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Abstract— Wildfires are getting more severe and destructive.
Due to their fast-spreading nature, wildfires are often detected
when already beyond control and consequently cause billion-
scale effects in a very short time. Governments are looking for
remote sensing methods for early wildfire detection, avoiding
billion-dollar losses of damaged properties. The aim of this
study was to develop an autonomous and intelligent system
built on top of imagery data streams, which is available from
around-the-clock satellites, to monitor and prevent fire hazards
from becoming disasters. However, satellite data pose unique
challenges for image processing techniques, including temporal
dependencies across time steps, the complexity of spectral chan-
nels, and adversarial conditions such as cloud and illumination.
In this paper, we propose a novel wildfire detection method
that utilises satellite images in an advanced deep learning
architecture for locating wildfires at pixel level. The detection
outputs are further visualised in an interactive dashboard that
allows wildfire mitigation specialists to deeply analyse regions of
interest in the world-map. Our system is built and tested on the
Geostationary Operational Environmental Satellites (GOES-16)
streaming data source. Empirical evaluations show the superior
performance of our approach over the baselines with 94% F1-
score and 1.5 times faster detections as well as its robustness
against different types of wildfires and adversarial conditions.

I. INTRODUCTION

Wildfires are causing damage to both property and human
life [1]. Due to the increase of drying fuels and extreme
weather conditions [2], wildfires are getting more severe.
Particularly, an annual cost of $1.6 billion are destroyed
by wildfires in the US and Australia, and this amount is
estimated to be up to six times larger from 2018 to 2050 [3].
In addition, wildfires are a major factor for climate change
and they result in the ecological imbalance of the Earth.
Apart from the immediate damage, wildfires also cause long-
term consequences such as local weather impacts, global
warming, and extinction of rare species. Therefore, an early
detection of forest fires can significantly reduce unexpected
damage to both property and the environment [3], contribute
to global environmental stability. Wildfire research becomes
an interdisciplinary area involving not only ecologists but
also computer scientists to develop algorithmic methods for
wildfire detection [4].

So far, various strategies have been continuously con-
ducted in order to early and automatically detect wild-
fires [5]. For example, the first threshold-based algorithm
is FIMMA, which is developed for AVHRR system [6].
It focuses on minimise false alarms by solving the night-
time detection problem. However, it has a low temporal
resolution (only 3 times per day) and only applicable over
forested regions. GOES-AFP [7] is developed for GOES-11

and GOES12 data, using masking mechanisms to remove
clouds and distinguish water-land complex. Nevertheless, it
greedily focuses on recall and thus introduces more false
alarms. Another threshold-based fire detection algorithm (aka
active fire product) proposed for MODIS [8] is used to
address false alarms cause by small forest clearings and the
omission of large fires obscured by thick smoke. Still, it also
has low temporal frequency (4 shots per day). VIIRS-AFP [9]
is built on top of the previous algorithm MODIS-Terra using
a contextual approach to detect both day and nighttime
biomass burning and other thermal anomalies. However, it
uses only a few spectral bands. To sum up, current methods
have either not reached competitive accuracy or they can
monitor the wildfires in a very low temporal frequency.

Deep learning, in particular deep neural networks, has
been successfully applied in solving challenging tasks [10],
[11], [12], [13], such as classification [14], object detec-
tion [15], [16], and semantic segmentation [17]. Due to
these successes, various studies on remote sensing recently
deployed deep learning methods on satellite images for land
use classification and urban planning [18], [19]. To our
knowledge, deep learning models have not been applied
for wildfire detection using satellite images. It comes from
the fact that the old-generation wildfire satellites often have
low temporal, spatial or spectral resolution which prevent
accurate and robust detections on small area (e.g. 1km2). The
new-generation GOES-16 satellite image data overcomes all
those limitations, paving the way for new applications of
deep learning methods [20], [21], [22], [23].

Filling this gap, our work uses multispectral images,
which is available from around-the-clock satellites, to detect
wildfires in a timely manner. Environmental satellites offer
not only a wide spatial range but also high availability and
timeliness [8]. We leverage the advances of deep learning to
enable accurate and robust wildfire detection for monitoring
and mitigating applications. The multi-layered nature of deep
learning architectures, in particular deep neural networks,
will enable to capture multispectral information in both
spatial and temporal dimensions [24].

In this work, we present an autonomous and intelligent
framework for wildfire detection. We observed several chal-
lenges. First, the feature maps of spectral images are sensitive
to different spectral bands, different cloud coverage during
a day, and different illumination conditions (daytime and
nighttime). Second, there are various noises (missing values,
measurement errors) in the streams of satellite data, making
it difficult to monitor the behaviour of active wildfires.

The contributions of our work are summarised as follows.



• We establish a novel streaming data processing pipeline
to collect data streams of satellite, impute missing
values, and scrutinise data by regions of interest for
real-time wildfire monitoring systems.

• We propose a novel early wildfire prediction model
by designing a temporal-aware spectral-spatial deep
learning architecture that (i) utilise satellite data by pair-
wise fusion layers, (ii) capture spatial patterns across
multiple spectral bands by 3D convolutional layers, and
(iii) locate wildfires at the pixel level by patch-wise
classification

• We deploy a novel streaming data visualisation dash-
board to support wildfire mitigation specialists in mon-
itoring, identifying, and pro-acting to wildfires.

The remain of our paper is structured as follows. §II
provides an overview of our approach. We then discuss the
problem and the detailed solution for each component of our
framework, including streaming data processing (§III), early
wildfire prediction (§IV), and streaming data visualisation
(§V). Finally, §VI presents empirical evaluations and §VII
concludes the paper.

II. APPROACH OVERVIEW

Fig. 1 presents an overview of our framework. The input
of our framework is the data streams of satellite sources. Raw
satellite images are cleaned by Streaming Data Processing
component and are transformed into vector formats. Next,
the cleaned, ordered, and align satellite data are put through
the Early Wildfire Prediction component to detect and lo-
cate wildfires at pixel-level. Finally, the whole detection
inputs and outputs are composed into a Streaming Data
Visualisation dashboard, thereby completing an autonomous
and intelligent wildfire detection system. In the following,
we describe the detailed roles and contributions of each
component.
Streaming Data Processing. The raw data streams from
GOES-16 satellites are hosted by cloud services (AWS or
Google Cloud). These data sources are fed into our compo-
nent via Web API temporally. The details are described in
§III.
Early Wildfire Prediction. Remote prediction of wildfires
from satellite images is a challenging task due to several
factors: (i) satellite images are hindered by adversarial condi-
tions such as cloud and rain, (ii) spatial patterns of wildfires,
and (iii) brightness patterns of wildfires across different
spectral bands. In this component, we will leverage the
multi-layered nature of deep learning architectures, including
3D convolutional layers and patch-wise classification to
overcome these factors. The detail is described in §IV.
Streaming Data Visualisation. Most of existing monitoring
systems do not offer localisation of wildfires due to lack
of alignment between geographic coordinates and pixel-level
detection outputs. With available spatial and temporal infor-
mation in the previous component, we design a streaming
data visualisation dashboard to present fire-positive pixels of
satellite images on the world-map. The detail is described in
§V.

III. STREAMING DATA PROCESSING

Query by regions of interest. Images provided by GOES-
16 covers the whole America continent. A scrutinisation
query is needed to focus on a particular region of interest
R = (x1, y1, x2, y2, r), where xi and yi are latitudes and
longitudes; and r is the spatial resolution (size of each pizel)
and can be varied between 0.5–2km. Our pilot experiments
show that the 1km resolution works best for our prediction.

The requirement of a ROI query is that the distance
between each pixels should be similar to real-world geo-
distance since it plays an important role to detect wildfires
accurately as well as to integrate with other data domains
such as weather measurements. Therefore, we use Lam-
bert projection instead of other popular projections such
as Mercator (used in Google Map) or Cube (used in Ar-
cGlobe). Lambert projection is also known as conic map
projection and commonly used in aeronautical charts and
national/regional mapping systems [25].

The ROI query is processed by the SatPy library, which
is compatible with data streams, netCDF format, Lambert
projection, and preserves meta-data (timestamp, size, etc.)
during the resampling process of scrutinising the original
data samples (big view) into different ROIs uniformly.
Data storage. The processed images by ROI query and
missing-data query are stored in PNG format (each band
has a PNG file). The radiance values of spectral bands are
also kept in CSV format (Fig. 2). While the PNG format
is used for visual analytics such as qualitative validation
and visualisation, the CSV format is used as input for the
prediction model.

IV. EARLY WILDFIRE PREDICTION

A. Problem Statement

Let S = {1, . . . , n, . . . , N} be a set of integers indexing
N pixels of a multispectral image, and let L = {1, 2} be
a set of integers indexing 2 classses: fire and no-fire. The
image X = {x1, . . . , xn, . . . , xN} is a set composed of
N feature vectors, where the M -dimensional feature vector
xn = {x1n, . . . , xMn } corresponds to the n-th pixel [26]. Here
ABI images have 16 spectral bands, thus M = 16.

Problem 1 (Pixel-wise classification). Pixel-wise classifi-
cation is a mapping process of a many-to-many function
f : RN×M → RN×2 from an image of pixels X to the
set of label vectors Y corresponding to the input pixels and
a single label vector y.

Y = f(X) (1)

where the label Y = {y1, . . . , yn, . . . , yN} is represented
as a set composed of N label vectors corresponding to
N pixels. The label yn = {y1n, y2n} is 2-dimensional label
vector, where the elements yln represents the possibility that
the pixel xn and the whole image X belong to the class
l ∈ L, respectively. The final label y∗n for each pixel xn will
be decided by the maximum score: y∗n = argmaxl∈L y

l
n.

GOES-16 satellite images offer high temporal, spatial or
spectral resolution, which precedes old generation satellite



Fig. 1: Overview of the proposed wildfire detection system.

Fig. 2: 16-channel spectral images of a region of interest

data. Due to these data characterisitcs, we argue that de-
signing a mapping process needs to satisfy the following
requirements:
(R1) Spatial dependency: consider the spatial context such

as neighbouring pixels of a given pixel [27]. This is
because a wildfire spreads via near-by location.

(R2) Cross-band spectral patterns: handles the correlation
across spectral bands [28]. This is because the spectral
bands are sensitive to various factors such as rotations
of the imagery sensor, atmospheric scattering condition,
and illumination condition.

Traditional machine learning models, such as fully-
connected networks in which each neuron is connected to ev-
ery neuron in consecutive layers, is unable to take advantage
of local spatial patterns and multi-channel depencencies [29].
We leverage the advances of deep learning architectures, in
which the features are generalised at multiple granularity
thanks to a long sequence of small layers [28], [30], [31],
[32], [33], [34].

B. Model Structure

We propose a deep neural network architecture [29] that
integrates spectral and spatial information at the same time.
The network features multiple modules (sub-networks): (i)
input module – feeds the imagery data and weather informa-
tion to succeeding layers, (ii) convolutional module – pro-
cesses spatial and spectral dependencies by data pixels, (iii)
output module – returns the prediction result. An overview
of the network can be found in Fig. 3.

1) Input Module: The input of the network consists
of m × n pixel matrices for each spectral band and for
each weather measurement (each pixel reflects a real geo-
location), where m × n is the size of ROI processed by

the aforementioned Streaming Data Processing component.
Since we want to find the label for every pixel (Prob. 1),
traditional image-wise setting is not applicable. Moreover, if
using the original images directly, the training set would have
a low number of data samples, making the network prone to
overfit.
Patch Normalisation. To tackle these issues, we propose
a patch normalisation layer to augment the capability of
training data as well as satisfy the pixel-wise classification
output. First, the image is divided in patches of kp × kp
pixels (kp = 12 in the experiments as the minimal burned
area of fire datasets is ≈ 144km2) with 50% overlap. Then,
to ensure that the network is trained on image patches with
the same domain, a normalisation is performed (separately
for each spectral band) by subtracting the average value to
each pixel value of the image [35].
Pixel-wise information. To preserve the spatial connections
between patches within the same image, we also take the
coordinates of the center pixel of each image patch as input
to the end (fully connected layer) of convolutional module.
This hints that the output of the model will indicate the score
of pixels being fire-positive or not [36].

It is worth noting that we do not use the upsampling ap-
proach of semantic segmentation setting [37] for pixel-wise
classification since satellite images, unlike natural images, do
not involve well-defined objects such as animals. Moreover
and the resulting output of upsampling layer would lose
original spectral information for visualisation.

2) Convolutional Module: The convolution module is a
sub-network designed to capture spatial dependency (R1)
while simultaneously reducing the complexity of fully con-
nected networks [29]. It involves two operations: convolution
and flatten.
3D convolutional layers. The input is fed through three
convolutional layers, in which the neurons of one layer are
only connected to a few neurons of another layer within
a receptive field [38]. Convolutional layers become smaller
when they are at deeper level to extract more concise
and abstract features. This allows the model to focus on
local spatial dependencies between pixels regardless of their
actual location in a 2D image, compared to fully-connected
networks.

Different from traditional convolutional neural networks
for 2D images [39], spectral images has an additional di-
mension of spectral bands with partial dependencies between
them (R3). For this reason, we design a 3D version of
convolutional layers, in which each neuron in the succeeding



Fig. 3: Spatio-spectral deep neural network for early wildfire prediction

layer is connected only to a cube of neurons in the previous
layer (i.e. 3D receptive field). The receptive field is moved
across the entire input representation, and each neuron in the
succeeding layer captures both spatial dependency (R1) and
spectral dependency (R3) of the previous layer. The size of
a receptive field nc × nc × nc is a hyperparameter.

Convolutional networks are more computational-efficient
than fully-connected ones by the weight-sharing mechanism,
in which the value of the receiving neurons in the same
layer share the same weights and biases in their weighted
sum formation from the observed neurons in the receptive
field [29]:

vi = ϕc(bi +wi ∗ x) (2)

where ∗ is the 3D convolution operation, the bias is added
component-wise. vi is the resulting values of applying i-th
filter, ϕ is the neural activation function (e.g. RELU), bi is
the shared overall bias of the filter i, wi = [wi1, . . . , wikc ]
is vector with shared weight and xj = [xj , . . . , xj+n3

c−1] is
the receptive field. In other words, the next layer extracts a
local spatial feature from the previous layer, coined the term
feature map [29].

Since there could be different types of spatial features,
we need nfilters different filters, which results in nfilters
feature maps. The first convolutional layer has a kernel size
of nc,1 = 7 and outputs nfilters,1 = 128 features. The
second convolution layer will extract more abstract features
based on the features extracted in the first layer, using a
kernel size of nc,2 = 5 and outputs nfilters,2 = 64 features.
The third and final convolution layer has nc,3 = 3 and
outputs nfilters,2 = 32. This comes from the fact that a
wildfire is often bigger than a single pixel (1km2) of a
satellite image [3].
Flatten. The last convolutional layer is flattened and con-
nected to a fully-connected layer in order to project the fea-
ture space into classification score. Formally, the projection
layer consists of np neurons, each of which is connected
to all the feature maps of the last convolutional layer. The
output is a vector vp ∈ Rnp with the k-th value computed
as:

vkp = ϕp(w
k
pv + bkp) (3)

where wk and bk are parameters and v is the value of the
last convolutional layer.

3) Pixel-wise Output Module: The output module consists
of a projection layer to transform the fusion vector into a
scoring vector with the same dimension as the dimension of
class label (which is 2) and a soft-max layer to normalise
the scores for comparison. Formally, the projection layer is
basically a linear mapping:

y′ = wv + b (4)

where y′ = [y′1, . . . , y
′
C ] is the scoring vector. The soft-max

layer is an activation function to non-linearise the projection:

yc =
exp y′c∑

c′∈C exp(Y ′c′)
(5)

We use the cross-entropy loss to train the network, which
compares the final scoring yc and the true label of each pixel.

C. Training the model

Design choices. In order to obtain the deep learning ar-
chitecture in Fig. 3, we experimented with different depths
(e.g. number of convolutional layers), different patch size,
different convolutional kernel sizes, and different number
of convolutional filters different filter. For example, we
experimented with 2D convolutional layers only but this
worsened the classification results, which is indicative of
spatial dependencies across spectral bands. In the end, the
convolutional module has a depth of 3 layers to balance
between the predictability power and the running time.
Avoid overfitting. Available training data for domain-
specific applications such as wildfire detection is scarce due
to requirement of expert knowledge (to label fire-positive
pixels) and real-world observations (fires actually happened).
This could lead to overfitting as the model could be too
complex to be fit on a small amount of training samples.
To alleviate this problem, we experimented with several
strategies:
• Semantic-preserving augmentation: Since the image

classification is rotation invariant, e.g., users can in-
vestigate fire-positive images from different orientations



without altering the decision. Modifications such as
rotation and mirroring help to increase training data
without compromising label quality. Formally, we trans-
form each data sample into eight different samples by
combining k×π/2 rotations, with k = 0..3, and vertical
reflections. Each of modified samples is considered to
have the same class label as the original sample [35].

• Regularisation: We put several pooling, batch normal-
isation, and drop-out layers in between consecutive
layers in the network to avoid overfitting. For example,
max-pool layer is used between two consecutive convo-
lutional layers. Batch normalisation is used before and
after fully-connected layer of the convolutional module.

• Temporal information: We use satellite images in dif-
ferent time points as training data, increasing input
variation to avoid model overfitting.

Parameter optimisation. We trained the network using
Adaptive Moment Estimation (Adam) optimizer. The fi-
nal network requires fine-tuning of 3 hyperparameters: the
learning rate η and the momentum coefficient µ and the
regularization parameter λ for the L2 weight regularization
layers.

V. STREAMING DATA VISUALISATION

A. Dashboard Design

Through integrating and codifying satellite images and
weather data, a visualisation dashboard is developed on top
of the proposed model to autonomously predict and monitor
wildfires for regions of interest in real-life. It offers two main
types of visualisation: monitoring view and focus view. While
the former gives an overview status of ROIs on the whole
world-map, the latter has the ability to zoom-in a particular
hot spot and monitor it over time. Besides, weather data and
satellite images are also provided at the selected moment to
help users examine the accuracy of the prediction model.

B. Monitoring View

In the monitoring view, the system shows an instant
overview of the selected region of interest. User can switch
between ROIs by using the drop-down toolbox in the left
panel. The hot-spots are highlighted automatically by the
system, allow users to easily access those locations for
investigation. There is also a bar chart which gives the latest
predictions and other supporting information (long-lat coor-
dinates, last visited time, the proportion of fire) for a target
location. If users click on any point in the graphical figure,
all of the above information will be presented according to
the new position. This feature helps user to investigate any
suspicious area at their convenience even alarms have not
been raised.

C. Focus View

In the focus view, one location is more focused. The
bar chart not only gives the timeline for the proportion
of wildfires for a target point but also contains integrated
weather data for that location. Moreover, their spread inside

Fig. 4: Monitoring View

the ROIs is also presented visually in the map. Combining
with the zoom feature of the maps, users can easily follow
the growth of a hot-spot from the beginning until its end.
Other supporting information like image per time, longitude,
latitude and captured time are also provided for cross-
checking purposes.

Fig. 5: Focus View

D. Benefits of the software application

The developed data visualisations help users to monitor
and detect wildfires granularly and seamlessly. Combining all
the components of detection framework, including streaming
data processing and early wildfire prediction, as a whole,
our visualisation dashboard performs an end-to-end process
from raw satellite streams to wildfire prediction outputs in
near real-time. Our current prototype will pave the way for
online applications used by governments and organisations
to timely prevent the spread of wildfires such as connecting
with urban emergency systems in the target ROI.

VI. EMPIRICAL EVALUATION

In this section, we conduct experiments with the aim of
answering the following research questions:
(RQ1) Does our proposed framework outperform the base-

line methods of spectral image classification for wildfire
detection?

(RQ2) Is the model robust to noises such as cloud effects,
missing values, outliers, and ambient background (e.g.
day or night)?

(RQ3) Are the model outcomes interpretable?



In the remaining of the section, we first describe our
experimental settings (§VI-A). Then we present our empirical
evaluations to verify the above research questions, including
end-to-end effectiveness test (§VI-B), robustness to adversar-
ial conditions (§VI-C), and qualitative showcases (§VI-D).

A. Setup

Datasets. We study real-world wildfire datasets happened in
different seasons and different regions in USA, allowing to
examine the flexibility of our model. Key characteristics of
the datasets are described in Table I.
• UTE Park Fire: The Ute Park Fire start after 2pm local

time on May 31, 2018. It was reported burning on the
east of Ute Park, New Mexico in the United States. The
fire burned a total of about 149 km2 [40].

• Ferguson Fire: The Ferguson Fire is a wildfire in the
Sierra National Forest, Stanislaus National Forest and
Yosemite National Park in California in the USA. The
fire was reported on July 13, 2018 and burned above
392 km2 [41].

• Carr Fire: The Carr Fire happened in Shasta and Trinity
Counties, California, United States.The fire started at
about 1pm local time of July 23, 2018 and burned above
929 km2 [42].

• Camp Fire: The Camp Fire is one of the deadliest
wildfire in California. The fire started on November
8, 2018 in Butte Country in Northern California and
covered an area of 620 km2 [43].

TABLE I: Statistics of experimental datasets

Dataset Genesis (2018) #Img #Img of Fires #Pixels Distribution 1

UTE Park 14:00 31.05 48 25 181 × 222 1927560 : 1176
Ferguson 21:36 13.07 48 48 252 × 247 2986943 : 769
Carr 13:00 23.07 48 40 414 × 573 11383759 : 2897
Camp 06:33 08.11 72 55 290 × 300 6252876 : 11124

1 Ratio between #non-fire pixels and #fire pixels

Baselines. The performance of our wildfire detection model
is evaluated against representative baselines in the literature.
• MODIS-Terra: is the active fire product (MOD14/

MYD14) algorithm of MODIS satellite system. It de-
tects fire pixels by thresholding on background char-
acteristics, via masking mechanisms to identify cloud,
land, and water. False alarms are further reduced by
regression tests such as desert boundary rejection and
land-pixel coastal rejection [8].

• AVHRR-FIMMA: is the active fire mapping algorithm
used in near real-time AVHRR imagery data [6]. It uses
only three spectral channels (3,4,5) to eliminate clouds,
isolate potential pixels from warm background, bright
scenes, and non-forest scene. Then, only potential pixels
occurring within the land type with some tree cover are
regarded as fire-positive (urban or agriculture lands are
not considered).

• VIIRS-AFP: is the active fire detection algorithm used
in VIIRS satellite system. It is built on top of MODIS-
Terra algorithm to customise for both day-time and
night-time detections [9].

• GOES-AFP: is the state-of-the-art detection method [7]
developed for GOES-11 and GOES-12 data. It uses new
masking mechanisms to remove clouds and distinguish
water-land complex. However, it greedily focuses on
recall and thus introduces more false alarms.

We deliberately omit existing object detection meth-
ods [44] from our evaluation, since they are specialized in
well-defined shapes, whereas wildfires’ are arbitrary.

Metrics. A number of standard statistical measures are
employed for evaluating deep learning models, including:
(1) Precision – the number of true positive data samples (i.e.
classified correctly as fire-positive) divided by the number of
positively classified data samples; (2) Recall – the number
of true positive data samples divided by the number of fire-
positive ground truth; 3) Weighted F1-score – a harmonic
mean of Precision and Recall, calculated for each class and
the average is weighted by the number of true instances
in each class. Weighted F1-score, like Accuracy (ratio of
correctly classified instances over the total number of in-
stances), reflects the capability of identifying true positives
as well as avoiding false positives; but is more useful in case
of imbalance class distribution (e.g. true positives are more
important than true negatives) [45].

In the context of wildfire detection, we measure Lag time
to detection, which is the time difference between the genesis
of a wildfire and its detection (i.e., the first data sample is
labelled as fire-positive).

Training procedure. We use k-fold cross validation to
ensure fairness in splitting the data into training set and
test set. k = 10 is commonly used in practice to achieve a
good trade-off between having enough data for training and
having enough unseen samples for a fair evaluation. To avoid
over-fitting, the training data is further randomly split into
a learning set (consisting of k − 2 subsets) and a tuning set
(1 subset). The model is then trained only on the learning
set and the tuning set is used as a reference performance.
It allows an optimal setting to be chosen where model is
guaranteed to perform well on previously unseen data (via
tuning set) and hence prevents over-fitting when it comes to
the test set. In sum, the labelled data is divided into 80% for
training, 10% for validating and 10% for testing.

Hyperparameter tuning. The aforementioned three hyper-
parameters needs to be estimated for training. These include
the learning rate η, the momentum coefficient, µ and the
regularization parameter λ, which are calculated using a
random search technique as proposed by [29]. This method
is reported to be more efficient for hyperparameters opti-
mization than a traditional grid search.

Reproducibility environment. The model is implemented
in Python v3.6 using Keras API (v2.2.4), a high-level neural
networks library focusing on efficiency. Our model was
trained and tested on GPU GeForce GTX 108, CPU AMD
Ryzen Threadripper 1900X 8-Core Processor and 62 GB
RAM. Due to space limitation, further evaluations such as
running time will be reported in our extended paper.



B. End-to-end Comparisons

In this experiment, we will answer (RQQ) by comparing
our model against different baselines, including MODIS-
Terra and VIIRS-AFP. The comparisons between all de-
tection methods summarised in Table II, whose results are
averaged over all datasets.

TABLE II: End to end comparisons

Precision Recall Weighted F1 Lag time(h)

MODIS-Terra 94.87% 88.61% 91.60% 3.8
AVHRR-FIMMA 79.03% 80.01% 79.52% 11.2
VIIRS-AFP 94.62% 86.12% 90.12% 5.8
GOES-AFP 83.92% 89.23% 86.52% 4.3
Our model 96.05% 91.87% 93.89% 2.6

It can be observed that our model performs better than
all the baselines with at least 2.5% more accurate (F1-score)
and 1.5 times earlier (lag time). Another key finding is that
all methods have a large lag time in Ferguson dataset due to
extremely adversarial conditions: the fire had small size and
happened in night-time. An interesting observation is that the
recall of GOES-AFP is often higher than its precision, due
to its greedy design in capturing all potential wildfire signals
with the sacrifice with false alarms [7].

C. Robustness to Adversarial Conditions

This set of experiments validate (RQ2) regarding the
robustness of our model against adversarial conditions.

Day vs. night. We compare the overlapping of the detected
region of pixels and the actual fire-positive region of pixels
in different times of the day: day-time and night-time. The
result is depicted in Fig. 6, in which our model outper-
forms the best baseline (MODIS, due to aforementioned
experiments) across all datasets. An interesting finding is
that the performance of our model degrades in night-time
but still ≥ 0.8. The Ferguson dataset suffers the smallest
performance of wildfire detection since it was a small fire
happened at midnight, which still poses challenge for all
detection methods.

Fig. 6: Wildfire detection in day-time vs. night-time

Cloud effects. We divide the dataset into images with cloud
and images without cloud. We measure the performance of
pixel-wise classification since clouds can alter the neighbour-
hood effect of image pixels. The result is presented in Fig. 7,
in which MODIS is used as representative of all baselines

against our model due to its superior performance (see ex-
periments above). A key finding is that all the baselines (not
only MODIS) do not consider cloudy images and have no
detection (performance = 0). Another interesting observation
is that although our model degrades with the presence of
clouds, the overall performance is still acceptable for all
datasets (≥ 0.8). It is worth nothing that in UTE dataset,
there is no cloud image and thus the measurement is not
applicable (N/A).

Fig. 7: Wildfire detection in cloudy conditions

D. Qualitative showcases

We answer the (RQ3) regarding the interpretability of
our prediction model using the developed visualisation dash-
board.

Showcase on Camp Fire dataset. We compare our pre-
diction model against MODIS-Terra (which is chosen for
showcase due to its superior performance against other
baselines above) on Camp Fire dataset. Fig. 8 shows the
visualisation of MODIS-Terra on: (a) the true color image
captured by MODIS on November, 8th 2018, (b) Terra
prediction at 14:00 UTC, (c) Terra prediction at 20:00 UTC.
The visualisation is only shown at these two moments since
the Terra platform only acquires MODIS data twice per day
at mid-latitudes [46]. Although its result is quite good at
20:00 UTC, the fire, in fact, already started at about 14:00
UTC, resulting in a 6-hour lag time.

Fig. 8: Camp Fire Prediction by MODIS. (a) True color
Terra satellite image. (b) 14:00. (c) 20:00.

Fig. 9 shows the visualisation of our prediction model
on the same event. In contrast with MODIS, our model
on top of GOES-16 satellite shows its temporal advantage.
The visualisation is captured every 15min from 15:15 UTC
to 16:00 UTC. Our model can detect the fire from 15:30
UTC, resulting in 1.5 hour lag time, resulting in a significant
improvement over MODIS-Terra. Moreover, with the short



alarm interval (15min), users can monitor the growth of fire
in near real-time.

Fig. 9: Camp Fire prediction by GOES-16 satellite. (a)
15:15. (b) 15:30. (c) 15:45. (d) 16:00.

VII. CONCLUSIONS

In this paper, we propose a novel remote wildfire detection
framework using streams of satellite images. The framework
consists of (i) a streaming data processing component to
clean-up and scrutinise raw image data for regions of inter-
est, (ii) an early wildfire prediction component using deep
learning architectures to capture spatial and spectral patterns
for more accurate and robust detection, (iv) a streaming data
visualisation dashboard for wildfire mitigation specialists to
receive timely alerts of potential wildfires. The empirical
evaluations highlight that our techniques outperform the
baselines with 94% F1-score and 1.5× faster detections.
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