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Abstract—The satellite-based Global Positioning System (GPS)
provides robust localization on smartphones outdoors. In indoor en-
vironments, however, no system is close to achieving a similar level of
ubiquity, with existing solutions offering different trade-offs in terms of
accuracy, robustness and cost.

In this paper, we develop a multi-modal positioning system, targeted
at smartphones, which aims to get the best out of each of its constituent
modalities. More precisely, we combine Bluetooth low energy (BLE)
beacons, round-trip-time (RTT) enabled WiFi access points and the
smartphone’s inertial measurement unit (IMU) to provide a cheap
robust localization system that, unlike fingerprinting methods, requires
no pre-training. To do this, we use a probabilistic algorithm based on
a conditional random field (CRF). We show how to incorporate sparse
visual information to improve the accuracy of our system, using pose
estimation from pre-scanned visual landmarks, to calibrate the system
online.

Our method achieves an accuracy of around 2 meters on two realistic
datasets, outperforming other distance-based localization approaches.
We also compare our approach with an ultra-wideband (UWB) system.
While we do not match the performance of UWB, our system is cheap,
smartphone compatible and provides satisfactory performance for many
applications.

Index Terms—Smartphone localization, multi-modal systems, RTT-
based ranging, conditional random fields

I. INTRODUCTION

Despite decades of progress in indoor localization, no technology
has achieved widespread use. This can be largely attributed to the
fact that existing systems suffer from one or more of the following
drawbacks: they

— require additional expensive dedicated infrastructure;

— require significant training/calibration;

— are not robust to changes of the environment;

— require the user to actively scan the environment; or

— are not smartphone-compatible.

For example, ultra-wideband (UWB) signals can provide accurate
localization over a wide range of distances with a quick and stable
system setup [[14)]. However, this modality requires dedicated infra-
structure, and there is no evidence that it will become smartphone
compatible in the near future.

Other solutions require only a smartphone and no infrastructure.
For instance, cameras combined with inertial measurement units
(IMU) can be used to scan the environment and, using methods called
simultaneous localization and mapping (SLAM), infer an accurate
3D map and the user’s location with centimeter-level precision [33].
However, it is not always convenient for the user to actively scan the
surroundings; an ideal indoor localization system would be passive
— meaning that it requires no active participation of the user. Most
visual systems also require the environment to possess uniquely
identifiable visual features, which is not always the case, in particular
in exhibition rooms, lecture halls, and sterile environments such
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Figure 1. Overview of the proposed framework. We merge measurements
from commodity systems of different types to localize a smartphone. Our
solution requires no offline calibration or fingerprinting phase, uses little
computing power and is entirely smartphone compatible.

as hospitals. Finally, visual systems tend to break down when the
environment is changed, causing the recorded maps to not match the
reality anymore.

In order to create a passive localization system, a third category of
approaches use smartphone-compatible measurements, for example
radio-frequency (RF) signals such as Bluetooth low energy (BLE)
and WiFi. Since WiFi base stations are already prevalent and BLE
beacons are inexpensive, these approaches can be deployed with reas-
onable infrastructure costs. In indoor environments, RF signals are
heavily affected by multi-path, shadowing and fading [[13]]. Further-
more, synchronization issues, unknown latency times and unknown
variations in antenna characteristics induce important measurement
errors [26]. Therefore, the best-performing algorithms leveraging
such signals use a “fingerprinting” phase, in which the signal’s
characteristics are extracted at a finite set of positions in the region of
interest. These fingerprints are able to capture stationary non-line-of-
sight (NLOS) and multipath effects. In the online localization phase,
the recorded signal is matched with the fingerprint database, and—
after possible combination with IMU data and map constraints—a
position estimate is inferred [[10], [29]], [34].

In this paper, we present an indoor localization system that is
smartphone compatible, easy to install and robust to environmental
changes. The proposed system combines BLE beacons, WiFi hot-
spots, the smartphone’s IMU data, and visual fingerprints recorded
by its camera. The visual information is sparse in both time and
space. In particular, we assume that certain visual landmarks—such
as artworks in a museum, emergency exit signs, navigation maps,
etc.—do not change over a foreseeable time and these landmarks
can be “scanned” by the user at a handful of time points. At these
moments, we obtain centimeter-level localization, which allows us
to calibrate offsets in the other measurements.

For the localization algorithm, we use a conditional random field
(CRF) to efficiently combine the different measurement modalities.
This allows us to account for the expected relative accuracy of the
different systems, and to obtain a distribution rather than a single
estimate of the user’s position.

In sum, the proposed framework provides robust localization that
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does not break down when measurements or entire modalities are
missing or unreliable. Furthermore, the localization is passive for
the vast majority of the time. In terms of accuracy, we achieve
mean localization errors of around two meters in a challenging
indoor environment, without the need for any fingerprinting or prior
calibration.

II. RELATED WORK
A. Measurement modalities

While an abundance of measurement modalities have been pro-
posed for indoor localization [22], we focus on modalities that
are smartphone compatible. Among these systems, WiFi, Bluetooth,
IMU and images are most commonly available.

For the RF signals, the coarsely quantized and often unreliable
Received Signal Strength Indicator (RSSI) is most commonly used.
With the WiFi Round Trip Time (RTT) feature, known as IEEE
802.11mc FTM, more accurate distance measurements are now avail-
able [12]. With the publication of the new Bluetooth 5.1 standard,
it is also expected that angular information will soon become more
widespread [30]. Compared to WiFi, Bluetooth uses less power and
is cheaper to deploy, however it has a shorter range of operation (1-5
meters compared to 50-100 meters for WiFi) and is typically only
used for proximity detection.

It is widely known that the quality of RF signals degrades in
challenging indoor environments. Whilst it is difficult to reduce this
effect, estimating the accuracy of each measurement and processing
this appropriately can significantly improve performance. In this
regard, Xaio et al. [36] extract different RSSI-based features to
identify NLOS conditions in Wifi-based localization and Li ez al. [[16]
leverage the observation that NLOS signals have a higher variability
than LOS signals. Bahillo er al. [3|] use distances inferred from
RTT measurements as constraints to improve RSSI-based distance
estimates. Li et al. [15] propose new features extracted from the
channel state information (CSI) which can be used to differentiate
line-of-sight (LOS) from NLOS measurements. While CSI can
greatly improve performance, it should be noted that, currently, it
is not readily available on smartphones. In addition, most methods
distinguishing LOS from NLOS rely on a training phase and are thus
not suitable if the aim is to have little setup and calibration time.

Almost all smartphone-based systems leverage IMU data to im-
prove performance. Since IMUs provide an estimate of the device’s
relative movement, both in terms of travelled distance and movement
direction, integration can be applied to obtain position estimates;
however, double integration of accelerometer data is notoriously
inaccurate and step detection combined with estimated step length
and direction is more commonly used [10], [21], [37]].

On the vision side, object recognition and localization from
visual features are well-studied topics and a review of these is
beyond the scope of this paper. Therefore, we refer the interested
reader to standard textbooks on multi-view geometry and computer
vision [11]], [18], [23]].

B. Localization algorithms

Localization algorithms can be very broadly split into two cat-
egories: those that predominantly use geometric information—such
as lateration—and those that learn how signals behave in the
environment—such as fingerprinting.

Geometric methods have existed ab incunabulis and include stand-
ard lateration and angulation techniques. For multilateration, optimal
and efficient solutions exist [5] and angulation has many parallels
with the well-studied multi-view geometry.

In addition to methods that assume fixed anchors at known
positions, geometric methods also exist for ad-hoc sensor networks
[8], where a number of nodes can be simultaneously localized relative
to each other. When distance measurements are obtained between
the sensor nodes, Euclidean distance matrices (EDMs) provide a

tool to denoise and complete missing measurements [9]. These
ideas have also been extended to include both distance and angle
measurements [2], [[19].

Note that, in practical systems, these geometric methods are usu-
ally embedded in a more complex framework, often based on Kalman
or particle filters, which produces smoother estimates across time and
allows relative measurements from IMUs or similar modules to be
incorporated [31].

For learning-based approaches, fingerprinting has seen widespread
use. For example, Guimardes et al. [|10] use WiFi fingerprint maps
for coarse location estimation, and refine the estimate using magnetic
fingerprints and IMU measurements. Shu et al. [29] use the same
measurement modalities, but combine them in a particle filter. Since
their system uses a bidirectional dynamic time warping method, it
operates with a delay. Xiao et al. [34], on the other hand, pro-
pose a real-time localization system using similar modalities. Their
probabilistic framework introduces features for WiFi fingerprints and
IMU measurements to yield a probability distribution for the device’s
position.

The above approaches rely on fingerprint databases, which have
to be collected and updated regularly in time-consuming offline
calibration phases. Since the creation of these databases is the major
bottleneck in terms of setup efforts, there have been multiple lines
of research proposing to speed up this process, or to crowd-source
the fingerprint creation and maintenance over time [24]], [25], [35],
[37]. The sensitivity of fingerprint maps to short-time variations in
the environment however stays an unavoidable shortcoming of these
methods. For instance, it was reported that a moving elevator was the
main cause of fingerprint disturbances in the 2017 Microsoft Indoor
Localization Competition [17]]

The method proposed in this paper does not rely on fingerprint
maps and therefore avoids the lengthy setup time. The mathematical
framework is based on the conditional random field formulation
provided by Xiao et al. [34], and extended to include both RSSI-
based and RTT-based distance measurements. In [34], global orient-
ation offsets are calibrated by simultaneously inferring the position
over multiple time steps, which can introduce unwanted latency in
the system. In contrast, we achieve calibration by using sparse visual
features and therefore do not introduce delays.

III. PROBLEM SETUP

Our goal is to find the location of a device at time instances
{t;}j=1; we denote this estimate, at each time instant, by y[j] € R®.
We assume that there are My WiFi access points and Mg Bluetooth
beacons, from which we get distance and path loss measurements,
respectively. From the IMU, we obtain an estimate of the device’s
orientation Oy € [0,27] and of the distance travelled since
the last processing time, Imu € RY, respectively. Finally, we
sometimes obtain a pose estimate from visual scanning, denoted by
(v,0,) € R® x [0,27]. Note that we are only interested in the
device’s orientation in the x-y plane (its rotation around the z-axis),
as we are treating objects moving mostly in a horizontal plane, in
particular walking pedestrians.

To simplify notation, the observations at a given discrete time
instant ¢; are combined into a vector-valued observation variable
Z;. For example, if we have complete measurements at time instant
t;, then Z; takes the form

Z; = [di,..

vdary s Pry oo Parg, 0o, lvo, v, 05]7, (1)

where d; € R, = 1... My are the distance measurements from
WiFi access points, and P,k = 1...Mp are the signal strength
measurements from the Bluetooth beacons. Each measurement is
given by the median over a one-second time window. In practice we
will only measure a subset of all modalities at each time instant.
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Figure 2. Visualization of the proposed CRF algorithm. At each time
index j, the probability of each point (proportional to its size) is computed
by considering the connected grid points and the transition probabilities
(proportional to the line thickness). After each step, we pick the point with
highest probability as our position estimate (highlighted in yellow).

Finally, we assume that the locations of Bluetooth beacons and
WiFi access points, denoted by am € ]R3,m =1...Mp + Mw,
remain unchanged throughout the experiment.

IV. CONDITIONAL RANDOM FIELDS

We uniformly discretize the 3D domain, and denote the position
of grid point i = 1... N by y; € R3. In addition, Y; denotes the
latent or state variable at time j and in our framework contains the
position estimate of the device.

At any time j, the goal is to maximize the conditional probability
p(Y|Z) of the state variables Y = {Y1,...,Y;} given the observa-
tions Z ={Z,...,Z;}.

Similar to [34], we use linear chain CRFs where the conditional
probability function of states given observations can be represented
by a product of potential functions:

T
p(Y12) o [ 05, Y51, Z). @
j=1
The potential functions W(Y;_1,Y;, Z;) are, in turn, composed of
K > 0 feature functions fi:

K
U(Y;,Yj-1,Z;) = exp <Z)‘kfk(}/JvY717ZJ)> : 3

k=1
Here, each feature function characterizes the likelihood of transition
from state Y;_1 to state Y; given the observation Z;. We use the
parameters Ar € {0,1} to exclude certain feature types, and tune
the relative importance of features through their own parameters, as
outlined in the next section.

The location of the device is found sequentially, one step at a
time, using the Viterbi algorithm. At any time step j, the algorithm
computes, for all possible grid points y;, the probability p;(yi|Z;)
of the most likely sequence of states (Y1, ..., Y;) such that Y; = yi.
The main step of the Viterbi algorithm can be written as

pi(yilZ;) = max pi-1(nlZ;-1)¥(yi, y1, Z5) - “)
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Figure 3. Probability maps inferred at one time instance for the different
systems. The standard deviations are 1 dBm for Beacon RSSI, 2m for IMU
distance and 0.1 radians for IMU angle (the sum is shown), and 1 m for RTT
distance measurements. The bottom row shows the 1D-cut of the distribution
along the red dotted line. Zero probabilities are omitted for better readability.

The algorithm is visualized in Figure 2] Note that, as opposed
to the original CRF formulation [34], our position estimate at time
j depends only on the most recent measurements at time 2.
This avoids introducing an unwanted delay in the system, and the
smoothness of the solution is not compromised thanks to relative
distance and angle measurements from the IMU system.

A. Modeling feature functions

The main challenge of the proposed framework is the design
of transition probabilities U(Y;,Y;_1,Z;). In the following, we
introduce features based on WiFi RTT, Bluetooth RSSI and IMU
data, and outline how to use visual measurements. All features are
normalized such that their sum on the considered grid equals one
before feeding them into (@).

1) RTT feature function: For the RTT feature function, we assume
that distance measurements to anchors follow a Gaussian distribution.
Namely, the measured distance d,, to anchor m follows the distri-
bution N (d5,,02,), where d, = ||am — yil| is the true distance
(conditioned on the device being at y;) and o2, is the measurement
variance. We also assume that the measurements to different anchors
are independent. This leads to the probabilities

My 2
Iy o I 1 _(dm —din)
p(Zjlyl) X o] o_mm exp ( 20'7271 ) ’ (5)

from which we deduce the feature function

M
Z)=3" L (dm — d,)?
h(Y,Z5) =) In (amm> -t ©

2) RSSI feature function: With measures of received signal
strength, such as RSSI, the distance distribution is not the same as
for RTT. Let P,, be the power of the signal received from anchor
m. We assume that, due to noise and interference, P, follows a
Gaussian distribution N (P, 02,), where Py, is the expected (or
ground truth) power and o2, is the power variance, both expressed
in dBm.

The expected received signal power, P,,, is related to the true
distance from the anchor d;, via the log-distance path loss model
expressed by

m=1

Py, =T, — 10nlog,, dr,, @)

where T, is a constant and n is the path loss exponent. The same
path loss model can be used to compute the distance d.,, based on
the received signal’s power with

Ay = 10— Pm)/10 ®)
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Figure 4. Illustration of how the normal distribution of measured RSSI values
translates into a log-normal distribution of estimated distance, and how the
latter looks after the correction given in (TT).

Since P,, follows the normal distribution, the natural logarithm
of the distance estimate d,,, also follows a normal distribution, given
by

P (dm) [y1) ~ N (Sm,000.a) ©)

where, to simplify notation, we introduced

T,, — P} In(10)\?
Sm = In (10) T”IT and o g = ( lén)> o2,
Consequently, the estimated distance d,, conditioned on Y; = y;
follows a log-normal distribution. Following the assumption that all
anchor measurements at one time instant are independent, we can
write

Mp 2
1 m — PDm
M%mmﬂw%i%d5”>wm
m=1

1
dmOm,aV2m 20;@

We note here that the sequential algorithm (@) chooses the state
with highest posterior probability, at every step, or put differently,
it finds the mode of the distribution p(Y;|Z;). If we consider an
RSSI measurement drawn from a normal distribution whose mean
Py, equals the true power (without noise), then the true distance
dy, equals the mean of the corresponding log-normal distribution of
the distance. However, the mean distance does not correspond to the
distance at which the PDF attains its maximum value.

In order to correct the discrepancy between the log-likelihood
distribution and posterior maximization, we scale the PDF of the
log-likelihood distribution by the distance and obtain

) .1

(log dm — Sm)2
B 2072,1, a
By doing so, we get a probability density function ps(Z;|yi) whose
mode equals the mean of the corresponding log-likelihood distribu-
tion p(Z;|yi), which makes ps(Z;|yi) compatible with posterior
maximization as a means to finding the position. This effect is
visualized in Figure [
The corresponding feature function is then

Mp 2
N 1 _ (logdm — Sm)
fQ(}/}’ZJ)_ Zln (Um,dm> 20_”2an .

3) IMU feature functions: We deduce a travelled distance Iy
and direction Oy from IMU measurements at time j as follows.
First, we assume that from variations in the vertical acceleration we
can identify step counts. We then calculate a step vector, obtained by
averaging the product of an estimated step length with the direction
for each step. To simplify, we fix the average step length throughout
the experiments. Finally, we calculate the distance and orientation
estimate as the norm and the angle of the averaged step vector.

Under a Gaussian noise assumption, the IMU features can be
written as

Mp

1
ps(Zjlyi) o ————exp
T El Om,dV 2T

12)

m=1

1 (b — llys — yxl)®
Y.V, 1,Z;) =1 — 1
f3( gy Li—1, J) n(alm) 2012 5 (3)
1 A (6mu, 0(yi, yx))?
f4(YjJG—1,Zj):1n( )— OO0,y - 14
ooV 2T 20

where 6(-) returns the angle between two states, and oy, o; are the
standard deviation of angle and distance measurements, respectively.
The operator A returns the angular difference in the interval [—, 7].

Experimental distributions for the four proposed feature functions,
f1 to fa, are shown in Figure 3] To ensure a good balance, it is crucial
to choose appropriate standard deviations for each of them. The
choice of the standard deviations, shown in the Figure, is motivated
in Section [V=-C|

4) Visual measurements: Our visual system, called Pixlive, uses
AGAST, BRIEF and ORB [6], [20], [27]], [28] to detect and create
descriptors of feature points, which are compared to a database
of known images. The system selects the best match and finally
computes the homography and pose using multi-view geometry
techniques [11]. We emphasize that these techniques are standard
and not the focus of this paper.

Since the visual system provides centimeter-level accuracy, we
treat measurements from it as “ground truth”. Denoting the position
estimate at time j by v, we reset our probability map to a Gaussian
distribution around the estimate, with a fixed low variance o,

ey (- L2 —vHZ).
ouV 2T 202

The variance should be chosen sufficiently small such that only few
states around the visual estimate have a non-zero probability. For
a 0.5 by 0.5 meter grid we found that ¢,=0.05 meters yielded this
desired behavior.

p(yilZ;) =

15)

B. Location inference

By applying (@ at time j, we obtain a probability map that
contains the probability of the device being at each grid point. To
obtain a single position estimate at each time, we pick the point of
maximum probability, given by

ylj] = arg max p; (y|Z;). (16)

ye{yit,

In the pictorial example, shown in Figure [2] the obtained position
estimates are highlighted in yellow.

We reduce the search space of the Viterbi algortithm to
grid points for which the probability at the previous time step
pj—1 (y1|Zj—1) was significant. With a threshold chosen low enough
(in our case, le-10), this does not affect the result because these states
are not realistic candidates, however it does speed up the position
inference significantly.

An alternative approach to location inference is to recursively
backtrack the position estimates. By keeping track of the most
likely predecessor state (the argmax in (@), we can reconstruct the
sequence of states that lead to the current estimate. Experiments show
that this approach can help to smooth the trajectory if one allows a
small delay.

V. PROCESSING AND CALIBRATION
A. Outlier rejection

As outlined in the previous section, we assume distance measure-
ments from RTT anchors to be zero-mean Gaussian and Beacons to
be log-normally distributed. In order to get closer to this assump-
tion, we filter the raw measurement before feeding them into our
algorithm.

The accuracy of raw BLE Beacon and WiFi RTT measurements
are shown in Figure [5] The measurements are taken in a challenging
environment with multi-path and shadowing. By plotting distance er-
ror vs. RSSI, we see that low RSSI measurements are correlated with
high distance errors. For WiFi signals, which are generally stronger
than BLE signals, the threshold at which the signal deteriorates is
at around -65 dBm. For the lower-energy Bluetooth signals, it is at
-90 dBm, which is close to the receiver sensitivity of standard BLE
beacons. We found that rejecting measurements below this threshold
was beneficial to the overall localization accuracy.
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Figure 5. Accuracy of Bluetooth (left) and WiFi (right) anchors for the zig
zag dataset. Plotted is the absolute error between real distance and measured
distance on y, vs. the received signal strength indicator (RSSI) on x.

B. Online calibration

The visual system is not only used to reset the probability map
from time to time, it is also exploited for online calibration of
the unknown parameters of the different systems: the offset of
RTT distance measurements (introduced primarily by multipath and
unknown latency issues ), the transmit power of the Beacons,
and the absolute orientation of the phone (IMU magnetometer tends
to be very noisy and gyroscope measurements tend to drift). When
a visual measurement is recorded, we record measurements for the
following second, assuming the user is standing still during this time,
and use the median of the recorded measurements to calibrate each
modality. We use the thereby obtained offsets for each WiFi access
point, and transmit powers for each Bluetooth beacon, to correct the
obtained distance estimates in real-time.

C. Feature weights

The weights of the different features need to be chosen so that
the features complement each other appropriately, and none of them
dominate the final probability map. Inspecting Equations (6},
and (T4), the main parameters to tune are the standard deviations
of each modality. One can obtain estimates of standard deviations
from each device experimentally. However, we found that finding
one system-dependent standard deviation for each modality yielded
sufficiently good results. The chosen standard deviations are shown
along with the resulting probability maps for a sample datapoint in
Figure EI Note that the Beacon features get absorbed by the other
two features, which is desired since we expect much lower accuracy
from Beacons than from RTT or IMU.

As previously mentioned, when it comes to RSSI features, we
assume that the received signal strength, expressed in dBm, follows

Beacon 0 Beacon 1 Beacon 2 Combination

5 el 5
* o -

Beacon 0 Beacon 1 Beacon 2 Combination

I=En

Figure 6. Lognormal feature for Bluetooth RSSI measurements without
(top) and with (bottom) correction factor @), on simulated data. Shown
in white and red are anchors and the device positions, respectively. Note that
the distribution flattens out for high distances (for instance for Beacon 1).
With the correction, the maximum of the total distribution (right column)
concentrates around the true position.

(b) (©

Figure 7. (a) Picture of the BC atrium at EPFL, the location of the
experiments. (b-c) Two example images used as visual features for calibration.
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Figure 8. (a) Anchor layout. The height of each anchor in meters is included
in parentheses. (b) Studied datasets with ground truth obtained from Tango.
Sparse visual position estimates from Pixlive are also shown.

a normal distribution. This noise model choice has the convenient
effect that distance measurements from close beacons are considered
more accurate than measurements from far beacons. Intuitively
speaking, constant variance across different signal strengths will not
have the same effect on ranging quality. To give an example, if a
6dB change amounts to doubling of the distance, the variation in
received signal strength that amounts to 6 dB is not the same thing
if the true distance is 1 meter or 10 meters. The simulated probability
distributions plotted in Figure [6] obviate this intuition.

VI. RESULTS

We show the effectiveness of the proposed method in two real-
world experiments in a university building.

A. Environment of experiments

The area for experiments is a large, furnished hall containing glass-
windowed lecture rooms, depicted in Figure[7)(a). Five visual anchors
are mounted on walls and glass windows as shown in Figure |Z| (b)
and (c). The different RTT and Bluetooth anchors are distributed over
the area as shown in Figure [8](a). We walk two different trajectories,
shown in Figure [8] (b), named double loop and zig zag, respectively,
because of their characteristic shapes. The pose estimates obtained
occasionally from scanning of the visual anchors(at 5 and 6 different
points, respectively) are also depicted. During the experiment, there
is light traffic of students coming in and out of lecture rooms.

For ground-truth data, we use the Tango visual system, however
the sparsity of robust visual features induced by uniform and
repetitive structures and the large glass walls posed problems for
this system. Therefore, we added multiple feature-rich posters on the
floor to ensure robust localization. We emphasize that these added
features are only used to obtain ground-truth data and are not part of
our proposed system. In addition to our proposed system, we obtain
UWB-based position estimates for comparison.

While the phones acquiring Bluetooth, RTT, IMU and visual
features for indoor localization are carried by the test subject, they
are followed by a second subject carrying a laptop that is used only
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Figure 9. Cumulative distribution functions of absolute distance measurement
errors with and without online/offline calibration. On average, online and off-
line calibration improve the distance accuracy of RTT distance measurements
significantly, however online calibration can induce high errors for certain
Bluetooth beacons.

for the UWB processing. Both the subject and the laptop carrier thus
create challenging non-line-of-sight conditions for certain anchors.

B. Overview of used technologies

The ground truth Tango data is obtained with the augmented reality
platform from Google. It is acquired from an indoor localization
application running on a Lenovo Phab 2 Pro mobile device with a
motion tracking camera and RGB-IR camera [33].

WiFi measurements are gathered from RTT-enabled Fitlet2 access
points by Compulab using the WiFi Indoor Positioning application
[7] from a Google Pixel smartphone running Android 9 Pie. The
measurements from the other systems are acquired with an LG
Nexus 5X mobile phone. The beacons from Kontact.io are low-cost
Bluetooth Low Energy emitting devices for proximity detection. IMU
data is obtained from the smartphone’s gyroscope and accelerometer.
The sensor data is gathered and transmitted by a custom Android
application. The visual position estimates are acquired from PixLive
and obtained with a custom Android application that uses Vidinoti’s
SDK [32]]. All the systems send their output to a python server which
stores the acquired data.

The UWB system, used for comparison, is called Pozyx [14] and
requires four fixed anchors and one tag mounted on an Arduino
UNO, which is connected with a USB cable to a laptop running
the acquisition server.

We fix the two phones and the UWB tag on a custom portable
wooden mount, which makes sure their relative positions stay the
same throughout the experiment. The Tango device is carried in the
other hand so that it can be moved freely to scan the environment.
The devices are thus not exactly co-located, from which we expect
a small additional positioning error in the range of 5-10 centimeters.

C. Data accuracy and calibration

We first evaluate the accuracy of the obtained distance meas-
urements, with and without online calibration. Figure E] shows
the obtained distance accuracy for the two studied datasets. For
comparison, we also plot the result from offline calibration, obtained
using measurements at 5 static positions (ca. 60 seconds each) before
the experiments started. For each dataset, we show two example
Beacon and RTT anchors, respectively, and the cumulative error for
all anchors. While calibration is always beneficial for RTT anchors,
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Figure 10. Distribution of calibration parameters for WiFi (top) and Bluetooth
(bottom) anchors. The parameters calibrated offline are shown in black. We
show the obtained parameters for each dataset separately. Parameters are
recalculated whenever a visual measurement is present. The high variance in
optimal parameters motivates the continuous online calibration over offline
calibration.

it can lead to faulty results for the Bluetooth beacons, for instance for
Beacon 0 in the double loop dataset. We have found that this is due
to the high variance of Bluetooth RSSI, which means that using a
small window for calibration can lead to high bias. Figure [I0] shows
that there is indeed a high variance of the calibrated parameters for
the two different datasets. However, the localization results show
that faulty distances are successfully compensated for by other more
accurate modalities. Both offline and online calibration are therefore
valid choices, however online calibration has the advantage of not
needing any additional setup time and is the preferred solution.

D. Evaluation of available modalities

For localization, we initialize a grid including connectivity inform-
ation given the map of the building. A grid size of 0.5 meters is found
to yield fast enough inference and satisfactory resolution. Since we
are limited to one floor, we only use one layer in z-direction at the
approximate height of the devices during experiments (1.2 meters).

We first evaluate the performance of the proposed system for
different combinations of measurement modalities and calibration
schemes. Table [I| shows a summary of the obtained localization

Table T
COMPARISON OF PROPOSED METHOD WITH DIFFERENT CALIBRATION
SCHEMES AND MODALITIES USED. THE BEST SCORES PER ROW AND
COLUMN ARE HIGHLIGHTED IN BOLD AND COLOR, RESPECTIVELY.

double loop

mean error[m]

median error[m]

calibration none offline online | none offline online
IMU 4.55 4.55 4.55 3.94 3.94 3.94
RTT 5.85 4.06 3.34 4.99 3.11 2.48
BLE 7.08 6.65 6.18 5.85 5.68 4.64
RTT+IMU 4.07 3.21 2.87 3.99 3.03 2.78
BLE+IMU 4.36 4.21 3.78 3.56 3.85 3.35
RTT+BLE 5.77 4.06 3.18 4.83 3.20 2.48
RTT+BLE+IMU | 4.28 3.27 2.60 4.09 2.90 2.29
zig zag
mean error[m] median error[m]
calibration none offline online | none offline online
IMU 5.32 5.32 5.32 4.99 4.99 4.99
RTT 5.06 3.36 3.05 5.02 3.07 2.76
BLE 6.05 5.71 7.93 5.51 5.39 6.40
RTT+IMU 3.70 2.99 2.62 3.78 3.06 2.49
BLE+IMU 5.08 5.04 4.46 3.70 4.41 3.26
RTT+BLE 4.90 3.24 2.93 4.76 2.97 2.68
RTT+BLE+IMU | 3.60 2.93 2.44 3.50 2.98 2.33
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accuracy, in terms of median and mean localization errors over the
whole dataset. We denote by localization error the Euclidean distance
between the position estimate and the ground truth obtained from
Tango.

It is immediately apparent that adding IMU features increases
the accuracy of localization significantly, even though the IMU
measurements on their own would yield poor localization results.
Adding Beacon measurements on average only slightly improves
accuracy. This is expected since Beacon measurements are the least
reliable ones. Furthermore, the Beacon feature function is relatively
flat compared to the other features by design, so they only have little
impact on the global probability distribution.

In terms of calibration schemes, online calibration yields the
best results for almost all combinations of systems. Calibration is
particularly powerful for RTT measurements, which otherwise can
exhibit a high offset: it almost halves the median and mean error for
both datasets.

Finally, we emphasize that it is best to combine the three available
modalities, leading to the lowest median and mean errors. Con-
sidering the significant differences in measurement quality (note
the difference in localization performance when using each system
individually), our system thus weights all modalities correctly when
combining them. Indeed, the 2D localization plots in Figure@show
that Bluetooth and Wifi RTT measurements alone lead to jumpy
estimates, while using IMU only induces high drift. The proposed
method favorably combines the used modalities.

E. Comparison with other methods

We show the performance of our algorithm, which we call CRF,
and other distance-based localization methods, in Figure[TT] We add
the recursive solution discussed in [[V-Bf where we backtrack the
trajectory from the final position estimate (called CRF recursive).
We compare to the two algorithms proposed by [5]: the grid-search
implementation of Range Least Squares (RLS, denoted by grid-L2)
and the Squared Range Least Squares (SRLS) solution. We also
introduce a variation of RLS using the median rather than mean
distance error (denoted by grid-LI) and a simple weighted centroid
algorithm similar to [[I]. In our centroid algorithm, we linearly
interpolate the 3 closest anchor coordinates, using the inverse of
the distance measurements as weights. For fairness, we always use
the Pixlive measurements as position estimate if it is available.

Figure E shows 2D plots of the obtained localization using
the best-performing combination from Table |I| in terms of mean
localization error (RTT, Beacon and IMU measurements and online
calibration). Thanks to the time consistency imposed by the IMU
features in our implementation, the position estimate is smooth and
its shape is close to the actual trajectory of the target. For the
distance-only methods, the estimate is very volatile and the shape
of the trajectory is hard to discern.

The cumulative distribution functions of the localization error for
the different algorithms are shown in Figure [T2] Compared to the
UWB-based solution Pozyx, which requires designated hardware,
our method yields higher localization errors. However, the position
accuracy of the proposed method is the best amongst the shown
smartphone-compatible solutions. In particular, high error estimates
are significantly reduced in the proposed framework. The difference
in performance between the four benchmark methods is quite small:
for the grid-based methods and SRLS, this is explained by the
relatively high distance accuracy (after calibration), meaning that
the median and mean are similar, and also that RLS and SRLS
are expected to behave similarly; the only difference being the
squaring of distances for SRLS [5]. The reasonable performance of
the centroid algorithm is explained by a relatively dense deployment
of anchors.
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Figure 11. Visualization in 2D of the proposed localization method compared
to standard and state-of-the-art methods, on the two studied datasets. Our
method (CRF) yields smooth and accurate position estimates, comparable
with the UWB-based system Pozyx. The recursive location inference (CRF
recursive) smooths the results a posteriori and corrects for the slight drift in
the zig zag dataset.
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VII. CONCLUSION

We have proposed a smartphone-compatible multi-modal indoor
localization system that integrates various measurement types using a
probabilistic framework. Experimental results show that the system
yields more accurate estimates than classical approaches, and that
even when entire modalities are missing, the localization continues
to be accurate. The setup can be quickly installed with no training
phase required, which also makes it robust to environmental changes.
Finally, the system is passive for the vast majority of the time with
the user only actively scanning the environment from time to time.

In the future, we envisage that the system could be extended in
a number of ways. For example, more sophisticated step detection
algorithms, such as the techniques proposed in [4], could lead to
improved tracking.

In addition, the sparse use of visual features could be further
developed to include modern SLAM systems such as Apple’s ARKit
and Google’s ARCore when they are active. The system would still
fall back on RF signals and IMU when the smartphone is returned
to the user’s pocket.

Finally, more measurement modalities such as angular information
from Bluetooth 5.1 could be leveraged in the existing framework, to
further increase the robustness and accuracy of the localization.
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