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Abstract

We outline the construction of compatible B-splines on 3D surfaces
that satisfy the continuity requirements for electromagnetic scatter-
ing analysis with the boundary element method (method of moments).
Our approach makes use of Non-Uniform Rational B-splines to rep-
resent model geometry and compatible B-splines to approximate the
surface current, and adopts the isogeometric concept in which the
basis for analysis is taken directly from CAD (geometry) data. The
approach allows for high-order approximations and crucially provides
a direct link with CAD data structures that allows for efficient de-
sign workflows. After outlining the construction of div- and curl-
conforming B-splines defined over 3D surfaces we describe their use
with the electric and magnetic field integral equations using a Galerkin



formulation. We use Bézier extraction to accelerate the computation
of NURBS and B-spline terms and employ ##-matrices to provide ac-
celerated computations and memory reduction for the dense matrices
that result from the boundary integral discretization. The method
is verified using the well known Mie scattering problem posed over a
perfectly electrically conducting sphere and the classic NASA almond
problem. Finally, we demonstrate the ability of the approach to han-
dle models with complex geometry directly from CAD without mesh
generation.

1 Introduction

Research into unifying geometry and analysis for efficient design workflows
has progressed rapidly in recent years driven by the isogeometric analysis and
computational geometry research communities. Analysis based on geometry
discretizations now covers a wide range of technologies including NURBS [23],
T-splines [7], LR B-splines [24], PHT-splines [39] and subdivision surfaces
[16]. A major research challenge at present is the automatic generation of
volumetric discretizations from given geometric surface data and promising
research includes the work of [30, 40] based on T-splines. In contrast, analysis
methods based on shell formulations or boundary integral methods are known
to require only a surface discretization exhibiting key benefits for a common
geometry and analysis model since no additional volumetric processing is
required. There has been much research into isogeometric shell formulations
including [16, 11, 25] and developments into isogeometric boundary element
methods based on NURBS [37, 29], T-splines [36, 26] and subdivision surfaces
6].

A key application of the boundary element method is the analysis of elec-
tromagnetic scattering over complex geometries in which a perfectly elec-
trically conducting (PEC) assumption can be made. The method is often
termed the method of moments within the electromagnetic research com-
munity but is synonymous with the Galerkin boundary element method. It
is well known that a straightforward application of nodal basis functions to
the electric and magnetic field integral equations (EFIE, MFIE) prevents
numerical convergence and instead, discrete spaces that satisfy the relevant
continuity requirements must be used. The most commonly used discretiza-
tion that satisifes the relevant continuity requirements are Raviart-Thomas



[34] or RWG [33] basis functions that are mainly based on low order polyno-
mials.

In the context of isogeometric analysis progress has been made on the de-
velopment of spline-based compatible discretizations [14, 18, 38, 13] in which
a discrete de Rham sequence can be constructed providing a crucial step to-
wards application of isogeometric analysis for fluid flow and electromagnetics
applications. This fundamental work opens up the opportunity for the devel-
opment of an isogeometric boundary element method (isogeometric method
of moments) for electromagnetic scattering which is the focus of the present
study. We note similar work in which subdivision surfaces are employed [28],
but we believe that use of B-spline based algorithms provides greater refine-
ment flexibility, provide a natural link with NURBS based systems that are
ubiquitous in modern engineering design software, and offer higher conver-
gence rates over equivalent subdivision schemes with extraordinary points.

We organise the paper as follows: first, we prescribe the Galerkin for-
mulation of the relevant integral equations that govern electromagnetic scat-
tering; we give an overview of NURBS surfaces and detail the construction
of compatible B-splines; we then specify the fully discretized form of the
integral equations for electromagnetic scattering with compatible B-splines;
we cover implementation details of the method including fast evaluation of
basis functions through Bézier extraction and the use of J#-matrices to ap-
proximate dense matrices; we verify the present method by performing elec-
tromagnetic scattering over a sphere in which a closed-form solution is pro-
vided by Mie scattering theory and finally, we demonstrate the ability of the
present approach to perform electromagnetic scattering of PEC bodies with
complex geometries taken directly from CAD software. It is assumed that
time-harmonic fields are prescribed and, unless stated otherwise, it can be
assumed that x € R3.

2 Electric field integral equation: Galerkin
formulation

We first assume a PEC domain 2 with connected boundary I' := 0f2 residing
within an unbounded domain €2, with isotropic permeability and permittiv-
ity given by the scalar quantities ¢ and p respectively. We further assume a
polarised time-harmonic electromagnetic plane wave of angular frequency w



is imposed on the PEC body with a wavenumber k = w,/eu. Denoting E as
the total electric field, in the presence of an electromagnetic wave a surface
current J is induced and the following PEC condition holds on the surface
of the scattered object

nxE=0 (1)
where n represents the outward pointing normal vector. We specify the in-
cident wave as Ei(x) = pe 7% where j is the unit imaginary number,

P = (Ps, Py, P-) is a polarization vector and d = (d,, dy, d.), |d| = 1 is a prop-
agation vector. The relationship between the total, incident and scattered
electric fields is written as

E=E+E° (2)
where E® represents the scattered electric field. The entire set-up is depicted
in Figure 1.
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Figure 1: A PEC domain residing within an infinite domain impinged by an
electromagnetic plane wave.

Following the potential formulation of Maxwell’s equations (see e.g. [22]),
the scattered electric field can be expressed in terms of an electric potential
¢ and magnetic vector potential A (assuming time-harmonic fields) as

E° = —jwA — Vo (3)

where the electric potential is given by

o—ikr
o(x) = » / p < ar(y) (4)

€ 4rr
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with r := |x — y| and the charge density p expressed as

1
p=——V-J (5)
Jjw
with the magnetic potential related to the surface current through

e—jkr

-M@ZMAJW) ar(y). (6)

4rr

We omit variable dependencies in future equations where they are implied by
their context and adopt the notation I'y = I'(y) and I', = I'(x). Substituting
(4) and (6) into (3) and employing (5) with k* = w?eu and j* = —1, the
scattered electric field is expressed in terms of surface quantites as

= 3 7 s Ly v .1 ar 7
—ﬂWLﬁyz; ﬁ%ﬁhﬁy%'4w v)

where Vr,, Vr, are surface gradient operators taken with respect to x and
y respectively. Defining the linear operator

LP[r(x)] = /FyTe

4rr

—jkr e—jkr

Arr

1
dFy + EVFI /1; pr T dFy (8)
along with the force term f = (jwu) 'E’, the Galerkin formulation of the
EFIE reads as:
given f, find J € V such that

(w, LP[J]) = (w,f) VYweV (9)

where V) is the trace space H_%(din,F), and the (-,-) is the duality pair-
ing between V and H _%(curlp, I'). When the fields are smooth enough, the
duality pairing reduces to (u,v) = [ju-vdl.

We define the finite dimensional subspace V, C V which allows the solu-
tion of (9) to be approximated as the solution of

given f, find J;, € V), such that

(Wi, LE[J3]) = (wi, ) Vwy, € V. (10)

Conventionally, w;, and J;, are discretized through the Raviart-Thomas basis,
but in our approach we make use of compatible B-splines that we now outline
in detail.



3 Discretization

3.1 NURBS surfaces

Our implementation assumes a watertight NURBS surface parameterization
that may be composed of multiple patches and we further assume that the
connectivity of global basis functions between NURBS patches is known
a priori. Dealing with the single patch case first, a NURBS surface pa-
rameterization is defined through a set of four-dimensional homogeneous
control points {P,}.2, Py = (TqWa, YaWa, ZaWa, Wa) (Where w, represents
a control point weight), a set of knot vectors {=;}2; where Z; = {0 =
81,82,y Snapr1 = 1}, Zo = {0 =1t1,t2, ..., tmigr1 = 1} and a degree vector
p = (p,q). n and m denote the number of basis functions defined through
the knot vectors =Z; and =, respectively with n, = n x m. We assume all
knot vectors are open (i.e. for a given degree p the knot vector contains p+ 1
equal knot values at its beginning and end).

Defining the parametric domain [' = (0,1)> € R? and physical domain
I' € R?, a NURBS geometric mapping F : [ — T can be written in terms of
parametric coordinates s = (s,t) € I as

F= 3" Ruls)P, (1)

with the set of rational basis functions {R,}.”, defined as

WeBq(s,1)
Ru(8) = Ra(s,1) = <ot —1,2,... 12
O = ) = B o

where
Ba(s,t) = B(s)Bj (1),
with the set of univariate B-spline basis functions {B?}?_, defined through

the Cox-de-Boor algorithm (see e.g. [32]). The parametric basis function
index a is defined in terms of the univariate basis indices 7, 7 through

a=(j—1)n+i. (13)

Defining vectors of unique knot values in the s and ¢ parametric directions

as ¢; = {1, ¢, ... Gy, } and & = {¢F, G5, ... (7, } respectively, the mesh in
the parametric domain is given by

My ={Q=({,¢) X (C,G), 1<i<m—1,1<j<mp—1} (14)
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with n, = size(My},) denoting the number of elements within the patch. Each
element @) within the patch contains (p+1) x (¢4 1) non-zero basis functions.

3.2 Compatible B-spline approximation

Given a set of univariate B-spline basis functions { BY}?_,, the space spanned
by this basis is defined as

5P = span{ B}, (15)

and in a similar manner, the tensor product B-spline space defined through
the set of B-spline basis functions B, := B} ® B}, i = 1,2,...,n, j =
1,2,...m is defined as

5P = S @ §9 = span{B,}™, (16)

where the mapping defined by (13) is employed and a hat symbol denotes
that the quantity is defined over the parametric domain. A div-conforming
vector B-spline space is defined over the parametric domain as

Sy = GPal x Gpla (17)
and likewise, a curl-conforming vector B-spline space is defined as
Sy 1= GP=la  Gpa—t, (18)

The equivalent div-conforming and curl-conforming spaces defined in the
physical domain are then constructed through appropriate Piola mappings
as

1 A~
Uh:{u:qu:jDFu,ueSl} (19)

and R
Vi={v:voF = (DF")" ¥,v € 5} (20)

respectively, where DF is the Jacobian associated with the geometric map-
ping F' which for 3D surfaces is given by the rectangular matrix

oz ox
ds Ot
_ |9y oy
DF = |38 2], (21)
0z 0z
ds Ot



DF™ is the Monroe-Penrose pseudoinverse of the Jacobian given by
DF* = (DFTDF) "' DF”, (22)
and J is the surface element given by
I \/(@8_ R =
Os ot 0s ot Os ot 0Os Ot Os Ot 0Os Ot
(23)

Further details of the derivation of (19) and (20) can be found in [18, 13]
and the derivation of (21)-(23) can be found in [31, Sect. 5.4].

3.2.1 Basis functions

Expressing vectors within the parametrlc domam as Vv = 0;€;, 1 = 1,2 and
adopting the notation {qu 1)} {Bp 1q} Y, to represent the set of
B-spline basis functions associated with the spaces Gpa—l and Sp—la respec-
tively, the set of div-conforming basis functions in the parametric domain r
is defined as

a=1»

Ndiv( . ng’q_l)(s t)e, 1<a<n} 24)
a (S = Bip_nllQ)(s t)e, ni+1<a<n}+n}
b

which are transformed into a set of div-conforming basis functions on the
surface I' using the Piola transformation defined in (19) as

| 1
N“(x(s.t)) = SDFNG™(s,) 1<a<ny=nj+n; (25)

where F = F(s,t) is implied. Curl-conforming basis functions are defined in
analogous fashion.

Global div- and curl-conforming approximations in physical space can
then simply be expressed through

dlv Z Nle (26)

and
ny

vitl(x) = Y Ng™(x)ve (27)

a=1

8



respectively, where u, and v, are control coefficients. To illustrate the con-
struction of compatible B-splines based on the NURBS parameterization
shown in Figure 2, the bivariate B-splines generated from univariate B-splines
are shown for two example basis functions in Figure 3. Further application
of the Piola transformation as defined in (25) generates the div-conforming
B-spline basis functions in physical space as shown in Figure 4.

Remark 1 For simplicity the construction of compatible B-splines is de-
scribed using the same degree (p,q) of the geometry. In practice it is possible
to use a different degree for the B-splines discretization, as we will see in the
numerical experiments.

Figure 2: Bicubic NURBS patch defined by n., = 64 control points, knot
vectors Z; = Zy = {0,0,0,0,i,%,%,%,l,l,l,l} and degrees p = ¢ = 3.
The degrees and knot vectors defined by the geometry are used directly to
construct div-conforming B-splines.



9
—_~
-~ -
— —
3 —_ .
o 1<t ™ | <
o x i
. —x s I
TR TR
« S w S
t ° o t ° g
T_;S ; w: LS ) D:
4 Scoo qg=2 4 R =
00 oo
04 04
02 02
0 0
o 0.2 0.4 0.6 08 1 0 0.2 04 06 08 1
1113 1113
0707070~_7_7_7_71717171 - =, =, —
{0.0.0.0.2.5-53 } {0,0.0,7.5.5. 7. 11,1}
p=3 p=2

Figure 3: Construction of div-conforming basis functions defined over the
parametric domain using the set of knot vectors and degrees defined by the
geometry in Figure 2. The basis functions that define N{i¥(s,¢) and the
parametric interval that defines its span are highlighted in red. Similarly for
Nd¥ (s, t) where all quantities are highlighted blue.
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(a) Ny (x)

(b) N§y'(x)

Figure 4: Div-conforming B-splines defined over the surface given by the
NURBS geometric mapping illustrated in Figure 2. The basis functions cor-
respond to those highlighted in Figure 3 where the Piola transform defined

through (19) has been applied.
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3.3 Multipatch discretizations

Invariably, NURBS surfaces will consist of multiple patches whose union
defines the physical domain through

r=n (28)

1

£

7

where ng is the number of parametric domains or patches and I'; N T'; = () for
i # j. Each domain I'; is constructed through a NURBS geometric mapping
F, : ' —» I'; with parametric coordinates s € I" as

F, =3 Ri(s)P} (29)
a=1

where the index ¢ indicates that the relevant quantity is restricted to patch
I';,  'We require for two patches I'; and I'; with ¢ # j and which share a
common edge the geometry mapping along the shared edge is the same. In
addition, the knot vectors associated with each patch at the common edge
must be the same, up to an affine transformation. Figure 5a illustrates the
geometry mappings of a multipatch NURBS geometry.

A global geometry connectivity array C, can be defined which maps a
parametric basis function index a and patch index i to a global geometry
basis index as

A=Cyli,a) i=1,2...n4,a=1,2,.. .0 (30)
The definition of the geometry connectivity array and the NURBS parame-
terisation given by (29) allows a multipatch NURBS parameterisation to be
constructed such as that shown in Figure 5b.

As is well-known with vector bases, care must be taken when constructing
global compatible basis functions since both the global basis function index
and the orientation sign must be stored and we refer the reader to [15] where
div- and curl-conforming B-spline approximations are constructed in a volu-
metric context. We define the vector basis connectivity for a div-conforming
basis through

A=Cy(i,a) i=1,2...ng,a=1,2,...n}

12



Iy

(b) Parametric domains and geometry (nodal)
connectivity.

Figure 5: An example multipatch NURBS surface composed of patches of
order (4,4) with both physical and parametric domains illustrated.
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where n} is the number of compatible B-spline basis functions in patch i. This
allows a global multipatch compatible B-spline discretization to be written
as

Ny
ui(x) = Y N (x)ua (31)
A=l
where Nj is the global number of basis functions, N9V|r, = N&Y, , =

sgn(i, a)N{L.

From an implementation standpoint the main consideration is how to
handle basis functions along the edges of parametric domains which is best
illustrated graphically. Figure 6 shows an example vector basis connectivity
for div-conforming B-splines of order (4,3)x(3,4) based on the geometry of
Figure 5. Similar connectivities can be constructed for curl-conforming B-
splines.

4 Discretised EFIE with compatible B-splines

In the present work wy, and J, in (10) are defined through the the div-
conforming B-spline discretization given by (31) and can be expressed as

wi(x) =Y NY(x)w, (32)
In(x) =Y NG (x)ja- (33)
A=1

Substituting (32) and (33) into (10) and applying the divergence theorem to
transfer a derivative onto wy,, a system of equations is formed as

Zapdp = fi (34)

where

—jkr
Zoap = | Niv. NavE " qr, | dr,
A8 Ax A (/ry B gy Y
—jkr

1 : €
o . Ndlv . Ndlv dr de
= /p Ve R ( LT y)

14

(35)




+3

+2

+1

(a) Domains T'; and T's. (b) Domains 'y and T's.

(¢) Domains Ty and T.

Figure 6: Example div-conforming vector basis connectivity associated with
the NURBS multipatch geometry shown in Figure 5 for a B-spline vector basis
of order (4,3)x(3,4). Red and blue arrows indicate a vector basis aligned in
the s and t parametric directions respectively.
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1 . .
fi=— [ NIV.Edl, (36)
Jwi Jr, 4
and J g represents a vector of unknown surface current density coefficients. A
similar procedure can be carried out for the magnetic field integral equation

as detailed in Appendix A.

4.1 Radar Cross Section

The radar cross section o which quantifies how detectable an object is to a
radar signal in a given direction is computed as

o o [E° P
7= AT g

(37)
where R is the distance between the radar signal and the target object and
furthermore, it can be assumed in the present work that |E!| = 1. As detailed
in [20, 5] if the source and field points are located far apart then R = |x| and
the scattered electric field at a source (observation) point can be expressed

as

E‘(x) = /F J(y)e’*y dr, (38)

A x|

allowing the RCS to be computed as
o = 4r|x|*|E°|? (39)
or, in terms of the RCS in decibels per square metre

TqBsm = 10 lOglO g. (4O>

5 Implementation

Figure 7 details the main steps in the implementation of the present method.
A multipatch compatible B-spline discretization is constructed directly from
the NURBS surface parameterization. The inherent link between the geome-
try and analysis models allows for straightforward computation of compatible
basis functions with the relevant Piola transforms. We utilise Bézier extrac-
tion [12] to accelerate computations whereby high order B-spline and NURBS

16



- NURBS data structures

- Geometry connectivity, Cg
- Material properties

- Incident wave properties

Input:

Multipatch NURBS
geometry model

A 4

Multipatch compatible
B-spline model

l

Bézier extraction

v

Bézier coefficients
(geometry + analysis
models)

T

basis function bounding boxes

v

Initialised H-matrix,
RHS vector

Y

H-matrix

assembly Assemble force
complete? vector
N 2
requested test and trial indices Solve Zas Ja = fa
- — (GMRES +
A={.},B={.} o
v preconditioner)
Galerkin quadrature: *
components ZAB Post-processing/
visualisation

Figure 7: An outline of the algorithm for performing electromagnetic scat-
tering with compatible B-splines using the boundary element method with
J¢-matrix acceleration and Bézier extraction.
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basis functions are computed through precomputed Bézier extraction coeffi-
cients and inexpensive Bernstein polynomials.

As is well-known with Galerkin boundary element methods, careful con-
sideration must be given to the computation of the matrix components Z 4p
given by (35) when the element domains I';, and I', are either coincident,
edge adjacent, vertex adjacent or lie close to one another. We use the robust
quadrature algorithms proposed by Sauter and Schwab [35] that deal with
each of these cases.

To overcome the debilitating nature of large dense matrix Z, we ap-
proximate this matrix using .7-matrices whereby a low-rank approximation
is constructed through appropriate geometrical cluster trees that separate
terms into admissible and non-admissible terms (i.e. far-field and near-field
terms respectively). We do not wish to delve into the technical details of 77-
matrices and instead guide the reader to relevant literature (see e.g. [9, 21]).
However, we remark that 7Z-matrices are found to be particularly amenable
for implementation into an existing BEM library and we make use of the
library HLibPro [27] which provides high-performance .7-matrix libraries
that scale optimally over multicore hardware and are primarily based on the
Adaptive Cross Approximation algorithm [8]. The library requires as an
input the set of bounding boxes defined by the support of each basis func-
tion (see Figure 8) and the basis function index associated with each box.
Once an #7-matrix approximation is formed for a particular wavenumber,
the matrix can be written and read freely from file which allows for highly
efficient radar cross section computations. We note that this approach is
valid for low to medium wavenumbers with special techniques required for
high wavenumbers (e.g. [10]).

6 Numerical results

To verify the present approach and to demonstrate the capability of the
method of performing electromagnetic scattering directly from CAD models
using an isogeometric approach we present numerical results for a series of
electromagnetic scattering problems with PEC conditions.

18



Figure 8: Example geometry with the corresponding set of bounding boxes
defined by the support of each basis function used for low rank .7Z-matrix
approximations.

6.1 PEC sphere

The first problem we consider is that of electromagnetic plane wave impinging
on a PEC sphere of radius a = 1 which has a well-known solution given by the
Mie series (see e.g. [22]). The incident wave is polarised in the x-direction by
specifying p = (1,0,0) and is chosen to propagate in the positive z-direction
with d = (0,0,1). The solution for the surface current given in spherical
coordinates (p, 0, ¢) (see Figure 10) is expressed as

7, =0
| COS O sin OPY (cos 6 i PL(cos 6

o 05, (P (s) | jPicost
n ka H,” (ka) sin 0Hy "’ (ka)

J, _j sing io: . P! (AC((;)S,Q) _ sin QAPé),(COS 0)
sinfHy "’ (ka) JjHy ' (ka)

with ‘

_JT"(2n+1)

n(n+1) (41)

19



where = \/u/e, the terms P! and P! correspond to the set of order 1
associated Legendre polynomials and derivatives respectively and

7@ — pp@ (42)
7 = (2 1) 418 a2

with A2 denoting the spherical Hankel function of the second kind. The
radar cross section for this problem given in terms of increasing normalised
wavenumber is illustrated in Figure 9 where the two asymptotic limits asso-
ciated with Rayleigh and optical scattering are labelled.

10F

I /-\ optical
1k /\ /\ N\ NN NAAAAAA

o
—5 0.1 3
Ta - Rayleigh
0.01 3
0.001 3
i ol L L ol L M R R R A |
0.1 1 10
ka

Figure 9: The monostatic radar cross section of a PEC sphere as a function
of normalised wavenumber, commonly referred to as the Mie solution.

Using the present approach, the sphere geometry is discretised using bi-
quartic NURBS patches arranged in a cube topology with no degenerate
points, as in Figure 5a. Control point coordinates, weights and knot vectors
for this NURBS parameterization can be found in [17]. We construct div-
conforming B-splines using the knots inherited by the NURBS parameteriza-
tion with degrees (4, 3)x(3,4), (3,2)x(2,3), (2,1)x(1,2) and (1,0)x(0,1) and
apply successive h-refinement (knot insertion) to generate a set of meshes h0

20



Figure 10: Mie scattering problem: spherical coordinate system.

Table 1: Details of div-conforming B-spline discretizations used in the Mie
scattering study.

mesh degrees of freedom
(# elements) (1,0)x(0,1) (2,1)x(1,2) (3,2)x(2,3) (4,3)x(3,4)
hO (6) 12 48 108 192
hl (24) 48 108 192 300
h2 (96) 192 300 432 588
h3 (384) 768 972 1,200 1,452
h4 (1536) 3,072 3,468 3,888 4,332

(base mesh), hl, h2 etc. Table 1 provides further details of each discretiza-
tion. It should be noted that compatible B-splines of degree (1,0)x(0,1) are
directly equivalent to low order Raviart-Thomas or RWG basis functions on
quadrilateral meshes. The bi-quartic NURBS representation of the geom-
etry is used for all analyses and thus geometric error is eliminated for all
discretizations considered.

After solving for surface current, equations (38) and (39) were used to
determine radar cross section values with the results for mesh h3 shown
in Figure 11 for each B-spline degree. The superior RCS accuracy obtained
through higher order B-spline discretizations is demonstrated and this is also
apparent in RCS values obtained with meshes h0, hl and h2 as presented
in Appendix B. As expected, finer meshes are capable of handling higher
wavenumbers.

21



Plots of surface currents and magnitudes for £ = 8, h3 are shown for
each B-spline degree in Figures 12 through to 15 where the higher accuracy
and smoothness offered through higher B-spline degrees is visible. Recall-
ing that the (1,0)x(0,1) discretization is equivalent to the commonly used
Raviat-Thomas elements, it is clear that higher order compatible B-spline
discretizations offer substantial accuracy improvements over such elements.

F \
[ exact ™\
- (1,0)x(0,1) ~
1k @12l /S , AARAAAM
F (3,2)x(2,3) y M
i (4,3)x(3,4)

=

X v
ek T
| YAV Ivel F\A/v
001 10? ; [: ;
0.001 | \/\/\M/V y ‘ VAVAVAVAY/
_ l0.1 | | HI1 | — I1IO |
ka

Figure 11: Normalised RCS values for a PEC sphere computed for increasing
wavenumber with div-conforming B-splines of varying degree, mesh h3

Additionally, to establish that correct convergence rates are obtained us-
ing our approach we compute relative errors using the norm defined by

HVHH(div,F) = |[v|[z, + [|dive v|[L,, (44)

where we remark that the L? norm of the surface divergence is well defined
for this particular example. A convergence rate of p + 1 is expected for a
given B-spline degree with minimum degree p. We specify a wavenumber of
k = 3 and evaluate relative errors through the norm of (44) for each B-spline
degree for meshes h0 to h4. Relative errors for this study are plotted in
Figure 16 where theoretical convergence rates are demonstrated.
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Figure 12: Sphere scattering problem, & = 8: surface current quantities
(imaginary component) obtained with div-conforming B-splines of degree
(1,0)x(0,1) and three levels of h-refinement (h3).
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Figure 13: Sphere scattering problem k£ = 8: surface current quantities

(imaginary component) obtained with div-conforming B-splines of degree
(2,1)x(1,2) and three levels of h-refinement (h3).
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Figure 14: Sphere scattering problem k = 8: surface current quantities
(imaginary component) obtained with div-conforming B-splines of degree
(3,2)%(2,3) and three levels of h-refinement (h3).
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Figure 16: Mie scattering convergence study with k = 3: relative error norms
for B-spline discretizations and theoretical convergence rates.

6.2 NASA almond

A common benchmark problem used to verify electromagnetic scattering nu-
merical methods is the NASA almond problem as detailed in [41]. The geome-
try of the surface is defined through parametric expressions which are detailed
in Appendix C. In the present study these expressions were used as inputs
to the Math Rhino plugin developed by Rhino3DE [3] generating a NURBS
representation of the almond geometry with four bicubic NURBS patches as
shown in Figure 17. In addition, the software library Open CASCADE [1]
was used to extract the necessary geometry data structures required to con-
struct compatible B-spline discretizations defined over the almond surface.
Div-conforming B-splines of orders (3,2)x(2, 3), (2,1)x(1,2) and (1,0)x(0, 1)
were generated with uniform h-refinement (knot insertion) applied to the
initial discretization shown in Figure 17 to generate successively refined dis-
cretizations. Again, we use the notation h0, h1, h2 to indicate a mesh with
no-refinement (base mesh), 1 level of h-refinement etc. and the abbrevia-
tions HH and VV to denote horizontally polarised and vertically polarised
incident waves respectively. Table 2 provides further details of each B-spline
discretization. For the computation of the integrals we increase the number
of quadrature points in the vicinity of the two degenerate points, to increase
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Table 2: Details of compatible B-spline discretizations used for the NASA
almond study.

mesh degrees of freedom
(# elements) (1,0)x(0,1) (2,1)x(1,2) (3,2)x(2,3)
hO (288) 558 700 858
hl (1152) 2,268 2,546 2,840
h2 (4608) 9,144 9,694 10,260

the accuracy.

Figure 17: The NASA almond geometry represented by four bicubic NURBS
patches with two degenerate points.

To verify our implementation we compute the RCS given by (40) at fre-
quencies of 1.19GHz, 3GHz and 7GHz for both horizontally and vertically
polarised incident waves. We use numerical RCS reference values from [19]
for the 1.19GHz case, [19, 4] for the 3GHz case and [2] for the 7TGHz case.
In addition, we utilise experimental results for the 1.19GHz case as shown in
[41]. Both [19] and [2] are based on a boundary element (method of moments)
approach with the work of [4] adopting a coupled finite element/boundary
element formulation.

Figure 18 illustrates RCS plots for the 1.19GHz case for each B-spline
order with mesh h0. Good agreement with the numerical reference solution
is visible for each order. In addition, Figure 19 demonstrates good agreement
with experimental data for this frequency. In a similar manner, numerical
RCS values for the 3GHz case are shown in Figure 20 where the superior

28



-15 |
20 F
__25F
(% [
M -30
) [
7)) [
O -35
o [
[ Ganesh VV
'40:— A Ganesh HH
r (1,0x(0,1) ho
-45 | (2,1)x(1,2) hO
[ (3,2)x(2,3) hO
SOy oy ey

0 20 40 60 80 100 120 140 160 180
Azimuth angle (degrees)

Figure 18: Radar cross section profile for NASA almond geometry: 1.19GHz,
horizontal and vertical polarization. Reference data obtained from [19].
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mental reference data obtained from [41].
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Figure 21: Magnitude of imaginary component of surface current over the
NASA almond geometry: vertically polarised planewave of 3GHz travelling
in the positive z—direction, mesh h0.
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34



accuracy of high-order discretizations is evident. Plots of the imaginary
component of surface current for each order with mesh hO are shown in
Figures 21a to 21c which illustrate the smoothness in the solution obtained
at higher orders.

Finally, we consider the 7GHz case where RCS plots for mesh h2 are
illustrated in Figures 22 and 23 for HH and VV polarization respectively
demonstrating good agreement with the numerical reference solution. At this
frequency large errors were encountered for meshes h0 and hl necessitating
the use of mesh h2. Plots of the imaginary component of surface current for
each order with mesh h2 are shown in Figures 24.

6.3 Integrated CAD and electromagnetic scattering anal-
ysis

We now demonstrate the ability of our approach to perform electromagnetic
scattering analysis directly on CAD generated models. Figure 25 illustrates
a concept model generated in Autodesk® Fusion 360™ which includes T-
spline functionality capable of producing smooth, watertight surfaces. The
model is composed of six bicubic NURBS surfaces consisting of 1,178 control
points and 384 elements. By exporting this model as a STEP file which
preserves all NURBS data structures and making use of the OpenCascade
library, a compatible B-spline discretization is generated directly from this
NURBS geometry model. We envisage a scenario where our implementation
could be included directly with a CAD software library thereby eliminating
this STEP file export procedure. The size of the bounding box for this model
is given by (Azx, Ay, Az) = (82.3,93.1,27.5).

RCS values are computed over the x-y plane in which the wave is po-
larised in the z-direction. We first apply a normalised wavenumber ka = 9.31
and apply two levels of h-refinement (denoted by hl and h2 respectively)
using compatible B-splines of order (3,2)x(2,3) with normal C° continuity
across patches. The discretizations hl and h2 consist of 5,808 and 17,328
degrees of freedom respectively. Plots of the imaginary component of sur-
face current for h2 are shown in Figures 26a and 26b and RCS values are
plotted in Figure 27. We also compute RCS values for a higher normalised
wavenumber of ka = 46.55 in which three levels of h-refinement are applied
generating a discretisation with 58,800 degrees of freedom. Surface current
plots for this wavenumber are shown in Figures 28a and 28b and RCS values
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Figure 24: Magnitude of imaginary component of surface current over the
NASA almond geometry: vertically polarised planewave of 7TGHz travelling
in the positive z—direction, mesh h2.
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(a) Front view (y-z plane). (b) Side view (z- z plane).

(c) Perspective view.

Figure 25: Concept model generated in Autodesk® Fusion 360™wused for
RCS analysis.
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are plotted in Figure 29.

We use this example to demonstrate how our approach exhibits a tight
link between computational design and analysis by using a common data
model that provides the necessary geometry and analysis discretizations. The
requirement for surface meshing is bypassed and the use of high order B-spline
discretizations provides superior accuracy over conventional discretization
approaches.

7 Conclusion

We have outlined an isogeometric boundary element method (method of mo-
ments) that utilises a common model to discretise both the geometry and
analysis fields for electromagnetic scattering analysis. Our approach uses
Non-Uniform Rational B-Splines (NURBS) to represent the surface geome-
try and compatible B-splines as basis for electromagnetic analysis. We have
detailed the construction of compatible B-splines from a given NURBS dis-
cretization that provide a div-conforming or curl-conforming surface vector
basis and described how such spline-based discretizations can be used as a
basis for the electric/magnetic field integral equations. We verified our ap-
proach through the Mie series solution that provides a closed-form solution
for electromagnetic scattering over a perfectly electrically conducting sphere
and utilised experimental and numerical reference data for the well-known
NASA almond geometry to verify radar cross section calculations. Finally,
we demonstrated how our approach can be used to perform electromagnetic
scattering analysis directly on geometry models generated using modern CAD
software showcasing the ability of our approach to fully integrate CAD and
analysis technologies.
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Figure 26: An example surface current profiles (imaginary) for the concept
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and travelling in the positive = direction with ka = 9.31.
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Figure 27: The computed radar cross section profile for the concept model
illustrated in Figure 25 with a normalised wavenumber ka = 9.31.
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Figure 28: An example surface current profiles (imaginary) for the concept
model shown in Figure 25. The plane wave is polarised in the z direction
and travelling in the positive x direction with ka = 46.55.
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A MFIE: compatible B-spline discretization

In a similar manner to the electric field integral equation, the magnetic field
integral equation is first derived by substituting the expression for the total
magnetic field given by

H = H'+ H®. (45)
into the PEC condition of
nxH=1J (46)
to arrive at .
nx H =J—nx H’ (47)

with the scattered magnetic field given by the quantity
H' =V x A (48)

allowing (47) to be rewritten as

) —jkr
anZ:J—nx/VXJe dr. (49)
r drr
Defining the linear operator
L Vxu 50
(u)—u—nx/F Xu-— (50)

and a forcing function g = n x H’, we write the Galerkin formulation of the
magnetic field integral equation as:
1
given g, find J € H™2(curlp, I') such that

(w, L7 (3)) = (w,g) VYw e H 2(curlp,T). (51)

Defining finite dimensional subspaces wy,,J, € H _%(curlp, ') as

Ny

wi = NG"w, (52)
A
Ny

Ty = NG"j, (53)
A
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where {quurl}gbzl is a set of curl-conforming surface vector B-spline basis
functions , the system of equations for the magnetic field integral equation
can be written as

YupJp =84 (54)
where, by employing the identity V X (¢v) = Vo X v + ¢V x v, applying a

limiting process to the integral and noting that N4V = —n x N1,

1 .
Yap =3 / N NG dr + / N4V ( VG x N9 dF) dr  (55)
x T Fy
where :
ve— - (L (56)
T 4w \r Tk

with r := y — x and the factor of 1/2 arises from the limiting process.

Similarly, the forcing vector components are given by
g4 = / N . (n x HY)dI (57)
= /F N4 . HdI. (58)

As before, the vector Jp represents a vector of unknown surface current
density coefficients.
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Figure 30: Normalised RCS values for a PEC sphere computed for increasing
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C NASA almond geometry parameterization

Denoting the length of the almond geometry as L = 0.2524m, the surface
of the NASA almond geometry is defined in terms of parametric coordinates
(s,t) as

Lt
x - 5
z 0.064444L7 /1 — (s3is57)” sin s
for—m<s<m—041667 <t <0
and
Lt
N 4.83345L |\/1 — (55kz)” — 0.96] cos s
y| = : (60)
& 161115 /1 — (5555)" — 0.96| sin s
for—m<s<m0<t<0.58333.
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