Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Power-to-methane via co-electrolysis of H2O and CO2: The effects of pressurized operation and internal methanation
 
research article

Power-to-methane via co-electrolysis of H2O and CO2: The effects of pressurized operation and internal methanation

Wang, Ligang  
•
Rao, Megha
•
Diethelm, Stefan  
Show more
September 15, 2019
Applied Energy

This paper presents a model-based investigation to handle the fundamental issues for the design of co-electrolysis based power-to-methane at the levels of both the stack and system: the role of CO2 in co-electrolysis, the benefits of employing pressurized stack operation and the conditions of promoting internal methanation. Results show that the electrochemical reaction of co-electrolysis is dominated by H2O splitting while CO2 is converted via reverse water-gas shift reaction. Increasing CO2 feed fraction mainly enlarges the concentration and cathode-activation overpotentials. Internal methanation in the stack can be effectively promoted by pressurized operation under high reactant utilization with low current density and large stack cooling. For the operation of a single stack, methane fraction of dry gas at the cathode outlet can reach as high as 30 vol.% (at 30 bar and high flowrate of sweep gas), which is, unfortunately, not preferred for enhancing system efficiency due to the penalty from the pressurization of sweep gas. The number drops down to 15 vol.% (at 15 bar) to achieve the highest system efficiency (at 0.27 A/cm(2)). The internal methanation can serve as an effective internal heat source to maintain stack temperature (thus enhancing electrochemistry), particularly at a small current density. This enables the co-electrolysis based power-to-methane to.achieve higher efficiency than the steam-electrolysis based (90% vs 86% on higher heating value, or 83% vs 79% on lower heating value without heat and converter losses).

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S0306261919309493-main.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY-NC-ND

Size

2.37 MB

Format

Adobe PDF

Checksum (MD5)

ed2c9e2361de9efed1679452b85af67a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés