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Abstract— In this work, we propose a supervisory control
structure in islanded DC microgrids such that a well scheduled
and balanced utilization of various resources is achieved. Our
supervisory control layer rests on top of a voltage-controlled
primary layer and comprises a secondary layer, which receives
power references from an energy management system. The
secondary layer translates these power into appropriate voltage
references by solving an optimization problem. These references
act as an input for the primary voltage controllers. We
show that the unconstrained secondary optimization problem
is always feasible. Moreover, since the voltages can only be
enforced at the generator nodes, we provide a novel condition to
guarantee the uniqueness of load voltages and power injection
of the generation units. Indeed, in the absence of uniqueness, for
fixed generator voltages, the load nodes and power injections
may be different than planned. This can result in violation
of operational limits causing damage to the connected loads.
Moreover, this uniqueness condition can be verified at each load
node by utilizing local load parameters, and does not require
any information about microgrid topology. The functioning of
the proposed architecture is tested via simulations.

I. INTRODUCTION

Microgrids (mGs) are electric networks comprising dif-
ferent devices such as distributed generation units (DGUs)
interfaced with power-electronic converters, energy storage
units (ESSs), and loads. MGs can operate in grid-connected
and islanded modes, and are compatible with both AC
and DC operating paradigms [1], [2], [3]. In particular,
DC microgrids, due to their ability to interface naturally
with renewable energy sources (for instance PV modules),
batteries, and electronic loads (various appliances, LEDs,
electric vehicles, etc), have gained traction in the recent years
[4], [5].

The overall control of an islanded DC microgrid (DCmG)
is a multi-objective problem spanning different control
stages, time scales, and physical layers. For a stable and
economic operation of a microgrid, a hierarchical control
scheme is generally employed [4], [5], [6]. The primary
control layer, acting at the component level, is responsible
for voltage stability, which is crucial for islanded DCmGs. In
this work, we consider the reference setting where the DGUs
are equipped with decentralized primary controllers designed
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to track suitable voltage references. To this purpose, several
approaches, for example based on droop control [2], [4] and
plug-and-play control [7], [8], have been proposed in the
literature.

Primary controllers, however, are unable to account for
various operational and economic constraints necessary for
continuous and proper functioning of the islanded DCmG.
High-level supervisory control architectures are, therefore,
necessary to coordinate the voltage references provided to
the primary layers. A common solution is to exploit an
energy management system (EMS), which can meet specified
power and energy objectives while respecting generation
constraints and other economic objectives like optimal power
dispatch, load sharing, and battery management. Flowchart-
based EMS encompassing multiple case scenarios are dis-
cussed in [9], [10] whereas the use of optimization methods
and predictive algorithms to design EMS is investigated in
[11], [12].

In general, EMS, e.g. based on stochastic or mixed-integer
optimization algorithms, utilize power balance equations
and, in addition to their capability to consider operational
constraints, provide optimal power set-points [13], [14], [15],
[16]. When the primary layer is voltage controlled, the EMS
power references need to be translated into suitable voltage
references. Such a translation is not straightforward for mGs
with meshed topologies and, effectively, requires the solution
of power flow equations. Moreover, considering that the
voltages can solely be enforced by the DGUs, a unique
voltage equilibrium may fail to exist at the load buses in
the presence of nonlinear loads (for example constant power
loads) [17].

Leveraging the availability of grid-stabilizing primary volt-
age controllers, in this work we propose a supervisory control
structure situated atop the primary layer and composed of
a secondary and a tertiary layer. The secondary control,
acting as an interface between the primary and the tertiary
layer, converts the power signals provided by the tertiary
level into voltage references, which are tracked by the local
voltage regulators. An EMS sits at the tertiary level, and
facilitates a smooth off-grid operation by providing desired
power references to the secondary layer. The focus of this
work is on the properties of the secondary controller and the
precise design of the EMS is not considered.

Different from [9], [10], [16], we study an islanded
voltaged-controlled DCmG with arbitrary topology and
equipped with ZIP (constant impedance, constant current,
and constant power) loads. In particular, we present a
secondary control structure, which solves an optimization
problem based on the power flow equations to generate
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Fig. 1: Representative diagram of the DCmG network with DGUs and loads.

suitable voltage references, while taking into account the
converter- and network- losses. We prove that this optimiza-
tion problem is always feasible, if voltage and generation
constraints are neglected. The existence of solution to the
power flow equations, necessary for the feasibility of the
optimization problem, has been addressed in [18], [19] with
fixed DGUs voltages. Nevertheless, the provided conditions
for existence can not be used directly as the DGU voltage
references are free optimization variables and not known a-
priori. Furthermore, as a complement, we also provide a nec-
essary condition for the solvability of the stated optimization
problem.

We highlight that the voltages can only be enforced at gen-
erator nodes and therefore, the uniqueness of load voltages is
necessary for attaining the predefined operational objectives.
Indeed, if the voltages appearing at the load nodes are
different from the ones anticipated by the secondary layer,
permissible voltage limits may be violated and consequently,
DGUs fail to track the optimal power set-points provided by
the EMS. In this respect, we provide a novel condition for
the uniqueness of load voltages and DGU power injections.
The uniqueness of voltages has also been addressed in
[18], where the deduced condition depends on the generator
voltages and the topological parameters of the network. Here,
we provide a simpler condition that depends only on local
load parameters and can be easily taken into account while
designing the DCmG network.

The model of DCmG along with the derivation of power
and current balance equations are presented in Section II The
supervisory control structure and the detailed secondary layer
design is discussed in III. Simulations validating theoretical
results are provided in Section IV. Finally, conclusions are
drawn in Section V.

A. Preliminaries and notation

Sets, vectors, and functions: We let R (resp. R>0) denote
the set of real (resp. strictly positive real) numbers. Given
x ∈ Rn, [x] ∈ Rn×n is the associated diagonal matrix with x
on the diagonal. The inequality x ≤ y for vectors x, y ∈ Rn

is component-wise, that is, xi ≤ yi, ∀i ∈ 1, ..., n. For a
finite set V , let |V| denote its cardinality. Given a matrix A ∈
Rn×m, (A)i denotes the ith row. The notation A � 0 , A �
0, A > 0, and A ≥ 0 represents a positive definite, positive

semidefinite, positive, and nonnegative matrix, respectively.
Throughout, 1n and 0n are the n-dimensional vectors of unit
and zero entries, and 0 is a matrix of all zeros of appropriate
dimensions. Given a weighted graph G(V, E), with V the
set of nodes and E the set of edges, its Laplacian matrix
L ∈ R|V|×|V| is defined as

L = A1|V| −A,

where A is the adjacency matrix of G collecting edges
weights and is defined as

aij =

{
wij if (i, j) ∈ E

0 otherwise
.

II. MODEL OF DC MICROGRIDS

In this section, we start by describing the electric model of
a DCmG comprising multiple DGUs connected to each other
via power lines. The electric interconnections in an DCmG
are modeled as an undirected connected graph G = (V, E).
V is partitioned into two sets: D = {1, . . . , n} is the set
of DGUs and L = {n + 1, . . . , n + m} is the set of loads.
The edges represent the interconnecting lines of the mG. As
shown in Figure 1, each DGU and load is interfaced with the
ImG through a point of common coupling (PCC). The DGUs
comprise a DC voltage source, a DC-DC converter, and a
series RLC filter. Each of these DGUs is equipped with local
voltage regulators (not shown in Figure 1), which forms the
primary control layer. The main objective these controllers
is to ensure that the voltage at each DGU’s PCC tracks a
reference voltage Vref,i provided by the supervisory control
layer (see Section III). In steady state, the inductances
and capacitances can be neglected and the current-voltage
relation is given by the identity I = BΓBTV = Y V ,
where B ∈ R(n+m)×|E| is the incidence matrix of G, I is
the vector of PCC currents, V is the vector containing PCC
voltages, Γ is the diagonal matrix of line conductances, and
Y ∈ R(n+m)×(n+m) is the network admittance matrix [20].
On partitioning the nodes into DGUs and loads, the relation
can be rewritten as[

IG
IL

]
=

[
BGR

−1BT
G BGR

−1BT
G

BLR
−1BT

G BLR
−1BT

G

] [
VG

VL

]
:=

[
YGG YGL

YLG YLL

] [
VG

VL

] , (1)



where VG = [V1, . . . , Vn]T , VL = [Vn+1, . . . , Vn+m]T ,
IG = [I1, . . . , In]T , and IL = [In+1, . . . , In+m]T . The sub-
scripts G and L indicate the DGUs and loads, respectively.
Throughout this work, the following assumption is made.

Assumption 1: The PCC voltage Vi is strictly positive for
all i ∈ V .

Remark 1 (Stability under primary voltage control): It is
assumed that the primary controllers achieve offset-free volt-
age tracking and guarantee the stability of the entire DCmG
network. Indeed, if the DGU voltages are not stabilized, they
can increase beyond a critical level, resulting in damage to
the connected loads. The reader is deferred to [5], [21], [8],
[22] and the references therein for further details concerning
design of stabilizing primary controllers.

Load model: Depending upon the type of load, the func-
tional dependence on the PCC voltage changes and the term
ILj(Vj) takes different expressions. Prototypical load models
that are of interest include the following:

1) constant-current loads: ILIj = ĪLj ,
2) constant-impedance loads: ILZj(Vj) = YLjVj , where

YLj = 1/RLj > 0 is the conductance of the jth load,
and

3) constant-power loads:

ILPj(Vj) = V −1j P̄Lj , (2)

where P̄Lj > 0 is the power demand of the load j.
To refer to the three load cases above, the abbreviations
I, Z, and P are often used [23]. The analysis presented
in this article will focus on the general case of a parallel
combination of the three loads, thus on the case of ZIP loads,
which are modeled as

ILj(Vj) = ĪLj + YLjVj + V −1j P̄Lj . (3)

Based on the current directions depicted in Figure 1, it
is evident that ILj(Vj) = −Ij , j ∈ L. Using (3), one can
simplify (1) as

IG = YGGVG + YGL VL (4a)

0 = YLGVG + YLL VL + YLVL + ĪL + [VL]−1 P̄L, (4b)

where YL ∈ Rm×m is the diagonal matrix of load admit-
tances. The vectors ĪL and P̄L collect consumptions of I and
P loads, respectively. Note that the power PGi produced by
an individual DGU is the sum of power injected into the
network and the filter losses. Equivalently,

PG = [VG]IG + [IG]RGIG (5)

where RG ∈ Rn×n is a diagonal matrix collecting filter
resistances and IG is the vector of DGU filter currents. On
pre-multiplying (4a) with [VG], and by using (5), one can
rewrite (4) as

fG(VG, VL, PG) = [VG]YGG VG + [VG]YGL VL

+ [IG]RG IG − PG = 0,
(6)

fL(VG, VL) = YLG VG + YLL VL + YLVL

+ YLVL + ĪL + [VL]−1 P̄L = 0.
(7)
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Fig. 2: Hierarchical control scheme for DC microgrids.

The equation (6) and (7) fundamentally depict the power
balance and current balance at DGU and load nodes, re-
spectively. These equations are essential for the design of
secondary supervisory controller, which are discussed in the
ensuing sections.

III. SUPERVISORY CONTROL IN DC MICROGRIDS

As shown in Figure 2, the EMS at the tertiary level sends
power references to secondary layer. In this section, we
discuss the detailed functioning of the secondary control
layer. We would like to highlight that the secondary con-
troller acts at a much slower time scale, compared to the
primary layer. Therefore, it is assumed that the microgrid
is in equilibrium with the voltage controllers tracking the
reference voltage. For the secondary layer to translate power
signals into appropriate voltage references, it is necessary
to utilize the equilibrium relations (6), (7) linking these two
variables.

A. Secondary control based on power flow equations

The secondary control is designed to track the power
references provided by the EMS, denoted as P̄G. In order to
achieve this goal, the secondary layer solves an optimization
problem, whose objective is to minimize the difference
between the reference power P̄G and the DGU input power
PG under the equilibrium relations (6) and (7). We first
consider the following simplified version of the optimization
problem, where constraints on voltages and generator power
are neglected.



Secondary Power Flow (SPF):

JSPF (P̄G, P̄L, ĪL) = min
VG, VL,PG

||PG − P̄G||2 (8a)

subject to
fG(VG, VL, PG) = 0 (8b)
fL(VG, VL) = 0 (8c)

As noticeable from Figure 2, the SPF layer requires the
updated load consumption (P̄L, ĪL) and the power references
P̄G in order to solve (8). We define X to be the set of all
(VG, VL, PG) that satisfy (8b)-(8c) simultaneously. Hereafter,
we will discuss necessary and sufficient conditions ensuring
that the set X is nonempty, i.e, the solutions to nonlinear
equations (8b)-(8c) exist.

Proposition 1: The feasible set X is non-empty . In
particular, for all P̄L ∈ Rm and ĪL ∈ Rm, the following
statements hold:

1) The equation (8c) is always solvable.
2) The solvability of (8c) implies that (8b) is solvable.

Proof: The proof is provided in [24] and is skipped
due to space constraints.

Proposition 1 guarantees the feasibility of SPF. We now
discuss optimality. If SPF achieves the optimal cost J∗SPF =
0, it implies that a voltage solution exists such that the power
references P̄G are exactly tracked by the DGUs. This condi-
tion can not be achieved for any value of (P̄L, ĪL, P̄G). The
following proposition, inspired by [25], presents a necessary
condition that must hold for J∗SPF = 0. The proof, however,
is different since here also DGU filter losses are taken into
account.

Proposition 2: If the SPF achieves the optimal cost
J∗SPF = 0, then∑

∀i∈D

P̄G ≥
∑
∀i∈L

P̄L −
1

4
Ī T
L Ỹ −1GG ĪL, (9)

where ỸGG = YGG − Y T
GL(YLL + YL)YGL.

Proof: The proof is omitted for the sake of brevity of
presentation. The reader is deferred to [24] for a detailed
proof.

Remark 2: It is highlighted that the necessary condition
(9) depends only on the network parameters and load con-
sumption. Therefore, it can be incorporated in the EMS
optimization problem as a constraint for the choice of the
power references P̄G.

In a real DCmG, the power output PG is constrained by
physical limits of the DGUs. Moreover, the components
of the DCmG are designed to operate around the nominal
voltage. Hence, both nodal voltages and DGU powers must
respect certain constraints, which are not incorporated in the
aforementioned SPF. Consequently, we now introduce the
following constrained optimization problem with additional
operational constraints.

Secondary Constrained Power Flow (SCPF):

JSCPF (P̄G, P̄L, ĪL) = min
VG, VL,PG

||PG − P̄G||2 (10a)

subject to
fG(VG, VL, PG) = 0 (10b)
fL(VG, VL) = 0 (10c)

V min
G ≤ VG ≤ V max

G (10d)

V min
L ≤ VL ≤ V max

L (10e)

Pmin
G ≤ PG ≤ Pmax

G (10f)

While the feasibility of SPF is always ensured by Propo-
sition 1, this may not be true for SCPF due to the presence
of additional constraints (10d)-(10f). However, if the DCmG
is properly designed, a feasible solution of SCPF should
always exist. In fact, the infeasibility of the SCPF implies
the absence of sufficient power generation to satisfy the load
demand and losses in the allowed voltage range.

Next we study the properties of an optimizer
x∗ = (V ∗G, V

∗
L , P

∗
G) of SCPF, assuming it exists. As

mentioned before, the secondary control layer acts as an
interface between the EMS (tertiary layer) and the local
voltage regulators (primary layer). The voltage V ∗G obtained
from the SCPF is transmitted as a reference to the primary
voltage controllers of the DGUs. We highlight that the
component V ∗G of x∗ can be directly imposed since the
load nodes are not equipped with voltage controllers and
the generators are not controlled to track power references.
Therefore, it is important to guarantee that, for a given
voltage reference V ∗G, P ∗G is the power produced by the
DGUs and V ∗L appears at the load nodes. This implies that
for a fixed V ∗G, the unique solution satisfying the power
flow equation (6)-(7) must be VL = V ∗L , PG = P ∗G. We
show the uniqueness by means of the following theorem.

Theorem 1: Consider the solution x∗ = (V ∗G, V
∗
L , P

∗
G)

from the SCPF optimization problem. For a fixed V ∗G, the
pair (V ∗L , P

∗
G) is the unique solution of (6)-(7) in the set

Y = {(VL, PG) : VL > V min
L , PG ∈ Rn} if

P̄Li < (V min
Li )2 YLi, ∀i ∈ L. (11)

Proof: The proof is removed due to lack space and can
be found in [24].

Remark 3: (Condition (11) and stability) The uniqueness
condition (11) essentially limits the power consumption of
P loads. As shown in [8], due to the negative impedance
introduced by the P loads, their power consumption PL,i <
(V ∗i )2YL,i, i ∈ L̃ in order to guarantee stability. Since V ∗i is
the solution of SCPF, V ∗i ≥ V min

i . Therefore, by satisfying
(11), one can simultaneously guarantee the uniqueness of
load voltages and the stability of the DCmG.

IV. NUMERICAL RESULTS

In this section, we aim to show the performance of the
proposed secondary control layer in a simulation framework.
We consider a DCmG composed of 2 DGUs (interfaced with
synchronous Buck converters) and 4 loads as shown in Figure
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(11) always holds.
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The power set-points for the DGUs, denoted as P̄G1, P̄G2,
are assumed to be constant for the whole simulation, even
though they are normally provided by an EMS. The sec-
ondary layer runs with a sampling time of 3 minutes with
the goal of tracking the received power references despite

(V min
G , V max

G ) (45, 55)V

(V min
L , V max

L ) (45, 55)V

P̄G1 400W

P̄G2 650W

(Pmin
G1 , Pmax

G1 ) (0, 400)W

(Pmin
G2 , Pmax

G2 ) (0, 700)W

TABLE I: Secondary control parameters.
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Fig. 5: Voltages in the DCmG network.
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Fig. 6: Power generated by the DGUs.

the aforementioned load variations. The DCmG parameters
considered in the secondary layer are given in Table I. As
shown in Figure 5, the secondary control layer manipulates
the voltage references of the DGUs at each sampling time,
maintaining the voltages in the allowed range. However,
in order to keep the voltages above the prescribed lower
bound between t = 3 min and t = 18 min, the secondary
control layer does not track P̄G2 and is forced to increase
the generated power by the DGU2, since DGU1 is already
at its maximum limit (see Table I). From t = 18 min to the
end of the simulation, since the load variations do not cause
any voltage issues, the EMS power references are perfectly
tracked by providing the suitable voltage set-points to the
primary controllers. The transients seen in Figure 6 are due
to the primary voltage controllers responsible for emulating
the higher-level commands at the component level.



V. CONCLUSIONS

In this work, we proposed a supervisory control structure
for islanded DCmGs, where a secondary layer receives power
references from an EMS and translates it into voltage ref-
erences for the primary layer. More specifically, the voltage
references are generated by solving an optimization prob-
lem at the secondary layer, which can incorporate practical
operational constraints. Furthermore, we studied the well-
posedness of the optimization problem by discussing its
feasibility and deduced a novel condition for the uniqueness
of generator voltages and DGU power injections.

The development of a comprehensive EMS at tertiary level
is deferred for future work. Further developments can also
focus on solving the proposed optimization problem in a
distributed and efficient manner.
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