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Abstract. While ambitious environmental objectives are being set for new constructions in 

Switzerland, the assessment of urban-scale projects and comparison of their performance to 

national targets are made possible by a growing number of life-cycle assessment (LCA) tools. 

However, previous research emphasizes the lack of existing tools to support the decision-making 

process at the early design stage, characterized by a low level of project details. This paper 

presents a comparison between three LCA tools. The first, stemming from a research and 

development project (SETUP), is an exploration tool relying on a database of urban-level 

scenarios and their environmental performance, able to convert district targets (e.g. 2000-Watt 

society objectives) into specific sub-targets at the building or component levels. The other two 

are online LCA tools currently available to practitioners (Sméo and Calculation tool for 2000-

Watt-society-sites RH II ), that allow assessing the project and verifying its compliance with a 

given target. Each tool was applied to a low-carbon case study, the blueFactory district in 

Fribourg (Switzerland), in two hypothetical contexts corresponding to the schematic and detailed 

project development phases, characterized by different levels of details. When used for the 

assessment of a project at a more advanced development stage with a high resolution of detail, 

findings indicate that Smeo and RH II provide similar environmental performance results. 

However, in early planning stages, SETUP shows better abilities to support decision-making by 

providing ranges of results and highlighting uncertainties and the influence of design parameters 

that have not yet been fixed. 

 

1. Introduction   

On the global level, the building sector has a major impact on the environment, being responsible for  

approximately 32% of final energy consumption and 19% of related CO2 emissions [1]. In the context 

of climate change mitigation reinforced by the Paris Agreement [2], countries have been developing, 

implementing and strengthening national plans and targets for decreasing the environmental impact of 

the built environment. Switzerland introduced the 2000-Watt Society vision, that sets the pathway to 

limiting the total primary energy use to 2000 Watts per person and greenhouse gas emissions to 1 ton 

per person by the year 2100 [3], with intermediate goals for the year 2050 [4]. Accordingly, the Swiss 
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Society of Engineers and Architects (SIA) defined targets for the building sector, with non-renewable 

cumulative energy demand (CEDnr) and global warming potential (GWP) as the main assessment 

metrics [4].  

Life-cycle assessment (LCA) is a well-recognized method for estimation of the environmental 

impacts from the product phases, over the construction process and use, and up to the end-of-life [5]. 

Even though LCA is widely used for benchmarking the finalized construction project to environmental 

targets, its application is essential for guiding the practitioners during the design process at early 

planning stages. As notably stated by the SIA, “important decisions for the achievement of the target 

values are made in the early planning phases (strategic planning, preliminary studies and preliminary 

project)” [4]. Moreover, the application of LCA is extending beyond the scale of individual buildings 

(building labels such as Minergie-ECO [6] or new concepts such as Life Cycle-Zero Energy Building 

LC-ZEB [7]), to considerations at larger scales such as neighborhoods and cities [1,8–10].  

LCA-based tools for urban level projects need to fulfill numerous requirements [11], and their 

application at early design stages faces several challenges [12]. Tools are needed for exploration of 

interrelations between specific design choices and their influence on the project performance as early as 

the beginning of the project, in the context of high uncertainty, lack of information and low resolution 

of project details. The objective of this study is to assess the ability of LCA tools to support the decision-

making process for urban–level projects, and to better understand the type of results they are able to 

provide.  

Testing LCA tools is hardly possible by referring to empirical evidence from the real life context 

(e.g. analysis of energy bills within Building Energy Simulation Test (BESTEST) [13]), due to the 

system, spatial and temporal boundaries for life-cycle impact assessment of urban-level constructions. 

Therefore, the study compares LCA-based tools that are currently available to practitioners in 

Switzerland. 

2.  LCA-based tools  

Three LCA-based urban-level tools developed for the Swiss built environment context are identified: 

SETUP, which stands for Specific Environmentally-conscious Targets for Urban Planning, Smeo Red 

thread for sustainable construction (Fr. Sméo Fil rouge pour la construction durable) [14], and Tool for 

2000-Watt-Society-sites (Ger. Rechenhilfe II für 2000-Watt-Areale, RH II) [15]. The comparisons are 

possible because the environmental evaluation relies on national databases of life-cycle impact values 

and SIA standards and norms. The three tools are characterized and compared according to eight 

categories identified by Bach and Hildebrand [16]. Most important features of the tools are presented in 

Table 1. 

The main purpose of SETUP is to decompose environmental targets from district- to building-, 

domain- (construction, operation, mobility) and component (e.g., windows) levels, and to facilitate 

exploration of databases of project alternatives and relating environmental impacts of individual plots 

within the district at early-planning phases [17]. A proof-of-concept was developed for the blueFactory 

district in Fribourg, which aims to be low carbon (Figure 1). Project alternatives for each plot were 

created by varying 17 building parameters (e.g. building shape, depth, height etc.), and assessing 

operational, embodied impacts and building-induced mobility. The database thus generated includes a 

large number of project alternatives, sampled through the Sobol low discrepancy method (for more 

information see: [17]). An Excel-based VBA prototype tool allows exploring these pre-simulated 

databases. Input-data comprises values for construction areas per plot and building use, and the selection 

of a reference target for the whole site (from a certification system or building label). Outputs include: 

decomposed site-level performance targets (CEDtot, CEDnr and GWP) into differentiated sub-targets 

per plot, building program, domain and component, frequency (number of occurrences) of scenarios that 

are meeting different target values, influence of variable parameters (geometry, components, technical 

installations, etc.), and graphical presentation of (un)favorable options through a decision tree. 
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Figure 1. Existing buildings and plots on the blueFactory site, as defined for the SETUP tool. 

 

Smeo assesses the sustainability of a project by addressing its environmental, economic and social 

domains and applying the Hermione method, which aggregates a number of quantitative and qualitative 

criteria [18]. Through a preliminary section of the internet platform, the project is characterized by 

selecting its scale (building or site), main program (residential, administration, etc.), type (new 

constructions, renovations, use, and transformation), phase (initiation, masterplan, district plan, 

realization, and use) and stakeholder. Accordingly, the suitable interface with input fields opens in the 

first out of several tool sections. For the purposes of this study, i.e. district-level new construction project 

at early and advanced planning phases, the interface offers three main sections. The General Data section 

is the same for both phases and it comprises input fields regarding urban-level parameters, embodied, 

operational impacts, mobility, etc. Beside dropdown lists with predefined data, required inputs often 

include aggregated parameter values, for all buildings within the studied district (e.g. floor space index, 

land use index, total footprint of assessed buildings, etc.), as well as adaptable default values. After 

entering the number of buildings within the district, the tool hypothesizes that all buildings have identical 

characteristics, thus not allowing the comparison of building alternatives and related impacts. The 

Detailed Results section is identically structured for both studied planning phases, and provides site-

level results of the qualitative social and economic sustainability criteria, and the quantitative evaluation 

of environmental impacts (CEDnr, GWP and ecological scarcity points UBP for the entire site and per 

domain, illustrated in charts).  

The main purpose of the third tool, RH II, is benchmarking the site-level project to 2000-Watt-

Society targets. The data input begins with specifying the main project features, e.g. project type (new 

constructions, renovations, buildings in use), reference year for norms and targeted impacts (2030, 

2050), project phase (according to SIA 112) and other data which determines the format of the user 

interface, requested input, software workflow, etc. Data is entered separately for each building. For the 

preliminary study phase, input is simple and intuitive with a lot of adaptable default values and 

dropdown lists, which requires only general knowledge from the user. In contrast, the module for the 

project execution phase requires more detailed input of numerical values for embodied and operational 

impacts, transferred from independent software, which might require expert skills. In this case, 

boundaries of LCA depend on the external software. The type of data outputs for both project phases is 

identical: on site and building scales, numeric values per impact category (CED, CEDnr and GWP) per 

domain and in total, with corresponding graphs for the site level indicating compliance or not with the 

2000-Watt-Society targets. 

 

Table 1. Comparison of three LCA-based tools according to [16]. 

 SETUP (prototype) Smeo RH II 

Origin 
EPFL Fribourg, 

Switzerland, 2019   

City of Lausanne and 

Canton of Vaud, 

Switzerland 

(www.smeo.ch), 2009 

Federal office of Energy 

OFEN, Zurich, Switzerland  

(www.local-energy.swiss), 

2018   

http://www.smeo.ch/
https://www.local-energy.swiss/fr/profibereich/profi-instrumente/2000-watt-areal/formular-rechenhilfe.html#/
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Data source 

CEN EN 15978, KBOB 

2009/1:2016, SIA 

380/1:2016, etc. 

SIA 112, KBOB 

2009/1:2012, SIA 

380/1:2009, etc. 

SIA 112, KBOB 

2009/1:2014, etc. 

Required user’s 

knowledge 
No prior knowledge Basic knowledge Expert knowledge 

Accessibility 
Conditional access  

(project stakeholders) 

Free access  

(registration needed) 

Free access  

(registration needed) 

Entry format Spreadsheet 
Input fields and 

dropdown lists 

Input fields and  

dropdown lists 

Level (scale) 
District-, plot- and 

component-levels 
District-level District- and building-levels 

Default settings Default settings 
Default settings  

partly available 

Default settings  

partly available 

Life cycle 

phases 

According to CEN EN 

15978: Product (A1-3), 

Use (B6), End-of-life 

(C1-4) 

According to SIA 112 

project phase; project 

planning construction and 

use phases 

According to SIA 112 

project phase, but also 

dependant of system 

boundaries of external 

software 

 

3.  Comparability of the tools  

In order to better understand differences among workflows and discrepancies between impact 

assessment results, the tools are applied to the urban-level project in the advanced stage, characterized 

by a high resolution of project detail. The comparison is focused on embodied and operational impacts, 

without considerations of building-induced mobility, because these impacts do not influence the design 

process. The case study is the hypothetical project illustrated in Figure 2 for the blueFactory site 

introduced earlier.  

Impact assessment of the blueFactory site focuses on ten administrative buildings, three of which 

also have residential use (plots C1 and C2, see Figure 1), with total area of approx. 126 000 m2. Buildings 

have rectangular floorplans and north-south orientation of the longer facades. Buildings’ depth is 18-

30m and height 3-15 floors. Window-to-wall ratio on all facades is 0.65 for the office buildings and 0.5 

for the apartment buildings. Triple glazed windows (U-value: 0.5 W/m2K) have wooden frames (U-

value: 1.3 W/m2K), and the thermal transmittance of external walls and roof is of 0.1 W/m2K. 

Construction of roof, interior floors and external walls are defined according to the Swiss construction 

catalogue (concrete slab [E0 B01] and wall [W W04]) [19]. Thermal insulation is polystyrene, covering 

slab material linoleum and covering material of external walls is cement panels. 90% of the total roof 

surface is covered with PV systems. The HVAC system is a heat pump, with coefficient of performance 

COP=2.43. 

Figure 2. Urban massing volumes of the hypothetical project 

(blueFactory site case study) in the advanced planning phase. 

http://www.catalogueconstruction.ch/ch/fr/21.asp?lng=DE&navid=2&ngid=3&gc=e0
http://www.catalogueconstruction.ch/ch/fr/21.asp?lng=FR&navid=1
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The assessment of the environmental impacts of the hypothetical project in its advanced planning 

stage is performed in SETUP and Smeo, and the results are shown in Figure 3. RH II is excluded from 

this first experiment, as it requires inputs deriving from external simulation software.  

 

 

 
Figure 3. Results in terms of CEDnr (left) and GWP (right) impacts computed with SETUP and 

Smeo, compared to environmental targets defined by SIA [4]. 

The construction CEDnr impacts computed with Smeo is 5.6 kWh/m2a lower than the value obtained 

with SETUP, which corresponds to a relative change of 11.7% (compared to SETUP). In terms of GWP 

impacts, the Smeo result is higher by 1.7 kgCO2/m
2a, which is equivalent to a relative change of 12% 

compared to the SETUP result. Discrepancy of embodied impacts of construction might be explained 

by the mismatch between component options offered in Smeo (e.g. external walls, floor slabs, roof, etc.) 

and those set for the case study, which were based on options available in SETUP. Therefore, the 

selection in Smeo was done to match the desired components as close as possible, in terms of types and 

thermal properties of materials.  

Compared to SETUP, absolute increase of CEDnr operational impacts computed with Smeo is 7.2 

kWh/m2a, which is in terms of relative change 20.8%. Considering GWP impacts, the 1.74 kgCO2/m
2a 

difference represents as much as a 202% increase from the Smeo to the SETUP result. This gap might 

be explained by different energy conversion coefficients derived from distinct versions of KBOB 

databases (data sources, see Figure 1), and different boundaries for the impact assessment of the 

electricity produced by the PV systems. Indeed, Smeo does not take into account positive impacts of 

electricity exported to the grid, in comparison to SETUP where the calculation is based on [20], which 

states that this positive impact should be accounted for. 

Environmental impact assessment of the project in its advanced phase is possible, despite 

methodological differences and heterogeneous inputs and outputs between SETUP and Smeo. It should 

also be noted that impact results in SETUP are obtained by identifying a specific project alternative from 

the database of pre-simulated projects (see: [17]). However, due to the extent of the database (limited 

sample size), it is not always possible to identify the desired project alternative, because this particular 

scenario might not exist in the database.  

4.  Application of tools in early planning phase 

At the beginning of the planning process, urbanists need to make decisions regarding the design 

parameters on building scales, and understand the implications of their design choices on the 

environmental performance of the site in later phases of its life cycle. The ability of the LCA tools 

SETUP, Smeo and RH II to facilitate the decision-making process is tested by answering a design 

question, formulated according the findings of a survey on the current use of LCA tools in building 
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design [21]. More than 80% of survey respondents (out of 263 practitioners) are considering building 

shape and orientation as design parameters during the early project phase. Accordingly, our design 

question is: “Which design choices relating to building shape and orientation would increase the 

feasibility of the construction project and contribute to meeting environmental targets?” Tested variable 

parameters include bar-shaped buildings with north-south orientation of longer facades (I N-S), same 

shape with east-west orientation of longer façades (I E-W), “L” shape (L), “U” shape (U) and atrium 

shape (O). 

To be able to answer the design question, the assessment in Smeo and RH II must be performed 

through an iterative process, in which only the tested parameter is changed while all other parameters 

are kept constant. Therefore, the hypothetical project for the blueFactory site in its early planning phase 

is defined by a set of assumptions. Impact assessment of the site level project comprises administrative 

buildings, with varying area according to the building shape. Other hypotheses correspond to those set 

for the project in the advanced design stage, excluding the PV systems, as the calculation of operational 

impacts between SETUP and Smeo significantly differs (see Section 3). Relating parameters are adapted 

according to the input format of each tool (e.g. Smeo requires inputs such as floor space index, length 

of buildings perimeters, etc., while RH II needs data regarding each building such as building footprint 

and thermal envelope factor). On the other hand, SETUP relies on the database of project alternatives 

(Section 2) and requires input of building program and area for each plot, which is in total 104 000 m2. 

5.  Answer to the design question 

The illustration of the impacts of masterplan alternatives with equally shaped buildings (Figure 4), shows 

an incoherence between selecting a building shape according to the mean and median (SETUP) and 

minimum (RH II and Smeo) impacts. Indeed, the shape with the lowest GWP differs according to the 

tool: it is I E-W for RH II, and I N-S for Smeo and SETUP (although there is an overlap with other 

distributions such as I E-W). A more detailed illustration of impacts related to project alternatives on 

individual plots (Figure 5) indicates more consistency among the three tools. Mean and median (SETUP) 

and minimum impact results (RH II and Smeo), presented in Table 2, indicate that the bar shape is most 

favorable for accomplishing compliance with the impact target. However, there is a mismatch in terms 

of selecting the building orientation (except on plots A2 and D). 

Mean and median impacts are calculated in SETUP based on a high number of project alternatives, 

which are taking into consideration effects of the variation of other not yet defined design choices, and 

thus capturing the uncertainty aspect in early design. In contrast, the impacts computed with traditional 

tools derive from more definite range of results obtained from a manual iterative process in which only 

one parameter is varied. Therefore, higher reliability of making a decision on most favorable building 

shape and orientation according to SETUP results is argued by the representativeness of a distribution 

range of results. 

SETUP indicates increase in feasibility indices from I N-S shape (FI = 8.1%) to O shape (FI = 10.1%) 

on the site level, and from plot A1 (FI = 4%) to plot D (FI = 64%) on the plot level (see Table 2). The 

compliant part of the distribution range of results includes variability of uncertain design parameters, 

and thus indicates a high number of feasible project alternatives. On the other hand, RH II results 

demonstrate that none of the considered project alternatives is feasible, while Smeo assumes uniformity 

between the buildings and demonstrates compliance in one project alternative with I N-S shape. 
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Figure 4. Site-level GWP impacts of master 

plan alternatives composed of buildings 

with uniform shape, compared to 

environmental targets defined by SIA [4]. 

 

 

Figure 5. Plot-level GWP impacts of project alternatives with variable shapes. 

 

Table 2. Building shapes and orientations, GWP impacts and feasibility indices for individual plots. 

  A1 A2 A3 B C1 C2 C3 D 

Setup Shape and orientation I E-W I N-S I N-S I E-W I N-S I N-S I N-S I N-S 

Mean GWP [kgCO2/m
2a] 16.44 15.99 16.21 15.90 14.71 15.85 13.24 12.64 

 Median GWP [kgCO2/m
2a] 16.41 15.98 16.23 15.31 14.71 14.88 12.82 12.18 

 Feasibility index [%] 3.95 8.11 5.46 18.49 36.65 20.37 54.32 64.20 

RH II Building shape I E-W I N-S I E-W I E-W I E-W I E-W I E-W I N-S 

 Lowest GWP [kgCO2/m
2a] 19.80 19.30 19.80 16.70 17.30 16.70 14.50 14.50 

Smeo Building shape I N-S I N-S I N-S I N-S I N-S I N-S I N-S I N-S 

 Lowest GWP [kgCO2/m
2a] 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 

6.  Discussion. Decision-support and ability to lead the design process 

Difference between lowest (L) and highest (I N-S) median GWP values is 0.26 kgCO2/m2a, and between 

lowest (L) and highest (U) mean GWP values is 0.5 kgCO2/m2a. As SETUP results are more 
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representative, they can be used for demonstrating the low sensitivity of building shape to GWP impacts, 

which can direct the attention of practitioners to another parameter in following steps of design process. 

Increase in feasibility indices from simple bar shape to more complex atrium shape relating to the 

site level, and from smaller plot A1 to larger plot D, relating to the plot level, can be explained by 

embodied impacts normalized by m2 which are disproportionate to size and complexity of constructible 

volumes. For instance, smaller plot A1 cannot facilitate construction of L, U and O shaped, but only bar 

buildings with maximum 5 floors, while larger plot D is suitable for all building shapes, with maximum 

height of 18 floors. SETUP reveals a wider approach to assessing the project compliance by exploring 

a series of project alternatives that are incorporating unknown design parameters. This uncertainty is 

opening the possibility for exploration of scenarios and identification of design parameter values that all 

feasible scenarios have in common. 

Ranking of impacts calculated with traditional tools is matching the ranking of mean and median 

values within distribution range, however they do not fall into the interquartile range, for most of the 

alternatives. Limited insight to slightly differentiated or totally uncompliant project alternatives, might 

direct the design process to incorrectly defined assumptions regarding yet unknown parameters, and also 

point to the differences among contextual characteristics of plots (e.g. shading effects across the site). 

Graphical representation of impact results with box and whisker plots illustrates a probabilistic 

approach in early design and reveals the richness of considering uncertainty. Compared to the limited 

number of results computed with traditional tools according to one variable parameter, mean and 

median, maximum and minimum impacts and interquartile range are integrating the effects of the design 

choices that have to be made in the following steps of the design process. Outliers theoretically represent 

false results that should be removed from the database. If we however assume that outliers here 

correspond to scenarios that are valid and not erroneous, this emphasizes that we might be misled by the 

initial assumptions about the project.  

7.  Conclusion. Importance of uncertainty in decision-support 

LCA at early planning stages exposes several challenges. It is difficult for urbanists to fully anticipate 

the links between their design decisions and the later project performance when the resolution of project 

detail is low and the scale extends beyond a single building. In order to perform life cycle assessment, 

they need to define a high number of hypotheses regarding the unknown parameters. Even with project 

assumptions, it is not yet possible to demonstrate the robustness of impact results on life cycle scale, as 

the reference for validation of LCA method is missing (e.g. BESTTEST). Therefore, three methods 

developed to provide decision support in early stages (among other purposes) are tested in this study.  

Traditional LCA-based tools used in Switzerland are applicable for the impact assessment of the 

urban-level project at advanced stages of design, with the main purpose to benchmark the project against 

environmental targets. In early design stages, testing the comparativeness of outputs reveals the value 

of distribution range of results and the importance of integrating the uncertainty aspect. Since we are 

unable to confirm that LCA results are absolutely correct, it is still challenging at this point to compare 

the project with the target. SETUP provides a broader view on project compliance with ranges of results 

representative of many design choices. The risk of making incorrect conclusions is decreased, as we are 

able to explore common design choices within feasible project alternatives. Wide space for exploration 

of the project is available precisely due to the presence of uncertainty linked to the project. In contrast, 

results from traditional tools are straightforward, as they derive from an iterative process that mainly 

focuses on the adaptation of input parameters in relation to the outputs (one-step at the time method 

which defines only several points in the planning process). Results may vary from totally compliant to 

totally uncompliant, therefore it might be premature to take decisions based on LCA at early design 

stages. Without the uncertainty aspect, traditional tools might be referred to as compliance or 

confirmation tools, rather than decision-support tools. 
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