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Abstract

In this paper, we consider unilateral contact problem without friction between a rigid body
and deformable one in the framework of isogeometric analysis. We present the theoretical
analysis of the mixed problem using an active-set strategy and for a primal space of NURBS
of degree p and p — 2 for a dual space of B-Spline. A inf — sup stability is proved to ensure
a good property of the method. An optimal a priori error estimate is demonstrated without
assumption on the unknown contact set. Several numerical examples in two- and three-
dimensional and in small and large deformations demonstrate the accuracy of the proposed
method.

Introduction

In the past few years, the study of contact problems in small and large deformations is increased.
The numerical resolution of contact problems presents several difficulties as the computational
cost, the high nonlinearity and the ill-conditioning. Contrary to many others problems in nonlin-
ear mechanics, these problems can not be solved always at a satisfactory level of robustness and
accuracy [22, 32] with the existing numerical methods.

One of the reasons that make robustness and accuracy hard to achieve is that the computation
of gap, i.e. the distance between the deformed body and the obstacle is indeed an ill-posed problem
and its numerical approximation often introduce extra discontinuity that breaks the converge of
the iterative schemes; see [1, 22, 32, 21] where a master-slave method is introduced to weaken
this effect.

To this respect, the use of NURBS or spline approximations within the framework of isoge-
ometric analysis [19], holds great promises thanks to the increased regularity in the geometric
description which makes the gap computation intrinsically easier. Isogeometric methods for
frictionless contact problems have been introduced in [33, 29, 30, 12, 10, 9], see also with pri-
mal and dual elements [31, 18, 17, 26, 28]. Both point-to-segment and segment-to-segment (i.e,
mortar type) algorithms have been designed and tested with an engineering prospective, showing
that, indeed, the use of smooth geometric representation helps the design of reliable methods for
contact problems.
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In this paper, we take a slightly different point of view. Inspired by the recent design and
analysis of isogeometric mortar methods in [7], we consider a formulation of frictionless contact
based on the choice of the Lagrange multiplier space proposed there. Indeed, we associate to
NURBS displacement of degree p, a space of Lagrange multiplier of degree p — 2. The use of
lower order multipliers has several advantages because it makes the evaluation of averaged gap
values at active and inactive control points simpler, accurate and substantially more local. This
choice of multipliers is then coupled with an active-set strategy, as the one proposed and used in
[18, 17].

Finally, we perform a comprehensive set of tests both in small and large scale deformation,
which well show the performance of our method. These tests has been performed with an in-house
code developed upon the public library igatools [25].

The outline of the paper is in the Section 1, we introduce unilateral contact problem, some
notations. In the Section 2, we describes the discrete spaces and their properties. In the Section
3, we present the theoretical analysis of the mixed problem. An optimal a priori error estimate
without assumption on the unknown contact set is presented. In the last section, some two- and
three-dimensional problem in small deformation are presented in order to illustrate the conver-
gence of the method with active-set strategy. A two-dimensional problem in large deformation
with Neo-Hookean material law is provided to show the robustness of this method.

Remark. The letter C stands for a generic constant, independent of the discretization parameters
and the solution u of the variational problem. For two scalar quantities a and b, the notation
a < b means there exists a constant C, independent of the mesh size parameters, such that a < Cb.
Moreover, a ~ b means that a < b and b < a.

1 Preliminaries and notations

1.1 Unilateral contact problem

Let Q € R? (d =2 or 3) be a bounded regular domain which represents the reference configuration
of a body submitted to a Dirichlet condition on I'p (with meas(I'p) > 0), a Neumann condition
on I'y and a unilateral contact condition on a potential zone of contact I'c with a rigid body.
Without loss of generality, that it is assumed that the body is subjected to a volume force f, to a
surface traction £ on I'y and clamped at I'p. Finally, we denote by ng the unit outward normal
vector at 0f2. )

In what follows, we call u the displacement of Q, e(u) = i(Vu + Vul) its linearized strain

tensor and we denote by 0 = (04j)1<i,j<a the stress tensor. We assume a linear constitutive law
between o and ¢, i.e. o(u) = Ae(u), where A = (ajjri)i<ijki<d is a fourth order symmetric
tensor verifying the usual bounds:

o ajjp € L°(R2), i.e. there exists a constant m such that —max |a;ju| < m;
1<id,5,k,1<d

e there exists a constant M > 0 such that a.e. on Q,
aijri€ij€rl = Mejje;; Ve € R with €ij = Eji-
Let n be the outward unit normal vector at the rigid body. For any displacement field u and

for any density of surface forces o(u)n defined on 052, we adopt the following notation:

U= UpN + Us and o(u)n = on(u)n + op(u),



where u; (resp. o¢(u)) are the tangential components with respect to n.
The unilateral contact problem between a rigid body and the elastic body €2 consists in finding
the displacement u satisfying:

dive(u)+f =0 in Q,
o(u) = Ae(u) in Q, (1)
u =10 on I'p,
oung =4 on I'y.

un, >0 (3),
on(u) <0 (i), @)
on(Wuy, =0 (47),
ot(u) =0 (iv).
In order to describe the variational formulation of (1)-(2), we consider the Hilbert spaces:

V=Hyp (Q={ve H'(Q)? v=0onTp}, W={v,lp,, veV}

and their dual spaces V', W’ endowed with their usual norms. We denote by:

1/2
lolly = (el ey + lasya) > Yo € V.

If TpNT¢c = 0 and n is regular enough, it is well known that W = HI/Q(I‘C) and we will
may also denote W’ by H~'/2(I¢). On the other hand, if Tp N T¢ # 0, it will hold that
HY*(Te) c W c HY2(Te).

In all cases, we will denote by |||y, the norm on W and by (-, )y y, the duality pairing between
W' and W.

For all v and v in V', we set:

a(u,v)—/ga(u):e(v) dQ and L(v)—/Qf-UdQ—i— FNE-UdF.

Let K be the closed convex cone of admissible displacement fields satisfying the non-interpenetration
conditions, K ={v €V, v, >0onTI'c}. A equivalent formulation of (1)-(2) (see [23]) is a vari-
ational inequality, finding v € K such as:

a(u,v —u) > L(v — u), Yv € K. (3)

We cannot directly use a Newton-Raphson’s method to solve the formulation (3). A classical
solution is to introduce a new variable, the Lagrange multiplier denoted by A, which represents
the contact. For all A in W', we denote b(\,v) = — (X, vp) -y and M is the classical convex
cone of multipliers on I'¢: 7

M={ueW, (i) <0 VeH*T¢c), ¢ >0ae onlc}

The complementary conditions with Lagrange multiplier writes as follows:

un, >0 (7),
A< 0 (i), (4)
My, = 0 (4id).



We define the mixed formulation [5] of the Signorini problem without friction (1)-(4) consists in
finding (u, A) € V' x M such that:

a(u,v) — b\, v) = L(v), Vv eV, 5)
{ b — Au) >0, Ve M. (

Stampacchia’s Theorem ensures that problem (5) admits a unique solution.
The existence and uniqueness of the solution (u, A) of the mixed formulation has been established
in [14] and it holds A = oy, (u). So, the following classical inequality (see [2]) holds:

Theorem 1.1. Given s > 0, if the displacement u verifies u € H3/**5(Q), then A € H*(T¢) and
it holds:

Allsre < llullsjaqsa- (6)

The aim of this paper is to discretize the problem (5) within the isogeometric paradigm, i.e.
with splines and NURBS. Moreover, in order to properly choose the space of Lagrange multipli-
ers, we will be inspired by [7]. In what follows, we introduce NURBS spaces and assumptions
together with relevant choices of space pairings. In particular, following [7], we concentrate on
the definitions of B-Splines displacements of degree p and multiplier spaces of degree p — 2.

1.2 NURRBS discretisation

In this section, we describe briefly a overview on isogeometric analysis providing the notation and
concept needed in the next sections. Firstly, we define B-Splines and NURBS in one-dimension.
Secondly, we extend these definitions to the multi-dimensional case. Finally, we define the primal
and the dual spaces for the contact boundary.

Let us denote by p the degree of univariate B-Splines and define Z = {(1,...,(g} as vector
of breakpoints, i.e. knots taken without repetition, and m;, the multiplicity of the breakpoint
&, 7=1,..., FE. Let Z be the open knot vector associated to Z where each breakpoint is repeated
m;-times, i.e.

E={&, - &ppi1}

In what follows, we suppose that mi = mg = p+ 1, while m; <p—-1,Vj =2,...,E—-1. We
define by sz (), 1 = 1,...,n the i-th univariable B-Spline based on the univariable knot vector
= and the degree p. We denote by SP(Z) = Span{éf((), i=1,...,n}. Moreover, for further use
we denote by = the sub-vector of Z obtained by removing the first and the last knots.

Multivariate B-Splines in dimension d are obtained by tensor product of univariate B-Splines.
For any direction 6 € {1,...,d}, we define by 7s the number of B-Splines, =5 the open knot vector
and Zs the breakpoint vector. Then, we define the multivariate knot vector by 2 = (21 X...x Ey)
and the multivariate breakpoint vector by Z = (Z; X ... x Zg). We introduce a set of multi-
indices I = {¢ = (i1,...,1q) | 1 <is < ns}. We build the multivariate B-Spline functions for each
multi-index ¢ by tensorization from the univariate B-Splines:

BY(C) = B} (G) - By, (Ca).
Let us define the multivariate spline space in the reference domain by (for more details, see [7]):

SP(E) = Span{B(¢), i € I}.



We define NP(E) as the NURBS space, spanned by the function ]\75 (¢) with

. . B?
wr(¢) = 4B,
W(¢)
where {w; }ici a set of positive weights and the weight function W (¢) = Zwi]_@f (¢) and we set
i€

NP(E) = Span{N?(¢), i € I}.

In what follows, we will assume that € is obtained as image of O =10, 1[¢ through a NURBS
mapping g, i.e. £ = <p0(Q). Moreover, in order to simplify our presentation, we assume that
I'¢ is the image of a full face f of Q t.e. 'oc = <po(f) We denote by oo 1, the restriction of g to f

In conclusion, we remark that {2 is split into elements by the image of Z through the map ¢g.
We denote such a mesh Qj and elements in this mesh will be called Q. I'¢c inherits a mesh that
we denote by Qh‘rc' Elements on this mesh will be denoted as Q¢.

Finally, we introduce some notations and assumptions on the mesh.

Assumption 1. The mapping g is considered to be a bi-Lipschitz homeomorphism. Further-
more, for any parametric element Q, cpo‘ 5 is in C”(Q) and for any undeformed element Q, ¢,
is in C‘X’(Q).

Let hg be the size of an undeformed element @, it holds hg = diam(Q). In the same way, we
define the mesh size for any parametric element. In addition, the Assumption 1 ensures that both

size of mesh are equivalent. We denote the maximal mesh size by h = CrgnaQX hq.
€Ch

1\@

h
Assumption 2. The mesh Qy, is quasi-uniform, i.e there exists a constant 6 such that @ <40

Q/
with Q and Q' € Q.

2 Discrete spaces and their properties

We concentrate now on the definition of spaces on the domain €.
For displacements, we denote by V" C V the space of mapped NURBS of degree p with appro-
priate homogeneous Dirichlet boundary condition:

h= o =d"opyt, " e NP(E)Y}NV.
We deduce the space of traces normal to the rigid body as:
={", Prevh:. vh.n=9"onTc}.

For multipliers, following the ideas of [7], we wish to define the space of B-Splines of degree p — 2

A~

on the potential contact zone I'c = o ( f) We denote by = 7 the knot mesh defined on f
and by = i the knot mesh obtained by removing the first and last value in each knot vector. We
define:
h h 3h —2 /&
={\ =) O‘:DOF , AteSP 2(‘=‘f)}'



The space A" is spanned by mapped B-Splines of the type Ef _Q(C )o@y 1110 for ¢ belonging to a
suitable set of indices. In order to reduce our notation, we call K the running index K =0...K
on this basis, remove super-indices and set:

A" = Span{Bk(z), K =0...K}. (7)

For further use, for v € L*(I'¢), we denote by (IT}-)x the local projection such as:
(IThv) :/ vByg dI'/ [ By dT, (8)
T'c T'c
and by HQ the global projection such as:

K

M = (I}v)k B (9)
K=0

We denote by L the set of subset of W on which the non-negativity holds only at the control
points:
L'"={e"ewh @he")k>0 VK}.

We note that L" is a convex subset of W,
Next, we define the discrete space of the Lagrange multiplier as the negative cones of L" by

M= L = {uh e AP, / phoh dT <0 V' e LM,
e

Lemma 2.1. Let u" be in A" and p" equal to YK ,u’}(BK, if ut s in M™ then it holds for all
K=1...K, ph<o0.

Proof: Let o" € L", if " is in M" then it holds / plho dr < 0.
|Ne]
Using p* = Y- u- By and the positivity of the B-Splines, we get:

Zu’;{/ Brg" dI <0,
K Fo

then
> i <.
K

In particular, let " = (H’i(ph)K, implies ,uf}( <0. O

For any Q¢ € Qh‘rc’ Qc denotes the support extension of Q¢ (see [2, 4]) defined as the image
of supports of B-Splines that are not zero on Q¢ = wa%C(QC).
We need to notice that the operator verifies the following estimate error:

Lemma 2.2. Let ) € H*(T'¢) with 0 < s < 1, the estimate for the local interpolation error reads:

|[v-m@)|  Sh Il Qo €l (10)

07QC



Proof: First, Let ¢ be a constant. It holds:

r [ eBg dT [ Br dF
Hhc = (H C)KBK = 1—‘07 FC K-
A KZD A Z * Jr. B dT Z ch By dI'

Using B-Splines are a partition of the unity, obviously, we obtain H’}\c =c.
Let ¢» € H*(T'¢), it holds:

v - mw

[e—e-mw-af, .
I = clogo + [Tt —a, (1)

¥ = clooe + 4]

07QC

IN

IN

. — C A .
L2(Qc )L (Qc)) v HO’QC

We need now to bound the operator H’/{. We obtain:

o, = |3 Betie
Mo By dI 0o
e
r [ WBf dT
T'c K
< Z m 1Brllo.qc
K: suppBxNQc#0 e
fj 9l g, 2% l0d
< - )
- O:QC
K: suppBrgNQc#0 fFC By dl

- 1/2 -
Using || Bk g6, ~ ’QC‘ 1Bk llo,g ™~ 1Qc|'?, /F By dI' ~ ‘QC‘ and Assumption 1, it holds:
C

I’ < 5 -
B, = 1wl (12)
Using the previous inequalities (11) and (12), for 0 < s < 1, we obtain:
h ~
[e-m@),,. = ¥-clog
S ~
S g, 1Yo
O

Then a discretized mixed formulation of the problem (5) consists in finding (u”, \") € V" x M*
such that:

a(ul, vh) — b()\h o) = L), Vol e VI,
{ bt — N ) >0, Ve Mh (13)

According to Lemma 2.1, we get:

{u e M": bl 0" =0 W eV} = {0},
and using the ellipticity of the bilinear form a(-,-) on V*, then the problem (13) admits an unique
solution (u®, \*) € VP x M™".

Before addressing the analysis of (13), let us recall that the classical inequalities (see [2]) are
true for the primal and the dual space.



Theorem 2.3. Given a quasi-uniform mesh and let r,s be such that 0 < r < s <p+1. Then,
there exists a constant depending only on p,0,pg and W such that for any v € H*(Q) there exists
an approximation v" € VP such that

h

lo=o"] S ol (14)
7,8 ’

We will also make use of the local approximation estimates for splines quasi-interpolants that can
be found e.g. in [2, 4].
Lemma 2.4. Let A\ € H*(I'¢) such that 0 < s < p — 1, then there ezists a constant depending

only on p, and 0, there exists an approzimation \* € A" such that:

Ol PRPU s MHO’QC B Mg, YQc € Qalp,- (15)

1/27QC
It is well known [6] that the stability for the mixed problem (5) is linked to the inf — sup condition.

Theorem 2.5. For h sufficiently small, n sufficiently regular and for any p* € A", it holds:

b(p", v"

sup ) > 5HuhHw,, (16)

wrev 10"y
where 8 is independent of h.

Proof: In the article [7], the authors proof that, if h is sufficiently small, there exists a constant
5 independent of h such that:

—frcgh.uhd

VAR e (A4 3t e VP L st “2p HXLH

(17)
Ic HuhHo,Fc

07FC ‘
Given now a A" € A", we choose A = A" - n, clearly A ¢ (A",

Let us show a super-convergence property on A*. Let HiAnya - L*(T¢)? — (A")? be a quasi-
interpolant defined and studied in e.g. see [4]. If n € WP~1°°(T'¢), by the same super-convergence
argument used in [7], we obtain that:

A= Tane) | < ahlidlr. (18)
Note that:
b uh) = —/ M@l n) dr = —/ A-uldr
e I'c
= / H(Ah)d(A) cul dD / (Af H(Ah)d(A)) -yl dr.
T'e Te

By inf — sup condition (17), we get:

— fFC H(Ah)d(é) . uh dr

sup

> B e )
s — 7 (e

0rc’
By (18), it holds:

- whar e [+,
S (o) o dr < Dl o]

8



Thus:

b(A", )
o 2 B = ek Mo, -
HuhHO,FC (A™) 0.l'c 0,l'c

Noting that HH(M)d(A)HOFC > Mo, — ah [Allg.r and [Allg e ~ Ao - We finally obtain:

h . h
sup b\, u™)

uheVyh ||UhH07FC

8, = o 1]

0.Tc 0T¢

If h is sufficiently small, this implies, there exists a constant 3’ independent of h such that:

b(A", uh)
Sup e
uhevh [|u Ho,rc

B

h
. 19
HO,FC (19)

It implies that there exists a II a Fortin’s operator IT : L?(I'¢c) — Vh‘rc N H(T¢) such that
b(A I(w)) = b(A,u), VAeM and  [I(u)llop, < llullor, -

Let I;, be an L? and H' stable quasi-interpolant onto Vh’rc (for example, the Schumaker’s quasi-

interpolant, see for more details [4]). It is important to notice that I preserves the homogeneous
Dirichlet boundary condition.
We set IIp = TI(I — Ij,) + Ip,. It holds:

b(Ap(w)) = b(Nu), Vue V] . (20)
Indeed, by definition of 11, we obtain:
bAp(u) —u) = b(A, (u — Tnu) + Inu — u) = b\, I(u — Ihu)) — b(A, u — Ihu)) = 0.
Moreover, by stability of II and Iy, it holds:
e (@)llore S llullor - (21)

At last, it holds:

Mp(uh) =u”, Yuh eVt . (22)

Indeed, for u" € Vh‘rc’ since Ipu = u”, it implies:
p(u") = O — Lu") + L = (W —u) + P = o
Now, let us prove that:
IME ()l p, S 1 (w)

Using the discrete norm inequality for a quasi-uniform mesh, the L?-stability of II and the H'-
stability of the operator I, for u € H'(I'¢), it holds:

e ()] r,

1Te» Vu€E H'(Tg). (23)

IMX(w = Ihu) |y e, + [Hnully pg
W = Ty llg . + Ml

Wt = Tyullg r + llully p,

AR AR ZANN VA

lellire -



e Let us start to suppose that Tp N T = 0. It is well known that W = HI/Q(FC) and by
interpolation of Sobolev Spaces, using (21) and (23), we obtain:

bAp(u) = b(A,u), VAe M and  [[p(u)ly < flully -
Then inf — sup condition (16) holds thanks to Proposition 5.4.2 of [6].

e If I'p NT¢ # 0, it is enough to remind that for all u € H} rpnre(L'e)s we have Ilp(u) €
H&,FDHFC(FC) and (23) is valid on the subspace H(%,FDﬁFc (T'¢). Again by interpolation
argument between (21) and (23), it holds ||IIgp(u)|y, < C |lul|y, which ends the proof.

g

3 A priori error analysis

In this section, we present an optimal a priori error estimate for the Signorini mixed problem.
Our estimates follows the ones for finite elements, provided in [8, 16], and refined in [13]. In
particular, in [13] the authors overcome a technical assumption on the geometric structure of the
contact set and we are able to avoid such as assumptions also in our case.

Indeed, for any p, we prove our method to be optimal for solutions with regularity up to 5/2.
Thus, the cheapest method proved optimal corresponds to the choice p = 2. Larger values of
p may be of interest because they produce continuous pressures. On the other hand the error
bounds remain limited by the regularity of the solution, i.e. , up to Ch3/2. Clearly, to enhance
approximation suitable local refinement may be used, [11, 12], but this outside the scope of this
paper.

In order to prove the Theorem 3.3 which follows, we need a few preparatory Lemmas.

First, we introduce some notation and some basic estimates. Let us define the active-set strategy
for the variational problem. Given an element Q¢ € Qh‘rc of the undeformed mesh, we denote
and let us define by Z¢(Q¢) the contact set and by Zyc(Qc¢) the non-contact set in Qc¢, as
follows:

Zc(Qe) ={z € Qc, un(z) =0} and Zyc(Qc)={z € Qc, un(z)>0}.
|Zc(Qc)| and |Zne(Qc)| stand for their measures and |Zo(Qc)| + | Zne(Qc)| = |Qc| = Cthgl.

Remark 3.1. Since u,, belongs to H'T7(Q)? for0 < v < 1, if d = 2 the Sobolev embeddings ensure
that u, € C°(0Q). It implies that Zc(Qc) and Znc(Qc) are measurable as inverse images of a
set by a continuous function.

The following estimates are the generalization to the mixed problem of the Lemma 2 of the
Appendix of the article [13]. We recall that if (u, A) is a solution of the mixed problem (5) then
on(u) = A. So, the following lemma can be proven exactly in the same way.

Lemma 3.2. Let d = 2 or 3. Let (u,\) be the solution of the mized formulation (5) and let
u € H32(Q) with 0 < v < 1. Let hg the be the diameter of the trace element Q¢ and the set
of contact Zc(Qc) and non-contact Znc(Qc) defined previously in Q.
We assume that | Znc(Qc)| > 0, the following L?-estimates hold for \:

1 v
pd/2+v=1/2

< - -
”)\HO,QC — |ZNC(QC)‘1/2 Qc |)\‘V7Qc' (24)

10



We assume that |Zc(Qc)| > 0, the following L?-estimates hold for Vuy,:

1 d/2+v—1/2
[Vunllg.g. < thg/c+ PVl (25)

Theorem 3.3. Let (u,\) and (u®, \*) be respectively the solution of the mized problem (5) and
the discrete mized problem (13). Assume that u € H3/*(Q)* with 0 < v < 1. Then, the

following error estimate is satisfied:
n||? Rl? 1420 ), 1|12
= +[r =2, s B Il - (26)

Proof: Given a v" € V" by the coercivity inequality on V( with o the V-ellipticity constant), it
holds:

a Hu - uhH <alu—uu—u") =alu—u" u—o") +a(u—u 0" —uh)
Y < a(u—u",u—v") + alu,v" —u") — a(ul " —u")
< alu—ul u—o") + L™ —u") + b\, 0" — ) — L™ — u) — b\, 0P — uh)
<au—u" u—v") +bA = A" ot —ul)
<alu—u u— o)+ b\ = Ao —u) + b= N u— )
< alu—ul u— o)+ b = Mo —w) + b\ u) — b\, ul) — b, w) 4+ bR, uh).

Using (5) with g = 0 and p = A, we obtain b(\,u) = 0 and using (13) with u = 0 and u* = A",
we obtain b(A", u) = 0. Using the continuity of the bilinear form a(-,-) and the trace theorem,
it holds:

2
o M

; Jie= "l =X = o, = 0 = 0

%4 \%4

By triangle inequality,
R e
O e A "7 Gt RN

From (5) and u” € V* C V has:
a(u —ul, ") = b(A )\h ") =0
alu —u, o) — b\ — p, o) = b(ph = N 0" =0
b(:u - )‘ha h) = a(u - uhv vh) - b()‘ - ,uh7vh)'

Using the inf —sup condition (16), the continuity of a(-,-), the trace theorem and dividing by
thHV, it holds:

h h h h
=, & =+ =
ﬂHM wr ™ - V+ H w’
We deduce:

e

H wr H W/+ H %%
Sr=utl, + et it ean
~ v W,‘f‘ uU—u v 2

11



Using Young’s inequality, we obtain:

T 8l = sl o= ot -t

|
uU—v +[|A—p b\, ul) — b()\h,u)‘./
R et

Ju—u

Finally, we deduce:
2 2 2 2
e e i TR (s W ie
\%4 w! \% w
+max(—b(\, u"),0) + max(—b(A\", u),0).

It remains to estimate on the previous inequality the two last terms to obtain the estimate (26).

Step 1: estimate of —b(\, u?) = / Aul dr.
I'c

Using the operator 11} define in (9), it holds:

b(huh) = / Al dF—/ A(u,’;—nﬁ(um dF+/ AIT: (i) AT
T'o T'o r

C

_ /F (A =T00) (uh — )} ar + /F ) (o~ 13e)) ar

C

- / AITA (ul) dT.
o]

Since A is a solution of (5), it holds IT%#(\) < 0. Furthermore, u” is a solution of (13), thus
/ I () (ug - H’;(uﬁ)) dl < 0 and / AL (uh) dT < 0.
|)Ye]

We obtain: te
bty < / (A—15) (ul il ar
NG}
< /F ()\ - H’;(A)) (ug — oy — Tl — un)) dr (27)

+ /F ()\ - H’;(A)) (un - H’;(un)) dr.

The first term of (27) is bounded in an optimal way by using (10), the summation on each
undeformed element, Theorem 1.1 and the trace theorem:

tty, =t — 113 (1 — )

/F <)\ - H’;(A)) (ug —y — IR (P — un)) dr < H)\ - n’;(A)H
C
< CRMYPH |0

0.T¢c ‘ 0

h

n

]
\%4

’Fc’ if either |Zo(Qc)|
or |Znco(Qc)| are null, the integral on Q¢ vanishes. So we suppose that either |Z¢(Qc)| or
|Znc(Qc)| are greater than |Q¢|/2 = Cth_cl and we consider the two case, separately.

Up — U

I/Fc‘

< Cht/2v lulls /2100

We need now to bound the second term in (27). Let Q¢ an element of Qp,
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¢ |Zc(Qe)| = |Qc|/2. We use the estimate (10), the estimate (25) of the Lemma 3.2 and the
Young’s inequality:

/Q (A — TNt — T () T

IN

/ At — T2 () dT
Qc

Uy, — H’)\l(un)

IN

1Allo. e
Cl[Mo.qe P llunlly g,
C

1 Zc(Qc)[?
Chd/2+2u+1/2hfd/2+1/2 H/\H

IN

IN

d —
WP g P Nunll 6

IN

v,Qc HUNHH—V,QC
Rt ||)\||V,Qc HUTLHI—H/,QC

v 2 2
pit? UMY e + llunllyy, 5..)-

AR ZA

e |Znc(Qc)| > |Qc|/2. We use the estimate (10), the estimate (24) of the Lemma 3.2 and
the Young’s inequality:

/Q (A =I5 (N) (uy — T (uy)) AT < HA - H}AWH
(&
C d
<« Y pd4evs1/z gy
= | Znc(Qo)|V/? W
it ||)‘||V,Qc Hun”lJrV,Qc

2 2
R (AR g + a2, 0,)-

Uy — Hﬁ (up)

0,Qc ‘ 0,Qc

v,Qc Hu" H 14+v,Qc
S
S

Summing over all the contact elements and choosing either |Z¢(Q¢)| or |[Znc(Qc)|, it holds:

/F O IGO0 W) A8 = 3 /Q = T Ty () T

IN

2 2 2
Cplt2y Z H/\Hu,Qc + ”)‘HV,QC + HunHHuQc
QcEQh‘FC

v 2 2 2
CH S Mgt S I gy + lunlZig
QCth‘F QLEQC
c

v 2 9 9
Cp+2 (H)\Hy,ran >y ”’\||V7Q’c+||“n”1+u,gfc)-
QEQh‘F QICEQC
C

IN

IA

Due to the compact supports of the B-Splines basis functions, there exists a constant C' depending
only on the degree p and the dimension d of the physical domain such that:

2 2 2 2
2 2 Mgy +lunlisng, < ClIMre +C lunllisr -
Qe QecQc

So we have:

[ O =T = T4 ) a0 < OB (1AL + e ).
C
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i.e.
/F (A = T ) (up — Wy (un)) AT < CRY2 JJull? 0,0
C

We conclude that:
b ") S B ullyg g [u =+ Bl
Using Young’s inequality, we obtain:
b0 u) S R [l oy + [lu = 23
Step 2: estimate of —b(A\",u) = / A, dr.

T'c
Let us denote by j" the Lagrange interpolation operator of order one on the mesh of Q on I'c.

—b(A", u) :/ Mo, dF:/ M (up — 5" (uy)) dF+/ Mih () dr.
FC FC 1—‘C

Note that by remark 3.1, u,, is continuous and j"(u,) is then well define.

Since u is a solution of (5), it holds j"(u,) > 0. Thus, / Mejh(u,) dT <0, Xve MM

e

—

My, dI' < /F My, — ™ (uy)) dT
C

C

—b(A\"w) < /
c INe;

As previously, we obtain:
h -h .h
g/ (A" = A)(un — 3" (un) dF+/ Altn — () dT
T
< n - " n dr — AP
[ a4, |
S /
T

-h
Un — ] (un)
o w

Aitn = 7"(n)) T+ B2 g A=A
C
< [ Mun =) A0+ B g 0[N - 20
o w
Now, we need to show that:
/F At — 3" (un)) AT < CRI Jull? 0, . (20)
C

The proof of this inequality is done in the paper [13] for both linear and quadratic finite elements,
and can be repeated here verbatim. In this proof, two cases are considered:

1. either |Zc(Qc)| or |Znc(Qc)| is null and thus the inequality is evident;
2. wher either |Z¢(Qc)| or |Znc(Qc)| is greater than |Q¢|/2 = Ch‘é_cl.

Distinguishing the two cases Z¢(Qc) > |Qcl|/2 and Znc(Qc) > |Qc|/2, using the previous
Lemma 3.2 and by summation on all element of mesh. We conclude that:

B0 < [ M ) AT Rl o0 A=
el

) h
SEF N3 g0 + PP Ny 400 HA - HW '
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Using Young’s inequality, we obtain:
2
b w) S B ul g0 + AN (30)

Finally, we can conclude using (30) and (28), we obtain the a priori error estimation (26).
g

4 Numerical Study

In this section, we perform numerical validation for the method we propose both in small and
large deformations, i.e., also beyond the theory developed in the previous Sections. Due to the
intrinsic lack of regularity of contact solutions, we restrict ourselves to the case p = 2, and we
will denote this choice as Ny/Sp method

The suite of benchmarks reproduces the classical Hertz contact problem [15, 20]: Sections
4.1 and 4.1 analyse the two and three-dimensional cases for a small deformation setting, whereas
Section 4.3 considers the large deformation problem in 2D. The examples were performed using
an in-house code based on the igatools library (see [25] for further details).

4.1 Two-dimensional Hertz problem

The first example included in this section analyses the two-dimensional frictionless Hertz contact
problem considering small elastic deformations. It consists in a infinitely long half cylinder body
with radius R = 1, that it is deformable and whose material is linear elastic, with Young’s
modulus £ = 1 and Poisson’s ratio v = 0.3. A uniform pressure P = 0.003 is applied on the top
face of the cylinder while the curved surface contacts against a horizontal rigid plane (see Figure
1(a)). Taking into account the test symmetry and the ideally infinite length of the cylinder, the
problem is modelled as 2D quarter of disc with proper boundary conditions.

Under the hypothesis that the contact area is small compared to the cylinder dimensions,
the Hertz’s analytical solution (see [15, 20]) predicts that the contact region is an infinitely long
band whose width is 2a, being a = /8R2P(1 — v2)/rE. Thus, the normal pressure follows
an elliptical distribution along the width direction r that is p(r) = pgy/1 —r%/a?, where the
maximum pressure, at the central line of the band (r = 0), is pg = 4RP/ma. For the geometrical,
material and load data chosen in this numerical test, the characteristic values of the solution are
a = 0.083378 and pg = 0.045812. Notice that, as required by Hertz’s theory hypotheses, a is
sufficiently small compared to R.

It is important to remark that, despite the fact that Hertz’s theory provides a full description
of the contact area and the normal contact pressure in the region, it does not describe analytically
the deformation of the whole elastic domain. Therefore, for all the test cases hereinafter, the L?
and H' error norms of the displacement obtained numerically are computed taking a mored
refined solution as a reference. For this bidimensional test case, the mesh size of the refined
solution h,.y is such as, for all the discretizations, 4h,.y < h, where h is the size of the mesh
considered. Additionally, as it is shown in Figure 1(a), the mesh is finer in the vicinity of the
potential contact zone. The knot vector values are defined such 80% of the knot spans are located
within 10% of the total length of the knot vector.

In particular, the analysis of this example focuses on the effect of the interpolation order on
the quality of contact stress distribution. Thus, in Figure 1(b) we compare the pressure reference
solution and the obtained Lagrange multipliers evaluated at the control points or obtained by
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(a) Stress magnitude distribution for the undeformed mesh. (b) Analytical and numerical contact pressure.

Figure 1: 2D Hertz contact problem with Ny /Sy method for an applied pressure P = 0.003.

a post-processing which consists in a P1 re-interpolation. The dimensionless contact pressure
p/po is plotted respect to the normalized coordinate r/a. The agreement is very good, also the
solution near the maximum pressure and near the edge of contact region across contact and non
contact zone.

In Figure 2(a), absolute errors in L? and H'-norms for the N5/Sy choice are shown. As
expected, optimal convergence is obtained for the displacement error in the H'-norm: the con-
vergence rate is close to the expected 3/2 value. Nevertheless, the L?-norm of the displacement
error presents suboptimal convergence (close to 2), but according to Aubin-Nitsche’s lemma in
the linear case, the expected convergence rate is 5/2. On the other hand, in Figure 2(b) the L*-
norm of the Lagrange multiplier error is presented, the expected convergence rate is 1. Whereas
a convergence rate close to 0.6 is achieved when the error is computed respect to the Hertz’s an-
alytical solution, and close to 0.8 is achieved when compared with the refined numerical solution.

As a second example, we present the same test case but with significantly higher pressure
applied P = 0.01. Under these load conditions, the contact area is wider (¢ = 0.15223) and
the contact pressure higher (py = 0.083641). It can be considered that the ratio a/R no longer
satisfies the hypotheses of Hertz’s theory.

In the same way as before, Figure 3 shows the stress tensor magnitude and computed contact
pressure. Figure 4(a) shows the displacement absolute error in L? and H'-norms for Ny/S,
method. As expected, optimal convergence is obtained in the H'-norm, (the convergence rate is
close to 1.5) and, according to Aubin-Nische’s lemma in the linear case, optimal convergence is
also observed for the displacement error L2-norm (rate 2.4). On the other hand, in Figure 4(b)
it can be seen that the L?-norm of the error of the Lagrange multiplier evidences a suboptimal
behaviour: the error, that initially decreases, remains constant for smaller values of h. It may due
to the choice of an excessively large normal pressure: the approximated solution converges, but not
to the analytical solution, that is no longer valid. Indeed, when compared to a refined numerical
solution (Figure 4(b)), the computed Lagrange multiplier solution converges optimally. As it was
pointed out above, for these examples the displacement solution error is computed respect to a
mored refined numerical solution, therefore, this effect does not present in displacement results.
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(a) Displacement error. (b) Lagrange multiplier error.

Figure 2: 2D Hertz contact problem with N5/Sy method for an applied pressure P = 0.003.
Absolute displacement errors in L? and H!'-norms and Lagrange multiplier error in L?-norm,
respect to analytical and refined numerical solutions.
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(a) Stress magnitude distribution for the undeformed mesh. (b) Analytical and numerical contact pressure.

Figure 3: 2D Hertz contact problem with Na/Sy method for a higher applied pressure (P = 0.01).

4.2 Three-dimensional Hertz problem

In this section, the three-dimensional frictionless Hertz problem is studied. It consists on a
hemispherical elastic body with radius R that contacts against a horizontal rigid plane as a
consequence of a uniform pressure P applied on the top face (see Figure 5(a)). Hertz’s theory
predicts that the contact region is a circle of radius a = (3R3P(1 — v?)/4E)'/3 and the contact
pressure follows a hemispherical distribution p(r) = pg+/1 — 72/a?, with py = 3R?P/2a?, being
r the distance to the centre of the circle (see[15, 20]). In this case, for the chosen values R = 1,
E =1,v =03 and P = 1074, the contact radius is ¢ = 0.059853 and the maximum pressure
po = 0.041872. As in the two-dimensional case, Hertz’s theory relies on the hypothesis that a is
small compared to R and the deformations are small.

Considering the problem axial symmetry, the test is reproduced using an octant of sphere
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Figure 4: 2D Hertz contact problem with Ny/Sp method for an applied pressure P = 0.01.
Absolute displacement errors in L? and H!'-norms and Lagrange multiplier error in L?-norm,
respect to analytical and refined numerical solutions.

with proper boundary conditions. Figure 5(a) shows the problem setup and the magnitude of the
computed stresses. As in the 2D case, in order to achieve more accurate results in the contact
region, the mesh is refined in the vicinity of the potential contact zone. The knot vectors are
defined such as 75% of the methods are located within 10% of the total length of the knot vector.
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(a) magnitude for the undeformed mesh. (b) Analytical and numerical contact pressure for

h =0.1.

Figure 5: 3D Hertz contact problem with Na/Sp method for an applied pressure P = 1074,

In Figure 5(b), the computed contact pressure evaluated at control points for a mesh with
size h = 0.1 or or obtained by a post-processing which consists in a P1 re-interpolation. On the
other hand, in Figure 6 the contact pressure is shown at control points for mesh sizes h = 0.4
and h = 0.2. As it can be appreciated, good agreement between the analytical and computed
pressure is obtained in all cases.

As in the previous test, the displacement of the deformed elastic body is not fully described
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Figure 6: 3D Hertz contact problem with Ny/Sy method for an applied pressure P = 1074
Contact pressure solution at control points.

by the Hertz’s theory. Therefore, the L? and H' error norms of the displacement are evaluated
by comparing the obtained solution with a finer refined case. Nonetheless, Lagrange multiplier
computed solutions are compared with the analytical contact pressure. In this test case, the size
of the refined mesh is h,.y = 0.1175 (0.0025 in the contact region), and it is such as 2h,.y < h.

In Figure 7(a) the displacement error norms are reported. As it can seen, they present
suboptimal convergence rates both in the L? and H'-norm. Convergence rates are close to 1.26
and 0.5, respectively. The large mesh size of the numerical reference solution h,.y, limited by our
computational resources, seems to be the cause of these suboptimal results. Better behaviour is
observed for the Lagrange multiplier error (Figure 7(b)).
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(a) Displacement error.
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(b) Lagrange multiplier error.

Figure 7: 3D Hertz contact problem with Ny/Sy method for an applied pressure P = 1074
Absolute displacement errors in L? and H'-norms and Lagrange multiplier error in L2-norm,
respect to analytical and refined numerical solutions.

By considering a higher pressure (P = 5-10~%), the radius of the contact zone becomes larger
(a = 0.10235), and the ratio a/R does not satisfies the theory hypotheses. Figure 8 shows the
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stress magnitude and contact pressure at the control points for a given mesh. Similarly, in Figure
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(a) Stress magnitude distribution for the undeformed mesh.  (b) Analytical and numerical contact pressure for
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Figure 8: 3D Hertz contact problem with Na/Sp method for a higher pressure (P =5-107%).

9 the analytical contact pressure is compared with the computed Lagrange multiplier values at
control points for different meshes. Satisfactory results are observed in all cases.
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Figure 9: 3D Hertz contact problem with Na/Sy method for an applied pressure P = 5 - 1074
Contact pressure solution at control points.

As in the previous test, the coarse value of the reference mesh size h,..y seems to be the cause of
the suboptimal convergence of the displacement shown in Figure 10(a). An optimal convergence
is observed for the Lagrange multiplier error in the L2norm (see Figure 10(b)). However, due to
the coarse value of the mesh size, we do not observe the expected threshold of the L? error for
the Lagrange multiplier between the analytical and approximate solutions.

4.3 Two-dimensional Hertz problem with large deformations

Finally, in this section the two-dimensional frictionless Hertz problem is studied considering large
deformations and strains. For that purpose, a Neo-Hookean material constitutive law, with
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Figure 10: 3D Hertz contact problem with Ny/Sy method for an applied pressure P =5 - 1074
Absolute displacement errors in L? and H!'-norms and Lagrange multiplier error in L?-norm,
respect to analytical and refined numerical solutions.

Young’s modulus £ = 1 and Poisson’s ratio v = 0.3, has been used for the deformable body. As
in Section 4.1, the performance of the N /Sy method is analysed and the problem is modelled as an
elastic quarter of disc with proper boundary conditions. The considerations made about the mesh
size in Section 4.1 are also valid for the present case. The radius of the cylinder is R = 1 and the
applied pressure P = 0.1 (ten times higher than the one considered in Section 4.1). In this large
deformation framework the exact solution is unknown: the error of the computed displacement
and Lagrange multiplier is studied taking a refined numerical solution as reference. Figure 11
shows the final deformation of the elastic body and the computed contact pressure. In Figure 12,
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a) Stress magnitude distribution for the deformed mesh. b) Analytical and numerical contact pressure for
g Yy

h=0.1.

Figure 11: 2D large deformation Hertz contact problem with No/Sp method for an applied
pressure P = 0.1.

the displacement and multiplier errors are reported. It can be seen that the obtained displacement
presents optimal convergence both in L? and H'-norms; analogously, optimal convergence is also
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achieved for the computed Lagrange multiplier.
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Figure 12: 2D large deformation Hertz contact problem with No/Sp method for an applied
pressure P = 0.1. Absolute displacement errors in L? and H'-norms and Lagrange multiplier
error in L?-norm.

As a last example, the same large deformation Hertz problem is considered, but modifying
its boundary conditions: instead of pressure, a uniform downward displacement u, = —0.4 is
applied on the top surface of the cylinder. The large deformation of the body and computed con-
tact pressure are presented in Figure 13. As in the previous case (large deformation with applied

0.6, ‘ ‘ ~+approx.

— post-proc.

Cauchy stress Magnitude
7.794e-01

0.27

£0586454
éo 38969 0.1

£0.19485

0 0.2 0.4 0.6 0.8
r

0.000e+00

(a) Stress magnitude distribution for the deformed mesh. (b) Analytical and numerical contact pressure for
h=0.1

Figure 13: 2D large deformation Hertz contact problem with N5/Sp method with a uniform
downward displacement u, = —0.4.

pressure) optimal results are obtained for the computed displacement and Lagrange multiplier.
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Figure 14: 2D large deformation Hertz contact problem with N5/Sp method with a uniform
downward displacement u, = —0.4for an applied pressure P = 0.1. Absolute displacement errors
in L? and H'-norms and Lagrange multiplier error in L?-norm.

Conclusions

In this work, we present an optimal a priori error estimate of unilateral contact problem friction-
less between deformable body and rigid one.

For the numerical point of view, we observe a optimality of this method for both variables,
the displacement and the Lagrange multiplier. In our experiments, we use a NURBS of degree
2 for the primal space and B-Spline of degree 0 for the dual space. Thanks to this choice of
approximation spaces, we observe a stability of the Lagrange multiplier and a well approximation
of the pressure in two-dimensional case and we observe a instability in three-dimensional case.
The instability observed in three-dimensional case may be due to the coarse mesh used. This
NURBS based contact formulation seems to provide too a robust description of large deformation.
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Appendix 1.

In this appendix, we provide the ingredients needed to fully discretise the problem (13) as well as
its large deformation version that we have used in the Section 4. First we introduce the contact
status, an active-set strategy for the discrete problem, and then the fully discrete problem. For
the purpose of this appendix, we take notations suitable to large deformation and denote by g, the
distance between the rigid and the deformable body. In small deformation, it holds g, (u) = u - n,
indeed.

Contact status

Let us first deal with the contact status. The active-set strategy is defined in [18, 17] and is
updated at each iteration. Due to the deformation, parts of the workpiece may come into contact
or conversely may loose contact. This change of contact status changes the loading that is applied
on the boundary of the mesh. This method is used to track the location of contact during the
change in boundary conditions.

Let K be a control point of the B-Spline space (7), let (Hﬁ) x be the local projection defined in
(8) and let P(Ak, (IT%g,) k) be he operator defined component wise by:

o \g =0,
(1) if (IThg) k- > 0, then P(Ag, (Ihgn)x) = O,
(2) if (IRgn) ke < 0, then P(Axe, (I3gn) k) = (Mygn) k.
e M\ <0,
(3) P(Ar, (IR gn) k) = (I3 gn )k -
The optimality conditions are then written as P(Ax, (II%g,)x) = 0. So in the case (1), the
constraints are inactive and in the case (2) and (3), the constraints are active.
Discrete problem

The space V" is spanned by mapped NURBS of type N f (€)owy 1{0 for ¢ belonging to a suitable set
of indices. In order to simplify and reduce our notation, we call A the running index A =0...A4
on this basis and set:

VP = Span{N(z), A=0...A}NV. (31)

Now, we express quantities on the contact interface I'c as follows:

A A A
U|Fc = Z ualNa, 5“‘1“0 = Z ouaN g and T = Z AN,
A=1 A=1 A=1

where Cy, ug, dug and x4 = ¢(X4) are the related reference coordinate, displacement, displace-
ment variation and current coordinate vectors.

By substituting the interpolations, the normal gap becomes:

A A
gn=1>_CaNa({)+ > uaNa(Q)| -n.
A=1

A=1
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In the previous equation, ( are the parametric coordinates of the generic point on I'c whereas
¢ are the parametric coordinates of the corresponding projection point on the rigid body. To
simplify, we denote for the next of the purpose Dg,[du] = dg,. The virtual variation follows as

A
0gn = [Z (5uANA(C)] ‘n.
A=1

In order to formulate the problem in matrix form, the following vectors are introduced:
(5u1 Au1 N 1(C )n
ou = : , Au = : , N = :
duq Aug Na(Qn
With the above notations, the virtual variation and the linearized increments can be written in

matrix form as follow:

dgn = ou’ N, Ag, = NTAuw.
The contact contribution of the virtual work is expressed as follows:

SW.= [ g, dT + / SAgn dr.
To To

The discretised contact contribution can be expressed as follows:
K K
W, = / > Ak Bibgy dT' + / > Ak Brgy dr,
Te g1 e k=1

=Y [ Bcbgn a8+ 6k | Bicgy .
K I'e el

—Z)\K/ By bgn dP+5)\K/ Bk gn dT,
I% I'c r

C

=> (AK(H’;égn)K + 6AK(H§gn)K) K,
K

where KK:/ BK dr.
e
Indeed, we need to resolve an variational inequality. We distinguish the contact zone, the active

part, and the no contact zone, the inactive one, to obtain an equality.
Using active-set strategy on the local gap (Hggn) x and Ak, it holds:

W= 37 (A (1T800,)kc + S (Mg 1) K k.
K,act

At the discrete level we proceed as follows:

e We have Z 5)\K(H§gn)K <0, Yok, i.e. (Hﬁgn)K > 0 a.e. on inactive part.

K inact

e On the active part, it holds Z 6>\K(H§gn)K =0, VoAg, i.e. (Hggn)K =0 a.c..
K,act
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e We impose too, AK thgn k=0,V thgn K, t.e. Ax = 0 a.e. on inactive boundary.
A A

K,inact

For the further developments it is convenient to define the vector of the virtual variations and
linearizations for the Lagrange multiplier:

5)\1 A)\l (Hﬁgn)l,actKl,act Bl (C)
o = s AN = s NA,Q = s B, =
5)\IC A)‘/C (Hl)?gn)lC,actK.A,act BIC(C)

In the matrix form, it holds:
W, = ouT / (Y Bk )N dr+ 07N,
el K.,act
and the residual for Newton-Raphson iterative scheme is obtained as:
=[] = [ e (S Br) ],
2 Nig

The linearization yields:

ASW. = | AMSg, dT + | 6MAg, dT.
T'c T'c

The active-set strategy and the discretised of contact contribution can be expressed as follows:

AW =Y 3 [ AcBiNadua-ndr+ [ \iBikNadus-n dr.
K,act A ¥ e

= ou’ / NBL dTAX + 6T / B,NT dr'Au.
T'c,act T

c,act
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