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Abstract— Removing reflection artefacts from a single image
is a problem of both theoretical and practical interest, which
still presents challenges because of the massively ill-posed nature
of the problem. In this paper, we propose a technique based
on a novel optimization problem. First, we introduce a simple
user interaction scheme, which helps minimize information loss
in the reflection-free regions. Second, we introduce an H 2 fidelity
term, which preserves fine detail while enforcing the global
color similarity. We show that this combination allows us to
mitigate the shortcomings in structure and color preservation,
which presents some of the most prominent drawbacks in the
existing methods for reflection removal. We demonstrate, through
numerical and visual experiments, that our method is able
to outperform the state-of-the-art model-based methods and
compete with recent deep-learning approaches.

Index Terms— Reflection suppression, image enhancement,
optical reflection.

I. INTRODUCTION

HIS paper addresses the problem of single image reflec-

tion removal. Reflection artefacts are ubiquitous in many
classes of images; in real-world scenes, the conditions are
often far from optimal, and photographs have to be taken in
which target objects are covered by reflections and artefacts
appear in undesired places. This does not only affect amateur
photography; such artefacts may also arise in documentation
in museums and aquariums, or black-box cameras in cars
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(see Fig. 1). It is therefore unsurprising that the problem of
removing reflection artefacts is of great interest, from both
practical and theoretical points of view.

Although it is possible to reduce reflection artefacts by the
use of specialized hardware such as polarization filters [1]-[3],
this option has several downsides. Firstly, even though the
use of hardware can have a significant effect on removing the
reflection, it only works when certain capture conditions are
fulfilled, such as Brewster’s angle [4]. In practice, it is difficult
to achieve optimal capture conditions, which results in residual
reflections [5], [6]. As a result, post-processing techniques are
often needed for further improvement of the image. Moreover,
for the purposes of amateur photography, the use of specialized
hardware is expensive, and consequently less appealing.

As an alternative to the use of specialized hardware, a body
of research has established a variety of computational tech-
niques. These can be divided in those that use multiple images,
and those that use a single image. The former techniques
employ images from various view points (e.g. [7]-[10]), with
the aim of exploiting temporal information to separate the
reflection artefacts from the observed target, while for the
latter, carefully selected image priors are used to obtain a good
approximation of the target object, for example [11]-[14].

Although the use of multiple images somewhat mitigates the
massively ill-posed problem created by the reflection removal
formulation, the success of these techniques requires multiple
images from several viewpoints and their performance is
strongly conditional on the quality of the acquired temporal
information. Moreover, in practice, acquisition conditions are
non-optimal, which often results in image degradation, causing
occlusions and blurring in the images. Therefore, either many
images or post-processing are needed, which strongly restricts
the applicability and feasibility of these methods to a typical
end-user. These constraints make single-image methods a
focus of great attention to the scientific community, since it is
appropriate for most users, and this is the approach which we
will take in this paper.

Mathematically, an image Y containing reflection artefacts
can be represented as a linear superposition [15] as:

Y=T+R, ey

where T, R are n x m matrices representing the transmission
layer and reflection layer, respectively. Therefore, the goal of

1057-7149 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0001-6045-9209
https://orcid.org/0000-0002-8878-0325

6186

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 12, DECEMBER 2019

TRANSMISSION

PANE OF
GLASS

ACQUIRED
IMAGE

Natural! TARGET
- OBJECT 3
/ Artificial ) o
Light ) Y -
Natur‘al Q
/ Artificial REFLECTION
Lt LAYER

Y.

Ys

(A) IMAGE FORMATION (B) IMAGE MODEL

Fig. 1.
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(A) An illustration of the image formation in which a target object captured through a pane of glass will have reflection artefacts. (B) Based on the

image model, an acquired image (Y) can be decomposed into two layers: Transmission (T) and Reflection (R). (C) images (Y 2,3) show a set of typical
situations where there is no option but to take the picture through a pane of glass such as store display or in museums.

a reflection suppression technique is to approximate T from
the acquired image Y.

Although the body of literature for single-image reflection
removal has proven promising results, this remains an open
problem, and there is still potential for further enhancements.
We consider the problem of how to get a better approximation
of T.

In this work, we propose a new approach, closely related
to [14], and inspired by the observation that even low-level
user input may contain a lot of information. Our technique
relies on additional information, which gives the rough loca-
tion of reflections. In our experiments, this is given by user-
input; in principle, this could be done by an algorithmic or
machine-learning technique. We recast the reflection removal
problem as an optimization problem which is solved iter-
atively, by breaking it up into two more computationally
tractable problems. Compared to existing solutions from the
literature, we achieve a better approximation of T from a
well-chosen optimization problem, which preserves image
details and eliminates global color shifts. Our contributions
are as follows:

« We propose a computationally tractable mathematical
model for single-image reflection removal, in which we
highlight:

— A simple and tractable user interaction method
to select reflection-heavy regions, which is imple-
mented at the level of the optimization problem
as a spatially aware prior term. We show that this
improves the retention of detail in reflection-free
areas.

— A combined H? fidelity term, which combines L2
and Laplacian terms. We show that this combination
yields significant improvements in the quality of the
color and structure preservation.

We establish that the resulting optimization problem can
be solved efficiently by half-quadratic splitting.

« We validate the theory with a range of numerical and
visual results, in different scenes and under varying
capture conditions.

« We demonstrate that the combination of our fidelity term
and prior term leads to a better approximation of T than
state-of-the-art model based techniques, and can compete
with the most recent deep-learning (DL) techniques.

II. RELATED WORK

The problem of image reflection removal has been exten-
sively investigated in the computer vision community, in which
solutions rely on using multiple images and single image data,
alone or in combination with specialized hardware. In this
section, we review the existing techniques in turn.

A number of techniques have been developed which use
information from multiple images to detect and remove
reflections. These include the use of different polarization
angles [3], [5], [6], [16], [17], adjustment of focal and flash
settings [1], [2], [18], and the uses of relative motion and
coherence [7], [8], [19]-[25]. A recent technique [26] seeks to
improve on these methods by seeking to match the transmitted
layer, while other techniques may erroneously match the
reflected layer. Each of these techniques requires particular
modeling hypotheses to be met, and advantageous capture
conditions which may not be feasible in practice.

We now review the related works in single image tech-
niques, as they are most applicable to everyday capture.
A commonality of these techniques is the choice of a sparse
gradient prior, which imposes a preference for output trans-
mission layers T with few strong edges.

A user-intervention method was proposed in [11], which
labels gradients as belonging to either transmission or reflec-
tion layer. They then propose to solve a constrained optimiza-
tion problem, with prior distribution given by the superposition
of two Laplace distributions. A similar optimization problem
is used by [13], which replaces user-intervention labeling by
a depth-of-field based inference scheme, while [27] relies on
ghosting artefacts.

Our work is most closely related to the optimization-based
models and techniques of [12], [14]. The authors of [12] pro-
pose a smooth gradient prior on the reflection layer, and a
sparse gradient prior on the transmission layer. This approach
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was adapted by Arvanitopoulos et al. in [14], who proposed
a Laplacian-based fidelity term with a novel sparse gradient
prior. This preserves (Gestalt) continuity of structure, while
also reducing loss of high-frequency detail in the transmission
layer. The algorithm they propose is both more effective,
and more computationally efficient, than the other techniques
discussed above.

The application of deep learning to reflection removal was
pioneered by Fan er al. in [28]. In this work, the authors
propose a deep neural network structure, which firstly predicts
the edge map and then separates the layers. This technique
outperforms the algorithmic approach of [12]. Further work
in this direction was made by Zhang et al. [29], who use
a fully convolutional neural network with three loss terms,
which help to ensure preservation of features and pixel-wise
separation of the layers. Wan ef al. [30] seek to use a loss
function inspired by human perception to estimate the gra-
dient of the transmission layer, and use this to concurrently
estimate the two layers using convolutional neural networks,
and Jin et al. [31] proposes a convolutional neural network
with a resampling strategy, to capture features of global priors,
and avoid the ambiguity of the average color. Most recently,
Yang et al. [32] propose a bidirectional deep learning-scheme
based on a cascade neutral network. This method first esti-
mates the background layer T, then uses this to estimate the
reflected layer R. Finally, the estimate on R is used to improve
the estimate of T.

The philosophy of our approach is similar to that of [11].
Motivated by the principle that humans are good at distin-
guishing reflections, both our work and [11] seek to exploit
further user input to assist an algorithmic technique. However,
we emphasize that we are the first to propose a simple
and tractable user interaction scheme: in evaluating our user
interaction scheme in Section IV/E3, we will see that our user
interaction scheme requires very little effort from the user,
and that our algorithm performs well with even very crude
selection. By contrast, the algorithm of [11] requires much
more effort, and a much more detailed input.

III. PROPOSED METHOD

This section contains the three key parts of the proposed
mathematical model: (i) the combined Laplacian and L?
fidelity term, (ii) a spatially aware prior term, given by user
input, and (iii) a computationally tractable solution, using
quadratic splitting, to the resulting optimization problem.

Although the model for an image with reflection artefacts
described in (1) is widely-used, our solution adopts the obser-
vation of [1], [12], [14] that the reflection layer is less in focus
and often blurred, which we formalize as follows:

Observation 1: In many cases, the reflected image will be
blurred, and out of focus. This may be the case, for instance,
if the reflected image is at a different focal distance from the
transmitted layer. Moreover, reflections are often less intense
than the transmitted layer.

Based on this observation, the image model [1], [12] which
we adapt is

Y = wT+ (1 — w)(k *R), 2)
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where x denotes convolution, w is a weight w € [0, 1] that
controls the relative strength of reflections, and k is a blurring
kernel.

A. Fidelity and Prior Terms

We begin by discussing the prior term. Loss of some detail,
in reflection heavy regions, is to be expected, and is a result
of the ill-posed nature of reflection suppression. We seek
to use low-level user input to reduce the loss of detail in
reflection-free regions, motivated by the following observation:

Observation 2: In many instances, the reflections are only
present in a region of the image, and it is easy for an end
user to label these areas. In regions where reflections are not
present, all gradients in Y arise from T, and so should not be
penalized in a sparsity prior. Moreover, in certain instances,
it may be particularly important to preserve fine detail in
certain regions.

For instance, for photographs containing a window,
the reflections will only occur in the window, and not else-
where in the image. To this end, we propose to incorporate
a region selection function ¢, taking values in [0, 1], into a
spatially aware prior:

P($,T) = > ¢ijl[ViTij #00r V;T;; #01.  (3)
i

Here, 1[..] denotes the indicator function for the set of
indexes (i, j) where one of the gradients VT, V, T is nonzero.
We assume that the region selection function ¢ is given by the
user, along with the input. Although this is philosophically
similar to the user intervention method of [11], our approach
is drastically less effort-intensive: rather than labeling many
edges, it is sufficient to (crudely) indicate which regions
contain reflections. The practicalities of our technique will
be discussed in Subsection C below. We will show that,
by choosing ¢;; ~ 1 on reflection-heavy regions and ¢;; ~ 0
elsewhere, we can minimize the loss of detail in reflection-free
areas. Without this, we would see a ‘flattening’ effect, where
large areas are wrongly given the same value and contrast
is decreased, as gradients belonging to the transmitted layer
T are wrongly suppressed. This removes visual cues, such
as minor color variation, which indicate depth, and leads to
visually unpleasant and unrealistic-seeming output in which
objects appear ‘flat’. Examples of this will be highlighted in
the experimental results. We also note that a naive attempt to
apply the approach of [14] to a region of the image produces
noticeable color shifts at the boundary of the selected region,
which our spatially aware prior term avoids.

We now consider the fidelity term, seeking to build on the
Laplacian fidelity term proposed by [14]; this choice of fidelity
term penalizes over-smoothing, and enforces consistency in
fine details. Although this improves on the L? fidelity term
of Xu et al. [33], one can still observe significant ‘flattening’
effects, as described above. Moreover, we also note that for
any constant matrix C the Laplacian is invariant under the
transformation T +— T + C. As a result, the algorithm pro-
posed by [14] risks producing global color shifts; at the level
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of the optimization problem, this reflects the non-uniqueness
of minimizers. To eliminate this possibility, we propose a
combined H? fidelity term:

d,(T,Y) = |[AT — AY[3 + 7 IT - Y|3, (4)

where AT is the discrete Laplacian defined as AT = V,, T+
VyyT, and y is a positive parameter controlling the relative
importance of the two terms. We will see, in numerical
experiments, that this leads to results with more natural,
saturated colors, and which are consequently more visually
pleasing. We remark that other kernel filters are possible which
would play the same role of measuring structure, such as the
discrete gradient V, or more complicated elliptic second-order
operators; we use the Laplacian for the following reasons.
Firstly, the Laplacian penalizes loss of high-frequency detail
more strongly than first order operators such as V, as can
be seen by moving to Fourier space, and so our choice will
preserve high-frequency details well. Secondly, the Laplacian
is a simple measure of structure, and which is invariant under
the (natural) symmetry of rotation.

Combining the prior and fidelity terms, as defined in (3)
and (4), our optimization problem is therefore

T* = argming {||AT S AYR +y T - Y2+ ,1P(¢,T)} .
5)

Here, A is a regularization parameter to be chosen later. The
reader is invited to compare this optimization problem to the
similar problem of (localized) L? image smoothing, but to note
the important difference of having a fidelity term including the
image Laplacian. In the next section, we will detail how the
proposed optimization problem can be solved in a tractable
computational manner by using quadratic splitting.

B. Solving the Optimization Problem

We solve the optimization problem introduced in (5)
by half-quadratic splitting. We introduce auxiliary variables
D*, DY as proxies for, respectively, V, T and V,T. For ease
of notation, we write D for the pair [D*, D?], and similarly VT
for the pair [V, T, V,T]. This leads to the auxiliary problem:

T*,D* = argming p, {||AT —AY|5+yIT=Y|3

+1P$,D)+ fID - VT3} (©)

where f € R.¢ is a penalty parameter yet to be chosen, and
we use the shorthand

P(¢,D) =D ¢;;1[D}; # 0 or D}; # 0. )
i,

Notice that in the limit f — oo the auxiliary penalty term
ensures that we recover the solution to the original optimiza-
tion problem (5). Hence, we may approximately solve the
optimization problem (6) by splitting into two more compu-
tational tractable problems. We alternate between optimizing
over T and D, while keeping the other fixed; at the same time,
we increment f so that, after a large number of steps, D is
a good approximation of VT. We give details on the solution
of each sub-problem below, and the full solution is presented
in Algorithm 1.
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Algorithm 1 Our Proposed Method

1: Start from T < Y and 8 = Buin;
2: while 8 < B.x do
: Optimise over D, for the current value of T

0.0) if (V. T, V, )2 <
Set (Dj;, D};) = (0,0 if [(Vo T35, Vy ])‘2 S
! (V.Tij, VyT;;) otherwise;

4: Using ADAM [34] and (12), find the minimum T* of
(8), and replace T «+ T™;

5: Increment 3 + k[3;

6: end while

7: return T.

Aij .
B k)

1) Sub-Problem 1 (Optimization Over T): For a fixed D,
we wish to optimize:

T* = argmin; {||AT —AY|3+yIT=Y|3
+BID - VT3}. )

The objective function is now quadratic in T. We note
that the discrete gradient V and the discrete Laplacian A
are both linear maps which take an m x n image matrix
to an array of size 2 x m x n and m X n respectively.
We can therefore view these linear maps as tensors, and use
index notation to describe their action on an image (7;;) as
follows:

(VuD)ij = zvfl;lekﬁ l<i<m,1=<j=<n, peix,y}
k.l

©)

and similarly:

(AT)ij =D AjjuT; 1<i<m, 1<j=<n
ol

(10)

With this notation, we can write the objective function as:

Fi (T,D)

:[;’Z

1<i<m
1<j<n
uelx,y}

2

u H
Dj; - Vijw Th

2

1<k<m,1<l<n

2

> Ay (T — Yu)

k<m,l<n

+7 (T = Yy)?

2

i<m,j<n
(11)

We observe that this is quadratic, and in particular smooth,
in the components 7;;. Using the summation convention,
we compute the gradient:

P Fi(T,D) = 2Aapij Aavki (T — Yia) + 2y (T35 — Yij)
ij

+ 28V i Vg Tt = Dy (12)
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We use this computation, together with ADAM [34], a first-
order gradient descent method in stochastic optimization,
to efficiently optimize over T.

2) Sub-Problem 2 (Optimization Over D): For a fixed T,
the optimization problem in D is given by

D* = argminy, {ﬁ ID — VT|2 + /1P(¢,D)} o a13)

Although the objective function, F, is neither convex nor
smooth, due to the L° prior term, we observe that it separates
as

RED) =" [5(1D]

iJ

= ViTy 2+ D =V, T ?)

+ a1 (05, D)) #£0)]. (14)

By explicitly solving the separated problems for each pair

(Dj;, D) ) it is straightforward to see that a solution to (14)
is given by

(0,0) if |(VeTyj, VyTij)I3 <

Aij .
5

(D}

y
lj’D )_

(ViT;j, VyT;j) otherwise.

5)

Moreover, this minimizer is unique, provided that none of the
edges are in the boundary case [(V.T;;, V, T,-j)|% = %

Hence, the optimization (13) removes gradients below the
local threshold “%2. We will show, in numerical experiments,
that this has the effect of smoothing only the selected regions,
while keeping the strong edges which force continuity of
structures, as was described in Section II.

The overall procedure of our method, in which previous
individual steps are combined to solve the original optimiza-
tion problem (5), is listed in Algorithm 1.

C. User Interaction Scheme

We describe the user interaction scheme, and how the region
selection function ¢;; may be obtained in practice. We recall
that ¢ is responsible for passing information about the location
of reflection into the algorithm, and that it takes values in the
range [0, 1] with

o ¢;j close to 1 if a reflection is present at pixel (i, j) and

 ¢;j close to O if no reflection is present at pixel (i, j).
In practice a user, or an arbitrary instance that can recognize
rough locations of reflections, is given an image, as in left-side
of Fig. 2, and selects the regions in which reflections are
present. A possible result can be seen in the middle part
of Fig. 2, where the values of ¢;; are displayed as the
grey-values in the image. This selection is then fed into
our algorithm together with the input image to produce the
reflection removed output as shown at right side of Fig.2.

In the absence of user interaction, we default to ¢;; = 1; that
is, we assume reflections are present throughout the image.

It is noteworthy that the way this selection is performed
is very simple and requires little effort. This makes it suit-
able for a range of applications, from an amateur human
user, to algorithms that can recognize reflections, even in a
very crude manner. For our experiments, the selection was
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USER SELECTION OUTPUT IMAGE
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Fig. 2. From left to right. Input image, visualization of the user interaction
in practice and output image with our technique.

performed by creating an overlay image in a raster graphics
editor, where white regions are marked with a rough brush on
top of reflections. This process can be performed in a matter
of seconds for each image. The results can, of course, improve
with increasing selection quality, but even a rough selection
produces significant improvements over no selection; see
Section IV/E3 for experiments and discussion. Examples of
region selection in practice are included in Section IV of the
supplementary material.

D. Performance Reasoning of Parameters

Our procedure uses two parameters 4, y, and an auxiliary
parameter § in intermediary optimization steps. We think of f
as a coupling parameter, which determines the importance of
the texture term in comparison to the coupling to the auxiliary
variable D. At later iterations, f is large and the coupling is
strong, which justifies the use of D as a proxy for VT.

The parameter /4 determines the relative importance of
preserving the structure versus preserving the texture. In terms
of the model described above, it controls the importance of
the penalty term P (¢, T) against the Laplacian ||AT — AY||%.
In regions where Ag;; is comparatively large, the sparsity of
edges is much more important than the texture. Therefore,
any edges which do not enforce structure will be washed out,
and the region is smoothed during the optimization over D.
On the other hand, in regions where A¢;; is comparatively
small, the texture term dominates, and only very few edges
are removed. In terms of the al orithm this corresponds to
controlling the edge threshold Z2Z. This is illustrated in the
supplementary material.

We also give an interpretation of why it is natural to increase
f in this way. In the first stages of the iteration, f is very
small, and so the threshold keeps only the largest magnitude
edges, and sets most edges of reflection-heavy areas to 0. After
each iteration, S increases and the threshold 2 decreases,
and so the next iteration will preserve more edges. Hence,
in reflection-heavy areas, we include edges in decreasing order
of magnitude; this corresponds to looking at strongly-defined
structures first, and then considering incrementally weaker
structure. This is illustrated in the supplementary material.

We give a theoretical basis for excluding the limiting
regimes of either y < 1 or y > 1. In the regime where
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y < 1, we may consider a step of the gradient descent to be
a step of ‘uncorrected’ gradient descent, with y = 0, followed
by a small correction y (Y — T) to correct color shift. For
this reason, if y <« 1 is too small, our algorithm will not
adequately correct for color shifts. On the other hand, if y > 1,
then the L? term dominates the Laplacian term, and we expect
blurring and loss of texture, as discussed in [14].

IV. EXPERIMENTAL RESULTS

In this section, we describe in detail the range of experi-
ments that we conducted to validate our proposed method.

A. Data Description

We evaluate the theory using the following three datasets.
Firstly, we use real-world data from the SIR? benchmark
dataset [35]. The dataset is composed of 1500 images with
size of 400x 540, and provides variety in scenes with different
degrees of freedom in terms of aperture size and thickness
of the glass. These variations allow us to test the respective
algorithms in the presence of different effects, such as reflec-
tion shift. Moreover, it provides a ground truth that permits
for quantitative evaluation. We also use the Berkeley dataset
from [29], which contains 110 real image pairs (reflection
and transmission layer) whose characteristics can be founds
in [29]. Finally, we also use a selection of ‘real-world’ images
from [28], for which ground truths are not available. All mea-
surements and reconstructions were taken from these datasets.

B. Evaluation Methodology

We design a four-part evaluation scheme, where the evalu-
ation protocol for each part is as follows.

(E1) The first part is a visual comparison of our method
against AR17 [14]. We remark that in the case y =0,¢ =1,
our method reduces to that of AR17; this comparison therefore
shows that the changes made to the objective function fulfill
their intended purposes.

(E2) The main part of the evaluation is to compare our
solution to the state-of-the-art methods. In (E2a) we com-
pare to state-of-the-art algorithmic techniques LB14 [12],
SH15 [27], AR17 [14], using FAN17 [28] as a benchmark.
(E2b) is an evaluation against more recent advances in
deep-learning FAN17 [28], WAN18 [30], ZHANGI18 [29] and
YANGI18 [32] on both real-world images and the Berkeley
dataset. We present both numerical comparisons, averaged
over the SIR? and Berkely datasets in (E2a, E2b) respectively,
and visual comparisons for a range of selected images from
all three datasets.

(E3) We evaluate the impact of the user input, and show
the results of our method with no region selection, with crude
region selection and with more detailed region selection. This
will justify our claim that crude region selection is sufficient
to minimize loss of detail in reflection-free areas, but offers a
substantial qualitative improvement on no region selection.

(E4) Finally, we demonstrate that, by comparison to the
existing user interaction approach of Levin and Weiss [11],
we produce better results whilst requiring less effort from the
end-user.
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We address our scheme from both qualitative and quan-
titative points of view. The former is based on a visual
inspection of the output T, and the latter on the computation
of three metrics: the structural similarity (SSIM) index [36],
the Peak Signal-to-Noise Ratio (PSNR) and the inverted
Localized Mean Squared Error (sSLMSE). Explicit definition
of the metrics can be found in Section VI of the Supplemental
Material.

C. Parameter Selection

For each of the approaches LB14 [12], SH15 [27] and
ARI17 [14], we use the available codes from each corre-
sponding author, and set the parameters as described in the
corresponding paper. For FAN17 [28], we assumed a given
trained network and with parameters set as described in that
paper.

For our approach, we set the values of the ADAM method
as suggested in [34]. For our technique, we set 1 = 2e¢ — 3,
Pmax = le5 and k = 2 and y = 0.012. The choices
of A, Pmax,k follow [14] for analogous parameters, which
is consistent with the reasoning in Subsection III-D. y was
chosen based on experimental results for a range of images
disjoint from the test dataset, with a range of test values
following the discussion in Subsection III-D. The effect of
different choices of y , which validates this choice, is discussed
further in Section VII of the Supplementary Material.

D. Results and Discussion

We evaluate our proposed method following the scheme
described in Section IV-B.

(E1). We begin by evaluating our method against
AR17 [14]. We ran both approaches on the complete solid
objects category of the dataset. In Fig. 3, we show four output
examples with different settings (Aperture value F={11, 32}
and thickness of glass TG={3, 10}). Visual assessment agrees
with the theory of our approach, in which we highlight the
elimination of color shifts and the preservation of the image
details. Most notably, we see that our approach enforces
global color similarity and avoids blurring effects produced
by the outputs of AR17 [14]; see, for example, outputs (A),
(C) and (D). The detail in Fig. 3 highlights these effects,
in particular in (A) the blur and color loss effects in the Winnie
the Pooh toy, in (C) the loss of edge details in the shirt collar
(left toy) and the neck (white toy), and in (D) a blurring effect
in the toy’s legs. In the detail of output (B), it can be seen
that AR17 [14] fails to preserve the shadows and the color
saturation of the floral pattern. This is further reflected in the
numerical results, where our method reported higher values
for the three evaluation metrics.

Overall, we noticed that often AR17 [14] fails to penalize
color shifts, due to the translation invariance of the Laplacian
fidelity term. It also tends to produce blurring effects in
reflection-free parts of the image, which our approach is able
to prevent through our spatially aware technique.

(E2a). We now evaluate our approach against the
model-based state-of-the-art methods (LB14 [12], SH15 [27],
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AR17 [14]

OURS INPUT GT AR17 [14] OURS

a - == = )
sLMSE: 0.9856 sLMSE: 0.9908
SSIM: 0.8823  SSIM: 0.9161

PNSR: 26.2213 PNSR: 27.4555

= S S\

sLMSE: 0.9838 sLMSE: 0.9841
SSIM: 0.9007 SSIM: 0.9166

PNSR: 25.4918 PNSR: 25.8695

-
.

(B) F-var. F32

-

- ol b
SsLMSE: 0.9747 sLMSE: 0.9806 SLMSE: 0.9778 sLMSE: 0.9812
{ (C) TG-var. T3 SSIM: 0.8140 SSIM: 0.8594 { (D) TG-var. T10 } SSIM: 0.7721  SSIM: 0.8107
PNSR: 22.6811 PNSR: 23.6740 PNSR: 22.1908 PNSR: 22.9737

Fig. 3. (El). Examples of the output, along with ground truth, of our approach compared against AR17 [14]. The examples with varying settings such as the
focus in (A) and (B) and the glass thickness in (C) and (D). The three evaluation metrics of the reflection-free image are computed using the ground truth.

] OURS )

)

I

(A) F-var. F11

) (

(B) F-var. F19

Fig. 4. (E2a). Visual comparison against the state-of-the-art of model-based approaches (including FAN17 [28] as baseline for comparison). The selected
frames show variations in shape, color and texture to appreciate the performance of the compared approaches. Overall, our approach gives a better approximation
of T by preserving color and structure quality while keeping fine details. Details are better appreciated on screen.

ARI17 [14], and include FAN17 [28] as a baseline of com- and without user interaction (¢ = 1) to evaluate the effect
parison) using the full solid objects category of the SIR>  of these changes. We emphasize that results for our algorithm

dataset. As discussed above, we may view the results of were generated with user interaction, as this is a key part of our
ARI17 as those of our algorithm in the special case y = 0, technique.
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TABLE I
(E2A). MEASURES AVERAGED OVER ALL IMAGES IN THE SOLID-OBJECT DATASET [35]

Fovar SLMSE SSIM PNSR
' FII | FI9 | F32 | FIl | FI9 | F32 | FIl | FI9 | F32
LBI14 [12] | 0.835 | 0.832 | 0.833 | 0.784 | 0.804 | 0.791 | 21.659 | 21.869 | 21.678
SHI5 [27] | 0.901 | 0.852 | 0.874 | 0.779 | 0.813 | 0.765 | 21.642 | 22.046 | 21.620
ARI7 [14] | 0983 | 0.984 | 0.984 | 0.820 | 0.825 | 0.824 | 22.748 | 22.705 | 22.851
FAN17 [28] | 0.981 | 0.982 | 0.982 | 0.854 | 0.859 | 0.851 | 23.262 | 23.853 | 23.432
OURS 0.984 | 0.986 | 0.984 | 0.852 | 0.866 | 0.854 | 23.254 | 23.907 | 23.649
e SLMSE SSIM PNSR
" [[TG3 [ TG5 [ TGIO | TG3 | TG5 | TGI0O | TG3 | TG5 | TGIO
LBI4 [12] | 0.834 | 0.833 | 0.834 | 0.718 | 0.811 | 0.805 | 21.605 | 21.981 | 21.850
SHI5[27] | 0915 | 0.889 | 0.917 | 0.779 | 0.820 | 0.765 | 21.682 | 22.546 | 21.620
ARI7 [14] | 0.983 | 0.984 | 0982 | 0.820 | 0.825 | 0.824 | 22.748 | 22.705 | 22.851
FAN17 [28] | 0.981 | 0.981 | 0.981 | 0.850 | 0.852 | 0.852 | 23.415 | 23.403 | 23.470
OURS | 0.984 | 0.984 | 0.984 | 0.846 | 0.851 | 0.861 | 23.374 | 23.421 | 23.507

We show the output of the selected methods and our
proposed one for four chosen images along with the ground
truth in Fig. 4. By visual inspection, we observe that outputs
generated with LB14 [12] are darker than the desired output;
see, for instance, the detail of (A). Moreover, LB14 fails to
preserve texture and global color similarity, as is apparent
in (A) on the surface of the apple, and (B) on the pink
block. By contrast, our approach was able to keep the details
on both cases. Moreover, we observed that both SH15 [27]
and AR17 [14] tend to have a noticeable color shift and a
significant loss of structure, as is visible on (B) the green pole.
In particular, we highlight the green pole in (B), in which only
our approach was clearly able to maintain the fine details.

We observe that the deep learning based solution
FAN17 [28] shows good edge preservation, but often fails to
correctly reproduce color and texture, and produces noticeable
artefacts. This will be discussed further in (E2b). Overall, out
of the evaluated model-based single-image reflection removal
techniques, our approach consistently yields the most visually
pleasing results. These observations are confirmed by further
examples in Section II of the Supplemental Material.

For a more detailed quantitative analysis, we report the
global results in Table I. The displayed numbers are the
average of the image metrics across the whole body of ‘solid-
object’ files in the dataset, in order to understand the general
behavior and performance of the algorithms.

We observe that both AR17 [14] and our approach out-
perform the remaining algorithms with respect to sLMSE.
With respect to SSIM and PNSR, we also achieve signifi-
cant improvements over most state-of-the-art techniques, most
notably over the similar technique AR17 [14]. The only other
approach evaluated here which performs similarly well is the
deep learning approach FAN17 [28]. As was discussed above,
a closer look at single images shows occasional difficulties
of this approach, and the more reliable performance of our
model-based method.

(E2b). Having extensively compared our new method
to model-based approaches in (E2a), we now present a
detailed comparison against recent advances in single-image

reflection removal based on deep-learning. We compare
against FANI17 [28], WANI18 [30], ZHANGIS8 [29] and
YANGI18 [32] on both the Berkeley dataset and real-world
images.

Having used FAN17 [28] as a benchmark for comparison
in (E2a), we first present a further comparison of this method
against our technique. Indeed, from Table I, it may appear that
FANI17 produces output of a similar quality to our technique.
However, we notice that the outputs displayed in Fig. 4 suggest
that our method produces visually nicer results; to validate
this, we present further experiments in Fig. 5. The images
displayed are two cases from the SIR? dataset, in which we
observe difficulties similar to those in Fig. 4. In Fig.s 4A, 5A,
FANI17 has wrongly identified a specular reflection in the
transmitted layer as belonging to the reflected layer, producing
unpleasant artefacts. We also highlight incomplete reflection
removal in the examples in Fig. 5, false-color effects in Fig.s 4
and 3B, and unwanted color flattening in Fig. 5A.

Next, in Table II we present the similarity measures which
are computed as the average over all images in the Berkeley
dataset. With respect to sLMSE, our method outperforms
all other techniques, in particular FAN17 [28], WAN18 [30]
and YANGI18 [32] by a significant margin. With respect to
SSIM and PNSR, our method performs similarly well, and
places second behind ZHANG18 [29].

To further analyze the performance of the techniques on
this dataset, we present a visual comparison of a selection of
interesting cases from the Berkeley dataset in Fig. 6, including
the values of the similarity metrics to the ground truths.
We observe that FAN17 [28] displays poor color retention in
the first image and introduces displeasing artefacts in the sec-
ond, and similarly WAN18 [30] somewhat darkens the colors
of the first image, and displays incomplete removal of the
reflection in the second. YANGI18 [32] induces a significant
amount of blurring, which is visible on the roll of tape in
the first image, and the door in the third. In the second
and third images, ZHANGI18 [29] performs very well both
visually and numerically, which is consistent with the strong
numerical results reported in Table II, but performs very
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( INPUT )( GT J FraN27] [ OURS ) INPU FAN [27] )

sLMSE: 0.9851 sLMSE: 0.9850
(B) TG-var. T10 } SSIM: 0.8723 SSIM: 0.8714
PNSR: 23.5583 PNSR: 23.4787

sLMSE: 0.9533 sLMSE: 0.9730
{ (A) F-var. F11 } SSIM: 0.8136 SSIM: 0.8288 {
PNSR: 23.6327 PNSR: 24.0879

Fig. 5. (E2b). Two interesting cases in which we visually and numerically compare our approach against the work of Fan er al. [28]. We emphasize that
even in cases when the metrics are higher for FAN17 [28], the output from our algorithm appears visually more appealing and natural. We highlight the false
color effects (see bow in (B)), loss of fine details (see green object in (A)) and reflection artefacts (see yellow markers in both) in the output of FAN17.

Details are better appreciated on screen.

INPUT FaN17 [28] WaN18 [30] ZHANG18 [29] YANG18 [32] OuRrs
B RANKED: FIRST sLMSE: 0.5970 sLMSE: 0.7819 sLMSE: -0.5085 sLMSE: 0.7552 SLMSE: 0.7601
B RANKED: SECOND SSIM: 0.5156 SSIM: 0.6304 SSIM: 0.5070 SSIM: 0.5397 SSIM: 0.6064

PNSR: 14.3084 PNSR: 16.5421 PNSR: 12.3502 PNSR: 13.9607 PNSR: 13.7393

sLMSE: 0.9687 sLMSE: 0.9802 sLMSE: 0.9886 sLMSE: 0.9840 ~ SLMSE: 0.9892
SSIM: 0.8669 SSIM: 0.9100 SSIM: 0.9162 SSIM: 0.8957 SSIM: 0.9297
PNSR: 21.2341 PNSR: 23.4198 PNSR: 25.0161 PNSR: 23.2281 PNSR: 25.7179

B RANKED: FIRST
Bl RANKED: SECOND

sLMSE: 0.9523 sLMSE: 0.9954 sLMSE: 0.9869 sLMSE: 0.9979
B RANKED: SECOND SSIM: 0.8034 SSIM: 0.9048 SSIM: 0.9290 SSIM: 0.8992 SSIM: 0.9468
PNSR: 26.9684 PNSR: 19.5485 PNSR: 28.5486 PNSR: 22.8085 PNSR: 30.5507

B RANKED: FIRST sLMSE: 0.9939

Fig. 6. (E2b). Visual and numerical comparison of our technique vs. Deep-learning techniques on a selection of images from the Berkley dataset. Details
are better appreciated on screen.

badly on the first image. Therefore, although ZHANGI18 [29] still removing a comparable amount of the reflections. We note
performs very well on average, this performance is highly that, in the second displayed image, our algorithm is unable
inconsistent. In each image, our method readily competes to completely remove the reflection, but that the resulting
with the best performing DL technique in terms of similarity = suppression is comparable to that of ZHANGI8 [29], and
metrics, but also is able to preserve structure and color, while better than the competing DL techniques.
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TABLE II

(E2B). NUMERICAL COMPARISON OF OUR TECHNIQUE VS. DEEP-LEARNING TECHNIQUES FOR THE ENTIRE BERKLEY DATASET.
THE NUMERICAL VALUES ARE COMPUTED AS THE AVERAGES OF THE SIMILARITY METRICS OVER ALL IMAGES

THE BERKLEY DATASET

FAN17 [28] WANI18 [30] ZHANGI18 [29] YANGI18 [32] OURS
sLMSE 0.8407 0.8090 0.8638 0.8398 0.8647
SSIM 0.7022 0.6982 0.7923 0.6911 0.7315
PNSR 18.2989 18.300 21.6203 17.8673 18.7833

. RANKED FIRST

FaN17 [28] WAN18 [30]

Fig. 7.

RANKED SECOND

ZHANG18 [29]

i

YANG18 [32]

(E2b). Comparison of our technique vs. Deep-Learning techniques on real-world images. We note that our technique is able to suppress the reflections

while avoiding the flattening effect visible in the outputs on FAN17 [28], and avoiding color shifts such as those produced by FAN17 and YANGIS8, which
visibly undersaturate the skin tone in the first image. This is an example of our motivation in Observation 2: color flattening on the skin is much more
noticeable than the same effect on the props. Images are from the real-world dataset [28] and no ground truths are available.

Finally, we test all of the DL methods on a selection
of real-world images in Fig. 7. These images are from the
real-world dataset [28], where no ground truth is available,
and so a numerical evaluation is impossible here; however,
the results will allow us to evaluate the qualitative performance
of our technique against competing techniques for real-world
images. We observe that most of the competing methods
suffer from poor color preservation, which is especially visible
in ZHANGI18 [29] with respect to the skin color in middle
and upper image, and incomplete removal of the reflections.
In FAN17 [28] especially we notice the introduction of arte-

facts on the arms in the top picture and near the head in the
bottom one. Our method, while not completely removing the
reflections, still ensures good preservation of color and impor-
tant structure, and produces outputs of similar visual quality to
the competing DL techniques. Additional experiments, which
further validate this conclusion, may be found in Sections III,
VIII of the Supplementary Material.

The above comparisons demonstrate that at this point in
time, our model-based method readily competes with deep
learning in terms of output quality. The authors note that
traditionally, deep learning has achieved ground breaking
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Fig. 8.

(E3). From left to right: The impact of the user-interaction on the outputs computed by OUR approach (with and without user interaction), with

FAN [28] as a benchmark. Examples of cases where region selection leads to noticeable qualitative improvements in avoiding flattening.

OURS (W) LEVIN [11]

.
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Fig. 9.
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(E4). (A-B): Visual comparison of the user-interaction schemes in LEVIN [11] and OURS based on a specific example (C): Quantitative comparison

of the two schemes on the solid object corpus of the SIR? dataset, and user-interaction time based on a selection of images from this dataset.

success in tasks involving labeling or classification [37], [38].
The good visual results generated by deep network usually
benefit from the statistical information covered in the large
body of training samples. However, a plain fully convolutional
neural network does not impose the same kind of rigid and
intuitive constraints as model-based approaches; for example,
piecewise smoothness is not enforced. Such a limitation in
the deep network results in inconsistent reflection removal
within a single image, as seen in Fig.s 5, 6, 7. While in
this paper the deep-learning based techniques provide an
important benchmark, their classification as ‘single-image’
techniques raises definitional issues that might be interesting
for the community to discuss. This discussion can be found
in Section V of the Supplemental Material.

(E3). In Fig. 8, we analyze the impact of the user-
interaction, again including FAN17 [28] as a baseline for
comparison. In the first subfigure, we present the results of
our approach without region selection, and with both crude
and detailed region selection. Without region selection, there is
noticeable blurring and flattening: see, for example, the green
object in the first example and the apple in the second.
Even with very crude region selection, our technique is able

to mitigate these to produce a visually better result which
outperforms the result of FAN17 [28]. A more refined region
selection, as displayed in the first subcoloumn, leads to an
additional small improvement but demonstrates that the quality
of our approach is not strongly dependent on a highly detailed
region selection. In the second subfigure, we show the result
of our technique with and without region selection on two
examples from the real-world dataset where region selection
makes a substantial visual difference to the output. In both
cases, without region selection, the output has a lot of color
flattening on the skin of the model, leading to a very unnat-
ural and unrealistic output. We therefore conclude that even
very crude selection of the reflection regions results in good
reflection removal, and that crude region selection noticeably
improves on no region selection. This justifies our claim of a
providing a simple and effective user-interaction scheme.
(E4). We also compare our method to the existent
user-interaction by Levin and Weiss [11]. We demonstrate that
in comparison, our method produces qualitatively and quanti-
tatively better results, while requiring significantly less effort
from the end-user. This underlines one of the main messages of
this paper, that we provide a simple user-interaction method,
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which gives a significant improvement in the quality of the
output.

In Fig. 9 we compare the amount of user interaction required
and the quality of the resulting output for both methods.
Firstly, in the bottom half of (A-B), the user-interaction for
both methods is shown. For our method, the user is asked
to determine the location of reflections in the image by
marking the rough location in white; several examples of this
user-selection are provided in Section IV of the Supplemental
Material. In Levin’s approach, the user is asked to select
foreground gradients in red and background gradients in blue.
We can also see the corresponding output of the algorithm,
which can be visually observed to be significantly improved
using our method.

In Fig. 9 (C) we compare the specific effort of
user-interaction between Levin and Weiss [11] and our pro-
posed method. For this we asked a group of 25 colleagues
to perform the user-interaction on both schemes and try
to achieve the best quality removal as quickly as possible.
We observe that, on average, our approach took our colleagues
around 5 seconds per image, while Levin’s method required
around 40 seconds, an increase of around 700%. The corre-
sponding quantitative results can be seen in the upper half of
Fig. 9 (C). The numerical values are the metrics averaged over
the entire output from 25 users working on the solid-object
dataset. In particular each user was given 6 different settings
(3 types of focus and 3 types of thickness) of reflections for
each of the 20 images in the dataset, and was then asked to
perform the user selection for both methods. We see that the
similarity metrics are significantly improved using our new
method. This shows that our method requires significantly
less effort from the end user than other existent approaches,
while at the same time significantly improving the quality of
reflection removal.

V. CONCLUSION

This paper addresses the challenging problem of single
image reflection removal. We propose a technique in which
two novelties are introduced to provide reflection removal
of higher quality. The first is an spatially aware prior term,
exploiting low-level user interaction, which tailors reflection
suppression to preserve detail in reflection-free areas. The sec-
ond is an H? fidelity term, which combines advantages of
both L? and Laplacian fidelity terms, and promotes better
reconstruction of faithful and natural colors. Together, these
result in better preservation of structure, detail and color.
We demonstrate the potential of our model through quantita-
tive and qualitative analyses, in which it produces better results
than all tested model-based approaches and readily competes
with recent deep learning techniques. Future work might
include the use of deep learning techniques to automatically
select regions, which would avoid the need for user interaction,
while preserving many of the advantages of our technique.
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