experimental value, E , is

formally defined as Eq. (1.1). An unbiased result (i.e. the model perfectly predicts E) would

have bc = 0.

bc = C

E
−1 (1.1)

BEPU seeks to avoid conservatism and expert judgment by using probability theory: the

outputs of models have their uncertainty quantified. Rather than arbitrarily imposing a

conservative margin on the model’s predictions, a model output is said to satisfy a design or

safety constraint within uncertainties. Likewise, the bias is said to be within the model’s and

experiment’s uncertainties. These uncertainties, or C ±∆C and E ±∆E , are used to quantify the

bias’ uncertainty, ∆bc .

∆bc ≈
√(

∆C

E

)2

+
(

C∆E

E 2

)2

(1.2)

∆C can arise from a number of sources. There are uncertainties in the technical inputs into

the model: fuel enrichment, cladding thickness, etc. There are also uncertainties in the input

physical constants, which in neutronics, are primarily nuclear data. Nuclear data describe

the probability of certain reactions occurring in nuclear physics. They include the probability

of a neutron scattering off a nucleus or causing the nucleus to fission, how many neutrons

are released per fission, and which daughter nuclei are produced after fission. The nuclear

data have epistemic and aleatoric uncertainties because they are evaluated by combining

approximated nuclear physics and experimental evidence. These uncertainties propagate

through a neutronics model to create a bias and an uncertainty [9]. That means that all states

of interest in the reactor predicted by the model are biased and uncertain as a result of the

nuclear data, including the reactor power, the reactivity coefficients, and keff.

When ∆bc is quantified, a validation criterion can be defined:

1. Success: bc is explained by its uncertainty,

|bc | ≤ |∆bc |

2. Failure: bc is not explained by its uncertainty

|bc | > |∆bc |

In the case of failure, several options could be pursued. Assuming that E and∆E are correct and

the model is truly best-estimate (it has no model inaccuracy or user error), the failed validation
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Chapter 1. Introduction

occurred because of inaccurate model inputs. Often in nuclear engineering, especially for

criticality benchmarks and reactor physics benchmarks,6 the technical input uncertainties are

negligible. This means that only the nuclear data made the validation fail. Thus to improve

the bias, the nuclear data must be improved.

During the course of the validation, the bias may appear to be satisfactory, but ∆bc may be

determined to be unsatisfactorily large. If bc = 0.01 but ∆bc = 0.50, the validation is technically

successful, but not highly meaningful. The uncertainties are so large as to make qualifica-

tions of the model unsatisfactory. In this case, usually ∆C >> ∆E meaning that the input

uncertainties are very large.

This problem is often encountered with fast reactors. The nuclear data important for their

physics have large uncertainties and, therefore, model predictions for them have large ∆C . For

instance, in Ref. [10] the uncertainties of key core parameters of sodium cooled fast reactors

are given. keff had an uncertainty of 1.66%, the sodium void coefficient of 23.4%, and the power

peak of 0.5%. Especially for safety related parameters like the sodium void coefficient, the ∆C

is at an unacceptable level, despite the fact that the validation would have been successful by

the criterion |bc | ≤ |∆bc |. Here again, the nuclear data, particularly their covariances, must be

changed in order to reduce ∆C .

The first, and best, option is to proceed to re-evaluate the nuclear data so that they create

a better bc with a smaller ∆C . Ideally this is done, but there are hindrances. First is the

large complexity of the nuclear data evaluation process. Each evaluated nuclear data library,

like ENDF/B-VIII.0 [11], requires thousands of man-hours from collaborators all across the

world to complete. Changes must follow quality assurance processes and be scientifically

corroborated. This is a very good idea, but is slow and makes the nuclear evaluation process

long. For example, the last two major releases of the USA’s Evaluated Nuclear Data File (ENDF),

ENDF/B-VII.1 and ENDF/B-VIII.0, were seven years apart (in 2011 and 2018, respectively).

Another hindrance is that a re-evaluation likely requires new and expensive experimental

data. A measurement of a nuclear datum includes the operating cost of experimental facilities,

the labor of scientific and technical support personnel, the materials for the measurement

(target, detectors), and computer resources to analyze and store the data. One estimate put

the cost of a single new measurement at 400,000 USD [12]. If smaller biases and reduced

uncertainties are urgently needed, like for a start-up company designing a new fast reactor,

any improvement through nuclear data re-evaluation is likely unattainable. The process is

either too long and/or too costly.

The question is then what can be done now to improve bc and reduce ∆C ? The answer

is data assimilation! DA provides a statistically founded way to incorporate experimental

evidence into the nuclear data in order to improve bc and reduce ∆C by means of adjusting

6There is an important difference between a benchmark and a regular experiment. Benchmarks are experiments
that have been peer reviewed. They are described in detail and can be repeatedly and consistently modeled by
qualified specialists. All benchmarks are experiments, but not all experiments are benchmarks.
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the nuclear data. Importantly, DA is data-driven and based on probability theory. This means

that it requires much less expert judgment and is thus less prone to human errors. In the

previous section, historical hurricanes were used in the DA to improve predictions about

incoming hurricanes. In neutronics, integral parameters from benchmarks are used. They are

parameters like keff, reaction rate ratios, reactivity coefficients, or nuclide concentrations after

burnup. They are “integral” because they depend on the integrated effect of all model inputs,

including the nuclear data.

Besides just reducing uncertainties and modifying the bias, DA can be used in validation stud-

ies of application systems. An application system is under investigation (i.e. being modeled)

and has no associated experimental data. Without an E , Eq. (1.1) cannot be used, i.e. there is

no direct way to validate the model to know how trustworthy its predictions are. Without trust

in model predictions, it then becomes difficult to project economic and safety analyses, and

subsequently to make confident engineering decisions.

Ideally, mockup experiments are used to validate an application. These experiments are

designed to be similar to the application but scaled down and modified to be technically

feasible to produce. In the mockup approach, first bc of the mockup is calculated for a

given neutronics model and then it is reinterpreted and translated to the application [13, 14,

15, 16]. The mockup approach has limitations in practice. For example, in the very early

stages of design, there may be no funding available to develop a mockup experiment, often a

complicated and expensive task. Or, there may be no facilities or expertise to conduct mockup

experiments. In these cases of insufficient experimental evidence, how can reactor physicists

reliably estimate the bias of the simulations of their designs? DA of course!

DA can be used with benchmarks that are “similar enough” to the application. These bench-

marks were not necessarily designed to replicate the application’s characteristics, but behave

similarly to input nuclear data thanks to their physical similarities. This is analogous to using

the historical record of hurricanes to evaluate the potential bias of the current hurricane. DA

then leads to increased confidence in model predictions of an application despite being unable

to explicitly validate said model. This idea is often called bias correction in the literature. Such

analyses were traditionally done in neutronics to design fast reactors [17, 18, 19, 20, 21, 22].

At that time, and still to some extent today, the nuclear data related to fast reactors were

poorly known. The bias correction feature of DA was used for the design of the fast reactors

PHENIX and SUPERPHENIX in France [9]. They predicted the critical mass of SUPERPHENIX

within ∼300 pcm, despite the large uncertainties arising from the nuclear data and model

inaccuracies.

In recent years, research has focused on the adjusted nuclear data created by DA. They can

be used by nuclear data evaluators to target where and how nuclear data can be improved.

This is possible because DA changes the mean value and uncertainties of nuclear data. This is

the main advantage of DA over SA: SA only identifies which nuclear data drive ∆C , while DA

details how the nuclear data affect both bC and ∆C .

7
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After applying DA, individual adjustments can be examined step-by-step, noting which are

larger than others. The most consistent nuclear data tend to have marginal adjustments,

while the least consistent undergo larger adjustments and, therefore require further study. At

$400,000 an experiment and requiring years of work, any tool that helps the re-evaluation

process proceed more quickly and efficiently should be employed. DA can be one of these

tools by highlighting the “problem” nuclear data. DA can also be used to efficiently design

experiments to validate nuclear data [23]. Importantly it should be stated that DA is not used

to create new nuclear data, just to more intelligently understand the current nuclear data. The

adjustments can also be used to create cross correlations between nuclear data and between

nuclides which are not traditionally available [24, 25, 26, 27].

The OECD/NEA’s Working Party on International Nuclear Data Evaluation Co-operation estab-

lished numerous subgroups that focused on DA for nuclear data evaluation. The subgroups’

central objectives were and are to provide a DA framework for adjusting nuclear data and to

recommend adjustments to evaluators when they seek to improve nuclear data files. Sub-

groups 26 [10], 33 [28], 39, and 46 all focused on DA in neutronics problems. They also sought

to establish guidelines to enlarge the experimental databases used in DA. Additionally, they

defined criteria to extrapolate the results of an adjustment to different applications.

A general critique of adjusting nuclear data with integral experiments is that, by using a small

set of integral data to fit potentially thousands of nuclear data, the physics behind the nuclear

data evaluation are lost. However, if the nuclear data are probabilistic, is it wrong to change

the probability distribution as long as the changes respect the prior? From a Bayesian view

point, any value covered by the prior is the possible “true” value and should be considered

as a possible adjustment. If these posteriors improve the performance of the nuclear data,

then that does not violate what was originally known about the nuclear data. Another issue

is that a few integral parameters are being fit to many thousands of nuclear data (given the

multi-group format). This means that the adjusted nuclear data can really only be considered

as “application specific.” If they are applied to other integral data that are dissimilar to those

used in the fitting, which can be quantified with a correlation coefficient, then it is very likely

that a degradation in the bias of these new integral benchmarks occurs. In a sense, there is a

“price” that is paid to improve the bias and reduce the uncertainties: generality is lost for the

improvement of a select set of integral data.

1.3 Aim and Structure of Thesis

DA is primarily used in neutronics for three purposes:

1. Predicting the bias of critical systems in criticality safety [29].

2. Reducing the uncertainties of advanced reactor designs [13].

3. Searching for trends and areas of improvement in nuclear data [9].
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These goals can all be accomplished with different mathematical formulations. Each formula-

tion has certain advantages and disadvantages that might merit its use in specific scenarios.

The start of this thesis in 2015 coincided with several advancements in the mathematical

formulations of DA for use in neutronics. New methods based on the stochastic sampling (SS)

of input parameters were beginning to be used. The stochastic methods work by randomly

sampling the input nuclear data with the uncertainty information contained in the data’s

library. The SS approach is typically applied with the assumption that the nuclear data have

multi-variate normal distributions. Alternatively, the stochastic methods could be used with

Total Monte Carlo (TMC) [30]. TMC preserves the true distribution of the nuclear data by

sampling the model parameters used to evaluate said nuclear data [31].

Two of these methods, MOCABA [32, 33, 34] and BMC [35], were the particular focus of this

thesis. These new methods, and their performance relative to the traditional technique called

Generalized Linear Least Squares (GLLS), became a central point of the research. GLLS uses

first-order perturbation theory, i.e. it assumes that C is a linear function of nuclear data, given

that only small changes to the nuclear data are made. Both stochastic methods have the

desirable trait that they can be applied without assuming that first-order perturbation theory

is valid. This is important because non-linear relationships between C and nuclear data can

occur for certain integral parameters [36] and for burnup problems [37]. Additionally, GLLS

requires sensitivity coefficients for which calculation routines can be difficult to implement

in neutron transport codes. SS can be easily used in any neutron transport code and thereby

reduce the development time needed to perform DA. BMC can also be used in TMC-like

applications where nuclear data or integral parameters are non-Gaussian.

Concurrently to the thesis, international interest formulated around the idea of the consistency

between the C and E values of integral benchmarks. In this work, the two are considered

inconsistent if bc >>∆bC , i.e. the E uncertainties and the uncertainties in C caused by nuclear

data do not explain the observed bias. This represents a danger to applying DA because a

central assumption in its formulation is that bc and ∆C are caused by input uncertainties. If

somehow they are not, perhaps the E or ∆E are not of high quality or input correlations are

missing, DA might induce spurious and unreliable adjustments. How to quantify and account

for these inconsistencies also became a topic of research.

The thesis was also conceived to use integral data from the Proteus research reactor in DA,

i.e. use them in someway to validate critical safety cases, to reduce uncertainties in advance

reactor designs, or to find trends in nuclear data. Proteus was a zero-power (maximum 1 kW

and flux of 5×109 n/s-cm2) nuclear research reactor that operated from 1968 to 2011 at the

Paul Scherrer Institue (PSI). During its operation history, it was used for several experimental

campaigns that investigated reactors like the gas-cooled fast reactor, the high-conversion light

water reactor, the high temperature reactor, and the light water reactor (LWR).

The thesis project was established with four main goals:

1. Review, analyze, improve, and (if possible) propose new DA theory for use in neutronics,

9
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2. Use DA in new ways in the field of neutronics,

3. Develop tools to apply DA with the codes used at PSI,

4. Apply DA methods to experimental data sets from the Proteus research reactor.

These four goals were integrated into the research of the thesis and into the structure of this

document. A chapter-wise summary of the thesis is given below. It details the work and

advancements made during the thesis and how these addressed the stated goals.

Chapter 2 – Overview of Data Assimilation Theory

The start of the thesis coincided with the development of stochastic DA methods in neutronics.

How these methods were theoretically related to each other and to GLLS had not yet been

presented. This chapter presents the first unified description of GLLS, MOCABA, and BMC

from the same principles, i.e. Bayes’ theory. Additionally, it presents in more detail the idea of

inconsistent integral data and the mathematical techniques used to address them, especially

the Marginal Likelihood Optimization technique. In this way, the first goal of the thesis was

accomplished, to review and analyze DA theory in neutronics. The main scientific value of

this section is the unification under a single umbrella of the DA theory.

Chapter 3 – Comparison of Data Assimilation Methods

With the DA theory reviewed and analyzed, it was necessary to analyze the methods’ perfor-

mance in case studies. This was important from a research aspect to test if all mathematical

formulations perform equivalently given identical conditions. It provided practical experience

with the DA methods, especially in how they behave as algorithms. Chp. 3 is devoted to

studying the DA methods. To effect a case study required developing the tools necessary to do

DA, which was another central goal of the thesis. First, a toy problem was used to study the

DA methods in a simplified way. Then, the criticality benchmark JEZEBEL-Pu239 was used

to test all the DA methods. The benchmark was simulated with Serpent2 to maximize model

accuracy and with the ENDF/B-VII.1 nuclear data. This case study with JEZEBEL-Pu239 was

the first to ever compare the different DA methods. The adjustments of nuclear data, nuclear

data covariance matrices, and calculated integral parameters are all presented. Additionally,

specific focus is given to the convergence behavior of the stochastic DA methods.

Chapter 4 – Data Assimilation of the LWR-Proteus Phase II Reactivity Experiments

The Proteus research campaigns are a rich and valuable source of information that can be

used in DA. A specific experimental campaign of Proteus, LWR-Phase II, was chosen for DA

in this thesis. In Chp. 4, DA is applied to this campaign using CASMO-5 and the UQ/SA tool

SHARK-X. In this way, tools also needed to be developed, satisfying the thesis’ goal. The study

served to first independently confirm the comparison of Chp. 3 with a different experiment,
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nuclear data library, and neutron transport code. Secondly, the study’s scientific purpose was

to focus on the inconsistency of the experiment’s integral data. Finally, it gave insights into

the bias behavior of CASMO-5 and ENDF/B-VII.1 nuclear data for this Proteus experiment.

Because the integral data are reactivities, the insights are important for criticality safety and

fuel cycle management, especially of spent fuel pools.

Chapter 5 – Data Assimilation of Post-Irradiation Examination Experiments

Chp. 5 presents a study that extended DA beyond its normal application range and took full

advantage of the stochastic DA methods. Post-irradiation examination experiments were used

as integral data to adjust the fission yields produced by a code called GEF [38]. The DA focused

on the bias and uncertainty of the calculated concentrations of fission products in spent

fuel. Accurate simulations of the inventory of fission products are important for criticality

safety, decay heat, fuel cycle optimization, and nuclear waste management analysis. The

fission products in this study had biases of up to 50% and, therefore, proved to be interesting

targets for DA. Additionally, the GEF model to create fission yields is non-linear and produced

non-Gaussian integral parameters, which proved to be an interesting behavior to test the

BMC and MOCABA methods. Furthermore, the post-irradiation examination data have a large

degree of inconsistency making them an interesting application of the Marginal Likelihood

Optimization technique.

This chapter presents the adjustments of GEF’s model parameters, of the fission yields and

covariances between fission yields, and of the calculated fission product concentrations.

The adjustments are compared between BMC and MOCABA, and between applying and not

applying Marginal Likelihood Optimization. This study is, to our knowledge, the first to use

stochastic DA with post-irradiation examination data and the first to perform DA of integral

data for fission yields. This chapter addresses the thesis goals: it uses Proteus data, it explores

DA theories in new ways, and it builds tools for PSI/EPFL modeling schemes.

Chapter 6 – eXtended Generalized Linear Least Squares

A stated goal of the thesis was to propose new theories. An opportunity for theoretical ad-

vancements arose through the coincidental development of sensitivity features in Monte Carlo

neutron transport codes. Such codes are part of the tool suite used at PSI and EPFL and,

therefore, these new features were of very high interest. The sensitivity coefficients that are

calculated by these codes, and subsequently used in GLLS, have their own uncertainties due to

the nature of Monte Carlo neutron transport. These uncertainties had never been accounted

for or extensively studied in the GLLS theory. In collaboration with Manuele Aufiero and

Adrien Bidaud at the University of California Berkeley, a new DA theory called xGLLS was

developed during this thesis. xGLLS is an extended form of the GLLS equations that takes into

account the sensitivity uncertainties in the theory. Its principal is that if the sensitivities are

highly uncertain, xGLLS should constrain the assimilation and create smaller adjustments of
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the nuclear data and integral parameters.

Chp. 6 serves to both present and analyze xGLLS. xGLLS was tested using the sensitivity co-

efficients produced by Serpent2. The integral data from an NEA benchmark were used for

the assimilation. The study compared the effect that different levels of sensitivity uncertainty

had on the adjustments, both with xGLLS and with the classic GLLS method that does not

account for the uncertainties. A convergence criterion for optimizing sensitivity calculations

with continuous-energy Monte Carlo neutron transport codes was also proposed and sup-

ported with evidence. Because these simulations require so many computational resources,

the convergence criterion can be extremely useful for future studies with continuous-energy

Monte Carlo neutron transport codes, both for DA and for simpler uncertainty quantification

studies.
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2 Overview of Data Assimilation Theory

Bayes’s theorem is nominally a

mathematical formula. But it is really

much much more than that. It implies

that we must think differently about our

ideas – and how to test them.

–N. SILVER, The Signal and the Noise [39]

To understand data assimilation first requires us to think in a probabilistic way. The traditional

way to interpret probability is called the frequentist approach. For frequentists, the probability

of some event is the relative frequency that it occurs. To find the probability of a coin landing

heads up, it must be flipped a sufficient number of times while recording the frequency of

the number of heads to tails. Unfortunately, calculating a relative frequency for very rare

phenomena, like a nuclear core meltdown or the sun’s supernova, is difficult. The frequentist

approach is also problematic for making a prediction. If we want to find the probability that a

hurricane will hit Miami, we would need a number of hurricanes with identical conditions

and then we would need to count the frequency of them striking the city.

In such cases, it is useful to take the Bayesian, or subjective, approach to probability. For

Bayesians, probability is a mental construct indicating a degree of belief that an event, or hy-

pothesis, is true. When probability is interpreted in such a way, the sample space corresponds

to a hypothesis, proposition, or prediction that can be either true or false. The probability

associated with the hypothesis A, or p(A), is the a priori quantification of how correct we

believe A is. We can assign a probability to a model’s prediction, or to the hypothesis that what

the model predicts is correct. Input parameters can also have probabilities, which relate to

our degree of belief that an input’s true value lies within a specified interval. The probability

that a hurricane hits Miami is then a mathematical description of how confident we are in that

hypothesis (i.e. the hurricane model and its input parameters).
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Chapter 2. Overview of Data Assimilation Theory

2.1 Bayes’ Theory

The foundation of DA is Bayesian inference, i.e. something is inferred through the application

of Bayes’ theory. Bayesian inference updates a hypothesis as new evidence is acquired. The

hypothesis can be the prediction of a model, whether it is the path of a hurricane or a reactor

simulation with certain nuclear data. Both the model itself and the inputs are also hypotheses.

The physics of the system are hypothesized to be represented by the model and the inputs

are hypothesized to have the given values. In reality, neither the model nor the inputs are

exactly known but rather approximated (hypothesized) with the available knowledge. The

goal of Bayesian inference is to update the hypothesis by incorporating new evidence. From

the updated hypothesis, new model predictions and inputs are obtained.

The original hypothesis is called the prior; it is what is hypothesized to be true “prior” to

assimilating evidence. The prior represents our best knowledge about the model and its inputs.

The second term in Bayesian inference is called the likelihood and it measures how likely the

evidence would exist given our hypothesis. In other words, it measures the compatibility of

the evidence with the prior. The likelihood is not a probability as it does not adhere to the

rules of probabilities (e.g. belonging between 0 and 1). In nuclear applications, the prior is the

nuclear data and neutron transport code. The likelihood is the compatibility of a parameter’s

value from an integral experiment with our initial hypothesis. The hypotheses are therefore

the nuclear data, the neutron transport code, and the model of the integral experiment.

Bayes’ formula can be written as Eq. (2.1). Here, we are interested in the value of a given

parameter, θ, for which there is a probability density function (PDF). The PDF used to describe

θ is the prior, p(θ). We also have a set of evidence, or data. This data is fixed no matter what

the value of θ is. The likelihood is L (data|θ): the likelihood of having this data given our

hypothesis for θ. The denominator has no dependence on θ, i.e. it has been marginalized with

respect to θ. It is the probability of obtaining the data given all possible values of θ. Bayes’

formula gives the posterior or p(θ|data). It is θ’s updated PDF posterior to assimilating the

experimental evidence.

p(θ|data) = L (data|θ)p(θ)

p(data)
(2.1)

Bayes’ theorem is often shown as Eq. (2.2) where the posterior is proportional to L (data|θ)p(θ),

i.e. without the denominator p(data). With this proportionality, the calculation of p(data) is

avoided, which is often a difficult integral. One reason it is possible to define Bayes’ theorem

with this proportionality is that p(data) is a marginal probability distribution with no depen-

dency on θ, or, in other words, it is a constant. Additionally, it is possible to choose p(θ) and

L (data|θ) such that p(θ|data) is proportional to their product.1 When the prior’s distribution

1This is the case for the GLLS and MOCABA methods presented in the following sections.

14



2.2. Data Assimilation in Neutronics

is chosen in such a way, it is called a conjugate prior.

p(θ|data) ∝L (data|θ)p(θ) (2.2)

The maximum likelihood estimate method (MLE) is commonly used in statistics to incorporate

experimental evidence in the estimate of a model’s parameters. The likelihood function is

defined, and then its maximum is found with respect to θ, as shown in Eq. (2.3).

θ̂MLE(data) = argmax
θ

[
L (data | θ)

]
(2.3)

In contrast to MLE, with Bayesian statistics we have the prior distribution, p(θ). It allows us

to treat θ as a random variable and to calculate the posterior. The posterior distribution of

θ can then be estimated with the maximum a posteriori method (MAP), or Eq. (2.4). MAP

estimates θ as the mode2 of the posterior distribution of this random variable. The MAP and

MLE estimates are very similar. The only difference between their equations is that the MAP

estimate includes more information by taking into account the prior. In this way, MAP weights

the likelihood with the prior. When a uniform distribution, i.e. a constant, is used as the prior,

the MAP estimate coincides with the MLE estimate.

θ̂MAP(data) = argmax
θ

[
p(θ|data)

]
= argmax

θ

[
L (data|θ)p(θ)

] (2.4)

Performing a Bayesian update, or doing DA, then requires techniques to find the MAP estimate

of θ̂MAP(data). Sometimes, the modes of the posterior distribution can be analytically solved

for in the case where conjugate priors are used. It is also possible to do the maximization with

numerical optimization or with the Monte Carlo method. The various ways that MAP modes

are estimated in neutronics problems are discussed in the next section.

2.2 Data Assimilation in Neutronics

DA for neutronics begins with Bayes’ theorem in Eq. (2.5). The prior is the nuclear data, σ,

which has the PDF p(σ). It is represented as a vector, σ = {σi |i = 1, · · · , Nσ}, where Nσ is

the number of nuclear data. The evidence used to update the prior are benchmark integral

parameters, E, which are represented as the vector, E = {Ei |i = 1, · · · , NE }, where NE is the

number of integral parameters. The prior and the data together lead to the likelihood function,

2For a continuous PDF, it is common to refer to its local maxima as modes. If there is only one maximum, the
PDF is unimodal, which is the case when assuming Gaussian distributions.
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L (E|σ,model). It conceptually describes the likelihood of obtaining E givenσ and the neutron

transport code (the model). Finally, the posterior is the PDF p(σ′|E,model).

p(σ′|E,model) ∝L (E|σ,model)p(σ,model) (2.5)

The GLLS, MOCABA, and BMC DA methods all apply MAP estimation to find the posterior

parameters, i.e. they maximize Eq. (2.5). However, how the MAP modes are estimated varies

between each method because of the approximations they employ and the tools they use.

MAP is done instead of MLE in order to take into account the prior information about σ.

This prior information is the whole nuclear data evaluation process (differential data, physics

models). If MLE was used instead, it would simply maximize the likelihood with an arbitrary

σ, giving no weight to the prior and our confidence in the nuclear data evaluation process.

From this point onward, GLLS and MOCABA will be treated separately from BMC because of a

key assumption that these two methods make. BMC will be treated later in Section 2.2.3. GLLS

and MOCABA assume that the prior and likelihood functions are multivariate normal PDFs.

The assumption is made, in part, to make the mathematics of Bayes’ theorem easier to handle.

It is also statistically well founded as it is based on the principle of maximum entropy [40].

According to this principle, a chosen PDF would not create any spurious information or hide

any assumptions if it maximized the information entropy. Usually only two moments of the

PDF are known, which are typically the mean and the variance. In neutronics problems this is

often the case for the experimental integral data and the nuclear data.3 When this happens,

the most objective PDF following the maximum entropy principle is a Gaussian distribution.

The nuclear data are assumed to follow the PDF shown in Eq. (2.6). p(σ) has mean values

given by the vector σ0 and an uncertainty distribution described by the covariance matrix Mσ,

whose size is Nσ×Nσ. The matrix Mσ has diagonal terms that are variances of each nuclear

datum and off-diagonal terms that are covariances between nuclear data.

p(σ|σ0,Mσ) = (2π)−Nσ/2det(Mσ)−1/2 ·exp
[− 1

2
(σ−σ0)T Mσ

−1(σ−σ0)
]

(2.6)

L (E|σ,model) is also assumed to have a multivariate normal distribution, as seen in Eq. (2.7).

Here, the term C(σ0) is the vector of integral parameters calculated using the neutronics model

and σ0. Implicitly, C(σ0) and E are assumed to follow multivariate normal distributions, with

covariance matrices MM and ME, respectively, which are added together in this notation to

form MEM (MEM = ME +MM) in Eq. (2.7). MM contains the uncertainty in C(σ0) created by

the neutronics model. This may include the stochastic uncertainty of Monte Carlo neutron

transport, or the estimated uncertainty caused by approximations and discretization in deter-

3Using TMC or sampling GEF model parameters to create samples of the nuclear data would be an exception.
There, the full distribution would be preserved and there would be no need to assume normality.
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ministic neutron transport. How the covariance matrices are chosen and created are essential

to the quality of the DA, and will be discussed in depth later in this thesis.

L (E|σ,model) = (2π)−NE /2det(MEM)−1/2 ·exp

[
− 1

2

(
E−C(σ0)

)T MEM
−1(E−C(σ0)

)]
(2.7)

Using these prior and likelihood normal PDFs, the posterior distribution can be written as

Eq. (2.8). Here, Eqs. (2.6) and (2.7) are multiplied together and the constant terms are absorbed

into the proportionality. Because the prior and likelihood are both normal, the posterior

will also be normal, meaning it will also be an exponential function. It is then possible to

reduce Eq. (2.8) further by taking the negative logarithm of each side, giving Eq. (2.9). In this

equation, the posterior distribution is expanded and its mean and covariance matrix, σ′ and

M′
σ respectively, have the same dimensions as the prior mean and covariance matrix.

p(σ′|E,model) ∝ exp

[
− 1

2

(
E−C(σ0)

)T MEM
−1(E−C(σ0)

)]·exp

[
− 1

2
(σ−σ0)T Mσ

−1(σ−σ0)

]
(2.8)

(σ′−σ′
0)T Mσ

′−1(σ′−σ′
0) ∝ (

E−C(σ0)
)T MEM

−1(E−C(σ0)
)+(σ−σ0)T Mσ

−1(σ−σ0) (2.9)

To find the moments of the posterior distribution, one must maximize p(σ′|E,model), which

is equivalent to minimizing Eq. (2.9) [17, 18]. An extensive derivation using Lagrangian multi-

pliers can be found in Appendix A.1 for GLLS, but can equally be used to derive the MOCABA

equations. The general form of the equations for the posteriors is given below. The posterior

mean of the calculated values, C′, is shown to be Eq. (2.10) and its covariance matrix, M′
C, to

be Eq. (2.11). σ′ and M′
σ are derived as Eq. (2.12) and Eq. (2.13), respectively. Here, Mσ,C is the

covariance matrix of σ and C whose dimensions are Nσ×NE .

C′ = C(σ0)+MC
[
MC +MEM

]−1[E−C(σ0)
]

(2.10)

M′
C = MC −MC

[
MC +MEM

]−1MC (2.11)

σ′ =σ0 +Mσ,C
[
MC +MEM

]−1[E−C(σ0)
]

(2.12)

M′
σ = Mσ−Mσ,C

[
MC +MEM

]−1Mσ,C
T (2.13)
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A few interesting details can be found in Eqs. (2.10)–(2.13). First, the posterior covariance ma-

trices M′
C and M′

σ have no dependence on the mean values ofσ, E, or C. The uncertainties are,

therefore, reduced solely through the incorporation of ME in the case of M′
C and through the

assimilation of ME and Mσ,C in the case of M′
σ. Secondly, the magnitude of the σ′ adjustment

and the reduction in uncertainty in M′
σ is proportional to the magnitude of the terms in Mσ,C.

In other words, for there to be a significant adjustment ofσ, there must be a significant degree

of correlation between C andσ, i.e. C must be sensitive toσ. Finally, the size of the adjustment

of C and σ using Eqs. (2.10) and (2.12) is proportional to the difference between C and E. If

C−E = 0, the data agree perfectly and there is no room to adjust.

Importantly, through the assimilation of E into σ′, these two data sets become correlated. The

covariances between E and σ′ are given by the matrix M′
σ,E in Eq. (2.14). These correlations

are often ignored in the DA literature, but they can be important in some applications. For

instance, if the adjustments are done in an iterative manner [41], after the first iteration σ′ is

correlated to E and this can be taken into account in the equations.4

M′
σ,E =−Mσ,C

[
MC +MEM

]−1MEM (2.14)

In theory, σ and E can also be correlated in the prior, before DA. This may arise if the inte-

gral benchmarks were used in an ad hoc fashion to tune the performance of an evaluated

nuclear data library. Correlations may arise inversely, where the nuclear data were used in

the experimental process, maybe as a normalization constant. In this case, these correlations

can also be taken into account in the adjustment equations, as outlined in Appendix A.1. In

practice, these correlations either do not exist or are unknown and extremely hard to account

for. Because of this, they are most often ignored and the DA equations are usually used as

presented in this section.

MC and Mσ,C are the only parameters in Eqs. (2.10)–(2.13) that need to be calculated, all others

are inputs. The primary difference between GLLS and MOCABA is the assumptions and

techniques that each make to approximate MC and Mσ,C. GLLS, summarized in Section 2.2.1,

assumes first-order perturbation theory and uses sensitivity coefficients to estimate MC and

Mσ,C. MOCABA uses the Monte Carlo method, as described in Section 2.2.2.

2.2.1 Generalized Linear Least Squares

GLLS is widely used by many institutions (e.g. PSI, JAEA, ORNL, INL [9]) for DA. In some

applications, it is called BLUE or Best Linear Unbiased Estimator. While GLLS has been

derived here with Bayes’ theory, it is also possible to derive it from a linear least-squares

regression analysis. In GLLS, a generalized linear model approximates C(σ) with Eq. (2.15),

which is a first-order Taylor series expansion of C(σ). The sensitivity coefficients, S, are the first

4These correlations are not included in the study summarized in Ref. [41].
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derivatives of C(σ), ∂C
∂σ , evaluated at σ0 or the nominal nuclear data means. The term H is the

Hessian matrix of second-order derivatives, or ∂2C
∂σ2 . S is a matrix of dimensions NE ×Nσ. The

sensitivity coefficient for integral parameter C (i ) to nuclear datum σ( j ) is given in Eq. (2.16).

C(σ) = C(σ0)+ ∂C

∂σ

∣∣∣∣
σ=σ0

(σ−σ0)+ 1

2
(σ−σ0)T H(σ−σ0)+·· ·

≈ C(σ0)+S(σ−σ0)

(2.15)

S(i , j ) = ∂C (i )

∂σ( j )

∣∣∣∣∣
σ( j )=σ( j )

0

(2.16)

The posterior moments are derived using the prior and likelihood of Eqs. (2.6) and (2.7) and

the linear approximation of Eq. (2.15) [17, 18]. The posterior nuclear data’s mean values, σ′,
and their covariance matrix M′

σ are given in Eqs. (2.17) and (2.18), respectively.

σ′ =σ0 +MσST [
SMσST +MEM

]−1[E−C(σ0)
]

(2.17)

M′
σ = Mσ−MσST [

SMσST +MEM
]−1SMσ (2.18)

The posterior calculated values, C′, can be simplified from Eq. (2.10) to Eq. (2.19) with the use

of S. The posterior covariance matrix of C, M′
C, can be simplified from Eq. (2.11) to Eq. (2.20).

C′(σ′) = C(σ0)+S(σ′−σ0) (2.19)

M′
C = SM′

σST (2.20)

The risk of using the linear approximation can be illustrated with Fig. 2.1. Where the derivative

is evaluated around σ0, the linearity assumption is a good approximation of C (σ). Farther

from σ0 the assumption is less accurate and will result in larger and larger errors. When

using GLLS in neutronics, the linear approximation is accurate for the traditional integral

parameters like keff, reaction rate ratios, or reactivity coefficients. It can become inaccurate

when there is a large uncertainty associated with σ0 [42]. When this uncertainty is large, a

large adjustment can occur far from σ0, and therefore into the non-linear regions of C (σ).

Another problem can be that C (σ) is just strongly non-linear and no first-order approximation

could accurately capture the important higher-order terms.
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σ

C (σ)

S = ∂C
∂σ

∣∣
σ=σ0C (σ0)

σ0

Figure 2.1 – Linear approximation of the relationship between a calculated integral parameter
C and a nuclear datum σ used in GLLS.

2.2.2 Monte Carlo Bayesian Analysis (MOCABA)

MOCABA is an alternative to GLLS that avoids a linearity assumption, but at the same time

keeps the Gaussian assumption. GLLS employs this assumption to approximate the matrices

Mσ,C and MC. These approximations make the posterior distributions analytically calculable

(i.e. with sensitivity coefficients) using the terms MσST and SMσST , which are Mσ,C and MC,

respectively. Refs. [33, 43] show that the GLLS equations are first-order perturbation theory

estimates of the MOCABA equations. Appendix A.2 provides a derivation of the MOCABA

equations. MOCABA is similar to the UMC-G method used in nuclear data evaluation [44],

but does not used a Markov Chain Monte Carlo algorithm.

To calculate MC and Mσ,C, MOCABA uses the Monte Carlo method to randomly sample

nuclear data with the uncertainty information found in the nuclear-data covariance files. For

every randomly sampled nuclear data file, σi , a neutron transport simulation is done with

it to create a calculated value for the integral parameters C(σi ), or Ci . When N samples of

σ are performed, the integral parameters are simulated N times to create a population of

calculated values: C1, C2, . . . , CN . This population set is then used to estimate MC and Mσ,C

with Eqs. (2.21) and (2.22), where C̄ and σ̄ are the population means of C and σ. Finally, M̂C

and M̂σ,C are used in Eqs. (2.10)–(2.13) to calculate the posteriors.

M̂C = 1

N −1

N∑
i=1

(
Ci − C̄

)(
Ci − C̄

)T (2.21)

M̂σ,C = 1

N −1

N∑
i=1

(
σi − σ̄

)(
Ci − C̄

)T (2.22)

MOCABA, as described, assumes that C, E, andσ obey normal distributions. Ref. [33] details

20



2.2. Data Assimilation in Neutronics

how it can be modified to account for non-normal PDFs. It would require mapping C onto an

approximately normally distributed vector by means of an invertible variable transformation.

Its PDF could then be chosen from a more general class of PDFs to better model the behavior.

The MOCABA equations are then applied to the transformed C. The true C′ is then obtained

by applying the inverse transformation to the transformed C′.

A clear drawback of MOCABA is that N is limited to finite sizes in Eqs. (2.21) and (2.22). Because

of this, the accuracy of the calculated posteriors will be limited by the statistical accuracy of

M̂C and M̂σ,C. When applying MOCABA, the posteriors need to be carefully monitored for

statistical convergence.

2.2.3 Bayesian Monte Carlo (BMC)

BMC stochastically searches for the MAP moments to calculate C′, M′
C, σ′, and M′

σ.5 It makes

no assumptions about the prior distribution [35, 45]; the nuclear data can be sampled from

any PDF. This feature is the primary advantage of BMC in comparison to MOCABA and GLLS.

When using BMC, a random sample σi is first drawn from p(σ). It is then used in the neutron

transport code to get a random sample of the calculated integral data, Ci . Each Ci is compared

to E to see how σi changed the agreement between C and E. A cost function metrizes Ci and

E agreement and is defined as Eq. (2.23). Here, χ2
i is the squared distance between Ci and E,

normalized by the covariance matrix MEM.

χ2
i =

(
E−Ci

)T MEM
−1(E−Ci

)
(2.23)

Each χ2
i is used to calculate a weight, wi , for that nuclear data sample as seen in Eq. (2.24).

Smaller χ2
i values indicate better agreement between E and Ci and, consequently, create larger

weights. Nuclear data samples with higher wi contribute more to adjustments, whereas those

with smaller wi contribute less. In cases where C, E, and σ are normally distributed, this

definition of wi is equivalent to the likelihood function of Eq. (2.7).

wi = exp

(
− χ2

i

2

)
(2.24)

The weights are then used to calculate weighted averages that are the posterior means and

covariances for C and σ: Eqs. (2.25) and (2.26) for C′ and M′
C and Eqs. (2.27) and (2.28) for

σ′ and M′
σ. It is in this way that BMC searches for the MAP distribution: it explores the prior to

5BMC has been used for differential data in nuclear data evaluations as well and is often known as UMC-B
(Unified Monte Carlo Breakfast) [44]
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find which combination of σi maximize the agreement between C and E.

C′ =
∑N

i=1 wi Ci∑N
i=1 wi

(2.25)

M′
C =

∑N
i=1 wi

(
Ci − C̄

)(
Ci − C̄

)T∑N
i=1 wi

(2.26)

σ′ =
∑N

i=1 wiσi∑N
i=1 wi

(2.27)

M′
σ =

∑N
i=1 wi (σi − σ̄)(σi − σ̄)T∑N

i=1 wi
(2.28)

Under certain circumstances, weight degeneracy can occur when applying BMC. The majority

of the weights are zero or near zero-valued and only a few samples contribute to the posterior.

This can be particularly prevalent when the χ2 values are large, which may happen for large

disagreement between C and E, large covariances in MC or ME, or when there are many

integral parameters (degrees of freedom). To counter this behavior, another approach called

Backward-Forward Monte Carlo (BFMC) [46] has been proposed in the literature. BFMC

calculates the weights with Eq. (2.29), where the χ2 of a random sample is normalized with

the minimum χ2 of the sample set. BFMC was shown in one case study to improve the weight

distribution and the convergence rate of the posteriors [45].

wi = exp

(
− χ2

i

χ2
min

)
(2.29)

The weight proposed in Ref. [46] actually has the weight defined as wi = exp
(− (χ2

i /χ2
min

)2).

However the most common weight correction that we have encountered in the literature is the

one that is presented here, and it is for that reason that it is presented and is the subject of the

thesis. This weight correction was labeled BFMC in the literature, despite the contradiction

with the definition and proposed name in Ref. [46]. For consistency with the international

community, the definition of Eq. (2.29) was retained along with name BFMC.

2.2.4 Summary

There are four principal DA methods in neutronics: GLLS, MOCABA, BMC, and BFMC. GLLS

uses first-order perturbation theory to compute the posterior moments. This requires as-
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suming that all random variables are normally distributed. It also requires evaluating the

sensitivity coefficients of the calculated integral parameters to the nuclear data. MOCABA,

BMC, and BFMC all use stochastic sampling of the nuclear data to estimate the MAP modes.

MOCABA also assumes that all random variables have normal distributions. BMC and BFMC

do not assume anything about the distributions of the random variables. Therefore, MOCABA

is not limited to linear applications like GLLS but may give biased MAP modes for non-normal

applications. BMC and BFMC are more flexible in this sense. They could be used with nuclear

data whose PDFs are non-normal, like those that can be found in TENDL [47] or that exist for

fission yields created by GEF [38].

GLLS
Linear

Gaussian

MOCABA

Non-Linear
Gaussian

BMC/BFMC

Non-Linear
Non-Gaussian

Figure 2.2 – Areas of applicability for BMC/BFMC, MOCABA, and GLLS.

It should be noted that the methods presented here are often known by different names in the

DA literature. DA is often applied in a time-dependent or sequential manner, like the tracking

of a hurricane. The neutronics problems focused on in this thesis have DA applied to them in

a time-independent, or stationary manner.6 In time-dependent applications, the DA methods

are often referred to as Kalman Filters. GLLS would be called an extended Kalman Filter [48],

MOCABA an Ensemble Kalman Filter [2], and BMC a Particle Filter [49]. While the history

of DA in the field of neutronics is not totally clear, it is certainly possible that the methods

discussed herein are adapted from or inspired by the Kalman Filter literature.

2.3 Consistency Checks

When DA is applied to adjust nuclear data, it is important to consider the consistency between

the prior (i.e. σ and the neutronics model) and E. This is because, it is assumed that C and E

6In Chp. 5, DA is done for burnup simulations that have time dependence. From the point of view of DA, there
is no time-dependence because there is only one experimental value being used over the whole irradiation history,
i.e. the measured fission product concentration at end of life. It would be time-dependent if the concentrations
were available at every stage of the burnup simulation.
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would be equal if not for their uncertainties. In other words, σ is tacitly assumed to be correct,

but just not sufficiently accurate for C(σ) to equal E. When we assimilate E and ME into σ and

Mσ, the adjusted nuclear data are expected to remain consistent with their prior nominal

values and within the range of their prior uncertainties.

When C and E deviate significantly, the integral parameters are considered to be inconsistent.

If we indiscriminately include all E, even those that are inconsistent, the posterior nuclear

data may be overfit, i.e. adjusted to an unreasonable or unphysical extent. Unphysical here

means that the adjustments do not respect the underlying nuclear physics and differential

experimental data that were used in the nuclear data evaluation process. Spurious adjustments

may cause the assumption of linearity to be violated in the case of GLLS or maybe even create

negative-valued nuclear data. Moreover, with inconsistent integral parameters DA may even

fail to improve the posterior calculated integral parameters!

The integral data can be inconsistent simply if E is poorly known in terms of its means or in

terms of the variances and covariances in ME. It is very common for covariance data to be

unavailable in databases like ICSBEP [50] or IRPhE [51]. With very old and poorly characterized

experiments, it also possible for variances to be over/under-estimated. DA can also be poor

if there are significant biases in the neutronics model of the integral parameter. This may

be due to approximations in the physics (multigroup energy structure, 2D representation,

reflective boundary conditions) or limited/inaccurate modeling, which may occur when the

system’s geometry, composition, or state conditions over time (temperature, density, burnup)

are poorly known. There may also be issues with Mσ, usually due to too low uncertainties or

missing covariances [24].

Finally, there is an important, but often over-looked danger in DA: the double counting of

integral benchmarks [52]. Certain keystone benchmarks like JEZEBEL and FLATTOP have

already been used to a certain extent in the construction of nuclear data libraries. Because of

this, these experiments are correlated to the nuclear data libraries. This is the “first-counting”

of the integral data. The “second-counting” is using the integral benchmarks again in DA. If

the correlation between the integral benchmarks and the nuclear data library (Mσ,E) is not

taken account, the possibility of making dangerous and unphysical adjustments increases.

In this case, the χ2 of the integral data set is likely to be too low, indicating that a degree

of fitting has already occurred. This type of integral parameter is considered to be “over-

consistent;” the agreement between C and E is over-consistent with what would be expected

by statistical theory. In contrast, in the more classical case where there are large biases and

low uncertainties, this integral datum is labeled as “under-consistent.”

Foundational literature in the field of DA has treated model inaccuracies in different ways.

For instance, the inaccuracy introduced by a deterministic code was previously quantified

as an additional uncertainty that was determined through a parametric analysis of model

parameters (energy group structure, angular discretization) and the use of expert judgment.

Criteria were also defined to remove, or filter out, integral data that were inconsistent. For

24



2.3. Consistency Checks

instance, in Subgroup 33 of the NEA’s WPEC, the Adjustment Margin (AM) criterion was

proposed. In the TSURFER module of SCALE [53] and in other DA literature [40], χ2-filtering

metrics are proposed. The drawback of these approaches is primarily the loss of experimental

data. An integral datum is binarily removed from the adjustment if a threshold is reached. In

theory, all the experimental data are valuable for DA (and a significant amount of resources

has been invested in them) but they just need to be weighted in the appropriate way. By

removing integral data, we lose valuable resources.

Another approach is to treat inconsistent data in a more data-driven and statistically founded

way. Here, integral data are weighted in a continuous manner by increasing or decreasing an

extra uncertainty term. If an integral datum is under-inconsistent, the extra uncertainty is

increased thereby signifying a decreased confidence in that datum. With larger uncertainty,

the datum influences the adjustment to a lesser extent and thereby decreases any potential

non-physically-based adjustments it may introduce to the nuclear data. Contrarily, for over-

consistent integral data, a negative uncertainty term is added. One such way to estimate this

extra uncertainty in neutronics is Marginal Likelihood Optimization (MLO) [54, 55, 56].

2.3.1 χ2 Parameter

A measure that is often used in the literature to quantify the consistency of an integral data

set is the χ2 parameter. It can be calculated before and after the adjustment to evaluate the

improvement between C and E, i.e. the improvement of σ. On the most basic level, it is just

the squared Mahanalobis distance, or the squared distance between two vectors, (E−C),

normalized by the covariance matrices of the vectors, MC +MEM, as given by Eq. (2.30).

χ2 = (
E−C

)T (MC +MEM)−1(E−C
)

(2.30)

In probability and statistics, χ2 is defined to have its own distribution. The χ2 distribution

with N degrees of freedom is given in Eq. (2.31), where Γ(N /2) denotes the gamma function.

The number of degrees of freedom is equal to the number of integral parameters, or NE . As

Pearon’s χ2 test, it measures the deviation of a true distribution from a hypothetical one, the

likelihood that an observed difference between data sets arose by chance.

p(x <χ2 < x +d x) = 1

2N /2Γ(N /2)
xN /2−1exp(−x/2)d x, x > 0, (n = 1,2, · · · ) (2.31)

The following asymptotic properties of the χ2 distribution should be noted: χ2 is normal

with a mean NE and a variance 2NE . If χ2/NE ≈ 1, the experimental data and prior are very

likely to be free of errors and to be consistent with their assumptions. When χ2/NE >> 1 or

χ2/NE << 1, there is very likely an inconsistency. To reject a hypothesis, χ2 is calculated for a

significance level α and for the number of degrees of freedom NE . If χ2 exceeds the critical
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fractile value7 χ2
α(NE ), then the hypothesis is rejected. A general criterion for evaluating an

integral parameter data set is Eq. (2.32), with the value ofα being subject to personal judgment.

α< pNE (χ2) < 1−α (2.32)

In Section 2.2 the possibility that E andσ are correlated was discussed. This would then create

a correlation between C and E. The most complete χ2 metric would take this into account. To

illustrate this, take a discrepancy vector d as shown in Eq. (2.33).

d = C(σ)−E (2.33)

The covariance matrix of d would then be defined as Eq. (2.34).8

Md = 〈
∆(C−E)−∆(C−E)T 〉

= 〈
∆C∆CT 〉+〈

∆E∆ET 〉−〈
∆C∆ET 〉−〈

∆E∆CT 〉
= MC +ME −MC,E −ME,C

(2.34)

The χ2 could then be given by Eq. (2.35). The difficulty here is to calculate the matrix MC,E. As

C is a function of σ, a relationship exists between Mσ,E and MC,E. It is shown through linear

perturbation theory in Appendix A.1 that this relationship is MC,E = SMσ,E. Again, the difficulty

here is knowing Mσ,E in the prior. After the assimilation, posterior covariances exist in the

form of M′
σ,E which then manifest in the form of M′

C,E. These could be taken into account in

the calculation of χ2, although in practice they are not.

χ2 = dT Md
−1d (2.35)

2.3.2 Adjustment Margin Filtering

The adjustment margin (AM) quantifies if the uncertainties of C and E of a single integral

datum can explain its bias. AM can also be considered as a quantification of how much room

or margin an integral datum has to accommodate an adjustment to decrease its bias. If AM

values are negative, the total uncertainty of C and E in the one-standard-deviation range is

not sufficient to account for the bias. For this case, an over-fitting of the nuclear data to the

integral parameters would likely occur. In contrast, positive AM values indicate inclusion of

7These can usually be found in published tables as χ2
1−α(NE )

8The symbol 〈·〉 denotes the expected value of some random variable. The mean of random variable x would be
〈x〉 = ∫

∞ p(x)xd x, where p(x) is the PDF of x. The symbol ∆ represents possible deviations from the mean value,
or x −〈x〉. Therefore, 〈∆x∆x〉 = ∫

∞(x −〈x〉)(x −〈x〉)p(x)d x.
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the bias in the uncertainty and the viability of a benchmark for DA.

AM is calculated with Eq. (2.36), where ∆C is relative the standard deviation of a calculated

integral parameter C caused by nuclear data and ∆E M is the quadratic combination of ex-

perimental and modeling/methodological uncertainty (Eqs. (2.37) and (2.38)) providing a

combined relative standard deviation.

AM =∆C +∆E M −
∣∣∣E −C

C

∣∣∣ (2.36)

∆N D =√
[MC](i ,i ) (2.37)

∆E M =√
[ME](i ,i ) + [MM](i ,i ) (2.38)

2.3.3 ∆χ2-filtering

The AM metric takes only the variances in MC, ME, and MM into account. This omits valuable

covariance information from the total χ2 that can be used to determine the consistency of

an integral data set. A recommended method from Ref. [53], called ∆χ2-filtering, takes into

account all covariances between integral data. It calculates the change in χ2 when a particular

response is omitted from its evaluation. That is, calculating χ2 with the i th response omitted

from the C and E vectors and from the corresponding rows and columns in MC and ME. The

equations for calculating χ2 and ∆χ2 are given in Eqs. (2.30) and (2.39).

∆χ2 =χ2 −χ2
6=i (2.39)

The criterion for filtering out a parameter is then specified with a maximum allowable ∆χ2.

The maximum ∆χ2 allowed can be thought of as the degree to which biases in C and E are

accepted into the adjustment results. In this study, we define the threshold, ε, to be equal to a

number of standard deviation of the χ2 distribution per degree of freedom, as calculated with

Eq. (2.40) and discussed in Refs. [40, 54]. Here, α is the number of standard deviations and NE

is the number of integral parameters or degrees of freedom. If the∆χ2 of an integral parameter

calculated with Eq. (2.39) exceeds ε, this parameter is removed from actively influencing the

adjustment.

ε= 1+ α
p

2NE

NE
(2.40)
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2.3.4 Marginal Likelihood Optimization

AM or ∆χ2-filtering simply remove integral parameters that are inconsistent. The primary

disadvantage of filtering is that information is lost when a benchmark is removed from the

DA. If significant time was spent in analyzing and modeling the benchmark only for it to be

rejected, this would be a waste. Additionally, it is rather coarse and binary where experiments

are categorically classified as good or bad. If one integral parameter has an AM of -0.001 and

another of -4, both would be removed from the adjustment despite one clearly being much

more inconsistent than the other. It is preferable to address the consistency of the calculation

and experiment in a continuous and statistically rigorous way. In this section, we summarize

the Marginal Likelihood Optimization (MLO) approach to address inconsistent integral data

[54, 55, 56]. MLO is a Bayesian procedure that generates a factor to re-scale the uncertainty of

an integral parameter so that it is then consistent.

The principle behind MLO is that there are numerous causes of inconsistency between C and

E. It may be caused by an underestimation of nuclear data uncertainties, unaccounted for

experimental uncertainty or covariance, or errors in neutronics modeling. These unknown

sources of bias are accounted for with extra uncertainty that makes C and E consistent. By

accounting for the uncertainty, we decrease the χ2, i.e. we improve the consistency. The extra

uncertainty is then put into a covariance matrix, Mextra, that is used in DA. If the inconsistency

is primarily caused by errors in neutronics modeling, MLO can be considered to be a data-

driven way to estimate MM without extensively using expert judgment.

To estimate the extra uncertainty requires redefining χ2 as Eq. (2.41) and the likelihood func-

tion as Eq. (2.42). To estimate the extra variance terms requires maximizing Eq. (2.42), or

minimizing its negative logarithm, with numerical methods.

χ2 = (
E−C

)T (
ME +MM +MC +Mextra

)−1(E−C
)

(2.41)

L (E|σ,model) = e−χ
2/2√

(2π)N det
(
ME +MM +MC +Mextra

) (2.42)

argmax
Mextra

[
1

2

(
N ∗ log(2π)+ log

(
det

(
ME +MM +MC +Mextra

))+χ2)] (2.43)

Ref. [54] alternatively defines L (E|σ,model) as Eq. (2.44) so it can be used with the random

samples of σ and C in TMC/BMC. Instead of the C distribution being accounted for in MC,

it appears in the summation term
∑

e−χ
2
i /2, where χ2

i is calculated in Eq. (2.23). The negative

logarithm of this likelihood is also then minimized to estimate Mextra. Ref. [54] also provides

ways to estimate a common covariance term in Mextra, which was not investigated as part of
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this thesis.

L (E|σ,model) =
∑

e−χ
2
i /2√

(2π)N det
(
ME +MM +Mextra

) (2.44)

2.4 Nuclear Data

Nuclear data have been much discussed in this document and deserve a deeper examination.

Nuclear data are numerical representations of nuclear phenomena. They include interactions

between neutrons and nuclides, the decay constants for nuclides, the energy spectra of

neutrons emitted in fission, and many more phenomena. The nuclear data concerning

neutrons are very important in neutronics, and are the primary focus of this thesis.

One type of nuclear data is a cross section. A cross section represents the probability that a

particle, e.g. a neutron, interacts with a nuclide. When a neutron interacts with a nucleus,

usually two things happen. First, the neutron and nucleus coalesce to form a compound

nucleus that then decays. The decay may consist of emitting an elastic or inelastic neutron,

a γ-ray, or two neutrons. The compound nucleus may also fission. Cross sections can be

thought of as the probability of the compound nucleus formation and of a certain decay

pathway being followed. The cross section only quantifies the probability of a certain kind of

interaction. It does not describe the PDF of the recoil particle’s angle or energy. These angular

and energy distributions are a different kind of nuclear data.

Neutron cross sections are dependent on the energy of incident neutrons and the properties

of the interacting nucleus. In fact, by the nature of the compound nucleus formation, the

cross sections have maxima at certain incident neutron energies. These maxima are called

resonances. They arise because nuclei have excited states that correspond to different con-

figurations of the nucleons in the nucleus. The compound nucleus is more likely to form

when it is produced in one of these excited states. If the incident neutron and target nucleus

have the right combination of properties and energy, the probability of interaction spikes, or

there is a resonance. The resonances are described by another kind of nuclear data, resonance

parameters. They are used to describe the resonance behavior instead of storing the cross

sections in a very fine energy grid at the resonances.

Along with cross sections, angular and energy distributions, and resonance parameters there

are still further nuclear data of interest in neutronics. Some of these are listed below,

• Fission yields: the probability of obtaining different fission products after the fission of

a particular nuclide at a given incoming neutron energy.

• Fission multiplicities: the average number of neutrons released per fission, which can

be prompt neutrons (emitted at the moment of fission), delayed neutrons (emitted in
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the decay chain of fission products), or prompt and delayed neutrons combined.

• Prompt fission neutron spectra: a PDF that describes the energy of prompt neutrons

emitted after fission.

• Half-lives and branching ratios: descriptions of the decay pathways of radionuclides.

Fission yields (FY) are important nuclear data for this thesis and are the focus of Chp. 5. They

are key to calculating the nuclide inventory of spent fuel. Knowing this inventory is the basis

for many types of nuclear engineering analyses, such as reactor and fuel cycle safety, the

storage of spent nuclear fuel and its transportation, radiation shielding, the geological disposal

of nuclear waste, nuclear safeguards, non-proliferation, nuclear forensic analysis, and the

measurement of reactor anti-neutrinos.

FYs define the distribution of fission products following fission. They depend on which

nuclide undergoes fission and on the energy of the neutron causing fission. The FYs can be

described by isotope, atomic number, or mass number. Describing the FYs by mass number

is particularly useful because it aids in tracking the decay chain of fission products, which

usually decay through the emission of a β− particle. The isotope and atomic number yields

change while β− decay occurs, while the mass number yields do not.

An independent yield describes the fraction of a nuclide produced directly from fission after

emission of prompt neutrons but prior to any radioactive decay (including delayed neutron

emission). Importantly, it is defined as before decay because fission fragments are born

neutron-rich and may quickly decay to other nuclides. Another type of FY data is the cumula-

tive yield. It extends beyond the independent FY and includes decay of the fission products

at a time scale of T1/2 > 1ms, such as by β−, α, or delayed-neutron decay pathways. In other

words, it describes the amount of a fission product produced over all time after fission. A chain

yield is also defined, which is equal to the sum of all stable/long–lived cumulative yields for a

given mass chain, i.e. for a given mass number.

A classic way to measure a cross section is by using time-of-flight experiments. A beam of

neutrons is focused on a target sample that contains a nuclide of interest. From the length

between the neutron source and the target (L) and the time that it takes the neutron to travel

from source to target (t ), the neutron energy (E ) can be calculated as in Eq. (2.45), where m is

the neutron mass and v is the neutron velocity.

E = mv2

2
= mL2

2t 2 (2.45)

The neutron flux, φ, after passing through the target of thickness d , is experimentally calcu-

lated and compared to Eq. (2.46). Here, N is the target’s number density, and σt is the total

cross section of the nuclides in the target. The σt includes all possible reactions between the

30



2.4. Nuclear Data

target’s nuclides and the incident neutrons (e.g. elastic scattering, fission, capture, etc).

φ=φ0ed Nσt (2.46)

The σt can then be extracted with the uncollided and collided neutron flux, as in Eq. (2.47).

σtot =− ln(φ/φ0)

d N
(2.47)

The EXFOR (EXchange FORmat) database contains a large collection of the experimental

data that were obtained in experiments like time-of-flight [57].9 These data are considered

as differential experimental data. They are measured in clean experiments for a particular

nuclide and at a particular energy. For certain cross sections, the energy ranges are so dense

with experimental information that a direct fit and linear interpolation between data points is

possible. These cross sections can be found in Neutron Cross Section Standards [58].

Other data are not as well known, as there are invariably missing regions of experimental

evidence. It is then necessary to fill in the gaps between experimental data points in order

to have cross sections as a continuous function of incident neutron energy. Additionally,

consistency rules may need to be enforced, such as cross sections summing up to another

cross section, or PDFs summing to unity. To fill in the gaps and force consistency, models

and extrapolation are used. The combination of modeling and experiment evidence create

evaluated nuclear data. To create evaluated nuclear data, some degree of fitting between the

nuclear models and the experimental data is required. Codes like SAMMY [59] and REFIT [60]

use least squares to fit resonance parameters. These statistical analyses are also used when

multiple experimental measurements are available for the same quantity of interest.

All the nuclear data of interest for technical applications are evaluated, compiled, and stored

in evaluated nuclear data libraries. They differ in which differential experimental data they

use, which nuclear models are employed, and how the fitting analyses are done. Some of

the libraries include ENDF/B, JEFF, JENDL, CENDL, BROND, and TENDL [47]. Most of the

evaluated nuclear data are stored in the ENDF format (Evaluated Nuclear Data Format) [61].

The data are enumerated with strict conventions to standardize the process and make them

easily machine readable. The data are available for neutron energies of 1×10−5 eV to 20

MeV, and sometimes up to 200 MeV. Processing codes such as NJOY [62] and PREPRO [63]

exist to create ENDF files and to process the data. They can perform Doppler broadening of

resonances or collapse the cross sections into energy bins. NJOY can also create a file format

called ACE (A Compact ENDF) that is used in continuous-energy Monte Carlo transport codes.

Because the nuclear data are often, in part, derived from experimental data, they have un-

9For neutron cross sections, there are 20,000 data sets which contain more then 3.6 million data points [55].
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certainties. The experiments are subject to stochastic processes, like counting statistics or

neutron flux instabilities, that mean that the differential data have uncertainties. Additionally,

the differential data may have systematic uncertainties that create correlations. For example, if

the same target material is used to measure several different energies, any error caused by the

target material would be systematic to all the different energy measurements. Furthermore,

often reference cross sections are used in cross section experiments; this can introduce an-

other form of correlation. The covariances are also taken into account when the experimental

data are fitted with the theoretical models.

The evaluated nuclear data provide estimates for the uncertainties of the nuclear data. These

take the form of covariance matrices. It is common practice to use these covariance matrices

to perform uncertainty quantification of parameters in neutronics, i.e. to propagate the uncer-

tainty that arises from the nuclear data. This can be done through linear error propagation or

with stochastic sampling [64].

2.5 Chapter’s Key Points

• DA is based on Bayes’ theory

• The four principal DA methods in neutronics are GLLS, MOCABA, BMC, and BFMC

• GLLS assumes that all random variables are normally distributed and that the calculated

integral parameters are linear functions of nuclear data

• MOCABA, BMC, and BFMC all use stochastic sampling and do not make a linearity

assumption

• MOCABA assumes that all random variables are normally distributed

• BMC and BFMC make no assumptions about any parameter’s distribution

• It is important to account for the consistency between the calculated and experimental

integral data

• DA with inconsistent integral data sets may produce spurious adjustments

• There are two approaches to account for inconsistency: remove inconsistent integral

data or give them extra uncertainty

• The two principal methods proposed to remove inconsistent integral data are Adjust-

ment Margin and ∆χ2-filtering

• Marginal Likelihood Optimization can be used to add extra uncertainties, with the

advantage being that no integral data are lost

• Nuclear data are evaluated from physics models and experiments. This is why they have

inherent biases and uncertainties
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3 Comparison of Data Assimilation
Methods

If one has really technically penetrated a

subject, things that previously seemed in

complete contrast might be purely

mathematical transformations of each

other.

– John von Neumann

In this chapter, GLLS, MOCABA, BMC, and BFMC are compared and analyzed. This thesis is

the first time that all the DA methods are compared for neutronics in one study. A comparison

tests and characterizes the theoretical bases of the methods and deepens the understanding of

their limitations and areas of applicability. Agreement between their posteriors given identical

starting conditions (e.g. input nuclear data, neutron transport code, and benchmark model)

would be scientifically beneficial. Firstly, good agreement would support the pervasive use

of GLLS for traditional DA problems. Secondly, it would be auspicious for stochastic DA

applications, especially non-linear or non-normal problems, by increasing the confidence in

their results.

In Section 3.1, the DA methods are applied to simple toy problems. The toy models include

normal and log-normal input variables that test the effects that non-normality may have on

the DA. Additionally, varying degrees of inconsistency are studied. In Section 3.2, the DA

methods are applied to a real application case: the JEZEBEL-Pu239 critical experiment. In

this section, the actual adjustments are not of interest. They are not intended to validate

the nuclear data or to serve as recommendations to nuclear data evaluators. Rather, the

adjustments are examined to see how well the results from the DA methods agree when

applied to the same benchmark system, neutron transport code, and input nuclear data.

33



Chapter 3. Comparison of Data Assimilation Methods

3.1 Toy Problems

The following section presents an exercise to deepen our understanding of the DA methods.

It uses a linear model and its independent variables are assigned normal and log-normal

distributions. A linear model with Gaussian inputs tests the DA methods when all of the

underlying assumptions are correct. In this case, GLLS gives the true moments of the posterior.

It is then compared to MOCABA, BMC, and BFMC to determine if they are unbiased estimates

of the MAP distribution.1 A non-normal model tests how GLLS and MOCABA react when their

normality assumption is invalid. Importantly, one should note that these examples are highly

simplified and serve as pedagogical tools. They do not definitively describe and qualify the

methods for real applications and for all scenarios.

The chosen linear model is Eq. (3.1). The variables σ1 and σ2 are implemented as multivariate

normal and log-normal random variables. The coefficients a and b can be thought of as

the physical properties of the systems, like the geometry or composition of a reactor. Two

dependent variables are used, which are the integral parameters in neutronics. Eq. (3.1) can

then be written as a linear system of equations as Eq. (3.2), where the coefficients a and b are

recognized to be the slopes of C with respect to σ1 and σ2, or the sensitivity coefficients S.

C (σ1,σ2) = aσ1 +bσ2 (3.1)

[
C1

C2

]
=

[
a1 b1

a2 b2

]
×

[
σ1

σ2

]
C = Sσ

(3.2)

3.1.1 Linear and Normal Example

In this section, we present the posteriors from the four DA methods for an ideal case: a linear

model with normal distributions. Here, the GLLS posteriors are the reference solution to

which the other DA methods are compared. First, the posteriors are shown for a nominal

case where the input parameters were chosen so that the integral parameters were consistent,

i.e. the prior χ2 was close 1.0 and within the standard deviation of the χ2 distribution for two

degrees of freedom (DoF). This nominal case represents a DA problem without, or minor,

model inaccuracy. Then, the toy problem is re-done with larger and larger χ2 values to induce

1Here, the idea of being a “biased” and “unbiased” estimate can be clarified with respect to the definition of
bias in Eq. (1.1). A bias, in general, refers to the difference between the true value of a parameter and the expected
value of its estimation. In Eq. (1.1), the true value is E and the expected value of the estimate is C. For DA, there is
the true estimate of the MAP moments and the estimated MAP moments from the DA methods. If a DA method is
unbiased, it will give the true estimate; if it is biased it will not. For a linear and normal toy problem, GLLS gives,
for example, the true value of the posterior expected value of a parameter. This true value can then be compared
to the estimated expected value from MOCABA, BMC, and BFMC to see if those methods are biased estimates.
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larger inconsistencies and test how the methods perform.

Inputs

This example uses Eq. (3.1). The input parameters for a1/a2 and b1/b2, σ1 and σ2, the exper-

imental integral parameters E1 and E2, and the covariance matrices for E and σ or ME and

Mσ, are given below. They were arbitrarily chosen to have a reasonable prior χ2 for the toy

problem. Here, the prior χ2 is 1.86 per DoF, and at two DoFs the standard deviation of the

χ2-distribution is 2.0 (calculated as
p

2∗2).

a1 = 2.0000, a2 = 0.5000, b1 = 0.2500, b2 = 1.0000

σ=
[
σ1

σ2

]
=

[
5

3

]
, Mσ =

[
∆2
σ1

∆σ1,σ2

∆σ1,σ2 ∆2
σ2

]
=

[
0.5000 0.0200

0.0200 0.1000

]

E =
[

E1

E2

]
=

[
12.90

4.950

]
, ME =

[
∆2

E1
∆E1,E2

∆E1,E2 ∆2
E2

]
=

[
0.6450 0.3995

0.3995 0.9900

]

Applying GLLS requires finding the derivatives of C with respect to σ, as shown below,

S =
δC1
δσ1

∣∣∣
σ̄1,σ̄2

δC1
δσ2

∣∣∣
σ̄1,σ̄2

δC2
δσ1

∣∣∣
σ̄1,σ̄2

δC2
δσ2

∣∣∣
σ̄1,σ̄2

=
[

a1 b1

a2 b2

]

Nominal Case Results

The results for the nominal case are presented in Table 3.1. They were calculated with one mil-

lion samples of σ for the stochastic DA methods. We observe near perfect agreement between

GLLS, MOCABA, and BMC for all posteriors, as is expected for a linear and normal application.

This indicates that MOCABA and BMC are unbiased estimates of the MAP distribution. BFMC,

however, shows more significant disagreement, and its adjustments were larger than those

of the other methods. The differences are larger for the posterior variances and covariances,

which can be three orders of magnitude lower than the other methods. The posterior χ2 values

(calculated with Eq. (2.30)) per DoF of GLLS, MOCABA, BMC, and BFMC are 0.72, 0.73, 0.74.

and 0.24 respectively. For these specific input conditions, BFMC was not an unbiased estimate

of the MAP. In the next section, the DA methods are applied with varying input conditions to

further characterize their behavior, especially for BFMC.
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Table 3.1 – Posteriors for the linear, normal toy problem. The i index indicates the index in the
vectors and matrices. If i = 1, then j = 2. If i = 2, j = 1.

Parameter
i = 1 i = 2

GLLS MOCABA BMC BFMC GLLS MOCABA BMC BFMC
Ci 12.63 12.63 12.63 12.93 5.897 5.898 5.897 4.979
var(Ci ) 0.4581 0.4583 0.4586 0.0024 0.1227 0.1227 0.1227 0.0008
cov(Ci ,C j ) 0.1445 0.1445 0.1444 0.0007 0.1445 0.1445 0.1444 0.0007
σi 5.950 5.950 5.950 6.230 2.923 2.923 2.922 1.864
var(σi ) 0.1119 0.1114 0.1121 0.0006 0.0900 0.0900 0.0901 0.0006
cov(σi ,σ j ) 0.0047 0.0046 0.0046 -0.0000 0.0047 0.0046 0.0046 -0.0000

Varying χ2

The nominal case had a prior χ2 per DoF of 1.86. Here, the prior χ2 is systematically changed

by altering E while keeping all other inputs constant. When E is close to C, the χ2 is smaller,

when E is farther from C it is larger. This is done to simulate an inconsistency between C and

E, as might be encountered in real DA problems. From a mathematical point of view, the DA

methods are ignorant of the inconsistency: they are just equations that receive inputs and

give outputs. If the DA methods are all equivalent mathematically, they should give the same

outputs no matter the supplied input. However from a theoretical point of view, it would

be unwise to do DA with data sets that are significantly inconsistent, as this would produce

non-physically-founded adjustments. The posterior C would be pushed towards E, perhaps

past the limit of what is explained by theory, which would mean that the nuclear data are

being adjusted unreasonably with respect to nuclear physics and differential data.

Fig. 3.1 shows the prior and posterior C mean values. Here, 1,000 samples of σwere done for

the stochastic DA methods. Several interesting behaviors appear:

• At χ2 = 0, no adjustment occurs as E and C perfectly agree.

• As χ2 increases, there is more E/C discrepancy and the adjustments are larger.

• GLLS, MOCABA, BMC, and BFMC agree well, up to a χ2 value of around 10. An exception

is C2 with BFMC at very low χ2.

• At large χ2, the change to C becomes much greater than three standard deviations of

the prior. This demonstrates the danger of doing DA with highly inconsistent data sets:

the equations will do an adjustment no matter the inputs given to them. The user must

ensure that the adjustments are based on sound statistics and are physically sensible.

• Above χ2 = 10, the BMC and BFMC posteriors begin to diverge from GLLS and MOCABA.

• At very large χ2, the BFMC posteriors trend back towards the prior.
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3.1. Toy Problems

• For C2, the posterior moves away from E2. This is caused by the high correlation C2

has with C1 (correlation coefficient of 0.78), and C1 driving the adjustment because its

experimental uncertainty is smaller than C2 and its calculation uncertainty is larger.
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Figure 3.1 – Prior and posterior C means vs. χ2 for the linear, normal toy problem.
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Figure 3.2 – Prior and posterior C standard deviations vs. χ2 for the linear, normal toy problem.

Fig. 3.2 shows the prior and posterior C standard deviations. The following behaviors are

interesting to summarize:

• The GLLS and MOCABA posteriors, and BMC’s up to χ2 ≈ 10 for C1 and χ2 ≈ 5 for C2,

are invariant with changing χ2. This is a side-effect of how the χ2 changes were induced,

i.e. by changing E. Eq. (2.11) shows that MC has no dependence on E and cannot be

affected by changing E. If ME or Mσ were modified to change χ2, the uncertainties

would have then varied.

• BFMC shows large disagreements with other methods. At very low χ2, its posterior

uncertainties are small. This region corresponds to the nominal case of the previous

section. At higher χ2, the posterior trends back towards the prior.
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• At χ2 ≈ 5 – 15, where the BMC posteriors begin to diverge from GLLS and MOCABA, the

BFMC posteriors are closest to the other three DA methods.
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Figure 3.3 – Posterior σ vs. χ2 for the linear, normal toy problem.
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Figure 3.4 – Posterior σ standard deviations vs. χ2 for the linear, normal toy problem.

Figs. 3.3 and 3.4 show the prior and posterior σmeans and standard deviations. The behavior

is similar to that observed for C:

• GLLS and MOCABA give near identical results.

• BMC results begin to diverge from GLLS and MOCABA at around χ2 = 15.

• As C and E become very inconsistent (as χ2 gets large) the adjustments continue blindly

and are much larger than the prior standard deviations.

• As the degree of inconsistency gets larger, BFMC trends back towards the prior.

• At low χ2 values, BFMC gives very small posterior standard deviations, which was seen

for the nominal case.

38



3.1. Toy Problems

• BMC and BFMC perform more poorly for σ2 and its standard deviation. This is linked

to the low sensitivity of C1 to σ2; its sensitivity coefficient to σ1 is 2 and to σ2 is 0.25.

Because σ2 affects to a small degree the dependent variable that drives the adjustment,

it becomes harder for BMC and BFMC to converge.

• The posterior σ1 standard deviations of GLLS and MOCABA have small differences.

The prior and posterior χ2 values are presented in Fig. 3.5. The GLLS and MOCABA χ2 values

agree no matter the prior χ2. Again this is important to note: it does not matter if the DA is

being done in a sensible way, i.e. to a consistent data set, the adjustments will be performed

anyway. The DA must be applied with discretion if it is to be used in real world applications.

BMC χ2 values begin to diverge from MOCABA and GLLS at a prior χ2 ≈ 15, and for BMC the

posterior χ2 is eventually larger than the prior.
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Figure 3.5 – Prior vs. posterior χ2 values for the linear, toy problem.

These results lead to several questions:

• Why does BMC diverge from GLLS and MOCABA as χ2 increases?

• Why does this divergence consistently occur at a certain point (χ2 ≈ 15)?

• Why does BFMC give very small uncertainties for low χ2?

• Why does BFMC converge to the prior as χ2 becomes larger?

• Why did MOCABA and GLLS disagree only for the standard deviation of σ1?

Why does BMC diverge from GLLS and MOCABA as χ2 increases?

The answer to this question is connected to the sample size. As χ2 increases, the BMC weights

trend towards zero. This link between the weights and χ2 can be seen in Eqs. (2.23) and

(2.24): χ2
i is multiplied by -1/2 and then put into an exponential to calculate the weight, or
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exp(−χ2
i /2). A large χ2

i creates a large negative value in an exponential, subsequently creating

a small weight. If χ2 is very large, its associated χ2
i are large and many weights are near zero.

When the posteriors are calculated as weighted averages, large χ2
i values lead to very few

samples that have significant weight. With a small sample size, there are too few rare weights

with significant values to contribute to an accurate posterior. As the sample size increases,

there are more of these rare weights leading to a more accurate or converged posterior.

The solution to this problem is to increase the sample size. With more samples, there are

more rare and significant weights that can then contribute to a more accurate average. Fig. 3.6

shows the posterior mean and standard deviation of σ2, both of which previously showed

large disagreement between BMC and GLLS/MOCABA for large χ2. The GLLS posterior is

plotted as the reference value. With an increased sample size, the χ2 value at which BMC

diverges from GLLS increases. This result implies that for large χ2 values, BMC will need to be

applied with larger sample sizes in order to have accurate results.2
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Figure 3.6 – BMC posteriors vs. χ2 for different sample sizes.
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Figure 3.7 – BFMC posteriors vs. χ2 for different sample sizes.

Increasing the sample size does not improve the BFMC posterior results. Fig. 3.7 gives the

2The line for 1,000 samples is different from that seen in previous plots. The difference is caused by a different
set of 1,000 samples being used here.
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BFMC posterior σ2 and the σ1 standard deviation, two parameters where BFMC disagreed

greatly from the other methods. We observe that with increased sample sizes, there is no

improved agreement between BFMC and GLLS. Therefore, the observed behaviors are not

linked to the limited sample sizes, but rather to the BFMC formulation itself.

Why does BMC diverge consistently from GLLS at a certain point (χ2 ≈ 15)?

What was so important about χ2 ≈15 to create a consistent behavior in BMC? To understand

further, please examine Fig. 3.8 which provides the standard deviation of the weight sample

set vs. χ2. For BMC, as χ2 trends larger the spread of the weight distribution (quantified by the

standard deviation) becomes smaller. At χ2 = 15, the standard deviation is approximately zero

for BMC and its posteriors diverge from GLLS and MOCABA’s when the sample size is 1,000.
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Figure 3.8 – Standard deviation of the BMC and BFMC weight distribution vs. χ2.

BMC’s behavior, where the spread in the weight distributions crashes towards zero with

increasing χ2, is often called weight degeneracy, or particle degeneracy, in the literature [65].

With very few significant weights, degeneracy causes slow convergence of the posteriors,

i.e. more samples are needed for high accuracy. The extreme effect of weight degeneracy is

that all the weights are zero and BMC no longer functions as an algorithm. In particle filtering,

weight degeneracy is commonly tackled by re-sampling from the weight distributions [66].

While this is an interesting avenue for future work, it is outside the scope of the presented

study and not discussed further.

Why does BFMC give very small uncertainties for low χ2?

When the χ2 is small, there is a strong chance that one χ2
min is very small, particularly much

smaller than 1. When this is used in χ2
i /χ2

min, it makes every evaluation of this expression

much larger than the regular χ2
i used in BMC, through division by a number much smaller

than 1. Now, when the expression exp(−χ2
i /χ2

min) is evaluated to calculate the weights, all

the weights have very small values due to the pronounced effect of χ2
min. Finally, when the
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posterior weighted averages are calculated, there are few weights with significant value to

have accurate posteriors. For the covariance matrices M′
C and M′

σ, the posterior averages are

calculated with the squared difference between numbers, see Eqs. (2.26) and (2.28), meaning

that these small weights are applied to small numbers. This makes them crash towards to zero

to larger extent than the means calculated with Eqs. (2.25) and (2.27).

Why does BFMC converge to the prior as χ2 becomes larger?

This question is best answered with figures that illustrate how the prior χ2 affects the χ2
i

distributions and the weight distributions. These figures also help demonstrate the behavior

described in the previous questions. Please examine Figs. 3.9, 3.10, and 3.11. On the left side of

the figures is a histogram of χ2
i values calculated with Eq. (2.23) for 1,000 samples of σ. It also

shows χ2
i normalized by χ2

min, as is done in BFMC. On the figures’ right side are cumulative

density functions (CDFs) of the weights calculated with BMC or BFMC. The CDFs characterize

the distribution of the weights, particularly if most are near zero or if they are evenly spread,

i.e. they have a flatter distribution. The difference vertically among plots is when E was varied

to increase the prior χ2. Each plot shows the average χ2 calculated with the χ2
i sample set.

Begin with Fig. 3.9 which shows small χ2
i values. In BMC when χ2

i is small, small negative χ2
i

are given to an exponential and produce large weights. As χ2
i trend towards 0, the weights

trend towards 1. The CDFs show that the majority of the samples have a weight greater than

zero. Furthermore, the weight distribution is fairly flat (i.e. the CDF is closer to a diagonal

as it would be for a uniform distribution). With a flat distribution of weights, all samples are

weighted evenly and the posterior returns to the prior. It is for this reason that BMC does not

change the posterior from the prior when the χ2 is small, i.e. when C and E already agree well.

For low χ2
i , BFMC shows the opposite weight behavior to BMC. The normalization by χ2

min

makes all χ2
i /χ2

min very large, so large as to make the normal χ2
i not visible on certain x-axes

scales. Then, the weights all become very small with exp(−χ2
i /χ2

min). The CDFs show that

nearly 100% of the weights have zero values. This is a form of weight degeneracy and is why

BFMC does not perform well for small χ2.

Descending through the figures shows that as χ2 becomes bigger, BMC and BFMC move in

opposite directions. Bigger χ2
i push the BMC weights closer to zero. For BFMC, bigger χ2

i mean

a larger χ2
min, helping to make the weights larger. In the limit of χ2

min → 2, the distributions of

χ2
i and χ2

i /χ2
min are identical and BMC and BFMC will produce identical posteriors. This point

is seen in Fig. 3.8 when the standard deviations of the BFMC and BMC weight distributions

have the same value. The top of Fig. 3.10 shows a point close to this limit, where χ2
min = 1.61.

As χ2 becomes even larger, the distributions of χ2
i and the weights for BMC and BFMC have

their behaviors reversed. With very large χ2
i , the BMC weights are all near zero and this eventu-

ally leads to weight degeneracy as seen in Fig. 3.11. To some extent, the weight degeneracy can

be counter-acted with a larger sample size, as previously discussed. Oppositely with BFMC,
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Figure 3.9 – Low prior χ2
0 and its effect on the χ2

i distributions and CDF of weights.
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Figure 3.10 – Intermediate prior χ2
0 and its effect on the χ2

i distributions and CDF of weights.
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Figure 3.11 – High prior χ2
0 and its effect on the χ2

i distributions and CDF of weights.
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large χ2
i mean that χ2

min becomes larger and χ2
i /χ2

min becomes smaller. This makes the weights

larger and flatter by the same effect previously described for BMC. Then with a flatter weight

distribution all samples are equally weighted and the posterior returns toward the prior.

A certain χ2 will push the weight calculation to the limit of double-precision floating point

numbers in 64 bits of computer memory. The smallest number that can be represented

in double precision is 2.225×10−308,3 meaning that the largest χ2
i before a weight reaches

numerical zero is ∼745.12. Practically speaking, the weights are effectively zero at smaller χ2
i .

Importantly, BMC and BFMC are using the total χ2 in their formulations, not the χ2 per DoF.

When there are many DoF, χ2 becomes large, no matter the consistency of the data set. For

example, highly consistent data with 50 DoF would have a χ2 per DoF of 1.0 but a total χ2 of

50. Despite the data set being consistent, BMC would begin to have weight degeneracy and

BFMC would not create much adjustment, i.e. the prior would be near the posterior.

Why did MOCABA and GLLS disagree only for the standard deviation of σ1?

Why are there slight differences between GLLS and MOCABA, e.g. the σ1 standard deviation in

Fig. 3.4? The differences are also related to the sample size. These increasing χ2 were done

each with 1,000 samples. With more samples, these differences disappear. This also shows the

importance of considering the sample size when applying MOCABA.

Concluding Remarks

This toy problem provides evidence that indicates that BFMC is not an unbiased estimate

of the MAP distribution. In other words, the normalization by χ2
min in Eq. (2.29) biases the

MAP estimate from the true value shown by GLLS. Interestingly, the biased estimate of BFMC

may be an advantageous behavior if we think of each DA method as an algorithm. We saw

that applying GLLS, MOCABA, or BMC to inconsistent data sets will give posteriors that are

ignorant of physics. BFMC has an auto-correcting behavior. For under-consistent data sets

(too high prior χ2) it will dampen the adjustment and keep it closer to the prior, which does

not occur for GLLS, MOCABA, or BMC.

In general, the χ2 needs to be carefully considered when applying all of the DA methods. On

one hand, there is the issue of the consistency of the integral data set and if the adjustments

are realistic. On the other hand, there is the performance of BMC and BFMC as algorithms.

BMC will give an unbiased estimate of the MAP distribution, but only if enough samples are

used. All BMC estimates should, therefore, be checked for proper statistical accuracy. BFMC

gives a biased estimate of the MAP distribution. However this biasing can be considered a

benediction as it helps to restrain the adjustments in the presence of inconsistent integral

data sets. That BFMC is a biased method must balance with the fact that it compensates for

3According to the IEEE Standard for Floating-Point Arithmetic (IEEE 754).
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the integral data set’s inconsistency.

3.1.2 Linear and Log-Normal Example

The previous exercise provided evidence that GLLS, MOCABA, and BMC are all unbiased

estimates of the MAP distribution. BMC’s advantage over MOCABA and GLLS is that it pre-

serves the true PDFs of σ, C, and E. MOCABA and GLLS assume that the PDFs are a normal

distributions. With the evidence from the previous exercise that supported BMC being an

unbiased estimate of the posterior, we can use logical deduction: if the toy problem shows

discrepancies between the BMC posterior and that from GLLS and MOCABA, it would show

that GLLS and MOCABA are biased estimates of the MAP distribution in a non-normal case.

In this case, BMC is now the mathematical reference solution.

BMC could be very useful in neutronics problems where there are non-normal PDFs, like for

the fission yields produced by GEF that are discussed in Chp. 5. The fission yields induce a

right-skewed distribution in the fission products which is similar to a log-normal distribution.

Because of this, a log-normal distribution was chosen for the PDF of σ in this toy problem. It

will also induce a log-normal distribution in C. For E, only the mean and covariance matrix

ME are needed still. There is no need to specify the higher moments with BMC, and GLLS and

MOCABA use these two moments in normal distributions. First, a nominal case is presented

and then the posteriors are presented with varying χ2 values, identical to the previous section.

Inputs

The input parameters are shown below. These are slightly different than the previous case

in order to be compatible with a log-normal distribution. The parameters of the log-normal

distribution have been manipulated in order to generate a skewness and kurtosis similar to

that observed in the fission products in Chp. 5. Here, the skewness of C1 and C2 is 0.91 and

1.35, respectively, and their kurtosis is 4.5 and 7.1, respectively.

a1 = 2, a2 = 0.5, b1 = 0.25, b2 = 1

σ=
[
σ1

σ2

]
=

[
3

1

]
, Mσ =

[
∆2
σ1

∆σ1,σ2

∆σ1,σ2 ∆2
σ2

]
=

[
0.8 0.06

0.06 0.4

]

E =
[

E1

E2

]
=

[
5

3

]
, ME =

[
∆2

E1
∆E1,E2

∆E1,E2 ∆2
E2

]
=

[
0.5 0.02

0.02 0.1

]
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Table 3.2 – Posterior parameters for log-normal toy problem. The i index indicates the index
in the vectors and matrices. If i = 1, then j = 2. If i = 2, j = 1.

Parameter
i = 1 i = 2

GLLS MOCABA BMC BFMC GLLS MOCABA BMC BFMC
Ci 8.035 8.035 8.081 8.176 2.467 2.469 2.611 2.213
var(Ci ) 0.3543 0.3543 0.3673 0.0085 0.2185 0.2177 0.0965 0.0032
cov(Ci ,C j ) 0.1445 0.1443 0.1137 0.0030 0.1445 0.1443 0.1137 0.0030
σi 3.956 3.957 3.962 4.065 0.4892 0.4916 0.6303 0.1802
var(σi ) 0.0841 0.0836 0.0900 0.0020 0.1916 0.1939 0.0900 0.0025
cov(σi ,σ j ) 0.0059 0.0061 0.0028 0.0002 0.0059 0.0061 0.0028 0.0002

S =
δC1
δσ1

∣∣∣
σ̄1,σ̄2

δC1
δσ2

∣∣∣
σ̄1,σ̄2

δC2
δσ1

∣∣∣
σ̄1,σ̄2

δC2
δσ2

∣∣∣
σ̄1,σ̄2

=
[

a1 b1

a2 b2

]

Nominal Case Results

The results for the nominal case are presented in Table 3.2. We expect from theory that GLLS

and MOCABA will agree, but they will disagree with BMC and BFMC. This is because GLLS

and MOCABA cannot account for the non-normality of σ and C. Building off the previous

example, we know that the accuracy of the BMC posterior is highly dependent on the quality

of the weight distribution and that we can measure the degree of degeneracy with the standard

deviation of the weight distribution. Fig. 3.8 showed how the standard deviation of the weight

distribution can be used to monitor weight degeneracy. A zero-valued or near zero-valued

standard deviation would indicate weight degeneracy occurred. For this nominal case, the

standard deviation of the normalized weights was 0.125, indicating that there was not a weight

degeneracy and that the BMC posteriors were trustworthy. Additionally, one million samples

were used for the stochastic methods to ensure statistical accuracy of the posteriors.

Table 3.2 shows that GLLS and MOCABA agreed well, but disagreed with BMC. The differences

were particularly prominent for the variances, and the C2 and σ2 mean values. This result

indicates that the log-normal distribution had an effect that only BMC can account for. Finally,

BFMC disagreed with all other methods, similar to the previous example. It produced small

posterior variances, caused by the low prior χ2 value (calculated with Eq. (2.30)) of 2.86.

The posterior χ2 values of GLLS, MOCABA, BMC, and BFMC were 0.57, 0.57, 1.07, and 0.12,

respectively.

Varying χ2

Fig. 3.12 shows C′ and Fig. 3.13 gives the C′ standard deviations. For C1, no significant differ-

ences appeared between BMC and GLLS/MOCABA, not for the mean or the standard deviation.
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C2, however, did show significant differences from GLLS/MOCABA. Importantly, these differ-

ences appeared without the existence of weight degeneracy. Furthermore, these simulations

were done with 1 million samples of σ, and therefore were more accurate for this range of χ2.

The discrepancies seen for C2 were linked to the fact that its distribution deviated larger from

normality, exhibited by its kurtosis of 7.1.4
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Figure 3.12 – C′ vs. χ2 for linear, log-normal toy problem.
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Figure 3.13 – C′ standard deviations vs. χ2 for linear, log-normal toy problem.

Fig. 3.14 shows the posterior σ values and Fig. 3.15 gives the posteriorσ standard deviations.

Similar to the C posterior, σ2 and its standard deviation exhibit large differences between

GLLS/MOCABA and BMC. σ2 is the more highly non-normal parameter, with a kurtosis of

11.9 and a skewness of 2.1.

3.1.3 Toy Problem Summary

• For a linear, normal application, GLLS, MOCABA, and BMC all agreed well supporting

that they are unbiased estimates of the MAP distribution.

4Kurtosis values greater than 3 indicate non-normality.
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Figure 3.14 – Posterior σmeans for linear, log-normal toy problem.
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Figure 3.15 – Posterior σ standard deviations for linear, log-normal toy problem.

• BFMC gave inconsistent results compared to the other methods, supporting that it is a

biased estimate of the MAP distributions for the toy problem.

• At low prior χ2 values, BFMC exhibits weight degeneracy. At high χ2 values, it creates

posteriors that are close to the prior.

• BMC is sensitive to the prior χ2: large χ2 values cause weight degeneracy.

• There is an upper limit to the prior χ2 value where total degeneracy occurs (i.e. all

weights are zero) and BMC fails as an algorithm.

• The standard deviation and CDF of the weight distribution in BMC applications can be

used to monitor weight degeneracy.

• Some degree of weight degeneracy can be accounted for with larger sample sizes.

• GLLS, MOCABA, and BMC are ignorant of the degree of consistency between the experi-

mental and calculated data. Large and nonphysical adjustments would occur with these

methods when large inconsistencies are present.

50



3.2. Application to JEZEBEL-Pu239

• BMC has weight degeneracy in the presence of large inconsistency, i.e. large χ2.

• BFMC can be considered to counter-balance the inconsistency by keeping the posterior

close to the prior when χ2 is large.

• BMC was shown with a linear, log-normal toy problem to account for non-normality of

the prior parameters’ distributions.

3.2 Application to JEZEBEL-Pu239

The previous section showed how the DA methods behaved for idealized and extremely

simplified application cases. It is important to apply the methods to a realistic neutronics

problem. We then test their performance and see if the behaviors and issues previously

outlined are significant for a real and complex scenario. The following section presents GLLS,

MOCABA, BMC, and BFMC applied to a realistic case study: JEZEBEL-Pu239 [50].5

The benchmark’s integral responses include keff and the spectral indices F28/F25, F49/F25,

and F37/F25. Spectral indices are referred to as Fi j which is the fission rate per atom of isotope

23 j or 24 j of element 9i (i.e. i = 2,3,4 for U, Np, and Pu). F37, for example, is the Np-237 fission

rate. The nuclear data for Pu-239, Pu-240, Pu-240, U-235, U-238, and Np-237 were included.

This means that their nuclear data were perturbed, that sensitivities were calculated for them,

and that they were adjusted.

The following nuclear data from ENDF/B-VII.1 [68] were considered: Elastic scattering (MF3/

MT2), inelastic scattering (MF3/MT4), capture (MF3/MT102), fission (MF3/MT18), and the

average prompt fission neutron multiplicity (MF1/MT456). The normalized prompt fission

neutron spectrum (MF5/ MT18) for an incident neutron energy of 500 keV was considered only

for Pu-239 and not the other nuclides. Those nuclides either did not influence the adjustment,

like for Np-237, or the data was not available like with Pu-240.

Serpent version 2.1.29 [69] was used for neutron transport. It has Generalized Perturbation

Theory (GPT) functions [70] to calculate the sensitivity coefficients for GLLS. The Serpent sen-

sitivity calculations were done with 20 billion neutron histories and 15 latent generations, and

followed the criterion proposed in Ref. [71] to have sufficiently accurate sensitivity coefficients.

To perform stochastic sampling, the tool NUSS [72] was used. It assumes multivariate Gaussian

distributions as the nuclear data’s prior. NUSS currently only supports Gaussian distributions

for perturbing nuclear data. It creates multigroup perturbations from nuclear data covari-

ances and applies them to the point-wise ACE-format nuclear data used in Serpent. The

perturbations were then used to calculate the posterior nuclear data with MOCABA, BMC, and

BFMC.

NUSS generated 10,000 samples of all of the aforementioned isotopes’ nuclear data. For each

5These results were published in Ref. [67].
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Figure 3.16 – The JEZEBEL-Pu239 experimental setup [50].

NUSS sample, a corresponding Serpent simulation with 200 million neutrons was done. In

comparison to the sensitivity calculations, the 10,000 Serpent calculations for stochastic DA

needed approximately four times more CPU time when running on equivalent hardware. The

sensitivity coefficients and nuclear data were processed into a 187-energy-group structure

suitable for fast reactors [62]. Importantly, it should be noted that a significant amount of

work was done during this thesis to maintain and make more efficient the NUSS code system.

For NUSS perturbations, two important things should be stated. Firstly, the inelastic scattering

cross section’s covariance data are given for the total reaction, or MT4, instead of for the

discrete level excitation cross sections from MT51 to MT91. When inelastic scattering is

perturbed, the perturbation factors from MT4 are applied to all available MTs from 51-91.

Secondly, for the normalized fission spectrum, the ACE-format data are given for incident

neutron energies. Only one set of covariance data (at 500 keV) is used to modify all ACE

fission spectrum data, regardless of the incident neutron energy. This is considered to be a

reasonable assumption because of the neutron energy distribution in JEZEBEL-Pu239 and

due to the limited availability of fission spectrum covariances. Additionally, the spectrum of

fission neutrons is weakly dependent on initial energy, except for high neutron energies [62].

When NUSS creates perturbations, a Cholesky decomposition is performed on the nuclear

data covariance matrix to ensure that it is semi-positive definite. NUSS fixes, in an ad hoc way,

a negative definite matrix when negative eigenvalues exist. To have agreement between GLLS

and the stochastic methods, it is important that this corrected matrix is used in GLLS and not

the original, uncorrected matrix. In fact, when we used this uncorrected matrix in GLLS, the

posterior nuclear data covariance matrix had irrational results, like negative variances.

The experimental covariances were taken from Ref. [9]. For the methodology and modeling
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variance component in MEM, the statistical uncertainties of the calculated values from the

Serpent simulation are used and are assumed to be uncorrelated. Ref. [9] recommends caution

when adopting statistical errors of Monte Carlo codes because they do not use the correlation

between fission sources from successive cycles to calculate the error. Because the correlation

is not used, the real statistical error is underestimated by a factor of 1.4-3.1. Following their

recommendations, the C values’ statistical errors were multiplied by a factor of 2 in this study

and then used in MEM.

A code system was developed during the thesis to perform DA. It is called DAN for Data

AssimilationN. DAN reads multigroup nuclear data and covariance data, reads integral param-

eter input data in the form of a user input file, performs all necessary pre-processing of the

inputs, does the actual DA calculations for GLLS, MOCABA, and BMC/BFMC, writes numerous

output files, and plots sensitivity profiles and posterior nuclear data. DAN is specialized for

Serpent and NUSS, but could easily be modified for other code systems.

3.2.1 Bootstrapping

Only a limited sample size N can be used in stochastic DA. That means that for independent

and identical DA applications, i.e. with two different sample sets, different posteriors will

be obtained. With smaller N , the posteriors will be less converged and there will be more

variation between independent DA applications. In this study, the uncertainty associated with

the posteriors from stochastic DA were estimated with a bootstrapping approach [73].

The bootstrap method estimates the standard error of the posterior values, i.e. the posterior

calculated values and their uncertainty as well as the posterior nuclear data and their uncer-

tainty. The bootstrap was performed by sampling with replacement n times from the 10,000

random samples of nuclear data and calculated values. This led to n sample sets of 10,000

samples. With each random sample of the sample set, MOCABA, BMC, and BFMC posteriors

were calculated, leading to n sets of posteriors. The statistics of the posterior parameter of

interest, θ, were then calculated with the n bootstrap samples. The posterior’s bootstrap mean,

θ̄, was calculated as well as the standard error of the mean, SEθ̄, using Eqs. (3.3) and (3.4).

θ̄ =
∑N

i=1θi

n
(3.3)

SEθ̄ =
(∑n

i=1(θi − θ̄)2

n −1

)1/2

(3.4)

In this study, 500 bootstrap samples were taken, leading to a 3% standard error in θ̄ and SEθ̄
[74], which was considered to be sufficiently accurate four our purposes. Assuming that the

bootstrap samples obey a normal distribution, 95%-confidence intervals are presented on the
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results. They were calculated with Eq. (3.5), where zα = 1.96 for a 95%-confidence interval.

θ ∈ θ̄± zαSEθ̄ (3.5)

3.2.2 Posterior Calculated Values

The prior calculated-to-experimental ratios (C/E) and the prior uncertainties are presented in

Table 3.3. The table presents the experimental standard deviation, ∆E, the modeling standard

deviation in C from Monte Carlo transport, ∆M, and, the standard deviation of C caused by the

prior nuclear data uncertainty, ∆C. ∆C was calculated with two different approaches. The first,

referred to as GPT in Table 3.3, evaluated the uncertainty with first-order error propagation

using the GPT-calculated sensitivity coefficients and Mσ, or SMσST .6 The second, referred to

as NUSS, is the population standard deviation of the 10,000 Serpent simulations done with

the 10,000 NUSS-perturbed nuclear data. For these relative standard deviations, we see good

agreement between the NUSS and GPT priors.

Table 3.3 – Prior input parameters into the DA methods. ∆E, ∆M, and ∆C are given as relative
standard deviations.

∆E(%) ∆M(%)
∆C (%)

C/E
GPT NUSS

F28/F25 1.1 0.2 3.5 3.5 0.978
F49/F25 0.9 0.2 0.8 0.8 0.975
F37/F25 1.4 0.1 3.5 3.5 0.988
keff 0.200 0.007 0.749 0.777 0.99971

Table 3.4 presents the C adjustments as posterior calculated-to-experimental ratios (C′/E)

and posterior calculated-value uncertainties from nuclear data (∆C′). First comparing C′/E

for the reaction rate ratios, only F28/F25 shows any difference at 0.001 between BMC and

GLLS/MOCABA. BFMC shows slightly larger differences from the other three DA methods, at

+0.002 for F28/F25 and F49/F25, and +0.001 for F37/F25. For keff, differences of 14-39 pcm

are present. The ∆C′ values show very small differences between GLLS, MOCABA, and BMC.

BFMC, however, shows larger disagreement for F28/F25, F37/F25, and keff, where it predicts

smaller ∆C′ than the other methods. Smaller ∆C′ values with BFMC were observed in Section

3.1 where the methods were analyzed with toy problems.

The observed differences in Table 3.4 are not significant from an engineering and application

perspective. From a theoretical standpoint, they do warrant further examination. The simplest

explanation is that they were caused by the limited sample size used in the stochastic DA

methods. If an infinitely large sample size was used and there were still differences between

the methods, then the differences could be attributed to other sources. These include the

6Often called the “Sandwich Rule” in nuclear engineering
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Table 3.4 – Posterior calculated-to-experimental ratios (C′/E) and posterior relative standard
deviations from nuclear data (∆C′).

C′/E ∆C′ (%)
GLLS MOCABA BMC BFMC GLLS MOCABA BMC BFMC

F28/F25 0.996 0.996 0.997 0.998 1.0 1.0 1.0 0.8
F49/F25 0.984 0.984 0.984 0.986 0.5 0.5 0.5 0.5
F37/F25 0.994 0.994 0.994 0.995 1.3 1.3 1.2 1.0
keff 0.99982 0.99996 1.00009 1.00021 0.192 0.192 0.193 0.160

methods themselves, the properties of the integral parameters (e.g. non-linearity or non-

normality), or to problems in the analysis scheme such as the approximations made in NUSS

or the statistical uncertainty of the Serpent-calculated sensitivities. Ideally, an infinitely large

sample size could be used and this source of uncertainty could be eliminated. While this is

impossible, it is possible to estimate a confidence interval for each of the posteriors. If the

differences are larger than the confidence interval, we can more confidently attribute them to

the DA methods or to other sources, rather than to simply the limited sample size.

Table 3.5 shows the 95%-confidence intervals of the posteriors as estimated with the bootstrap

analysis detailed in Section 3.2.1. For C′/E and ∆C′ of the reaction rate ratios, the confidence

intervals were larger than or equal to the differences between the DA methods. This indicates

that the results agreed within the statistical behavior of stochastic DA methods. The C′/E of

keff showed significant differences only between GLLS and MOCABA. Here, the difference was

18 pcm, where the 95%-confidence interval of MOCABA was 1 pcm. Given that keff is highly

linear and normal, it is unlikely that this was caused by the methods themselves, but rather by

other sources like the NUSS perturbation scheme. Because this difference is so small from an

application standpoint, it was not investigated further in this work.

The ∆C′ of keff shows statistically significant differences between BFMC and the other DA

methods. Its 95%-confidence interval of 0.012% is smaller than the differences with the other

DA methods, which are 0.032% and 0.033%. Of course, this is also related to the fact that more

significant digits are shown for keff than for the reaction rate ratios. This significant difference

supports observations of the toy problem analysis of Section 3.1. There, BFMC was shown to

be a biased estimate of the MAP distribution.

Table 3.5 – Bootstrap-estimated standard errors of the posterior calculated-to-experimental
ratios (C′/E) and posterior relative standard deviations from nuclear data (∆C′).

C′/E ∆C′ (%)
MOCABA BMC BFMC MOCABA BMC BFMC

keff 0.00001 0.00017 0.00024 0.000 0.009 0.012
F28/F25 0.000 0.000 0.000 0.0 0.1 0.2
F49/F25 0.000 0.001 0.002 0.0 0.1 0.1
F37/F25 0.000 0.001 0.002 0.0 0.1 0.2
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Figure 3.17 – Weight of each nuclear data sample set in BMC.

To assess the degree of weight degeneracy, we previously used the standard deviations of the

weight distributions. We saw that BMC results became highly sensitive to sample size when

its weight distribution’s standard deviation was small. If this standard deviation approached

0, i.e. weight degeneracy occurred, the BMC posteriors became unreliable. When the BMC

and BFMC weight distribution standard deviations were approximately equal, their posteriors

showed reasonable agreement. For JEZEBEL-Pu239, the standard deviations of the BMC

and BFMC normalized weight distributions7 were 0.0006 and 0.0011, respectively. Their

approximately equal values show how BMC and BFMC can agree well for this application case.

Figure 3.17 gives the normalized weights created by BMC and BFMC and the CDF of their

weight distributions. Several interesting phenomena appear in this figure. Firstly, a lower

weight bound can be observed in BMC and BFMC. In the weight distribution at left, this

appears as horizontal lines where many samples have identical weight, e.g. at a weight of

9×10−6. This is a round-off error in Eq. (2.24). A high χ2 would mean that the given random

sample had worse agreement between C and E. From the CDF, we see that approximately 75%

of the BMC weights have this low value of 9×10−6. Practically speaking, 75% of simulations

did not serve to calculate the posterior because the weights were so small. Additionally from

Fig. 3.17, what BFMC does to the weight distribution is more apparent. Effectively, it pushes

the very low-valued weights up, as can be observed by where the horizontal, low weight lines

are in the figure at left. The line shifts from 9×10−6 to 2×10−6.

We noted that for BMC’s weight-distribution standard deviation, we would expect that the

method’s accuracy might be dependent on the sample size. Obviously, from Table 3.4 there

were enough samples to have accurate results. Nevertheless, it is interesting to examine the

posteriors when fewer samples are used to see how this may affect a real application case.

This is important because 10,000 samples can be impractical for some applications, especially

if many benchmarks are used. Additionally, the bootstrap 95%-confidence intervals can be

examined to see how they vary with different sample sizes.

Fig. 3.18 shows C′/E and ∆C′ calculated with MOCABA, BMC, and BFMC at increasing popu-

7Normalized to the sum of all weights.
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Figure 3.18 – C′/E and∆C′ at every 1,000 additional samples to the population. Shaded regions
are bootstrap-estimated 95%-confidence intervals (MOCABA’s red region is difficult to discern
with these axes).

lation sizes. At every 1,000 samples, the bootstrap-estimated 95%-confidence interval (see

Eq. (3.5)) was calculated with 500 bootstrap samples and plotted. In general, BMC and BFMC

showed larger fluctuations with sample size than MOCABA. Additionally, the bootstrap con-

fidence intervals were larger for BMC and BFMC than for MOCABA. Both of these effects

were more prominent for ∆C′ than C′/E. BMC and BFMC did not have comparable conver-

gence properties to MOCABA with an increasing number of samples. The BFMC ∆C′ could

be quite different from the other methods, even at 10,000 samples. Considering also their

95%-confidence intervals, it is unlikely that these differences were caused by the limited

sample size.

We can examine BMC on a smaller sample-size interval to show how weight degeneracy affects

convergence. Fig. 3.19 shows the convergence behavior of the BMC-calculated C′ for F49/F25

vs. the sample number. Additionally, it shows the weight of each sample. In the figure, the

posterior shows significant fluctuations of several tenths of a percent up to ∼2,000 samples.

Recall that when weight degeneracy occurs only a few very rare weights contribute to calculate

the posterior. The large fluctuations correspond to rare samples that have an extremely large

weight. For example at the 40th sample, a rare weight appears that significantly changes
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Figure 3.19 – Effect of rare weights on BMC’s F49/F25 C′.

the posterior. This occurs again at the 600th sample and several times again, albeit to a less

significant extent at more than 1,000 samples. These outliers significantly change the posterior

weighted average and lead to slower convergence behavior. With more weight degeneracy,

there are more significant outliers. Their rarety then slows down the convergence of BMC.

The posterior χ2 per DoF (NE ), calculated with Eq. (3.6), using each DA method is useful to

globally assess the adjustment. The prior χ2 per DoF was 1.21, showing that the prior already

had good agreement between C and E. GLLS, MOCABA, BMC, and BFMC created posterior

χ2 values per DoF of 0.58, 0.59, 0.62, and 0.47, respectively. BFMC’s smaller posterior χ2 was

caused by its C′/E values being slightly closer to 1.0.

χ2

NE
= (

E−C′)T (M′
C +MEM)−1(E−C′)/NE (3.6)

The small prior χ2 per DoF also helps to explain why BFMC returned smaller posterior un-

certainties than the other three DA methods. In the previous section, it was shown that for

small prior χ2 values, the bias in BFMC creates underestimated uncertainties for the MAP

distribution. Here, the prior χ2 was in the region where this behavior occurs.

Figure 3.20 displays the relative differences between the prior and posterior MC. The relative

difference was calculated as Eq. (3.7), where cov(Ci ,C j ) is the covariance between the calcu-

lated value of integral parameter i and j . In general, the posterior covariances agreed well

between the methods. For GLLS, its most noticeable discrepancy with the other methods is

that it reduced the covariance between keff and F49/F25 to a larger extent. BFMC shows larger

reductions for all covariances and variances than the other methods (except for the GLLS
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Figure 3.20 – Relative differences between prior and posterior MC.

covariance between keff and F49/F25).

cov(C ′
i ,C ′

j )−cov(Ci ,C j )

cov(Ci ,C j )
(3.7)

3.2.3 Posterior Nuclear Data

In this section, the adjustments of nuclear data with each DA method are presented and

analyzed. The analysis focuses on Pu-239 and its elastic, inelastic, fission, and capture (n,γ)

cross sections and on its fission multiplicity (ν̄) and fission spectrum (χ). The adjustments of

these six nuclear data are presented in Fig. 3.21. Beginning at the top left:

• Elastic Scattering, Fig. 3.21(a): GLLS, MOCABA, BMC, and BFMC show agreement

(within the estimated confidence intervals) across all energy ranges for relative adjust-

ments and for the posterior standard deviations. BMC and BFMC have larger bootstrap-

estimated standard errors than MOCABA, with BFMC being the largest.

• Inelastic Scattering, Fig. 3.21(b): GLLS and MOCABA adjustments agree within the

95%-confidence interval. BMC and BFMC’s adjustments again show more disagreement,

but have larger standard errors. At ∼0.1 MeV, the disagreements are slightly outside of

the 95%-confidence interval, but would be included in a 99% interval.

59



Chapter 3. Comparison of Data Assimilation Methods

10 3 10 2 10 1 1002.5

0.0

2.5

5.0

Re
l. 

Ad
j. 

(%
)

GLLS MOCABA BMC BFMC

10 3 10 2 10 1 100

Energy (MeV)

0

5

10

15

Re
l. 

St
d.

 (%
)

Prior
GLLS

MOCABA
BMC

BFMC

((a)) Elastic Scattering, (n,e)

10 3 10 2 10 1 10030

15

0

15

Re
l. 

Ad
j. 

(%
)

GLLS MOCABA BMC BFMC

10 3 10 2 10 1 100

Energy (MeV)

0

20

40

60

Re
l. 

St
d.

 (%
)

Prior
GLLS

MOCABA
BMC

BFMC

((b)) Inelastic Scattering, (n,i)

10 3 10 2 10 1 1001

0

1

2

Re
l. 

Ad
j. 

(%
)

GLLS MOCABA BMC BFMC

10 3 10 2 10 1 100

Energy (MeV)

0.0

1.5

3.0

4.5

Re
l. 

St
d.

 (%
)

Prior
GLLS

MOCABA
BMC

BFMC

((c)) Fission, (n,f)

10 3 10 2 10 1 10020

0

20
Re

l. 
Ad

j. 
(%

)
GLLS MOCABA BMC BFMC

10 3 10 2 10 1 100

Energy (MeV)

0

20

40

60

Re
l. 

St
d.

 (%
)

Prior
GLLS

MOCABA
BMC

BFMC

((d)) Capture, (n,γ)

10 3 10 2 10 1 1000.25

0.00

0.25

0.50

Re
l. 

Ad
j. 

(%
)

GLLS MOCABA BMC BFMC

10 3 10 2 10 1 100

Energy (MeV)

0.0

0.5

1.0

Re
l. 

St
d.

 (%
)

Prior
GLLS

MOCABA
BMC

BFMC

((e)) Fission Multiplicity, ν̄

10 1 1002

1

0

Re
l. 

Ad
j. 

(%
)

GLLS MOCABA BMC BFMC

10 1 100

Energy (MeV)

0

4

8

Re
l. 

St
d.

 (%
)

Prior
GLLS

MOCABA
BMC

BFMC

((f)) Fission Spectrum, χ

Figure 3.21 – Nuclear data adjustments for Pu-239. Shaded regions are 95%-confidence
intervals estimated with bootstrapping. Each subfigure has the relative adjustment from prior
to posterior, (σ′−σ0)/σ0, above and the prior and posterior relative standard deviations below.

• Fission, Fig. 3.21(c): MOCABA, GLLS, BMC, and BFMC show similar adjustments, with

BFMC showing the largest disagreement, but also the largest bootstrap uncertainty.

• Capture, Fig. 3.21(d): MOCABA and GLLS show consistent low-valued adjustments

except for above 0.1 MeV. BMC and BFMC create larger adjustments (up to -2%), but are
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Figure 3.22 – Prior and posterior nuclear data correlation matrices plotted from high to low
energy for each nuclear datum on the range of 20 MeV to 1 keV.

likely not statistically significant as shown by the large bootstrap uncertainty.

• Fission Multiplicity, Fig. 3.21(e): GLLS shows small and indistinguishable adjustments.

The stochastic methods exhibit non-zero adjustments, with BFMC’s being as large as

0.10%. They are not likely statistically significant, as the confidence intervals cover 0%.

• Prompt Fission Neutron Spectrum, Fig. 3.21(f ): Good agreement between MOCABA

and GLLS. Larger, but statistically insignificant, disagreement for BMC and BFMC

especially below 0.5 MeV.
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The general trend is that the adjustments with all four methods agree within their bootstrap

confidence intervals. Potential biases from non-linearities or from other sources (e.g. NUSS

sampling, sensitivity uncertainties) were not significant enough to show a difference for the

considered sample size. We have demonstrated that the stochastic methods can effectively

reproduce the GLLS adjustments. They could be used to either verify GLLS adjustments or

for non-linear/non-normal problems. This is important for Chp. 5 where a GLLS reference

solution is not available when adjusting fission yield data.

Another general trend is that the stochastic methods’ uncertainty is higher at energy ranges

with greater nuclear data uncertainties. For instance, the bootstrap uncertainties are large

above 1 MeV for capture and elastic scattering, and between 0.1 and 0.5 MeV for the fission

spectrum. These are energy regions where there is low sensitivity of the integral data to

the nuclear data. These nuclear data received large perturbations because of their large

uncertainties, but the perturbations create no physical effect in the integral parameters. This

then creates random oscillations that take many samples to converge back to the nominal

value in the posterior.

The Pu-239 nuclear data’s correlation matrices for the prior and each of the posteriors are

plotted in Fig. 3.22. Comparing the change from prior to posterior, we see that all four

DA methods create correlations that did not previously exist, for example between elastic

scattering, (n, e), and fission spectrum (χ), or between inelastic scattering, (n, i), and capture,

(n, γ). These correlations between nuclear data that did not exist in the prior are often a large

source of the uncertainty reduction in the posterior calculated values [24]. The correlations

that did exist in the prior, for instance between (n, e) and (n, i) or within the energy groups of

(n, i), were also reduced by all four DA methods.

The GLLS and MOCABA correlation matrices agree well. The BMC matrix shows the same

trends as MOCABA and GLLS but has a large number of weak correlations (between ±0.2)

in areas where MOCABA and GLLS produce zero-valued correlations. BFMC also shows the

same trends and creates to an even larger extent these weak correlations. As evidenced before

by the bootstrapping analysis, these two methods have larger uncertainties and these weak

correlations are likely just statistical noise caused by using a limited sample size. Correlations

between the nuclear data of different nuclides (e.g. between Pu-239 and Pu-241), which are

not plotted here, are also created by the DA methods. These correlations do not exist in the

prior covariance matrix and can also be an important source of uncertainty reduction in the

posterior calculated values.

3.3 Conclusions

Three data assimilation methods have been compared: Generalized Linear Least Squares,

Monte Carlo Bayesian Analysis, and Bayesian Monte Carlo (or GLLS, MOCABA, and BMC,

respectively). Additionally, a subset of the BMC method, called BFMC, was also analyzed. The

comparison was done using toy problems and realistic case study. The case study consisted of
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Serpent version 2.1.29, ENDF/B-VII.1 nuclear data, and the JEZEBEL-Pu239 benchmark. For

GLLS, sensitivity coefficients were calculated with Serpent. For MOCABA and BMC, random

sampling was performed on the ACE data files using the NUSS code.

We concluded that MOCABA and BMC can effectively reproduce the posterior results from

GLLS if they are employed with sufficiently large sample sizes. The toy problem showed

that BMC can indeed account for non-normality. Importantly, it should be noted that non-

linearity and non-normality often go hand in hand. If MOCABA were applied to a non-linear

problem, its normality assumption may hurt its accuracy because the non-linearity may

cause a non-normality. These findings are important for future applications where MOCABA

and BMC could be used for integral parameters with non-normal responses to nuclear data

perturbations, such as in burnup simulations.

BMC should be applied while carefully observing its weight distribution and the convergence

of its posteriors. If there is sufficient weight degeneracy, many samples may be needed

to have converged results. BFMC showed inconsistent results in comparison to the other

methods, sometimes agreeing and disagreeing. For the JEZEBEL-Pu239 application, the

disagreements were not as drastic as observed in the toy problem. Importantly however,

BFMC still achieves the goal of improvement from prior to posterior. BFMC also tends to

show even larger bootstrap-estimated uncertainties than BMC, while MOCABA showed the

smallest.

From a mathematical view-point, the results of this chapter provide evidence that BFMC does

not provide the true mathematical posterior. In fact for low χ2 values, BFMC can provide

dangerous posteriors that have very small uncertainties compared to the prior. The user of

BFMC must be aware that it is not an ideal method for low χ2 values. Luckily, this is rarely the

case for complex scenarios because if there is a low χ2 there would be no motivation to do DA

in the first place.

Similarly, the user must be aware that for high χ2 values GLLS, MOCABA, and BMC are also

not ideal methods because they will result in over-fitting of the nuclear data and possibly

spurious adjustments. Here, the fact that BFMC is biased can be considered “advantageous”

because it helps to prevent an over-fitting of the nuclear data. A user of data assimilation has

to then balance these considerations when working. Ideally, the integral data being used has

a low-range of χ2 values and BFMC can be avoided as a method and there is no danger of

over-fitting.

3.4 Chapter’s Key Points

• A toy problem showed that GLLS, MOCABA, and BMC are all unbiased estimates of

the maximum a posteriori (MAP) distribution. BFMC is a biased estimate of the MAP

distribution
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• A real application with JEZEBEL-Pu239 confirmed this conclusion and also showed that

BFMC, for this case, gave agreeing results with the other methods

• The consistency of the integral data set, or the size of χ2, is important to consider in the

adjustment

• If DA is done using GLLS, MOCABA, or BMC with an inconsistent data set, large adjust-

ments can occur that may not respect the physics of the system being studied

• Large χ2 values will cause weight degeneracy with BMC. In such as case, either many

samples are needed to have a converged posterior, or all weights will be zero and no

posterior can be calculated

• Inconsistency of the integral data is auto-compensated for by BFMC. As χ2 gets bigger,

BFMC will give posteriors that converge to the prior

• All of this highlights the importance of accounting for inconsistencies, either with a

filtering technique or MLO
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4 Data Assimilation of LWR-PROTEUS
Phase II

With four parameters I can fit an

elephant, and with five I can make him

wiggle his trunk.

– John von Neumann

A primary goal of this thesis was to implement DA methods in the sensitivity analysis and

uncertainty quantification tool SHARK-X and to perform DA with Proteus experimental data.

This chapter presents how these two goals were approached with one study. The sensitivity co-

efficients and randomly-sampled nuclear data produced by SHARK-X were used to assimilate

integral parameters from the LWR-PROTEUS Phase II experiment. The chapter is organized to

first motivate the DA in Section 4.1, then to describe the LWR-PII experiment, SHARK-X, and

the CASMO-5M models in Section 4.2, and finally to present the results in Section 4.3.

4.1 Introduction

The LWR Phase II (LWR-PII) experimental campaign was designed to investigate nuclear fuel

with high burnups [75]. It took highly exposed fuel rods from Swiss nuclear power plants and

measured their reactivity worth in the Proteus research reactor. The campaign was used at

the PSI to validate simulated reactivity losses in high-burnup fuel [76, 77]. These simulations

are vital for core design (both for fuel management and safety analysis) and for burnup credit,

which is important for the criticality safety of the storage and transportation of spent fuel.

The experiment was used to validate CASMO-5M simulations with help from the tool SHARK-

X for UQ and SA. SHARK-X [78, 79, 80, 81, 82, 83, 84] estimates the uncertainty of CASMO-

5M calculations from nuclear data. Biases between the CASMO-5M calculations and the

experiments were calculated to be as large as 7% and uncertainties from nuclear data were

as high as 9% [85]. To reduce these biases and the calculation uncertainty, as well as to try to

understand from where they originate, the DA methods discussed in this thesis were applied.
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Because SHARK-X can perform uncertainty quantification with sensitivity coefficients or with

stochastic sampling, DA methods using both of these techniques were implemented. GLLS

was developed around SHARK-X’s sensitivity features. For the stochastic sampling tools in

SHARK-X, the methods of BMC, BFMC, and MOCABA were developed. The implementation

of the DA methods is analyzed in terms of how they adjust the calculated values of integral

parameters and reduce their associated uncertainty as well as how they adjust input nuclear

data and their uncertainties. The ultimate goal is to gain insights into the bias behavior of the

CASMO-5M simulations of LWR-PII and more generally into the bias and uncertainty of the

modeled reactivity effects of high-burnup fuel with CASMO-5M. Does the bias originate from

nuclear data, and if so, which nuclear data are the leading culprits?

4.2 Material and Methods

4.2.1 LWR-PROTEUS Phase II Experimental Campaign

The LWR-PII measured the effect of burnup on fuel reactivity. Proteus in this campaign was

configured to represent an LWR. Irradiated fuel samples were inserted into and removed from

the center of the reactor to evaluate the reactivity loss of fuel due to exposure. Eleven of these

fuel samples (shown in Table 4.1) were used in this study.

Table 4.1 – Description of the fuel samples [75].

ID Type # of Cycles
Burnup

(MWd/kg)
U1 UO2 3 ∼38
U2 UO2 3 ∼54
U3 UO2 5 ∼71
U4 UO2 5 ∼75
U5 UO2 3 ∼91
U6 UO2 7 ∼92
U7 UO2 10 ∼121
M1 MOX 1 ∼21
M2 MOX 2 ∼44
M3 MOX 3 ∼64
M4 MOX 4 ∼72

The fuel samples were inserted into a centrally located stainless steel tank, see Fig. 4.1, filled

with different moderators. The moderators were full-density H2O, a mixture of H2O and

D2O (37.0 w.% D2O), and borated H2O (2,023 ± 46 ppm of boric acid). In this chapter, the

borated H2O moderator is referred to as BHO and the D2O/H2O moderator as DHO. The

reactivity was measured for each moderator, leading to 32 reactivities being available for DA.1

1The reactivity for the U4 sample in the BHO moderator was not measured, which is why there are 32 and not
33 reactivities.
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Figure 4.1 – Configuration of the center of Proteus during LWR-PII [86].

The absolute reactivity worth of a fuel sample, ∆ρ, was measured by replacing a reference

sample (Uref) of fresh, 3.5 w.% enriched UO2 with the given burned fuel sample, Ui. The

reactivity worth is calculated with Eq. (4.1), where kr e f is keff with Uref inserted into the core,

and ki the keff with Ui inserted. The ∆ρ of a natural uranium sample (Unat) was also evaluated

and used to create a relative reactivity worth, or ∆ρr el , as seen in Eq. (4.2). This ∆ρr el is the

integral parameter used for DA in this study.

∆ρ = 1

kr e f
− 1

ki
(4.1)

∆ρr el =
∆ρ(Uref → Ui)

∆ρ(Uref → Unat)
(4.2)

In order to accurately perform a DA, the covariances between the experimental ∆ρr el needed

to be estimated. Because each ∆ρr el used a normalization to a Unat sample, ∆ρr el sharing

the same moderating condition have an inherent correlation. The analysis to estimate these

experimental correlations is provided in Appendix A.3.1. It describes other possible sources of

correlation, besides only the normalization.

The standard deviations of the ∆ρr el are ∼0.7% and the off-diagonal correlation coefficients

are ∼0.5. Compared to other DA problems, like the NEA benchmark in Chp. 6 where the

relative standard deviations are as high as 3.0%, the experimental uncertainties are fairly low.

With lower experimental uncertainties, we can expect greater reductions in the calculated

value uncertainties from applying DA. In contrast with the NEA benchmark, there are many
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more and higher experimental correlations for LWR-PII. Both of these factors together (i.e. low

experimental uncertainty and large correlations) led to big χ2 values with Eq. (2.23). This is

important to keep in mind for later when the BMC and BFMC methods are discussed.

4.2.2 CASMO-5M Models

LWR-PII was simulated with the CASMO-5M fuel assembly code (version 1.07.01) [87] and the

E7R0 125, 586-group nuclear data library based on ENDF/B-VII.1 [68]. The neutron transport

calculations were done with the 19-energy-group structure of CASMO-5M. The models, shown

in Fig. 4.2, simulated only the core’s central assembly and had reflective boundary conditions

on their outer surfaces. Criticality was achieved for Uref by searching for the critical axial

buckling. This critical buckling was then fixed for the rest of the models where the various

Ui and Unat were simulated as inside the core. The buckling was also fixed when SHARK-X

perturbed the CASMO-5M inputs parameters. Seven significant digits were used in the post-

processing, which accounted for rounding at the pcm level of keff. Such a convergence level

can be hard to reach with CASMO-5M. Care must be taken to ensure that the eigenvalues are

well converged and numerically precise. Therefore, a fixed number of 50 outer iterations was

requested in the 2D transport calculations in order to obtain a tight convergence.

was also measured, and the reactivity difference between the cases
with the reference and the burnt samples in place was divided by
the latter effect. The relative reactivity worth, i.e. the ratio of these
two reactivity changes

D9 rel ¼ D9ðfresh enriched U/burntÞ
D9ðfresh enriched U/natural UÞ

is, unlike the absolute reactivity worth, independent of the size of
the system calculated, and can therefore be directly compared to
the values calculated for a sub-system of the experimental config-
uration, e.g. the PWR test region, using a lattice code such as
CASMO. Since the neutron spectrum in the immediate surround-
ings of the sample in the Proteus test zone is practically the same as
in a critical uniform PWR configuration, the ratios calculated using
a model of the PWR test region are representative of those in the
Proteus reactor.

The 1s experimental uncertainty of the relative reactivity worth
(measured using the compensation method) is about 0.5%. Un-
certainties in the absolute reactivity calibration due to those of the
nuclear data used cancel out in the determination of the relative
reactivity worth.

3. Calculations

The CASMO-5 fuel assembly code, version 2.03.00 (Rhodes and
Ferrer, 2011; Rhodes et al., 2012), developed by Studsvik Scand-
power, was used to determine both the isotopic inventories of the
burnt samples (depletion calculations) and their reactivity worth in
LWR-PROTEUS. CASMO-5 represents the latest development of the
widely-used CASMO suite of assembly codes. CASMO-5 uses basi-
cally the same calculation methods as the previous CASMO-4 code,
in particular a characteristics method for the two-dimensional
transport calculation, which allows a detailed geometrical repre-
sentation of the fuel assembly without using pin-cell homogeni-
zation. One important difference between CASMO-5 and CASMO-4
is the higher energy resolution. In particular, the number of energy
groups in the library has been increased from 70 to 586. CASMO-5
also uses a finer energy group structure for the two-dimensional
characteristics transport calculation. For example, the default
structure used for UO2 assemblies at this stage of the calculation in
CASMO-4 comprises 8 groups, whereas 19 groups are used in
CASMO-5. The E7R1 201 cross-section library, based on the ENDF/
B-VII release 1 evaluation (Chadwick et al., 2011), but with data
for 239Pu taken from JENDL-4.0, was used for all the calculations
described here.

3.1. Sample compositions

The samples were depleted to their measured burnups (deter-
mined using the 148Nd method) using a reflected-assembly model
for the UO2 samples and a MOX assembly surrounded by UO2 fuel
(using the M� N assemblies capability of CASMO-5) for MOX. The
relocations of the highly-burnt UO2 samples to different assemblies
were followed explicitly using theMOVEROD option. By using these
geometrical models, the effects of the surroundings (e.g. adjacent
guide tubes) on the neutron spectrum in the samples were
explicitly taken into account. The irradiation histories, viz. the
variations of sample power, moderator and fuel temperature and
soluble boron concentration, were approximated with 4 steps per
cycle, based on data obtained from nodal simulations by the fuel
vendor. During each of these steps, the values of the state param-
eters listed above were kept constant. The decay of radioactive
nuclides after discharge of the samples was calculated to the time
of the PROTEUS experiments. Default options and a modeling

representative of production calculations were mostly used for the
burnup calculations, but with burnup steps of � 1 MWd/kg,
consistently with earlier work at PSI. Comparisons of calculated
nuclide inventories to the results of the chemical analyses have
been previously published (Grimm et al., 2014). These comparisons
showed that CASMO-5 predicts the concentrations of the relevant
nuclides for the reactivity loss of the fuel with satisfactory to good
accuracy. For example, the calculated concentrations of themain Pu
isotopes (239Pu, 240Pu and 241Pu) agree with the measured values
within 6% (with very few exceptions), and the concentrations of the
neutronically important fission products 133Cs, 143Nd, 145Nd, 147Sm,
150Sm, 151Sm, 152Sm, 153Eu and 155Gd are mostly predicted within
10% or less. Larger deviations in the order of 10e20%, and even
higher in a few cases, have been observed for the minor actinides,
particularly the Cm isotopes, and the metallic fission products.
These latter nuclides are however less important for the reactivity
loss with burnup.

3.2. Reactivity worths

The reactivity worths of the samples were calculated using a
CASMO-5 model of the central PWR test region. This model is
illustrated in Fig. 2 and is the same as that used in previous work
with CASMO-4E (Grimm et al., 2008). The part of the test zone
modeled comprises the array of 11� 11 PWR fuel rods, the extra
moderator between the boundaries of the peripheral pin cells and
the central tank, the stainless steel central tank itself and the pure
H2O moderator between the tank and the boundaries of the first
pin cells in the BWR assemblies. In CASMO-5 the PWR test region,
surrounded by the above materials, was modeled as a “reflected
BWR assembly”. The central tank is simulated as a “channel box” in
this model. One half of the thicknesses of the mentioned materials
were included in the model (but the Zircaloy channel box of the
BWR fuel assembly was neglected). With the reflection conditions,
including half of the thickness of each material preserves the total
quantities of the materials between the peripheral fuel rods in the
PWR test region and in the adjacent BWR fuel assembly (but it
cannot exactly represent their geometrical arrangement). Details of
the actual PWR test region, in particular the overclad and the guide
tube surrounding the sample as well as the steel structure bars at
the corners, were included in the model.

This model was calculated with reflective boundary conditions,
and the reference case (with the fresh enriched UO2 sample
inserted) wasmade critical (keff ¼ 1) by automatically adjusting the
axial buckling. For the calculation of the reactivity worths, the
compositions of the burnt samples obtained from the depletion
calculations were successively allocated to the central position,
while keeping the buckling fixed. The reactivity effects were

H O ModeratorSteel 
Structure
Bar

Guide Tube
for Sample
Insertion

H O,
H O/D O, or
Borated water
Moderators

Stainless steel
central tank

Fig. 2. Geometry of the CASMO-5 PWR test region model.
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Figure 4.2 – 2D, reflected assembly model in CASMO-5 [76].

4.2.3 SHARK-X

The nuclear data covariances came from SCALE6.1 [88]. Due to the large computational cost

of estimating the sensitivity coefficients needed for GLLS, only 41 isotopes were considered.

These isotopes were determined to be most relevant to the uncertainty in ∆ρr el coming from

nuclear data [89]. The following nuclear data were considered for fissile and fertile nuclides:

elastic scattering (σe), inelastic scattering (σin), (n, 2n) reaction, fission (σf), capture (σc),

the average number of neutrons (prompt and delayed, or MT452) per fission (ν̄), and the

average fission spectrum (χ) for fission from thermal neutrons. For low Z nuclides, only total

scattering was considered, not distinguishing between σe and σin.
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The sensitivity coefficients used in GLLS were calculated by SHARK-X with Equivalent Gen-

eralized Perturbation Theory (EGPT) [90]. SHARK-X perturbs an input nuclear datum, σ0,

individually and independently to become a perturbed nuclear datum, σi . CASMO-5M is then

run with both σ0 and σi to create two keff values: k0 and ki . These values are used together in

Eq. (4.3) to calculate the relative sensitivity coefficient of keff to that nuclear datum, Sk,σ.

Sk,σ = σ0

k0

ki −k0

σi −σ0
(4.3)

With EGPT, the sensitivity coefficient of ∆ρr el is a function of the Sk,σ of a reference and of

two perturbed states, as seen in Eq. (4.4). Here, Skr e f ,σ, Sk1,σ, and Sk2,σ are the sensitivity

coefficients of keff for the reference state and perturbed states 1 and 2. The variables λr e f , λ1,

and λ2 are the lambda eigenvalues (1/keff) as calculated by CASMO-5M. For ∆ρr el , state 1 is

Ui, state 2 is Unat, and the reference state is Uref.

S∆ρr el ,σ =− λr e f (λ1 −λ2)

(λr e f −λ1)(λr e f −λ2)
Skr e f ,σ+

λ1

λr e f −λ1
Sk1,σ−

λ2

λr e f −λ2
Sk2,σ (4.4)

SHARK-X calculates Sk,σ with direct perturbation. The perturbations to σ0 are chosen to be

small enough for the linearity of keff to be guaranteed, but also for a change keff to still be

observable. SHARK-X uses a 3-point-adaptive perturbation scheme in direct perturbation.

The first point is the nominal or unperturbed CASMO-5M run common to all nuclide-reaction

pair perturbations. The second point is a scoping calculation using a default perturbation size

of 50% the nominal nuclear-datum value. The third simulation is chosen to generate a 0.1%

change in the response, assuming a linear trend between the unperturbed case (first point)

and the scoping calculation (second point).

For stochastic DA, SHARK-X made 1,000 random samples of the nuclear data. The data were

sampled from multi-variate Gaussian distributions. The nuclear data sample set was then

given to the CASMO-5 models to make 1,000 samples of the 32 ∆ρr el . There were three

moderating conditions, each with eleven keff calculations for the Ui and two more for Uref

and Unat. That means 38,000 CASMO-5M simulations were done in total. For the direct

perturbation calculations at 41 isotopes, approximately three nuclear data per isotope, 19

energy groups, and 32 relative reactivity values meant that approximately 90,000 CASMO-5

simulations were done.

4.3 Relative Reactivity Adjustments

In this section, the results from applying DA to the 32 relative reactivity values (∆ρr el ) are

analyzed. In particular, we consider how the biases may have arisen from nuclear data or from

other sources such as modeling approximations, CASMO-5M methodologies, or the quality of
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the experiments. This analysis is done with the ∆χ2 parameter detailed in Section 4.3.1 and

the nuclear data adjustments. Only GLLS and MOCABA were used for this analysis. Weight

degeneracy occurred for BMC and BFMC because of the large prior χ2 values of the integral

data set. The weight degeneracy would have required many samples to have a statistically

accurate posterior. Unfortunately, already the 128,000 CASMO-5 runs were computationally

expensive and having more was not technically feasible. Because of this, BMC and BFMC

were not applied. The nuclear data adjustments are applicable only to these specific models,

for the SHARK-X code system, and for the given nuclear data. They are not intended to be

recommendations to nuclear data evaluators.

4.3.1 Pre-adjustment Inconsistency Evaluation

Before DA, it was important to ensure consistency of the integral parameters to avoid spurious

and non-physical adjustments.2 For this data set, the CASMO-5 models and SHARK-X princi-

pally created the inconsistency. SHARK-X did not fully account for resonance self-shielding

when it perturbed nuclear data. Additionally, neutron leakage effects in the 2D reflected

assembly models may have been inaccurate and have biased the posteriors.

We used the ∆χ2 metric (Section 2.3.3) to filter out inconsistent benchmarks. The filter

removed any ∆ρr el where E and C were highly inconsistent. The inconsistent integral datum

could not then influence the adjustment and erroneously skew the posteriors. The ∆χ2-filter

was chosen because it accounts for correlations between integral parameters, which for this

application are important. The Adjustment Margin (Section 2.3.2) does not take into account

correlations. At the point temporally when this work was done in the thesis, MLO (Section

2.3.4) had not yet been fully described for neutronics problems. Because of this, it was not

used in this study, but certainly could have been and would be very useful.

To understand the importance of correlations, consider Fig. 4.3 which shows the biases of

the 32 ∆ρr el values. The first analysis of this plot could say that parameters whose error

bars do not cover a C/E - 1 = 0 are inconsistent and should be removed from influencing

the adjustment. This is the Adjustment Margin approach. While this checks if the biases are

consistent with their standard deviations, it cannot determine if they are consistent with their

correlations.

Fig. 4.4 shows the correlations between the prior calculated ∆ρr el , which range from 0.67 to

0.99. Consider the last two ∆ρr el of the H2O data set (M3 and M4) in Fig. 4.3. Their E and

C have correlation coefficients of 0.95 and 0.50, respectively. Without considering correlations,

both integral parameters might be included in DA because both have uncertainty ranges that

cover C/E - 1 = 0. This does not consider that these C/E - 1 values are not consistent given

their high degree of correlation. While M4 has a bias of 1.2%, M3 has a bias of -3.2%. Two

highly correlated integral parameters should have similar biases given identical inputs to their

2The importance of consistency of the integral data is described in detail in Section 2.3, along with the different
techniques to account for it.
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Figure 4.3 – Prior biases for all ∆ρr el with error bars as 1-relative-standard deviation. The
∆ρr el are categorized into those that are and are not removed with ∆χ2-filtering.

calculation and identical experimental conditions. Something is amiss in the experiment or

calculation and, therefore, the safest decision is to eliminate them from the DA. Their bias

likely arises from sources other than nuclear data, like the modeling of the fuel burnup, the 2D

model in CASMO, or from experimental methods.
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Figure 4.4 – Correlations between the 32 calculated ∆ρr el .

When∆χ2-filtering was applied to the 32∆ρr el , with a threshold of 1.25, 22∆ρr el are removed,

leaving ten available for DA. The 1.25 threshold corresponds to one standard deviation above

χ2 = 1 when there are 32 degrees of freedom. The inconsistency caused by incoherent biases

and correlations is reflected in the prior χ2 per degree of freedom for the data set, which was

12.1. With these ∆ρr el removed, the χ2 per degree of freedom decreased to 2.1. These ten

∆ρr el were the integral parameters used in DA.
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The importance of including the E covariances presented in Section 4.2.1 can be seen with

∆χ2-filtering. If the covariances are excluded from ME, certain ∆ρr el (specifically BHO-U5,

DHO-U1, DHO-M3, H2O-M1) are no longer removed from the adjustment. These parameters

would then influence the DA, running the risk that they create unreliable posterior nuclear

data and, consequently, unreliable posterior ∆ρr el .

4.3.2 Posterior Calculated Values

The ten remaining ∆ρr el drove the adjustment. The 22 integral parameters that were filtered

out were transformed into passive responses: they were still adjusted but did not actively

contribute to the adjustment. For example with GLLS, they were not included in Eqs. (2.17) and

(2.18), but their posteriors were computed with Eqs. (2.19) and (2.20). The passive responses

were adjusted based on the correlations with the ten active ∆ρr el found in MC.
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Figure 4.5 – Posterior biases for all LWR-PII fuel samples calculated with GLLS and MOCABA.
Uncertainties are 1 standard deviation.

Fig. 4.5 presents the posterior biases calculated with GLLS and MOCABA. In general, the biases

improved, especially for the DHO fuel samples. For all 32 ∆ρr el , the χ2 per degree of freedom

(DoF) decreased from 12.1 to 11.7. For the ten ∆ρr el that actively influenced the adjustment,

their χ2 per DoF reduced from 2.1 to 0.96.

The C′ between MOCABA and GLLS had a good agreement for 28 out of 32 ∆ρr el . Four

samples in the H2O data set showed large disagreements. Similarly for C′ uncertainty, there

were good agreements except for four H2O samples. The disagreement was caused by the

limited numerical precision of CASMO-5M when it was used to calculate ∆ρr el . A round-off

error caused a spread of values that cannot be fully represented with the direct perturbation

approach to compute sensitivity coefficients and thereby created differences between GLLS

and MOCABA. Rounding effects when calculating a small difference in keff were simply more

pronounced for these four samples, which was why they showed greater disagreement.

The BHO-M1∆ρr el showed the largest improvement, attributable to its large prior uncertainty

and to being included as an active integral parameter. Certain biases degraded, i.e. C/E
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- 1 moved farther from zero. Take DHO-M4 and H2O-M4, which exemplify inconsistent

integral parameters in terms of their correlations with other parameters. Both showed much

different biases than other∆ρr el in their moderator group, despite high inter-correlations. The

adjustments sought to push the majority of biases to zero, and this minority of inconsistent

∆ρr el also were pushed in the same direction. Unfortunately, because they had prior biases

that were inconsistent with the group and were also highly correlated to them, they were

pushed in the same direction but away from C/E - 1 = 0. This effect is highlighted by the

posterior χ2 per DoF. For all 32 ∆ρr el , it was still far from 1.0 at 11.7. For the ten active ∆ρr el , it

was reduced to 0.96. The overall adjustment for all 32 ∆ρr el was less effective because certain

biases worsened.

The importance of the E covariances was seen when DA was performed again with them

omitted from ME in the DA equations. The average C′ standard deviation of the 32 ∆ρr el was

smaller without covariances at 0.384% vs. with at 0.372%. The average posterior bias was

smaller as well at -0.373% vs. -0.811%. The E covariances constrained the adjustment, meaning

that C standard deviations and the posterior biases were bigger. This result highlights the

importance of properly quantifying ME in DA.

4.3.3 Posterior Nuclear Data

The sensitivity coefficients used in GLLS allowed for a detailed analysis of the posteriors. We

could show how C changes were created by adjustments of nuclear data and how reductions in

C uncertainty came from changes to the nuclear data covariance matrix. In this way, we gain

deeper insights into how biases in the CASMO-5M calculations might be caused by nuclear

data. This breakdown was only possible with GLLS thanks to the sensitivity coefficients. With

MOCABA, the information was lost because all the nuclear data are perturbed simultaneously.

In order to capture the effect of each of MOCABA’s posterior nuclear data, simulations would

have needed to be re-done perturbing individually every single nuclear datum.

To calculate the effect of an adjustment, Eq. (4.5) can be used. Here, σ′
i is a nuclear data set

that is identical to the prior (σ0) except that the i th nuclear datum is replaced by the posterior.

For example, to calculate the change in C created by changes in σ associated to U-238, all the

data in σ0 that correspond to U-238 would be replaced by the U-238 data in σ′.

C′(σ′
i ) = C(σ0)+S(σ′

i −σ0) (4.5)

Tables 4.2 and 4.3 break down the C adjustments by their source, i.e. due to nuclear data

adjustments. Table 4.2 shows how the nuclear data adjustments of each nuclide contribute

to the change in C. Here, the C adjustment was averaged across all 32 ∆ρr el . The nuclide

contributing most to the C adjustment was U-238, followed by Pu-239 and U-235. At a smaller

scale, Pu-241 and Pu-242 were important along with the moderator H-1, the clad Zr-92, and

73



Chapter 4. Data Assimilation of LWR-PROTEUS Phase II

Table 4.2 – Contribution of each nuclide to the GLLS adjustment of C.

Actinides Fission Products and Others
Isotope (C’-C)/C (%) Isotope (C’-C)/C (%)
U-238 1.91 H-1 0.05
Pu-239 -1.06 Zr-92 -0.04
U-235 0.36 Rh-103 0.03
Pu-241 -0.09 Nd-143 0.01
Pu-242 0.08 Eu-154 -0.01

Table 4.3 – Contribution of the top nuclear data to the GLLS adjustment of C.

Actinides Fission Products and Others
Isotope/Data (C’-C)/C (%) Isotope/Data (C’-C)/C (%)
U-238 σc 1.90 H-1 σc 0.05
Pu-239 ν̄ -0.93 Zr-92 σc -0.04
U-235 σc 0.31 Rh-103 σc 0.02
Pu-239 σf -0.11 Nd-143 σc 0.01
Pu-242 σc 0.08 Eu-154 σc -0.01

fission products like Rh-103, Nd-143, and Eu-154. Importantly, the table shows that certain

adjustments were positive and others were negative and that the total adjustment was an

integral quantity that had canceling or compensating effects.

To further pinpoint whichσwere most important, Table 4.3 must be examined. The influence

of U-238 predominantly came from changes to its capture cross section, σc. U-235, Pu-242,

and the fission products and structural materials were also all dominated by adjustments of

σc. The importance of σc can be related to the large sensitivity of reactivity to capture, or

parasitic neutron absorption. Pu-239 meanwhile had contributions from ν̄ and σf.

The breakdown can go one step deeper and examine how the adjustments at the energy group

level contributed to the change in C. Fig. 4.6 presents the relative nuclear data adjustments

created with GLLS and MOCABA and also the breakdown of how the GLLS adjustments at

each energy group contributed to the average C adjustment.

First considering only the adjustments, GLLS and MOCABA agree well, which confirms results

presented in Chp. 3. Continuing to how the individual nuclear data adjustments affect C,

changes to U-238 σc at energies below 0.1 eV contributed most to the C adjustments. At these

low energies, ∆ρr el was particularly sensitive to σc. Pu-239 ν̄ showed uniform adjustments

from 0.01 eV to 10 keV, but below 1 eV it created very significant changes to C because, again,

the sensitivity coefficients were highest there. The adjustment showed that changes to U-235

σc in energy group 5 (0.149 to 5.53 keV) of ∼5.7% produced the largest C adjustment at 0.12%.

Adjustments below 0.2 eV and above 5.53 keV were also important. Pu-242 σc saw its most

important contribution at ∼2.7 eV where there is a significant resonance of over 30,000 b.
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Figure 4.6 – Nuclear data adjustments, (σ′−σ0)/σ0, with DA (above) and contribution of
the adjustment of the average change in C. Blue shaded region is the bootstrap-estimated
95%-confidence interval (with 500 samples) of the MOCABA adjustments.

We can similarly break down from where the reduction in the C uncertainties (∆C′) originated

in M′
σ when all nuclear data were simultaneously adjusted. Table 4.4 shows the top ten vari-

ance/covariance terms that contribute to ∆C′ . The variances are converted into standard

deviations and the covariances are square rooted for consistency in units. The ∆C′ was dom-

inated by Pu-239 ν̄ uncertainties, which created a prior uncertainty of 1.34%. Through the

adjustment, this uncertainty was reduced to 0.78%. The reduction is possible because of the

reaction’s high sensitivity and large uncertainty.

This result illustrates how DA can be useful to understand ∆C′ . Such a large reduction hints

that the uncertainty of Pu-239 ν̄ was likely overestimated in the prior covariance matrix (from

SCALE6.1). In fact, the new covariance matrix in SCALE6.2 has the ν̄ uncertainty reduced

from ∼1% to 0.2% [91]. These results for Pu-239 ν̄ motivate using the SCALE6.2 VCM in

future SHARK-X problems. Most other isotope/reaction pairs saw modest reductions in their

contributions to ∆C′ , except for U-238 σc where uncertainty decreased from 0.43% to 0.29%.

Another important component of the ∆C′ reduction was the development of correlation terms

that did not exist in the prior, both between the nuclear data of an isotope and between

isotopes themselves [24]. Table 4.5 shows how these correlations served to reduce ∆C′ . Here,

the uncertainties are presented as negative standard deviations. They are the square roots of

the absolute values of the negative covariances with the -1 multiplied after the square root.
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Table 4.4 – Decomposition of average ∆C′ given as 1-relative-standard deviations (%).

Isotope/Data Pair Prior Posterior
Pu-239 ν̄ / Pu-239 ν̄ 1.34 0.78
U-235 ν̄ / U-235 ν̄ 0.51 0.47
Pu-239 σf / Pu-239 σf 0.51 0.47
U-238 σc / U-238 σc 0.43 0.29
Pu-239 σf / Pu-239 σc 0.40 0.35
Pu-239 σc / Pu-239 σc 0.36 0.34
U-235 σf / U-235 σf 0.29 0.27
U-235 σc / U-235 σc 0.25 0.24
Pu-239 σc / Pu-239 σc 0.23 0.22
U-235 σc / U-235 σf 0.23 0.21

Table 4.5 – Average ∆C′ (%) created by new correlations not present in prior.

Isotope/Data Pair Posterior
Pu-239 σf / Pu-239 ν̄ -0.62
U-235 ν̄ / Pu-239 ν̄ -0.54
Pu-239 σc / Pu-239 ν̄ -0.49
U-235 σf / Pu-239 ν̄ -0.33
U-235 σc / Pu-239 ν̄ -0.28
Pu-240 σc / Pu-239 ν̄ -0.26
Pu-239 σf / U-235 ν̄ -0.22
U-238 σc / U-235 ν̄ -0.22
U-235 σc / U-238 σc -0.19
Pu-239 σc / U-235 ν̄ -0.18

This is done to ensure consistency in units with Table 4.4. Important reductions in uncertainty

came from new correlations between Pu-239, specifically Pu-239 σf / Pu-239 ν̄ and Pu-239 σc

/ Pu-239 ν̄. Other important reductions arose from correlations between Pu-239 ν̄ and other

isotopes’ data such as U-235 ν̄, U-235 σf, or Pu-240 σc. New correlations with U-235 ν̄ were

also significant to making ∆C′ smaller relative to the prior.

Fig. 4.7 shows the prior and posterior correlations for Pu-239 nuclear data. Firstly, it illustrates

the strong agreement between the GLLS and MOCABA posteriors. Secondly, it shows how

correlations which were not in the prior appeared in the posterior. Large negative correlations

appeared between σf and ν̄, which explains this pair’s dominance in Table 4.5.

Due to the limits of the current DA scheme of the LWR-PII experiment, as evidenced by the

large number of ∆ρr el values removed with ∆χ2-filtering, we cannot definitively attribute

the bias to any particular nuclear data. The adjustments of the nuclear data and of their

covariance matrix show the importance of U-238 σc. This cross section heavily influences

the C adjustment and was also a key source of uncertainty reduction due to changes in the

covariance matrix. These results serve as a starting point for future bias evaluations.
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Figure 4.7 – Prior and posterior nuclear data correlation matrices for Pu-239. Correlations are
given from high to low energy for each datum.

Perhaps the DA can be improved with higher fidelity in modeling the burnup history of the fuel

samples. Other improvements could come from considering the effects of nuclear data, includ-

ing fission yields, on the nuclide composition of the fuel samples used in the∆ρr el calculations.

Another option to improve the inconsistency would be to use the experimental compositions

of the fuel samples that were measured in post-irradiation examination experiments instead

of the compositions calculated by CASMO-5. Importantly left out from the DA equations used

here was a modeling and methodology covariance matrix. This would have accounted for

biases from modeling approximations and the neutron transport methodology. While this

matrix is difficult to calculate for a deterministic neutron transport code like CASMO-5M,

introducing it may help improve the adjustments. It could possibly be estimated in future

projects with the MLO method, described in Section 2.3.4.

4.4 Conclusions

This study applied DA methods to the LWR-Phase II experiments using CASMO-5M and the

SHARK-X tool. The methods were Generalized Linear Least Squares (GLLS) and Monte Carlo

Bayesian Analysis (MOCABA). Analysis of the measured relative reactivity integral parameters
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showed inconsistencies between biases as quantified with ∆χ2-filtering. Highly correlated

relative reactivities had very different bias behaviors. This indicated that their biases likely

arose not from nuclear data but rather from the CASMO-5M models of the experiments, from

inaccuracies in the irradiation histories of the fuel samples, or from the experimental data.

Ten out of 32 relative reactivities were of sufficiently high quality to be used in DA, i.e. the

origins of their biases could be attributed to nuclear data or experimental uncertainty. This

unfortunate loss of experimental data showed a drawback related to the filtering methods.

In the next chapter, the Marginal Likelihood Optimization technique is shown to help with

inconsistent integral data without filtering.

The only differences between MOCABA and GLLS posteriors were caused by numerical round-

off errors. Finally, analysis of the nuclear data adjustments showed that changes to the

U-238 capture cross section were very important to improving the bias of the CASMO-5M

simulations. The posterior nuclear data covariance matrices saw significant reductions in

the variance terms of Pu-239 fission multiplicity data that led to reductions in the calculated

∆ρr el uncertainty. This supports previous conclusions that the Pu-239 fission multiplicity

uncertainty may have been over-estimated in the SCALE6.1 covariance data.

4.5 Chapter’s Key Points

• DA was done with the reactivity experiments of LWR-Proteus Phase II

• DA tools were implemented alongside PSI’s code SHARK-X

• This experimental data set showed large degrees of inconsistency, particularly in terms

of their correlations

• When ∆χ2-filtering was done, only ten out of 32 integral parameters remained for the

adjustment

• The large amount of lost data demonstrates the attractiveness of MLO for other studies

• MOCABA and GLLS were shown to give agreeing results for a different neutron transport

code (CASMO-5), nuclear data covariances (SCALE6.1), and experimental data set

• The adjustments showed that Pu-239 fission multiplicity was likely over-estimated in

the SCALE6.1 covariance data

78



5 Data Assimilation of Post-Irradiation
Examination Experiments

Our naive trust in models, and our

failure to realize how fragile they were to

our choice of assumptions, yielded

disastrous results.

–N. SILVER, The Signal and the Noise [39]

This chapter presents DA of post-irradiation examination data to adjust the model parameters

of the GEF code. The fission yields (FYs) produced by GEF create large uncertainties in

the calculated fission product concentrations in spent fuel. For the fuel in this study, the

uncertainties are as large as 56% and average at 21%. Subgroup 26 of the OECD’s WPEC [10] set

target accuracies on nuclide inventories at a 1σ of 20% for fission products. The uncertainties

here from GEF, on average and significantly at extremity, exceed this target accuracy and,

therefore, point to the attraction of using DA in burnup. The goal of applying DA was to

reduce the bias and uncertainties of calculated fission product concentrations in spent fuel.

Additionally, the posterior FYs can be examined for trends, from a nuclear data standpoint.

DA was done with MOCABA and BFMC. This is because GEF can sample its model parameters

and produce sample sets of FYs for use in neutron transport. The GEF FYs, and therefore

the calculated nuclide concentrations using them, have non-normal distributions. As MO-

CABA assumes that the random variables have normal distributions and BFMC does not,

this application was considered to be an interesting study of the DA methods. Additionally,

the integral data set has a large degree of inconsistency, which also makes it interesting to

apply the Marginal Likelihood Optimization technique. The study was structured around the

original goals of the thesis: profit from experimental data from Proteus and build tools for PSI.
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5.1 Introduction

Among nuclear data, FYs and their uncertainties are very important for burn-up [92, 93, 94, 95,

96], decay heat [97, 98], and nuclear waste management calculations [99]. These simulations

need accurate predictions of the concentration of fission products (FPs) in spent fuel, which

require reliable FY data with high quality covariances. Historically, nuclear data libraries

did not consistently and completely provide covariances for FYs; they only gave nominal

values and variances. A large amount of recent research has been devoted to proposing

and testing methods to generate missing FY covariance data [100, 101, 102, 103]. One such

method uses the code GEF [38]. GEF’s covariance data create large uncertainties, up to 50%,

of calculated FP concentrations. These large uncertainties make burnup calculations a strong

target for DA. To do DA in this context, it is logical to use the experimental counterpart of

calculated FP concentrations, or post-irradiation examination data. While in this chapter DA

is done for GEF, it would also be feasible to do it for the FY uncertainty information given in

Refs. [100, 101, 102, 103].

GEF produces covariance matrices for fission observables by Monte-Carlo sampling its model

parameters. Fission observables consist of nuclear data like FYs, prompt fission neutron

spectra, and prompt fission neutron multiplicities. These covariance matrices can then be

used for uncertainty quantification and sensitivity analysis studies. A study presented in

Ref. [104] used GEF to assimilate ENDF/B-VII.1 [68] FY data as the experimental evidence in

DA. Herein, we propose using post-irradiation examination (PIE) data. PIE data have been

used for nuclear data adjustments [105, 106], but never for FYs and only with sensitivity-based

[27] approaches. It is important to consider FYs in DA with PIE data; the FPs are highly

sensitive to the FYs and the FYs have large uncertainties.

We used GEF to create FYs and covariance data for thermal fission of U-235, Pu-239, and

Pu-241 and fast fission of U-238. These FYs were then used in CASMO-5 simulations of spent

fuel of the LWR-Phase II (LWR-PII) experimental campaign of Proteus. The integral data here

are the concentrations of FPs in the spent fuel samples. The experiment and calculations

were then used to perform a Bayesian update of the GEF model parameters. These posterior

model parameters were given to GEF to create posterior FYs and covariance data. Finally,

the posterior FYs were passed to the CASMO-5 simulations to evaluate their effect on the

predicted FP concentrations.

MOCABA (Section 2.2.2) and BFMC (Section 2.2.3) were used to do the DA. BMC could not

be used because the prior χ2 values of the integral data set were so large as to cause imme-

diate weight degeneracy. GLLS was not used because it would have required extensive code

development to calculate sensitivity coefficients to FYs in CASMO-5. Additionally, burnup

simulations are non-linear and would invalidate GLLS’ linearity assumption. Chp. 3 showed

that BFMC is not an unbiased estimate of the MAP distribution. The bias causes BFMC to

return spurious posteriors for low χ2 values due to a weight degeneracy. However for large

χ2 values, BFMC conservatively returns posteriors closer to the prior. In this way, BFMC can
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be thought of as compensating for the inconsistency of the integral data set. Because this data

set is in the regime of a large χ2, it was determined that BFMC could be applied for this and in

the worst case no adjustment from prior to posterior would occur.

This large degree of inconsistency between the experimental data and calculations, i.e. its large

prior χ2 is important to consider in the DA. In this work, the Marginal Likelihood Optimization

technique (MLO), as presented in Section 2.3.4, was applied to account for the inconsistency.

It was used instead of AM or∆χ2-filtering in order to keep all the integral points in the analysis.

These techniques would have removed up to 75% of the integral data, which would have been

an unfortunate loss of valuable information. Chp. 3.1.1 showed that applying MOCABA to

inconsistent integral data sets can create dangerous adjustments, in terms of their basis in

physics. Additionally, it was shown that BFMC will produce a small to possibly negligible

adjustment when there is a large χ2, and therefore the DA would not be as effective as it

could be. This point makes this work interesting to study the effect of MLO. By adding an

extra uncertainty term to account for the inconsistency, this helps to constrain the MOCABA

adjustments. It will also lower the χ2 and allow for BFMC to adjust to a larger extent as well.

This application is challenging for MOCABA because the FYs produced by GEF can be non-

Gaussian. Their uncertainties propagate through calculations and create non-Gaussian dis-

tributions in integral parameters like k∞ or nuclide compositions [107]. With non-Gaussian

parameters, MOCABA may cause biases in the posteriors due to its Gaussian assumption,

as shown in Section 3.1.2. In this study, we apply both methods to assess the effect of this

non-Gaussianity.

In the following text, we present the adjustments of the GEF model parameters made with

MOCABA and BFMC, with the LWR-PII PIE data, and CASMO-5 models. Section 5.2 outlines

FYs and GEF. Here, we summarize the details that are most important for this work, but do not

attempt to fully describe or explain the physics of the GEF model. If variables or phenomena

are unclear to the reader, please refer to the GEF documentation cited herein, which certainly

have more detailed and elegant explanations than could be achieved in this thesis.

Section 5.3 details the LWR-PII PIE data and the calculation scheme for DA (GEF input param-

eters, CASMO-5 models, and DA procedure). The results of the DA are presented in Section 5.4.

The adjusted model parameters are given and discussed, along with the FYs generated with

them. The prior and posterior GEF FY data are compared to those given in ENDF/B-VIII.0 [11]

and JEFF3.3. The posterior FY data were re-used in the CASMO-5 simulations, both with the

PIE data that were used to adjust the model parameters and with PIE data that were not part

of the adjustment. We focus on the differences between the MOCABA and BFMC adjustments

as well as the effect of applying MLO. The posterior FYs, FY correlation matrices, and nuclear

data are all investigated.
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5.2 GEF Background and Theory

Nuclear fission creates a large variety of phenomena. This process can certainly be modeled,

and often is in very elaborate ways. These kinds of highly detailed models, using concepts like

the Langevin equations [108], are often said to be microscopic or optical. TALYS [109] and EM-

PIRE [110] are examples of microscopic codes used for FYs. To date, only the pre-saddle and

post-scission1 phenomena are well mastered with optical models and statistical de-excitation

codes [111]. These models also need significant computational resources. Microscopic model-

ing is, therefore, still challenging for the field.

Unfortunately, these limitations are highly consequential because FPs must be well estimated

for nuclear technology applications. The fission fragments, after emitting prompt neutrons,

are the starting points for decay chains. The decay chains then determine analyses for decay

heat, the nuclear fuel cycle, nuclear safeguards, or the measurement of reactor anti-neutrinos.

To meet the demands of high quality FY evaluations, empirical and semi-empirical models

are often employed. A foundational empirical model was made by Wahl and is often called

Wahl systematics [112]. It has been developed since the early 1960s and is a standard in FY

evaluations. For example, the FYs in the JEFF3.1.1 library [113], which was based on the

UKFY3 evaluation [114], were evaluated with Wahl systematics, among other theories [115].

One model called GEF (GEneral description of Fission observables) [38, 116] is semi-empirical.

In contrast to microscopic or empirical models, GEF models single aspects of the fission

process by combining theoretical and empirical approaches.

GEF is designed to give a complete description of the fission process. It describes the excited

compound nucleus formation and all intermediate processes until the formation of two

separate nuclei at scission. The capture of the neutron and the competing processes of

particle emission/gamma emission/fission are also considered. Additionally after scission,

the excited fission fragments and how they decay are also considered. It defines two FPs for

each fission event and can calculate the total excitation energy of the FPs.

The makers of GEF highlight that it is not intended to compete with microscopic models.

Instead, GEF is tailored to get the best performance in nuclear technology. Empirical informa-

tion is leveraged to globally describe fission quantities. It is able to describe in a general way,

i.e. without adjusting to individual fission systems, all types of fission. GEF was originally fit to

find the optimum model parameters for all available fission observables by minimizing the

deviations from a large set of experimental data [117].

GEF is also used to estimate fission observables where experimental data are missing. This

can be very useful in a nuclear data evaluation perspective to fill in holes in experimental data.

For this purpose, work with GEF has been done with the computer code MATCH [118]. The

code tunes calculated values to fit experimental data.

1Scission denotes the instant of rupture. Meanwhile, fission denotes the entire process including fission
cross-sections, compound nucleus formation and the saddle.
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5.2.1 Code System

Very detailed descriptions of the inner-workings GEF’s coding are available in Refs. [38, 116].

Here, we summarize the details that are most important for this work and rely on abstractions

of key features of the code. This inherently leaves some holes in the description, but must be

done for the conciseness of this thesis.

GEF uses a Monte-Carlo approach to generate, event-by-event, the data for fission observables.

An event starts with the model parameters and the user’s input (e.g. the properties of the excited

nucleus). Then GEF calculates the competing decays of the system, where the competition

is between fission and neutron/photon/proton emission. If fission is initiated, the fission

fragment properties at scission are calculated. Then the de-excitation of the fragments is

calculated until they reach their ground or isomeric state. For radioactive FPs, GEF computes

β− decay and will calculate cumulative FYs.

There are three main computational sections in GEF that compose the code’s core:

1. Pre-fission process: Input parameters are given to the code (Z, A, entrance channel). A

Monte-Carlo routine starts with multi-chance fission.2 It considers decay by particle

emission from both pre-equilibrium processes3 and emission from the compound

nucleus. The output of this module is a list of excited nuclei en route to fission. It gives

the Z, A, excitation energy, and angular momentum. It is Monte Carlo in nature because

events are simulated to create a population of possible processes.

2. Average fission-fragment properties: This takes as an input the nucleus to fission,

which is characterized by Z, A, excitation energy, and the root-mean-squared angular

momentum. A Monte-Carlo sampling of the individual fragment properties is done

based on key quantities that are calculated at this moment, like the central Z values of

fragment shells or the curvature of macroscopic potential energy.

3. Monte-Carlo sampling of fission events: The distributions of fragment properties from

the previous module are used in a Monte-Carlo sampling. This accounts for all corre-

lations and respects conservation laws. Then arrays are built containing all calculated

fission observables. There are statistical uncertainties of the resulting distributions that

depend on the number of requested events.

2Multi-chance fission occurs when the excitation energy of the initial compound nucleus is so high that after
de-excitation the remaining excitation energy is near or above the fission barrier of the daughter nucleus. This
observed fission is then a mixture of fission of the mother (first-chance) and the daughter (second-chance). The
de-excitation can occur from pre-fission γ-rays or nucleon emission.

3Pre-equilibrium reactions are those that occur during the decay of the excited nucleus before it reaches
statistical equilibrium. They become very important for neutron energies of several tens of MeV [119].
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5.2.2 Covariances between Fission Yields

A great advantage and innovation of GEF is its ability to generate covariances between fission

observables, which were traditionally not available. To do so, GEF samples some of its model’s

parameters, which were decided by the code developers to be the most important. For each

model parameter sample set, the core of the code system that was described previously is run

to create a sample of FYs. From the population of FYs, a covariance matrix is constructed. GEF

assumes that the parameters are normally distributed and independent. The independence

assumption is based on the fact that an additional correlation is introduced when the whole

FY distribution is normalized [120]. Because GEF was constructed to include sampling, it can

be seamlessly integrated into MOCABA and BFMC.

In the covariance generation process, first the model parameters are sampled. These model

parameters change the statistical distributions that GEF uses to describe the physics of fission.

GEF then does its standard, core routine where it Monte Carlo samples the fission-physics

distributions to create FYs. This FY data set is then the random sample that corresponds to

the random sample of model parameters. In a way, this is similar to the TMC approach for

UQ with a Monte Carlo neutron transport code. In TMC, the model parameters of TALYS are

sampled to create perturbed cross sections that describe the physics of neutron transport. A

code like MCNP then does Monte Carlo sampling of the neutron-transport physics (described

by cross sections) to calculate a random sample of an integral parameter. From the population

of random samples, a covariance matrix of the integral parameters is estimated.

GEF has the ability programmed into it to sample its model parameters and estimate covari-

ances between FYs. Unfortunately, this option does not preserve FYs of each random sample,

it only returns the mean FYs and their covariances. In other words, GEF does not automatically

output the distribution of the FYs, only their first two moments. The distribution is interesting

for this project because it is non-Gaussian. To gain access to the distribution, the GEF code

was modified so that it would give the FYs for each sample. This is an important component of

this study and is emphasized again: the FYs for CASMO-5 were not sampled from covariance

matrices, rather they were generated directly from sampling of the GEF model parameters.

Therefore, the covariance matrices were not used at any point in the assimilation; they were

another output of GEF that was adjusted.

The prior and posterior FY covariances matrices will be compared in Section 5.4 as they are a

form of nuclear data. To calculate the FY covariance matrices from GEF runs, the subsequent

analysis should be followed. For the FYs of each fissioning nuclide, n Monte-Carlo fission

events are used, which constitutes one GEF execution with one set of model parameters. The

model parameters are sampled N times to have N GEF executions, each with n Monte-Carlo

fission events. Returning to the TMC analogy, n would be the number of neutron histories

used in MCNP, and N would be the number of random samples of the nuclear data used to do

the UQ of the integral parameters.

Each sample i gives a set of FYs from which a population mean and covariance matrix are
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calculated. The mean for the j th FY, or F Y j , can be calculated with Eq. (5.1). The covariance

between F Y j and F Yk can be calculated with Eq. (5.2), using Eq. (5.1) to calculate F Y j and

F Yk . Here, MFY is the covariance matrix between FYs, and ( j ,k) is the index in the matrix that

gives the covariance between F Y j and F Yk .

F Y j = 1

N

N∑
i=1

F Y j ,i (5.1)

MFY
( j ,k) = 1

N −1

N∑
i=1

(
F Y j ,i −F Y j

)(
F Yk,i −F Yk

)
(5.2)

Ref. [120] discussed how MFY is subjected to statistical uncertainties because a limited number

of fission events, n, and of model perturbations N are used. From this formulation, n/N

should be small in order to have a small statistical uncertainty. If it is too big, it will hide the

sought-after correlations and the covariance matrices that are studied in this chapter will have

too much statistical noise to be meaningful. In GEF, N is automatically chosen with the n

supplied by the user. It does so with Eq. (5.3) and the n supplied by the user in order to have

statistically converged results.

N = 1000(n2 −1/2) (5.3)

In this study, n was chosen to be 2E5 events. Using Eq. (5.3) would give N = 448. For the prior,

10,000 samples were done. With N = 10,000, the FY covariance matrices were well converged

according to GEF’s internal rule. For the UQ of the posterior, 500 samples of the FYs were done,

which is also adequate for convergence. Fewer samples were needed for the posterior because

only forward UQ was done, not inverse UQ. The point of this discussion is to prove that any

behavior observed in the prior and poster FY covariance matrices is linked to the GEF model

and the DA, and not simply to statistical effects.

5.2.3 Model Parameters

The model parameters that are sampled in GEF and their means and standard deviations are

shown in Table 5.1. These values are unique to the GEF2017/1.1 version of the code [121]. They

are changed with different distributions of GEF as it is modified and improved. Importantly,

these are not the only model parameters in GEF. There are over 100 parameters, including

things like the curvature of the macroscopic potential energy. Those in Table 5.1 were deemed

most important by the developers for the production of covariance data.

The model parameters associated with the fission channels are prominent in Table 5.1. These

fission channels reproduce experimental mass and charge distributions of the FPs by super-
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Table 5.1 – Means and standard deviations of GEF model parameters in GEF2017/1.1 [121].

Input Parameter GEF Name Mean Std. Units
Shell position for S1 channel P_DZ_Mean_S1 -0.18 0.1 Z
Shell position for S2 channel P_DZ_Mean_S2 -0.460 0.1 Z
Shell position for S3 channel P_DZ_Mean_S3 -0.37 0.1 Z
Shell position at Z ≈ 42 P_DZ_Mean_S4 0.0 0.1 Z
Shell effect for S1 channel P_Shell_S1 -2.85 0.1 MeV
Shell effect for S2 channel P_Shell_S2 -4.4 0.1 MeV
Shell effect for S3 channel P_Shell_S3 -6.40 0.2 MeV
Shell effect at Z ≈ 42 P_Shell_S4 -0.9 0.05 MeV
Rectangular contribution to S2 channel width P_A_Width_S2 12.5 5% Mass
Shell effect at mass symmetry Delta_S0 0 0.1 MeV
Shell curvature for S1 channel P_Z_Curv_S1 0.37 5% Z2/A
Shell curvature for S2 channel P_Z_Curv_S2 0.1850 5% Z2/A
Shell curvature for S3 channel P_Z_Curv_S3 0.156 5% Z2/A
Shell curvature at Z ≈ 42 P_Z_Curv_SL 0.035 5% Z2/A
Weakening of the S1 shell T_low_SL 0.31 0.01 MeV
(ħω)eff for tunneling of S1 channel T_low_S1 0.32 0.01 MeV
(ħω)eff for tunneling of S2 channel T_low_S2 0.31 0.01 MeV
(ħω)eff for tunneling of S3 channel T_low_S3 0.31 0.01 MeV
(ħω)eff for tunneling at Z ≈ 42 T_low_S4 0.31 0.01 MeV
Width of fragment distribution in N/Z HOMPOL 1 10% MeV
Charge Polarization POLARadd 0.25 0.1 Z

imposing Gaussians. Many of the model parameters describe the width, shape, and central

values of the fission channels. There are four principal fission channels: S1, S2, S3, and the SL,

or super long channel. Fig. 5.1 shows the fission channels for Pu-239 thermal fission and how

they overlap and combine to create the total, composite FY. There is a shell (S4), not shown, at

Z ≈ 42 that enhances the yield of the S1 channel in fissioning nuclei around Pu. The reader is

directed to the GEF literature for more detailed descriptions [38, 116, 117].

Importantly, the model parameters were already fitted once to experimental data by the GEF

code developers [122]. The fit was done with a wide variety of experimental data: independent

fission-fragment yields, prompt-neutron spectra and multiplicities, prompt-gamma spectra

and multiplicities, isomeric ratios, delayed-neutron yields, decay heat, etc. To perform the

fit, each model parameter was varied until the agreement between the experimental and

calculated fission observable significantly deteriorated. A significant deterioration was defined

as an increase in the reduced χ2 by 1.0. Correlations were investigated, but were determined

by the developers to not be important.

86



5.3. Experimental Data and Computational Approach

3.2 Modeling of Fission Product Yields by GEF

For illustration see Figure 3.10. The equations defining Sm are omitted here for simplicity; however, it essentially
depends on the Dm parameters showing up in Table 4.6.
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Fig. 1. Potential energy at the fission barrier for 238U (upper part) and 2°spb (lower part), as a function of 
mass asymmetry expressed by the neutron number of one of the preformed fragments. 

standard I, N ~ 88 as standard II.)  The influence of  shell effects in the light fragments 

and any shell effects in proton number are neglected. The total potential energy at the 

fission barrier is thus given by the sum of  five contributions: 

V(N) = Vmac ( N )  

+Vsh,l ( N )  + Vsh,I(NCN -- N) 

+Vsh,z(N) + Vsh,2 (NcN -- N ) .  (6)  

Note that the potential  energy is symmetric around N c N / 2 .  

The macroscopic part o f  the potential energy at the fission barrier as a function of  the 

mass-asymmetry  degree o f  freedom has been taken from experiment [58] .  It has been 

deduced from the widths of  measured mass distributions at higher excitation energies. 

The macroscopic potential  energy (Vmac) at the fission barrier is formulated as: 

Vmac(N) = Cmac(N - NCN/2) 2 , (7)  

where the curvature (2Cmac) of  the parabola was obtained by fitting the data points 
given in Ref. [58] to the expression: 

8 d 2 Vmae 
Cmac - N2 N dT,/2 , (8)  

Figure 3.10: Potential energy at the fission barrier as a function of the fragment neutron number for the fissioning nuclei 238U (upper part) and
208Pb (lower part), from [70].

Based on the expression on the right side of (3.83), the weights of fission modes are determined in analogy to (3.70).
The following Figure 3.11 shows the mass distribution of 239Pu(nth,F) FPYs and its decomposition into fission
modes, as calculated in this work.
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Figure 5.1 – FY distribution of thermal fission in Pu-239, decomposed into fission modes. This
figure was made by K. Kern [120] using TALYS-1.4/GEF-2013/2.2 and is reused here.

5.3 Experimental Data and Computational Approach

5.3.1 LWR Proteus Phase II: PIE Data

The PIE data that function as the integral parameters in this DA study come from LWR-PII

[75, 123], the same campaign outlined in Chp. 4. Chemical assays were done at the PSI hot

laboratory to measure the composition of the irradiated fuel. This study used the measured

FPs of a UO2 sample with a burnup of ∼38 MWd/kg. The fuel sample is called U1 in this

document. The posterior GEF FYs were then used again in CASMO-5 to verify if there was

improvement in predicted FP concentrations relative to the prior.

The posterior FYs were also tested on simulations of two separate fuel samples called U2 and

M1, which are UO2 and MOX fuels with burnups of ∼58 and ∼22 MWd/kg, respectively. Fuel

samples U2 and M1 were used to test the performance of the posterior FYs for systems that

were not included in the adjustment. The test assessed how the posterior FYs generalized

to other systems and if they were over-fit to U1. Using U2 assessed how the posterior FYs

performed on another UO2 fuel with a higher burnup. By analyzing M1, we tested how the

posterior FYs extrapolated to MOX fuel rather than UO2 fuel.

The integral data were the concentrations of FPs in the spent fuel normalized to the total

mass of uranium (all isotopes) in the fuel. In total, 33 nuclide concentrations were used in the

adjustment. These FPs were composed of a variety of elements with varying mass numbers.

Their mass numbers (A) are shown in Fig. 5.2 and are over-laid onto the independent FY

spectrum of thermal fission in Pu-239 created by GEF.
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Figure 5.2 – Mass numbers of the PIE data on a FY distribution produced by GEF.

The nuclide concentrations were measured with liquid chromatography and mass spec-

trometry, and with γ-ray spectroscopy. The uncertainty associated with the experimental

measurement depends on the analytic technique, with γ-ray spectroscopy giving the highest

uncertainties. Through examination of the original experimental data from 2000–2004, we

reconstructed the covariances between the measured nuclide concentrations that are not

available in the official documentation. Fig. 5.3 gives the correlations for fuel sample U1. All

of the measured concentrations have a degree of correlation induced by the normalization

by the total uranium concentration. The nuclides of an element are also highly correlated by

the use of a spiked reference sample during liquid chromatography and mass spectrometry,

which creates a common source of uncertainty. A more detailed description of this covariance

reconstruction process is presented in Appendix A.4.
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Figure 5.3 – Experimental correlations between the fission products in fuel sample U1.
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The CASMO-5 depletion calculations used models that were created in Ref. [123] and also

used in Ref. [107]. The U1 and U2 fuel samples were simulated in models that had a single fuel

assembly with reflective boundary conditions. The M1 fuel sample was simulated in a MOX

assembly that was surrounded by UO2 assemblies in a 2×2 assembly model. The CASMO-5

models and the locations of the U1, U2, and M1 fuel pins are given in Fig. 5.4. The other fuel

pins that were part of LWR-PII but not used in this study are also shown.

 6 

 

Figure 1. CASMO-5 models for depletion calculation. 

 

In this work, two irradiated histories are considered for the depletion calculation of fuel 

samples. The first irradiation history as well as the burnup of the irradiated fuel samples is provided by 

the fuel vendor based on the pre-cycle core analysis using a nodal core simulator with pin power 

reconstruction (not CMSYS). It is referred to as VENDOR history. The second irradiation history was 

generated using the BOHR methodology of PSI [15]. It is referred to as BOHR history. The BOHR 

methodology allows re-running CASMO-5 with operating conditions extracted from reference 

CASMO5-SIMULATE3 core models developed and validated for all Swiss reactors and operated 

cycles within the CMSYS platform [16]. The BOHR history contains more detailed information about 

the irradiation conditions at each burnup step. Figure 2 illustrates the input parameters such as power 

density, boron concentration, fuel and moderator temperatures as a function of time for both 

VENDOR and BOHR irradiation histories of the U1 sample. As shown in Figure 2, the VENDOR 

irradiation history of U1 sample uses a finer burnup grid (30 and 28 burnup points for first and second 

cycle, respectively) with only four operating conditions per cycle for depletion calculation. In contrast, 

the BOHR irradiation history uses a smaller number of burnup points (22 and 21 burnup points for 

first and second cycle, respectively) with different operating conditions for each burnup point. The 

BOHR irradiation history always uses different operating condition for each burnup point. 

A careful reader would have noticed in the BOHR history of Figure 2, that while the power 

density increases slowly during the course of the first cycle, the fuel temperature decreases by about 

100K. Such phenomenon is due to the change of heat conduction properties of the fuel under 

irradiation (both the heat conductivity and gap conductance). 

Figure 5.4 – CASMO-5 models for the depletion of the fuel samples. Taken from Ref. [107].

5.3.2 Computational Approach

CASMO-5M [87] modeled the LWR-PII fuel samples and predicted their FP concentrations

after burnup. CASMO-5M employed a 586-energy-group structure and the ENDF-B/VII.1

nuclear data library [68]. The tool SHARK-X [78, 80, 79, 82] transferred the FY perturbations

to CASMO-5M. The model parameters of GEF2017/1.1 were sampled 10,000 times from the

distribution parameters outlined in Table 5.1. Then GEF was run 10,000 times with this set of

model parameters. In each GEF run, 2E5 fission events were modeled. Subsequently, 10,000

CASMO-5M simulations were done to quantify the prior distribution of the calculated FP

concentrations. With this prior distribution and population set of calculated values, the BFMC

and MOCABA methods were applied to update the GEF model parameters. With the posterior

model parameters, GEF was re-run 500 times, and then the CASMO-5M models were re-run

500 times with the posterior FY sample sets.

A PSI-developed script called efficace transferred the FYs in the ENDF files produced

by GEF into a format that could be read by SHARK-X and fed into CASMO-5. CASMO-5

uses simplified decay chains that do not have the full detail contained in the ENDF files

89



Chapter 5. Data Assimilation of Post-Irradiation Examination Experiments

made by GEF. Efficace also parsed the FYs in the ENDF files and simplified them to be

compatible with CASMO-5. The flow structure and operations of efficace are shown in

Fig. 5.5. Importantly, we had to modify the script for this project. This is because we desired

for the true GEF FY values to be used in the simulation, not those from the CASMO-5 FY library.

Previously, the script just put relative perturbations generated by GEF onto the CASMO-5

library. Now, the CASMO-5 FYs are fully replaced by the GEF FYs.

 13 

relative perturbations. Figure 5 illustrates the algorithm used in Efficace. Only the fission yields of the 

235U, 238U, 239Pu, and 241Pu isotopes are currently perturbed in SHARK-X. 

 

 

Figure 5. Algorithm of Efficace to generate the fission yield data for SHARK-X. 

 

3.4. Uncertainty Quantification of LWR-PROTEUS Phase II 

The uncertainty propagation for the simulation of the LWR-PROTEUS Phase II experiment is 

conducted based on the computational scheme described in Section 2.2. The depletion calculations are 

repeated 500 times based on the same input model but with 500 perturbed cross sections and fission 

yields libraries. 

With respect to the reactivity worth measurements, the isotopic composition of the burnt fuel 

sample is extracted from each perturbed depletion output. The calculations required for the 

determination of the relative reactivity worth are then carried out using the perturbed CASMO-5 

library that was used during the depletion calculation. The relative reactivity worth computational 

uncertainty is then determined from the set of 500 LWR-PROTEUS Phase II model outcomes. 

 

4. NUMERICAL RESULTS 

In this section, the results of the uncertainty propagation for the modeling of the 

LWR-PROTEUS Phase II experiments are presented and discussed. First, the effect of the cross 

section and fission yield perturbations on the relative reactivity worth uncertainty is analyzed. Then, 

the UQ results are presented for all samples and moderating conditions. Next, the effect of the choice 

of irradiation history option is investigated. The implications in terms of validation of reactivity loss 

predictions are discussed at the end of the section. 

 

4.1. EFFECT OF FISSION YIELD PERTURBATION 

Figure 5.5 – Flow structure of the efficace script. Taken from Ref. [107].

The DA only considered uncertainties in the calculated FP concentrations that originated

from the FY data. Certainly, there are many other uncertainties associated with the simula-

tions. There are more nuclear data uncertainties that come from cross sections and other

fission observables. There are also technological uncertainties associated with models. These

include, but are not limited to, uncertainties in the enrichment, fuel temperature, cladding

thickness, and moderator density. It was somewhat arbitrary to only include FY uncertainties,

as SHARK-X could have certainly accounted for other sources of nuclear data uncertainty

and uncertainties can be assigned to the technological parameters and they can be sampled.

However, by defining the FYs as the only source of uncertainty, we isolated their effect and

can focus solely on them. The PIE measurements also include data for minor actinides, but as

they are not affected by FYs, they were not included.

The CASMO-5 simulations were also biased, or they have a model inaccuracy. For example,

the irradiation history was approximated in a step-wise manner using a nodal core simulator

with pin-power reconstruction. Furthermore, the models were 2D with reflective boundary

conditions and did not account for the exact vertical location of the fuel sample on the fuel rod.

Moreover, efficace and the reduced set of FYs in CASMO-5 were another possible source
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of bias. Some of these biases could be mitigated by using a Monte-Carlo neutron transport

code. This would allow a full representation of the geometry and to account for all FYs that

GEF outputs. Monte-Carlo neutron transport, of course, would come with the disadvantage of

increased computational cost. Because the stochastic-based DA methods can require many

model runs, Monte-Carlo neutron transport codes were not pursued in this study.

For DA, the model biases and missing uncertainties manifest as inconsistent experimental

and calculated integral data, quantified with χ2. Not only may inconsistencies originate from

the simulations, but also from missing covariances or underestimated uncertainties in the

experimental data. The inconsistencies, if unaccounted for, can cause non-physically based

adjustments to the model parameters. Because there are so many possible sources of bias and

missing uncertainty, we chose to use the MLO method to approximate them and mitigate any

effect of inconsistency on the adjustments.

To apply BFMC in the context of the current study, the process is summarized below,

1. Sample the GEF model parameters,

2. Run GEF with this model parameter sample set to produce a sample set of FYs,

3. Run efficace to transfer the GEF FY samples to a SHARK-X input for CASMO-5M,

4. Run the CASMO-5M model of fuel sample U1 with the FY sample set to create samples

of calculated FP concentrations,

5. Use MLO to account for inconsistencies between the experiment and calculation,

6. Calculate the weights with Eq. (2.29) and the sample set of calculated FP concentrations,

experimental mean values, and experimental covariance matrix,

7. Use the weights to update the model parameter distributions with Eqs. (2.27) and (2.28),

8. Re-sample the posterior GEF model parameters and rerun GEF to create posterior FYs,

9. Run the CASMO-5M models of fuel samples U1, U2, and M1 with the posterior FYs.

When the extra uncertainties were calculated with MLO, they were incorporated into the

χ2 values of each sample as shown in Eq. (5.4). These χ2 for each sample are then used to

calculate the weights with Eq. (2.29) and finally to update the GEF model parameters.

χ2
i =

(
E−C(σi )

)T (
ME +Mextra

)−1(E−C(σi )
)

(5.4)

To apply MOCABA, steps 1-5 are identical to BFMC with the following subsequent steps,
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6. Estimate the the covariance matrices M̂C and M̂σ,C, with Eqs. (2.21) and (2.22), from the

sample set of model parameters and calculated FP concentrations,

7. Use M̂C and M̂σ,C to update the GEF model parameter distributions with Eqs. (2.12) and

(2.13) including the Mextra calculated by MLO,

8. Re-sample the posterior GEF model parameters and rerun GEF to create posterior FYs,

9. Run the CASMO-5M models of fuel samples U1, U2, and M1 with the posterior FYs.

In this study, the posterior model parameters were re-sampled assuming that they remained

normally distributed. In other words, they were re-sampled from multivariate normal dis-

tributions using σ′ and M′
σ, as calculated with either BFMC or MOCABA. Additionally, any

correlation terms that arose in M′
σ were retained in the sampling. In the case of BFMC, it is

possible to use the weights to create the posterior samples of the model parameters rather

than to estimate a posterior mean and covariance matrix with Eqs. (2.27) and (2.28), respec-

tively. In order to compare with MOCABA, we decided to re-sample from normal distributions.

This does not take full advantage of BFMC’s ability to account for non-normality, but it does

simplify the comparison with MOCABA. It isolates the causes of potential differences to only

the means and the covariance matrix of the model parameters.It also eliminates potential

discrepancies caused by changes to shape of the distribution that BFMC might induce.

Section 2.3.4 showed that there are two formulations of the likelihood function used for MLO:

Eqs. (2.42) and (2.44). In this study, both were tested and gave nearly equivalent outputs. For

the results, Eq. (2.42) was technically used, but the other would have been equally valid.

5.4 Results and Discussion

In the following section, we present the prior and posterior distributions that were calculated

with the previously detailed approach. First, Section 5.4.1 presents the prior distributions of

the calculated FP concentrations and the results from applying MLO. Section 5.4.2 compares

the MOCABA and BFMC adjustments, both of the model parameters and of the FY data that

were produced with the adjusted model parameters. There, the GEF FYs are compared to the

FY data of ENDF/B-VIII.0 and JEFF3.3. The posterior FP concentrations, calculated with the

posterior FYs, are also presented. Section 5.4.3 discusses the effect of using MLO.

5.4.1 Prior and MLO

The first steps were to sample the GEF model parameters, to use GEF to generate a sample set

of FYs, and to use the FY samples in the CASMO-5M simulations. The sample set of calculated

FP concentrations was then extracted from the CASMO-5 outputs to estimate their prior

distributions. Fig. 5.6 is the outcome of this procedure and presents the prior bias, or C/E

- 1, of the CASMO-5 simulations along with the relative standard deviation of the C values.
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It additionally gives the relative standard deviation of the E values. The sample mean and

sample standard deviations of C are reported.
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Figure 5.6 – Relative biases and uncertainties for fission products of fuel sample U1.

Fig. 5.6 demonstrates that some FP concentrations had large biases. The largest bias was 64%

for Ru-101 and the average absolute value of all biases was 26%. The uncertainties created

by the FY data were also large, with the largest being 56% for Gd-160 and the average being

21%. For reference, Subgroup 26 of the OECD’s WPEC [10] set target accuracies on nuclide

inventories (albeit for high temperature reactors) at a 1σ of 20% for FPs. The uncertainties here

from GEF, on average and significantly at extremity, exceed this target accuracy and, therefore,

point to the attraction of using DA in burnup. Importantly, some biases were very inconsistent,

like for Rh-103, Ru-101, or Tc-99.

χ2 can be used as a global measure of the consistency of the data set. When it is defined as

in Eq. (5.5) and divided by the 33 degrees of freedom (DoF), or number of FP concentrations

(NE ), its value is 38. A value of 38 is far from the 1.0 value expected, especially given that the

standard deviation (
p

2NE ) per DoF of the χ2 distribution is 0.3.

χ2 = (
E−C

)T (
ME +MC

)−1(E−C
)

(5.5)

The distributions of C can also be examined to assess their degree of normality. Recall that

MOCABA assumes C values are normally distributed. Any non-normality may cause biases in

the adjustments. Fig. 5.7 shows normalized histograms of the calculated nuclide concentra-

tions for various nuclide concentrations in fuel sample U1. Isotopes like Gd-160 and Sb-125

show a higher degree of non-normality than isotopes like Mo-95 or Nd-143.

The Shapiro-Wilks test [124] was used to test how likely it was that the C distributions were

drawn from Gaussian PDFs. It gives a p-value that indicates how likely the null hypothesis is

true, i.e. C is Gaussian. The p-value is compared to a threshold α level. Here, α was chosen to

be 0.05. That means if the p-value ≤ 0.05, we reject the null hypothesis with 95% confidence.

The Pearson skewness was used to assess the significance of the tail of each C distribution. For

a normal distribution, whose left and right tails are symmetric, the skewness is 0. A positive or
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Figure 5.7 – Histograms of the prior calculated FP concentrations normalized to the mean.

negative skewness indicates asymmetry in the distribution. The skewness was calculated as

shown in Eq. (5.6), where the number of samples N was 10,000.

skew(C ) =
1
N

∑N
i=1

(
Ci − C̄

)3(√
1
N

∑N
i=1

(
Ci − C̄

))3 (5.6)

The p-values and skewness of each C are given in Fig. 5.8. Only three FPs pass the Shapiro-

Wilks test: Nd-146, Nd-145, and Nd-144. That means that 30 of 33 FPs can be classified as

non-normal with 95% confidence. The skewness helps to show which FPs are most non-

Gaussian, and these are the Gd, Eu, and Sm isotopes along with Nd-150 and Sb-125. The effect

that the non-normality and these degrees of skewness have on MOCABA will be discussed in

the following sections.

Results from MLO

The χ2 value of 38 per DoF indicated a large degree of inconsistency between the C and E data.

This inconsistency may have been caused by ignoring sources of uncertainty or error in the

simulations. As previously discussed, such inconsistency may induce unrealistic adjustments

of the model parameters and FYs. The MLO method was applied to improve the consistency by

adding extra uncertainty to integral parameters. The results from MLO are presented in Fig. 5.9.
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Figure 5.8 – Skewness values and p-values from a Shapiro-Wilks normality test for the calcu-
lated nuclide concentrations of fuel sample U1.

MLO added extra uncertainties to the isotopes that showed large degrees of inconsistency,

e.g. Eu-154, Cs-134, Rh-103, Ru-101, or Tc-99. The χ2, recalculated with Mextra as in Eq. (2.41),

becomes 0.7 per DoF. This χ2 is within the standard deviation of the χ2 distribution for 33 DoF.

The effect on the GEF model parameters, FYs, and C values of applying MLO is presented in

Section 5.4.3.
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Figure 5.9 – Biases and uncertainties for the FP concentrations of U1 after applying MLO.

5.4.2 BFMC vs. MOCABA

This section presents all of the posteriors from BFMC and MOCABA. These include the poste-

rior model parameters, independent FYs, and calculated FP concentrations. The posterior FYs

are compared to ENDF/B-VIII.0 and JEFF3.3 data. Only the FYs of Pu-239 are presented to be

concise. The posterior FYs of U-235, U-238, and Pu-241 are presented in Appendix A.5.

Model Parameter Adjustments

The adjustments of the 21 model parameters using BFMC and MOCABA are shown in Table

5.2. Their 95%-confidence-intervals with 500 bootstrap samples, see Section 3.2.1, are also

shown. Many of the model parameters did not have adjustments from prior to posterior that

were statistically significant. The parameters that were changed in a statistically significant

way were those associated with the shell positions of the fission channels (P_DZ_Mean_S#),

the shell curvatures (P_Z_Curv_S#), P_A_Width_S2, P_Shell_S3, and POLARadd. Among the
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fission channels, the S3 channel had its model parameters adjusted to the largest degree.

Noticeably, the posterior BFMC model parameters have larger confidence intervals than those

from MOCABA, which will be discussed further below. Only P_A_Width_S2 had statistically

significant differences between MOCABA and BFMC.

Table 5.2 – Adjustments of the means and standard deviations of GEF’s model parameters.
95%-confidence intervals are shown that were estimated with bootstrap sampling.

Mean Standard Deviation
GEF Parameter Prior MOCABA BFMC Prior MOCABA BFMC
P_DZ_Mean_S1 -0.179 -0.138 ± 0.011 -0.150 ± 0.023 0.100 0.082 ± 0.003 0.086 ± 0.017
P_DZ_Mean_S2 -0.461 -0.477 ± 0.007 -0.476 ± 0.026 0.100 0.080 ± 0.002 0.076 ± 0.011
P_DZ_Mean_S3 -0.372 -0.315 ± 0.006 -0.295 ± 0.031 0.099 0.084 ± 0.001 0.084 ± 0.020
P_DZ_Mean_S4 0.002 -0.002 ± 0.005 -0.001 ± 0.027 0.100 0.100 ± 0.000 0.088 ± 0.014
P_Z_Curv_S1 0.370 0.368 ± 0.001 0.368 ± 0.007 0.018 0.017 ± 0.000 0.018 ± 0.004
P_Z_Curv_S2 0.185 0.185 ± 0.001 0.189 ± 0.003 0.009 0.009 ± 0.000 0.008 ± 0.002
P_A_Width_S2 12.491 11.908 ± 0.025 12.183 ± 0.174 0.628 0.433 ± 0.011 0.506 ± 0.095
P_Z_Curv_S3 0.156 0.155 ± 0.000 0.153 ± 0.002 0.008 0.007 ± 0.000 0.007 ± 0.001
P_Z_Curv_S4 0.035 0.035 ± 0.000 0.035 ± 0.000 0.002 0.002 ± 0.000 0.002 ± 0.000
P_Shell_S1 -2.849 -2.850 ± 0.004 -2.851 ± 0.025 0.099 0.076 ± 0.001 0.085 ± 0.023
P_Shell_S2 -4.401 -4.410 ± 0.005 -4.400 ± 0.031 0.100 0.072 ± 0.002 0.091 ± 0.030
P_Shell_S3 -6.400 -6.286 ± 0.009 -6.326 ± 0.045 0.199 0.124 ± 0.005 0.132 ± 0.035
P_Shell_S4 -0.900 -0.901 ± 0.003 -0.920 ± 0.030 0.050 0.050 ± 0.000 0.059 ± 0.019
T_low_S1 0.320 0.319 ± 0.001 0.318 ± 0.002 0.010 0.010 ± 0.000 0.009 ± 0.001
T_low_S2 0.310 0.310 ± 0.001 0.311 ± 0.003 0.010 0.010 ± 0.000 0.010 ± 0.002
T_low_S3 0.310 0.312 ± 0.001 0.310 ± 0.003 0.010 0.010 ± 0.000 0.011 ± 0.002
T_low_S4 0.310 0.310 ± 0.001 0.308 ± 0.004 0.010 0.010 ± 0.000 0.011 ± 0.002
T_low_SL 0.310 0.311 ± 0.001 0.308 ± 0.003 0.010 0.010 ± 0.000 0.009 ± 0.001
Delta_S0 -0.001 0.000 ± 0.005 -0.018 ± 0.029 0.099 0.099 ± 0.000 0.103 ± 0.018
HOMPOL 1.001 1.011 ± 0.005 0.994 ± 0.041 0.101 0.100 ± 0.000 0.096 ± 0.023
POLARadd 0.253 0.284 ± 0.004 0.269 ± 0.014 0.101 0.054 ± 0.003 0.049 ± 0.010

The update also produced correlations between the model parameters. Fig. 5.10 shows the

correlation matrices between the posterior model parameters produced by MOCABA and

BFMC. The prior matrix is not shown because it is diagonal as the prior model parameters

are defined to be independent by the GEF developers. The 95%-confidence intervals from

bootstrapping are also given for each correlation coefficient.

The first feature from Fig. 5.10 that captures the eye is the differences between the MOCABA

and BFMC matrices. BFMC shows a much larger degree of inter-correlations than MOCABA.

However, the 95%-confidence-intervals show that the BFMC correlations also have a much

larger degree of uncertainty. Many of them cannot be declared to be statistically significant.

The MOCABA correlations have much smaller confidence intervals, allowing them to be

considered to be statistically significant. MOCABA shows that some model parameters do

develop correlations, especially the P_Shell parameters and POLARadd.

Chp. 3 showed that the combined effects of weight degeneracy and too low sample size can

create large uncertainties in the M′
σ calculated with BFMC. The degree of weight degeneracy
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Figure 5.10 – Correlation matrices of the 21 posterior GEF-model parameters. Each correlation
coefficient has its 95%-bootstrap-confidence interval over-laid on it.

can be qualified by examining the weight distribution of the sample set. Fig. 5.11 gives the

weights that were calculated with the 10,000 samples and Eq. (2.29). The figure shows that

many of the weights were, in a practical sense, zero-valued. The CDF of the weight distribution,

shown in Fig. 5.11, shows that only ∼1% of the weights, or 100 out of 10,000 samples, were

significantly greater than 0. While this does not display a total weight degeneracy, it caused an

insufficiently converged M′
σ with BFMC and thereby explains the large confidence intervals

seen in the BFMC correlations. In Section 5.4.3, we find that BFMC without MLO had more

significant weights and its posterior weighted averages were more highly converged. The

off-diagonal correlations in M′
σ then disappeared.
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Figure 5.11 – Weights calculated with the BFMC weight definition and the corresponding CDF
of the weight distribution.

FY Adjustments

In Fig. 5.12 we see the prior and posterior independent FYs for thermal fission of Pu-239. These

were produced by running GEF with the model parameters given in Section 5.4.2. In general,

it is difficult to discern differences between the prior and posterior with the logarithmic y-axis.

For that reason, the posteriors are plotted again in Fig. 5.13 as the relative difference between

the prior and posterior for the mean and standard deviation of the independent FYs.
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Figure 5.12 – Prior and posterior Pu-239 (nth, f ) independent FYs.

First examining the relative differences of the means, the adjustments from prior to posterior

were largest at A = 135–160 and symmetrically at A = 80–105. The areas of large adjustment

correspond to regions where experimental data were densest. Fig. 5.2 showed that most of

the FP concentrations were isotopes of Nd, Eu, Sm, and Gd, all of which have A > 140. There

was strong agreement between the FYs of MOCABA and BFMC for A = 90–150. There were

stronger disagreements at A < 80 and A > 160, but these are rare yields with poor statistics in

the Monte Carlo process of GEF. Given their large uncertainties, which are seen in the error
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bars in Fig. 5.12, we can expect larger disagreements in the posteriors. Returning to the yields

associated with A = 80–160, in general, MOCABA created larger adjustments than BFMC with

peaks at A ≈ 115 and A ≈ 125. These adjustments were significantly affected by the posterior

model parameters associated with the S3 channel, as it is dominant for FYs at these A. Table

5.2 showed adjustments of the shell position for the S3 channel (P_DZ_Mean_S3) of 21% with

MOCABA and and 15% with BFMC. The shell effect of the S3 channel (P_Z_Shell_S3) also saw

adjustments of -2% and -1% with MOCABA and BFMC, respectively.

60 80 100 120 140 160 180
Mass Number (A)

60
40
20

0
20
40

Po
ste

rio
r/P

rio
r -

 1
 (%

) FY Mean Values

BFMC MOCABA

60 80 100 120 140 160 180
Mass Number (A)

60

30

0

30

Po
ste

rio
r/P

rio
r -

1 
(%

)

FY Standard Deviations

BFMC MOCABA

Figure 5.13 – Relative differences in the means and standard deviations of (nth, f ) Pu-239
independent FYs.

The adjusted standard deviations have similar trends. First, the reductions in uncertainty were

largest at A = 135–160 and symmetrically at A = 80–100, where there were the most experimental

integral data. For both the MOCABA and BFMC posteriors, at the A corresponding to the

centers of the different fission channels, there were sharp reductions in the FY uncertainty. In

the case of BFMC, the FYs in the region dominated by the S3 and S4 channels, at A ≈110–130,

increased in uncertainty. The increase is explained in part by the increased uncertainty of

P_Shell_S4, where the prior standard deviation was 0.05 MeV and the posterior was 0.07 MeV.

Additionally, the posterior covariance matrix of the model parameters (used to sample the

posterior distributions) had significant correlation terms when BFMC was used (see Fig. 5.10).

In particular, significant positive correlations appeared between P_Shell_S3 and P_Shell_S1,

and P_Shell_S2. P_Shell_S2 also saw an increase in its standard deviation relative to the prior

when BFMC was used, from 0.10 to 0.11. Through correlation with P_Shell_S3, this increase

led to increased uncertainties in the FYs at 110 < A < 130. The FYs of U-235, U-238, and Pu-241

(see Appendix A.5) also showed an increase in uncertainty at this region. Again for very rare

yields, at A < 80 and A > 160, there were more disagreements between MOCABA and BFMC

and large changes to uncertainties. These adjustments were not reliable due to the limited

statistics of GEF for these FYs.

Fig. 5.14 presents the prior and posterior correlation matrices for the independent FYs of

thermal fission in Pu-239. These were calculated with the approach outlined in Section

5.2.2. The prior correlation matrix has large positive correlations (red) between FP pairs,

which can be seen by following the lower-left to the upper-right of the matrix. The strong
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correlations slightly off the main diagonal (upper-left to lower-right) come from FPs that are

dominated by the same fission channel and are consequently highly correlated to the same

model parameters.4 For instance, the S2 channel dominates at 70 < A < 90 and 145 < A <
165, and there are regions of strong correlation between FYs there. These correlations for FYs

dominated by the same channel are present for S1 at 91 < A < 100 and 135 < A < 144, for SL at

101 < A < 112 and 126 < A < 134, and for S2 at 113 < A < 125. The within-channel correlations

are also seen between the light and heavy humps of the FY spectrum.
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Figure 5.14 – Correlations for the (nth, f ) independent FYs of Pu-239.

The matrix also has large degrees of anti-correlation (blue) between fission channels. For exam-

ple, the FYs between the S2 and S1, and between the S1 and S4 channels show anti-correlation.

This is related to the fact that these channels overlap on the FY spectrum and compete to

create the FYs. The S2 and S3 channels barely overlap and show a positive correlation. This

positive correlation is likely induced by the more global model parameters in Table 5.1, like

HOMPOL or POLARadd, or by the normalization of the FYs to 2.0 that affects all channels

equally [120]. This could be confirmed with a global sensitivity analysis [1] in future work.

By incorporating experimental data, BFMC and MOCABA both reduced the degree of cor-

4Please refer to Fig. 5.1 for details on the influence of the channels on the FY spectrum.
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relation between the FY data. In large part, the trends in the correlation matrices that were

in the prior were retained, only the extent of correlation and anti-correlation were affected.

Compared to BFMC, MOCABA created more significant reductions in correlation, particularly

to the anti-correlation terms and especially between the S1 and S4 and S3 and S4 channels.

Fig. 5.15 provides the prior and posterior correlations between FYs of thermal fission in U-235

and Pu-239. As GEF was run with the same sets of model parameters to produce each nuclide’s

FYs, their data became correlated through the common inputs. Similar to the previously

outlined behavior, large degrees of positive correlation appeared between the FYs of the two

nuclides due to influences of the same fission channels. Similarly, competing fission channels

created anti-correlations. From prior to posterior, the trends are similar: decreased degrees of

correlation and anti-correlation, with MOCABA decreasing the correlation to a larger extent

than BFMC.
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Figure 5.15 – Correlations between the (nth, f ) independent FYs of U-235 and Pu-239.

Fig. 5.16 compares the GEF FYs with those given in ENDF/B-VIII.0 and JEFF3.3. In general, it

is difficult to discern differences between the FYs. To compare in more detail the posterior

GEF FYs with ENDF and JEFF, the relative differences are plotted for the FY means in Fig. 5.17

and for the standard deviations in Fig. 5.18. In general, we observed relative differences of the
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mean values at -40 to +40%. The biggest improvement from prior to posterior between the GEF

FY data and those from JEFF3.3 and ENDF/B-VIII.0 occurred at 85 < A < 95 and 135 < A < 150.

These improvements can be connected to where the experimental data were concentrated.

Recalling Fig. 5.2, we see that approximately 70% of the integral data had A > 135. With a large

concentration of evidence in this area, the adjustments were the most significant there.
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Figure 5.16 – Pu-239 FYs from ENDF/B-VIII.0, JEFF3.3, and prior/posterior GEF.

Fig. 5.18 shows that GEF’s prior uncertainties tended to be larger compared to ENDF/B-VIII.0

and JEFF3.3. Similar to the means, the posteriors’ reductions in uncertainty were largest at 85

< A < 95 and 135 < A < 150, where the integral data were densest. MOCABA produced smaller

uncertainties than BFMC that were closer to those from ENDF/B-VIII.0 and JEFF3.3.
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Figure 5.17 – Relative differences of the means of the independent FY data for Pu-239 between
ENDF/B-VIII.0 and GEF and between JEFF3.3 and GEF.

Table 5.3 gives the comparison shown in Figs. 5.17 and 5.18 summarized over the whole

independent FY data set for Pu-239, U-235, and Pu-241 thermal fission. U-238 is not shown

because the FY data in JEFF3.3 and ENDF/B-VIII.0 are given for a neutron energy of 400 keV,

while GEF was run for a neutron energy of 500 keV. This difference in neutron energy was

significant enough to cause very large disagreements between GEF and the other nuclear data
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Figure 5.18 – Relative differences of the standard deviations of the independent FY data for
thermal fission of Pu-239 between ENDF/B-VIII.0 and GEF and between JEFF3.3 and GEF

libraries, and unfortunately made comparisons between these data sets inconsistent.

For the relative difference of the mean FYs, the mean of the absolute value of the relative

differences was taken. In the case of Pu-239 and Pu-241, there was improved agreement be-

tween the GEF FYs and ENDF/B-VIII.0 and JEFF3.3. For the means, there were not significant

differences between the MOCABA and BFMC posteriors. MOCABA made larger uncertainty

reductions than BFMC. For Pu-239 and Pu-241, the GEF posteriors had smaller uncertainties

than ENDF/B-VIII.0, i.e. negative average relative differences in the standard deviations, both

with MOCABA and BFMC. The agreement of GEF with ENDF/B-VIII.0 and JEFF3.3 deteriorated

for U-235, although U-235 did still have its uncertainty reduced.

Table 5.3 – Comparing GEF independent FYs (prior & posterior) to JEFF3.3 and ENDF/B-VIII.0.

Avg. Abs. Rel. Diff. (%) Avg. Std. Rel. Diff. (%)
ENDF/B-VIII.0 JEFF3.3 ENDF/B-VIII.0 JEFF3.3

Pu-239
Prior 15.8 15.7 15.9 99.5
BFMC 11.4 11.9 -15.5 45.7
MOCABA 11.5 12.6 -37.5 4.3

U-235
Prior 12.9 11.6 176.8 157.4
BFMC 15.0 13.2 100.6 92.6
MOCABA 17.1 15.5 53.8 42.0

Pu-241
Prior 21.9 32.9 5.3 79.5
BFMC 15.8 26.0 -27.7 18.4
MOCABA 15.7 25.7 -46.5 -12.9

Noticeably, GEF produced 100% larger uncertainties for U-235, relative to ENDF/B-VIII.0 and

JEFF3.3. This is due, in part, to GEF’s design and, in another part, to the quality and abundance

of U-235 experimental FYs. Section 5.2 detailed how GEF was designed to be as general as

possible: one model and one set of model parameters predicts with good accuracy the fission

observables of isotopes like U-235, or less commonly encountered isotopes like Bk-230 or

Fm-256. For this generality, GEF sacrifices some accuracy for an isotope like U-235, which is

very well characterized by experimental data. ENDF/B-VIII.0 and JEFF3.3 FYs, which profit
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from this large quantity of quality U-235 experiments, have smaller reported uncertainties.

The degradation of agreement between the GEF FY for U-235 and those from ENDF/B-VIII.0

and JEFF3.3 has not yet bet completely explained. In part, this may be due to the fact that when

the GEF model parameters were tuned by the developers the first time, i.e. the assessment

of the prior model parameters, they used a large amount of high quality U-235 data. When

we incorporated the experimental integral data here, we lost some of that tuning in order to

improve the FY data of Pu-239, Pu-241, and U-238.

Alternatively, the observed degradation may just be a statistical effect. All of the FY data, on

average, saw an improved agreement between GEF and the nuclear data libraries. While this is

the case on average, some data may have worsened. Given that for U-235 the relative difference

of ENDF/B-VIII.0 and JEFF3.3 from GEF increased only by +2.8% and +1.6%, respectively,

these data could be the statistically unlucky ones that worsened. Given the complexity of the

data set, it has not yet been possible to make a definitive conclusion about the U-235 FYs.

Future studies with different fuel samples, possibly with lower burnups to further emphasize

U-235 fission, could clarify this unresolved question.

Posterior FP Concentrations

In this section, we present how the posterior FYs performed in the CASMO-5M simulations of

the LWR-PII fuel samples. We begin with fuel sample U1, which was the training data used to

adjust the GEF model parameters. The prior and posterior biases of the FP concentrations are

presented in Fig. 5.19. The average absolute value of the prior bias was 26.4% and the average

uncertainty of the calculated FP concentrations was 20.6%. When BFMC adjusted the GEF FYs

and then the FP concentrations were recalculated in CASMO-5 with these posterior FYs, the

average absolute value of the bias was 15.4% and the uncertainty of the posterior calculated

values was 14.1%. When MOCABA was used in the same manner, the average absolute value

of the bias was 13.7% and the uncertainty of the posterior calculated values was 13.5%. Given

the similarities between the posterior FYs of MOCABA and BFMC seen in Section 5.4.2, the

agreement between the posterior biases is not surprising.
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Figure 5.19 – Prior and posterior biases of the FP concentrations of fuel sample U1.
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Next, we examine how the adjusted FYs performed to estimate FP concentrations that were

not part of the training data. This tests for over-fitting of the model parameters to fuel sample

U1. If they were indeed overfit, the posterior biases would be worse than the prior. Fig. 5.20

gives the prior and posterior biases of FP concentrations in fuel samples U2 and M1. The two

fuel samples also showed improved biases and reduced uncertainties, along with agreement

between BFMC and MOCABA.
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Figure 5.20 – Prior and posterior biases of the FP concentrations of fuel sample U2 and M1
when using BFMC and MOCABA. Calculated with the FYs trained with fuel sample U1.

The biases and uncertainties given in Figs. 5.19 and 5.20 are summarized in Table 5.4. Here,

the absolute value of the biases and the relative standard deviations of the calculated vales

are averaged across all FP concentrations. For all fuel samples, the bias improved from prior

to posterior. Additionally, the MOCABA posterior FYs improved the bias to a larger extent

than the BFMC FYs. Similarly, all three fuel samples had the uncertainty associated with their

calculated values reduced from prior to posterior. MOCABA reduced the relative standard

deviation to a larger extent than BFMC. From these results, we can conclude the adjustment

was not over-fit to the U1 data because there was a similar performance for U2 and M1.

5.4.3 Effect of MLO

In this section, we present the adjusted model parameters, posterior FYs, and posterior calcu-

lated FP concentrations when they were calculated with and without MLO extra uncertainties,

using both BFMC and MOCABA. The posteriors are compared to assess the effect that MLO

had on the adjustments and to investigate the importance of accounting for the inconsisten-
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Table 5.4 – Analysis of the bias and uncertainty of posterior calculated nuclide concentrations.

Avg. Abs. Bias (%) Avg. Rel. Std. (%)

U1
Prior 26.4 20.6
BFMC 15.4 14.1
MOCABA 13.7 13.5

U2
Prior 19.4 19.3
BFMC 8.72 13.4
MOCABA 7.04 10.5

M1
Prior 23.2 21.0
BFMC 13.7 15.0
MOCABA 11.9 11.6

cies of integral data. First in Section 5.4.3, the posterior model parameters are presented. Then

Section 5.4.3 presents and discusses the posterior FYs obtained when GEF used these posterior

model parameters. Finally, Section 5.4.3 has the posterior biases of the FP concentrations of

the LWR-PII fuel samples that were calculated with these posterior FYs.

Posterior Model Parameters

Table 5.5 gives the posterior model parameters when BFMC was used with and without

applying MLO. The table shows some clear differences in the posteriors that are statistically

significant in terms of the bootstrap-estimated 95%-confidence intervals. For the mean values,

the differences are prominent for P_DZ_Mean_S1, P_DZ_Mean_S3, P_A_Width_S2, P_Shell_S3,

P_Shell_S4, and POLARadd. For the standard deviations of the model parameters, there were

large differences for P_DZ_Mean parameters, P_A_Width_S2, P_Shell_S2, and POLARadd. Only

for the parameters P_DZ_Mean_S1 and POLARadd can these differences, both for the means

and standard deviations, be considered statistically significant within the 95%-confidence

intervals. How these differences affected the FY data is shown in Section 5.4.3. The confidence

intervals were smaller when MLO was not used, which will be discussed later.

Table 5.6 gives the same posterior model parameters but when MOCABA was applied with

and without using MLO. MOCABA displayed more significant differences between the pa-

rameters when MLO was and was not applied than did BFMC. For instance, P_DZ_Mean_S1,

P_DZ_Mean_S2, P_A_Width_S2, P_Z_Curv_S3, P_Shell_S3, T_low_S3, HOMPOL, and PO-

LARadd all showed large differences between the two posterior sets. The posterior standard

deviations of the model parameters also showed significant differences. When MLO was not

used, the posterior standard deviations tended to be smaller than when MLO was used, for

instance for P_DZ_Mean_S1, P_DZ_Mean_S2, P_A_Width_S2, P_Shell_S3, and POLARadd.

That shows how MLO helped to constrain the model parameters’ uncertainty reductions in

the presence of inconsistent integral data. The FY data created by GEF with these model

parameters are also shown in Section 5.4.3.
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Table 5.5 – Adjustments to the means and standard deviations of GEF model parameters using
BFMC with and without MLO. 95%-confidence intervals are given for the posteriors that were
estimated with bootstrap sampling.

Mean Standard Deviation
GEF Parameter Prior With MLO No MLO Prior With MLO No MLO
P_DZ_Mean_S1 -0.179 -0.150 ± 0.023 -0.209 ± 0.009 0.100 0.086 ± 0.017 0.087 ± 0.008
P_DZ_Mean_S2 -0.461 -0.476 ± 0.026 -0.476 ± 0.009 0.100 0.076 ± 0.011 0.104 ± 0.006
P_DZ_Mean_S3 -0.372 -0.295 ± 0.031 -0.338 ± 0.011 0.099 0.084 ± 0.020 0.095 ± 0.007
P_DZ_Mean_S4 0.002 -0.001 ± 0.027 0.010 ± 0.010 0.100 0.088 ± 0.014 0.100 ± 0.008
P_Z_Curv_S1 0.370 0.368 ± 0.007 0.370 ± 0.002 0.018 0.018 ± 0.004 0.018 ± 0.001
P_Z_Curv_S2 0.185 0.189 ± 0.003 0.185 ± 0.001 0.009 0.009 ± 0.002 0.008 ± 0.001
P_A_Width_S2 12.491 12.183 ± 0.174 12.283 ± 0.068 0.628 0.506 ± 0.095 0.624 ± 0.042
P_Z_Curv_S3 0.156 0.153 ± 0.002 0.155 ± 0.001 0.008 0.007 ± 0.001 0.008 ± 0.001
P_Z_Curv_S4 0.035 0.035 ± 0.000 0.035 ± 0.000 0.002 0.002 ± 0.000 0.002 ± 0.000
P_Shell_S1 -2.849 -2.851 ± 0.025 -2.868 ± 0.008 0.099 0.085 ± 0.023 0.077 ± 0.007
P_Shell_S2 -4.401 -4.400 ± 0.031 -4.413 ± 0.008 0.100 0.091 ± 0.030 0.073 ± 0.010
P_Shell_S3 -6.400 -6.326 ± 0.045 -6.299 ± 0.015 0.199 0.132 ± 0.035 0.155 ± 0.010
P_Shell_S4 -0.900 -0.920 ± 0.030 -0.902 ± 0.005 0.050 0.059 ± 0.019 0.054 ± 0.004
T_low_S1 0.320 0.318 ± 0.002 0.319 ± 0.001 0.010 0.009 ± 0.001 0.010 ± 0.001
T_low_S2 0.310 0.311 ± 0.003 0.311 ± 0.001 0.010 0.010 ± 0.002 0.010 ± 0.001
T_low_S3 0.310 0.310 ± 0.003 0.310 ± 0.001 0.010 0.011 ± 0.002 0.010 ± 0.001
T_low_S4 0.310 0.308 ± 0.004 0.309 ± 0.001 0.010 0.011 ± 0.002 0.010 ± 0.001
T_low_SL 0.310 0.308 ± 0.003 0.310 ± 0.001 0.010 0.009 ± 0.001 0.010 ± 0.001
Delta_S0 -0.001 -0.018 ± 0.029 -0.004 ± 0.010 0.099 0.103 ± 0.018 0.104 ± 0.007
HOMPOL 1.001 0.994 ± 0.041 1.001 ± 0.011 0.101 0.096 ± 0.023 0.105 ± 0.009
POLARadd 0.253 0.269 ± 0.014 0.182 ± 0.009 0.101 0.049 ± 0.010 0.081 ± 0.006

Fig. 5.21 gives the posterior correlation matrices of the model parameters when MOCABA

and BFMC were applied without using MLO. These matrices should be compared to those

previously presented in Fig. 5.10. For MOCABA, there are not large differences between the

posterior matrices when MLO was and was not applied. The most significant differences

appeared as larger correlations between P_DZ_Mean parameters when MLO was not used.

The BFMC model-parameter correlation matrices do show large differences. The large degrees

of correlation and anti-correlation seen in Fig. 5.10 are not present in Fig. 5.21. Without using

MLO, the BFMC correlation matrix is more similar to that created by MOCABA. The 95%-

confidence intervals were also smaller when MLO was not applied. Still, BFMC’s confidence

intervals are larger, indicating a less highly converged result.

This difference between BFMC’s posterior correlations with and without MLO requires ex-

amining the weight distributions of the two data sets. Fig. 5.22 gives the CDFs of the weight

distributions for the two BFMC executions. Where previously only ∼1% of the weights from

BFMC with MLO were significantly greater than 0, when MLO was not applied ∼10% of the

weights were significantly greater than 0.

The different weight distributions are linked to how Mextra affected BFMC. Section 3.1.1 de-

scribed how the size of χ2 affects the weight distribution in BFMC. When χ2 is large the weight
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Table 5.6 – Adjustments to the means and standard deviations of GEF model parameters using
MOCABA with and without MLO. 95%-confidence intervals are given for the posteriors that
were estimated with bootstrap sampling.

Mean Standard Deviation
GEF Parameter Prior With MLO No MLO Prior With MLO No MLO
P_DZ_Mean_S1 -0.179 -0.138 ± 0.011 -0.425 ± 0.046 0.100 0.082 ± 0.003 0.059 ± 0.002
P_DZ_Mean_S2 -0.461 -0.477 ± 0.007 0.024 ± 0.063 0.100 0.080 ± 0.002 0.068 ± 0.002
P_DZ_Mean_S3 -0.372 -0.315 ± 0.006 0.013 ± 0.059 0.099 0.084 ± 0.001 0.082 ± 0.001
P_DZ_Mean_S4 0.002 -0.002 ± 0.005 -0.017 ± 0.062 0.100 0.100 ± 0.000 0.100 ± 0.000
P_Z_Curv_S1 0.370 0.368 ± 0.001 0.380 ± 0.010 0.018 0.017 ± 0.000 0.015 ± 0.000
P_Z_Curv_S2 0.185 0.185 ± 0.001 0.146 ± 0.006 0.009 0.009 ± 0.000 0.008 ± 0.000
P_A_Width_S2 12.491 11.908 ± 0.025 9.586 ± 0.294 0.628 0.433 ± 0.011 0.406 ± 0.013
P_Z_Curv_S3 0.156 0.155 ± 0.000 0.189 ± 0.006 0.008 0.007 ± 0.000 0.006 ± 0.000
P_Z_Curv_S4 0.035 0.035 ± 0.000 0.035 ± 0.001 0.002 0.002 ± 0.000 0.002 ± 0.000
P_Shell_S1 -2.849 -2.850 ± 0.004 -2.836 ± 0.048 0.099 0.076 ± 0.001 0.075 ± 0.002
P_Shell_S2 -4.401 -4.410 ± 0.005 -4.447 ± 0.044 0.100 0.072 ± 0.002 0.069 ± 0.002
P_Shell_S3 -6.400 -6.286 ± 0.009 -6.828 ± 0.127 0.199 0.124 ± 0.005 0.115 ± 0.005
P_Shell_S4 -0.900 -0.901 ± 0.003 -0.899 ± 0.031 0.050 0.050 ± 0.000 0.050 ± 0.000
T_low_S1 0.320 0.319 ± 0.001 0.310 ± 0.006 0.010 0.010 ± 0.000 0.010 ± 0.000
T_low_S2 0.310 0.310 ± 0.001 0.312 ± 0.006 0.010 0.010 ± 0.000 0.010 ± 0.000
T_low_S3 0.310 0.312 ± 0.001 0.268 ± 0.006 0.010 0.010 ± 0.000 0.009 ± 0.000
T_low_S4 0.310 0.310 ± 0.001 0.308 ± 0.006 0.010 0.010 ± 0.000 0.010 ± 0.000
T_low_SL 0.310 0.311 ± 0.001 0.311 ± 0.006 0.010 0.010 ± 0.000 0.010 ± 0.000
Delta_S0 -0.001 0.000 ± 0.005 -0.002 ± 0.063 0.099 0.099 ± 0.000 0.099 ± 0.000
HOMPOL 1.001 1.011 ± 0.005 1.164 ± 0.060 0.101 0.100 ± 0.000 0.099 ± 0.000
POLARadd 0.253 0.284 ± 0.004 0.364 ± 0.029 0.101 0.054 ± 0.003 0.049 ± 0.003

distribution is flatter than when χ2 is small. In other words, a large χ2 means that there are

more weights significantly above zero and that the posterior weighted average is more accurate

(more converged). Inversely, when χ2 is small, fewer weights are significantly above 0 and the

weighted average is less accurate (less converged).

MLO added extra uncertainties that made all χ2
i smaller. With 10,000 random samples, the

population mean of χ2
i per DoF calculated without MLO, or with Eq. (5.7), is 1.1E5. With MLO,

or using Eq. (5.8), it is 4.8E3, showing that indeed MLO helps to lower the χ2
i values. First,

we see why BMC did not work for this data set: both with and without MLO, the χ2
i values

were much higher than the absolute weight degeneracy threshold, or χ2 = 745. Secondly, it

shows that MLO lowered the χ2
i , which then lead to a greater degree of weight degeneracy (as

evidenced by the CDFs). Subsequently, less precise posterior weighted averages were obtained

for the posterior model parameter correlation matrices. As discussed in Section 3.1.1, the

posterior covariance matrices are more affected by weight degeneracy than the means.

χ2
i =

(
E−Ci (σi )

)T (ME)−1(E−Ci (σi )
)

(5.7)
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Figure 5.21 – Correlations between the model parameters when MLO is not used. Each
correlation coefficient has its 95%-bootstrap-confidence interval over-laid on it.
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Figure 5.22 – CDFs of BFMC’s weight distributions when MLO was and was not applied.
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χ2
i =

(
E−Ci (σi )

)T (ME +Mextra)−1(E−Ci (σi )
)

(5.8)

BFMC’s weight definition, i.e. each χ2
i is normalized by χ2

min, changed the weight distribution.

The minimum χ2 per DoF without MLO, or with Eq. (5.7), was 2.6E3. With MLO, or Eq. (5.8), it

was 1.4E1. Without using MLO, χ2
min was bigger and, therefore, the normalization term was

bigger. This shifted all the weights in the distributions to bigger values when χ2
i /χ2

min was then

multiplied by -1 and put in an exponential. By consequence, more weights had higher values,

leading to a more highly converged posterior weighted average.

Posterior FYs

Fig. 5.23 examines, in more detail, the differences between the FYs when MLO was and was not

applied. It shows the relative differences between the mean values of the prior and posterior

independent FYs of Pu-239. These plots for other isotopes are given in Appendix A.5. The

MLO uncertainty that was added is shown in red on the figures. The size of the red dots is

proportional to the skewness of the calculated FP concentration corresponding to that mass

number. These skewness values were previously presented in Fig. 5.8.
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Figure 5.23 – Relative differences between the prior and posterior means FYs for (nth, f ) of
Pu-239. Calculated with posteriors found when MLO was and was not used.

First consider the BFMC FYs, ignoring, for the moment, the possible effect that the skewness

and not accounting for the integral data set’s inconsistency had on the MOCABA posteriors.

There are two regions where the posterior with and without MLO disagreed significantly: at

150 < A < 160 (and this region’s opposite side of FY distribution at 80 < A < 90), and at 100 < A

< 140. The majority of the experimental data was for A between 140 and 160, i.e. the isotopes

of Gd, Eu, Sm, and Nd. When MLO was applied, many of these data had large increases in

uncertainty, up to standard deviations of 20%. With increased uncertainty, they influenced

less the adjustment. This is evidenced by the relative differences in Fig. 5.23 at 150 < A < 160

being smaller (in an absolute sense) when MLO was used.

These discrepancies are reflected in the model parameters. At these mass numbers, the S1
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and S2 fission channels are most prominent in GEF. Table 5.5 presented statistically signifi-

cant differences for P_DZ_Mean_S1. BFMC, when done with MLO, adjusted the parameter’s

mean from -0.179 Z to -0.150 ± 0.023 Z. When BFMC was applied with MLO, it adjusted

P_DZ_Mean_S1 to a larger extent to -0.209 ± 0.009 Z. P_A_Width_S2 also showed disagreeing

adjustments when MLO was and was not applied, which also influenced these posterior FYs.

Similarly, MLO gave integral data with A between 100 and 140 large uncertainty increases, up

to ∼60% for Ru-101. These integral data then influenced the model-parameter adjustments

to a lesser degree. At these A, the S1, S3, and SL modes are important. Table 5.5 showed

disagreement between the adjusted model parameters for these fission modes, for instance

for P_DZ_Mean_S1, P_DZ_Mean_S3, P_DZ_Mean_S4, P_Shell_S1, P_Shell_S3, and P_Shell_S4.

Continuing to the MOCABA posterior FY data, there are much larger disagreements between

the posteriors when they were calculated with and without MLO extra uncertainties. The

disagreements are particularly large at As of 80–90, 110–130, and 150–160. In these regions, the

adjustments where MLO was not applied are much larger. As most of the FY data were affected,

this result should be able traceable to the model parameters of all the fission modes in GEF.

Table 5.6 showed that the posterior model parameters were quite different when MOCABA

was used with and without applying MLO. These differences are particularly prominent for

P_DZ_Mean_S1, P_DZ_Mean_S1, P_DZ_Mean_S1, P_A_Width_S2, POLARadd, and HOMPOL.

The same plots can be repeated for the relative difference between the standard deviations of

the prior and posterior GEF FYs, as shown in Fig. 5.24. Beginning with BFMC, the posterior

standard deviations tended to be smaller when MLO was applied. This agrees with our

understanding of how BFMC behaves: when χ2 is larger, it gives posterior uncertainties closer

to the prior. When MLO was applied, it helped to lower χ2 and allowed for larger reductions

in uncertainty to occur. BFMC showed previously an increase in uncertainty at 110 < A <
130 when MLO was used. This increase was hypothesized to be caused by increases in the

uncertainty of the P_Shell_S4 parameter and by large positive correlations between P_Shell_S3

and other parameters.

When MLO was applied, there was still a slight increase in the standard deviation of P_Shell_S4,

from a prior of 0.050 MeV to a posterior of 0.053 MeV. The increase was not as large as when

MLO was used, where the posterior standard deviation was 0.070 MeV. Additionally, the

posterior correlation matrices given in Figs. 5.10 and 5.21 showed that the correlations are

weaker when MLO was not used, likely due to better convergence, which may have helped

to lead to the decrease in uncertainty. Again, with the experimental data points over-laid on

the adjustments, we observe that the reduction in the uncertainties was largest in the densest

regions of experimental data.

Examine, next, the relative differences between the prior and MOCABA’s posterior standard

deviations. Oppositely to BFMC, applying MOCABA with MLO helped to produce smaller

standard deviations, relative to the prior, than not applying it. At A > 150 and between 115

and 120, there was an increase in uncertainty. In general, these results demonstrate the effect
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Figure 5.24 – Relative difference from prior to posterior of the standard deviations of FY for
(nth, f ) of Pu-239. Calculated with posteriors found when MLO was and was not used.

that increasing and decreasing the importance of experimental data points, through adding

uncertainties with MLO, can have on the posterior FYs.

Interestingly, these increases in uncertainty cannot be clearly linked to any changes in the

standard deviations of the model parameters, which were given in Table 5.6. The only signifi-

cant difference in the standard deviations, when comparing MOCABA with and without MLO,

is that without MLO there were slightly larger correlations between the parameters. This may

have helped to create the observed increases in uncertainties. Another possible explanation is

that the changes in the means of the model parameters, combined with the non-linear nature

of the GEF model, changed the interaction effects between the uncertain model parameters.

Interactions, in sensitivity analysis literature [1], refer to effects on a model output caused by

inputs that cannot be described as the sum of the single, independent effects of the model

inputs. This hypothesis could be tested in a future study by applying global sensitivity analysis

techniques to the GEF code.

MOCABA was affected to a larger extent than BFMC by the application of MLO. This is linked

to two characteristics of the data set: the large degree of inconsistency and the skewness of

the FP concentrations. In Chp. 3, we saw that MOCABA will adjustσ no matter the degree of

consistency of the integral data. Large inconsistencies (i.e. large χ2) cause large adjustments of

σ to fit C and E, even if the differences between the two are not caused by input uncertainty but

by something else, like model inaccuracies. When MLO was not applied, the inconsistency may

have caused large adjustments to the GEF parameters that were not based on physics, in effect

over-fitting the model parameters to E. Meanwhile BFMC, in contrast, has an auto-correction

mechanism where large inconsistencies dampen the size of the adjustment. Because of this,

MLO had less of an effect on BFMC.

At the same time, there was the effect of the skewness on MOCABA’s normality assumption.

Section 3.1.2 demonstrated that a log-normality, similar to the distribution of C and the

FYs here, made MOCABA a biased estimate of the MAP distribution. Here when MLO was

applied, it added uncertainties to many of data with large skewness, like Gd-160, and changed
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Figure 5.25 – Prior and posterior correlations for the independent FYs for (nth, f ) of Pu-239
without applying MLO.

the importance of these data to the adjustment. By decreasing the importance of these FP

concentrations with large skewness, MLO may have limited the bias that MOCABA’s normality

assumption introduced. BFMC can account for the non-normality. The altered importance of

the highly skewed data would not matter to BFMC.

With this data set, it is hard to separate the overlapping effects of the inconsistency and

non-normality of the integral parameters. Both should affect MOCABA, but to an unknown

degree. Future studies should be constructed that can separate the two effects. A highly

inconsistent and Gaussian data set would allow determining if it was MLO that caused the

observed behavior. Another data set that is non-Gaussian but consistent could be used to

determine if it was the skewness that caused the observed behavior. This same data set would

allow BMC to be applied, thereby removing any worry of BFMC biasing the posteriors.

Finally, Figs. 5.25 and 5.26 give the posterior correlation matrices of Pu-239 FYs and of the

U-235/Pu-239 FYs. The matrices were calculated without MLO. Compared to those calculated

with MLO in Figs. 5.14 and 5.15, some slight differences appear. Without MLO, the BFMC cor-

relation matrix shows strong reductions in correlation and anti-correlation terms. MOCABA,
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Figure 5.26 – Prior and posterior correlations between the independent FYs for (nth, f ) of U-235
and Pu-239 without applying MLO.

in contrast, shows slightly stronger correlations when MLO was not applied.

Posterior Nuclide Concentrations

The FYs from when MLO was not applied were also used in CASMO-5M simulations. Fig. 5.27

compares their posterior biases and uncertainties. Section 5.4.3 showed few significant

differences between the BFMC posterior FYs when MLO was or was not applied. The only

significant differences were around A ≈ 115 and A ≈ 125, and at A > 150, which are reflected

in the posterior biases. Two isotopes are determined by FYs at A ≈ 115 and A ≈ 125: Sb-125

and Ag-109. When MLO was applied with BFMC, the biases improved from 23.5% to 7.3% for

Sb-125, and from 35.7% to 29.7% for Ag-109. In contrast without applying MLO, the biases

worsened to 34.2% and 49.7% for Sb-125 and Ag-109, respectively. Fig. 5.27 demonstrates that

MLO also helped to create smaller biases for the Gd and Eu isotopes. This result is also shown

in the posterior FYs, where at A > 150 they had more significant differences. Section 5.4.3 also

showed that there were large differences between the posterior MOCABA FY data when MLO

was and was not applied. These differences are reflected Fig. 5.27 as well. The posterior biases
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of Sm, Nd, and Cs isotopes were particularly affected by these differences in the FY data.
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Figure 5.27 – Posterior biases and uncertainties of the FP concentrations obtained when MLO
was and was not applied. Samples U2 and M1 are given in Appendix A.5.

In Table 5.7, the posterior biases and uncertainties are summarized for all FP concentrations,

and for the fuel samples U1, U2, and M1. Again, the CASMO-5M models of U2 and M1

were re-run with the posterior FYs to test the performance and degree of over-fitting of the

posteriors. The absolute bias of the FP concentrations, averaged across all 33 data, and the

relative standard deviation of the calculated values, also averaged, are presented.

Beginning with the average absolute biases and fuel sample U1, we see that posterior biases of

BFMC are only slightly affected by applying MLO. When MLO was applied, a 1.1% reduction

in the bias occurred. This highlights an advantage of applying MLO with BFMC: it coun-

teracts BFMC’s push back towards the prior with inconsistent data sets, allowing for better

improvement in the bias and a larger reduction in the uncertainty. The posterior biases from

MOCABA, however, were extremely affected. Without applying MLO, the bias worsened from

26% for the prior to 56% for the posterior. MOCABA with MLO created a posterior bias of 14%.

Fuel samples U2 and M2 also showed similar behavior: small differences between the BFMC

average absolute biases, and much larger biases when MOCABA was used without MLO. M1

also had a posterior bias when MOCABA was used without MLO that was larger than the prior.

In general, the results reflect what was observed for the FY data: MLO significantly affected

the MOCABA adjustments, and noticeably but to a lesser extent the BFMC adjustments.

Concerning the average relative standard deviation of the posterior calculated values, for every

fuel sample and for both BFMC and MOCABA, applying MLO produced smaller uncertainties.

For BFMC, MLO helped to lower the χ2 and allowed for larger adjustments occur, and thereby
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reduce the uncertainties to a larger extent. The MOCABA average relative standard deviations

in Table 5.7 show that MLO made the uncertainties smaller. This contradicts the expected

behavior of MLO when used with MOCABA: the extra uncertainties, in theory, should have

constrained the adjustment and limited the extent to which the uncertainties were reduced.

The difference from theory is related to the high degree of over-fitting of the model parameters,

which severely effected the physics of GEF’s model. The changes to the model parameters

using MOCABA without MLO are very significant, especially to the means. P_DZ_Mean_S2,

for example, changed from a prior of -0.461 to a posterior of 0.024, a 95% difference, which is

much larger than the prior standard deviation of 22%. P_DZ_Mean_S3 also saw a 104% change

in its mean compared to the prior standard deviation of 27%. These changes significantly

altered the effect that the model parameters have on the FY means and standard deviations,

as shown in Figs 5.23 and 5.24. Some FYs saw 100% increases in their means and even had

their standard deviations increase relative to the prior. These larger standard deviations,

especially for Sb-125, and the Gd, Sm, and Eu isotopes then propagated to the posterior FP

concentrations. This then created the larger posterior uncertainties observed for MOCABA

without MLO. In general, this result shows how over-fitting can create dangerous effects in

posteriors, in some cases even increasing the uncertainty relativity to the prior.

Table 5.7 – Analysis of bias and uncertainty of posterior calculated nuclide concentrations.

Avg. Abs. Bias (%) Avg. Rel. Std. (%)
With MLO No MLO With MLO No MLO

U1
Prior 26.4 20.6
BFMC 15.4 16.5 14.1 15.3
MOCABA 13.7 55.9 13.5 15.4

U2
Prior 19.4 19.3
BFMC 8.72 8.60 13.4 13.5
MOCABA 7.04 18.9 10.5 11.0

M1
Prior 23.2 21.0
BFMC 13.7 13.8 15.0 15.4
MOCABA 11.9 28.1 11.6 12.5

5.5 Conclusions

This study presented a methodology to adjust the parameters of the GEF model with post-

irradiation examination data. The goal was to improve the bias and uncertainty of the calcu-

lated concentration of fission products in spent fuel. The integral parameters were nuclide

concentrations that were part of the LWR-Proteus Phase II experiment at PSI. The experi-

ment was modeled with CASMO-5M. Two methods were applied to perform DA: MOCABA

and BFMC. The application proved interesting because the FYs, and therefore the calculated

nuclide concentrations, had non-normal distributions. MOCABA assumes that the data are

normally distributed and BFMC does not. The integral data set also had a large degree of
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inconsistency and proved to be interesting to test Marginal Likelihood Optimization (MLO).

After DA, the adjusted model parameters, FYs, and calculated nuclide concentrations were

examined. The posterior model parameters, and subsequently FYs and calculations, showed

good agreement between MOCABA and BFMC when MLO was employed, despite the non-

normality of the calculated responses. The posterior GEF FYs showed stronger agreement

with the FYs from ENDF/B-VIII.0 and JEFF3.3 than the prior. The posterior FYs also created

lower biases and uncertainties in fission product concentrations. For the training data, the

average absolute bias of prior was 26.4%. The posterior biases with MOCABA and BFMC were

13.7% and 15.4%, respectively. The uncertainty of the calculations dropped from 20.3% for

the prior, to 13.5% and 14.1% with MOCABA and BFMC, respectively. When the posterior FYs

were used with fuel samples that were not part of the training data, they also improved the

biases and reduced uncertainties.

The BFMC posteriors exhibited slight differences when MLO was and was not applied. MO-

CABA, in contrast, showed very significant differences when MLO was and was not used. The

trends of the adjusted FYs were significantly changed, which had a deleterious effect on the

posterior biases of the calculated FP concentrations. For the training data, the average abso-

lute bias deteriorated from a prior of 26.4% to a posterior of 55.9%. This result is a combination

of the increased degree of inconsistency of the integral data without using MLO, and from

the increased importance of the skewness of the calculated values. These problems did not

occur with BFMC because it accounts for the inconsistency with its weight normalization and

because it can handle non-normality. Applying MLO did worsen the weight distribution, and

therefore the statistical accuracy, of the BFMC posteriors. However, it also helped to create

lower biases and lower uncertainties.

Important future work could focus on expanding the set of experimental data to be used in

the adjustment. The strongest adjustments in the FYs were in areas with the highest density

of experimental data. The Pu-239 and Pu-241 FYs were predominantly improved, through

comparison with JEFF3.3 and ENDF/B-VIII.0, while U-235 was marginally adjusted. With

a different experimental data set, the FYs of U-235 could be more precisely targeted. The

SFCOMPO database [125, 126, 127] could be used to find more experimental data. Mapping

the calculated FP concentrations onto normal distributions, as described in Section 2.2.2, and

then using them in MOCABA could also be an interesting project. It may allow for MOCABA to

account for the skewness induced by GEF.

5.6 Chapter’s Key Points

• DA methods were applied for the first time to adjust fission yields with PIE data

• The adjustment was done by using PIE data from LWR-Proteus Phase II and with the

GEF code

• GEF produces non-normal fission yields which then induce non-normal calculated
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fission product concentrations

• PIE data have a large degree of inconsistency which was accounted for with MLO

• When BFMC and MOCABA were used in combination with MLO, good agreement was

observed between their posterior GEF model parameters, fission yields, and calculated

fission product concentrations

• The posterior fission yields saw improved agreement with the fission yields of ENDF/B-

VIII.0 and JEFF3.3, relative to the prior

• The posterior covariance matrices saw a decreased degree of anti-correlation between

competing fission channels in the GEF model

• The posterior calculated fission products had their biases and uncertainties reduced

relative to the prior

• When MLO was not applied, important effects were seen for both MOCABA and BFMC

– MOCABA: the agreement of the FYs with ENDF/B-VIII.0 and JEFF3.3 worsened,

and the biases of the calculated fission product concentrations worsened. This is

likely the combined effect of the integral data’s inconsistency causing an overfit

and the increased influence of the skewed calculated values on the adjustment

– BFMC: no large differences were observed, but MLO helped to account for local

inconsistencies of integral data, like for Sb-125
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6 eXtended Generalized Linear Least
Squares

The comparison between the DA methods presented in Chp. 3 extensively used sensitivity

coefficients from the Monte-Carlo neutron transport code Serpent. Codes like Serpent are

interesting for DA because they continuously treat the energy, space, and angle variables in

neutron transport. Monte Carlo codes have their own methodology uncertainty coming from

the stochasticity of the calculated responses and of the sensitivity coefficients. This chapter

presents an extended version of the Generalized Linear Least Squares equations, called xGLLS,

that accounts for the uncertainty of the sensitivities in the adjustment theory. xGLLS is studied

with Serpent and a DA benchmark of the Nuclear Energy Agency.

6.1 Introduction

Recent advancements in Monte Carlo neutron transport codes allow calculating the sensitivity

coefficients to nuclear data of integral parameters like keff, spectral indices, and reactivity

coefficients [70, 128, 129]. These sensitivities are being used in data assimilation (DA) and

have certain advantages: they continuously treat the energy, space, and angle variables in

neutron transport and can explicitly model the geometry of a system. Such features are an

asset for nuclear data adjustments because they make methodology and modeling biases, or

differences between calculation and experiment caused by approximations in the neutron

transport code or modeling, easier to account for. This then reduces inconsistencies between

calculated and experimental integral parameters and thereby reduces the risk of over-fitting

and having spurious nuclear data adjustments.

When DA is used with a deterministic code, inconsistencies can exist because the code dis-

cretizes the energy, space, and angular variables. Furthermore, the code often requires model-

ing approximations such as reflective boundary conditions or limiting to a 2D representation

of the system. These biases can be accounted for as uncertainties in the DA equations [28].

Unfortunately, how to statistically represent the bias coming from the deterministic nature of

the code is difficult, especially given that the errors may be correlated. Their modeling and

methodology uncertainty is often estimated with parametric analysis and expert judgment or

119



Chapter 6. eXtended Generalized Linear Least Squares

with a data-driven approach like Marginal Likelihood Optimization. If Monte Carlo neutron

transport codes are used, the modeling bias can be very limited and the methodology bias is

primarily statistical uncertainty. Ideally, inconsistencies are limited from the outset and the

need for expert judgment or Marginal Likelihood optimization is reduced.

Despite their advantages, using Monte Carlo estimates in DA come with challenges associated

with the statistical uncertainties and the computational cost of the simulations. There can

be thousands of sensitivity coefficients for each integral parameter and dozens of integral

parameters in an adjustment. Individual examination of the uncertainty of each sensitivity

coefficient becomes a difficult and nearly intractable task. These challenges lead to several

questions: what effect does the statistical nature of the sensitivities have on the posteriors?

Can the sensitivity uncertainties be theoretically accounted for in DA theory? Do sensitivity

uncertainties have significant effects on the adjustments? How many particles should be

simulated to have accurate posteriors?

The current chapter addresses these questions. To theoretically account for the sensitivity un-

certainties, we propose and test an extension of the traditional DA method called Generalized

Linear Least Squares (GLLS). The modified GLLS method is called eXtended Generalized Lin-

ear Least Squares (xGLLS). The study is done with Serpent version 2.1.29 [69] and a benchmark

DA problem proposed by Subgroup 33 of the OECD/NEA’s Working Party on International

Nuclear Data Evaluation Co-operation (WPEC) [9]. The adjustments from GLLS and xGLLS of

this benchmark are compared to assess the effect of sensitivity uncertainties. The convergence

of the posteriors as more neutrons are used in the Serpent simulation is also investigated.

To find a balance between the cost and statistics of sensitivity calculations, a convergence

criterion (building off work first presented in Ref. [71]) is proposed so that once a simulation’s

sensitivities are acceptable, the simulation can be stopped and computer time can be saved.

Previously, simulations were run until some arbitrary criterion specified by the user was met,

often leading to gross overuse of computational resources. Such a criterion must be simple

and integral because there can be hundreds to thousands of sensitivity coefficients in a DA

problem, making an individual inspection of the coefficients unreasonable.

6.2 Theory

With Monte Carlo codes, the nuclear data σ are no longer the only random variable, the

sensitivity coefficients, S, are as well. The linear approximation of C, or Eq. (6.1), used in GLLS

then has an uncertainty caused by σ and by S. Additionally, where usually there are only

correlations betweenσ , there can also be correlations between S terms and between S and σ.

C(σ) = C(σ0)+ ∂C

∂σ

∣∣∣∣
σ=σ0

(σ−σ0)+·· ·

≈ C(σ0)+S(σ−σ0)

(6.1)

120



6.2. Theory

In this situation, the variance of a single, scalar C value is given as Eq. (6.2). The equation is

derived with a first-order propagation of moments on Eq. (6.1), considering that both σ and

S are random variables. This requires taking the derivative of Eq. (6.1) with respect to S, or

∂C/∂S, which is seen to be ∆σ.

var(C ) =
Nσ∑
i

S2
i var(σi )+

Nσ∑
i
∆σ2

i var(Si )+2
Nσ∑
i 6= j

Si cov(σi ,σ j )S j+

2
Nσ∑
i 6= j
∆σi cov(Si ,S j )∆σ j +2

Nσ∑
i 6= j

Si cov(Si ,σ j )∆σ j

(6.2)

For multiple integral parameters, Eq. (6.2) can be written with linear algebra. The traditional

vectors and matrices are extended from Mσ and S to M̃σ and S̃. M̃σ is the covariance matrix of

all random variables and contains the variance and covariances between all σ and S values. It

is formed by combining the standard Mσ, the covariance matrix of the sensitivity coefficients

MS (whose size is NE∗Nσ × NE∗Nσ), and the covariance matrix of σ and S, or Mσ,S, whose

size is Nσ × NE∗Nσ. The total size of M̃σ is then (Nσ+NE∗Nσ) × (Nσ+NE∗Nσ).

M̃σ =
[

Mσ Mσ,S

Mσ,S
T MS

]
(6.3)

S̃ is the extended matrix of first-order derivatives in Eq. (6.1) and contains the standard S,

i.e. the derivative of C with respect to σ, and the derivatives of C with respect to S, or ∆σ.

The S̃ matrix can then be constructed as shown in Eq. (6.4) where S̃ has the dimensions

NE×(Nσ+NE∗Nσ). The matrix ∆Σ contains ∆σ repeated NE times to create a matrix of size

NE× NE∗Nσ. The 0 terms are zero vectors of size 1×Nσ.

S̃ =
[

S ∆Σ
]

, ∆Σ=


∆σT 0 . . . 0

0 ∆σT 0
...

0 0
. . . 0

0 . . . 0 ∆σT

 (6.4)

Eq. (6.2) can be written in vector/matrix form as shown in Eq. (6.5). A major issue with this

formulation is that one term, ∆σ, is not known a priori. A value can be assumed, but this

formulation works best coincidentally with DA, which by its nature provides a ∆σ.

MC = S̃M̃σS̃T (6.5)

121



Chapter 6. eXtended Generalized Linear Least Squares

To complete the GLLS equations that account for S uncertainty, an additional extended vector

must be defined. This vector, ∆σ̃, contains ∆σ and adjustments to the S of each integral

parameter i , or ∆Si . Its size is (Nσ+NE∗Nσ)×1.

∆σ̃=


∆σ

∆S1
...

∆SNE

 (6.6)

The extended GLLS equations (xGLLS) for the nuclear data adjustments can be written as

Eqs. (6.7) and (6.8). M̃′
σ contains M′

σ, the posterior sensitivity covariance matrix M′
S, and

covariances betweenσ and S. ∆σ̃ contains ∆σ and adjusted sensitivities, S′, where S′ =∆S+S.

∆σ̃= M̃σS̃T
[

S̃M̃σS̃T +ME +MM

]−1[
E−C(σ0)

]
(6.7)

M̃′
σ = M̃σ−M̃σS̃T

[
S̃M̃σS̃T +ME +MM

]−1
S̃M̃σ (6.8)

The posterior calculated values and their covariance matrix can be calculated with Eqs. (6.9)

and (6.10). Importantly, M′
C contains uncertainty of C′ from M′

σ, M′
S, and M′

σ,S.

C′ = C(σ0)+S′∆σ (6.9)

M′
C = S̃M̃′

σS̃T (6.10)

xGLLS induces correlations between E and σ′, and between E and S′. In Chp. 2 GLLS was

shown to induce correlations between E and σ′ with Eq. (2.14). Now, these correlations can

be represented in extended form with Eq. (6.11). The matrices M̃σ,S,E and M̃′
σ,S,E are the prior

and posterior covariance matrices that give the covariances between E and σ, and between E

and S. Their size is (Nσ+NE∗Nσ) × NE . Again, in this study we assume that the prior has no

correlations between E and σ, or between E and S, thus making M̃σ,S,E = 0.

M̃′
σ,S,E = M̃σ,S,E −

(
M̃σ,S,E −M̃σS̃T

)[
S̃M̃σS̃T +ME +MM

]−1(
ME − S̃M̃σ,E

)
(6.11)

This study assumes that the terms in S are neither correlated with themselves nor with those

in σ. MS becomes a diagonal matrix that contains only the S variances and Mσ,S becomes
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a zero matrix. The extended matrix M̃σ is then Eq. (6.12). At this point in time, the author

has not extensively investigated the correlations between these parameters and are unaware

of any studies available in the literature. Theoretically, there is some degree of correlation

because 1) the scores used to calculate S can come from the same neutron histories and 2)

S is proportional to σ, especially for the direct effect terms of spectral indices. Although the

correlations are outside the scope of study, they could be an important area of future research.

M̃σ =
[

Mσ 0

0 MS

]
(6.12)

By assuming that S is uncorrelated and that S andσ are uncorrelated, the xGLLS equations can

be split up as shown in Eqs. (6.13) to (6.16). Eqs. (6.13) and (6.14) are used to adjust σ. They

are very similar to Eqs. (2.17) and (2.18) except for the addition of the additional uncertainty

term in C, ∆ΣMS∆Σ, that comes from S uncertainties. Eqs. (6.15) and (6.16) show that the

S themselves can also be updated with DA. Posterior sensitivities, S′ can be calculated with

Eq. (6.15) and their posterior covariances with Eq. (6.16).

∆σ= MσST [
SMσST +∆ΣMS∆Σ+ME +MM

]−1[E−C(σ0)
]

(6.13)

M′
σ = Mσ−MσST [

SMσST +∆ΣMS∆Σ+ME +MM
]−1SMσ (6.14)

S′ = S+MS∆Σ
[
SMσST +∆ΣMS∆Σ+ME +MM

]−1[E−C(σ0)
]

(6.15)

M′
S = MS −MS∆Σ

[
SMσST +∆ΣMS∆Σ+ME +MM

]−1
∆ΣMS (6.16)

With this formulation, ∆σ is both a solution and an unknown. To solve the equations, the

adjustment process needs to be run iteratively with ∆σ̃ and S̃ updated until convergence. To

start the iterations, the Ansatz is that∆σ is the standard GLLS solution, or Eq. (2.17). This∆σ is

used in the first iteration of xGLLS and is then taken from Eq. (6.7) for the ensuing iterations.

Similarly, the ∆S terms in ∆σ̃ are not known before the first iteration. For a first guess, we set

∆S = 0. Then after the first iteration, ∆S becomes the true ∆S taken from ∆σ̃. The iterative

loop continues until the difference in ∆σ from one iteration to the next is below a numerical

threshold. In this work, the threshold is set to 1×10−5 which is the numerical precision of the

prior σ. Well-posed problems typically converge within three iterations. We observed that

with larger sensitivity uncertainties more iterations are needed for convergence.
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6.3 The Benchmark Exercise

The Subgroup 33 benchmark of the NEA’s WPEC [9] was used to test and characterize xGLLS.

The benchmark has integral experiments that cover a wide range of fast-neutron energy spec-

tra. Their integral responses include keff, spectral indices, and Na-void reactivity coefficients.

In this document, spectral indices are referred to as Fi j or Ci j which represent the fission or

capture rate of isotope 23 j of element 9i (i.e. i = 2,3,4 for U, Np, and Pu, respectively). F37, for

example, is the Np-237 fission rate. The experiments and 20 integral parameters are given in

Table A.1 in Appendix A.6.

The nuclear data of ten isotopes were considered: B-10, O-16, Na-23, Fe-56, Cr-52, Ni-58,

U-235, U-238, Pu-239, Pu-240, and Pu-241. The following nuclear data were explicitly adjusted:

elastic scattering cross section, total inelastic scattering cross section, capture cross section,

fission cross section, average prompt fission neutron multiplicity (ν̄), and the normalized

prompt fission neutron spectrum. The benchmarks used a 33-energy-group structure (see

Table A.2) and the COMMARA-2.0 covariance data [130]. This study used the older ENDF/B-

VII.0 for the nuclear data [131] in Serpent to have consistency with the benchmark.

The benchmark used a correction factor approach to create simplified models of the critical

systems. For the Serpent reproduction of the benchmark, the simple models for ZPPR-9,

JOYO, and ZPR6-7 were kept so that the sensitivities were consistent with the benchmark.

For JEZEBEL and FLATTOP, their full system geometries were modeled. This means that the

correction factors were not applied to JEZEBEL and FLATTOP for the Serpent simulations.

While using the simplified models did not take full advantage of the explicit modeling ca-

pabilities of Serpent, they were necessary to ensure consistency with the benchmark. The

modeling/methodology covariance matrix should be different with Serpent, as it comes from

the statistical uncertainties of the C values. However for consistency, the benchmark’s model-

ing/methodology covariance matrix was retained.

6.3.1 Sensitivity Analysis Results

The sensitivities from Serpent are compared to those of Idaho National Laboratory (INL)

from the benchmark. The comparison verifies the models developed in Serpent for the

benchmark. INL did neutron transport and sensitivity analysis with the ERANOS code [132].

For keff sensitivity analysis, INL used Standard Perturbation-Theory (SPT) techniques with

transport-theory. Generalized Perturbation Theory (GPT) [133] was used for the sensitivity

analysis of the spectral indices. Equivalent Generalized Perturbation Theory (EGPT) [90] was

employed for the sensitivity analysis of the Na-density reactivity coefficients. Serpent uses

GPT for the sensitivity analysis of keff and spectral indices. Serpent can calculate Na-void

reactivity sensitivities with GPT. Unfortunately, this option cannot be used because the ZPPR-9

benchmark model has a homogenized core. The homogenization links perturbations to the

Na density to perturbations in the other material densities, leading to inaccurate sensitivities.

Because of this, EGPT was used for the Na-void sensitivities with Serpent.
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Figure 6.1 – Sensitivity profiles from INL (using ERANOS) and Serpent.

The Serpent simulations were done with 20 billion neutron histories and 15 latent generations.

Sensitivities for several integral parameters are shown in Fig. 6.1. Good agreement is observed

between Serpent and INL. However at certain energy ranges, the uncertainties in the Serpent

sensitivities are large, especially for the Na-void reactivity coefficients. The ZPPR-9 Na-void

Step 3 and Step 5 sensitivity profiles confirm conclusions drawn in the original benchmark

exercise: Monte Carlo codes have difficulties in getting low sensitivity uncertainties for small

reactivity variations with EGPT. This is linked to the fact that even though the Monte Carlo

keff statistical uncertainty can be less than 5 pcm, the ∆keff itself is inherently small at around

100 pcm. Consequently, the uncertainties are unavoidably important and need significant

computational resources to be reduced.

For the prompt fission neutron spectrum, which is not shown here, Serpent2.1.29 gives con-

strained sensitivity coefficients while the benchmark participants return unconstrained sensi-

tivities. Ref. [134] showed that using unconstrained or constrained sensitivities does not cause

a difference in results when the sensitivities are folded with covariance matrices if a condition

is met. Specifically, the covariance matrix must meet the zero-sum constraint, i.e. the sum of

rows/columns of the absolute covariance matrix must be zero. For the COMMARA2.0 data

used in this study, the constraint is met and, therefore, the differences in the sensitivities for

the prompt neutron fission spectrum were not considered to be a possible source of error.
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6.4 Adjustment Results

The xGLLS equations demonstrate how the statistically uncertain sensitivities can be incorpo-

rated into GLLS. The remainder of this text demonstrates how they perform relative to GLLS in

different scenarios. First, we present a test of xGLLS where the sensitivity uncertainties are set

to an artificially and unrealistically large size. This allows to test the xGLLS implementation

and characterize how it is different from GLLS. Next in Section 6.4.2, xGLLS is studied using

the real, nominal case where the sensitivity uncertainties have their true values after 20 billion

neutron histories. Finally in Section 6.4.3, the adjustments are shown at different stages in the

Serpent simulations from when the number of neutron histories is very low, and when the

sensitivity uncertainties are large, to the end point of 20 billion neutron histories.

6.4.1 Large Sensitivity Uncertainty

First, we compare xGLLS and GLLS with the sensitivity uncertainties artificially increased to

exaggerate their effect. The posteriors highlight xGLLS and how its adjustments are different

from GLLS. The sensitivity uncertainties were set to 300% when xGLLS was used, while GLLS

was ignorant of the sensitivity uncertainties.

Fig. 6.2 shows the adjustments of several nuclear data for this case. Consider first the rel-

ative adjustments (∆σ/σ0) where significant differences appear between GLLS and xGLLS.

Depending on the reaction, ∆σ/σ0 differed by several percents, especially for Pu-239 inelastic

scattering. Importantly, however, the general trends of the adjustments did not change, just

the magnitude. Concerning the posterior uncertainties, for certain reactions like Pu-239

elastic and inelastic, the posterior uncertainty from xGLLS was larger than that from GLLS.

This indicates that xGLLS constrained the nuclear data’s uncertainty reduction in the presence

of large sensitivity uncertainties.

Fig. 6.3 gives the posterior biases (C′/E - 1) and posterior uncertainties of C′. The figure

shows that the differences in σ′ between GLLS and xGLLS were significant enough to cause

disagreements between the biases. The posterior uncertainties from xGLLS were larger than

those from GLLS. This demonstrates the effect of the constrained uncertainty reduction in

M′
σ in the presence of large sensitivity uncertainty when using xGLLS.

The prior and posterior M̃σ correlation matrices are shown in Fig. 6.4. The plot is limited to

only Pu-239 nuclear data and to the S of two integral parameters (keff and F28/F25 of JEZEBEL

Pu-239). This is done to limit the size of the matrix, otherwise it would be so large that no

discernible features would appear. In order to plot the small correlations in the posterior, a

log axis is used. This choice does not allow negative correlations to be plotted, but they do

exist. In the posterior, new correlations appeared between S′ and between S′ and σ′. Certain

correlations can be on the same order of magnitude as those in Mσ.

Fig. 6.5 plots the prior and posterior sensitivity profiles of several integral parameters to
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Figure 6.2 – Nuclear data adjustments using xGLLS and GLLS with sensitivity uncertainties
set to 300%. In each subfigure, the top plot is the relative adjustment, ∆σ/σ0, and the bottom
plot is the posterior relative standard deviation.

different nuclear data. The posterior sensitivities were created by the xGLLS method. Small

adjustments can be seen for the mean values and uncertainties. For every integral parameter,

sensitivities of inelastic scattering cross sections had the largest adjustments, especially for

Pu-239 and U-238.
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Figure 6.3 – Posterior biases and C′ uncertainty with GLLS and xGLLS when sensitivity uncer-
tainties are set to 300%.

Breakdown of the Source of xGLLS Adjustments

The results have demonstrated that the posterior nuclear data, σ′, of GLLS and xGLLS are

different. Additionally, the xGLLS posterior sensitivities, S′, have been significantly adjusted.

It is interesting to separate the effects of these two posteriors and see how they individually

influence the bias. In this section, the biases are calculated with different combinations of

σ′ and S′ to analyze the effects of the individual posteriors.

First, consider the bias obtained with GLLS posteriors. It is calculated with the σ′ found with

GLLS, which is called σ′
GLLS here, and with the unadjusted S. The xGLLS biases are calculated

with its σ′, or σ′
xGLLS, and the adjusted sensitivities, S′. If we use σ′

xGLLS and S, we remove the

effect that S adjustments have on the xGLLS bias and isolate the effect of σ′
xGLLS. Similarly,

to assess the effect of S′, the biases are calculated with S′ and σ′
GLLS, removing how xGLLS

affected the σ′ when it took into account S uncertainties. By splitting the adjustments in this

way, we can highlight and separate the effect of the S′ and σ′
xGLLS.

Fig. 6.6 presents the posterior biases of the stress test broken down in this manner. The data

are shown as the difference between the absolute value of the xGLLS biases and the absolute

value of the GLLS bias. If there are no differences, the color is white. If the xGLLS bias is larger,

or farther from zero in a positive or negative direction, the color is red. Conversely, if the xGLLS

bias is smaller, the color is blue.

Examine first the differences between the GLLS biases (with σ′
GLLS and S) and the biases

calculated withσ′
xGLLS and S in the first column of Fig. 6.6. These data show how the differences

between the σ′
GLLS and σ′

xGLLS affect the posterior biases, ignoring the S′ of xGLLS. We see

that the xGLLS nuclear data tend to create larger posterior biases (redder) than GLLS. The

average of the bias differences is -0.031%. This indicates that σ′
xGLLS was constrained to limit
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Figure 6.4 – Prior and posterior M̃σ correlation matrices from xGLLS when sensitivity uncer-
tainties are set to 300%.

the improvement of the biases in the presence of large sensitivity uncertainty.

Continuing to the biases calculated with S′ from xGLLS and σ′
GLLS to assess the affect of

sensitivity adjustments, we see that these biases are smaller than those from GLLS for many

integral parameters. This is shown by the blue shift in column two of Fig. 6.6 and the average

absolute bias difference of 0.098%. The data show that the S′ can lead to improved biases

relative to the same σ′ with unadjusted sensitivities. JEZEBEL F49/F25, FLATTOP F28/F25,

ZPR6-7 F28/F25, and the two Na-void reactivity coefficients are the integral parameters that

show the largest improvements in their posterior biases. Only JEZEBEL F37/F25 shows a

degradation in its bias, increasing by 0.255%.

When considering the full xGLLS biases, or with S′ and σ′
xGLLS, the S′ keep their important

effect on the bias. The third column of Fig. 6.6 shows that the xGLLS biases are, in general,

smaller than those from GLLS. This is supported by the average difference being 0.063%.
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Figure 6.5 – Prior and posterior sensitivity coefficients, with the posteriors given by xGLLS.
The bottom plot of each subfigure shows the standard deviations of the sensitivities, whose
relative values are 300%.

We can also note the competing effects between σ′
xGLLS and S′. For Na-void Step 5, the two

adjustments have compensating and cancelling effects that make the GLLS and xGLLS biases

different only by 0.010%. Whereas with σ′
xGLLS and S, and with σ′

GLLS and S′, the differences

were -0.236% and 0.221%, respectively.

The C′ uncertainties, or ∆C′ , from xGLLS can also be subdivided to isolate the effects of the

posteriors. Recall that the uncertainty reduction is created by changes to Mσ, by S adjustments,

and by the possible creation of covariance terms between S terms and between S and σ in

the extended posterior matrix M̃′
σ. Similar to the process presented for the posterior biases,

the ∆C′ are also broken down to examine the individual effects of the posteriors. The M′
σ of

GLLS and xGLLS are differentiated as M′
σ,GLLS and M′

σ,xGLLS. Fig. 6.7 analyzes the ∆C′ as the

difference between the GLLS∆C′ and the given xGLLS∆C′ . Red values indicate that the∆C′ with

GLLS is larger than with xGLLS, blue that it is smaller, and white that they are equal.

Begin with the first column of Fig. 6.7, which shows the differences in ∆C′ when it was calcu-

lated with the M′
σ of both methods and the unadjusted S. These data isolate the differences
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Figure 6.6 – Analysis of the different sources of bias adjustment.
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Figure 6.7 – Breakdown of the xGLLS ∆C′ , shown as difference from GLLS ∆C′ .

between M′
σ,GLLS and M′

σ,xGLLS and their effect on∆C′ . For all integral parameters, the∆C′ were

larger with M′
σ,xGLLS than with M′

σ,GLLS, i.e. the differences are all negative (red). This indi-

cates that xGLLS, in the presence of the large S uncertainty, restrained the reduction of the

uncertainties and the generation of covariances in M′
σ.

Examining when S′ was used with M′
σ,GLLS to highlight the effect of S adjustments, the dif-

ferences from GLLS ∆C′ were small for most integral parameters. For F37/F25 of JEZEBEL
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Pu-239 and F37/F25 of FLATTOP, the S adjustments were significant enough to create smaller

∆C′ than if unadjusted S were used. The ∆C′ of JEZEBEL F49/F25 increases by 0.316% with

S′. In general, the S′ had a smaller effect than M′
σ,xGLLS on ∆C′ . Using S′ with M′

σ,GLLS gave an

average difference from GLLS and S of -0.31%. Meanwhile, with S and M′
σ,xGLLS the average

difference was -0.170%.

Folding M′
σ,xGLLS and S′ shows their combined effect on ∆C′ . The difference with the GLLS

∆C′ shows that ∆C′ is larger with xGLLS, with an average difference of -0.198%. The two poste-

riors compound to limit the uncertainty reduction in ∆C′ with the very large S uncertainties

present in the stress test. Finally, the full xGLLS ∆C′ with S̃′ and M̃′
σ can be examined, which

includes the correlations between S′ and between S′ and σ′ that exist in M̃′
σ. M̃′

σ with corre-

lations gave lower ∆C′ than without correlations. The correlations grew to have a significant

effect that reduced ∆C′ so that it was more similar to that from GLLS.

When considered as a whole, the xGLLS adjustments performed better than the GLLS adjust-

ments, i.e. their biases are closer to 0. When the absolute values of the biases are averaged

across all 20 integral parameters, the GLLS bias is 0.665%. With xGLLS, or σ′
xGLLS and S′, the

average is 0.602%. Considering only σ′
xGLLS and S, the average is the worst at 0.696%. This

shows that the xGLLS equations restrained the σ adjustments, in the sense of limiting their

movement that can effect improved biases. The average absolute bias is the best at 0.567% for

S′ with σ′
GLLS, showing how important the S adjustments are.

This result can also be confirmed through a different analysis using the χ2 parameter as

defined in Eq. (6.17). Lower χ2 indicate better agreement between C and E. GLLS gives a χ2 of

9.7 and xGLLS gives 6.5. Using σ′
xGLLS and S gives 10.39, and σ′

GLLS and S′ gives 5.94.

χ2 = (
E−C′(σ′)

)T (ME)−1(E−C′(σ′)
)

(6.17)

6.4.2 Nominal Case

This section presents the adjustments with xGLLS when the true uncertainties of the sensitivity

coefficients, after 20 billion neutron histories, were used. These adjustments show what the

effect of xGLLS would be in a realistic application scenario. The adjustments of several nuclear

data are presented in Fig. 6.8. The figure shows no discernible differences between GLLS

and xGLLS adjustments for any of the nuclear data. For these levels of sensitivity uncertainty,

the xGLLS equations do not produce adjustments different from GLLS. Fig. 6.9 presents the

posterior biases and calculated value uncertainties computed with the adjusted nuclear data.

As there are no significant differences in ∆σ, by consequence, the figure shows that there are

no differences in the posterior biases or ∆C′ .

Fig. 6.10 gives the posterior M̃σ from xGLLS transformed into a correlation matrix. Concerning

the results, small correlations are created in the posterior M̃σ. These correlations exist between

σ′ and S′, and between S′ themselves. The correlations are much smaller than those presented
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Figure 6.8 – Nuclear data adjustments made with sensitivities calculated using 20 billion
neutron histories. In each subfigure, the top plot is the relative adjustment, ∆σ/σ0, and the
bottom plot is the posterior relative standard deviation.

previously in Fig. 6.4 and show that for more realistic levels of sensitivity uncertainty, new

correlation terms in the posterior extended matrices are not significant.

In summary, for the magnitude of sensitivity uncertainty encountered after 20 billion neutron

histories for all 20 integral parameters, their effect when accounted for in xGLLS is negligible.
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Figure 6.10 – M̃′
σ for Pu-239 nuclear data and JEZEBEL Pu-239 keff and F28/F25.

No significant differences appeared for the posterior nuclear data and, therefore, neither in

the posterior calculated values. The adjusted sensitivity coefficients, which are not shown,

also did not show any significant adjustments from prior to posterior.

6.4.3 Adjustment Convergence

The previous section demonstrated the performance of xGLLS for a nominal case when the

sensitivity coefficients are well converged and have low uncertainties. In reality, uncertainties
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could be larger at earlier stages in the Serpent simulation, or when few neutron histories are

used. Not only are the sensitivity uncertainties larger, but also their mean values fluctuate

during the simulation before they eventually converge. The following section presents the

posteriors of GLLS and xGLLS when they were calculated at increasing neutron histories,

from 20 million to 20 billion, to see if xGLLS has a significant effect earlier in the simulation.

The calculated values of the integral parameters, C, and the modeling and methodology

uncertainties, MM, are kept constant when calculating the posteriors; only the sensitivity

means and their uncertainties are changed in the GLLS and xGLLS equations.

The results show the maximum realistic effect that the sensitivity uncertainties can have in

xGLLS because the uncertainties will be at their maximum early in the simulation. The study

also captures the effect of the sensitivity mean-value oscillations, which are not accounted for

in xGLLS. Because too few neutron histories can easily be used in a simulation and because we

do not know a priori how converged sensitivities must be for DA, these results are important

to understand the question of how many neutron histories are needed in DA.
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Figure 6.11 – Posterior bias, C′/E - 1, from 20 million to 20 billion neutron histories in the
sensitivity calculations.

Fig. 6.11 presents the posterior biases, C′/E - 1, of several integral parameters. The biases can

greatly vary as the number of neutron histories increases, which is caused by fluctuations in

the S mean values. Spectral indices show larger fluctuations and converge later than keff as

their S uncertainties were bigger. For large cores like ZPR6-7 and ZPPR-9, their S had bigger

uncertainties and their biases varied more significantly and had later convergence. The Na-

void Step 3 bias, with its S being highly uncertain with EGPT, also showed large fluctuations.

Even at low numbers of neutrons where S uncertainties were largest, there were no significant

differences between the GLLS and xGLLS posterior biases. Fig. 6.12 gives the GLLS and xGLLS

C′ uncertainties due to M′
σ with increasing neutron histories. The C′ uncertainties also varied

as S converged. They tended to converge faster than the posterior biases. Certain keff, like for

JOYO, showed very small fluctuations at less than 1 pcm.
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Figure 6.12 – Uncertainty associated with C′ resulting from S uncertainty.

Fig. 6.13 shows the relative adjustments of different σ at specific energy groups as the number

of neutron histories increases. There are no discernible differences between GLLS and xGLLS,

even at low numbers of histories where S uncertainties are largest. The variations in adjust-

ments can be quite large before convergence. The inelastic scattering cross section of Pu-239

stands out again as having very large fluctuations and very late convergence. Fig. 6.14 gives

the convergence behavior of the σ′ relative standard deviations. They have large fluctuations

of up to several percents and no meaningful differences between GLLS and xGLLS.
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Figure 6.13 – σ′ relative adjustments (∆σ/σ0) as the number of neutron histories used in the
Serpent simulations increases.

Why did the S uncertainties have such a limited effect in xGLLS? The answer is that, in com-

parison to other uncertainty terms in the adjustment equations (ME, SMσST , and MM), the
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Figure 6.14 – σ′ relative standard deviations as the number of neutron histories used in the
Serpent simulations increases.

uncertainty of C caused by sensitivity uncertainties was small. The new term in xGLLS that

accounts for the sensitivity uncertainties then had a negligible effect; it was diluted by the

traditional terms in GLLS. This idea is demonstrated in Fig. 6.15 where the uncertainties in C

that come from nuclear data uncertainty (SMσST ), methodology (MM), sensitivity uncertainty

(∆ΣMS∆Σ), and the experimental uncertainty (ME) are plotted. Here the true MM from Serpent

is plotted, not that used in the benchmark. The nuclear data uncertainty is calculated with the

prior Mσ. The uncertainty from sensitivities is calculated using first order error propagation

like in Eq. (6.2) isolating only the sensitivity uncertainty terms. This gives the expression

∆ΣMS∆Σ to calculate the uncertainty of C from sensitivity uncertainties. ∆Σ is the same as in

Eq. (6.4), and the ∆σ in this formulation is taken from xGLLS.

Fig. 6.15 shows several interesting results. First, and most important for this study, is that

even at few neutron histories, the uncertainty of C from sensitivities is small compared to

the nuclear data and methodology uncertainties and to the experimental uncertainty. This

explains why xGLLS does not create adjustments significantly different from GLLS, even at few

neutron histories when the sensitivity uncertainties are at their maximum. Second, we see

that for a spectral index in a large core like ZPR6-7 F49/F25 or for the ZPPR-9 Na-void Step 3,

the methodology uncertainties can be quite large and many neutron histories may be needed

for them to be reduced. Third, we see that the Na-void uncertainty is highly overestimated at

few neutron histories, showing how difficult it is to estimate the sensitivities of this integral

parameter with EGPT and Monte Carlo neutron transport.

Interestingly, the nuclear data uncertainties of ZPR6-7 F49/F25 and ZPPR-9 Na Void Step 3

monotonically decrease. They do not show up and down statistical fluctuations that might be

expected from converging random variables. The decrease is related to sensitivities that have
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Figure 6.15 – Uncertainties of C from sensitivities, nuclear data, and modeling/methodology
plotted with increasing numbers of neutron histories.

zero values or near zero values when they are fully converged or estimated with deterministic

codes. When they are not fully converged, the sensitivities can be very large, up to several

orders of magnitude larger than the converged results. When these sensitivities are used in

SMσST , they produce an over-estimation of the nuclear data uncertainty. As they converge to

zero or near zero, their contribution to the total uncertainty decreases. This over-estimation

then decreases until the uncertainty from nuclear data is created only by sensitivity coefficients

that are much greater than zero. This effect was more prominent for these two integral

parameters because these integral parameters had more difficult convergence than keff in

general and they were from larger systems than JEZEBEL-Pu239 and therefore needed more

neutrons for similar precision.

Fig. 6.16 shows several sensitivity profiles corresponding to the integral parameters of Fig. 6.15

that exhibit this behavior. The INL deterministic sensitivity profile is also shown for com-

parison to indicate what a non-stochastic result would be. For each integral parameter, the

sensitivity profile is shown for increasing numbers of neutron histories. JOYO keff and JEZBEL-

Pu239 F49/F25 both show well converged sensitivity profiles even at 2E6 neutron histories.

ZPPR-9 Na Void Step 3 and ZPR6-7 F49/F25 show large over-estimations of the fully converged

result at low neutron histories. These over-estimations were important for the Pu-240 capture
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cross section, especially around 3E-3 MeV where the uncertainty is 25%. The over-estimated

sensitivity for highly uncertain nuclear data caused an over-estimation of the nuclear data

uncertainty in C. This over-estimation decreased as the sensitivity profiles converged to their

smaller values.
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Figure 6.16 – Sensitivity profiles with varying neutron histories for the Pu-240 capture cross
section. the INL profiles were calculated with ERANOS during the Subgroup 33 benchmark.

We can build on work presented in [71] to provide a guideline for using sensitivity coefficients

from Monte Carlo neutron transport codes. This can help to avoid the over-estimation of

the nuclear data uncertainties and to limit the uncertainty in C caused by sensitivity profiles

while simultaneously minimizing the invested computational resources. Comparing the

convergence plots presented in Figs. 6.11, 6.12, 6.13, and 6.14 to Fig. 6.15, the posteriors

are approximately converged once the combined uncertainties in C from methodology and

sensitivities are much smaller than that from nuclear data, or (MM +∆ΣMS∆Σ) << SMσST . As

a convergence guideline, we propose to stop a simulation once this criterion is met.

The criterion’s advantage can be seen by examining the C uncertainties of JOYO keff in Fig. 6.15.

For this integral parameter, even at 20 million neutron histories, the uncertainty of C from

methodology and sensitivities is much smaller than that from nuclear data. Now examining the

C′ uncertainty of this integral parameter in Fig. 6.12, we see that it had very small fluctuations,

even at few neutron histories, of less than 1 pcm. This indicates that this simulation could have

been stopped much earlier, and have significantly saved computational cost, without severely

affecting the accuracy of the posterior. Contrast this with ZPR6-7 F49/F25 in Fig. 6.15, where
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only after more than 10 billion neutron histories is (MM +∆ΣMS∆Σ) << SMσST . This is also

reflected in the C′ uncertainty from nuclear data of this integral parameter in Fig. 6.12, where

significant numbers of neutrons are needed before the posterior converges. This shows that

the additional neutron histories, and computational resources, committed to the simulation

of ZPR6-7 F49/F25 were necessary for convergence.

6.5 Conclusions

Sensitivities from continuous-energy Monte Carlo codes have many advantages in data assim-

ilation. This chapter discussed the impact of their statistical uncertainties on the adjustments

of calculated integral parameters and nuclear data. To account for the sensitivity uncertainties,

the traditional Generalized Linear Least Squares (GLLS) equations were adapted to create the

eXtended Generalized Linear Least Squares (xGLLS) method. This new xGLLS approach was

tested by simulating an NEA data assimilation benchmark with Serpent2.

The xGLLS method was tested first with large and exaggerated sensitivity uncertainties of

300%. For this artificial case, xGLLS posteriors showed significant differences from GLLS.

xGLLS’ nuclear data adjustments were restrained in a way that the posterior χ2 was larger than

that from GLLS. In other words, when compared to GLLS, xGLLS created larger biases and

larger posterior calculated value uncertainties with its posterior nuclear data. The adjusted

sensitivities created by xGLLS were shown to have an important role, helping to produce a

lower χ2 than GLLS. The posterior correlation terms created between sensitivities and between

sensitivities and nuclear data were also seen to be important. They created smaller posterior

calculated uncertainties for the integral parameters than if they were ignored.

For a realistic range of sensitivity uncertainties, xGLLS did not show any significant differ-

ences from GLLS. This conclusion is even valid at 20 million neutron histories when the

sensitivity uncertainties were largest. The sensitivity uncertainties did not have a large effect

because they were small compared to nuclear data, modeling/methodology, and experimental

uncertainties.

Convergence analysis of the posteriors with increasing neutron histories showed that fluctu-

ations of sensitivity mean values were an important factor for having converged posteriors.

Posterior calculated integral parameters from large cores like ZPPR-9 and ZPR6-7 and the

spectral indices converged later because of their larger sensitivity uncertainties. We proposed

a guideline for economizing simulations with Monte Carlo neutron transport codes for data

assimilation: the posteriors are approximately converged once the combined uncertainty of

the calculated value of an integral parameter from methodology and sensitivities is much

smaller than that from nuclear data. This guideline can be used in future DA studies to help

economize the expensive Monte-Carlo neutron transport simulations. It could also be used in

uncertainty quantification studies, with an assumption for∆σ, or the nuclear data adjustment

term.
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In this work, xGLLS was applied assuming that the sensitivity coefficients were independent

of each other and from the nuclear data. In reality, these correlations exist, especially for the

sensitivities of spectral indices. Important future work could be focused on calculating these

correlations and evaluating their effect on the adjustments with xGLLS.

6.6 Chapter’s Key Points

• The sensitivity coefficients from Monte Carlo neutron transport codes have statistical

uncertainties

• The uncertainties of sensitivities are not taken into account in GLLS

• We proposed the xGLLS method to account for the sensitivity uncertainties in DA

• We tested xGLLS with an NEA benchmark that has 20 integral parameters

• xGLLS was proven to constrain the adjustments of nuclear data and calculated integral

parameters in the presence of large sensitivity uncertainty

• For the range of sensitivity uncertainties encountered in practice, they were not influen-

tial on the adjustment and xGLLS did not give posteriors different from GLLS

• To optimize the run time of sensitivity calculations, they can be stopped once the com-

bined uncertainty of the calculated value of an integral parameter from methodology

and sensitivities is much smaller than that from nuclear data
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7 Conclusions

All models are wrong, but some models

are useful.

G.E.P. BOX [135]

This thesis began with two well defined goals and one ambiguous goal. A clear target was

to use experimental data from the Proteus research campaigns in data assimilation (DA).

Another was to develop DA tools for use at PSI and EPFL. The undefined goal was scientific

and sought to advance DA knowledge, theory, and application range in the field of neutronics.

The start of the thesis coincided with two developments: 1) the adaptation of DA methods

based on stochastic sampling to neutronics problems, and 2) sensitivity analysis tools being

implemented in continuous-energy Monte Carlo neutron transport codes. It was around these

two advancements that the research aspects of the thesis were constructed. Excluding the

introduction and conclusion, a chapter-wise summary of the thesis is given below.

7.1 Chapter-wise Summary

Chapter 2 – Overview of Data Assimilation Theory

The first stage of the thesis required understanding the theoretical bases of DA in neutronics.

Chp. 2 summarized the state-of-the-art of DA in the field. First an introduction to Bayes’ theo-

rem was given, which was then expanded to the case of nuclear data and integral experiments.

Then, the three principal DA methods of the field were described: Generalized Linear Least

Squares (GLLS), Monte Carlo Bayesian Analysis (MOCABA), and Bayesian Monte Carlo (BMC).

A second flavor of BMC, called Backward Forward Monte Carlo (BFMC).

This chapter is, to the author’s knowledge, the first time in literature that these methods

were all shown to derive from the same theoretical bases. The theory was also described in a

more detailed fashion than usually encountered. For one, the posterior covariances between
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nuclear data and experimental data were described in their mathematical form. Secondly, a

united description of the state-of-the-art ways to handle inconsistencies between calculated

and experimental integral data was provided. This included the filtering techniques with the

Adjustment Margin and ∆χ2 parameters, and with a data-driven approach called Marginal

Likelihood Optimization (MLO).

Chapter 3 – Comparison of Data Assimilation Methods

For the first time, the three DA methods GLLS, MOCABA, and BMC/BFMC were compared.

First, the comparison was done with simplified toy models to specifically target linear and

non-Gaussian systems. Then, the methods were applied to the JEZEBEL-Pu239 benchmark

as a complex, real-world case study. The code Serpent2 simulated neutron transport and

calculated sensitivity coefficients, and NUSS randomly sampled nuclear data.

The principle conclusion was that the DA methods’ results agree within the stochastic uncer-

tainties of MOCABA and BMC. The toy problems demonstrated some interesting behavior in

terms of the performance of the DA methods as algorithms. The BMC and BFMC methods

proved to be highly sensitive to the sample size and to the magnitude of the data set’s χ2.

With BMC, as the χ2 gets larger the degree of degeneracy increases in the weight distributions,

leading to less statistically accurate posteriors. This will continue in BMC up until a maximum,

threshold χ2 at which all weights become zero and no posterior can be calculated. BFMC,

oppositely, counteracts this behavior with a weight normalization, but no longer gives an

unbiased estimate of the maximum a posteriori distribution.

The JEZEBEL-Pu239 study importantly showed that, for a more complex DA problem, the meth-

ods’ results all agree. Additionally, it served to develop the DA tool DAN (Data AssimilatioN),

completing an original goal of the thesis. DAN will serve as a computational tool for future

studies at PSI and EPFL. For JEZEBEL, a more complex system, the BFMC posteriors agreed to

a better extent with the other DA methods, which improved the confidence in this method

and allowed it to be used in other studies in the thesis.

Chapter 4 – Data Assimilation of the LWR-Proteus Phase II Reactivity Experiments

The LWR-Proteus Phase II (LWR-PII) experiments from PSI were targeted for use in DA. They

provide a rich amount of experimental data that is topical for the current state of the nuclear

industry in Switzerland. Nowadays, the focus is on the optimization of LWRs and their nuclear

waste management. This chapter presented a DA of reactivity measurements that were

conducted at the Proteus reactor. Fuel samples from real Swiss PWRs were put into Proteus to

evaluate the effect that burnup has on reactivity. The experiment serves as a basis to validate

reactivity simulations, and now to perform DA.

The GLLS, MOCABA, BMC, and BFMC DA techniques that were used in Chp. 3 were im-

plemented into the tool SHARK-X that is maintained at PSI to do sensitivity analysis and
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uncertainty quantification. First, the consistency of the experimental and calculated values of

these integral parameters was evaluated. To do so, we used the ∆χ2-filtering technique. This

test showed how taking into account the correlations between integral data is very important

for consistency evaluation. Only ten out of 32 relative reactivities were sufficiently consistent

to be used in DA. MOCABA and GLLS were used to adjust the calculated relative reactivity

values and the chosen nuclear data. BMC and BFMC were not used because the required

sample sizes to have statistically accurate posteriors were too prohibitive.

Small but statistically significant differences appeared between the posterior relative reactiv-

ities given by MOCABA and GLLS. These differences were attributed to round-off errors in

SHARK-X and not to any theoretical difference between the DA methods. Finally, analysis

of the nuclear data adjustments showed large changes to the U-238 capture cross section.

These changes were very important in improving the bias of the CASMO-5M simulations.

The posterior nuclear data covariance matrices gained significant negative correlation terms

between Pu-239 fission multiplicity data that led to reductions in calculated value uncertainty.

This supported previous conclusions that the Pu-239 fission multiplicity uncertainty may have

been overestimated in the SCALE6.1 covariance data.

Chapter 5 – Data Assimilation of Post-Irradiation Examination Experiments

Chp. 5 was devoted to using post-irradiation examination experiments to adjust the model

parameters of the code GEF. The purpose was to improve the bias and to reduce the un-

certainties of calculated fission product concentrations in spent fuel. The post-irradiation

examination (PIE) experiments were also part of the LWR-PII experimental campaign. They

involved analytical chemistry to determine the composition of nuclear fuel after exposure in

a reactor. In this thesis, the experiments were used with BFMC and MOCABA to adjust the

fission yields of GEF. This project was a stimulating theoretical challenge from a scientific

point of view because GEF’s fission yields can have non-normal distributions. Because BFMC

can account for this non-normality and MOCABA cannot, this served as an interesting case

study to highlight the strengths and weaknesses of the different DA methods.

The PIE experiments were simulated in CASMO-5 after sampling the GEF model parameters

10,000 times to create 10,000 sets of fission yields. One fuel sample from LWR-PII was then

used to adjust the model parameters of GEF. Before the adjustment, the MLO technique was

applied to account for the large degree of inconsistency in the PIE integral data set. Applying

DA gave posterior model parameters of GEF which were then used to create posterior fission

yields and their covariance matrices. The posterior fission yields were then used again in

CASMO-5 simulations to assess their performance.

The posterior model parameters, and subsequently fission yields and their covariance data,

and subsequently again the simulations of the fuel sample compositions, showed good agree-

ment between MOCABA and BFMC when MLO was applied. This occurred despite the

non-normality of the fission yields and calculated responses. The posterior GEF fission yields
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showed stronger agreement with the fission yields from ENDF/B-VIII.0 and JEFF3.3 than

the prior. The posterior fission yields also created lower biases and uncertainties in nuclide

concentrations. For the fuel sample used in the DA, the prior average absolute bias was 26.4%.

The posterior biases with MOCABA and BFMC were 13.7% and 15.4%, respectively. The un-

certainty of the calculations dropped from a prior of 20.3%, to a posterior of 13.5% and 14.1%

with MOCABA and BFMC, respectively. When the posterior fission yields were used with fuel

samples that were not part of the training data, they also improved the biases and reduced

uncertainties.

The BFMC posteriors exhibited slight differences when MLO was and was not used. MOCABA,

in contrast, showed very significant differences. The trends of the adjusted fission yields were

significantly changed, which had a deleterious effect on the posterior biases of the calculated

nuclide concentrations. For the training data, the average absolute bias deteriorated from a

prior of 26.4% to a posterior of 55.9%. We hypothesize that better posteriors were obtained

when MLO was applied with MOCABA for two reasons: 1) MLO decreased the inconsistency

of the integral data set and 2) it de-emphasized the influence of integral data with large

skewness. With the integral data’s full inconsistency, MOCABA over-fit the model parameters

to the integral data. With the full degree skewness included in the adjustment, MOCABA’s

incorrect normality assumption biased the posteriors. This did not occur with BFMC because

it compensates for inconsistent integral data and accounts for non-normality.

Chapter 6 – eXtended Generalized Linear Least Squares

Over the course of using Serpent to calculate sensitivity coefficients for GLLS in Chp. 3, several

questions arose. They pertained to the effect of the uncertainties of the sensitivities that are

inherent to Monte Carlo neutron-transport codes. The GLLS methodology was adapted to

xGLLS (eXtended GLLS) to address these questions. xGLLS can account for the sensitivity

uncertainties in the adjustment equations in a statistically consistent way. Now, the sensitivity

coefficients are treated as random variables that can also be adjusted through DA.

xGLLS was investigated with a benchmark DA problem proposed by a working group at the

Nuclear Energy Agency. With very large sensitivity uncertainties, xGLLS acted to constrain

the adjustment. This means that the changes to the nuclear data and the reductions to their

uncertainties were weaker when xGLLS accounted for the sensitivity uncertainties. These

weaker adjustments then propagated to create smaller adjustments to the calculated integral

parameters. Importantly, however, the range of sensitivity uncertainties commonly encoun-

tered in applications did not have a significant effect on the posteriors. The study showed

that once the calculated integral parameters were converged, their sensitivities had enough

statistical accuracy to have converged posteriors. The convergence of the calculated integral

parameters can then be used a convergence criterion to stop Monte Carlo neutron transport

simulations, and thereby significantly economize computational resources.
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7.2 Future Work

The thesis unveiled several avenues for future projects. Firstly, it showed that BMC and

BFMC have room for improvement in terms of their efficiency as algorithms. While they

are applicable to any problem because they make no linearity or normality assumption,

their parsimony also makes them less efficient and they require much more computational

resources than MOCABA or GLLS. For instance in Chp. 6, only 100 out of 10,000 samples in

BFMC had weights that were significantly greater than 0. Approximately 9,900 CASMO runs

did not contribute to calculating the posterior and were effectively a waste of computational

resources. New sampling techniques could be investigated, like importance sampling [136]

from the prior, or using Markov Chain Monte Carlo approaches [137].

Concerning xGLLS, the study presented here never accounted for the correlations between

sensitivities and between sensitivities and nuclear data. The sensitivities are correlated, in

theory, because the same neutron histories are used to calculate them. The sensitivities and

nuclear data are correlated because nuclear data directly impact the sensitivities. Impor-

tant future work could focus on calculating these sensitivities and implementing them into

continuous-energy Monte Carlo neutron transport codes. Once they are implemented, xGLLS

must be re-evaluated to see if the conclusions made in this thesis are still valid.

The DA of the reactivity measurements of LWR-PII has much room for improvement. Higher

fidelity in modeling the burnup history of the fuel samples should be used to improve the

neutronics model’s accuracy. A modeling and methodology covariance matrix needs to be

estimated with the MLO approach. Other improvements will come from considering the

effects of nuclear data, including fission yields, on the nuclide composition of the fuel samples

used in the relative reactivity calculations.

Using DA with GEF has a lot of potential for future work. Different kinds of integral data

should be used, like reactivity or decay heat experiments. When more PIE data are to be used,

the SFCOMPO data base should be exploited. Fuel samples with lower burnup or higher

enrichment could be assimilated, possibly allowing for better performance of U-235 fission

yield data. PIE experiments that were done in more controlled environments, like a high

flux research reactor rather than an operating nuclear power plant, could be very useful.

This would allow for a more accurate irradiation history to be modeled and to lessen the

inconsistency of the integral data that arises from model inaccuracy. If the BMC method

advances and becomes more efficient, Monte Carlo neutron transport calculations could be

used to model the fuel burnup, thereby alleviating some model inaccuracies. Other future

work should try to separate the effects of model inconsistency and non-normality on the

posteriors from MOCABA.

Time-dependent DA problems can also be pursued in future research. Ideally, the research can

start from simple case studies in zero-power research reactors. This would limit the physics to

purely neutronics effects. Once the DA methods are characterized for these simple problems,

they could be expanded to include thermal-hydraulic feed-backs with higher-power research

147



Chapter 7. Conclusions

reactors. Finally, they could be expanded to real nuclear power plants. The CROCUS reactor at

EPFL would be a good starting point for zero-power research reactor applications. Serpent

and PARCS models of the reactor [138, 139, 140, 141, 142] could be used with DA methods

similar to those outlined in this thesis. Methods like the Extended Kalman Filter, the Ensemble

Kalman Filter, and the Particle Filter could be applied to transients in CROCUS.
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A Supplementary Information

A.1 Derivation of Generalized Linear Least Squares

This derivation is adapted from Refs. [40, 29]. The notation has been adapted and clarifica-

tions have been added that are meant to make the derivation easier to follow. In Ref. [40]

the equations are derived with Bayes’ theorem and in Ref. [29] they are derived with linear

regression theory. Both derivations yield the same set of equations. The Bayesian approach is

used here to allow it to be easily compared to other DA methods.

There are benchmark integral parameters, E, that are represented as a vector, E = {Ei |i =
1, · · · , NE }, where NE is the number of integral parameters. The vector has a corresponding

covariance matrix, ME = 〈∆E∆ET 〉1 whose size is NE×NE . These same integral parameters

have calculated values represented by the vector C = {Ci |i = 1, · · · , NE }, which is a function

of σ. The vector has the corresponding covariance matrix MC = 〈∆C∆CT 〉. There is also a

vector of nuclear data σ= {σi |i = 1, · · · , Nσ}, where Nσ is the number of nuclear data. It has

the covariance matrix Mσ = 〈∆σ∆σT 〉 whose size is Nσ×Nσ.

With these terminology, we can construct Bayes’ theorem for updatingσwith E in Eq. (A.1).

The prior is p(σ,model) and is assumed to be a multivariate normal distribution as in Eq. (A.2).

The prior and the neutronics model together lead to the likelihood function, L (E|σ,model),

which is also assumed to be a multivariate normal distribution as in Eq. (A.3). It conceptually

describes the likelihood of obtaining E given σ and the neutron transport code. Finally, the

posterior is the PDF p(σ′|E,model).

p(σ′|E,model) ∝L (E|σ,model)p(σ) (A.1)

1The symbol 〈·〉 denotes the expected value of some random variable. The mean of random variable x would be
〈x〉 = ∫

∞ p(x)xd x, where p(x) is the PDF of x. The symbol ∆ represents possible deviations from the mean value,
or x −〈x〉. Therefore, 〈∆x∆x〉 = ∫

∞(x −〈x〉)(x −〈x〉)p(x)d x.
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p(σ|σ0,Mσ) = (2π)−Nσ/2det(Mσ)−1/2 ·exp

[
− 1

2
∆σT Mσ

−1∆σ

]
(A.2)

L (E|σ,model) = (2π)−NE /2det(ME)−1/2 ·exp

[
− 1

2

(
E−C(σ)

)T ME
−1(E−C(σ)

)]
(A.3)

The posterior can then be written as Eq. (A.4), which after taking the negative logarithm of

both sides becomes Eq. (A.5). From here, we can apply MAP and calculate the moments of the

posterior distribution. We will not do this yet, because we want to take the derivation a step

further. We want to take into account possible correlations between E and σ

p(σ′|E) ∝ exp

[
− 1

2

(
E−C(σ)

)T ME
−1(E−C(σ)

)] ·exp

[
− 1

2
(σ−σ0)T Mσ

−1(σ−σ0)

]
(A.4)

(σ′−σ′
0)T Mσ

′−1(σ′−σ′
0) ∝ (

E−C(σ)
)T ME

−1(E−C(σ)
)+ (σ−σ0)T Mσ

−1(σ−σ0) (A.5)

Indeed, it is possible for the integral data to be correlated to the nuclear data, although this

is often ignored in practical applications of DA. The nuclear data evaluators may have, in

an ad hoc way, already tuned the performance of a nuclear data library to common integral

benchmarks like JEZEBEL or FLATTOP. The correlation may also be induced inversely where

the evaluated nuclear data were somehow used in the experimental procedure, for example as

a normalization coefficient. In this text, we assume that this is the case in order to have the

most complete derivation as possible.

The covariances between σ and E are given by the Nσ×NE sized matrix Mσ,E = 〈∆σ∆ET 〉 and

by the NE×Nσ sized matrix ME,σ = 〈∆E∆σT 〉. Here, Mσ,E = ME,σ
T . It should be noted that

these are not true variance-covariance matrices as they are not square and the main diagonals

do not contain variance terms, but rather covariance terms.

We perform a first-order linear approximation C(σ) with sensitivity coefficients, S, are the

first derivatives of C(σ), ∂C/∂σ, evaluated at σ0 or the nominal nuclear data mean values. S

is a matrix of dimensions NE ×Nσ. This then allows to approximate MC with Eq. (A.7). This

reflects the propagation of Mσ through C(σ).

C(σ) ≈ C(σ0)+S∆σ (A.6)

MC = SMσST (A.7)
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We can then define a discrepancy vector as d and its covariance matrix, Md, that will help to

simplify later equations.

d = C(σ)−E = C(σ0)+S∆σ−E (A.8)

Md = 〈
∆(C−E)−∆(C−E)T 〉

= 〈
∆C∆CT 〉+〈

∆E∆ET 〉−〈
∆C∆ET 〉−〈

∆E∆CT 〉
= MC +ME −MC,E −ME,C

= SMσST +ME −SMσ,E −ME,σ
T S

(A.9)

Where
〈
∆C∆ET

〉
= SMσ,E through the math outlined in Eq. (A.54).

〈
∆C∆ET 〉= 〈(

C(σ)−C(σ0)
)
(E−E0)T 〉

= 〈(
C(σ0))+S(σ−σ0)−C(σ0))

)
(E−E0)T 〉

= 〈
S(σ−σ0)(E−E0)T 〉= S

〈
(σ−σ0)(E−E0)T 〉

= S
〈
∆σ−∆ET 〉= SMσ,E

(A.10)

With Bayes’ formula defined and all possible correlations taken in to account, we can maximize

the a posteriori distribution. This maximization is classically done with Lagrangian multipliers

as the mathematical objective can be interpreted as a constrained optimization problem. The

constraint that we impose is that E = C′(σ′), or C′(σ′)−E = 0. This is equivalent to forcingσ′ to

be consistent with E within the constraints of linearity. For simplicity, the adjustments will be

defined as x =σ′−σ and y = C′−E. With the linear constraint, y can then be rewritten,

C′(σ′) = C(σ0)+Sx

C′(σ′)−E = C(σ0)−E+Sx = 0

y = d+Sx = 0

(A.11)

Now, the function that is to be maximized can be defined as

p

([
y

x

]∣∣∣∣∣M
)
= (2π)−(NE+Nσ)/2det(M)−1/2 ·exp

[
− 1

2
Q

]
(A.12)
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Where,

M =
[

ME ME,σ

Mσ,E Mσ

]
(A.13)

Q =
[

y

x

]T

M−1

[
y

x

]
(A.14)

Eq. (A.14) can be reformulated using Lagrangian multipliers, λ, in Eq. (A.15) so that x and

y satisfy Eq. (A.16), where ∇ denotes the gradient. This is effectively taking the derivative of

R(x,y) with respect to x and y and setting it equal to zero.

R(x,y) = Q+2λT Sx−y (A.15)

∇xR(x,y) =∇yR(x,y) = 0 (A.16)

The matrix M can be inverted with the following relation, where A = Mσ−Mσ,EME
−1ME,σ.

M−1 =
[

ME ME,σ

Mσ,E Mσ

]−1

=
[

ME
−1 +ME

−1ME,σA−1Mσ,EME
−1 −ME

−1ME,σA−1

−A−1Mσ,EME
−1 A−1

]
(A.17)

Eq. (A.15) then becomes,

R(x,y) = yT
[

ME
−1 +ME

−1ME,σA−1Mσ,EME
−1

]
y−yT

[
A−1Mσ,EME

−1
]

y

−yT
[

ME
−1ME,σA−1

]
x+xT A−1x+2λT (Sx−y)

(A.18)

Eq. (A.16) can then be re-written as Eq. (A.19) and Eq. (A.20). The unit and zero vectors 1 and

0 and have dimensions of Nσ×1 in Eq. (A.19) and NE×1 in Eq. (A.20).

∇xR(x,y) = 0

=−1T
[

A−1Mσ,EME
−1

]
y−yT

[
ME

−1ME,σA−1
]

1

+1T A−1x+xA−11+2λT S1

(A.19)
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∇yR(x,y) = 0

= 1T
[

ME
−1 +ME

−1ME,σA−1Mσ,EME
−1

]
y

+x
[

ME
−1 +ME

−1ME,σA−1Mσ,EME
−1

]
1

−xT
[

A−1Mσ,EME
−1

]
1−1T

[
ME

−1ME,σA−1
]

x−2λT S1

(A.20)

With some linear algebra, the equations can be simplified further by knowing that the term

A−1 is symmetric and the transpose of a scalar and a scalar are equal. The terms then add

together, and after dividing by 2 gives,

STλ+A−1x−A−1Mσ,EME
−1y = 0 (A.21)

−λ+
[

ME
−1 +ME

−1ME,σA−1Mσ,EME
−1

]
y+

[
ME

−1ME,σA−1
]

x = 0 (A.22)

Solving for x and y gives

x = [
Mσ,E −MσST ]

λ (A.23)

y = [
ME −ME,σST]

λ (A.24)

Taking these values of x and y and substituting them into Eq. (A.11) gives the Lagrangian

multipliers and their covariance matrix, Mλ.

λ= Md
−1d (A.25)

Mλ =
〈
∆λ∆λT 〉= Md

−1〈∆d∆dT 〉
Md

−1 = Md
−1 (A.26)

Eq. (A.25) can then be put into the definition of x in Eq. (A.23) to find the posterior nuclear

data, σ′, as shown in Eq. (A.27). When ignoring Mσ,E, this simplifies down to Eq. (A.28). This

is slightly different than Eq. (2.17). The difference is the C−E term, which causes a minus
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instead of a plus to appear before the MσST term.

σ′ =σ+ [
Mσ,E −MσST ]

Md
−1d (A.27)

σ′ =σ−MσST [
SMσST +ME

]−1[C−E
]

(A.28)

We now have a best-estimate for the true value of the integral parameter, T, that takes into

account the information contained in E and C. Practically, T is not used and we are more

interested in what effect σ′ has on C. This preserves the role of the computational model.

T(σ′) = E+ [
ME −ME,σST]

Md
−1d (A.29)

A posterior set of calculated values, C′, can be calculated using the linearization of Eq. (A.6),

which is the most often used formulation. It is evident that C′(σ′) 6= T(σ′) because when S is

calculated withσ′ is not equal to S when calculated withσ, unless the model is perfectly linear

and free of numerical errors.

C′(σ′) = C(σ0)+Sx = C(σ0)+S(σ′−σ0) (A.30)

The posterior covariance matrix of the adjusted nuclear data, M′
σ, is found from

M′
σ = 〈

∆σ′∆σ′T 〉
= Mσ+

[
Mσ,E −MσST ]

Md
−1〈∆d∆dT 〉

Md
−1[ME,σ−SMσ

]
+ [

Mσ,E −MσST ]
Md

−1〈∆d∆σT 〉+〈
∆σ∆dT 〉

Md
−1[Mσ,E −MσST ] (A.31)

Given the following relation for
〈
∆d∆σ′T 〉

〈
∆d∆σ′T 〉= 〈

∆(C−E)∆σT 〉= S
〈
∆σ∆σT 〉−〈∆E∆σT 〉= SMσ−ME,σ (A.32)

M′
σ can then be found to be

M′
σ = Mσ+

[
Mσ,E −MσST ]

Md
−1[ME,σ−SMσ

]−2
[
Mσ,E −MσST ]

Md
−1[Mσ,E −MσST ]

= Mσ−
[
Mσ,E −MσST ]

Md
−1[ME,σ−SMσ

] (A.33)
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In the most common case where Mσ,E = 0 or it is ignored, M′
σcan be written as,

M′
σ = Mσ−MσST [

SMσST +ME
]−1SMσ (A.34)

The covariance matrix of T, or MT, can also be estimated,

MT = 〈
∆T∆TT 〉

= ME +
[
ME −ME,σST ]

Md
−1〈∆d∆dT 〉

Md
−1[ME −SMσ,E

]
+ [

ME −ME,σST ]
Md

−1〈∆d∆ET 〉+〈
∆E∆dT 〉

Md
−1[ME −SMσ,E

] (A.35)

Where

〈∆d∆ET 〉= 〈
∆(C−E)∆ET 〉= S

〈
∆σ∆ET 〉−〈∆E∆ET 〉= SMσ,E −ME (A.36)

And finally giving

MT = ME −
[
ME −ME,σST ]

Md
−1[ME −SMσ,E

]
(A.37)

The covariances between the integral and nuclear data can be adjusted with

M′
σ,E = 〈

∆σ′∆E′T 〉
= Mσ,E −

[
Mσ,E −MσST ]

Md
−1〈∆d∆dT 〉

Md
−1[ME −SMσ,E

]
+ [

Mσ,E −MσST ]
Md

−1〈∆d∆ET 〉+〈
∆σ∆dT 〉

Md
−1[ME −SMσ,E

] (A.38)

Giving,

M′
σ,E = Mσ,E −

[
Mσ,E −MσST ]

Md
−1[ME −SMσ,E

]
(A.39)

It is important to note that even if there are not correlations between the integral and nuclear

data in the prior, there are certainly correlations in the posterior. If any other adjustment or

iterative technique is applied, these covariances should not be forgotten.

The covariance matrix of C′, or M′
C, can then be calculated using M′

σ as

M′
C = SM′

σST (A.40)
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A.2 MOCABA Derivation

MOCABA is derived here using the GLLS equations, in a similar way to how the ensemble

Kalman filter is derived in Ref. [2]. The author does not know of any full derivation of MOCABA

being presented in the literature. From their understanding, this is the most direct way to

reaching the MOCABA equations.

To derive the MOCABA equations requires recognizing that there are ways to estimate the

important terms in the GLLS equations with random sampling. Take the posterior nuclear

data, σ′, as calculated with GLLS in Eq. (A.41). Here, there are two terms MσST and SMσST

that use sensitivity coefficients, i.e. that use first-order perturbation theory. The essence of

MOCABA is to approximate these two terms with random sampling instead of first-order

perturbation theory.

σ′ =σ0 −MσST [
SMσST +ME

]−1[C−E
]

(A.41)

The SMσST term is easiest to start with. It represents MC=
〈
∆C∆CT

〉
, or the covariance matrix

of C created by Mσ. This can be shown below, by inserting the linearity approximation and the

property of matrix transposes
(
S(σ−σ0)

)T = (σ−σ0)T ST .

〈
∆C∆CT 〉= 〈(

C(σ)−C(σ0)
)(

C(σ)−C(σ0)
)T 〉

= 〈(
C(σ0)+S(σ−σ0)−C(σ0)

)(
C(σ0)+S(σ−σ0)−C(σ0)

)T 〉
= 〈

S(σ−σ0)
(
S(σ−σ0)

)T 〉= 〈
S(σ−σ0)(σ−σ0)T ST 〉

= S
〈

(σ−σ0)(σ−σ0)T 〉
ST = SMσST

(A.42)

Next, one simply has to define the population estimate of MC, where N is the population size,

Ci is a random sample of C, and C̄ is the population mean of C.

M̂C = 1

N −1

N∑
i=1

(
Ci − C̄

)(
Ci − C̄

)T (A.43)

The term MσST is recognized to first-order estimate of Mσ,C = 〈
∆σ∆CT

〉
as shown below,

〈
∆σ∆CT 〉= 〈

(σ−σ0)
(
C(σ)−C(σ0)

)T 〉
= 〈

(σ−σ0)
(
C(σ0)+S(σ−σ0)−C(σ0)

)T 〉
= 〈

(σ−σ0)
(
S(σ−σ0)

)T 〉= 〈
(σ−σ0)(σ−σ0)T ST 〉

= 〈
(σ−σ0)(σ−σ0)T 〉

ST = MσST

(A.44)
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Mσ,C can then also be estimated with a population set of N random sample of C and σ,

M̂σ,C = 1

N −1

N∑
i=1

(
σi − σ̄

)(
Ci − C̄

)T (A.45)

The MOCABA equation for σ′ can then be rewritten as Eq. (A.46). M′
σ can also be written as

Eq. (A.59) with the same logic.

σ′ =σ0 −M̂σ,C
[
M̂C +ME

]−1[C−E
]

(A.46)

M′
σ = Mσ−M̂σ,C

[
M̂C +MEM

]−1M̂C,σ (A.47)

To find C′ and M′
C, requires more manipulations of the GLLS equations. First, recall the GLLS

equation for C′,

C′(σ′) = C(σ0)+S(σ′−σ0) (A.48)

Replacing σ′, with Eq. (A.41) gives

C′ = C(σ0)+S
(
σ0 −MσST [

SMσST +ME
]−1[C(σ0)−E

]−σ0
)

= C(σ0)+SMσST [
SMσST +ME

]−1[C(σ0)−E
] (A.49)

And finally remembering that SMσST ≈ M̂C gives the formula for calculating C′ with MOCABA,

C′ = C(σ0)+M̂C
[
M̂C +ME

]−1[C(σ0)−E
]

(A.50)

M′
C can also be found in similar way. First start with the GLLS-defined M′

C, and substitute the

full expression for M′
σ , or Eq. (A.34), into it,

M′
C = SM′

σST

= S
(

Mσ−MσST [
SMσST +ME

]−1SMσ

)
ST

= SMσST −SMσST [
SMσST +ME

]−1SMσST

(A.51)
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Again, it must be recognized that SMσST ≈ M̂C and then the MOCABA equation for M′
C can be

written as,

M′
C = M̂C −M̂C

[
M̂C +ME

]−1M̂C (A.52)

Where
〈
∆C∆ET

〉
= SMσ,E through the math outlined in Eq. (A.54).

The GLLS derivation also included posterior correlations between E and σ′, or M′
σ,E, that can

also be defined with MOCABA.

M′
σ,E = Mσ,E −

[
Mσ,E −MσST ][

SMσST +ME −SMσ,E −ME,σ
T S

]−1[ME −SMσ,E
]

(A.53)

MOCABA needs an estimate for SMσ,E and ME,σ
T S, which can be shown to be MC,E = 〈

∆C∆ET
〉

,

〈
∆C∆ET 〉= 〈(

C(σ)−C(σ0)
)
(E−E0)T 〉

= 〈(
C(σ0))+S(σ−σ0)−C(σ0))

)
(E−E0)T 〉

= 〈
S(σ−σ0)(E−E0)T 〉= S

〈
(σ−σ0)(E−E0)T 〉

= S
〈
∆σ−∆ET 〉= SMσ,E

(A.54)

Now MOCABA must find a population estimate for MC,E. The easiest implementation is to

assume that MC,E = 0 in the prior, i.e. E and C are not a priori correlated. If they are correlated,

it would be induced by correlations between σ and E, or by Mσ,E. To find MC,E would then

require sampling from the joint distribution of σ and E, which was shown in Eq. (A.12), N

times and then calculating the population estimate of MC,E as,

M̂C,E = 1

N −1

N∑
i=1

(
Ci − C̄

)(
Ei − Ē

)T (A.55)

M̂C,E could then be used in MOCABA to calculate M′
σ,E as,

M′
σ,E = Mσ,E −

[
Mσ,E −M̂C,σ

][
M̂C +ME −M̂C,E −M̂E,C

]−1[ME −M̂C,E
]

(A.56)

In practical cases, Mσ,E = 0 and M′
σ,E can be written as

M′
σ,E =−M̂C,σ

[
M̂C +ME

]−1ME (A.57)
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For completeness, the MOCABA equations assuming that MC,E exists through Mσ,E are given

below. Again, in practice Mσ,E either does not exist or is not known. However, if MOCABA was

used in an iterative way, these correlations would need to be taken into account.

σ′ =σ0 +
[
Mσ,E −M̂C,σ

][
M̂C +ME −M̂C,E −M̂E,C

]−1[C(σ0)−E
]

(A.58)

M′
σ = Mσ−

[
Mσ,E −M̂σ,C

][
M̂C +ME −M̂C,E −M̂E,C

]−1[ME,σ−M̂C,σ
]

(A.59)

C′ = C(σ0)+ [
M̂C,E −M̂C

][
M̂C +ME −M̂C,E −M̂E,C

]−1[C(σ0)−E
]

(A.60)

M′
C = M̂C − [

M̂C,E −M̂C
][

M̂C +ME −M̂C,E −M̂E,C
]−1[M̂E,C −M̂C

]
(A.61)
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A.3 LWR-PII Relative Reactivity Supplementary Information

A.3.1 Experimental Covariance Matrix

The literature of LWR-PII details the experimental standard deviations, but gives no infor-

mation about their correlations. Because ∆ρr el share a common denominator, they will be

inherently correlated and this needs to be taken into account. For easy comprehension, the

names of the following variables are changed in this section only: the ∆ρr el of the i th fuel

sample is represented as zi , its absolute reactivity worth, or ∆ρ(Uref → Ui), as xi , and the

absolute reactivity worth between the Unat and Uref, or ∆ρ(Uref → Unat), as xnat . To derive the

variances and covariances of zi , linear error propagation is used.

The correlations are estimated by reviewing the LWR-PII experiment. The x values are ob-

tained with a compensation method. It measured x in equivalent-autorod-units (eAUR) by

quantifying the degree of reactivity compensation by an absorbing auto-rod (AR). A coefficient

can be used to convert from eAUR to dollars ($) and was determined by the inverse kinetics

method. Each x measurement was repeated several times at the same power and at three

different powers. The first repetition improved statistics and the second removed the effect of

the intrinsic neutron source of the spent fuel sample on reactivity. The three measurements

were used to interpolate the reactivity worth to infinite power, where the neutron source from

the fuel sample is negligible. The extrapolation to infinite power with the three measurements

is not considered in the uncertainty quantification. Instead, conservatism to account for

neglecting all of these factors is introduced by assuming that their uncertainties of the x values

are 0.5% where in fact they are ∼0.2-0.3%.

Corrections to the x values (see Eq. (A.62)) were introduced to account for small sample length

differences and for neutron absorption in the cladding. The purpose of these corrections was

to compare experimental results to the CASMO results where all samples are modeled with

the same length. The sample length of Uref, lr e f , and x of the clad measurements, xcl ad , are

sources of common uncertainty as well. A z value with length-corrected x̃ is then calculated

using Eq. (A.63), where the ratio between the lengths of Unat and Ui,
lr e f

li
, seen in Eq. (A.62)

is represented as ki for readability. For this study, uncertainties in z are taken into account

starting with Eq. (A.63). This means that the coefficient to convert from eAUR to $ will cancel

out and is not considered in the uncertainty propagation.

x̃i = (xi −xcl ad )
lr e f

li
+xcl ad (A.62)

∆ρr el = z = x̃i

x̃nat
= (xi −xcl ad )ki +xcl ad

(xnat −xcl ad )knat +xcl ad
= ki xi + (1−ki )xcl ad

knat xnat + (1−knat )xcl ad
(A.63)

Now uncertainties in the xi , xcl ad , lr e f , and li need to be taken into account. The uncertainty
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of an l is approximately 0.5%. The terms xi and li are independent as they are unique from

sample to sample. The terms xcl ad and lr e f are used identically in each calculation and are

sources of correlation between x̃ values. The uncertainties associated with li and lr e f are not

included because they are negligible compared to the total uncertainty. This leaves only the

uncertainties of xi and xcl ad to be considered to derive the correlation between z values.

With the sources of uncertainty in the x̃ values defined, they can be used in Eq. (A.70) to

calculate the variances and covariances of the z values. They are contained in the matrix Vout,

which is then used as ME in DA. Eq. (A.70) is linear error propagation, where J is the Jacobian

matrix of first-order partial derivatives of z and Vin is the covariance matrix of x values. J is

shown in Eq. (A.71) and has a size of [(n+2)×n], where n is the number of z values considered.

Vin has a size of [(n+2)× (n+2)] and is shown in Eq. (A.75), where∆2
xi

is the variance of xi and

∆2
xi x j

is the correlation between xi and x j .

Vout = JT VinJ (A.64)

J =



δz1
δx1

δz2
δx1

· · · δzn
δx1

...
...

. . .
...

δz1
δxn

δz2
δxn

· · · δzn
δxn

δz1
δxnat

δz2
δxnat

· · · δzn
δxnat

δz1
δxcl ad

δz2
δxcl ad

· · · δzn
δxcl ad

 (A.65)

Vin =



∆2
x1

· · · ∆2
x1xn

∆2
x1xnat

∆2
x1xcl ad

...
. . .

...
...

...

∆2
xn x1

· · · ∆2
xn

∆2
xn xnat

∆2
xn xcl ad

∆2
xnat x1

· · · ∆2
xnat xn

∆2
xnat

∆2
xnat ,xcl ad

∆2
xcl ad x1

· · · ∆2
xcl ad xn

∆2
xcl ad xnat

∆2
xcl ad

 (A.66)

Evaluating J and Vin gives Eq. (A.67) for the diagonal variance terms and Eq. (A.68) for the

off-diagonal covariance terms in Vout. The full Vout matrix becomes ME in DA. Here, the

equations are simplified by creating the following variables: x̃i = ki xi + (1−ki )xcl ad , x̃i , f =
(1−ki )knat xnat − (1−knat )ki xi , and x̃nat = knat xnat + (1−knat )xcl ad .

[
Vout

]
i ,i =

1

x̃4
nat

[
k2

i x̃2
nat∆

2
xi
+k2

nat x̃2
i ∆

2
xnat

+ x̃2
i , f ∆

2
xcl ad

]
(A.67)

[
Vout

]
i , j =

1

x̃4
nat

[
k2

nat x̃i x̃ j∆
2
xnat

+ x̃i , f x̃ j , f ∆
2
xcl ad

]
(A.68)
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Figure A.1 – Correlations between the 32 experimental ∆ρr el .
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A.4 LWR-PII PIE Experimental Correlations

In this subsection, we detail the process that was used to estimate the covariances between

the experimental nuclide concentrations. In order to understand the covariances requires a

bit of digging into the hotlab measurements of LWR-PII. The PIE measured 17 actinides and 40

fission product nuclides. The measurements involved dissolving the fuel samples in HNO3 at

150 C. The residue from the dissolution was further dissolved in a HCL/HNO3 mixture at 180 C.

The solutions were then used with a combination of high-performance liquid chromatography

(HPLC) and a multicollector inductively-coupled plasma2 mass spectrometer (MC-ICP-MS) to

measure the nuclide concentrations. HPLC was used to separate chemical elements, and then

mass spectrometry (MS) was used to measure the isotopic concentrations. The combination

was needed because mass spectrometry cannot distinguish between isobars. For the metallic

fission products Mo-95, Tc-99, Ru-101, Rh-103, and Ag-109 along with Np-237, only the mass

spectrometer was used because these have no isobaric interference. The isotopes Ru-106,

Sb-125, Ce-144, and Cm-243 were measured with gamma ray spectrometry because they were

present in very small concentrations.

The MS needs to be calibrated in order to measure isotopic concentrations in spent nuclear

fuel samples. The most commonly used technique, due to its accuracy, is isotope dilution anal-

yses (IDA). It allows to acquire a precision better than 0.5% when used with multi-collection

instruments. For calibration, it used the principle of isotope dilution. The fuel sample has an

unknown amount of element with a measurable isotopic composition. A reference sample (a

so-called “spike”) with a certified element mass and known isotopic composition is added.

Because these two samples are mixed, the isotopic composition of that element is changed.

The new ratios of isotopes are measured in the mixture. Next, knowing the isotope concentra-

tions in the fuel sample, the spike sample (which is certified), and the mixture, and knowing

the mass of the spike sample and the amount of sample and spike mixed together (through

weighing), the concentration of the element in the fuel sample can be calculated.

Concerning the uncertainties in this process, there is a random error in the measurements

that arises from unpredictable or stochastic variations in quantities. Systematic errors remain

constant or vary in a predictable way over the course of a number of analyses. For instance, all

isotopes of an element used the same spike. Uncertainty in the spike is then common to all

isotopes of an element. A list of other possible sources of error are given below,

• Sampling, or cutting the fuel from the fuel rod: The error in the cutting position was

±0.15 mm, or ∼1.5%. This did not influence the experimental result. It only influences

comparisons to calculations that are based on the theoretical cutting position.

• Dissolution of the fuel: When the fuel was heated in 8 M of HNO3, errors may have

2The ionization source for mass spectroscopy was an inductively couple plamsa (ICP). The liquefied fuel sample
was turned into an aerosol and then introduced to a plasma. This was done by applying an RF field around a
quartz torch. The plasma has a temperature above 5,000 K. It vaporizes, desolvates, and atomizes the fuel sample,
which causes the sample’s atoms to be ionized.
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arisen from the volatility of elements, adsorbtion on container walls, impurities intro-

duced by reagents or equipment material. The sample dissolution error was assumed to

be 0.05%.

• Dissolution of fuel residues: The error sources are the same as the fuel above, and are

assumed to be 0.1%.

• Sample Dilution: The dilutions were prepared by weighing, and the weighing uncer-

tainty was included in the reported results.

• Sample preparation: Uncertainties here were the amount of the added spike and the

accuracy of spike solution. The amount of spike was controlled by weighing and the

accuracy of the solution was given by a certificate. Gamma-ray measurements were also

prepared by weighing and the dilution uncertainty was reported in the results.

The uncertainty of the measured elemental compositions was typically less than 0.1%, but

can be larger for isotopes with low abundance. This uncertainty was calculated as the stan-

dard deviations of four repeated measurements of the unspiked samples. For the isotopic

concentrations, the uncertainties ranged between 0.3% and 1%. The uncertainties came from

the statistical errors of the unspiked and spiked samples, the weighing of the fuel and spike

solutions, and the uncertainty of the compositions and concentrations of the spike materials.

The uncertainty of the gamma-spectroscopy measurements is 5-10%. An uncertainty of 10%

was assumed for the metallic fission products because of the large discrepancies observed

between participants in the MALIBU program.

The final experimental value to be used in DA is the mass of the isotope relative to the total

mass of uranium, in units of mg/g. This concentration, ε, of isotope i is given in Eq. (A.69). wi

is the measured weight percent of that isotope, Utot is the mass of uranium per total mass of

fuel (mg/g), and η j is the mass of the element j (measured with IDA) that the given isotope

belongs to per total mass of fuel (g/g). Through analysis of the experimental campaign, it can

be reasonably assumed that w , Utot, and η are all independent. The correlations between ε are

then created by the common normalization Utot used in all calculations, and by the common

η used between isotopes of the same element.

εi = wi
η j

Utot
(A.69)

With the sources of uncertainty in the ε values defined, they can be used in Eq. (A.70) to

calculate the variances and covariances. They are contained in the covariance matrix Vout,

which is then used as the experimental covariance matrix in the DA methods. Eq. (A.70) is

the linear error propagation formula with J being the Jacobian matrix of first-order partial

derivatives of ε and Vin being the covariance matrix of the w , Utot, and η values. J is shown in
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Eq. (A.71).

Vout = JT VinJ (A.70)

J =



δε1
δUtot

δε2
δUtot

· · · δεn
δUtot

δε1
δη1

δε2
δη1

· · · δεn
δη1

...
...

. . .
...

δε1
δηn

δε2
δηn

· · · δεn
δηn

δε1
δw1

δε2
δw1

· · · δεn
δw1

...
...

. . .
...

δε1
δwn

δε2
δwn

· · · δεn
δwn


(A.71)

The derivatives in the J matrix are given below,

∆εi

∆Utot
=−η j wi

U 2
tot

(A.72)

∆εi

∆η j
= wi

Utot
(A.73)

∆εi

∆wi
= η j

Utot
(A.74)

The covariance matrix of w , Utot, and η is given in Eq. (A.75). We assume that the measurement

of w , Utot, and η were all uncorrelated. This means that correlations between ε values are

created only by the common terms Utot and η between two different values. It is possible to

define a correlation term for w , Utot, and η and it theoretically they can be correlated because

the same experimental setup (chemical process, mass spectrometer, gamma spectrometer)
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were shared between the measurements.

Vin =



∆2
Utot

∆2
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∆2
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... · · · . . .
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wnUtot
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wnη1

· · · ∆2
wnηn

∆2
wn w1

· · · ∆2
wn


(A.75)

After applying this formulation, the correlation matrix can be found, and is shown in Fig. 5.3.

The variances are reproduced for all isotopes measured with HPLC-MC-ICP-MS or only MC-

ICP-MS. The gamma ray variances are underestimated by an order of magnitude. However,

this is because the uncertainties were artificially set to 10% by the experimenters to account

for differences observed between other participants in the experimental campaign MALIBU.
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Figure A.2 – Prior and posterior U-235 independent thermal fission yields
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Figure A.3 – Relative differences in the mean and relative standard deviations of the U-235
(nth, f ) yields.
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Figure A.4 – Prior and posterior correlation matrices for the independent FYs of U-235 (nth, f ).
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Figure A.5 – Prior and posterior U-238 fast fission independent FYs.
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Figure A.6 – Relative differences in the mean and relative standard deviations of U-238 (nf, f )
independent FYs.
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Figure A.7 – Prior and posterior correlation matrices for the independent FYs of U-238 (nf, f ).
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Figure A.8 – Prior and posterior Pu-241 thermal fission yields
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Figure A.9 – Relative differences in the mean and relative standard deviations of of the Pu-241
thermal fission yields.
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Figure A.10 – Prior and posterior correlation matrices for the independent FYs of thermal
fission of Pu-241.
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Figure A.11 – FY data for thermal fission of U-235 from ENDFB/VIII.0, JEFF3.3, and the prior
and posterior GEF model parameters
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Figure A.12 – Relative differences of the means of the independent FY data for thermal fission
of U-235 between ENDFB/VIII.0 and GEF and between JEFF3.3 and GEF
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Figure A.13 – Relative differences of the standard deviations of the independent FY data for
thermal fission of U-235 between ENDFB/VIII.0 and GEF and between JEFF3.3 and GEF
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Figure A.14 – FY data for thermal fission of Pu-241 from ENDFB/VIII.0, JEFF3.3, and the prior
and posterior GEF model parameters
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Figure A.15 – Relative differences of the means of the independent FY data for thermal fission
of Pu-241 between ENDFB/VIII.0 and GEF and between JEFF3.3 and GEF
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Figure A.16 – Relative differences of the standard deviations of the independent FY data for
thermal fission of Pu-241 between ENDFB/VIII.0 and GEF and between JEFF3.3 and GEF
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Figure A.17 – Correlation matrices of the calculated nuclide concentrations in fuel sample U2.
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Figure A.18 – Correlation matrices of the calculated nuclide concentrations in fuel sample M1.
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Figure A.19 – Prior and posterior U-235 thermal fission yields using BFMC and MOCABA, with
and without MLO.
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Figure A.20 – Relative differences in the mean and relative standard deviations of of the U-235
thermal fission yields.
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Figure A.21 – Prior and posterior U-238 independent fast fission yields using BFMC and
MOCABA, with and without MLO.
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Figure A.22 – Relative differences in the mean and relative standard deviations of of the U-238
fast fission yields.
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Figure A.23 – Prior and posterior Pu-241 thermal fission yields using BFMC and MOCABA,
with and without MLO.
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Figure A.24 – Relative differences in the mean and relative standard deviations of of the Pu-241
thermal fission yields.
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Figure A.25 – Posterior biases and uncertainties of the nuclide concentrations of fuel sample
U2 obtained with BFMC and MOCABA FY data when MLO was and was not applied.
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Figure A.26 – Posterior biases and uncertainties of the nuclide concentrations of fuel sample
M1 obtained with BFMC and MOCABA FY data when MLO was and was not applied.
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Figure A.27 – Correlation between C in fuel sample U2 without applying MLO.
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Figure A.28 – Correlation between C in fuel sample M1 without applying MLO.
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A.6 xGLLS: Additional Information

Table A.1 – Integral parameters included in the Subgroup 33 benchmark exercise.

Core Parameter

JEZEBEL Pu-239

keff

F28/F25
F49/F25
F37/F25

JEZEBEL Pu-240 keff

FLATTOP
keff

F28/F25
F37/F25

ZPR6-7

keff

F28/F25
F49/F25
C28/F25

ZPR6-7 Pu-240 keff

ZPPR-9

keff

F28/F25
F49/F25
C28/F25

Na Void Step 3
Na Void Step 5

JOYO MK-I keff

Table A.2 – ERANOS 33-energy-group structure (eV).

Group
Upper

Group
Upper

Group
Upper

Energy Energy Energy
1 1.96×107 12 6.74×104 23 3.04×102

2 1.00×107 13 4.09×104 24 1.49×102

3 6.07×106 14 2.48×104 25 9.17×101

4 3.68×106 15 1.50×104 26 6.79×101

5 2.23×106 16 9.12×103 27 4.02×101

6 1.35×106 17 5.53×103 28 2.26×101

7 8.21×105 18 3.35×103 29 1.37×101

8 4.98×105 19 2.03×103 30 8.32×100

9 3.02×105 20 1.23×103 31 4.00×100

10 1.83×105 21 7.49×102 32 5.40×10−1

11 1.11×105 22 4.54×102 33 1.00×10−1
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Figure A.29 – Nuclear data adjustments with Serpent sensitivities using xGLLS and GLLS.
Compared to INL’s adjustments using ERANOS. In each subfigure, the top plot is the relative
adjustment, (σ−σ′)/σ, and the bottom plot is the posterior relative standard deviation.
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