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Synopsis Three transformation matrices (distortion, orientation, and correspondence) define the 

crystallography of displacive phase transformations. The paper explains how to calculate them and 

their variants, and why they should be distinguished. 

Abstract The crystallography of displacive phase transformations can be described with three types 

of matrices: the lattice distortion matrix, the orientation relationship matrix, and the correspondence 

matrix. The paper gives some formula to express them in crystallographic bases, orthonormal bases, 

and reciprocal bases, and it explains how to deduce the matrices of inverse transformation. In the case 

of hard-sphere assumption, a continuous form of distortion matrix can be determined, and its 

derivative is identified to the velocity gradient used in continuum mechanics. The distortion, the 

orientation and the correspondence variants are determined by coset decomposition with intersection 

groups that depend on the point groups of the phases and on the type of transformation matrix. The 

stretch variants required in the phenomenological theory of martensitic transformation should be 

distinguished from the correspondence variants. The orientation variants and the correspondence 

variants are also different; they are defined from the geometric symmetries and algebraic symmetries, 

respectively. The concept of orientation (ir)reversibility during thermal cycling is briefly and partially 

treated by generalizing the orientation variants with n-cosets and graphs. Some simple examples are 

given to show that there is no general relation between the numbers of distortion, orientation and 

correspondence variants, and to illustrate the concept of orientation variants formed by thermal 

cycling.  
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1. Introduction 

1.1. The transformation matrices  

Martensitic phase transformation was first identified in steels more than a century ago. The 

transformation implies collective displacements of atoms (it is displacive); the parent austenite phase 

and the daughter martensite phase are linked by an orientation relationship (OR); and it often 

generates complex and intricate microstructures made of laths, plates or lenticles.  The 

phenomenological theory of martensitic crystallography (PTMC) aims at explaining these features; it 

is based on linear algebra and three important matrices that we simply call here transformation 

matrices: the distortion matrix F, the orientation matrix T, and the correspondence matrix C. The 

matrix F tells how the crystallographic basis of the parent phase is distorted, the matrix T is a 

coordinate transformation matrix from the parent crystallographic basis to the daughter 

crystallographic basis (it encodes the orientation relationship), and the matrix C tells in which 

daughter crystallographic directions the directions of the parent crystallographic basis are 

transformed. These three matrices are used in PTMC to predict the habit planes and some variant 

pairing/grouping characteristics, as detailed in Appendix A1. 

1.2. The variants 

PTMC algorithms use mainly one type of variants, the stretch variants Ui ; the orientation variants Ti 

and the distortion variants Fi = Qi Ui are outputs. Since in Bain’s model of fcc-bcc martensite 

transformation there are thee stretch variants and thee correspondence variants, confusion may exist 

between stretch and correspondence variants. For example the variants Ui are called “correspondence 

variants” by Bhattacharya (2003), whereas they are, strictly speaking, stretch variants. In shape 

memory alloys (SMA) and ferroelectrics there is often a group-subgroup relation noted 𝔾α 𝔾 

between the daughter phase  and the parent phase , with 𝔾α and 𝔾 the point groups of the phases. 

In this specific case, any matrix Uj = R. Ui.R
-1

 where R belongs to 𝔾 but not to 𝔾α is a variant 

different from Ui (Bhattacharya, 2003). The number of stretch variants N is simply the order 𝔾  

divided by the order of 𝔾 i.e. 𝑁 =  
|𝔾|  

|𝔾|
 . The orientation variants are defined slightly differently; 

they are cosets of 𝔾 in 𝔾, but their number is also 
|𝔾|  

|𝔾|
, as shown by Janovec (1972, 1976). Should 

we conclude that when 𝔾α 𝔾, the stretch variants, the correspondence variants, and the orientation 

variants are always identical, or that, at least, their numbers are always equal? 

In the absence of group-subgroup relation, the orientation variants are defined by cosets of ℍγ in 𝔾, 

where ℍγ  𝔾 is called “intersection group”; it is made of the symmetries that are common to both 

the parent and daughter phases (see for example Portier & Gratias, 1982; Dahmen, 1987; Cayron, 

2006). The intersection group was introduced in metallurgy by Cahn & Kalonji (1981). It could be 

believed that the orientation variants form a group, but that is not true in general; actually, they have a 
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groupoid structure. A groupoid can be understood as a generalized group whose structure that takes 

into account the local and global symmetries (see details and references in Cayron, 2006). One can 

also believe that there are as many orientation variants as distortion variants; but this not always true, 

as already illustrated with fcc-hcp transformation by Cayron (2016) and by Gao et al. (2016). Is there 

at least inequality relations between the numbers of orientation variants, stretch variants, distortion 

variants and correspondence variants?  

1.3. The orientation variants formed during thermal cycling 

The reversibility/irreversibility of martensitic alloys depends on many parameters. From a mechanical 

point of view, the compatibility between the austenite matrix and the martensite variants (or between 

the martensite variants themselves) plays a key role deeply treated in the modern versions of PTMC. 

The defects accumulated during thermal cycling are identified to elements of a group called “global 

group”, which combines the symmetries and the lattice invariant shears (LIS). However, for reasons 

explained in Appendix A2, we prefer investigating another facet of reversibility/irreversibility that is 

only linked to the orientations, independently of any mechanical compatibility criterion. We note the 

orientation variants created by a series of n thermal cycles by 
1 
 {

1
}  {

2
}  {

2
}  …  {

n
} 

 {
n
}. Orientation reversibility is obtained when no new orientations of  are created after a finite 

number of cycles, i.e. ∃𝑛 ∈ ℕ, {𝛼𝑛} ⊆ {𝛼𝑘}, 𝑘 ∈ [1, 𝑛 − 1]. If the set of orientation variants {
2
} is 

reduced to a unique element which is the orientation of 
1
, the reversibility is obtained from the first 

cycle. It is often stated that this condition is satisfied when there is a group-subgroup relation, but it is 

very important to keep in mind that this relation means that the symmetries elements of the daughter 

phase should strictly coincide with those of the parent phase, and this condition depends on the OR. A 

transformation between a cubic  phase and tetragonal  phase (with 𝑎𝛼 = 𝑏𝛼 ≠ 𝑐𝛼) with edge/edge 

<100> // <100> OR generates after one cycle the same orientation as the one of the initial parent  

crystal, and thus always comes back to this orientation by thermal cycling. However, a cubic  - 

tetragonal  transformation with and 
𝑐𝛼

𝑎𝛼
 irrational and with <110> // <101> OR generates by 

thermal cycling an infinite number of orientations. Therefore, it is important to mathematically 

specify the type of group-subgroup relation and the type of variants to which it applies.  

1.4. Objectives  

The aim of the paper is to give a coherent mathematical framework for the transformation matrices 

(correspondence, orientation, distortion) and for their variants. The matrices will be defined, and the 

methods to calculate them will be detailed. A continuous form of distortion matrix will be also 

introduced. It will be shown with geometric arguments that its multiplicative derivative is 

proportional to the velocity gradient of continuum mechanics. Continuous distortion offers new 

possible criteria beyond Schmid’s law to explain the formation of martensite under stress. Formulae 
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that give the correspondence, orientation, and distortion matrices of the reverse transformation as 

functions of the matrices of direct transformation will be presented. The orientation variants will be 

determined with the geometric symmetries, and the correspondence variants with the algebraic 

symmetries. The concept of group-subgroup relation will be specified according to these two types of 

symmetries. It will be shown that there are no general equalities or inequalities between the numbers 

of orientation, distortion and correspondence variants. Inequalities exist only for specific cases, such 

as with transformations implying a simple correspondence and an orientation group-subgroup 

relation. The orientation variants of direct and reverse transformations will be used to build the 

orientation graphs formed by thermal cycling and to discuss the conditions of orientation reversibility. 

Many 2D examples will be given to familiarize the reader with the different types of variants. We 

hope that the self-consistency of the paper will help clarifying the concept of transformation variants. 

It may be also useful in the future to continue building the bridge between crystallography and 

mechanics for phase transformations. The notation, described in Appendix B, may appear overloaded, 

but it is designed to respect the head-tail (target-source) composition rule. 

2. Introduction to the transformation matrices 

2.1. Distortion matrices 

During displacive transformations the lattice of a parent crystal () is distorted into the lattice of a 

daughter crystal (). In the case of deformation twinning, the parent and daughter phases are equal but 

the distortion restores the lattice into a new orientation. The distortion is assumed to be linear; it takes 

the form of an active matrix 𝐅


. Any direction u is transformed by the distortion into a new direction 

𝒖′ = 𝐅

𝒖. The distortion matrix can be expressed in the usual crystallographic basis of the parent 

phase 𝓑𝑐

, it is then noted 𝐅𝑐


 and is given by  𝐅𝑐


= [𝓑𝑐


→ 𝓑𝑐

′
] = (𝐚′, 𝐛′, 𝐜′), writing the 

coordinates of the three vectors 𝐚′, 𝐛′, 𝐜′ in column in the basis 𝓑𝑐

. One can also choose an 

orthonormal basis 𝓑⋕ = (𝒙, 𝒚, 𝒛) linked to the crystallographic basis 𝓑𝑐

 by the structure tensor 

𝓢 = [𝓑⋕


→ 𝓑𝑐

] defined in equation (B13); the distortion in this basis is then noted 𝐅⋕


. It is often 

easier to do the calculation in 𝓑⋕


, and then coming back to the crystallographic basis by using 

equation (B6), 𝐅𝑐

= 𝓢−1 𝐅⋕


 𝓢.  

In continuum mechanics, one would say that a material point X follows a trajectory given by the 

positions x = F.X, which implies that dx = F.dX. The distortion matrix is thus 𝐅 =
𝑑𝒙

𝑑𝑿
= (∇𝑿𝒙)t, the 

deformation gradient tensor (Bhattacharya, 2003).  

2.1.1. Stretch matrices  
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One could think that polar decomposition can be directly applied to 𝐅𝑐

 such that 𝐅𝑐


= 𝐑𝑐


 𝐕𝑐


, where 

𝐕𝑐

 is a symmetric matrix in the crystallographic basis 𝓑𝑐


. This is acceptable, but one should then keep 

in mind that then 𝐕𝑐

 is not a stretch as we generally understand it, i.e. extensions or contractions along 

three perpendicular vectors. For example, a diagonal matrix written in a hexagonal basis means 

extension/contraction of the vectors of the basis, and these vectors are not perpendicular. If one wants 

to extract the “usual” stretch matrix from 𝐅𝑐

, it is preferable to use 𝐅⋕


. As the distortion matrix 𝐅⋕


 is 

expressed in the orthonormal basis 𝓑⋕


 it can be decomposed into  

𝐅⋕

= 𝐐⋕


 𝐔⋕


  (1)    

where 𝐐⋕


 is an orthogonal matrix and 𝐔⋕

 is a symmetric matrix given by (𝐔⋕


)
t
 𝐔⋕


= (𝐔⋕


)
2
 =

  (𝐅⋕

)
t
 𝐅⋕

. The matrix 𝐔⋕


 can thus be written in another orthonormal basis as a diagonal matrix made 

of the square roots of its eigenvalues. Thus, 𝐔⋕

 is a stretch matrix, sometimes called “Bain distortion” 

in tribute to the work of Bain (1924) on fcc-bcc transformations. Polar decomposition is an important 

tool in PTMC (Bhadeshia, 1987; Bhattacharya, 2003). Equation (1) can be then written in the 

crystallographic basis 𝓑𝑐

 by 

𝐅𝑐

= (𝓢−1𝐐⋕


𝓢)  (𝓢−1𝐔⋕


 𝓢) = 𝐐𝑐


 𝐔𝑐


  (2)    

Here, 𝐔𝑐

= 𝓢−1𝐔⋕


 𝓢 expresses the same “usual” stretch as 𝐔⋕ 


, but is not anymore necessarily a 

symmetric matrix because 𝓢 is not necessarily an orthogonal matrix. This shows that classical polar 

decomposition in a non-orthonormal basis does not necessarily result in a symmetric matrix.  

The matrix 𝐔𝑐

 can be obtained from 𝐅𝑐


 directly working in 𝓑𝑐


 by generalizing the polar 

decomposition to take into account the metrics; this is done with (𝐅𝑐

)
t
𝓜 𝐅𝑐


 with 𝓜 the metric 

tensor of the  phase. Indeed, by using equation (B16), we get (𝐅𝑐

)
t
𝓜 𝐅𝑐


= (𝐔𝑐


)
t
𝓜 𝐔𝑐


=

𝓢t(𝐔⋕

)
2
 𝓢; thus 

(𝐅𝑐

)
t
𝓜 𝐅𝑐


= 𝓜(𝐔𝑐


)
2
 (3)    

Polar decomposition permits to extract the stretch component of a distortion. The stretch contains the 

same information as the distortion matrix about the lattice strains because both matrices are related by 

a rotation. The change of free energy related to the transformation of a free (not constrained) single 

crystal is the same whether calculated with 𝐔𝑐

 or with 𝐅𝑐


. However, it is important to keep in mind 

that if the daughter product is formed inside a parent environment or as a wave that propagates at 

finite speed through a parent medium (Cayron, 2018), then the accommodation strains or the 

dominant wave vectors that could be calculated with 𝐔𝑐

 are different from those calculated with 𝐅𝑐


, 

and only the later is effective.  
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Two other points worth being mentioned: a) Left polar decomposition is in general different from a 

right polar decomposition because of the non-commutative character of matrix product. b) Polar 

decomposition and diagonalization are two methods that do not necessarily lead to the same result 

because the diagonalization is obtained in a basis that is not necessarily orthonormal.  For example the 

one-step fcc-bcc distortion associated with Pitsch OR can be diagonalized with eigenvalues equal to 1, 

√8

3
≈ 0.943 and 

2

√3
≈ 1.155 (Cayron, 2013), whereas polar decomposition leads to the usual Bain 

stretch with values equal to√
2

3
≈ 0.815, 

2

√3
, 

2

√3
. The product of the eigenvalues is the same in both 

cases because the determinant of the distortion is the same and is equal to the fcc-bcc volume change, 

but the values are lower in the former case.  The difference between the relations 𝐅 =

𝐓−1 𝐖𝐓 obtained by diagonalization with W is a diagonal matrix and T a coordinate transformation 

matrix, and 𝐅 = 𝐐 𝐔  obtained by polar decomposition with Q a rotation and U a symmetric matrix, is 

fundamental and plays a key role in the spectral decomposition theorem.  

2.2. Orientation matrices 

The misorientation between the parent crystal  and one of its variants  is given by the coordinate 

transformation matrix 𝐓𝑐
→

= [𝓑𝑐

→ 𝓑𝑐

] (see section § B2 for the details). It is a passive matrix that 

changes the coordinates of a fixed vector 𝒖 between the parent and daughter bases, 𝒖/γ = 𝐓→ 𝒖/ . 

Sometimes the misorientation is given by the rotation that links the orthonormal bases of the parent 

and daughter crystals 𝐑⋕
→

= [𝓑⋕


→ 𝓑⋕
]. The misorientation and coordinate transformation matrices 

are linked by the relation 𝐑⋕
→

= 𝓢 𝐓𝑐
→

 𝓢−1
. 

All the matrices that encode the same misorientation as 𝐓𝑐
→

 are obtained by multiplying 𝐓𝑐
→

 at the 

right by the matrices 𝒈𝑖
α ∈ 𝔾α  of internal symmetries of the daughter crystal: 

   {𝐓𝑐𝑖
→

} = {𝐓𝑐
→

𝒈𝑖
α , 𝒈𝑖

α  ∈ 𝔾α }     (4)    

The set of equivalent rotations is thus {𝐑⋕
→

} = 𝓢 {𝐓𝑐
→

} 𝓢−1
. It is custom to choose the rotation 

with the lowest angle, called “disorientation”. This choice has practical applications even if it remains 

arbitrary.  

2.3. Correspondence matrices 

The correspondence matrix 𝐂𝑐
α→γ

 gives the coordinates of the images by the distortion of the parent 

basis vectors, i.e. 𝐚′, 𝐛′, 𝐜′ expressed in the daughter basis 𝓑𝑐
. Explicitly, 

𝐂𝑐
α→γ

= (𝐚/𝓑𝑐


′
 , 𝐛/𝓑𝑐


′

, 𝐜/𝓑𝑐


′
 ). The coordinates obey equation (B3) written as (𝐚/𝓑𝑐


′

 , 𝐛/𝓑𝑐


′
, 𝐜/𝓑𝑐


′

 ) =

𝐓𝑐
α→γ

 (𝐚
/𝓑𝑐

γ
′

 , 𝐛
/𝓑𝑐

γ
′

, 𝐜
/𝓑𝑐

γ
′

)  = 𝐓𝑐
α→γ

 𝐅𝑐
γ
(𝐚

/𝓑𝑐
γ


 , 𝐛

/𝓑𝑐
γ


, 𝐜

/𝓑𝑐
γ


) = 𝐓𝑐

α→γ
 𝐅𝑐

γ
. Thus,  

𝐂𝑐
α→γ

= 𝐓𝑐
α→γ

 𝐅𝑐
γ
 (5)    
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As the correspondence is established for the three vectors of the parent basis, it is valid for the 

coordinates of any vector 𝐱: 

 𝐱′/𝓑𝑐
γ = 𝐅𝑐

γ
 𝐱/𝓑𝑐

    𝐱′/𝓑𝑐
 = 𝐂𝑐

α→γ
 𝐱/𝓑𝑐

  (6)    

The correspondence tells into which daughter directions the parent directions are transformed. It 

transforms all the rational vectors into other rational vectors; which is possible only if the matrix 

components are rational numbers, i.e. 𝐂𝑐
α→γ

 ∈  GL(3,ℚ), with  GL(3,ℚ) the general linear group of 

invertible matrices of dimension 3 defined on the field of rational numbers ℚ.  

The correspondence matrix 𝐂𝑐
α→γ

 associated with the distortion 𝐅𝑐
γ
 and the orientation 𝐓𝑐

→
 is the 

same as that associated with the stretch distortion 𝐔𝑐
γ
 (linked to 𝐅𝑐

γ
 by polar decomposition 𝐅𝑐

γ
= 𝐐𝑐


 𝐔𝑐


 

given in equation (2)) and the orientation (𝐐𝑐

)
−1

𝐓𝑐
→

. Indeed, 𝐂𝑐
α→γ

 specifies the correspondence 

between the crystallographic directions (and chemical bonds), independently of any rigid-body 

rotation.   

It is important to realize that there is no necessarily one-to-one relation between stretch and 

correspondence. Let us consider the 2D example of a square  distorted into a square  such with a 

stretch matrix that is diagonal 𝐔 = (
𝑟 0
0 𝑟

) with 𝑟 =
𝑎𝛾

5𝑎𝛼
, as shown in Figure 1. Two ORs are 

compatible with this distortion. The first one shown in Figure 1a is the OR <1,0> // <5,0>, and the 

second one shown in Figure 1b is <1,0> // <4,3>.  The fact that the OR and the correspondence 

cannot be deduced automatically from the distortion comes when some directions or planes (parent or 

daughter) are equivalent by symmetry or by metrics (same length). The set of vectors that are 

“ambiguous” with a vector u is defined by the equivalence class {𝒗 ∈ ℝ3, ‖𝒗‖ = ‖𝒖‖, 𝒗 ∉  𝔾. 𝒖} 

with 𝔾 the point group and ‖𝒖‖ the norm of u defined in equation (B8). These ambiguities can be 

ignored most of the time, but they show that stretch and correspondence are different concepts that 

should be distinguished. 

3. Construction of the transformation matrices with supercells 

The simplest crystallographic transformation that can be imagined implies a one-to-one 

correspondence between the basis vectors 𝐚 → 𝐚𝛼, 𝐛 → 𝐛𝛼, 𝐜 → 𝐜𝛼, which means that 𝐂𝑐
α→γ

=  𝐈. 

Some phase transformations are however more complex, as for fcc-bcc or fcc-hcp transformations. 

Whatever the complexity, the correspondence is always established between vectors of the Bravais 

lattices, i.e. vectors [u,v,w] with u,v,w integers or half-integers. Let us chose three of these vectors 

𝐮 → 𝐮′ = 𝐮α , 𝐯 → 𝐯′ = 𝐯α, 𝐰 → 𝐰′ = 𝐰α that are non-collinear and such that each of them has 

the lowest possible length. We build the supercell 𝓑𝑠𝑢𝑝𝑒𝑟
γ

= (𝐮, 𝐯, 𝐰). Its image by distortion is 

𝓑𝑠𝑢𝑝𝑒𝑟
γ′

= 𝓑𝑠𝑢𝑝𝑒𝑟
 = (𝐮′, 𝐯′, 𝐰′) = (𝐮α, 𝐯α, 𝐰α). The correspondence, distortion and orientation can 

be defined only with this supercell. If the atoms inside the supercell do not follow the same 
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trajectories as those at the corners of the cells, they are said to “shuffle”. At each supercell, one 

introduce the matrices 𝐁𝑠𝑢𝑝𝑒𝑟
γ

= [𝓑𝑐
γ

→ 𝓑𝑠𝑢𝑝𝑒𝑟
γ

] , 𝐁𝑠𝑢𝑝𝑒𝑟
γ′

= [𝓑𝑐
γ

→ 𝓑𝑠𝑢𝑝𝑒𝑟
γ′

] and  𝐁𝑠𝑢𝑝𝑒𝑟
 =

[𝓑𝑐
 → 𝓑𝑠𝑢𝑝𝑒𝑟

 ]. These three matrices are related to the distortion, orientation and correspondence 

matrices, as follows: 

The distortion matrix is expressed in 𝓑𝑠𝑢𝑝𝑒𝑟
γ

 by  𝐅𝑠𝑢𝑝𝑒𝑟
γ

= [𝓑𝑠𝑢𝑝𝑒𝑟
γ

→ 𝓑𝑠𝑢𝑝𝑒𝑟
γ′

] = [𝓑𝑠𝑢𝑝𝑒𝑟
γ

→

𝓑𝑐
γ
][𝓑𝑐

γ
→ 𝓑𝑠𝑢𝑝𝑒𝑟

γ′
] = (𝐁𝑠𝑢𝑝𝑒𝑟

γ
)
−1

𝐁𝑠𝑢𝑝𝑒𝑟
γ′

. Written in the crystallographic basis  𝓑𝑐
γ
 with 𝐅𝑐

γ
=

 𝐁𝑠𝑢𝑝𝑒𝑟
𝛾

𝐅𝑠𝑢𝑝𝑒𝑟
γ

(𝐁𝑠𝑢𝑝𝑒𝑟
𝛾

)
−1

 , it gives 

𝐅𝑐
γ

= 𝐁𝑠𝑢𝑝𝑒𝑟
γ′

 (𝐁𝑠𝑢𝑝𝑒𝑟
γ

)
−1

 (7)    

The orientation matrix is expressed in 𝓑𝑠𝑢𝑝𝑒𝑟
γ

 by  𝐓𝑐
γ→α

= [𝓑𝑐
γ

→ 𝓑𝑐
𝛼] = [𝓑𝑐

γ
→ 𝓑𝑠𝑢𝑝𝑒𝑟

γ′
][𝓑𝑠𝑢𝑝𝑒𝑟

γ′
→

𝓑𝑠𝑢𝑝𝑒𝑟
𝛼 ][𝓑𝑠𝑢𝑝𝑒𝑟

𝛼 → 𝓑𝑐
𝛼] . Since [𝓑𝑠𝑢𝑝𝑒𝑟

γ′
→ 𝓑𝑠𝑢𝑝𝑒𝑟

𝛼 ] = 𝐈, we get 

𝐓𝑐
γ→𝛼

= 𝐁𝑠𝑢𝑝𝑒𝑟
γ′

 (𝐁𝑠𝑢𝑝𝑒𝑟
𝛼 )

−1
 (8)    

The correspondence matrix is expressed in 𝓑𝑠𝑢𝑝𝑒𝑟
  by 𝐂𝑐

α→γ
= [𝓑𝑐

𝛼 → 𝓑𝑐
𝛾′

] = [𝓑𝑐
𝛼 → 𝓑𝑐

𝛾
][𝓑𝑐

𝛾
→

𝓑𝑐
𝛾′

]  , i.e. 𝐂𝑐
α→γ

= 𝐓𝑐
α→γ

 𝐅𝑐
γ
, as found in equation (5). According to the two previous equations,  

𝐂𝑐
α→γ

= 𝐁𝑠𝑢𝑝𝑒𝑟
𝛼  (𝐁𝑠𝑢𝑝𝑒𝑟

𝛾
)
−1

 (9)    

Since the matrices 𝐁𝑠𝑢𝑝𝑒𝑟
𝛾

 and 𝐁𝑠𝑢𝑝𝑒𝑟
𝛼  are built on the crystallographic directions forming the 

supercell, their components are integers or half-integers; the correspondence matrix is thus always 

rational matrix, as already shown the previous section. In the case of a one-to-one correspondence 

between the basis vectors 𝐁𝑠𝑢𝑝𝑒𝑟
γ

= 𝐁𝑠𝑢𝑝𝑒𝑟
α = 𝐈, and as expected 𝐅𝑠𝑢𝑝𝑒𝑟

γ
= 𝐓𝑐

γ→α
 and 𝐂𝑐

α→γ
= 𝐈. 

3.1. Reciprocal matrices 

The distortion, orientation and correspondence matrices are defined for the crystallographic 

directions; i.e. the matrices are expressed in the direct space. The same operations can be determined 

for the crystallographic planes by writing the matrices in the reciprocal space. A plane 𝒉 considered 

as a vector of the reciprocal space has its coordinates written in line, thus 𝒉t written in column. The 

reciprocal distortion matrix (𝐅𝑐

)
∗
is such that (𝒉′)t = (𝐅𝑐


)
∗
𝒉t. Instead, one could have continued 

using 𝒉 written in line, but in that case, the equation would have been 𝒉′ = 𝒉. (𝐅𝑐

)
∗ t

.  

Any direction 𝒖 of the plane 𝒉 is such that the usual dot product 𝒉 (in the reciprocal basis) by 𝒖 (in 

the direct basis) is 𝒉. 𝒖 = 0. After lattice distortion, the image of the plane is 𝒉′ such that 𝒉′. 𝒖′ = 0, 

i.e. 𝒉. (𝐅𝑐

)
∗ t

𝐅𝑐

𝒖 = 0, which is verified for any vector 𝒉 and 𝒖 if and only if  

(𝐅𝑐

)
∗
= (𝐅𝑐


)
−t

  (10)    

The same method could be used to show that  
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(𝐓𝑐
→

)
∗
= (𝐓𝑐

→
)
−t

  and (𝐂𝑐
→

)
∗
= (𝐂𝑐

→
)
−t

   (11)    

3.2. Matrices of reverse transformation 

The orientation matrix of the direct transformation is 𝐓𝑐
→

= [𝓑𝑐

→ 𝓑𝑐

] and that of the reverse 

transformation is 𝐓𝑐
→

= [𝓑𝑐
 → 𝓑𝑐


] . As [𝓑𝑐


→ 𝓑𝑐

][𝓑𝑐
 → 𝓑𝑐


] = I, we get   

𝐓𝑐
→

= (𝐓𝑐
→

)
−1

   (12)    

Note that the index c means the crystallographic basis of the start lattice, i.e. 𝓑𝑐

 for 𝐓𝑐

→
 and 𝓑𝑐

 for 

𝐓𝑐
→

. The correspondence matrix calculated with equation (9) is 𝐂𝑐
α→γ

= 𝐁𝑠𝑢𝑝𝑒𝑟
α  (𝐁𝑠𝑢𝑝𝑒𝑟

γ
)
−1

  and 

that of the reverse transformation is 𝐂𝑐
→

= 𝐁𝑠𝑢𝑝𝑒𝑟
γ

 (𝐁𝑠𝑢𝑝𝑒𝑟
 )

−1
; consequently 

𝐂𝑐
→

= (𝐂𝑐
α→γ

)
−1

 (13)    

As for the orientation matrix, the index c means 𝓑𝑐
 for 𝐂𝑐

→
 and 𝓑𝑐


 for 𝐂𝑐

→
. 

The orientation and correspondence matrices of the reverse transformation are thus the inverse of the 

matrices of the direct transformation. This is not true for the distortion matrix. Indeed, the distortion 

matrix of the direct transformation in equation (5) is 𝐅𝑐
γ

= 𝐓𝑐
γ→α

𝐂𝑐
α→γ

   and that of the reverse 

transformation is 𝐅𝑐
α = 𝐓𝑐

α→γ
𝐂𝑐

γ→α
. They would be the inverse of the each other, 𝐅𝑐

α = (𝐅𝑐

)
−1

, only if 

the product of the orientation matrix by the correspondence matrix were commutative, which is true 

only for specific cases, for example when 𝐂𝑐
α→γ

= 𝐈. In the general case, the inversion relation does 

exist, but it appears when the matrices are written in the same basis. Indeed, the matrix 𝐅𝑐
α is 

expressed in 𝓑𝑐
α, but when written in 𝓑𝑐


 it becomes 𝐅𝑐/

α = 𝐓𝑐
γ→α

𝐅𝑐
α 𝐓𝑐

α→γ
= 𝐂𝑐

γ→α
 𝐓𝑐

α→γ
=

(𝐂𝑐
α→γ

)
−1

(𝐓𝑐
→

)
−1

= (𝐓𝑐
→

𝐂𝑐
α→γ

)
−1

 ; thus 

𝐅𝑐/
α  = (𝐅𝑐


)
−1

 (14)    

The link between the 𝐅𝑐
α and 𝐅𝑐


 matrices expressed in their respective bases is  

𝐅𝑐
α  =  𝐓𝑐

α→γ
(𝐅𝑐


)
−1

 𝐓𝑐
γ→α

 (15)    

4. Continuous transformation matrices 

4.1. Introduction to the angular parameter 

In previous works (Cayron, 2015, 2016, 2017a,b, 2018), we assumed that the atoms in some simple 

metals behave as solid spheres during lattice distortion. This simplification, once associated with the 

knowledge of the parent-daughter orientation relationship, constrains the possible atomic 

displacements and the lattice distortion such that only one angular parameter becomes sufficient for 

their analytical determination. The distortion matrix expressed in 𝓑𝑐

 appears as a function of the 
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distortion angle , 𝐅𝑐
γ(𝜃) = [𝓑𝑐

γ
→ 𝓑𝑐

γ
(𝜃)] with, let say, 𝜃 = 𝜃1 at the starting state, and 𝜃 = 𝜃2 when 

the transformation reaches completion. In the starting state, 𝓑𝑐
γ(𝜃1) = 𝓑𝑐

γ
, the distortion matrix is 

𝐅𝑐
γ(𝜃1) = 𝐈, and in the finishing state it is 𝐅𝑐

γ(𝜃2) = 𝐅𝑐
γ
.  There is no physical meaning for a 

continuous correspondence matrix  𝐂𝑐
γ→α

 or a continuous orientation matrix 𝐓𝑐
γ→

 because these 

matrices take their significance only when the transformation is complete. However, we can assume 

that for any intermediate state p (p for “precursor”) that will become  when the transformation is 

finished, the correspondence matrix is already 𝐂𝑐
γ→αp

= 𝐂𝑐
γ→α

, and thus 𝐓𝑐
γ→αp() =  𝐅𝑐

γ().   

4.2. Continuous distortion matrix of reverse transformation 

Let us consider the reverse transformation  assuming that the direct transformation  is 

already defined by 𝐅𝑐
γ(𝜃). The same angular parameter  can be chosen for the reverse 

transformation, but the start and finish angles should be exchanged, i.e. the distortion matrix in the 

start state becomes 𝐅𝑐
α(𝜃2) = 𝐈, and in the finish state it is 𝐅𝑐

α(𝜃1) = 𝐅𝑐
α. The distortion matrix of any 

intermediate state is 𝐅𝑐
α(𝜃) = [𝓑𝑐

α → 𝓑𝑐
α(𝜃)], with 𝓑𝑐

α = 𝓑𝑐
α(𝜃2). Remember that 𝐅𝑐

(𝜃) and 𝐅𝑐
α(𝜃), 

are expressed in their own basis, 𝓑𝑐

 and 𝓑𝑐

α, respectively. Let us show how they are linked. The 

distortion 𝐅𝑐
(𝜃) can be decomposed into two imaginary steps: (a) a complete transformation  𝐅𝑐


 

leading to the new phase ; then (b) a partial “come-back” step 𝐅𝑐
α(𝜃) in which the reverse 

transformation is stopped at the angle . As the matrices are active, they should be composed from the 

right to the left and be expressed in the same reference basis, here 𝓑𝑐

; which gives  𝐅𝑐

(𝜃) =

𝐅𝑐/𝛾
α (𝜃) 𝐅𝑐


. By writing 𝐅𝑐/𝛾

α (𝜃) in the basis 𝓑𝑐
α with the help of the coordinate transformation matrix 

𝐓𝑐
γ→α

, and by using equation (5), it comes 

𝐅𝑐
(𝜃) = 𝐓𝑐

γ→α
𝐅𝑐

α(𝜃) 𝐂𝑐
α→γ

 (16)    

One can check that 𝐅𝑐
(𝜃2) = 𝐅𝑐


 and 𝐅𝑐

α(𝜃1) = 𝐅𝑐
α . This approach was used by Cayron (2016) to 

calculate the bcc-fcc continuous distortion matrix from the fcc-bcc one.  

4.3. Derivative of continuous distortion matrices 

4.3.1. Geometric introduction to multiplicative derivative 

Our theoretical work on the crystallography of martensitic transformation for the last years is driven 

by our will to understand the continuous features observed in the pole figures of martensite in steels 

(see § A3). Different models of fcc-bcc transformation were proposed; the continuous features are 

qualitatively explained, but quantitative simulations based on rigorous mathematics are still missing. 

The main obstacle is the way to extract the “rotational” part of a distortion matrix. We have seen in § 

2.1.1 that polar decomposition gives different results depending on choice of the decomposition (left 

or right). One way to tackle the problem is to work with infinitesimal distortions.  For this aim we 
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introduce DF, the infinitesimal distortion matrix F, locally defined in 𝓑(𝜃) by 𝐷𝐅(𝜃)𝑙𝑜𝑐 =

[𝓑(𝜃)𝓑(𝜃 + 𝑑𝜃)], as shown in Figure 2. This element can be decomposed into two imaginary 

steps [𝓑(𝜃) 𝓑(𝜃𝑠)] [𝓑(𝜃𝑠) 𝓑(𝜃 + 𝑑𝜃)] with 𝜃𝑠the angular parameter at the start state; thus 

𝐷𝐅(𝜃)𝑙𝑜𝑐 = 𝐅(𝜃)−1 𝐅(𝜃 + 𝑑𝜃). (17)    

 If the basis of the starting state 𝓑(𝜃𝑠) is used as an absolute basis, 

𝐷𝐅(𝜃) = [𝓑(𝜃𝑠) 𝓑(𝜃)] 𝐷𝐅(𝜃)𝑙𝑜𝑐  [𝓑(𝜃) 𝓑(𝜃𝑠)] =  𝐅(𝜃 + 𝑑𝜃) 𝐅(𝜃)−1 ; which we simply write 

𝐷𝐅(𝜃) =   𝐅(𝜃 + 𝑑𝜃) 𝐅(𝜃)−1  (18)    

One can also understand equation (18) in its active meaning, by writing that the images at  and  + 

d of a fixed vector 𝒖0 are 𝐮(𝜃) = 𝐅(𝜃)𝒖0 and 𝐮(𝜃 + 𝑑𝜃) = 𝐅(𝜃 + 𝑑𝜃) 𝒖0, thus 𝐮(𝜃 + 𝑑𝜃) =

𝐅(𝜃 + 𝑑𝜃) 𝐅(𝜃)−1𝐮(𝜃) = 𝐷𝐅(𝜃)𝐮(𝜃). If F is a one-dimensional function f of 𝜃, this infinitesimal 

form is 𝐷𝑓 =
𝑓(𝜃+𝑑𝜃)

𝑓(𝜃)
. Note that DF is different from 𝑑𝐅(𝜃) = 𝐅(𝜃 + 𝑑𝜃) − 𝐅(𝜃), which is the usual 

infinitesimal form of each of the nine components of 𝐅(𝜃). In other words, DF and dF are 

respectively given by the ratio and difference of two infinitesimally close terms; they are close to 1 

and 0, respectively. DF as a “multiplicative” infinitesimal and dF is an “additive” infinitesimal; they 

are linked together by  

𝐷𝐅 = 𝐈 +  𝑑𝐅 𝐅−1 (19)    

The integral of the additive infinitesimal and the integrals of the local and global multiplicative 

infinitesimals are also linked together by  

𝐅(𝜃) = ∫ 𝑑𝐅 
𝜃

= ∏𝐷𝐅𝑙𝑜𝑐

𝜃 

= ∏𝐷𝐅

𝜃 

 
(20)    

where ∫ is the usual continuous integration symbol and ∏ is the continuous multiplicative integration 

symbol, with 𝜃 and 𝜃  meaning that the product should be made from the left to the right (passive 

way) and from the right to the left (active meaning), respectively.  Equation (19) also permits to 

define the multiplicative derivative of F by 

𝐷𝐅

𝐷𝜃
=

𝐷𝐅 − 𝐈

𝑑𝜃
=

𝑑𝐅

𝑑𝜃
𝐅−1   

(21)    

The multiplicative derivation and integration are natural for matrices because they take into 

consideration the non-commutativity of the matrix product. Their use is unfortunately not widespread 

in physics, despite their early introduction by Volterra (1887) for sets of differential equations. The 

multiplicative derivation and integration, and many related formula, are detailed in a recent book 

(Slavik, 2007). 

Note: One could believe that, as 𝐅(𝜃) and 𝐅(𝜃)−1 commute, then 𝐅(𝜃 + 𝑑𝜃) and 𝐅(𝜃)−1 also 

commute when 𝑑θ 0; which would allow us to use equation (18) to write an equation that would 

link the two types of infinitesimal: 𝑙𝑛 (𝐷𝐅) = 𝑑(𝑙𝑛𝐅). However, 𝐅(𝜃 + 𝑑𝜃) and 𝐅(𝜃)−1 do not 
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commute in general. If it were the case, equation (21) would be written from two products 
𝑑𝐅

𝑑𝜃
𝐅−1  and 

𝐅−1 𝑑𝐅

𝑑𝜃
 that should be equal, which is not true, as the reader can check with by the simple example 

𝐅(𝜃) =  (
1 𝐶𝑜𝑠(𝜃)
0 𝑆𝑖𝑛(𝜃)

). Deep and careful reading of mathematical literature would be required to use 

properly the logarithm and exponential functions of matrices of type 𝐅(𝜃) in order to link the 

multiplicative and additive derivatives. 

4.3.2. Possible applications of the continuous distortion matrices 

One can recognise in equation (21) the velocity gradient 𝐋 = 𝐅̇ 𝐅−1defined in continuum mechanics 

in which 𝐅̇ is the usual derivative of 𝐅 on time. More precisely,   

𝐋(𝜃) = 𝜃̇  
𝐷𝐅

𝐷θ
 

(22)    

Therefore, as in continuum mechanics, the rotational part of a continuous distortion matrix 𝐅(𝜃) can 

be defined at each value  by 𝑆𝑝𝑖𝑛𝐅() =
𝐋()−𝐋()𝑡

2
. We are currently working at introducing 𝑆𝑝𝑖𝑛𝐅 

to explain the continuities observed in the pole figures of martensite.   

The multiplicative derivative of the distortion matrix can be also used to propose crystallographic 

criteria that aim at predicting mechanical conditions in which the transformation can be triggered. It is 

usual in mechanics to assume that deformation twinning is a simple shear mechanism, and that 

twinning occurs when the crystallographic shear plane and direction coincide with the applied shear 

stress (Schmid’s law). However, many experimental studies report some deformation twinning modes 

in magnesium with abnormal Schmid factors (Beyerlein et al., 2010), or martensite variant 

reorientations in SMAs that are not in agreement with simple shears (Alkan, Wu & Sehitoglu, 2017; 

Bucsek et al., 2018). We think that the inadequacy of Schmid’s law for phase transformations comes 

from the fact that a continuous simple strain path is not compatible with realistic atomic interactions. 

Due to atomic steric effects, a simple shear (stress) does not induce a simple strain (deformation) 

(Cayron, 2018). In order to take into account this effect, we proposed that twins or martensite appear 

for positive mechanical interaction work W (Cayron, 2017a). The interaction work is given by the 

Frobenius inner product W =  𝛔𝑖𝑗𝛆𝑖𝑗, i.e. by the addition of the term-by-term products along the 

indices i,j of 𝛔 the external applied stress tensor, and 𝛆 the deformation tensor calculated at the 

intermediate state int where the volume change is maximum during lattice distortion 𝛆 = 𝐅(𝜃𝑖𝑛𝑡) −

𝐅(𝜃𝑠) =  𝐅(𝜃𝑖𝑛𝑡) − 𝐈. Another criterion based on the derivative of the distortion matrix could be also 

imagined, for example by introducing the angular power Ẇ = 𝛔𝑖𝑗  
𝛆̇𝑖𝑗 

at the starting state, with 

𝛆̇ =
𝐷𝐅

𝐷𝜃 |𝜃=𝜃𝑠

 =  
𝑑𝐅

𝑑𝜃 |𝜃=𝜃𝑠

.  
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Let us illustrate these different possible criteria with the simple 2D case of t deformation 

twinning of a Pmm phase shown in Figure 3a. If the atoms are considered as hard-spheres, the atomic 

displacements along a simple strain trajectory are impossible due to the steric effect. If the crystal is 

free, it is reasonable to assume that the atoms actually “roll” on each other, and that the lattice 

continuously switches from the starting state at 𝑠 =
𝜋

3
 to the finishing state at 𝑓 =

2𝜋

3
. It can be 

noted that the distortion implies an intermediate transitory cubic state at 𝑖𝑛𝑡 =
𝜋

2
 with a volume 

change allowed by the absence of external constraints. The distortion matrix can be calculated in the 

orthonormal basis of this intermediate cubic phase 𝓑⋕  . The supercell marked by the vectors 

𝓑𝑠𝑢𝑝𝑒𝑟
α () = (𝐮α , 𝐯α ) is expressed by the matrix 𝐁𝑠𝑢𝑝𝑒𝑟

α () = [𝓑⋕ → 𝓑𝑠𝑢𝑝𝑒𝑟
α ()] = (

1 𝐶𝑜𝑠(𝛽)
0 𝑆𝑖𝑛(𝛽)

) . 

Applying equation (7) in 𝓑⋕  leads to 𝐅⋕
α() = 𝐁𝑠𝑢𝑝𝑒𝑟

α () (𝐁𝑠𝑢𝑝𝑒𝑟
α (𝑠))

−1
 = (

1
−1+2𝐶𝑜𝑠(𝛽)

√3

0
2𝑆𝑖𝑛(𝛽)

√3

). The 

volume change during twinning, given by the determinant of the distortion, is shown in Figure 3b. 

The displacements of the atom located in 
1

2
𝐯α  following a simple strain, a distortion at the maximum 

volume change, or the distortion derivative, are given by the vectors 𝐝⋕
s = (𝐅⋕

α (𝑓) − 𝐈 ) .
1

2
𝐯⋕

α, 

𝐝⋕
m = (𝐅⋕

𝛼(𝑖𝑛𝑡) − 𝐈 ).
1

2
𝐯⋕

α, or 𝐝̇⋕ = (
𝑑𝐅⋕()

𝑑𝛽  |𝛽=𝛽
𝑠

 ) .
1

2
𝐯⋕

α , respectively. Since 

𝐯⋕
α = [𝐶𝑜𝑠(𝑠), 𝑆𝑖𝑛(𝑠)]

t = [
1

2
,
√3

2
]
t

, we get 𝐝⋕
s = [−

1

2
, 0]

t
 , 𝐝⋕

m = [−
1

4
,
1

2
−

√3

4
]
t

 , and 𝐝̇⋕ =

[−
√3

4
,
1

4
]t. The three types of displacements are represented in Figure 3c. The displacement 𝐝̇ 

calculated with the derivative of the distortion matrix is perpendicular to 
1

2
𝐯α , as expected for a 

displacement that is compatible with the hard-sphere assumption. The angular power criterion can be 

understood as a triggering criterion that only takes into account the steric effect of the atoms at the 

first instants of the distortion process. Baur et al. (2017b) shows that this criterion could explain 

variant selection of the martensite formed at the surface of Fe-Ni alloys during electropolishing. More 

experimental works on perfectly oriented single crystals are required to compare the predictions based 

on simple shear (and Schmid’s law) with those based on maximum volume change or on the 

derivative of the angular distortion.  

It was noticed in Figure 3 that it is impossible to continuously transform the crystal  into its twin t 

without passing by a transient cubic state. One can thus wonder whether stress-induced reorientation 

of variants in SMAs can really be obtained by a continuous simple strain of type P21 (see § A1), or if 

the steric effect impedes this simple strain and necessarily implies a high symmetry transient state. In 

the case of NiTi, it would mean that stress-induced reorientation B19’ (variant 2)  B19’ (variant 1) 

would be actually a double-step mechanism B19’ (variant 2)  B2 (parent) B19’ (variant 1). Such 
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an idea could have implication to explain the tension/compression asymmetry in SMA (Liu et al., 

1998); this asymmetry is indeed difficult to understand with Schmid’s law because a simple strain that 

would induce B19’ (variant 2)  B19’ (variant 1) reorientation is the reverse of the simple strain of 

B19’ (variant 1)  B19’ (variant 2) reorientation. This is not the case with a criterion based on 

angular distortion. However, here again, more works are required to test this speculative hypothesis. 

5. Variants 

5.1. Orientation variants 

The orientation variants only depend on the orientation relationship. They can be mathematically 

defined from the subgroup ℍT
γ
 of the symmetries that are common to the parent and daughter crystals  

ℍT
γ

=  𝔾𝛾   ∩   𝐓𝑐
γ→α𝔾α (𝐓𝑐

γ→α
)
−1

 (23)    

with 𝐓𝑐
γ→α

the orientation matrix, and 𝔾γ and 𝔾α the point groups of parent and daughter phases. The 

matrix 𝐓𝑐
𝛾→𝛼

 is used to express in the parent basis the geometric symmetry elements of the daughter 

phase. Geometrically, the intersection group ℍT
γ

 is made of the parent and daughter symmetry elements that 

are in coincidence. It will be shown in § 5.3 that another type of intersection group based on the 

correspondence matrix and algebraic symmetries can be also built.  

The orientation variants are defined by the cosets 𝛼𝑖 = 𝑔𝑖
γ
ℍT

γ
 and their orientations are 𝐓

γ→α𝑖  =

𝑔𝑖
γ
𝐓

γ→α
 with 𝑔𝑖

γ
∈ 𝛼𝑖 (matrices of the coset 𝛼𝑖), as detailed in (Cayron, 2006). All the matrices that 

belong to ℍ𝑇
γ
 point to the same orientation variant 𝛼1, all the matrices that belong to 𝑔2

γ
ℍ𝑇

γ
 with 

𝑔2
γ

∉ ℍ𝑇
γ

 point to the orientation variant 𝛼2, etc. The number of orientation variants is thus 

𝑁T
α = 

|𝔾γ|

|ℍT
γ
|
  

(24)    

Let us consider formula (24) for the reverse transformation , 𝑁T
γ

= 
|𝔾α|

|ℍT
|

. As ℍT

 and ℍT

γ
  are 

linked by the isomorphism ℍT
γ

= 𝐓𝑐
γ→αℍT

  (𝐓𝑐
γ→α

)
−1

 , their orders are equal: |ℍT
| = |ℍT

γ
| ; which is 

expected because both sides of the equation give the number of common geometric symmetries. The 

number of variants of the direct transformation and the number of variants of the reverse 

transformation are linked by the relation (Cayron, 2006): 

𝑁T
α|𝔾α| =  𝑁T

γ|𝔾γ|  (25)    

When there is an orientation group-subgroup relation between the daughter and parent phases 

𝐓𝑐
γ→α

𝔾α (𝐓𝑐
γ→α

)
−1

 ≤ 𝔾γ, thus ℍT
γ

=   𝐓𝑐
γ→α𝔾α (𝐓𝑐

γ→α
)
−1

≡ 𝔾α
, and 𝑁T

α = 
|𝔾γ|

|𝔾α|
. The number of  

orientations created by the reverse transformation of the  variants is 𝑁T
γ

= 
|𝔾α|

|ℍT
α|

= 1; thus, there is no 

new orientations created by cycles of transformation, the parent  crystal always come back to its  

initial orientation.  
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5.2. The different types of distortion variants 

There are two important kinds of distortion variants, one based on how the symmetries act on the 

distortion, and the other one on how the distortion acts on the symmetries. The former are simply 

called here distortion variants, and the latter distorted-shape variants. The stretch variants are 

derivative of distortion variants. 

5.2.1. Distortion variants 

The distortion variants can be defined only when the mechanism of transformation implies a lattice 

distortion, which is clearly the case for displacive transformation and for diffusion-limited displacive 

transformation (bainite, shape memory alloys). They are not relevant for usual precipitation, for which 

the variants are dictated only by the orientation relationship matrix (§ 5.1). The distortion variants can 

be introduced by considering all the distinct distortion matrices that can be calculated from the 

symmetries of the parent phase. In each equivalent basis 𝓑𝑐𝑖


= 𝑔𝑖
γ
 𝓑𝑐


 of the parent crystal, the 

distortion matrices are locally written as 𝐅𝑐
γ
 . Once expressed in the reference basis 𝓑𝑐


, they 

become 𝑔𝑖
γ
 𝐅𝑐

γ
(𝑔𝑖

γ
)
−1

. The set of all possible distortion matrices is thus  𝕆γ
 = {𝑔𝑖

γ
 𝐅𝑐

γ
(𝑔𝑖

γ
)
−1

, 𝑔𝑖
γ

∈

𝔾γ} . Algebraically, the group 𝔾γ acts by conjugation on 𝐅𝑐
γ
, and 𝕆γ is the orbit of the conjugacy 

action of 𝔾γ on 𝐅𝑐
γ
. The stabilizer of  𝐅𝑐

γ
 is a subgroup 𝔾γ constituted by the matrices  𝑔𝑖

γ
 that leave 

 𝐅𝑐
γ
 invariant by the conjugacy action; it is  

ℍF
γ

= { 𝑔𝑖
γ

∈ 𝔾γ ,   𝑔𝑖
γ
𝐅𝑐

γ
(𝑔𝑖

γ
)
−1

=  𝐅𝑐
γ
} (26)    

The number of distinct conjugated matrices, i.e. the number of distortion variants, is the number of 

elements in the orbit 𝕆γ; it is given by the orbit-stabilizer theorem: 

𝑁F
α = |𝕆γ| =  

|𝔾γ|

|ℍF
γ
|
 

(27)    

The other way to figure out the distortion variants consists in changing equation (26) as  

ℍF
γ

= { 𝑔𝑖
γ

∈ 𝔾γ ,   ( 𝐅𝑐
γ
)
−1

𝑔𝑖
γ
𝐅𝑐

γ
= 𝑔𝑖

γ
} (28)    

This is the subgroup of symmetries elements left invariant by the distortion 𝐅𝑐
γ
. The number of 

distortion variants is then deduced directly from Lagrange; it is formula (27).  

Now, if we consider the reverse transformation, 𝑁F
γ

= 
|𝔾α|

|ℍF
γ
|
. The stabilizer is ℍF

 = { 𝑔𝑖
 ∈

𝔾 ,   𝑔𝑖
𝐅𝑐

(𝑔𝑖
)−1 =  𝐅𝑐

}. By using equation (14) written as (𝐅𝑐

)
−1

= 𝐓𝑐
γ→α

𝐅𝑐
α (𝐓𝑐

γ→α
)
−1

, one can 

check that ℍF
γ
= 𝐓𝑐

γ→α ℍF
  (𝐓𝑐

γ→α
)
−1

. This establishes an isomorphism between the two subgroups, 

thus |ℍF
 | = |ℍF

γ
| ; which is expected because both sides of the equation give the number of 

symmetries invariant by the distortion. Consequently, formula (25) obtained for the orientation 

variants, also holds for the distortion variants, i.e. 
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𝑁F
α |𝔾α| =  𝑁F

γ|𝔾γ|  (29)    

5.2.2. Distorted-shape variants 

Another type of distortion variant now based on the crystal shape and its symmetries can be imagined.  

A symmetry of the parent crystal expressed by 𝑔𝑖
γ

∈ 𝔾γ in the basis 𝓑𝑐
γ
 continues to be a symmetry 

after distortion if it is expressed in the basis 𝓑𝑐
γ′

 by a matrix 𝑔𝑗
γ

∈  𝔾γ, i.e. 

 g𝑖
γ

= [𝓑𝑐
γ

→ 𝓑𝑐
γ′

] 𝑔𝑗
γ
[𝓑𝑐

γ′
→ 𝓑𝑐

γ
]  =  𝐅𝑐

γ
 g𝑗

γ
 (𝐅𝑐

γ
)
−1

. These symmetries are thus globally preserved by 

the distortion; they belong to the subgroup: 

ℍD
γ

=  𝔾γ   ∩   𝐅𝑐
γ 𝔾γ (𝐅𝑐

γ
)
−1

 (30)    

The distorted-shape variants are the cosets 𝑑𝑖 = 𝑔𝑖
γ
ℍD

γ
 , and the associated distortion matrices are 

 𝐅𝑐

γ→α𝑖 = 𝑔𝑖
γ
 𝐅𝑐

γ
(𝑔𝑖

γ
)
−1

 with 𝑔𝑖
γ

∈ 𝑑𝑖. The number of variants is  

𝑁D
α = 

|𝔾γ|

|ℍD
γ
|
 

(31)    

If we consider the reverse transformation, the group of symmetries left invariant is now ℍD
 =

𝔾   ∩   𝐅𝑐
 𝔾 (𝐅𝑐


)
−1

 and the number of distorted-shape variants is 𝑁D
γ

= 
|𝔾α|

|ℍD
 |

.  

In a previous paper (Cayron, 2016), we confused the “distorted-shape” variants with the “distortion” 

variants. However, equations (26) and (30) are not exactly the same; thus, apparently, the two types of 

variants should be distinguished. Mathematically, in the general case, ℍF
γ
≤ ℍD

γ
 . Indeed, 𝑔𝑖

γ
 belongs 

to ℍD
γ

 if it exists a matrix 𝑔𝑗
γ

∈ 𝔾𝛾 such that  𝐅𝑐
γ
  𝑔𝑖

γ
 (𝐅𝑐

γ
)
−1

= 𝑔𝑗
γ
, and 𝑔𝑖

γ
 belongs to ℍF

γ
 for the same 

reason, but with the additional condition that  𝑔𝑗
γ

= 𝑔𝑖
γ
. This implies that the number of distorted-

shape variants is lower than, or equal to, the number of distortion variants.  

Physically, as the matrix 𝐅𝑐
γ
 is close to identity, it is difficult to imagine cases in which the symmetry 

matrix 𝑔𝑖
γ
 would be changed into a different symmetry matrix 𝑔𝑗

γ
.  An example of such odd 

distortions will be given in § 7.2; the finish matrix 𝐅(𝜃𝑓) that exchanges some symmetry elements has 

a negative determinant, which means that there exists a crossing a point (a certain value of angle 𝜃) 

for which 𝐷𝑒𝑡(𝐅(𝜃)) = 0. As the determinant gives the ratio of volume change during the 

transformation, the lattice should “disappear”. Such continuous distortions are “physically” unrealistic 

and will not be considered anymore. We assume that for any structural displacive transformation, 

ℍF
γ
= ℍD

γ
, 𝑁F

α = 𝑁D
α, there is no distinction between the distortion variants and the distorted-shape 

variants. 

5.2.3. Stretch variants 
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The stretch variants are calculated similarly as the distortion variants, but by replacing the distortion 

matrix 𝐅𝑐
γ
 in equation (26) by the stretch matrix 𝐔𝑐

γ
 defined by equation (2). The intersection group is 

ℍU
γ

= { 𝑔𝑖
γ

∈ 𝔾γ ,   𝑔𝑖
γ
 𝐔𝑐

𝛾
 (𝑔𝑖

γ
)
−1

=  𝐔𝑐
γ
} (32)    

Similarly as in §5.2.1, ℍU
γ

≤ 𝔾γ is the stabilizer of  𝐔𝑐
γ
 in 𝔾γ. The number of variants is  

𝑁U
α = 

|𝔾γ|

|ℍU
γ
|
 

(33)    

By considering equations (26) and (32), we show that ℍF
γ

≤ ℍU
γ

. The demonstration is easier by 

writing all the matrices in the orthonormal basis 𝓑⋕

, i.e. by working with the isomorphic subgroups 

ℍF⋕
γ

= { 𝑔𝑖⋕
γ

∈ 𝔾⋕
γ
 ,   𝑔𝑖⋕

γ
 𝐅⋕

γ
 (𝑔𝑖⋕

γ
)
−1

=  𝐅⋕
γ
} = 𝓢 ℍF

𝛾
 𝓢−1

, and ℍU⋕
γ

= 𝓢 ℍU
γ
 𝓢

 −1
.  

If 𝑔𝑖⋕
γ

∈ ℍ𝐹⋕
γ

,   𝑔𝑖⋕
γ

 𝐅⋕
γ
 (𝑔𝑖⋕

γ
)
−1

=  𝐅⋕
γ
. By using  (𝑔𝑖⋕

γ
)
−1

= (𝑔𝑖⋕
γ

)
t
  , it comes that 

𝑔𝑖⋕
γ

  (𝐅⋕
γ
)
t
 𝐅⋕

γ
 (𝑔𝑖⋕

𝛾
)
−1

=  (𝐅⋕
γ
)
t
 𝐅⋕

γ
 , thus 𝑔𝑖⋕

γ
 (𝐔⋕

γ
)
2
 (𝑔𝑖⋕

γ
)
−1

=  (𝐔⋕
γ
)
2
. As the matrix 𝐔⋕

γ
 is 

symmetric, there exists an orthonormal basis 𝓑∆

 in which  𝐔⋕

γ
=  𝐑−1 𝐔∆

γ
 𝐑 with 𝐔∆

𝛾
 is diagonal and 

𝐑 = [𝓑∆


→ 𝓑⋕

] is a rotation. It comes that 𝑔𝑖∆

γ
 (𝐔∆

γ
)
2
 (𝑔𝑖∆

γ
)
−1

= (𝐔∆
γ
)
2
, which imposes that 

𝑔𝑖∆
γ

 𝐔∆
γ
 (𝑔𝑖∆

γ
)
−1

= 𝐔∆
γ
 because 𝐔∆

γ
 a diagonal matrix made of positive real numbers (in the general 

case A  B does not necessarily imply that A
2
  B

2
). Consequently, 𝑔⋕

γ
 𝐔⋕

γ
 (𝑔⋕

γ
)
−1

= 𝐔⋕
γ
, i.e. 𝑔⋕

γ
∈

ℍU⋕
γ

.This proves that ℍF⋕
γ

≤ ℍU⋕
γ

 , thus ℍF
γ

≤ ℍU
γ

, which implies that the numbers of distortion and 

stretch variants obey the inequality 𝑁U
α   𝑁F

α. An example will be given in § 7.3. 

5.3. Correspondence variants 

The correspondence variants are mathematically defined with the subgroup ℍC
𝛾
 of the parent 

symmetries that are in correspondence with daughter symmetries, even if the symmetry elements do 

not coincide. More precisely 

ℍC
γ
=  𝐂𝑐

γ→α𝔾𝛼 (𝐂𝑐
γ→α

)
−1

  (34)    

with 𝐂𝑐
𝛾→𝛼

 the correspondence matrix, and 𝔾𝛾 and 𝔾𝛼 the point groups of parent and daughter phases.  

As for the orientation variants, the correspondence variants are defined by the cosets 𝑐𝑖
γ

= 𝑔𝑖
γ
ℍC

γ
 and 

their correspondence matrices are 𝐂𝑐
γ→α𝑖  = 𝑔𝑖

γ
𝐂𝑐

γ→α
 with 𝑔𝑖

γ
∈ 𝑐𝑖

γ
 (matrices in the coset 𝑐𝑖

γ
).  All the 

matrices that belong to ℍC
𝛾
  point to the same correspondence variant 𝑐1

γ
, all the matrices that belong 

to 𝑔2
γ
ℍC

γ
, with 𝑔2

γ
∉ 𝑐1

γ
 ,  point to the same correspondence variant 𝑐2

𝛾
, etc. The number of 

correspondence variants is  

𝑁C
α = 

|𝔾γ|

|ℍC
γ
|
  

(35)    
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Now, if we consider the same formula for the reverse transformation, we get 𝑁C
γ

= 
|𝔾α|

|ℍC
|

. As ℍC
α
 and 

ℍC
γ
 are linked by the isomorphism ℍC

γ
= 𝐂𝑐

γ→α ℍC
  (𝐂𝑐

γ→α
)
−1

, their orders are equal, |ℍC
| = |ℍC

γ
|; 

which is expected because both sides of the equation give the number of symmetries in 

correspondence between the two phases. It then comes immediately that the number of variants of the 

direct transformation and those of the reverse transformation are linked by the relation: 

𝑁C
α|𝔾α| =  𝑁C

γ|𝔾γ|  (36)    

When there is an correspondence group-subgroup relation between the daughter and parent phases 

  𝐂𝑐
γ→α

𝔾α (𝐂𝑐
γ→α

)
−1

 ⊂ 𝔾𝛾, thus ℍC
γ
= 𝐂𝑐

γ→α𝔾𝛼 (𝐂𝑐
γ→α

)
−1

≡ 𝔾𝛼
, and 𝑁C

α = 
|𝔾γ|

|𝔾α|
. The number of 

parent orientations created by the reverse transformation of martensite variants is 𝑁C
γ

= 
|𝔾α|

|ℍT
α|

= 1, i.e. 

there is no new correspondence created by cycles of transformation.  

The important difference between the orientation group-subgroup relation and the correspondence 

group-subgroup relation results from the nature of the symmetries that are considered, as it will be 

detailed in § 5.4.3.  

5.4. The differences between the types of variants 

5.4.1. No link systematic between the correspondence and stretch variants 

For fcc-bcc transformation in steels, the OR between martensite and austenite that is usually observed 

is KS. The number of common symmetry elements is only 2 (Identity and Inversion), which implies 

by equation (24) that the number of orientation variants is NT = 48/2 = 24. As Identity and Inversion 

are also the unique symmetries preserved by the lattice distortion, the number of distortion variants is 

also NF = ND = 24. The stretch distortion U follows Bain’s model; it consists in a contraction along a 

<001> direction and dilatations along the two <110> directions normal to the contraction axis. The 

choice of the contraction axis determines the stretch variant; thus NU = 3. The number of 

correspondence variants NC is given by equations (34) and (35) with 𝔾𝛾 and 𝔾 the m3̅m cubic point 

group made of 48 symmetry matrices and 𝐂𝑐
γ→α

= (
1/2 −1/2 0
1/2 1/2 0
0 0 1

); it is NC = 3. In this case, NU = 

3 and NC = 3,cbut it is important to keep in mind that the equality NC = NU is fortuitous. We have 

already shown in § 2.3 that there is no general one-one relation between the correspondence matrix 

and the stretch matrix; so there is no systematic rule that would allow stating that NC = NU in the 

general case. Actually counterexamples will be presented in § 7.4 (NU = 2 and NC = 4). One may think 

that at least NC  NT, but this is again not true, as it will be shown in § 7.7.2 (NC = 4 and NT = 2). 

5.4.2. No systematic link between the distortion and orientation variants 
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In the discussion made by Cayron (2016) page 434, we showed in the case of a fcc-hcp transformation 

with Shoji-Nishiyama OR that there are 12 distortion variants and 4 orientation variants. We assumed 

that the inequality NF  NT was general, but we did not provide the demonstration. Despite many 

efforts we could not succeed to show that ℍF
γ
  ℍT

γ
, mainly because ℍ𝐹

γ
 is defined only from the point 

group 𝔾γ, whereas ℍT
γ

 is defined from 𝔾γand 𝔾α, without a priori no specific systematic relation 

between the two point groups. Actually, the inequality NF  NT is not always true. A simple 

counterexample is given by the ferroelectric transition in PbTiO3 cubic m3̅m  tetragonal p4mm 

with the edge/edge <100> // <100> OR. The relative displacement (shuffle) of the positively and 

negatively charged atoms in the unit cell, the lattice distortion and the polarization are correlated 

phenomena. As the daughter phase is not centrosymmetric, the same distortion, here a pure stretch, 

can generate (or be generated by) two ferroelectric domains at 180°. The number of distortion variants 

is 3 (along the x,y and z axes) whereas the number of orientation variants is 6. The inequality NF ≤ NT 

actually holds for simple (correspondence or orientation) group-subgroup relations (see § 5.4.4). 

Another example with NF < NT will be given in § 7.5. 

5.4.3. No systematic link between the orientation and correspondence variants 

The orientation and correspondence variants are based on a formula implying the point groups of 

parent and daughter phases via the intersection groups given in equations (23) and (34), and they 

differ only by the use of 𝐓𝑐
γ→α

 and 𝐂𝑐
γ→α

, respectively. To get a better understanding of the 

correspondence variants, let us consider the case of a simple correspondence 𝐂𝑐
γ→α

= 𝐈. Equation (34) 

becomes simply ℍC
γ
=  𝔾γ   ∩   𝔾α

 , which means the correspondence variants are based on the 

subgroup of common symmetries. However, the orientation variants are also based the subgroup of 

common symmetries  ℍT
γ

=  𝔾γ   ∩   𝐓𝑐
γ→α𝔾α

(𝐓𝑐
γ→α

)
−1

. The distinction between the two subgroups 

comes from the subtitle but fundamental difference between the geometric symmetries of ℍT
𝛾
 and the 

algebraic symmetries of ℍC
𝛾
. A symmetry of  phase belongs to the orientation subgroup ℍT

𝛾
 when its 

geometric element (mirror plane, rotation axis etc.) coincides with a similar symmetry element of the 

 phase; the matrices that represent these identical elements are equal when expressed in the same 

basis (here 𝓑𝑐
𝛾
) thanks to 𝐓𝑐

γ→α
. A symmetry of  phase belongs to the correspondence subgroup ℍC

𝛾
 

when its matrix is equal to the matrix of a symmetry of the  phase, the two matrices being expressed 

in their own crystallographic bases. These symmetries are identical from an algebraic point of view, 

even if they do not necessarily represent the same geometric element. In other words, the geometric 

symmetries are the usual symmetries we are familiar with, i.e. inversion, reflection, rotations; they 

have an absolute nature and can be defined independently of the crystal, and the algebraic symmetries 

are more abstract; their significances are based on the permutations of the basis vectors and depend on 

the point group of the crystal on which they operate. An example of abstract algebraic symmetry is 
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given by Morley’s theorem, nicely demonstrated by Connes (2004), stating that in any triangle, the 

three points of intersection of the adjacent angle trisectors form an equilateral triangle. Algebraic 

symmetries are usually introduced in the representation theory of finite groups. The difference 

between the geometric and algebraic symmetries for phase transformations is illustrated with the 

example   that will be detailed in § 7.3 where  is a square crystal and  a hexagonal crystal. The 

horizontal reflection is encoded by the matrix 𝒈3
Sq

= (
1 0
0 −1

) in basis 𝓑𝑐
Sq

, and by the matrix 

𝒈11
Hx = (

1 −1
0 −1

) in the basis 𝓑𝑐
𝐻𝑥, and with the help of 𝐓𝑐

Sq→Hx
= (

1 −1/2

0 √3/2
), this matrix is written 

𝐓𝑐
Sq→Hx

𝒈
11
Hx (𝐓𝑐

Sq→Hx
)
−1

= (
1 0
0 −1

)  in 𝓑𝑐
Sq

. The matrices 𝒈3
Sq

 and 𝒈11
Hx represent the same geometric 

symmetry element, even if they are algebraic different. In contrast, as 𝐂𝑐
Sq→Hx

= 𝐈, 𝒈3
Sq

 cannot be put 

in correspondence with any symmetry 𝒈𝑖
Hx  of the hexagonal phase. The unique matrices in 

correspondence are I, -I, (
0 1
1 0

) and −(
0 1
1 0

), i.e. 𝒈1
Sq

= 𝒈1
Hx,   𝒈4

Sq
= 𝒈4

Hx, 𝒈5
Sq

= 𝒈10
Hx and 𝒈8

Sq
= 𝒈7

Hx, 

and this is true whatever the OR. The matrices 𝒈5
Sq

= 𝒈10
Hx for example represent the same algebraic 

operation that interchanges the basis vectors (𝐚Sq → 𝐛Sq , 𝐛Sq → 𝐚Sq) or (𝐚Hx → 𝐛Hx, 𝐛Hx → 𝐚Hx), 

but obviously the geometric elements are different as the mirror plane is at 45° in the square phase, 

and 60° in the hexagonal phase. As the orientation and correspondence variants rely on different 

concepts, there are no systematic equalities or even inequalities between the number of orientation 

and correspondence variants. Some examples where NT ≠ NC will be shown in §7. 

5.4.4. Specific cases with simple correspondence and group-subgroup relations 

We have shown that there are no systematic relations between NF, NC and NT, the numbers of variants 

of distortion, correspondence and orientation. Inequalities can be established only for specific cases. 

We consider here transformations with a simple correspondence associated with a) a correspondence 

group-subgroup relation, or b) an orientation group-subgroup relation.  

a) For a correspondence group-subgroup relation (common algebraic symmetries),  𝔾α 𝔾γ. As 

𝐂c
γ→α

= 𝐈, ℍC
γ
= 𝔾α

, and 𝑁C
 =

|𝔾γ|

|𝔾α|
. In addition, |𝔾γ ∩ 𝐓𝑐

γ→α
𝔾α (𝐓𝑐

γ→α
)
−1

|  ≤ |𝔾α|, which implies 

that |ℍT
γ
|  ≤ |ℍC

γ
|, and thus 𝑁C

 ≤ 𝑁T
. In addition, 𝐅𝑐

γ
= 𝐓𝑐

γ→α
 , 𝔾γ ∩ 𝐓𝑐

γ→α
𝔾α (𝐓𝑐

γ→α
)
−1

≤ 𝔾γ ∩

𝐅𝑐
γ
𝔾γ (𝐅𝑐

γ
)
−1

, i.e. ℍT
γ

≤ ℍF
γ
, and thus 𝑁F

 ≤ 𝑁T
. Consequently the inequalities are 𝑁C

 ≤ 𝑁T
  and 

𝑁F
 ≤ 𝑁T

, without systematic inequality between 𝑁C
 and 𝑁F

.  

b) For an orientation group-subgroup relation (common geometric symmetries), 

𝐓𝑐
γ→α

𝔾α (𝐓𝑐
γ→α

)
−1
 𝔾γ. Thus, ℍT

γ
= 𝐓𝑐

γ→α
𝔾α (𝐓𝑐

γ→α
)
−1
 𝔾α, and 𝑁T

 =
|𝔾γ|

|𝔾α|
. As 𝐂𝑐

γ→α
= 𝐈, 

ℍC
γ
= 𝔾γ ∩ 𝔾α , thus |ℍC

γ
| ≤ |𝔾α

| = |ℍT
γ
| , and 𝑁T

 ≤ 𝑁C
 . In addition, as 𝐅𝑐

γ
= 𝐓𝑐

γ→α
 , 𝔾γ ∩



Acta Crystallographica Section A    research papers 

21 

 

𝐓𝑐
γ→α

𝔾α (𝐓𝑐
γ→α

)
−1

 ≤  𝔾γ ∩ 𝐅𝑐
γ
𝔾γ (𝐅𝑐

γ
)
−1

, i.e. ℍT
γ

≤ ℍF
γ
, and thus 𝑁F

 ≤ 𝑁T
. Consequently, 𝑁F

 ≤

𝑁T
 ≤ 𝑁C

. A typical example is the PbTiO3 transition cubic m3̅m  tetragonal p4mm with a 

parallelism of the directions <100> mentioned in § 5.4.2 (𝑁F
 = 3, 𝑁T

 = 𝑁C
 = 6).  

6. Orientation variants by cycles of transformations  

As mentioned in § 1.3, the reasons of reversibility/irreversibility during thermal cycling are not yet 

fully understood. A part of irreversibility comes from the accumulation of defects (dislocations) 

generated by series of transformation, which was mathematically described with the “global” group 

(Bhattacharya et al., 2004) and Cayley graphs (Gao et al., 2017). Variant pairing/grouping whose 

details depend on compatibility conditions allows reducing the amount of dislocations (James & 

Hane, 2000; Bhattacharya et al., 2004; Gao et al. 2016, 2017). Another part of irreversibility is 

intrinsically due to the orientation symmetries, independently of the lattice parameters and metrics of 

the parent and daughter phases. We have seen in § 5.1 that when an orientation group-subgroup 

relationship exists between the parent and daughter crystals, then 𝑁T
γ

= 
|𝔾α|

|ℍT
α|

= 1, which means that 

there is only one possible orientation of  of second generation (after one cycle) 
1 
 {

1
}  {

2
}. 

The cycling graph is finite. Inversely, in absence of orientation group-subgroup relation, new 

orientations are created, at least after one cycle. By generalizing the orientation variants defined in § 

5.1, it can be show that after n cycles 
1 
 {

1
}  {

2
}… . {

n
}  {

n
}  the  variants at the n

th
 

generation can be defined by a chain of type 𝑔𝑖
γ
ℍT

γ
𝐓

γ→α
. 𝑔𝑘

ℍT
𝐓

α→γ
 …  𝑔𝑚

γ
ℍT

γ
𝐓

γ→α
. 𝑔𝑛

ℍT
𝐓

α→γ
 , 

with 𝐓
α→γ

= (𝐓
γ→α

)
−1

 and ℍT
𝐓

α→γ
= 𝐓

α→γ
ℍT

γ
. The n-chains are thus n-cosets of type 

𝑔𝑖
γ
ℍT

γ
𝑔𝑘/
 ℍT

γ
…𝑔𝑚

γ
ℍT

γ
𝑔𝑛/
 ℍT

γ
, where 𝑔𝑘/

 = 𝐓
γ→α

𝑔𝑘
(𝐓

γ→α
)
−1

 are symmetry operations of the  

phase written in the  basis. The number of simple cosets is given by Lagrange’s formula, the number 

of double-cosets by Burnside’s formulae (Cayron, 2006), but to our knowledge, there is not yet a 

general formula that gives the number of n-cosets; the mathematical problem seems open. In the 

specific case of 3
n
 multiple twinning, the structure of the n-variants was geometrically represented 

by a fractal Cayley graph, and algebraically modelled by strings associated with a concatenation rule 

that effectively replaces matrix multiplication; the algebraic structure depends on the choice of the 

representatives in the simple cosets forming the n-cosets: it can be a free group (Reed et al, 2004) or a 

semi-group (Cayron, 2007); actually, the general structure is a groupoid (Cayron, 2006, 2007). The 

difficulty in finding in the general case a formula for N(n), the number of  orientation variants after 

n-cycles, is probably partially due to the “flexibility” of this mathematical structure. Obviously, 

N(𝑛)  ≤ 𝑁T
α𝑁T

γ
𝑁T

α𝑁T
γ
…𝑛 𝑡𝑖𝑚𝑒𝑠. In some special cases this number can become constant after a 

limited number of cycles, the graph is finite. It is the case when there is an orientation group-subgroup 

relation; the maximum number of variants is reached at n = 1. One can imagine cases where the 

saturation is reached at higher n; a 2D example of saturation at n = 2 will be shown in § 7.9. In the 
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case of 3
n
 multiple twinning, N(n) = 4.3

n
 , the graph of orientation variants is infinite. Another 

simple 2D example of infinite graph will be shown in § 7.10. This 2D example will also prove that the 

graph of orientation variants related to fcc-bcc transformation with a KS OR is infinite, which 

probably partially explain why fcc-bcc martensitic transformation in steels is irreversible. 

A complete crystallographic theory of transformation cycling taking into account all the aspects of the 

transformation (compatibility, variant grouping, accumulated defect, orientation reversibility) in a 

unified mathematical framework is still the subject of intense research in different labs all over the 

world.  

7. Examples of variants with 2D transformations 

This section gives 2D examples that should help the reader to understand the notions of orientation, 

distortion and correspondence matrices, and their variants. They imply square, rectangular, hexagonal, 

and triangular “phases” whose symmetries form the point groups noted 𝔾Sq,  𝔾Rc,  𝔾Hx,  𝔾Tr, 

respectively. These groups are explicitly given by the sets of 2x2 matrices reported in Appendix C. 

The distortion and orientation variants are graphically represented, but not the correspondence 

variants because of their algebraic and non-geometric nature. The “real” 3D cases of displacive 

transformations and deformation twinning with fcc, bcc and hcp phases are technically more complex, 

but relies on the same notions; some are treated in the special case of hard-sphere hypothesis (Cayron, 

2016, 2017a, 2017b, 2018).  

7.1. Square p4mm  Square p4mm in 1 OR by simple strain 

Let us consider the oversimplified example of a transformation from a 2D square crystal (p4mm) to 

the same square crystal (p4mm) generated by a simple strain, as illustrated in Figure 4. Here, 𝔾γ =  𝔾α 

=  𝔾Sq, the group of eight matrices reported in Appendix C. The distortion matrix is 𝐅𝑐
γ

= (
1 −1
0 1

) , 

the orientation matrix is 𝐓𝑐
γ→α

=  𝐈, and the correspondence matrix is 𝐂𝑐
α→γ

= (
1 −1
0 1

). The 

distortion matrix 𝐅𝑐
γ
 is a lattice-preserving strain; it belongs to the “global group” (Battacharya et al., 

2004; Gao et al. 2016, 2017).  The distortion leaves globally invariant the lattice, and all the 

geometric symmetry elements are put in coincidence. However, some abstract symmetries are lost by 

the distortion and by the correspondence. The calculations show that ℍF
γ

= ℍD
γ

= ℍC
γ

= {𝑔1
Sq

, 𝑔4
Sq

}, 

thus 𝑁F
α = 𝑁D

𝛼 = 𝑁C
α = 4, and that ℍT

γ
= 𝔾γ, thus 𝑁T

α = 1. By left polar decomposition 𝐅𝑐
𝛾

= 𝐅⋕

=

𝐐⋕

 𝐔⋕


  with 𝐐⋕


= (

2

√5

−1

√5
1

√5

2

√5

) and 𝐔⋕


= (

2

√5

−1

√5
−1

√5

3

√5

) whose eigenvalues are {
5+√5

2√5
,
5−√5

2√5
} ≈

{1.62,0.62} along the eigenvectors [
1

2
(1 − √5),1]

t
 and [

1

2
(1 + √5),1]

t
, i.e. an expansion / contraction 

along these two vectors. The calculations also show that ℍU
γ

= {𝑔1
Sq

, 𝑔4
Sq

},  thus 𝑁U
α = 4. The distinct 
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stretch matrices are (

2

√5

1

√5
1

√5

3

√5

), (

3

√5

1

√5
1

√5

2

√5

), (

2

√5

−1

√5
−1

√5

3

√5

), and (

3

√5

−1

√5
−1

√5

2

√5

). Different continuous forms of 

the distortion can be proposed, such as 𝐅𝑐
γ
(𝛽) = (

1 Tan (
𝜋

2
− 𝛽)

0 1
) with 𝛽 ∈ [

𝜋

2
→

𝜋

4
], which 

corresponds to a continuous simple strain. Please note that the atoms do not remain in contact during 

this type of distortion; the intermediate states are thus probably energetically not realistic. This 

example was used only as a mathematical example of transformation with 𝑁T
α = 1. It would be better 

treated with discrete discontinuous dislocation gliding than with continuous lattice distortion.  

7.2. Square p4mm  Square p4mm in 1 OR by turning inside out 

This example, shown in Figure 5, is also purely mathematic. It uses the same parent and daughter 

square crystal as in the previous example, i.e. 𝔾γ =  𝔾α =  𝔾Sq, with the same square-square OR, but 

now it imagines that the distortion matrix is 𝐅𝑐
γ

= (
0 −1

−1 0
). This distortion is very special because 

it reverses the handedness of the basis. The matrix 𝐅𝑐
γ
 can be diagonalized in a basis rotated by 

𝜋

4
 , it is 

𝐅𝜋/4
𝛾

= (
1 0
0 −1

). The orientation matrix is 𝐓𝑐
γ→α

=  𝐈, and the correspondence matrix is 𝐂𝑐
α→γ

=

(
0 −1

−1 0
). The calculations show that ℍF

γ
= {𝑔1

Sq
, 𝑔4

Sq
, 𝑔5

Sq
, 𝑔8

Sq
}, thus 𝑁F

α = 2, and that ℍD
γ

=

ℍC
γ

= ℍT
γ

= 𝔾γ, thus 𝑁D
α = 𝑁C

α = 𝑁T
α = 1. This is the only example of the section in which 𝑁F

α 𝑁D
α. 

This case is not “physical” because it implies turning inside out the surface of a circle, which is 

impossible in 2D (notice that it is possible in 3D, it is the famous sphere eversion “paradox”). To 

illustrate this point, let us consider a possible continuous form of this distortion 𝐅𝑐
γ
(𝛽) =

(
Cos(

𝛽−𝜋/2

2
) −Sin(

𝛽−𝜋/2

2
)

−Sin(
𝛽−𝜋/2

2
) Cos(

𝛽−𝜋/2

2
)
) with  β ∈ [

𝜋

2
→

3𝜋

2
  ].  At β = 𝜋, the determinant of the distortion is 

zero, i.e. the lattice becomes flat, as shown in Figure 5b. More generally, as the determinant is a 

multilinear function of the matrix coefficients, any continuous path from the starting state, 𝐅𝑐
γ
(𝛽𝑠) =

𝐈, to the final state, 𝐅𝑐
γ
(𝛽𝑓) = 𝐅𝑐

γ
 , with Det(𝐅𝑐

γ
) = −1, implies that it exists an intermediate at the 

angle 𝛽𝑖 such that Det(𝐅𝑐
γ(𝛽𝑖)) = 0; which can be considered as “non-crystallographic” because the 

lattice loses one of its dimension.  

7.3. Square p4mm  Hexagon p6mm by angular distortion 

In this example, the square parent crystal is transformed into a hexagonal daughter crystal, as shown 

in Figure 6.  The parent and daughter symmetries are given by 𝔾γ =  𝔾Sq and  𝔾α =  𝔾Hx, 

respectively. Once the distortion is complete the distortion matrix is 𝐅𝑐
γ

= (
1

−1

2

0
√3

2

). The orientation 
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matrix is also 𝐓𝑐
γ→α

=  (
1

−1

2

0
√3

2

), and the correspondence matrix is 𝐂𝑐
α→γ

= 𝐈. The calculations show 

that ℍF
γ

= ℍD
γ

= {𝑔1
Sq

, 𝑔4
Sq

},  ℍT
γ

= {𝑔1
Sq

, 𝑔4
Sq

, 𝑔2
Sq

, 𝑔3
Sq

}, ℍC
γ

= {𝑔1
Sq

, 𝑔4
Sq

, 𝑔5
Sq

, 𝑔8
Sq

}, and thus 

𝑁F
α = 𝑁D

α = 4, and 𝑁T
α = 𝑁C

α = 2.  Note that the intersection group defining the orientation variants 

is different from that of the correspondence variants. The left polar decomposition gives 𝐅𝑐
γ

= 𝐅⋕

=

𝐐⋕

 𝐔⋕


  with 𝐔⋕


=

1

4
(√

2 + √6 √2 − √6

√2 − √6 √2 + √6
) and 𝐐⋕


=

1

4
(√

2 + √6 √2 − √6

√6 − √2 √2 + √6
) whose eigenvalues are 

{√
3

2
,

1

√2
} ≈ {1.22,0.71} along the eigenvectors [−1,1]t and[1,1]t, which geometrically means that the 

square is transformed into a rhombus by extension/contraction along its two diagonals. The 

calculations show that indeed ℍU
γ

= {𝑔1
Sq

, 𝑔4
Sq

, 𝑔5
Sq

, 𝑔8
Sq

}, and thus 𝑁U
α = 2; the two stretch matrices 

are 
1

4
(√

2 + √6 √2 − √6

√2 − √6 √2 + √6
) and 

1

4
(√

2 + √6 √6 − √2

√6 − √2 √2 + √6
). By assuming that the crystal is made of 

hard-disk, the distortion can be expressed by a continuous form 𝐅𝑐
γ
(𝛽) = (

1 Cos(𝛽)
0 Sin(𝛽)

) with  𝛽 ∈

[
𝜋

2
→

2𝜋

3
  ].  This is a typical example of angular distortion. The inverse transformation will be 

considered in § 7.6. 

7.4. Square p4mm  Triangle p3m by angular distortion 

In this example, the distortion, orientation and correspondence matrices are exactly the same as in the 

previous example, but the square parent crystal now contains extra interstitial atoms, as shown in 

Figure 7. After distortion, these extra atoms cannot stay in the centre of the distorted cells because of 

steric reasons, and they move in one of the two hexagonal nets that are formed by the distortion; they 

are said to “shuffle”. If the choice between the two possible sites is random, the final phase is 

hexagonal p6mm as in the previous example, but if one of the two sites is selected, by a domino effect 

for example, then the daughter phase is p3m1 and its symmetries are reduced to 𝔾α =  𝔾Tr, as shown 

in this example. Since the distortion and the parent point group are the same as in the previous 

example, ℍF
γ

= ℍD
γ

= {𝑔1
Sq

, 𝑔4
Sq

} and ℍU
γ

= {𝑔1
Sq

, 𝑔4
Sq

, 𝑔5
Sq

, 𝑔8
Sq

}, thus 𝑁F
α = 𝑁D

α = 4 and 𝑁U
α = 2. 

The calculations with the daughter point group  𝔾Tr show however a difference with the previous 

case: ℍT
γ

= ℍC
γ

= {𝑔1
Sq

, 𝑔4
Sq

}, and thus 𝑁T
α = 𝑁C

α = 4. The four orientation variants are similar to 

those we used to illustrate the groupoid structure of orientation variants by Cayron (2006). This 

example is a case where 𝑁C
α > 𝑁U

α. 

7.5. Square p4mm  Triangle p3m by pure stretch distortion 
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The parent and daughter phases are the same as in the previous example. The only difference comes 

from the distortion; it is now a pure stretch constituted of a contraction along one of the diagonal of 

the square and an elongation along the second diagonal, as illustrated in Figure 8. Once the distortion 

is complete the distortion matrix, already calculated in the example 7.3, is 

𝐅𝑐
𝛾

= 𝐔⋕


=
1

4
(√

2 + √6 √2 − √6

√2 − √6 √2 + √6
) . Since the correspondence matrix is 𝐂𝑐

α→γ
= 𝐈, the orientation 

matrix is 𝐓𝑐
γ→α

= 𝐅𝑐
γ

= 𝐔⋕

. In this example, ℍF

γ
= ℍD

γ
= ℍC

γ
= {𝑔1

Sq
, 𝑔4

Sq
, 𝑔5

Sq
, 𝑔8

Sq
} and ℍT

𝛾
=

{𝑔1
Sq

, 𝑔4
Sq

}, thus 𝑁F
α = 𝑁D

α = 𝑁C
α = 2 and 𝑁T

α = 4. This example is a case where 𝑁T
α > 𝑁F

γ
. 

7.6. Hexagon p6mm  Square p4mm by angular distortion 

This transformation, shown in Figure 9, is the reverse of the transformation described in §7.3. The 

calculation of the continuous form of the distortion matrix was fully treated in section 6 of Cayron 

(2018). Here, to keep coherency with the names given in §7.6, we write  the hexagonal parent phase, 

and  the square daughter phase. The coordinate transformation matrix is the inverse of  𝐓𝑐
γ→α

=

 (
1

−1

2

0
√3

2

); it is 𝐓𝑐
α→γ

= (
1

1

√3

0
2

√3

) . The correspondence matrix remains 𝐂𝑐
α→γ

= 𝐈. Equation (16) 

gives 𝐅c
(𝛽) = 𝐓𝑐

α→γ
𝐅c

γ
(𝛽) with 𝐅c

γ(𝛽) = (
1 𝐶𝑜𝑠(𝛽)
0 𝑆𝑖𝑛(𝛽)

) , thus 𝐅c
(𝛽) = (

1 𝐶𝑜𝑠(𝛽) +
𝑆𝑖𝑛(𝛽)

√3

0
2𝑆𝑖𝑛(𝛽)

√3

), 

with 𝛽 ∈ [
2𝜋

3
 →

𝜋

2
]. When written in 𝓑⋕

 thanks to the structure tensor 𝓢 = [𝓑⋕
 → 𝓑𝑐

] = (
1

−1

2

0
√3

2

) , 

the distortion matrix becomes 𝐅⋕
(𝛽) = (

1
1+2𝐶𝑜𝑠(𝛽)

√3

0
2𝑆𝑖𝑛(𝛽)

√3

) in agreement with (Cayron, 2018).  One can 

notice that 𝐅c
(𝛽) is not the inverse of 𝐅𝑐

γ
(𝛽) because the matrices are not expressed in the same basis. 

The matrix of complete transformation is 𝐅c
 = 𝐅c

(
𝜋

2
) = (

1
1

√3

0
2

√3

). The variants are calculated with 

parent and daughter symmetries 𝔾α = 𝔾Hx and 𝔾𝛾 = 𝔾Sq, respectively; the distortion matrix is 𝐅c
, the 

orientation matrix is 𝐓𝑐
α→γ

, and the correspondence matrix is 𝐂𝑐
α→γ

= 𝐈. The calculations show that 

ℍF
α = ℍD

α = {𝑔1
Hx, 𝑔4

Hx},  ℍT
γ

= {𝑔1
Hx, 𝑔2

Hx, 𝑔4
Hx, 𝑔5

Hx}, ℍC
α = {𝑔1

Hx, 𝑔4
Hx, 𝑔7

Hx, 𝑔10
Hx}, and thus the 

number of variants of the transformation  is 𝑁F
γ

= 𝑁D
γ

= 6, and 𝑁T
γ

= 𝑁C
γ

= 3. By considering 

the number of variants of the transformation  found in § 7.3, i.e. 𝑁F
α = 𝑁D

α = 4, and 𝑁T
α = 𝑁C

α =

2, one can check the validity of equations (25) (29) and (35), i.e. 𝑁T
α|𝔾α| =  𝑁T

γ|𝔾γ| = 24, 𝑁F
α|𝔾α| =

 𝑁F
γ|𝔾γ| = 48, and 𝑁C

α|𝔾α| =  𝑁C
γ|𝔾γ| = 24. 
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7.7. Square p4mm  Square p4mm in 5 OR  

7.7.1. By pure shuffle 

We consider here two square crystals of same phase with a symmetry group  𝔾γ =  𝔾α =  𝔾Sq , and 

related to each other by the specific misorientation 5, as illustrated in Figure 10a. The number  is 

the volume (here area) of the coincidence site lattice (CSL) divided by the volume of one of the 

individual lattice (Grimmer, Bollmann & Warrington, 1974; Gratias & Portier, 1982). The 

misorientation gives no information about the distortion, and additional assumptions are required to 

establish a crystallographic model. In this example, it is supposed that the 5 CSL (in light green in 

Figure 10a) is undistorted, and that only the atoms in the supercell move (curled black arrows). This 

type of transformation is called “pure shuffle”. In this example, 𝐁𝑠𝑢𝑝𝑒𝑟
γ′

= 𝐁𝑠𝑢𝑝𝑒𝑟
γ

= (
2 −1
1 2

), and 

𝐁𝑠𝑢𝑝𝑒𝑟
 = (

2 1
−1 2

). Equations (7), (8) and (9) directly lead to 𝐓𝑐
γ→𝛼

= 𝐂𝑐
γ→𝛼

=
1

5
(
3 −4
4 3

), and 

𝐅𝑐
γ

= 𝐈. The calculations show that ℍF
γ

= ℍD
γ

= 𝔾γ and ℍT
γ

= ℍC
γ

= {𝑔1
Sq

, 𝑔4
Sq

, 𝑔6
Sq

, 𝑔7
Sq

}, thus 

𝑁F
α = 𝑁D

α = 1, and 𝑁T
α = 𝑁C

α = 2.  

7.7.2. By simple shear 

A simple shear can lead to the same configuration (same phases and same misorientation), as 

illustrated in Figure 10b. Again, the OR between the two crystals is 𝐓𝑐
γ→𝛼

=
1

5
(
3 −4
4 3

); however 

now the distortion implies a different supercell given by 𝐁𝑠𝑢𝑝𝑒𝑟
γ

= (
2 −1
1 0

), 𝐁𝑠𝑢𝑝𝑒𝑟
 = (

2 −1
−1 1

), 

and 𝐁𝑠𝑢𝑝𝑒𝑟
γ′

≠ 𝐁𝑠𝑢𝑝𝑒𝑟
γ

. Equation (8) actually leads to 𝐁𝑠𝑢𝑝𝑒𝑟
γ′

= 𝐓𝑐
γ→𝛼

𝐁𝑠𝑢𝑝𝑒𝑟
α , thus equation (7) gives 

𝐅𝑐
γ

= 𝐓𝑐
γ→𝛼

𝐁𝑠𝑢𝑝𝑒𝑟
α (𝐁𝑠𝑢𝑝𝑒𝑟

γ
)
−1

=
1

5
(
7 −4
1 3

) and 𝐂𝑐
𝛼→γ

= (𝐓𝑐
γ→𝛼

)
−1

𝐅𝑐
γ

= (
1 0

−1 1
). The unique 

eigenvalue of 𝐅𝑐
γ
 is 1 and is associated with the eigenvector 𝐮 = [2,1]𝛾

t  . Actually one can check that 

𝐅𝑐
γ
 is a simple strain along the direction 𝐮, and its amplitude is 𝐴𝑟𝑐𝑇𝑎𝑛((𝐅𝑐

γ
− 𝐈) 

1

√5
[1, 2̅]𝛾

t =

𝐴𝑟𝑐𝑇𝑎𝑛 (
1

√5
) ≈ 24.1°. The calculations show that ℍF

γ
= ℍD

γ
= ℍC

γ
= {𝑔1

Sq
, 𝑔4

Sq
} and ℍT

γ
=

{𝑔1
Sq

, 𝑔4
Sq

, 𝑔6
Sq

, 𝑔7
Sq

}, thus 𝑁F
α = 𝑁D

α = 𝑁C
α = 4 and 𝑁T

α = 2. A continuous form of the distortion 

could be determined by assuming that the atoms are hard-circles, and one would find that the 

analytical equation of the atomic trajectories are not those of a continuous simple strain; simple strain 

is obtained only when the transformation is complete; it is the strain between the initial and final 

states without considering the exact path in between. 

7.8. Square p4mm  Rectangle pm by short-range order angular distortion 

In this example, we consider a crystal made of two types of atoms A and B with different diameters, 

noted 𝑑𝐴 and 𝑑𝐵. At high temperature, the thermal activation weakens the interatomic bonds so much 
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that the system is fully disordered. Equivalently said, the entropy part dominates the enthalpy part in 

the free energy such that the system gets a configuration of high symmetry in order to increase at 

maximum the number of microstates. The high temperature phase is a square crystal  made of 

“mean” atoms presented in blue in Figure 11a. The lattice parameter is 𝑎γ =
𝑑𝐴+𝑑𝐵

2
 and the 

symmetries are given by 𝔾γ =  𝔾Sq. At low temperature, one can imagine the case in which the atoms 

A tend to attract each other and the atoms B tend to repulse each other, such that the atoms A and B 

organise themselves to form the rectangular crystal. The ordered phase before and after distortion is 

show in Figure 11b and Figure 11c, respectively. It is highly probable that ordering and distortion 

occur simultaneously as they are both component of the change of atomic bonds with temperature. 

The daughter symmetries are given by 𝔾 =  𝔾Rc. Here, the diameter of the atoms is supposed to be 

constant during the transformation. The new lattice is such that 𝑎α = 𝑑𝐴 and 𝑏α = 2√(𝑎𝛾)2 −
𝑑𝐴

2

4
. In 

order to reduce the misfit at the - interface or at the interface between two  variants, we also 

assume that the dense direction 𝐚𝛾  remains invariant (untilted and undistorted). The invariance of a 

dense direction of type <100> or <110> is often observed for real cubic-tetragonal transformations, 

such as in AuCu alloys for example. An equivalent way to imagine the distortion would be to consider 

it as a stretch from the dashed green square in Figure 11b to the dashed red rectangle in Figure 11c, 

and then add a rotation in order to maintain the direction 𝐚𝛾 invariant. This compensating rotation is 

called “obliquity correction”. Here, we decided to calculate directly the lattice distortion 

corresponding to the final orientation Figure 11c, and deduce the stretch and rotation by polar 

decomposition. Let us do the calculation with the supercell 𝐁𝑠𝑢𝑝𝑒𝑟
γ

= 2(
1 0
0 1

),  𝐁𝑠𝑢𝑝𝑒𝑟
γ′

=

2(
1 𝐶𝑜𝑠(𝛽)
0 𝑆𝑖𝑛(𝛽)

), and 𝐁𝑠𝑢𝑝𝑒𝑟
 = (

1 1
−1 1

). The distortion matrix expressed in the basis associated with 

the supercell is given by equation (7): 𝐅𝑠𝑢𝑝𝑒𝑟
γ

(𝛽) = 𝐁𝑠𝑢𝑝𝑒𝑟
γ′

 (𝐁𝑠𝑢𝑝𝑒𝑟
γ

)
−1

= (
1 𝐶𝑜𝑠(𝛽)
0 𝑆𝑖𝑛(𝛽)

). Here, it is 

also the distortion matrix in the crystallographic basis 𝐅𝑐
γ
. Once the distortion is finished, the angular 

parameter 𝛽𝑓 is such that 𝐶𝑜𝑠 (
𝛽𝑓

2
) =

𝑑𝐴

2𝑎𝛾. This ratio will be called r. By using trigonometry, the 

distortion matrix is written 𝐅𝑐
γ

= (
1 2𝑟2 − 1

0 2𝑟√1 − 𝑟2
). It can be checked that if the diameter of the atoms 

A is such that 𝑑𝐴 = √2𝑎𝛾, i.e. 𝑟 =  
1

√2
, then 𝐅𝑐

γ
= 𝐈, there is no distortion. The orientation matrix is 

calculated with equation (8); it is 𝐓𝑐
γ→𝛼

= (
2𝑟2 −2(1 − 𝑟2)

2𝑟√1 − 𝑟2 2𝑟√1 − 𝑟2
). The correspondence matrix is 

𝐂𝑐
𝛼→γ

= (𝐓𝑐
γ→𝛼

)
−1

𝐅𝑐
γ

=
1

2
(

1 1
−1 1

). By polar decomposition in an orthonormal basis, the distortion 

matrix is written 𝐅𝑐
γ

= 𝐅⋕
γ

= 𝐐⋕

 𝐔⋕


= (

𝑟+√1−𝑟2

√2

𝑟−√1−𝑟2

√2

−𝑟+√1−𝑟2

√2

𝑟+√1−𝑟2

√2

)(

𝑟+√1−𝑟2

√2

𝑟−√1−𝑟2

√2

𝑟−√1−𝑟2

√2

𝑟+√1−𝑟2

√2

). The eigenvalues 
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of the stretch matrix give the contraction and elongation values; they are √2 𝑟 and √2√1 − 𝑟2. The 

obliquity angle  is given by the rotation angle of 𝐐⋕


; it is 𝜉 = 𝐴𝑟𝑐𝐶𝑜𝑠(
𝑟+√1−𝑟2

√2
). One can check that 

𝜉 = 0 for 𝑟 =  
1

√2
. The calculations also show that ℍF

𝛾
= ℍD

𝛾
= ℍT

𝛾
= {𝑔1

Sq
, 𝑔4

Sq
} and ℍC

𝛾
=

{𝑔1
Sq

, 𝑔4
Sq

, 𝑔6
Sq

, 𝑔7
Sq

}, thus 𝑁F
α = 𝑁D

α = 𝑁T
α = 4 and 𝑁C

α = 2. This example is good prototype of order-

disorder cubic-tetragonal displacive transformation. The fcc-bct (body-centred tetragonal) martensitic 

transformation in steels also implies an ordering of the interstitial carbon atoms, but the kinetics of 

carbon diffusion is so high that martensitic transformation in steels is often very fast and athermal, 

whereas the order-disorder displacive transformations are generally slow and activated by thermal 

treatments (as in AuCu alloys).  

7.9. Cycle of transformations Square p4mm  Triangle p3m1  

Let us consider again the case of Rectangle p4mm  Triangle p3m1 treated in § 7.4, and its inverse 

transformation Triangle p3m1 p4mm, which is very similar to the example in § 7.6. The effect of 

cycling of Square  Triangle transformations on the orientation variants can be explicitly shown by 

the squares and triangles formed at each generation (Figure 12a). The  and the  

misorientations can be schematized by segments forming a graph (Figure 12b). In this example, all the 

orientation variants created at the second generation were already created at an earlier generation 

(here 1
st
 generation), which implies that the graph is finite, i.e. 

1
{

1
}{

2
}{

2
}

 
 {

1
}. This 

can be proved by encoding a square and a triangle by the angles of their edges with the horizontal (at 

0 rad.), i.e. by the congruence classes [0]  /2 and [0]  2/3, respectively. Note that the triangle 

obtained by horizontal reflection is [/3]  2/3. The triangles of first generation are encoded by the 

set {[0],[/3], [/2], [-/2]}  2/3. The squares of second generation form the set {[/3],[-/3]}  

/2. The triangles of second generation are obtained by adding the two previous sets; by using the 

properties of the “modulo” operation, one can show that no new triangle variant is created after the 

second cycle.  The total number of triangle and square variants are 𝑁(α1+α2) = 4 and 𝑁(1+2) = 3, 

respectively. The orientation variants and their graph are shown in Figure 12c,d. The graph is finite 

because of the special square-triangle orientation relationship and because of the rationality between 

the angles /3 and /2.  

7.10. Cycle of transformations Triangle p3m1  Triangle m  

Let us now consider the case of a Triangle p3m ()  Triangle m () transformations shown in Figure 

13. The triangle m is isosceles and chosen such that the angle between the two sides of equal length is 

 = ArcCos(1/3). Niven’s theorem states that for any angle 𝜃 = 𝑞, 𝑞 ∈ ℚ,  if 𝐶𝑜𝑠(𝜃) ∈ ℚ, then 

𝐶𝑜𝑠(𝜃) = 0,
1

2
𝑜𝑟 1, i.e.  = /2, /3 or 0. Consequently, the ratio of  (the angle of the isosceles 
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triangle) divided by /3 (the angle of equilateral triangle) is not rational; which implies that there is no 

possibility to reobtain the same initial orientation whatever the number of cycles of transformation. 

The orientation variants can be represented by a fractal (only a part, arbitrarily stopped at the second 

generation, is shown in Figure 13a), and the orientation graph is infinite. This 2D example helps to 

understand why the orientation graph associated with the fcc-bcc transformation with a KS OR is also 

infinite. Indeed, the KS OR implies a parallelism of the planes (111) // (110). The (111) plane can 

be represented by the triangle p3m formed by the 3 dense directions <110> it contains, and the (110) 

plane by the triangle pm of angle  = ArcCos(1/3) formed by the two dense direction <111> it 

contains, as illustarted in Figure 13b. The symmetries of the (110) plane is actually pmm because the 

rectangle is made with the [001] and [1̅10] directions, but this does not affect the fact that the 

number of variants sharing the same dense plane (111) // (110) become infinite by increasing the 

number of cycles.  

8. Conclusions 

This paper recalls the importance of distinguishing three types of transformation matrices to describe 

a displacive phase transformation : the lattice distortion matrix 𝐅𝑐

, the orientation relationship 

matrix 𝐓𝑐
→

, and the correspondence matrix 𝐂𝑐
→

. The three matrices are linked by the relation 𝐂𝑐
→

 

= 𝐓𝑐
→

𝐅𝑐

, with  𝐓𝑐

→
 and 𝐂𝑐

→
 the inverse matrices of 𝐓𝑐

→
 and 𝐂𝑐

→
, respectively. The index “c” 

means that the matrices are expressed in their natural crystallographic basis. They can be written in an 

orthonormal basis thanks to the structure tensor, and in the reciprocal basis thanks to the metric 

tensor. The stretch matrix 𝐔𝑐

 is deduced from the distortion matrix 𝐅𝑐


 by usual polar decomposition 

once the matrix is written in an orthonormal basis, i.e. by calculating (𝐅⋕

)
t
𝐅⋕

, or by a specific polar 

decomposition that respects the metrics, i.e. by calculating (𝐅𝑐

)
t
𝓜 𝐅𝑐


. The transformation matrices 

for the inverse transformation  can be deduced from those of the direct transformation  

thanks to the matrices 𝐓𝑐
→

 and 𝐂𝑐
→

 as described in § 2. The three transformation matrices can be 

explicitly calculated from the supercell used to establish the correspondence between the two phases, 

as detailed in § 3. The distortion matrix 𝐅𝑐

 is generally determined for the complete transformation 

between initial state (parent phase) and final state (daughter phase), but in the cases where the atoms 

behave as hard-spheres of constant size, it is possible to establish a continuous analytical form 

𝐅𝑐
(𝜃) for the distortion that depends on a unique angular parameter 𝜃 varying between a start value 𝜃𝑠 

and a final value 𝜃𝑓 such that 𝐅𝑐
(𝜃𝑠) = 𝐈 and 𝐅𝑐


(𝜃𝑓) = 𝐅𝑐


. The continuous form is not a simple strain 

due to the steric effect, and Schmid’s law cannot be applied. New criteria that aim at predicting the 

formation of the daughter phase or deformation twins under stress can be proposed based on 𝐅𝑐
(𝜃) or 

on its derivative given by the formula 
𝐷𝐅

𝐷𝜃
=

𝑑𝐅

𝑑𝜃
𝐅−1 , as introduced in § 4.  
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Variants are defined for each of the three types of transformation matrix. They are the cosets built on 

an intersection group ℍ
𝛾

 that is a subgroup of the point group of the parent phase 𝔾𝛾. More 

precisely, the intersection groups for the distortion, orientation, and correspondence variants are  

ℍF
γ

=  𝔾γ   ∩   𝐅𝑐
γ
𝔾γ(𝐅𝑐

γ
)−1,    ℍT

γ
=  𝔾γ   ∩   𝐓𝑐

γ→α
 𝔾α (𝐓𝑐

γ→α
)−1, and 

ℍC
γ

=  𝔾γ   ∩   𝐂𝑐
γ→α

 𝔾α (𝐂𝑐
γ→α

)−1, respectively. The stretch variants, sometimes improperly called 

“correspondence” variants, are actually like distortion variants; they are defined as cosets built on 

ℍU
γ

=  𝔾γ   ∩   𝐔𝑐
γ
 𝔾γ (𝐔𝑐

γ
)−1. The number of variants is directly given by Lagrange’s formula 

whatever their type. As shown in § 5, the number of variants of direct transformation is related to the 

number of variants of reverse transformation by the equation 𝑁α |𝔾α| =  𝑁
γ |𝔾γ|, where |𝔾α| and 

|𝔾γ| are the orders of the point groups of  and  phases, respectively. The difference between the 

orientation and correspondence variants is subtle but important from a theoretical point of view 

because it implies a distinction between the geometric symmetries and the algebraic symmetries. Two 

equivalent geometric symmetries are defined by the same geometric element (rotation, reflection etc.), 

but they can be written with different matrices according to the crystal in which the symmetry 

operates. Two equivalent algebraic symmetries are defined by the same matrix, and thus same 

permutation of basis vectors, independently of the crystal in which they operate. 

Reversibility/irreversibility during phase transformation cycling is a multifactor property. One of its 

aspects, the orientation reversibility is briefly introduced in § 6 by expressing variants of n-generation 

with n-cosets and by representing them with fractal graphs. Numerous 2D examples are given in § 7 

in order to show that there is no general relation between the numbers of distortion, orientation 

variants and correspondence variants, and to illustrate the concept of orientation variants formed 

during thermal cycling. The subject of n-variants generated by cycling and the related 

reversibility/irreversibility issue remain widely open for future research.  

The three transformation matrices are related to different characteristics of phase transformation; the 

orientation variants are of interest for the microstructural observations (EBSD, X-ray diffraction), the 

distortion variants for the mechanical (transformation induced plasticity and shape-memory) 

properties, and the correspondence variants for the change of the atomic bonds (spectrometry). We 

hope that the mathematical definitions and equations proposed in this work will be useful for future 

research in these fields.   



Acta Crystallographica Section A    research papers 

31 

 

 

Figure 1 Difference between the stretch matrix and the correspondence matrix illustrated with a 

square  - square  transformation with two ORs. (a) <1,0> // <5,0>, and (b) <1,0> // <4,3>. The 

lattice parameter of the square  is nearly five times that of square . The distortion (stretch) matrix is 

the same in both cases; it is a diagonal matrix (
𝑟 0
0 𝑟

) with 𝑟 = 1 + 𝜀 =
𝑎𝛾

5𝑎𝛼
, but the orientation and 

correspondence matrices are different.  

 

 

Figure 2 Derivative of a continuous distortion matrix 𝐅(𝜃). The parameters 𝜃𝑠 and 𝜃𝑠 are associated 

with start and finish states of the transformation. The matrix 𝐅(𝜃) is defined as a coordinate 

transformation matrix from the starting basis 𝓑(𝜃𝑠) to the basis 𝓑(𝜃), i.e. 𝐅(𝜃) = [𝓑(𝜃𝑠)𝓑(𝜃)]. 

The infinitesimal matrix at the state 𝜃 expressed in the local basis 𝓑(𝜃) is 

𝐷𝐅(𝜃)𝑙𝑜𝑐 = [𝓑(𝜃)𝓑(𝜃 + 𝑑𝜃)] = 𝐅(𝜃)−1𝐅(𝜃 + 𝑑𝜃).  
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Figure 3 2D simple case of continuous deformation twinning of a p2mm  phase made of two 

atoms considered as hard-spheres (disks) of same constant size. (a) Schematic view of the distortion 

between the initial crystal  and its twin t. A cubic  appears as an intermediate state. The angular 

parameter  is s = /3 in the initial state, i = /2 in the intermediate cubic state, and f = 2/3 in the 

final state. (b) Volume change during the distortion. (c) Three hypotheses can be imagined to 

calculate the interaction work for a twinning criterion: (i) with the complete distortion F

 (f), which 

is here a simple strain, (ii) with the distortion at the maximum volume change F

 (i), or (iii) with the 

derivative of the distortion at the starting state 
𝐷𝐅

𝐷
(𝑠).  
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Figure 4 Square p4mm ()  Square p4mm () transformation with 1 orientation by simple strain. 

(a) The lattice and its “atoms” before distortion (in blue) and after distortion (in salmon). (b) Four 

distortion variants, (c) one orientation variant, and four correspondence variants (not represented) are 

generated. 

 

Figure 5 Square p4mm ()  Square p4mm () transformation with 1 orientation by turning 

inside-out. The angle  changes continuously from s = /2 to f = 3/2. Two distortion variants, one 

shape-distorted variant, one orientation variant, and one correspondence variant are generated (they 

are not represented). The determinant of the distortion matrices at the different stages are Det(F

 (s)) 

> 0, Det(F

 (f)) < 0, and Det(F


 (i)) = 0. This example show a mathematical case where the 

distortion and the distortion-shape variants are distinct; however, the distortion is considered as “non-

crystallographic” because it implies an intermediate degenerated state at i = .  
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Figure 6 Square p4mm ()  Hexagon p6mm () transformation by angular distortion. (a) The 

lattice and its “atoms” before distortion (in blue) and after distortion (in salmon). (b) Four distortion 

variants, (c) two orientation variants, and two correspondence variants (not represented) are 

generated.  

 

Figure 7 Square p4mm ()  Triangle p3m1 () transformation by angular distortion. The parent 

phase is constituted of large atoms (in blue) and small interstitial atoms (in green). (a) The lattice and 

its “atoms” before distortion (in blue) and after distortion (in salmon). The interstitial atoms must 

choose between two equivalent sets of positions; their trajectories do not follow the lattice distortion 

(they “shuffle”). (b) Four distortion variants, (c) four orientation variants, and four correspondence 

variants (not represented) are generated. 
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Figure 8 Square p4mm ()  Triangle p3m1 () transformation by pure stretching. The parent and 

daughter phases are the same as in the previous example. (a) The lattice and its “atoms” before 

distortion (in blue) and after distortion (in salmon). (b) Two distortion variants, (c) four orientation 

variants, and two correspondence variants (not represented) are generated. Note that there are more 

orientation variants than distortion variants. 

 

 

Figure 9 Hexagon p6mm ()  Square p4mm () transformation by angular distortion. This is the 

reverse transformation of the example shown in Figure 6. (a) The lattice and its “atoms” before 

distortion (in salmon) and after distortion (in blue). (b) Six distortion variants, (c) three orientation 

variants, and three correspondence variants (not represented) are generated.  
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Figure 10 Square p4mm ()  Square p4mm () transformations with 5 OR implying 

different mechanisms: (a) pure shuffle (curves arrows) and (b) simple strain (green arrows). In case 

(a) the atoms at the nodes of the 5 CSL (in light green) do not move, whereas they move by five 

times the green arrow in case (b). 
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Figure 11 Square p4mm ()  Rectangle p2mm () transformation with an order/disorder 

displacive character. The lattice is constituted of two different atoms considered as hard-spheres of 

different size: the large atoms A in salmon and the small atoms B in green. (a) At high temperature, in 

the disordered state, the lattice nodes are randomly occupied by A or B; the “mean” atom is coloured 

in blue. At lower temperature, the atoms organize themselves depending on their affinities. (b)  If only 

ordering is considered without lattice distortion, the ordered state remains cubic. (c) If the atoms A 

come in contact to each other, the ordered phase becomes rectangular. (d) Four distortion variants, 

four orientation variants, and two correspondence variants (not represented) are generated.  
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Figure 12 Cycling of Square p4mm ()  Triangle p3m1 () transformations. (a) Fractal 

representation of the orientation variants. The upper indices n represent the n
th
 generation. The variant 

lower indices are not reported for sake of simplicity. (b) Graph representation, with the blue and 

salmon segments representing the Square  Triangle and the Triangle  Square transformations, 

respectively. After removing the redundant orientation variants, (a) and (b) are simplified into (c) and 

(d) respectively: the cycling graph is finite. 

 

Figure 13 Cycling of Triangle p3m1 ()  Triangle pm () transformations. The triangle pm is 

isosceles and chosen such that the angle between the two sides of equal length is  = ArcCos(1/3). (a) 

Fractal representation of the orientation variants (arbitrarily stopped at the second generation). (b) 

Equivalence between this 2D example and a part of the 3D KS OR between fcc () and bcc () 

phases. The equilateral triangle p3m1 is formed by the 3 dense directions <110> in the plane (111). 

The isosceles triangle pm is formed by the two dense direction <111> in the (110) plane. The fractal 

and its associated cycling graph (not shown here) are infinite (the proof is given by Niven’s theorem).  
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Table 1 Different type of variants created by structural phase transformations. They are defined as 

cosets based on subgroups of the point group 𝔾γof the parent phase.  

 

Variants  Subgroup of 𝔾γ Number of variants 

   

Orientation  ℍT
γ

=  𝔾γ   ∩   𝐓𝑐
γ→α

 𝔾α (𝐓𝑐
γ→α

)−1 
𝑁T

α =  
|𝔾γ|

|ℍT
γ |

 

Correspondence ℍC
γ

=  𝔾γ   ∩   𝐂𝑐
γ→α

 𝔾α (𝐂𝑐
γ→α

)
−1

 
𝑁C

α =  
|𝔾γ|

|ℍC
γ|

 

Distortion ℍF
γ

= { 𝑔𝑖
γ

∈ 𝔾γ ,   𝑔𝑖
γ
 𝐅𝑐

γ
 (𝑔𝑖

γ
)
−1

=  𝐅𝑐
γ
} 

𝑁F
α =  

|𝔾γ|

|ℍF
γ|

 

Distorted-Shape ℍD
γ

=  𝔾γ   ∩   𝐅𝑐
γ
 𝔾γ (𝐅𝑐

γ
)
−1

 
𝑁D

α =  
|𝔾γ|

|ℍD
γ |

 

Stretch  ℍU
γ

= { 𝑔𝑖
γ

∈ 𝔾γ ,   𝑔𝑖
γ
 𝐔𝑐

γ
 (𝑔𝑖

γ
)
−1

=  𝐔𝑐
γ
} 

𝑁U
α =  

|𝔾γ|

|ℍU
γ |

 

Table 2 Number of distortion variants 𝑁F
α, orientation variants 𝑁T

α, and correspondence variants 

𝑁C
α in the different examples treated in §7. The number of shape-distortion variants  

𝑁D
α is not reported because it always the same as the number of distortion variants (excepted in the 

“non-crystallographic” example of §7.2). 

 

Section 𝑁F
α 𝑁T

α 𝑁C
α Figure 

§7.1 4 1 4 Figure 4 

§7.2 2 1 1 Figure 5 

§7.3 4 2 2 Figure 6 

§7.4 4 4 4 Figure 7 

§7.5 2 4 2 Figure 8 

§7.6 6 3 3 Figure 9 

§7.7.1 1 2 2 Figure 10a 

§7.7.2 4 2 4 Figure 10b 

§7.8 4 4 2 Figure 11 
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Appendix A. The phenomenological theory of martensitic transformation (PTMC) and its 

possible alternative 

A1. From Bain’s distortion to PTMC 

A well-known lattice distortion between fcc () austenite and bcc () martensite in steels was 

proposed by Bain (1924) who noticed that a fcc crystal could be transformed into a bcc crystal by a 

contraction along a <001> axis and an extension along the <110> axes perpendicular to the 

contraction axis. Bain distortion U (also often noted B) is the prototype of stretch fcc-bcc distortion. 

Let us recall that a stretch matrix is a symmetric matrix; it is diagonal in an appropriate orthonormal 

basis. Any distortion can be written by polar decomposition into a combination of rotation and stretch.  

From Bain’s model, one should expect that the parent/daughter orientation relationship is a rotation of 

/4 around the <100> axes. However, Kurdjumov & Sachs (KS) (1930) and Nishiyama (1934) found 

by X-ray diffraction ORs in which the dense planes are (111) // (110), with, for KS OR, a 

parallelism of the dense directions [1̅10] // [1̅11], or for Nishiyama a parallelism [1̅10] // [001]. 

The two ORs are quite close (5.2°) but both are 10° far from that expected from Bain’s model. This 

discrepancy made Kurdjumov, Sachs and Nishiyama propose another model in which the 

transformation occurs by a combination of shear and stretch. The model was discarded by Greninger 

& Troiano (1949) because of the high value of the shear amplitude. In the same paper, Greninger & 

Troiano proposed new ideas based on shear composition to build a crystallographic model that gave 

birth to the phenomenological theory of martensitic transformation (PTMC). It is assumed in PTMC 

that the shape of martensite follows an invariant plane strain (IPS). An IPS is a matrix of type 

𝐈 + 𝐝 ∙ 𝐩𝑡, where I is the identity matrix, d is the shear direction (in column) and p is the shear plane 

(with 𝐩𝑡 in line), which is also the plane of interface between the martensite product and the austenite 

matrix according to PTMC. One can check that any vector belonging to the plane p (i.e. normal to the 

vector p) is invariant, and that any vector along p is strained by a factor 1+ 𝐝𝑡 . 𝐩. An IPS is a simple 

strain when there is no volume change (𝐝𝑡 . 𝐩 = 0). Bowles & Mackenzie (1954), independently and 

nearly with simultaneously with Wechsler, Lieberman & Read (1953), introduced with many details 

the PTMC, following Greninger & Troiano’s ideas. Bowles & Mackenzie’s version of PTMC is based 

on the assumption that the final shape S should be an IPS and that this IPS should be the combination 

of the Bain distortion U, with an additional rotation R (a free parameter that should fit the equations), 

and an inhomogeneous lattice invariant shear P (twinning or slip system), following an equation of 

type S = Q.U.P. Its input parameters are the lattice parameters of the parent and daughter phases 

(from which U is deduced). The fitting parameters are the choice of the LIS system for P and the 

amplitude of shear. The output parameters are the OR (given by the additional rotation Q) and the IPS 

S, and thus the habit plane of martensite product. An important step in solving the equations consists 

in noticing that S. P
-1

 = Q.U should have invariant line (given by the intersection of the two invariant 
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planes associated with S and P). Note that the martensite product is not homogeneous but contains 

series of defects or twins whose amount depend on the shear amplitude of P. The shear P imagined in 

this model is purely mechanical; it does not lead to a new variant if P is a slip, or it can lead to a new 

orientation if P is a twin. Also note that the equation only implies matrix multiplications, which 

means that the operations are combined successively and not simultaneously. This is a problem 

because matrix product is non-commutative in general, which means that the result depends on the 

choice of the order of the operations. To solve this problem, infinitesimal version of the PTMC were 

intended with the Bowles & Mackenzie formalism, without success (Kelly, 2003).  

Wechsler, Lieberman & Read’s formalism is quite different. It has been continued to be developed for 

shape memory alloys (SMA) by Ball & James (1987), James & Hane (2000), and Battacharya (2003) 

by using high-level mathematics and by generalizing the concept of kinematic compatibility for 

groups of martensite variants. This version of PTMC considers that the shape deformation S results 

from the association of two variants in volume faction x and (1-x), i.e. S = xF1 +(1-x)F2 where F1 and 

F2 are the distortions associated to variants 1 and 2, respectively. The martensite product is imagined 

as a composite made of x variant 1 and (1-x) variant 2 in volume proportion. In order to get the 

expected atomic volume change, Det(S) should be equal Det(F) = vol(bcc)/vol(fcc), which is quite 

restrictive because the determinant is not a linear function of matrices; the equality is obtained if and 

only if there is continuity (compatibility) of the interface between the variants 1 and 2, i.e. the 

interface on the plane p21 is distorted similarly by F1 and F2 (it can be rotated). Mathematically this 

condition is equivalent to 𝐅1 − 𝐅2 = 𝐝21. 𝐩21
𝑡 . This equation can also be written 𝐅1 = 𝐅2. (𝐈 +

𝐅2
−1𝐝21. 𝐩21

𝑡 ) = 𝐅2𝐏21,  with 𝐏21 = 𝐈 + (𝐅2
−1𝐝21). 𝐩21

𝑡 , which shows that the variant 2 can be 

transformed into the variant 1 by a simple strain 𝐏21 on the plane p21 along the direction by 𝐅2
−1𝐝21. 

This fact justifies that the two variants generated by a phase transformation are also mechanical twins 

(if the shear amplitude is realistic), and that variant reorientation in SMA can be obtained by 

deformation. The compatibility criterion between the austenite and the martensite product is 

equivalent to say that S is an IPS. In addition, by using 𝐅1 = 𝐅2𝐏21 and writing 𝐏21 = 𝑥𝐏 and 

𝐅2 = 𝐐𝐔  by polar decomposition, one can easily check that the equation S = xF1 +(1-x)F2 is also 

written S = Q.U.P. Consequently, Wechsler, Lieberman & Read’s theory is equivalent to Bowles and 

Mackenzie’s one, despite the apparent difference of formalism, which justifies the unique name 

“PTMC” given to both versions of the theory. The compatibility conditions are sensitive to the lattice 

parameters. Both versions explicitly or implicitly use the Bain correspondence matrix C that was first 

proposed by Jaswon & Wheeler (1948). The distortion matrix F and the orientation relationship 

matrix T are indeed linked together by C, according to F = T.C (see also § 2.3). This relation was 

explicitly used by Bowles & Mackenzie (1954) and in the crystallographic theories of deformation 

twinning (see for example Bevis & Crocker, 1968; Christian & Mahajan, 1995; Szczerba et al. 2012). 
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A2. Some compatibility criteria used in PTMC 

The understanding of the formation of variants is of importance to get a better understanding of the 

reversibility of martensitic alloys (Bhattacharya et al., 2004; Cayron, 2006; Gao et al., 2017). One 

may distinguish the reversibility of the stress-induced transformations evaluated on SMA by tensile 

straining tests, from the reversibility of temperature-induced transformations evaluated by thermal 

cycles between temperatures below Mf (martensite finish temperature) and above Af (austenite finish 

temperature). Different factors play a crucial role on temperature-induced reversibility. PTMC mainly 

treats interface reversibility, as it defines some supercompatibility criteria requiring on some relations 

between the lattice parameters of the parent and daughter phases, i.e. i) the compatibility between the 

parent and the martensite product, ii) the compatibility between the two variants forming the 

martensite product, as explained previously, and iii) a criterion called “cofactor condition” (Chen et 

al., 2013). Only the stretch variants Ui are required in the calculations. Beside these crystallographic 

considerations, the mechanical properties of the parent and daughter phases, mainly their yield 

strengths, are also important. Indeed, high yield strengths (or low transformation temperatures) 

generally implies a low activity of dislocations, which favours elastic accommodations or 

accommodation mechanisms without the usual plastic deformation modes (variants pairing or 

grouping). Hardening the parent phase by precipitation or by modifying the grain sizes helps for 

increasing the reversibility of SMA (Gu et al., 2018).  For the last years, PTMC has tried to 

incorporate plasticity from pure crystallography. The set of accumulated deformation (and defects) 

during thermal cycling was identified to a group called “global group” by Bhattacharya et al. (2004). 

This group is built with two types of generators, the usual generators of the point group (the 

symmetries), and a primitive LIS (Eriksen, 1989). For example, the global group of a simple square 

“phase” is made of the LIS matrices generated by the simple strain (
1 −1
0 1

) and by the square 

symmetries; it is the special linear group SL(2, ℤ) of matrices of determinant 1 made of integer 

coefficients. This approach has been followed by Gao et al. (2017) who introduced geometric 

representations (Cayley graphs) of the global group of lattice deformation. We are not yet fully 

convinced by this approach in its present form because plasticity seems more complex than 

combinations of symmetries and LIS. It is not clear from a mechanical point of view if the usual way 

to write space group operations combining orientation symmetries g and translation symmetries t with 

the Seitz symbols {g  t} and their associated semi-direct product can be transformed into “global” 

shear matrices with their usual matrix product. Can we really assume that the translation operation {E 

 [1,0]} is equivalent to a simple strain operation (
1 1
0 1

)?  

A3. An alternative approach to the PTMC 
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The success of PTMC is more significant and impressive for shape memory alloys (SMA) than for 

martensite in steels for which some habit planes such as {225} have remained unexplained for a long 

time (see for example Dunne & Wayman, 1971). For the last decade, we have tried to explain specific 

continuous features that appear in the pole figures of martensite in steels and other alloys, and we 

could not get any answer from PTMC. We thus came to conclude that the difficulty of PTMC for 

steels comes from the important distortion associated with the fcc-bcc transformation, which implies 

accommodation by dislocations and makes the incompatibility criteria of PTMC less relevant, or at 

least relaxed. Instead of using the exact values of the lattice parameters and guessing the LIS systems 

to fit the proportion of twins or LIS in order to reach an IPS, as practised in PTMC, we consider the 

OR as known, and we explain the continuous features observed in EBSD from the atomic 

displacements and lattice distortion of the transformation. Considering the OR as an input data is 

exactly the approach proposed by Nishiyama (1972) to overcome the failures of PTMC for steels. We 

introduced a type of distortion called “angular-distortive”, and we imagine that martensite is formed 

from austenite in a way similar to a soliton wave; the OR is imposed by a condition on the wave 

propagation more than by the exact values of the lattices parameters (Cayron, 2018). We started by a 

two-step model implying an intermediate hexagonal phase (Cayron et al., 2010), then a one-step 

model based on Pitsch OR (Cayron, 2013), and more recently a continuous one-step model based on 

KS OR (Cayron, 2015), generalized to other martensitic transformations between fcc, hcp and bcc 

phases (Cayron, 2016). Extension and contraction twinning modes in magnesium were also treated 

(Cayron, 2017a,b). In these works, the atoms were assumed to be hard-spheres of constant size, which 

allows the calculation of the distortion matrices as continuous forms depending of a unique angular 

parameter. The {225} habit plane of martensite in steels could be deduced from the KS OR by 

relaxing the IPS assumption of PTMC and by assuming that the interface plane is only untilted 

(Jaswon & Wheeler, 1948; Cayron, 2015). If required, the {225} unrotated plane can be rendered 

invariant (IPS) by coupling two KS variants in twin orientation relationship (Baur et al., 2017a). The 

exact KS OR imposes a strict invariant line along a dense direction that is common to fcc and bcc 

phase [1̅10] // [1̅11], which is fulfilled the hard-sphere assumption, but disagrees with the real lattice 

parameters used in PTMC. We have some reasons to believe that the continuous features observed in 

the pole figures martensite in steels come from the rotational incompatibilities between the low 

misorientated KS variants (Cayron, 2013), and that these incompatibilities are the consequence of the 

angular distortive character of the transformation. These rotational defects are disclinations; they play 

the same role in plasticity as dislocations for translational defects (Romanov, 2003); they are already 

used for phase transformations (see for example Müllner & King, 2010). Disclinations do not belong 

to the global group, at least with its present definition.  

  



Acta Crystallographica Section A    research papers 

46 

 

Appendix B. Reminder on elementary matrices 

B1. Notations 

To read the present paper, the reader should be familiar with basic linear algebra and group theory 

(subgroups, cosets, action of groups). If it is not the case, it can refer to Janovec, Hahn & Klapper 

(2003) or to the appendix of (Cayron, 2006). The vectors of a crystallographic basis are noted a, b, c. 

The identity matrix is noted I. The metric and structure tensors (matrices) are noted 𝓜 and 𝓢, 

respectively. In general in this paper the vectors are noted by bold lowercase letters and the matrices 

by bold uppercase letters, but there are some exceptions. A material point in continuum mechanics is 

usually noted X (a vector made of the coordinates of the initial position of the point) in order to 

differentiate it from the trajectory of this point given by the spatial positions x = F.X. The symmetry 

matrices are noted by the letter g in italic lowercase to respect the usual notation in crystallography. 

Groups of matrices are noted by double-struck letters, for example 𝔾. The letters are generally 

completed by superscripts and subscripts. The superscript refers to the phase (written in Greek letter) 

to which the vector or matrix belongs or refers. The subscript generally specifies the basis in which 

the vector or matrix is written. For example 𝐮/𝓑


 means a direction 𝐮


 of the phase  whose 

coordinates are written in column in the crystallographic basis 𝓑. For sake of simplicity, the vector is 

simply noted 𝐮𝑐

when expressed in the crystallographic basis 𝓑𝑐


= (𝐚, 𝐛, 𝐜), and 𝐮⋕


 when it is 

expressed in the orthonormal basis linked to the crystallographic basis 𝓑⋕


by the structure tensor 𝓢. 

Note that distortion matrices are noted 𝐅𝑐

 in this paper and not anymore 𝐃𝑐


 as in (Cayron, 2015, 

2016). The choice of the letter F was made to reinforce the link between crystallography and 

continuum mechanics, as it was already done by Battacharya (2003). The choice of replacing “” 

simply by “” in the superscript of F is more important. It was made to respect the head-tail 

composition of the superscripts, for example in the equation (5) 𝐂𝑐
α→γ

= 𝐓𝑐
α→γ

 𝐅𝑐
γ
, and to insist on the 

fact that the distortion alone cannot define the transformation, as shown in example of Figure 1. The 

correspondence or orientation should complement the distortion matrix to define the crystallographic 

characteristics of the transformation. The subscript is also sometimes used to indicate the index of an 

element in a group, for example 𝒈𝑖
γ

∈ 𝔾 means the i
th
 element in the group of symmetries 𝔾 (this 

supposes that the matrices are enumerated). The inverse, transpose, and inverse of the transpose of a 

matrix are marked by the exponent -1, t, and *, respectively. The Greek letters  and  are used for the 

phases, and  or  are distortion angles. The notation n/m with n and m integers means “n divides m”. 

B2. Coordinate transformation matrices and distortion matrices 

The coordinate transformation matrix from the basis 𝓑 = (𝐚, 𝐛, 𝐜) to the basis 𝓑 = (𝐚, 𝐛, 𝐜) 

is 𝐓→ = [𝓑𝓑]; it is given by the coordinates of the vectors 𝐚, 𝐛, 𝐜 expressed in the 

crystallographic basis 𝓑 and written in column. By explicitly writing 𝐚 = 𝑎1/
  𝐚 + 𝑎2/

  𝐛 +
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𝑎3/
  𝐜 , 𝐛 = 𝑏1/

  𝐚 + 𝑏1/
  𝐛 + 𝑏1/

  𝐜 and 𝐜 = 𝑐1/
  𝐚 + 𝑐1/  

 𝐛 + 𝑐1/
  𝐜 ; the linear relation can 

be written 

(𝐚, 𝐛, 𝐜) =  (𝐚, 𝐛, 𝐜) . 𝐓→ (B1)    

with 𝐓→ = [

𝑎1/
 𝑏1/

 𝑐1/


𝑎2/
 𝑏2/

 𝑐2/


𝑎3/
 𝑏3/

 𝑐3/


], or equivalently [
𝐚

𝐛

𝐜
] = (𝐓→)t [

𝐚

𝐛

𝐜
]. 

A fixed vector u is expressed in the basis 𝓑  and in the basis 𝓑 by its coordinates written in column 

𝒖/γ =

[
 
 
 𝑢1/

𝑢2/

𝑢3/]
 
 
 
 and 𝒖/ =

[
 
 
 𝑢1/𝛼

𝑢2/𝛼

𝑢3/𝛼]
 
 
 
. The coordinates have a meaning only relatively to the basis in which 

they are written. The full expression of the vector is 𝒖 =  (𝐚, 𝐛, 𝐜)

[
 
 
 𝑢1/𝛼

𝑢2/𝛼

𝑢3/𝛼]
 
 
 
 = (𝐚, 𝐛, 𝐜)

[
 
 
 𝑢1/

𝑢2/

𝑢3/]
 
 
 
. 

Combined with equation (B1), it implies that the matrix 𝐓→ transforms the coordinates of the 

vectors according to 

[
 
 
 𝑢1/

𝑢2/

𝑢3/]
 
 
 
= 𝐓→  

[
 
 
 𝑢1/𝛼

𝑢2/𝛼

𝑢3/𝛼]
 
 
 
 , or equivalently, by noting the vectors formed by the 

column coordinates of the vector 𝒖  

𝒖/γ = 𝐓→ 𝒖/ (B2)    

When this relation is applied to the three basis vectors of the basis 𝓑, we write in series: 

(𝐚/
α , 𝐛/

α , 𝐛/
α ) =  𝐓→. (𝐚/𝛼

α , 𝐛/𝛼
α , 𝐛/𝛼

α )  (B3)    

with obviously 𝐚/𝛼
α = [

1
0
0
] , 𝐛/𝛼

α = [
0
1
0
] and 𝐜/𝛼

α = [
0
0
1
]. One can compare this equation with equation 

(B1). In equation (B1) 𝐓→ establishes a relation between the triplets of vectors of two different 

bases, whereas in equation (B3) 𝐓→ establishes a relation between the coordinates of a unique triplet 

of vectors written in two different bases.  

It is also important to notice that the coordinate transformation matrices are passive matrices; they 

should be composed from the left to the right: 

𝐓→ 𝐓→ = 𝐓→ (B4)    

The coordinate transformation matrix of the inverse transformation 𝐓→ is simply the inverse of the 

matrix of the direct transformations 

𝐓→ = (𝐓→)−1 (B5)    

Now, let us consider a linear distortion F expressed by a matrix  𝐅/γ in the basis 𝓑. A vector u 

expressed by its column vector 𝒖/γ in the basis 𝓑 is transformed by the action F into a new vector u’ 
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expressed by its column vector 𝒖′/γ in the basis 𝓑 such that 𝒖′ = 𝐅. 𝒖 , expressed by the relation 

between the coordinates 𝒖′/γ = 𝐅/γ. 𝒖/γ. If a distortion F is combined with another distortion G, the 

combination depends on the order of the actions. If F is applied first,  𝒖′/γ = 𝐅/γ. 𝒖/γ , and 𝐆 is 

applied in second,  𝒖"/γ = 𝐆/γ. 𝒖′/γthen we get 𝒖"/γ = (𝐆/γ𝐅/γ). 𝒖/γ . The distortion matrices are 

active matrices; the distortion F followed by the distortion G is given by the matrix product 𝐆/γ . 𝐅/γ. 

The distortions should be composed from the right to the left when they are expressed in the same 

basis.  

A distortion F expressed in 𝓑 by 𝐅/γ and in  𝓑 by 𝐅/α is such that 𝒖′/γ = 𝐅/γ. 𝒖/γ and 𝒖′/ =

𝐅/. 𝒖/. By using the coordinate transformation matrix 𝐓→ = [𝓑  𝓑] and equation (B2), it 

comes immediately that 

𝐅/γ = 𝐓→ 𝐅/(𝐓
→)−1 (B6)    

B3. Metric matrices 

A lattice is defined by its crystallographic basis 𝓑𝑐 = (𝐚, 𝐛, 𝐜). A vector 𝒖 has coordinates that form 

the vector  𝒖𝒄 = [

 u𝟏/𝒄

 u𝟐/𝒄

 u𝟑/𝒄

]. The vector is 𝒖 = (𝒂, 𝒃, 𝒄) [

 u𝟏/𝒄

 u𝟐/𝒄

 u𝟑/𝒄

]. The scalar product of two vectors 𝒖 and 

𝒗 is 𝒖t. 𝒗 = (u𝟏/𝒄,  u𝟐/𝒄,  u𝟑/𝒄) [
𝐚t

𝐛t

𝐜t
] (𝐚, 𝐛, 𝐜) [

 v𝟏/𝒄

 v𝟐/𝒄

 v𝟑/𝒄

] = (u𝟏/𝒄,  u𝟐/𝒄,  u𝟑/𝒄) 𝓜 [

 v𝟏/𝒄

 v𝟐/𝒄

 v𝟑/𝒄

] =  𝒖/𝒄
𝒕  𝓜 𝒗/𝒄 , 

where 

𝓜 = [
𝐚𝑡

𝐛𝑡

𝐜𝑡
] (𝐚, 𝐛, 𝐜) = [

𝐚2 𝐛t𝐚 𝐜t𝐚
𝐚t𝐛 𝐛2 𝐜t𝐛
𝐚t𝐜 𝐛t𝐜 𝐜2

] 

 

(B7)    

The matrix 𝓜 is the metric tensor; it contains the key parameters of the metrics of the lattice. Its 

components are given by the scalar products between the basis vectors, implicitly calculated by 

expressing these vectors into an orthornormal basis. The formula of scalar product between two 

crystallographic vectors helps to better understand why it is important to distinguish the vector from 

its coordinates: 

 ‖𝒖‖2 =  𝒖t. 𝒖 = 𝒖/𝒄
t  𝓜 𝒖/𝒄 (B8)    

From (B7) or (B8), it can be checked that the metric tensor is symmetric.  

𝓜 = 𝓜t (B9)    

The metric tensor can be also introduced by the using the reciprocal basis given by 𝓑𝑐
∗ = (𝐚∗, 𝐛∗, 𝐜∗)  

with 𝐚∗ =
𝐛⋀ 𝐜

𝑉
, 𝐛∗ =

𝐜⋀𝐚

𝑉
, 𝐜∗ =

𝐚⋀𝐛

𝑉
, with 𝑉 = 𝑑𝑒𝑡(𝐚 𝐛 𝐜) the volume of the unit cell. This basis is 

such that 
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[
𝐚
𝐛
𝐜
] (𝐚∗, 𝐛∗, 𝐜∗) = 𝐈 

(B10)    

By subtitling the vectors  (𝐚, 𝐛, 𝐜) by (𝐚∗, 𝐛∗, 𝐜∗) in this equation and by inversing both sides, one gets 

that (𝐚∗)∗, (𝐛∗)∗ , (𝐜∗)∗ =  𝐚, 𝐛, 𝐜, respectively, i.e (𝓑𝑐
∗)∗ = 𝓑𝑐. 

Let us consider a vector 𝒖 of coordinates in the direct and reciprocal bases  𝒖/𝒄 = [

 u𝟏/𝒄

 u𝟐/𝒄

 u𝟑/𝒄

] and 

 𝒖/∗ = [

 u𝟏/∗

 u𝟐/∗

 u𝟑/∗

]. By using equation (B10), the norm of 𝒖 is simply 𝒖t. 𝒖 = (u𝟏/𝒄,  u𝟐/𝒄,  u𝟑/𝒄)  [

 u𝟏/∗

 u𝟐/∗

 u𝟑/∗

] . 

Comparing this expression with the previous one leads to [

 u𝟏/∗

 u𝟐/∗

 u𝟑/∗

] = 𝓜 [

 u𝟏/𝒄

 u𝟐/𝒄

 u𝟑/𝒄

] . Therefore, the metric 

tensor 𝓜 can be understood as the coordinate transformation matrix from the reciprocal basis to the 

direct basis: 

𝓜 = [𝓑𝑐
∗ → 𝓑𝑐] (B11)    

With this equation, 𝓜∗ = [(𝓑𝑐
∗)∗ → 𝓑𝑐

∗] = [𝓑𝑐 → 𝓑𝑐
∗], which leads to 

𝓜∗ = 𝓜−1 (B12)    

Instead of using the metric tensor, it is sometimes useful for the calculations to switch from the 

crystallographic basis to an orthonormal basis chosen according to an arbitrary rule. We call 𝓑𝑐 =

(𝒂, 𝒃, 𝒄) the usual crystallographic basis, and 𝓑⋕ = (𝒙, 𝒚, 𝒛) the orthonormal basis linked to 𝓑𝑐 by the 

structure tensor 𝓢: 

𝓢 = [𝓑⋕ → 𝓑𝑐] =

(

  
 

𝑎 𝑠𝑖𝑛 (𝛼)
𝑏(𝑐𝑜𝑠(𝛾) − 𝑐𝑜𝑠(𝛼) 𝑐𝑜𝑠(𝛽))

𝑠𝑖𝑛 (𝛽)
0

0
𝑏𝑣

𝑠𝑖𝑛 (𝛽)
0

𝑎 𝑐𝑜𝑠(𝛽) 𝑏 𝑐𝑜𝑠(𝛼) 𝑐)

  
 

 

(B13)    

with  𝑣 =
𝑉

𝑎𝑏𝑐
= √1 + 2 cos(α) cos(β) cos(γ) − cos2(α) − cos2(β) − cos2(γ) 

Any vector u can be written in 𝓑⋕ by  𝒖/⋕ = [

 u𝟏/⋕

 u𝟐/⋕

 u𝟑/⋕

] = 𝓢 [

 u𝟏/𝒄

 u𝟐/𝒄

 u𝟑/𝒄

], and its norm is simply 𝒖t. 𝒖 =

(u𝟏/⋕,  u𝟐/⋕,  u𝟑/⋕)  [

 u𝟏/⋕

 u𝟐/⋕

 u𝟑/⋕

] = (u𝟏/𝒄,  u𝟐/𝒄,  u𝟑/𝒄) 𝓢
t𝓢 [

 u𝟏/𝒄

 u𝟐/𝒄

 u𝟑/𝒄

]  , which shows that 

𝓢t𝓢 = 𝓜  (B14)    

Any rotation Q is defined by an orthogonal matrix 𝐐⋕ when written in an orthonormal basis 𝓑⋕ . As it 

preserves the scalar product, 

 𝐐⋕
t 𝐐⋕ = 𝐈 (B15)    

When written in the crystallographic basis 𝓑𝑐 the same rotation is written 𝐐𝑐 = 𝓢−1𝐐⋕ 𝓢 . The 

preservation of the scalar product becomes  
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𝐐𝑐
t  𝓜 𝐐𝑐 = 𝓜 (B16)    

which can be understood by the fact that the rotations preserve the metrics of the crystals.  

B4. Symmetry matrices  

One of the most fascinating properties of crystals is their symmetry. The shape formed by the faces of 

some macroscopic crystals in minerals perfectly reflects the symmetries of orientations of the planes. 

Let us consider the set of symmetries of crystallographic directions (point group) 𝔾, which we will 

show later is the same as that of planes. This set is formed by the matrices that preserve the norms and 

angles of crystallographic directions, i.e. the scalar product defined with the crystal metrics. By 

default, the symmetry matrices will be always written in the crystallographic basis. With this 

simplification of notation, we write that any symmetry matrix g of the crystal is such that 𝒈t𝓜𝒈 =

𝓜 (see for example Rigault, 1980). In other words, the symmetries leave invariant the metrics 𝓜 of 

the crystal; they are the stabilizer of the metrics by the conjugacy action. One can add the condition 

that they do not change the volume of the crystal, which imposes that the determinant of the matrix is 

±1, i.e.  the symmetry matrices belongs to the special linear group of dimension N = 3 on the real 

numbers, SL(N,ℝ) or belongs to –I SL(N,ℝ). A last constrain comes from the lattice: the symmetries 

should transform any vector of the crystallographic basis into another crystallographic vector, i.e. a 

vector of integer coordinates into another one, i.e. the matrix should be an integer matrix. These 

considerations can be combined to define the orientation symmetry matrices by 

𝔾 = {𝒈 ∈  ±SL(𝑁, ℤ),   𝒈t𝓜𝒈 = 𝓜}  (B17)    

The group structure of  𝔾 can be checked (remind that the inverse of a matrix is the transpose of the 

cofactor matrix times the inverse of its determinant).   

Similarly, one can define 𝔾∗ as the group of matrices of determinant ±1 and that leave the metric 

matrix 𝓜∗ invariant: 𝔾∗ = {𝒈 ∈  ±SL(𝑁, ℤ),   𝒈t 𝓜∗𝒈 = 𝓜∗}. With equations (B9) and (B12), it 

can be checked that 𝔾∗ = 𝔾. One can say that the point group 𝔾 is constituted by the symmetries that 

leave the metric invariant without specifying if the symmetries act on the directions or the planes.  

B5. Link between the metrics and symmetries of two phases 

The orientation relationship matrix 𝐓𝑐
→

 that links the crystallographic bases of two crystals  and  

can be used to establish some relations between the metric tensors of the two phases. We have defined 

in formula (B8) the metric tensor 𝓜 by the matrix that allows calculating scalar product of vectors 

written in their crystallographic basis, 𝒖t. 𝒗 = 𝒖/𝒄
𝒕  𝓜 𝒗/𝒄 . For two vectors 𝒖 and 𝒗, expressed 

simultaneously in the crystallographic basis 𝓑𝑐

 of the crystal , and in the crystallographic basis 𝓑𝑐

 of 

the crystal , it comes 𝒖t. 𝒗 = 𝒖/
𝒕  𝓜 𝒗/ = 𝒖/

𝒕  𝓜 𝒗/. By using formula (B2) and the fact that 

the formula hold for any vectors 𝒖 and 𝒗, it comes that  
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   𝓜  =   𝐓𝑐
→

 𝓜 (𝐓𝑐
→

)
−1

  (B18)    

The orientation relationship matrix 𝐓𝑐
→

 also permits to establish some relations between the point 

groups of the two crystals. Let us apply the appendix formula (B17) that the group of symmetry 

matrices of the crystal  and of crystal ,  

𝔾 = {𝒈  ∈  ±SL(𝑁, ℤ),   𝒈t𝓜𝒈 = 𝓜} 

𝔾 = {𝒈  ∈  ±SL(𝑁, ℤ),   𝒈t𝓜𝒈 = 𝓜} 

(B19)    

By using equation (B18) it can be shown that if 𝒈  ∈ 𝔾, then 𝐓𝑐
→

 𝒈 (𝐓𝑐
→

)
−1

 leaves invariant 

the metrics 𝓜. If the condition 𝐓𝑐
→

 𝒈 (𝐓𝑐
→

)
−1

∈ ±SL(𝑁, ℤ) is fulfilled, then  

𝐓𝑐
→

 𝒈 (𝐓𝑐
→

)
−1

∈ 𝔾 . One can thus write 

𝔾  ⊃   𝐓𝑐
→

 𝔾 (𝐓𝑐
→

)
−1

∩ ±SL(𝑁, ℤ) 

𝔾  ⊃  𝐓𝑐
→

 𝔾 (𝐓𝑐
→

)
−1

 ∩  ±SL(𝑁, ℤ)   

(B20)    
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Appendix C. Symmetry matrices for some 2D point groups  

 

Square P4mm (n°11), 𝔾Sq 

𝑔1
Sq

= (
1 0
0 1

),  𝑔2
Sq

= (1̅ 0
0 1

), 𝑔3
Sq

= (
1 0
0 1̅

),  𝑔4
Sq

= (1̅ 0
0 1̅

), 

𝑔5
Sq

= (
0 1
1 0

),  𝑔6
Sq

= (
0 1
1̅ 0

), 𝑔7
Sq

= (0 1̅
1 0

),  𝑔8
Sq

= (0 1̅
1̅ 0

). 

 

Rectangle P2mm (n°6), 𝔾Rc 

𝑔1
Rc = (

1 0
0 1

),  𝑔2
Rc = (1̅ 0

0 1
), 𝑔3

Rc = (
1 0
0 1̅

),  𝑔4
Rc = (1̅ 0

0 1̅
). 

 

Hexagon P3m1 (n°14), 𝔾Tr (called here Triangle) 

𝑔1
Tr = (

1 0
0 1

),  𝑔2
Tr = (0 1̅

1 1̅
), 𝑔3

Tr = (1̅ 1
1̅ 0

), 

 𝑔4
Tr = (1̅ 0

0 1̅
),  𝑔5

Tr = (1̅ 1
0 1

), 𝑔6
Tr = (

1 0
1 1̅

). 

 

Hexagon P6mm (n°17), 𝔾Hx: 

𝑔1
Hx = (

1 0
0 1

),  𝑔2
Hx = (0 1̅

1 1̅
), 𝑔3

Hx = (1̅ 1
1̅ 0

), 

 𝑔4
Hx = (1̅ 0

0 1̅
),  𝑔5

Hx = (1̅ 1
0 1

), 𝑔6
Hx = (

1 0
1 1̅

), 

 𝑔7
Hx = (0 1̅

1̅ 0
),  𝑔8

Hx = (
0 1
1̅ 1

),  𝑔9
Hx = (1 1̅

1 0
),   

 𝑔10
Hx = (

0 1
1 0

),  𝑔11
Hx = (1 1̅

0 1̅
),  𝑔12

Hx = (1̅ 0
1̅ 1

).  

 

 

 

 

 


