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Abstract

During the last twenty years, Random matrix theory (RMT) has produced numerous results that allow
a better understanding of large random matrices. These advances have enabled interesting applica-
tions in the domain of communication. Although this theory can contribute to many other domains
such as brain imaging or genetic research, its has been rarely applied.

The main barrier to the adoption of RMT may be the lack of concrete statistical results from prob-
abilistic Random matrix theory. Indeed, direct generalisation of classical multivariate theory to high
dimensional assumptions is often difficult and the proposed procedures often assume strong hypothe-
ses on the data matrix such as normality or overly restrictive independence conditions on the data.

This thesis proposes a statistical procedure for testing the equality of two independent estimated co-
variance matrices when the number of potentially dependent data vectors is large and proportional to
the size of the vectors corresponding to the number of observed variables.

Although the existing theory builds a very good intuition of the behaviour of these matrices, it does
not provide enough results to build a satisfactory test for both the power and the robustness.

Hence, inspired by spike models, we define the residual spikes and prove many theorems describing the
behaviour of many statistics using eigenvectors and eigenvalues in very general cases. For example in
the two central theorems of this thesis, the Invariant Angle Theorem and the Invariant Dot Product
Theorem.

Using numerous generalisations of the theory, this thesis finally proposes a description of the behaviour
of a statistic under a null hypothesis. This statistic allows the user to test the equality of two popu-
lations, but also other null hypotheses such as the independence of two sets of variables.

Finally, the robustness of the procedure is demonstrated for different classes of models and criteria for
evaluating robustness are proposed to the reader.

Therefore, the major contribution of this thesis is to propose a methodology both easy to apply and
having good properties. Secondly, a large number of theoretical results are demonstrated and could

be easily used to build other applications.

Keywords: Dependent data, eigenvalue, eigenvector, equality test of two covariance matrices, high
dimension, random matrix theory, residual spike, spike model.
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Résumé

Ces vingt dernieres années, la théorie des matrices aléatoires (RMT) a produit de nombreux résultats
permettant une meilleure compréhension de grandes matrices aléatoires. Ces avancées ont permis des
applications intéressantes dans le domaine de la communication. Bien que cette théorie puisse con-
tribuer a beaucoup d’autres domaines comme en imagerie cérébrale ou dans la recherche en génétique,
son application est restée tres modérée.

La raison principale de cette difficulté a s’implanter pourrait étre le manque de résultats statistiques
concrets qui s’inspirent de la théorie probabiliste des matrices aléatoires. En effet la généralisation
directe en haute dimension des résultats de statistiques multivariées classiques s’avere souvent difficile
et les procédures créées supposent de fortes hypotheses sur la matrices de données comme la normalité
des entrées ou des indépendances exigeantes.

Cette these propose une procédure statistique pour tester ’égalité entre deux matrices de covariances
estimées indépendantes quand les données sont de dimension large et que le nombre de données, po-
tentiellement dépendantes, est proportionnel au nombre de variables observées.

Bien que la théorie crée une tres bonne intuition du comportement de ces matrices, elle ne procure
cependant pas suffisamment de résultats pour construire un test satisfaisant aussi bien au niveau de
sa puissance que de sa robustesse.

De ce fait, en s’inspirant des modeles spikes, nous définissons les spikes résiduels et démontrons
plusieurs théoremes étudiant différentes statistiques construites a partir de vecteurs propres et de
valeurs propres dans des cas trés généraux. Citons par exemple les deux théoremes centraux de cette
these, le Théoreme de 'angle invariant et le Théoreme du produit scalaire invariant.

Basé sur de nombreuses généralisations de la théorie, cette these propose finalement une description
du comportement d’une statistique sous une hypothese nulle. L’utilisateur pourra alors tester ’égalité
entre deux populations, mais aussi d’autres hypotheses telles que 'indépendance entre deux jeux de
variables.

Finalement, la robustesse de la méthode est démontrée dans différentes classes de modeles et des
criteres évaluant la robustesse sont proposés a 'utilisateur.

Ainsi cette these propose principalement une méthode facile & utiliser et ayant de bonnes propriétés.
Dans un second temps, un grand nombre de résultats théoriques sont démontrés et leur utilisation
pourrait facilement étre détournée pour construire d’autres applications.

Mots clés: Données dépendantes, haute dimension,modele spike, test d’égalité sur des matrices de
covariances, théorie des matrices aléatoires, spike résiduel, valeur propre, vecteur propre.
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Chapter 1

Introduction to Random matrix theory

In this chapter we introduce the main results of Random matrix theory (RMT) and then focus on the
problem of comparing two random matrices in order to decide whether they really differ. Our results
will be useful when comparing two large estimated covariance matrices.

As we will see, RMT provides many strong theoretical results but has only a few applications to date.
Although this thesis does not use all the results of this chapter, they provide important context for
our subsequent results.

1.1 Notation

Let X1, ..., X}, be centred i.i.d random vectors of size m and covariance >.,,. We study the estimated
covariance matrix of these vectors

3 N 1 - t 1 t
=S = - > XiX] = ~XX,
i=1

where X = (X7, ..., X;;) is an m X n random matrix with columns X;.

RMT concerns this random matrix; or more precisely its eigenvalues and eigenvectors when both n
and m tend to infinity. When m is finite and n tends to infinity the behaviour of the random matrix
is well known and presented in the books of Mardia, Kent, and Bibby| [1979], Muirhead [2005] and
Anderson, [2003] (or its original version |Anderson| [1958]).

When both m and n tend to infinity in such a way that m/n — ¢, the behaviour is more complex, but
many results of interest are known. |Anderson, Guionnet, and Zeitouni| [2009], Tao| [2012] and more
recently Bose| [2018] contain comprehensive introductions to RMT and Bai and Silverstein| [2010] covers
the case of empirical (estimated) covariance matrices. Before introducing the results we present some
concepts and notations.

Definition 1.1.1. 3
Let Ay, € R™*™ be a matrix with eigenvalues A1, Aa, ..., Ay € [@m, bn] C R.

1. The cumulative spectrum of A,,, Fg,, , is defined on R as
1 m
Fa,(2) = — Zl LSPVEINE
1=

2. Suppose that A, Ay, As, ... is a sequence of matrices with cumulative spectrum, Fa,, Fa,, Fa,, ....
If the sequence of the cumulative spectra converges weakly in probability to a bounded cumula-
tive function, F4(A), on [a, 5] C R,

F A — F A

then we call F4 the asymptotic cumulative spectrum.
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3. If Fy is differentiable, then we define the spectral asymptotic density
fa() = Fi(N).
Notation 1.1.1.

1. The ratio of m and n is denoted ¢,, = m/n and tends to ¢ € ]0, +o0[.

2. We will often use X instead of X, if it is clear from the context what is meant. Note that
Y € R We define Fy,, (A\) to be the spectrum of ¥,, and Fx(\) to be the limit of Fy,  (A).

3. The empirical covariance matrix is then f](mm) = %, and its spectrum is Fz( )(x) which tends

to Fy(x). Thus, Fé(a?) = fs () is the density corresponding to the limit of the empirical spectral
distribution.

4. For i =1,2,...,m, \; (A) denotes the i*" largest eigenvalue of the square matrix A € R™*™,

5. We will denote by Ay, ; and ux,,; (i = 1,2,...,m) the eigenvalues and eigenvectors of non-
random X,,. When no confusion is possible we use the simpler notation, A; and wu;.

6. The empirical eigenvalues and eigenvectors of ¥ are A, , and 1y, . and depend of course on n and

m. When no confusion is possible we use the simpler notation, \; and ;.

Ran

7. If a random matrix X € is not symmetric, Xxl and 1ix ; denote the ith eigenvalues and

eigenvectors of %XXt.

8. We use o2 for ﬂ%e(z) We will often standardise 3 by o2 and still call the resulting matrix X.

9. We denote by /2 the positive definite matrix in R™*™ such that £1/251/2 = ¥ ¢ R™*™,

1.2 Independent case
In this section we assume X = (X, Xo,..., X},) is a real random matrix of size m x n such that for
1=1,2,...,mand j=1,2,...,n,
X;,; are independent,
E[X;;] =0,
Var (Xi,j) = 02.
Many interesting results are known for this scenario, in particular:

1. the behaviour of the asymptotic empirical spectrum,
2. the asymptotic distribution of the largest empirical eigenvalue,

3. the behaviour of the empirical eigenvectors.

1. Spectrum: The most famous result of RMT gives the limiting density of the spectrum of .

Result 1.2.1. (Marcenko-Pastur)
The spectral density of Xy, n) = %XXt converges to a Marcenko-Pastur form,

+ —T)\r—a
e = (1-2) s+ LETE=

1[a,b] (aj)’

2
where lim ™ = ¢ €]0,00[, a = o ((1 - \/E)+> ,b=c%(1++/c)?, & is the Dirac function at 0 and

m,n—00

(2)* = xifx >0,
“loifz<o.



1.2. INDEPENDENT CASE 3

The Dirac function in 0 is necessary in the degenerate case when m > n or ¢ > 1.

In Figure[L.I] we see an example of Marcenko-Pastur density. The empirical spectrum is asymptotically
a bulk on the interval [a, b] drawn in red in the figure.

This result was proven by [Marchenko and Pastur| [1967].

Spectrum with n=2000, m=1000

Density
04 06 08

0.2

0.0

Eigenvalues

Figure 1.1 — Density of Marcenko-Pastur compared with the histogram of the eigenvalues of simulated
random matrix when o2 = 1.

2. Largest empirical eigenvalue: The second result focuses on the largest eigenvalue of f](m’n)
and provides its asymptotic distribution.

Result 1.2.2. (Tracy-Widom)
If all entries X; ; are such that enough moments exist and their support is always strictly more than
two points, then the largest eigenvalue of the random matriz X, ) = %XXt asymptotically follows a

Tracy-Widom (TW) distribution,

n? <)\max (i(mﬁn)) o1+ ﬁ)Q) D, 1w,

@m ,Mm—00

1/3
where lim ™ = ¢ € ]0,00[ and ©,, = o*(1 + \/¢) (% + 1) ,

m,n—00

Figure shows the link between Marcenko-Pastur and Tracy-Widom.

This result was shown by [Pillai and Yin| [2014]. The additional moment condition is discussed by Wang
[2012] following Theorem 2.2. Moreover, this last paper extends the result to the smallest eigenvalue
when ¢ < 1. An interesting extension of this result to correlation matrices is provided by [Pillai and
Yin [2012]. The original result was introduced by [Johnstone| [2001] for Gaussian entries.

3. Eigenvectors: The last result of this section helps us to understand the behaviour of the empirical
eigenvectors in the independent case.

Result 1.2.3. (Eigenvector) R
The eigenvectors iy, Uy, ..., Um Of Xmn) = %XXt are uniformly distributed.

Assuming lim ™ = c € ]0,00[, then for a deterministic unit vector w = (w1, w2, ..., Wn) we have
m,n— o0

1 m
Vs, (w, )2 :aZw?@(w,s) and O (w, s) L, X2,
i=1

n,Mm—00

(w,i5)> 0.
n,M—>00
Moreover, if the columns of X are spherical, then (u1,4us, ..., Uy) follows the unit invariant Haar

distribution.
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Tracy-Widom Spectrum with n=2000, m=1000

0.20 0.30
Density

0.10

00 02 04 06 08

0.00

Figure 1.2 — a: Density of Tracy-Widom. b: Density of Marcenko-Pastur with o2 = 1 and non-scaled
density of the maximal eigenvalue.

These results mean that an estimated eigenvector 4; carries asymptotically no information. This
conclusion is not surprising because the eigenvectors u; of ¥,, = oI, are not uniquely determined.
These results and many others are proved in Bloemendal, Knowles, Yau, and Yin [2016]. The result
for spherical entries is proved in Muirhead, [2005].

1.3 Prerequisite tools

The assumption ¥, = I,,, can be generalized to more complicated structures and is investigated in
the next section. We next define some useful mathematical tools.
First we define the Stieltjes transform and its inverse.

Definition 1.3.1. (Stieltjes transform)
Assume F is a measure supported on [a, b] € R. The Stieltjes transform of the measure F' evaluated
in z € C\ [a,b] is defined as

mi(z) = / L ip().

Z—X

If f=F' exists,

mye) = [ 2 pade.

z—
If f is continuous we have the inverse formula

. my(x —iy) —my(z +iy)
=1
fla) = lim %

)

where z = x + 4y and y > 0.
Related to this is the T-transform.

Definition 1.3.2. (T-tranform)
Assume F' is a measure supported on [a,b] € R. The T-transform of the measure F' evaluated in
z € C\ [a,b] is defined as

22—

TF(Z):/ T dF(2).

If f=F' exists,

We can easily see that



1.4. DEFORMED MARCENKO-PASTUR DISTRIBUTION )

1.4 Deformed Marcenko-Pastur distribution

In this section we suppose that Fy, and Fy, = lim Fy,  (weak convergence) are known. Moreover,
the support of Fy, , is bounded. e

Let X = (X1, Xy, ..., Xp,) and X = (Xl,f(g, ,Xn> be m x n matrices such that for i = 1,2,....m
and j =1,2,...,n,

X =x1/2X,
and

¥, is independent of X with cumulative spectrum Fy,

X;,; are independent,
E[Xi;| =0,
Var [X@j} =1.
Again, many results of interest have been demonstrated by RMT concerning the spectrum of X:
1. the asymptotic empirical spectral distribution, Fy,,
2. the behaviour of the maximal eigenvalue.

Properties of the eigenvectors are more difficult to obtain in this case.

1. Spectrum: The most famous result of RMT can be generalized and expresses the spectral
measure as a function of its Stieltjes transform:

Result 1.4.1. (Deformed Marcenko-Pastur)

Assume Fy, o 1s the spectral distribution of f](m,n) = %XXt = %Z%2X)~Ct2%2, where X is defined

above.

If lirg ™ = c € )0,00[ and the spectrum of ¥, is Fx,,, which tends to a limit Fy that satisfies the
m,n—00

Carleman sufficiency condition, then Fy, tends to the deformed Marcenko-Pastur distribution

(m,n)

Fy, whose Stieltjes transform satisfies:

1
mr. (z) = .
z —Z+Cf Wsz(t)

If Fy is smooth enough, the inverse transform formula gives fs as a function of Fy.

The inverse formula leads to the deformed Marcenko-Pastur distribution. The result was first shown
by Marchenko and Pastur|[1967] for diagonal ¥ and then extended by |Silverstein| [1995] to non-diagonal
>

Example 1.4.1.1.

L If fs(A) = 01(A), i.e., the Dirac delta function at 1, then my_(2) is the Stieltjes transform of the
Marcenko-Pastur distribution. Therefore, the inverse formula leads to the M-P density.

2. If f5 is itself an M-P density, that is, fx(A\) = farp(A), then the Stieltjes transform has to be
computed numerically and the inverse formula leads to a deformed Marcenko-Pastur distribution
as shown in Figure [1.3
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0.8 + Marcenko-Pastur
Deformed Marcenko-Pastur
0.6 T
04 +
0.2 T

o 02 04 06 08 1. 12 14 16 18 2. 22 24 26 28 3. 32 3.

Figure 1.3 — Plot of a deformed Marcenko-Pastur density.

2. Largest empirical eigenvalue: The extension of the largest eigenvalue distribution to more
general Y leads to the following result.

Result 1.4.2. (Tracy-Widom for Perturbed Marcenko-Pastur)
Suppose Xy, ) is defined as in Result|1.4.]jand lim Tt =c€ 10, 00[. Under the additional conditions

m,n—00

(C1) on Fx,,, — Fs, and (C2) defined below, the largest eigenvalue of 2(m7n) is such that

" v (Sn) — 1) 2 TW,

g n,Mm—00

where TW is a Tracy-Widom distribution and

1 Mk
1 e 2
3 _ 1
ot = <1+c/<1_)\k> ngm()\)>,

0.12m) [ (1255 00 =

Condition (C1) on Fx,, can be written as

k=kn

m

lim sup(Amax,mkm) < 1,

n,M—00

where Amax,m = sup{A|Fx,, () > 0}. .
The condition (C2) demands that the entries of the matriz X have uniformly subexponential tails.

Figure is a schematic drawing of the situation where fx(A) = d1(\) or fu(A) = farp(A).

This powerful result, first proven for normal entries by |[El Karoui [2007], gives a condition which al-
lows F¥;,, to be replaced by Fyx in the formula. The condition assumes convergence of the edges of the
support of Fy,  and F¥.

The result was later extended to entries assuming a uniform subexponential distribution by |Bao, Pan,
and Zhou [2015].

The extension of the independent theory to the deformed theory could be used when the matrix X,
is clearly not I, and standardisation of the data would be too complex.
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Figure 1.4 — Schema of a deformed Marcenko-Pastur density and Tracy-Widom density (not scaled).

1.5 Spiked model under the Marcenko-Pastur spectrum

RMT provides powerful tools based on the spiked model introduced by Baik and Silverstein| [2005].
This model is based on a finite perturbation and offers tools to estimate the true covariance ma-
trix. First, we will introduce the model. Then we will present some useful results for estimating the
unknown parameters such as the asymptotic convergence of the eigenvalues or the asymptotic distri-
bution of the eigenvalues. Finally, two results will highlight the difficulty of estimating the eigenvectors.

In this section we suppose that X, is a finite perturbation

k

S =T + Y (0 — Dugul,
=1

where w1, ...,u; are unit orthogonal vectors and ¢; > 0. To simplify somewhat we suppose 6; # 0;
Vi # j. The results can be generalized to

k k
Y = 02l + Z(Qz — UQ)uiu§ = g2 (Im + Z (91'/02 — 1) umi)
i=1 i=1

by looking only at I, + Zle (91- Jo? — 1) u;ul with an accompanying estimate of .
In this section we present some results about the spectrum, the largest eigenvalue and the eigenvectors.

1. Spectrum: The first result shows the robustness of the spectrum against finite perturbations.

Result 1.5.1.
Suppose ¥ is a random matriz of size m x n with bounded spectral distribution Fy. We define ¥ =

271,{2532%2 with spectrum Fg. If Xy, is a finite perturbation then

[aars o= [aars o +0, (),

m
for g bounded on S = {z|Fg > 0 or Fy, > 0}.
This robustness is a direct consequence of Cauchy’s interlacing law.
2. Largest empirical eigenvalue: Two important results about the limit and limit distribution
are contained in the literature.

The first result was shown by [Baik and Silverstein| [2005] and provides the asymptotic limit of the
largest eigenvalues.
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Result 1.5.2. (Eigenvalue detection)
Suppose X is a random matriz of dimension m X n with independent entries such that fori=1,2,..,m
and j=1,2,...,n,

E [Xi,j] =0, Var (f{m) =1, E Uxi,j

4
] < o0,
Then we define lim ™ = c € ]0,00[ and 2(%”) = %XXt where X = 271,1/25(.

m,n—00

If 0; > 14 \/c then there exists Ay, (f](m,n)) such that

o a.s Cc
/\91. <E(m7n)> nn:)m 0; (1 + 0 — 1) .
IfVi, 0; <1+ +/c then

Amas (zi(m,n)) 25 (14 4/e)”

,Mm—00

If 0; is too small we lose the empirical eigenvalue in the Marcenko-Pastur bulk. However, if 6; is large
enough, the largest estimated eigenvalues are biased estimators of the true eigenvalues and can be
debiased to obtain consistent estimators

Ao, (S(WL)) = 0; (1 +3 C_ 1) .

Assuming Gaussian entries, the previous result can be extended to provide the distribution.

0;

Result 1.5.3. (Eigenvalue distribution)
n_c=o0(1l/y/m) and X = SH2X, where X, N (0,1).

lim
m,n—oo '

If 0; > 1+ /c then using the same notation as Result

Suppose ¢ € 10, o0],

Vit (%o (Sona ) =) , 27, Normal(0.%)

n,Mm—00

where v; = 0; <1 + 01%1> and y; = 29i2 (1 — ﬁ) .
If 6; < 1+ +/c then we obtain a Tracy-Widom distribution as shown in Result .

The schema in the Figure shows the behaviour of the largest eigenvalue.

Marcenko-Pastur Marcenko-Pastur

Normal

I\

]

™W

».
g 1

1 14ve  (1+vo? 1 1+ve (149

Figure 1.5 — Schema of the impact of the transition point 1 4 y/c on the distribution of the empirical
eigenvalue. The cross represents the true eigenvalue and the green curve represents the distribution
of the estimated eigenvalues (Spike). The blue curve represents the distribution of Tracy-Widom that
is not impacted by small perturbations.
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This result was extended by Paul| [2007] to understand the distribution of the estimated eigenvalues
when the entries )N(i,j N (0,1). In the complex non degenerate Gaussian case the same result is
provided by Baik, Ben Arous, and Péché [2005]. They also showed the second part of the result when
the 0; are small. Later this extension of the Tracy-Widom distribution was shown to be a corollary of
a more general result by Bao, Pan, and Zhou/ [2015].

The previous papers do not prove the result for the degenerate case when ¢ > 1. This more general
case has been covered in Benaych-Georges, Guionnet, and Maida) [2010] who also extend it to equal
eigenvalues.

Finally note that the investigation of perturbation is older than RMT. For example, this topic is
treated by Kato [1995] for small perturbations of covariance operators.

3. Eigenvectors: Some results about the asymptotic behaviour of eigenvectors exist. We first
present the almost sure convergence of the dot product and then some results about the distribution
of the eigenvectors.

Result 1.5.4. (Eigenvector bias)
Suppose lir_r>1 M = ¢ €]0,00[ and X a random matriz of size m x n with independent entries such
m,n—00

that fori=1,2,....m and j =1,2,...,m,
E |:Xz‘7j} = 0, Var (X,‘J‘) = 1.
Moreover, for p € N, there is a C, such that for all entries of X

E HXM

p} < Cp.

Then we define X = 2%25( and fl(m,n) = %XXt.
If 0; > 1+ /c then
1_ ¢ _

N a.s (6;—1)2
g, U5 — _
0; /| n,m—o0 1+ o

where fo;\gi 1s the empirical eigenvector of i:(mm corresponding to the empirical eigenvalue g, (ﬁ](mm))
described in the previous result [1.5.3.
If 0; < 14 /c then

Vj, <ui,ﬂj> 2) 0,

n,Mm—00

where U; is the Gt empirical eigenvector of ﬁ(m’n). More precisely for all j such that 0; > 1+ \/c,

N Cej . . a.s 2
m { u;, U5 = = O (u;,j) and O (u;, — )
< A9j> -1 v (ui, J) (i)~ = i

Remark 1.5.4.1.

If ¢ tends to 0 then the empirical eigenvector is a consistent estimator of the true eigenvector.
However, if ¢ is different from 0, an asymptotic angle between the true and the estimated
eigenvector appears as shown in Figure Moreover, if 6; is too small, the eigenvector of
the perturbation cannot be identified, whereas if 6; is large the angle tends again to 0.

A weaker result was proven for Gaussian entries by Paul| [2007] and as a particular case of |Benaych-
Georges and Rao|[2009]. The convergence results based on these conditions are provided as a particular
case in the paper of Bloemendal, Knowles, Yau, and Yin| [2016].

Assuming Gaussian entries the previous result was extended by |[Paul| [2007] to provide some interesting
distributions.
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Figure 1.6 — Angle between the true eigenvector u and the estimated eigenvector 4.

Result 1.5.5. (Eigenvector moment)

Suppose ¢ € |0, 00|, mlirgoo% —c=o0 (Tlﬁ)’ X = 2717{25(, where Xiyj tid N (0,1) and f](m’n) = %th.

Without loss of generality assume (uq, ..., ux) = (€1, ..., €x).
If 6, > 1+ +/c then we define

)

. B (u;\gl’l,ui%’27 ""uiel,k)
>\91 zk a2 )
i=1 Xoy i

(ujxgl k410 ujxgl k420000 u:\gl ,m)

u;\el = Zm ") )
i=k+1 U;% i

where ﬂ% 18 the empirical eigenvector of fl(mm) corresponding to the empirical eigenvalue Ag, (f)(mm))
1
described in the previous result[1.5.3 Then

1.

\/’ﬁ(ﬂj\gl — 61) m) N <6k, i‘) s

S 1 k 919‘ t
where X = v i e.el.
G2 iz -, i€

~ . . . . . .. m ~9
2. The vector U3y, follows the invariant Haar distribution and is independent of Zi:kﬂ u;\el I

1.6 Spiked model under the deformed Marcenko-Pastur spectrum

This section is essentially based on [Benaych-Georges and Rao| [2009] for the convergence result and
Benaych-Georges, Guionnet, and Maida| [2010] for the distributions. We suppose that the structure
of the random matrix can be understood through its spectrum and a finite perturbation.

The empirical covariance i:(m,n) has the following form:

A 1 ~
Simany = ~ XX, X = nL2X.

Therefore, if f](mm) = %XXt,

S 1/25 1/2
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We assume the spectrum of i(m’n), Fi(m,n) % Fs, with support [a,b] and for k finite,
Ym = L + Zle(@ — Duyut, where 6; # 6, if i # j. In order to study the eigenvalues we add
some randomness to X, by supposing ui, ..., u; follows the same distribution as the k first columns
of an invariant Haar random matrix. Equivalently in the normal case, we can assume without loss of
generality u; = e; and i(m’n) = Om]\(m’n)Ofn with Oy, following a unit invariant Haar distribution of
size m.

Remark 1.6.1. )
The condition on u; means that the result is valid if the eigenvectors of ¥, are independent
of the u;.

1. Spectrum: The spectrum is robust to a finite perturbation as in Result

2. Largest empirical eigenvalue: As Result we derive a detection condition by looking at
the almost sure convergence of the empirical eigenvalues.

Result 1.6.1. (Eigenvalue detection)

Suppose f](m,n) is defined as above and the support of fs, is [a,b], then two limits of eigenvalues can be
described using the same notation as in Result[1.5.4 and the T-Transform defined in Definition[1.3.9

If 0, > 1+ 1/Tfi(b+) then there exists A, (i(m’n)) such that

Ao, (i(m,n)> n,%oo Tgil (911—1> '

If@z <1+ 1/Tf§:(b+) and 61 > 05 > ... > 0, then

o T

n,Mm—00

This convergence has been shown by Benaych-Georges and Rao| [2009], whereas the distribution of
the eigenvalues is described by |Benaych-Georges, Guionnet, and Maida| [2010] in Theorem 3.2. under
Assumption 1.2 and Hypotheses 1.1 and 3.1. presented in the paper.

Result 1.6.2. (Eigenvalue distribution)

Under the conditions introduced by |Benaych-Georges, Guionnet, and Maida [2010], the limit distribu-
tion of the eigenvalues can be described using the same notation as[1.6.1}

If 0; > 1+ 1/Ty (b") then

Jn ()\gi (i(m,n)) — yi) L, Normal (0, ~;),

7,M—00

7mffi (1/2)* QL

K

(m/fi(”i))Q |

In this thesis we will only consider the case where ¢; # 0; if ¢ # j. The result of Benaych-Georges,
Guionnet, and Maida [2010] is more general and considers the case with equal eigenvalues.

where v; = Tf_; (017171) and ~y; =

3. Eigenvectors: The asymptotic limit of the dot product provided in Result is generalized
in Benaych-Georges and Rao| [2009].

Result 1.6.3. (FEigenvector bias)
Using the same notation as Results|1.0.1| and|1.5.4):
If 0; > 1+ 1/Ty (b") then

. a.s 0i
| <Uiau)\9i> ‘ n,v:zoo \/_ (91' — I)QVZ'T}E(VZ‘)‘
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If 0; <1+ 1/Ty (b") then for all j,
<U¢,ﬂj> a—i) 0.

All the results of this section are generalisations of the previous section. The second part of is
weaker than the previous result

1.7 Linear spectral statistics

This section presents a result of RMT using the whole spectrum of a matrix. This result leads to an
interesting application in statistical testing.
We assume that X and X satisfy

X = ¥/2X,
where for i =1,2,...,mand j=1,2,...,n

5(@ ;j are independent,

B[Xi;| =0,
Var (Xi,j) =1,
E [X‘*J =3

For example X; ; are i.i.d. N(0,1). Using these conditions on the matrix, Bai and Silverstein| [2004]

provide a central limit theorem for linear spectral statistics.

Result 1.7.1. (Linear Spectral Statistics)

Suppose ¢ € ]0,00[, lim ™ = c and f)(m n) = %XXt = %2%25(5(2%2, where X is defined above.
m,n— 00 ’

Moreover, we assume that

o f, is the spectral density induced by the spectrum cumulative distribution F,, of . Note that
fm s mot an empirical distribution but the true non-asymptotic distribution of the spectrum.

(Fm 7é Fi]m )}
e when m tends to ininifty, Iy, tends to Fy and fx, tends to fx,

e Trace (X,,) is bounded in m.

Then
( Zm( (Smm)) = [ 910 £ ) 2
1 — .
m;gk (A (Benm ) — /gk (A) fn (V) d/\> 2 N(uggeSame)
where
_mg(2)*t®
1 ¢ (1+tm¢(z))3f n(t)dt
Hgfs = —5 [ 9s(2) Sdz,
2mi Je 1— Mf (2)d(2)
¢ (14+tmy(2))” zZ)a=
gS 21 gT Z2) / /
Xg fer = dz1dz,
Gl /c1 Co (mg(2 m¢(22))2m¢(21)m¢(Z2) e
1—c¢
mole) = (o),

where my,,, mgy are the Stieltjes transforms of fs. and ¢. We note that ¢ = (1 — ¢)1j o[ + cfs.
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The interesting fact we exploit in this thesis is the order 1/m, which shows that estimating an asymp-
totic spectral statistic by the empirical one leads to an error of size 1/m.

1.8 Statistical issues

RMT offers powerful applied tools. The aim of this thesis will be to detect differences between two
random matrices by looking at the largest estimated eigenvalues (spikes). We will consider two such
applications. The first one builds a test to detect a perturbation in a covariance matrix and the second
one tests the equality between two groups by comparing two Wishart random matrices.

1.8.1 Spike model detection

Result shows that the largest eigenvalue of random matrix with i.i.d. entries tends to a Tracy-
Widom distribution. Based on this, Bianchi, Debbah, Maida, and Najim| [2011] constructed a test
to detect a signal surrounded by white noise. The approach was first developed in [Wax and Kailath
[1985] without using RMT.

Result 1.8.1.
Assume that X is a random matriz of dimension (m x n) and the hypothesis of test are
Hy: X =X,
H; : X = P/?X,
where X has i.i.d. entries and P =L, 4+ (0 — 1)uu® with 6 > 1.
The test statistic
)\max (%XX—t)
S = o Text)
Trace (EXX"/)
allows us to control the level o of false discovery.
Under Hy,

nl (S—1+ve?) 2 1w,

@m n,Mm—00

1/3
where lim ™ = c €]0,00[ and O, = (14 /c) (ﬁ"'l) .

m,n—00

Under Hq,

If0>1++/cthen S s 0<1+ c )

n,Mm—$00 01 —1
[FO<1+ethen S 5 (140

The paper motivates our work in several aspects. The Tracy-Widom distribution statistics occur when
applying a generalized likelihood-ratio test. The procedure we will propose in this thesis can be seen
as a modified generalized likelihood-ratio test. Moreover, filtering the noise by looking at spikes leads
to more powerful tests when m is large and in this work we also attempt to detect differences by
looking at spikes.

Spike detection can also be used to filter an image containing noise as in Ray et al.|[2012]. Another
interesting application filters the noise in order to determine the number of endmembers in a image
Cawse-Nicholson et al. [2010]. Finally, we still cite Mestre and Lagunas| [2008] and [Vallet et al. [2011]
for the application of random matrix to the multiple signal classification (MUSIC) algorithm using m
antennas that detect the source of a signal. Nevertheless this last application exploits random matrices
in the complex plane.
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1.8.2 Extended Application

The test of Bianchi, Debbah, Maida, and Najim [2011] could be extended using Result to more
general matrices. Doing so, would, however require the estimation of the limiting spectrum associated
with Fy;, . This problem is discussed in El Karoui [2008].

1.8.3 Difference between two random matrices

Bai, Jiang, Yao, and Zheng [2009] use the linear spectral statistic result to test the equality
between two covariance matrices.

Result 1.8.2. Assume X and Y are random matrices of dimension m X nx and m X ny respectively,
such that

X=%xX and Y =%yY,

where the entries of X and Y are i.i.d. N (0,1). The hypothesis to be tested are

HO : EX = Zy,
Hy: Xx # 3y
We define
< 1 t s 1 t
Yx=—XX" and ¥y = —YY",
nx ny
cxzﬁ, cY:ﬂ and N =nx + ny.
nx ny

The test statistic,

& nx/2pa. |y /
210g<|zx| ki s )
S = _ |Cxix+cyi3yy &
N Nm ’

allows us to control the level o of false rejections asymptotically based on the following limit. Under
H07

m(S—ps) = N (fis,08)

n,Mm—00
where
cx +cy —cxcey cx +cy —cxey
ps = - log (cx + ¢y —cxey) + log (cx + cy)
cxCy CXCy
ex (1—cy) cy (1 —cx)
——— " log(l—cy)+ ——=log (1 —cx),
ey (ex +ey) g ( ) cx (ex +cy) &l )
_ 1 cx +cy —cxcy cx cy
= — |1 - log (1 — ———log(1—
fis = flog (LX) - g1 - o) - T hog(1 - )]
2¢? 2c2
0% = _CY21og(1—cX)_CX210g(1_CY)—2log< ox oy >
(CX +Cy) (CX +Cy) cx + ¢y —cxcy

It turns out that this test is powerful in detecting differences affecting the entire spectrum. However,
for differences of finite rank, the power is weak. Moreover, the test is not robust under non-Gaussian
entries. The procedure we will develop in this thesis will improve these two aspects.
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1.9 Conclusion

The aim of this thesis is to exploit theoretical results to construct a powerful robust procedure for
comparing two estimated covariance matrices.

We are not convinced that looking at the entire spectrum is the best approach to detect perturbations.
Therefore, we choose to study spikes in general cases. Our work can be seen as a mixture of

e Spike model detection, because we focus on the spike
e The extended application of |[El Karoui| [2008], because we assume general spectra,
e The difference procedure presented in [1.8.3]
The strength of our procedure will be:
e its robustness,
e its power when the difference is a complex finite perturbation.
On the other hand, the main weakness is
e the lack of power when the difference is sparse and explained by a few parameters.

Therefore, this work is not intended as a replacement of the usual procedure dealing with random
matrices, but instead proposes an alternative when the data or the differences are complex.
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Chapter 2

Introduction to residual spikes and our
model

We are interested in comparing the random covariance matrices of two groups of observations X and

Y.
This chapter begins with a small introduction to define the matrices of our study in Section Then
Section [2.2|defines residual spikes and uses them to detect differences between two covariance matrices.

2.1 Residual spike in a particular case

In this section, we assume a simple normal model and introduce the concept of residual eigenvalues.

2.1.1 The matrices and their estimators

Let Xy,..., X, and Y7, ..., Y, be ii.d Normal(0, ¥,,) where ¥, =1, + Zle(&- — 1)w;ul with k finite.
If Var (X1) = ¥x # Xy = Var (Y1), we write ux, 0x,, uy,; and fy; for the parameters of the model.
The usual estimates of the covariances are called 3 x and f]y. To avoid some difficulties we assume
normality of the data. Without loss of generality we can assume u; = e;, i.e., the canonical basis
vectors. In this thesis we will usually assume spherical data. The non-spherical case is investigated in
the section about robustness, Section [4.2

Suppose that the perturbations are detectable as defined in Definition In this particular case,

this means that : 2111 0; > 1+ /7. If this is the case, we can filter our matrices to obtain
1= <

. ko
Sx =Tn+ Y _(Ox, — Diix iy,
i=1

k

iy =1, + Z(éyﬂ' — l)ﬁyﬂ‘ﬂ%/’i,
=1

where 6 x; is an asymptotic unbiased estimator of 6; using Result |1.5.2| Indeed, because

A c
] ) 1 y
¢9X71—>9 < +9i+1>

we have that

HAXJ- such that éxﬂ- = éXﬂ, (1 + QC>
Ox,i+1
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is asymptotically unbiased.
In order to detect the difference between the matrices, we are led to look at the eigenvalues of

S8y S and 5,288, (2.1)
or
Sy S and 35282, (2.2)

We name these matrices the type 1 matrix and the type 2 matrix respectively. The principal aim of
our thesis is to understand the second type.

Remark 2.1.1.

1. We assume u; = e; without loss of generality because a rotation does not change
the eigenvalues of matrices and . Moreover, if the data are normal, the
distributions of the matrices are invariant by rotation. We could also just assume a
spherical distribution for the data.

As in Benaych-Georges and Rao| [2009], the spherical distribution is not necessary and
for many results, assuming wu; to be random invariant by rotation is equivalent. This
is, however, not always the case as we will see in Section

2. The results of this chapter assume spherical data such that the spectrum of the es-
timated covariance matrix asymptotically follows asymptotically the Marcenko-Pastur
distribution. Many results are still valid for more general spectra.

2.1.2 Introduction of the residual spike
If ¥y = Y x = ¥ then by looking at

2)—(1/22)/2;{1/2

the distribution of the spectrum follows a Marcenko-Pastur distribution. However, because of the
non-consistency of the eigenvectors presented in Chapter [I] we observe some residual spikes that
we define later. These spikes are shown in Figure [2.1] which essentially summarizes why we need to
investigate the eigenvalues of this matrix.

Indeed even if the two random matrices are based on the same matrix, we see some spikes outside
the bulk. This observation is worse in the fourth plot because four spikes fall outside the bulk even if
there is actually no difference!

How can we distinguish the spikes indicative of a true difference from the residual
spikes?
This question is difficult and as we will see, the weaker the assumptions on the data, the more difficult

it is to obtain results. In order to provide a partial answer, we first define the notion of residual.

Definition 2.1.1.
The residual spikes of type 1 are the isolated eigenvalues of

i)—(l/?iyi)—(l/2'
The residual spikes of type 2 are the eigenvalues of
i)—(lpiyé;/z

that do not converge toward 1.
The residual zone of type 1 (or 2) is the interval where a residual spike of type 1 (or 2) falls
asymptotically.
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This thesis studies these residual spikes when the true covariance matrices of the two groups are the
same perturbation of order k, ¥ = ¥ x = X x. In this null case, we provide a bound for the largest
residual spike. Consequently, we are not able to distinguish a true small spike from a residual one.
However, when a spike is asymptotically larger than the bound, then this spike is likely not a residual
spike. This philosophy is explained in Figure All the eigenvalues lying in what we call the residual
zone are potentially not real differences. However, when an eigenvalue is larger, this spike expresses a
true difference.

Spectrum with n=2000, m=1000 Spectrum with n=1000, m=1000
- o _
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Figure 2.1 — Example of residual spikes of f])_(l/ QXAJyXA);(I/ ? when 0 = 10 for the first three figures and
012,34 = 10,15, 20,25 for the last figure. The residual spikes are the largest isolated eigenvalues.

As shown in Figure the matrices of type 2,

H—1/28 &—1/2
Y TEyEL,

also lead to residual spikes when Yy = Y x = 3. These spikes do not converge to 1. In this thesis, we
will focus on this second type. Although the first type seems easier to study in term of convergence in
probability when the perturbation is of order 1, this is no longer the case in more complex situations.
Moreover, investigation of robustness is easier for the second type. Finally, the eigenvector of the
residual spike is not studied in detail in this thesis, however the author thinks that this task is simpler
for type 2 matrices.



20 CHAPTER 2. INTRODUCTION TO RESIDUAL SPIKES AND OUR MODEL

Marcenko-Pastur

S—1/2¢ &-1/2
YT EyEy

Residual zone

—+ —+ >
2 1 1
=3 (2 c+ V2 +4c)
I Residual zone 2}1/253},2;(1/2
—+ S >

1 1+ /¢ A=1+c+Ve2+2c

Figure 2.2 — Residual zones of 2)—(1/221/2)—(1/2 and 2;1/221/2)_(1/2.

2.2 Introduction of the model, the test and the hypothesis

In the previous section, we introduced the residual spike when the data are very regular. In order
to generalise this work to a broader set of conditions, we introduce more general random covariance
matrices.

2.2.1 Introduction of the model

Let Xi,..., Xy, and Y7, ..., Y,, be our set of data. In this thesis, we investigate the eigen-structure of
the usual covariance matrix estimators

. 1 1 &
Yx = — § X; X! and By = — > VY}
ny <
i=1 1=

In Section we will relax some assumptions on the data. For the moment, however, we assume the
following to hold.

Assumption 2.2.1.
Let Wx and Wy be random matrices such that

WX = OxAXoX and Wy = OyAyOy,
where

Ox, Oy are unit orthonormal invariant and independent random matrices,
Ax, Ay are diagonal bounded matrices and independent of Ox, Oy,
Trace (Wx) = 1 and Trace (Wy) = 1.

Assume Px =1, + Zle(ﬁxﬂ' —1)e;el and Py =1, + Zle(ﬁy,i —1)e;el with k finite, Ox; # 0x ; and
Oy; # Oy, if i # j. Then

Sx = PY?Wx PY? and Sy = Py Wy P2,



2.2. INTRODUCTION OF THE MODEL, THE TEST AND THE HYPOTHESIS 21

Remark 2.2.1.

1. We say that X € R™ x R™X and Y € R™ x R™ respect this assumption if
o 1 ¢ ¢ 1 t
Yx =—XX"and ¥y = —YY
nx ny

respect the assumption.

2. Because Ox and Oy are independent and invariant by rotation, the assumption of
canonical perturbations Px and Py is assumed without loss of generality as in|Benaych-
Georges and Rao [2009).

3. In the theoretical part, we will assume that Ax and Ay are observed. However, in
practice we will estimate them by estimators that do not affect the asymptotic result.
Moreover, it can be shown that in many cases the spectra are independent of Ox and

Oy.
4. Tf X1, ..., Xy are i.i.d Normal(0, ,,) where ,, = L, + 3% (6; — 1)eel with k finite,
then
Sx = D2y nl/?
and

Wx = OxAxOx,
where Ax is asymptotically the Marcenko-Pastur spectrum.
5. If Py = Py we use the notation P and 0x; = Oy,; = 0;.

Remark 2.2.2. In this thesis we use the usual estimator of covariance. Nevertheless an in-
teresting generalisation would consider robust covariance estimators and will be treated in a
future work.

The stronger results of this thesis will often assume large eigenvalues. However, we always try to give
a result for general eigenvalues. The main weakness of our proofs is the assumption of non-equality of
the eigenvalues of the perturbation. Although we are not able to prove it, we are convinced that our
Main Theorem is still valid without this assumption. The following are possible assumptions about
the perturbations:

Assumption 2.2.2.

_0_
Jm

0 =60(m)— oc.

— 00, a8 N, m — 00.

0; = p;0, where p; is fixed different from 1.

Fori=1,.., ks, 0; = pi#, 0 — 0o according to (Al) or (A2),
For i = koo +1,.... k, 0; = p;6p.
For all i # j, pi/p; /> 1.

(A5) No condition on the eigenvalues and the following conjecture is true.

Conjecture 2.2.1.
Theorem part 3 can be improved such that for all s =1,2,...) k,

i 1
Y ap, =0, <9) :

i=k+1
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Remark 2.2.1.1.

1. The conjecture is trivially true for ¥ = 1 and we can prove it for £ = 2 using the
tools of this thesis.

2. The Main Theorem and a majority of the results assume (A4). Under assump-
tion (A5), many important theorems are easily shown, with the exception of the
Main Theorem. Despite this fact, the author is convinced that assuming (A5) is
sufficient.

Throughout the thesis we always work under the assumption (A4).

2.2.2 Introduction of the procedure

We want to compare two estimated random covariance matrices ¥ x and Xy obtained from nyx and
ny observed random vectors of size m. We assumed nx > ny.
First we define the filtered estimator of a covariance matrix.

Definition 2.2.1.
Suppose ¥ respects Assumption
The unbiased estimators of 6; for i = 1,2, ..., k are defined as

2 1
0; =1+

e

1 m 3,j
Tk Dkt I
R ¥

Suppose that for ¢ = 1,2, ..., k, 4; is the corresponding eigenvectors of 0;.
The filtered estimated covariance matrix is defined as

Remark 2.2.3.

1. We will often use a theoretical unbiased estimator in proofs,
A 1

lel—l— - .
12 )‘W]
=14, A,

Although we can show that these unbiased estimators are asymptotically equivalent
under Assumption we will always specify which estimator is used.

We can now introduce the procedure investigated in this thesis.

1. If all the perturbations are detectable as in Result part 1 or Definition their k largest
eigenvalues are x1,0x 2,...,0x x and Oy,1,0y3, ..., 0y. Using an empirical inverse T-transform,
we obtain the asymptotic unbiased estimators:

2 1 2 1
9X,i:1+ R and 93@21—}— = R

1  Awxg 1 AWy i
Z] 19Xi_)\W g ZJ Loy ,— >\W ]

where XWXJ and XWYJ are the eigenvalues of Wx and Wy respectively.

Remark 2.2.4.
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In practice we do not know Wx and Wy and we thus replace the previous estimator by

2 1 2 1
eX,z'Zl"‘ 3 and 0y7i:1—|- = s

_Lym Bk Ly By

m—k £aj=k+1 GX,i_/\ix,j m—k £uj=k+1 OY«i_Aiy,j
where Aix j and /\iy ; are the j*t ordered eigenvalues of ¥ x and Yy respectively.
This modification does not change the asymptotic result, as we will show in Section

4.4

2. Using the unbiased estimators of the eigenvalues and the estimator of the eigenvectors, we build
the filtered estimators of the covariance matrices:

k k

o A 2 o
X, — Dixlyx,; and Xy = L, + E (Oy;i — Dty iy ;5
i=1 i=1

M>
<
Il

o

3

+
7

s>

where Ux; and uy,; are the eigenvectors of Sx and Dy respectively.
3. Finally, we look at the statistics
2-1/28 &-1/2 5-1/23 &—1/2
Awin (S5725y5577) and Anas (5572 5y 2112
These statistics provide a very powerful and robust test for the equality of the perturbations Py

and Py.

Remark 2.2.5.
More precisely, the simulations of Chapter [8| seem to show that in order to maintain
conservativeness when nx > ny are not very large, we should

o Estimate A\pin (2}1/22213/2:];(1/2) using Theorem |3.1.1

e Estimate Apax (2)—(1/221/2)—(1/2) using Theorem |3.1.1| on Apin (2;1/253)(2;1/2)
and then invert the estimate.

When ny is large and ny is not very large, we could simply apply Theorem [3.1.1] to
535(1/221/2;(1/2.
Finally, when both nx and ny are large, both methods are equivalent.

2.2.3 The test

Under Assumption [2.2.1], we can test

Hy:P = Px = Py,
H, : Px # Py.

Under Hj :

~
A

Vinin < Amin (ZX1/22Y2;1/2> and Apax (2;1/22}/2;(1/2) < Vinax,

where Vipax and Vi, are random variables depending on m and the spectra of Wx and Wy . These
random variables are introduced in Section [B.1]
In practice, we observe the extreme eigenvalues Amax obs and Aminobs- Knowing the distribution of

Vinax and Vi, the test rejects Hy if either P (Vmax > Xmax’obs) or P (Vmin < Xmin,obs> is small.
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Remark 2.2.6.

This test is similar to the generalised Neyman-Pearson test of equality of variances under the
assumption of normality. In this case, we first replace the maximum likelihood estimator by
the filter estimator to build a more powerful test. Then a determinant statistic is replaced
by the extreme eigenvalues to obtain a more robust test.

As an alternative, another test using the joint distribution of the residual spikes under the
normality assumption would improve the power, but lacks robustness. This procedure is not
considered any further in this thesis.

2.2.4 Assumptions on 6

Obviously under Hy, Amax (E;ﬂf}yf};ﬂ) is a function of 1, ...,0;. In Section we propose two
criteria 2.5 and £.2.8 to check if

~ ~
~ ~

Amax (2}1/223/2)}1/2) < 011{20 Amax (2}1/22Yi;(1/2> = Vnax;

21728 A-1/2 . S—1/28 &—1/2

Amin (S572Sy5572) > Tim Awin (3577237 = Vi,
6—0c0

where § — oo means all the 6; tend to infinity. The previous inequalities assume that the extreme

spikes appear when the eigenvalues of the perturbation are large. We call this the worst case.

Because we focus on the worst case scenario under Hy, we will often assume 6; — oo or \% — o0 as

in Assumption [2:2.2

Remark 2.2.7.

This thesis will always investigate perturbations with 6; > 1 and we may well ask, what
happens if there exist some small perturbations 6; < 1 7

Some easy arguments show that we can neglect them in the estimation of the filtered estimator
without changing the procedure. Moreover, in the degenerate case, these values are not
detectable. However, if we really want to take care of the small eigenvalues, the procedure is
still valid. In this case we will assume that the small eigenvalues tend to 0 instead of infinity.




Chapter 3

The Main Theorem

3.1 Main Theorem

In this section, we present the main Theorem of the thesis concerning the distribution of extreme
residual spikes under appropriate assumptions. This theorem is the basis for testing the difference
between two covariance matrices as presented in Section [2.2.3] More precisely, it characterises the
asymptotic distributions of Viax and Viin.

In order to obtain useful results, assumptions that will be further discussed and relaxed in Section
are needed. The conclusion of the next section says that applying our testing procedure is in many
cases conservative, that is, the level of the test is controlled.

The Theorem is divided into two parts and remarks.
1. The first part provides asymptotic results for perturbations of order 1.

2. The second part provides the main result of this thesis. It gives a link between the largest/smallest
residual spike and the largest/smallest eigenvalue of a small random matrix of size k x k.

3. Most of the remarks extend the main result to particular cases. One of the remarks provides an
algorithm to generate the distribution of the residual spikes when nx or ny are small.
The most important remark discusses the assumptions needed for asymptotic normality. Indeed,
normality is obtained under Assumption defined below and we will discuss what the result
would be without this assumption. The results using this assumption appear in red in the
theorem.

In order to prove normality, we need an assumption.

Assumption 3.1.1.
Let Wx and Wy respect Assumption such that for s,t =1,2,....k

m
Wx st Wy st (WX2)SJ ; (WY2)S¢ and % Z Wx s,iWy i
i=k+1
are asymptotically jointly normal.
Remark 3.1.1.
1. This is most likely true as a consequence of Assumption [2.2.1]

2. This assumption leads to normality and independence in the Main Theorem and its
impact is highlighted in red.



26 CHAPTER 3. THE MAIN THEOREM

Theorem 3.1.1.

Suppose Wx, Wy € R™ ™ respect Assumptions |2.2.1 and [3.1.1) and for i = 1,2,...,k, 0; respects

Assumptions[2.2.9 (A3) and (A1).

1. Let P, =1, + (0; — 1)eiel € R™™ and define

The induced filtered estimators become

N 2 . ot 2 N R ~t
Yy =Imt (Qix,ﬁ,. B 1)ui)x,ﬁi YSy p, and Xy p, = I+ (QZY, 5 1)uiy,15¢ U8y 5
where éix,ﬁi and éiyﬂ are the unbiased estimators of the largest eigenvalues of 2X,15i and
respectively, as defined in Definition [2.2. 1]
Then, conditioning on the spectra of Wx and Wy,
5—1/22 5—1/2 +
()\ma (2 25, % ~)—)\ )
X X, P, Y., PTX P,
vm s ~ N(0,1) + 0p;m (1),

where

AT =/M2 -1+ M,

1
ot? =

(M27X + M27y — 2) (ngx -+ Mg,y + 2)
<9M24,XM2,Y + 4M23,XM22,Y + 4M§,XM2,Y + 2]WQiJ’,)(]Wi%,Y - 2M22,XM23,Y

+4AMF x M3y — 11M3 x My — 8Ms x M3 x My + 2M3 x My y Msy
_2M227XM3,Y + M227XM4,Y + 4M27XM§7Y + MQ,XMQ%Y +4My x My y

—AM; x My x M3y — AM3 x My x May — 2Ma x M3y Msy — 4Ma x Moy M3y

—6Ma x M3y + 2My x Mo x Moy + 2Mo x Moy My y — 2M3,XM22,Y
+2Ms x Moy + My x M3y + 4M3 x + 2Mj x — AMs x M3 x — 13M3
—2Ms x M3 x + My x M3 x — 2M3 x + 10Ms x My x + 4Ms x + 4M3 x
—2My x + Msy +2M3y — M3y — 2M3y + 4May — 2M3y My y

—2M227YM3,Y + 2M27yM37y + 4M37y + M227YM4,Y — 2M47y — 4)

1

+
V(Mo x + Moy —2) (Myx + May +2)

<5M23,XM2,Y — M3 x M3y +2M3 x May + 2M3 5 My — Mo x Ms

+2Ma x M3y — 4Mo x Moy — 4M3 x My x Moy — 2Mo x M3y + Mo x My
—2M37xM27y =+ M4,XM2,Y + 4M§,X + QM%X — 4M3,XM22,X — 5M22,X
—2M3 x Mo x + My x Ms x +2Ma x + 2M3 x + Mﬁ{y + 2M23,Y + M22,Y

+2Myy — 2M3y Msy — 2Myy Msy — 2Msy + MQ,YM4,Y> :
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SX = E )‘WX 'z
SY - E )‘Wy,w

M, M
]\4—S _ s$,X + s,Y )
2
Moreover,
(Ao (E‘WEYP 2‘1/2> )
vm X — X ~ N(0,1) 4 0pm(1),
where

AT = —\/M22—1—|-M2,
o = ()\7)40'+2.
2. Let P, =1,, + Zle(ﬁi — 1)e;elR™*™ and define
Sx.p, = PPWxPY? and Sy p, = PYPWy P2,

The induced filtered estimators become

N N At N . N . “t
Xx,p = Im + Z 92){ Pyt uZx (Pt Usy Pl and Xy,p, = lm + Z(GZY,kai 1)uEY,Pk7iui)y,Pk KL
i=1
3 3 _ ) . h ) N
where Hzx,Pk i and QEY,kai are the unbiased estimators of the i " largest eigenvalue of X x p, and

iy’ p, respectively.
Then, conditioning on the spectra of Wx and Wy,

1/2 —1/2\ _ 1 1
Amax (EX szypkzx’Pk) = Anax (HY) + 140, <m> +0, (W) ,

1/2 —-1/2\ _ , 1 1
Ain (SXE Sy nERHE) = A (H7) £14+0, (m> Lo, (9 m) ,
where
5 /¢ wip o wiz o wp
At + £
w2,1 G /¢E Wyg ot Wy
+ + 2+ £
—¢E | wh o wih, G/ o wig |,
wquE,l wifg w;:;_L,3 s C,;'E/C?o
and

wt N [0, L20M2x ~D(May — 1) + By + By +o <1>
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2
BY = (1 — My +2Ms x +\/ M2 — 1> (Mg x — 1)

+2 (—1 + My — QMQ@ — 1/M22 — 1) (M37X — M27X) + (M47X — M22,X)7

2
Bi = <1+M2+M27Y—M27X — \/Mg—l) (Mg’y—l)

+2 (—1 — My — Myy — My x — /M3 — 1> (Msy — May) + (Myy — M3y),

2
= (1 — My +2My x — \/ M2 — 1> (Max —1)

~

> |

+2 (—1 + My — 2Ms , + \/]\422 — 1) (M37X — M27x) + (M47X — M227X),
2
By = (1 + Mo+ Moy — Mo x + /M3 — 1) (Myy — 1)

+2 (—1 — My — Myy + My x — /M3 — 1) (Msy — Moy )+ (Myy — M22y)

The matrices HT and H~ are strongly correlated. However, within a matriz, all the entries are
jointly independent.
Remark 3.1.2.

1. Without Assumption the red parts of the theorem are weaker. The entries wj ;
have the same two first moments but not necessarily the asymptotic normal distribution.
Then, the entries of H* are just uncorrelated instead of being independent.

2. If the spectra follow Marcenko-Pastur distributions, then

cx +cy

2 )
M =c+e(c+2) +1,

+2 _ c§( —l—cg(cY —|—3C§( +4cxey —cex + cgf +cy
+(80X + 20§( + (cg( + 503( + c§(0y +4dexey +5ex + 3ey + c%,) clc+2)

c+ 2
+ o
Ww; 5~ N <07 m) )

,  2ex (Ve D) +2) 420y (—vele 2 +2) + 6 +
v 40(—\/m—|—c+2)2 ‘

g

)

g

3. If cx tends to 0, then

2
ot = <M25Y +2Myy — 2May M3y + M3y — 4May M3y + My M3y + 2M3 y
+2M4’yM27Y + 2M2’Y — 2M37y — M47y — 2) / ( (szy — 1) (Mg,y + 3))

+ <M§,Y + M3y — 2Msy M3y + 2M3y — 2Msy My + Myy Moy

—2M3y + M4,y> /\/(M2,Y — 1) (May + 3).
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4. When m is not large enough, the normality assumption of \; is not respected. In this
case, and in particular if k is large, it could be profitable to estimate the order 1 residual
spike (P;) with the following algorithm.

Let S\WX,i, S\WYJ- be the eigenvalues of Wx and Wy respectively.

(a)
(b) Generate u, and uy, two independent uniform unit vectors of size m.
) Generate Z, a standard normal independent of u, and u,,.

)

We define
m
1 2
1,1,1 § :)\WX Zuxz and W 1,1 — E :)‘nyiu:c,iv

m

N 2

Wyo22 = g )\WyﬂuyZ and W 29 = g AWY’iuyﬂ-.
i=1 i=1

Assuming the statistics Wy, 1,1 and Wil,l follow the distribution of the first
entry of Wx and W2 respectively.

(e) Construct

0, =0 Wyi1and a2 =1+1/0 —0/02 W, 111,
Oy =0 Wyooand a) =1+1/0—0/62 W2, ,,

R ]

m

2 _ 2,2
o =a? -|—2 azay

(f) Finally, because 6 is large enough

ey(1—a)+1+ +\/—4§g+(9 (1—a2)+ o +1)
2 Y

2
. ) 9y(1—a2)+1+§i—\/—4Zi+(9y(1—a2)+§g+1>

In practice the spectra of Wx and Wy are not observed and will be replaced by the
m — k smallest eigenvalues of )y x,p, and Ey Py -

5. Assuming that we would like to use Monte Carlo methods to estimate the distribution,
we should first estimate the eigenvalues of the covariance matrices.
Without the theorem, the loops of the simulation generating the residual spikes generate
O (mQ) elements.
Using the theorem, the loops generate k? elements.
Finally, using the previous algorithm, the loops generate O(m) elements.

(Proof page [168])

3.1.1 Discussion and simulation

The above theorem gives the limiting distribution of the test statistic of the Section Vinax and
Vinin- When the perturbation is of order k, Theorem reduces the size of the matrix needed for
estimating eigenvalues from m x m to k x k.

The theorem is asymptotic in m, € and fixed value of cx, ¢y, 1/cx, 1/cy and k finite. Moreover, the
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eigenvalues of the perturbation are all distinct.
By simulation, it appears that some assumptions are actually not necessary:

e The result holds if some eigenvalues 6; and 6; are equal for ¢ # j.

e The result does work if nx and ny are very large and m is not so large. In this case, 1/cx and
1/cy are very large. However, because m is small, the normality is not achieved and we should
use the algorithm introduced in Remark In particular the result holds for cx tending to
0.

e If £ =1, then the result works even for relatively large cx and cy.
Some other assumptions are very important:
e If cx and cy are very large, then convergence to the limit is slow.

e If k is large, then the asymptotic result gives poor results and can give approximations far from
the true distributions of the residual spikes even for cx and cy reasonably larger than 1.

Some simulations

1. Assume X € R™*"X and Y € R™*™ with X = (X1, X9,..., X5 ) and Y = (¥1,Y5,..., Yy, ).

) nx
Xi ~ Nip (0,071 ) and X1 = pX, + /1= 7 exipn, with exien % Ny (0,071
Vi~ N (0,0%T0 ) and Yigr = p¥i+ /1= 2 ey, with eyin % Ny (0,071,

Let Py = Im+2§:1(9){7i - 1)uX7iutXﬂ- and Py = Im+2§:1(0yﬂ' - 1)uY,iu§,7i be two perturbations
in R™*™_ Then,

Xp = PY*X and Yp = P/?Y,

. XtX R YLY

Sy = PP ahd By = PP
nx ny

As proposed in Theorem we build the filtered estimators > x and Yy defined in .
We assume Px = Py = P and that with high probability we have

N

)\max (i};(}]/aiixpki;(’léi) )\max (H+) + 17

Ao (SXEvnS0) < Awin (H) + 1.

In particular, by the Main Theorem, if the eigenvalues are all large enough, then we have asymp-
totic equality. Later in Section we will propose a criterion to ensure that if the eigenvalues
are small, we obtain strict inequalities.

The following simulations compare in different scenarios the distributions of the empirical ex-
treme residual spikes with the estimation obtained by H* of Theorem

Equality of the eigenvalues:

What happens when some eigenvalues of the perturbation are the same?

The following simulations compare our estimate using H* of Theoremwith 10’000 replicates
with a time consuming empirical simulation using only 500 replicates.
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Minimum Spike Maximum Spike
p=05 | cx=05 | cy=2 . .
—1000‘71)(:2000‘711/—500 ; .
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Figures [3.1] and [3.2] compare the estimated to the real distributions. They are close even when
the elgenvalues are all the same in Figure

The choice of k:

In practice, we need to determine k and this could be very difficult. In the next simulations, we
choose the wrong k. Figure shows the spectrum of Sy of the first simulation. We clearly see
four perturbations on the first plot, but it is difficult to argue the exact number of perturbations
as we see in the second plot enlarging the limit zone near the bulk.

Spectrum of the group Y Limit zone of Spectrum Y
o o _
(SR ~
Yol
o _]
o ©
g
< o _|
[Te]
5 8- 5 o |
g © g ¥
=} >
g S - g &
LL ~N LL
o
N
g
— o
-
o o IHHTHIr e -
[ T T 1 [ T T T T 1
0 5000 10000 15000 5 6 7 8 9 10
Spectrum Spectrum
Figure 3.3 — Spectrum of ¥y and zoom on the right side of the bulk.
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k=4, 6 = (15000, 5’000, 2’000, 500).
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Density
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Density

Figure 3.4 — Distributions of the residual
spikes and their estimation in blue.
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p —_ 05 ‘ cx = 05 ‘ cy = 2 Minimum Spike Maximum Spike
m =1000 | nx =2/000 | ny = 500
k =4, 6 = (15'000, 5’000, 2000, 500).

0.06

0.04

Density
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Figure 3.5 — Distributions of the residual - gLl Ll
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Figure [3.4] overestimates the number of perturbations. In this case, although the convergence
does not work, the inequality remains valid, as overestimating the number of perturbations leads
to a conservative test.

What happens if we underestimate the number of perturbations? Figure neglects a large
perturbation with 6, = 500. This perturbation is large and in this case, the inequality does not
work. This leads to a non-conservative test!

However, as we see in Figure [3.6] if we neglect small perturbations 63 = 8, 6, = 6, then the
convergence in distribution remains true.

We can argue that a wise selection of k will not neglect large perturbations. Therefore, assuming
this, our method is resistant to mistakes in the estimation of & due to small perturbations.

Fluctuation of k:
The next simulations present the robustness of the result as a function of k.

Spike minimum Spike maximum
p=05 | cx=05 | cy=2 . :
m = 1000 | nx = 2/000 | ny = 500 . :
k=1, 6= (5000). . ?
Figure 3.7 — Distributions of the residual s

spikes and their estimation in blue. TS A ST
Lambda Lambda
Spike minimum Spike maximum

p=05 | cx=05 | cy=2
m = 1000 | nx =2/000 | ny =500
k=8, 6 = (5'000,5000, ..., 5000).

Density
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Density

0 10 20 30 40 50 60
05

Figure 3.8 — Distributions of the residual
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p=05 | cx=05 | cy=2
m = 1000 | nX:2OOO | ny—500
k = 15, § = (5000, 5000, ..., 5'000).
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Figure 3.9 — Distributions of the residual
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The Main Theorem creates a natural test tending to be more conservative when k grows. When
k = 1 the convergence is very good as we see in Figure Moreover, Figure shows that
when k = 8 our estimation is still good despite a small conservative bias in the distribution of
the minimum. However, when k£ = 15 in Figure the distributions are quite different. Luckily,

the procedure remains conservative.
The lack of precision is due to k.

Indeed in all our results we always neglect errors of size

Op(k/ny) and these quantities are not necessarily small when ny is not large enough.

Fluctuation of c¢x and cy:

In the following simulations we change cx and cy.

=05 | ex=01 | ¢y =02
:100\nX:1’000\ny:500 .

4, § = (15'000, 5000, 2'000, 500).

k=

Density

Figure 3.10 — Distributions of the resid- o
ual spikes and their estimations in blue -

and orange (Remark |3.1.3).

=05 | cx=025 | ¢y =5
500 | nx =2/000 | ny =100

4, § = (15'000, 5000, 2'000, 500).

k

Figure 3.11 — Distributions of the resid-
ual spikes and their estimations in blue

and orange (Remark |3.1.3).
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Figure 3.12 — Distributions of the resid-
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and orange (Remark |3.1.3).
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The minimum spike seems to be well estimated in the different regimes in Figure and
3.13] However, we underestimate the true distribution in Figure where nx and ny are
larger than m. Therefore, our procedure gives a conservative test.

On the other hand, the maximum spike is well estimated in Figure and When nx
and ny are small, Figure [3.12] underestimates the true distribution. This error would lead to
non-conservative test. Nevertheless, the asymptotic theory is confirmed by Figure keeping
the same ratio cx and cy and a larger sample.

Remark 3.1.3.

The Figures [3.10] [3.11], [3.12] and [3.13] present an orange curve that estimates the mini-
mum residual spike quite well. There are two ways to estimate the minimum residual
spike.

(a) First, we estimate the minimum eigenvalue of f&ﬂflyf&ﬂ using the Main Theo-
rem 3.3l This leads to the blue curve.

(b) The second way estimates and inverts the largest eigenvalue of fli// ) X f)%// % This
leads to the orange curve.

We might be surprised to see a difference between these two curves. However, when m,
nx and ny tend to infinity then the estimations converge to the same distribution.
Our simulations tend to show that, although the orange curve is closer to the real
distribution in Figure |3.10} it tends to overestimate the minimum eigenvalue in other
cases as in Figure [3.11] [3.12] and [3.13]

These imprecisions are probably mainly due to the inversion of one of the matrices.
Therefore,

We highly recommend choosing nx > ny !

2. In the previous simulations, we compare our estimates to an empirical distribution computed

easily by Monte Carlo methods. However, the complexity of the algorithm is equal to the num-
ber of loops times m2. This approach tends to be too long in high dimensions. Therefore, it
becomes necessary to use the dimension reduction of Theorem [3.1.1

The next simulation introduces a concrete case. We compute the singular value of two data ma-
trices X and Y. Looking at the spectra on Figure|3.14] we sensibly choose k.5t = 5. A procedure
to choose k is proposed in Section [£.4 Then, we compute the largest observed residual spikes,

~

)\max,obs and Amin,obs-

‘Spectrum of the group X Limit zone of Spectrum X Spectrum of the group Y Limit zone of Spectrum Y

mmmmmmmmmmmmmmmmmmmmmmmmmmmmm

p — 0'5 ‘ CX — 1/3 ‘ CY — 4 Spike minimum Spike maximum
m = 20’000 | nx = 60000 | ny = 5000
kest = 57 )\max,obs = 9317 Amin,obs = 0.09.

Density

Figure 3.14 — Estimated distribution of
the residual spikes and observed values b °

0.090 0.095 0.100 0.105 91 92 93 94 95 96 97 98
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in red

Lambda Lambda

In Figure, we can directly compare the observed statistics in red , Xmax,obs and j\min,obs with
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the estimated distribution of Apax (2¥2§y§¥2> and Amin 2¥2§y§¥2 .

In this case, we would reject Hy because one residual spike is too small. Therefore, the pertur-
bations are different and the difference is in the eigenvector of Ayin ops-

Some other simulations are presented in the Chapter
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Chapter 4

Data, robustness and application

The Main Theorem provides the distributions of the extreme residual spikes under some condi-
tions, which are:

e The perturbation, P = L,, + Y_/", (6; — 1)u;ul respects Assumptions A1) and (A3): The
eigenvalues of the perturbation are proportional but not equal and tend to infinity faster than

Jm.

01/\/%—) o0,
0; = pif, p; # p; if i # j and p; is fixed.

e The covariance matrices Ly and 3y built from the data respect Assumption If the
perturbation P is known and cancelled, then the resulting matrices, Wx = p-1/2y P12 and
Wy of the two groups have independent unit invariant orthonormal eigenvectors, Ox and Oy,
and their bounded spectra, Ax and Ay, are either fixed or independent of the eigenvectors.

Sx = PPWxPl/? and Sy = P*Wy P2,
where

WX = OxAxOX and Wy = OyAyOy,
k
Pp=Im+ Y (6 — Desel,
=1

with k finite, Ox; # 0x ; if ¢ # j and

Ox, Oy are unit orthonormal invariant and independent random matrices,

Ax, Ay are bounded diagonal matrices.

Remark 4.0.1.

In Assumption the perturbations Px and Py can be different. Nevertheless, in this
section, we study the behaviour of our procedure when the perturbations are the same,
P, = Px = Py.

These assumptions allow us to prove some results and to give an explicit form to the residual spike.
This chapter shows that applying our model to data that do not satisfy some of the conditions often
leads to a conservative test. For example, we can assume the weaker condition (A4) instead of
2.2.2(Al) and (A3). Another example relaxes the assumptions of that Ox and Oy are invariant
or independent.

Therefore, we argue that despite the restrictiveness of the assumptions, our procedure is valid in
broader circumstances.
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Unluckily, we are not able to prove rigorously our method protects against wrong discoveries. More-
over, we can even build counterexamples where the conservativeness of the model fails. For example
we can chose Ay and Ay such that the largest residual spike occurs for small perturbations!

Despite this counterexample, studying estimated covariance matrices with our model is conservative
in most practical applications. Moreover, we provide a criterion that partially checks this assumption.

This chapter is divided into three sections. First, we introduce some typical data. Then, we study
the “robustness” of our procedure through some classes of models that we define later. In particular,
this study introduces some criteria to check whether the largest residual spike is due to a large
perturbations. Finally, the last section solves some practical difficulties and proposes tools using the
residual spike to solve well-known problems.

Notation 4.0.1.
In order to distinguish different types of data derived from random matrices, we use colours:

e The data X € R™ x R™X such that Var(X.;) = P/,i/zEPkl/2 and Var(X;.) = ¥, where ¥ €
R™ x R™ and ¥ € R™¥ x R™X are covariance matrices,

e The data without the perturbation, X = Pk_l/QX ,
e The data without correlation between the rows (spatial), X = »-1/ 2Pk_ Y 2X,

e The data without any correlation (spatial-temporal) X = 2*1/2Pk_1/2X\I/*1/2.

4.1 Data

First, we introduce data satisfying the assumptions of the Main Theorem Then, we explain the
difficulties that could arise in practice with spatial-temporal data. This consideration leads to more
realistic models.

4.1.1 Ideal data

In order to respect the conditions of the Main Theorem we assume that data X € R™*"x and
Y € R™*™ are such that:
X = P*X and Y = P?Y,
where
(0, — 1)uiu§,
=1

\/m—>ooand fori# j=1,2,...,k, 36 > 0 such that e—j:pm ¢[1—0,14 4],

X and Y are independent and invariant by rotation with bounded spectra.

P.=1,+

k

with

This section introduces data that create random matrices respecting Assumptions and[2.2.2(A1),(A3).
Remark 4.1.1.

1. Because 2= — oo, it is not necessary to assume bounded spectra.

Jm

2. Usually the literature assumes independent columns of X. In this sense, our model is
more general. Benaych-Georges et al. [2010] prove some results under similar conditions.
However, many existing results treat X with independent entries. In this sense, our
result is less general.

Note that comparing assumptions with equivalent results would be fairer. For example,
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we can probably show that the residual spikes converge in probability to some value
under weaker conditions.

4.1.2 Spatial-temporal correlation and fluctuation

In order to explain the particularities of our model, we need to explain the two types of correlations
or fluctuations that we can add and are likely to meet in practice.

Suppose our matrix of data X is of size m x nx. The spatial size is m and represents the features.
The temporal size is nx and represents the number of patients or replicates of the spatial vectors.
Ideally, the data are a finite perturbation of independent spatial vectors with independent entries:

X = P/*X,

where X € R™ x R"X has independent entries (often Gaussian). The following schema explains this
simple situation.

Independence Independence
\
]
X X2 0 Xy = X X2 o Xy
[«
. Xon1 Xoo o0 Xony g Xo1 Xop o Xony
A 5} . .
: . . . o : .
. . . . '_g .
Xm,l Xm,2 T Xm,nx k= Xm,l Xm,2 Xm,nX

However, in practice we always meet more realistic data :
e The correlation of the spatial vectors is usually more complex than a finite perturbation.
e The distribution can fluctuate in time, with different fluctuations in each row.

e The temporal vectors can be correlated.

Fluctuation of the distribution + Correlation

X1 Xi2 oo Xiny
Xo1 Xog -+ Xopy

Correlation ¥ and Py

Xm,l Xm,2 Xm,nX

It is clear that without any additional assumptions on this second matrix, it is not possible to prove
interesting results. Our goal is to add the smallest number of conditions possible and to argue that
they make sense in practice.

4.1.3 Introduction of a particular model

We present a practical case involving the comparison between two random matrices in brain imaging;:
A study investigates the behaviour of n = nx + ny brains of patients, where each brain is represented
as a spatial vector of size m. The first group contains nx healthy patients and the second one contains
ny patients suffering from a disorder.

It is expected that the brains behave differently in the two groups. What could be a good model for
such data?
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Model 1: The first model is based on one image per patient and independence between the
patients. However, the vectors derived from image contain strongly correlated entries and the
structure of correlation can fluctuate from patient to patient. We define X € R™*"X such that

X = P'/?X,
_ w12 1/2
X = 212X/
i..d.

Ux;i ~" RV (L,0%), Ux;; =0,

where X is a matrix of independent normal random variables. With this model the image of the
ith patient, X.;is

X ;= PPX
_ wl1/2 1/2
X ;=% XU
X Ux: BIN(0,Ux %)

Model 2: The brain images are usually repeated for each patient, in order to increase precision,
that is, each patient provides many correlated images in function of the time. In this case, we need
to extend model 1 to X € R™*"™X guch that,

X = PY/2X,
~1/2
X = 22§,
@X — \111/2qu1/27
\IJX,i,i ~ RV (1,0'\21,) y \IIX,Lj = 07

where R is a correlation matrix and X is a matrix of independent normal random variables.

General model: The most general model that we hope to evaluate with our test is

k
X = P2X, where P =1,, + Z(Ql — Dugut,
i=1

X =(X.1, X2, Xony),

? SNX
X1, X 2,...X ny ~RV(0,%) (not necessarily the same distribution.)
X1, X2, ..., X, are dependent random vectors. (temporal correlation.)

General fluctuations can modify the images through time, dependence can occur between the
images, distribution of the entries of X are free, and spatial dependence (more complex than a
covariance) can exist.

This model would be very general; however, we need to assume some hypotheses to extend existing
theory.

Comparison with our model: Our model assumes invariance by rotation of X. Therefore, we
can only treat the model 2 for ¥ = I,,, without any condition on ¥x. In Section we see that
temporal finite perturbations are difficult to cancel; therefore, we should assume that the spectrum
of Uy is compact enough in the sense that it does not create isolated estimated eigenvalues outside
from the spectrum.

What happens if we use the methods derived from the simple model in situations
where the true model is more general?

Remark 4.1.2.
In practice, we will observe a spectrum, which most probably will be deformed.
The general model assumes that the deformation is due to complex behaviour of the random
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matrix such as:

e Spatial dependence, temporal fluctuations of the density and temporal correlations
possibly different in each row.

On the other hand, our model assumes that all the deformation is due to:

e Spatially uncorrelated dependence due to the rotation invariance, and identical tempo-
ral correlations and fluctuations of the density in the rows.

Fluctuation of the distribution + Correlation Fluctuation of the distribution + Correlation

g
]
X1 Xig o Xy 3 Xip Xig 0 Xy
o
X2,1 X2,2 s X2,nx . X2,1 X2,2 ce X2,nx
& . . . . = : : -, :
: : . : g : : . :
Xm71 Xm72 o Xmﬂ’lX é Xm’]' Xm72 e menX

Our model seems to be too restrictive to treat such data. Nevertheless, the next section will
show that it is robust to a range of violations of the assumptions. For example we show that
the location of the residual spike of our model is robust to the presence of ¥ when 6 is large
and k= 1.

Example 4.1.2.1.

X1, Xon, Yot Yo, “EEN(0,8) or if Xoq, o, X, Yot o Yoy " N(0,1,),
then the expectation of the resulting residual spike when k = 1 is asymptotically (in m and
0) the same under weak conditions on X.

4.2 Robustness

This section investigates the robustness of our model under perturbations of order 1 for four classes
of models. First, we define what kind of robustness we hope to achieve. Then, we introduce the four
classes. Each classes is, then, investigated by means of a theorem of robustness. The next section
discusses the remaining ambiguities of our investigation and the difficulties to prove perfect robustness.
Then, all the results are summarised in a table. Finally a small section argues for a stronger claim of
robustness of our procedure based on simulations.

4.2.1 Definition of robustness

Robustness of a model means that its results will remain accurate under some modifications. In this
thesis, we argue that our model is robust because it is still conservative under some perturbations of
the model.

Before defining the robustness, we define the moments in probability.

Definition 4.2.1.
If X, is such that

Xn - Mn
Zn B DRy (0,1),
On
with o2 "= 0, then
Ep(n) [(Xn] = pn + on(pnon),
Vary(u) [Xn] = o7+ on(oy)

are called the expectation and the variance in probability.
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Remark 4.2.1.1.

1. In particular if X,, ~ N (,u, %) +op (ﬁ), then E, ¢,y [X»] = p and Vary, [X,] = %2

2. When the errors 0, do not affect the two first moments, i.e.,

B (2,40, (= )| = Blzbvon (72 and Var (7,40, ( 2) ) = Varlzubeo ().

then the moments in probability coincides with the usual two first moments.

3. If X;, ~N (2, %) +op (%) and X,, ~ N (1, %) +op (%), then
~ ~ 1
By [Xa] = 2 > 1= By [X,] and Vary( (X,) = Vary (X)) =

n

but we could have 3
E[X,] < E[X,].

4. We could relax the condition ¢, — 0. However, for the purpose of this section it is
convenient and not restrictive.

Next we define two sorts of robustness, the strong robustness and the weak robustness.

Definition 4.2.2.
Suppose that a procedure using n replicates leads to a test statistic 7,, and a test will reject its
hypothesis if the random variable T}, exceeds a bound.

e Assuming a null model, the random statistic is Tp .
e Assuming a model C; in C a class of models, the statistic is T¢, »,.

1. A null model is asymptotically strongly robust on the right in a class C of models if:
For all models C; in C, there exists €, such that

Ep(n) [Tci,n] < Ep(n) [TO,n] + €n,
2 2
€n €n

lim = lim =0.

TL%OOVaI‘p(n) (Tchn) ﬂﬁoovarp(n) (TOJL)
Moreover,
if 3 €, such that Ep(n) [Tci,n] = Ep(n) [T07n] + €, and

o i)
max , 00,
Varp(n) (TCi,n) Varp(n) (TO,n) n—00

=14 o0,(1).
Varp(n) (TOJ’L) n( )

then

2. A null model is asymptotically weakly robust on the right in a class C of models if

For all models C; in C, there exists €, with lim ¢, = 0 such that
n—oo

Ep(n) [TCNZ] < Ep(n) [TO,TL] + €n.

3. The definition of asymptotically strongly robust on the left and asymptotically weakly
robust on the left are obtained by substituting

Ep(n) [TCi,n] < Ep(n) [TO,TL} + €n
in the previous definitions by

Ep(n) [TCi,n] = Ep(n) [TO,n] + €n.



4.2. ROBUSTNESS 43

4.2.2 Introduction to different classes

Our model is confronted with four classes:

e Class Cy is very general and extends our model to very general spatial structures, 3, possibly
linked to the direction of the perturbation, u. Moreover, the temporal fluctuations and correla-
tions in the direction u can be a little different from the other directions. The main restriction
of this class is the asymptotic assumption that 8, the eigenvalue of the perturbation, tends to
infinity.

e Class Cp generalises our model to perturbations with any 6.

e Class Cc assumes that X = P~Y/2X have i.i.d. symmetric entries. Moreover, no assumption is
made on 6.

e Class Cp makes no assumption on # or . However, the perturbation is invariant by rotation.

These classes are inspired by the previous Section Naturally, they do not cover all the possible
realities; however, controlling these classes is a good first step to validate our procedure.

Recall that our model assumes that X and Y are two independent identical random matrices invariant
by rotation of size m X nx and m X ny respectively. Then, we assume our data, X and Y, to be such
that,

X = P'2X and Y = P/?Y, where P =1,, + (6 — 1)uu! and 0 — 0.
vm

The residual spike obtained from this model observing m features is Ag ,, such that,

Jm 0, p( )[ 0,m] ~ N (0,1) + op:m(1).
Varp(m) ()\O,m)

In the Main result we showed that py, = p5, (M2), where My = My x + My and Mj x, My y are the
second moments of the spectra of X and Y.

Class A

In this part, we define the class C4 and introduce a theorem proving the robustness of our model in
this class.

Definition 4.2.3.
For ¥ € R™*™ we define the class C4(X) of models assuming random matrices X € R™*"X such that

X = PY/2X,
P =1, + (0 —1esel with 6 — oo,
X = 22X,
Trace (X) = m, Amax (2) =0, (1),
1, ~ L1, Xo.yooy Xy ~ L,
Var (X1.) = ¥y x, Var (X3,.) = Var (X3.) = ... = Var (X,,.) = ¥x,

where Amax (Ux) and Amax (V1,x) are Op(1) and
Ax =¥ x — Uy is such that Trace (A?X) =o(nx),

.i are vectors with i.i.d. independent entries,

1
If Wy = — XX,

nx
Amax (Wx) = 0,(1), Var (Wy11) = O (1/m) and Var ((W)%)m) — o (1).
I 11y = 2= XX, Amax (17 x) = Op(1).

nx
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Finally we assume m/nx = cy is a fixed constant. (Or m/ny — cx = o(1/m'/?)).

Remark 4.2.3.1.
The condition A = ¥y — ¥ and Trace (A%) = o(nx) can be replaced by

R
Uy = v+ anv’r‘vfﬂ
r=1

where R = o(nx). This means that A has rank o(nx) and implies the original weaker
condition because

|A||F = Trace (AZ)l/Q < yrank (A)Amax (4),
and Amax (A) is finite. ( Apax (¥1) and Apax (V) are finite.)

The following theorem investigates the consequences of applying our model to data from class C4.

Theorem 4.2.1.
Assume X € R™ "X gnd Y € R™™ are random matrices from class Co(X) defined in . By
definition of C4,

X = PY2yY2X and Y = PY/?x1/2
We define
X = P/2% (de’:PIMN,

such that X and Y are invariant by rotation with spectra equal to the spectra of X and Y respectively.
Moreover, we define Aam and Xom as the largest residual spikes obtained using (X,Y) and (X,Y)
respectively.

Then,

1. The new data X and Y satisfy the conditions of our model.

2. Our model is asymptotically weakly robust on the right,

Ep(min(m,@)) [)\A7m] < Ep(min(mﬂ)) [)\O,m] with equality when ¥ = Im.

3. If Trace (X) — 1 > d, where d is a positive constant, our model is asymptotically strongly robust
on the right,

Ep(min(m,@)) [)‘A,m] + D(d) < Ep(min(m,@)) [)‘O,m] )
where D(d) is positive and depends on d,

lim Varp(min(m,@)) (AA,m) = lim Varp(min(m,@)) (AO,m) =0.

m,0— o0 m,0— o0

Remark 4.2.1.1.

1. The theorem shows that applying the procedure based on our base model to data
generated by model A leads to conservative tests.

2. This theorem can be extended to the minimum residual spike to show robustness on
the left.

(Proof page [201))
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Class B

In this part, we define the class Cp and an additional criterion. A theorem shows the robustness of
our base model applied to data from Cpg if in addition the criterion is satisfied.

Definition 4.2.4.

We define the class Cg of models assuming random matrices X € R™*"X guch that
X = P'/2X,
where P = L, + (6 — 1)ud,

X is invariant by rotation.
Finally we assume m/nx = cx is a fixed constant. (Or m/ny — cx = o(1/m!/?)).

The models generated by class Cp are close to our base model but 6 can be finite. Thus, we need to
define a criterion to ensure that the largest residual spike increases with 6.

Definition 4.2.5.
Let Sx and Sy be the spectra of )jlx and YZ , where X = P1/2X and Y = P,
curve

1/2Y. We define the

(0= 1)a% +/—40% + (1462 — (6 — 1)%02)?

1
ux(0, 5%, Sy) = 5 0+ a? —0a® + 0 ,(4.1)
where
a = axay, a%( = R mé 3%, ) a%{ = R mé Xy )
O020x Sz a7 (O i Ty sy 2
) 1 >\X ,1 N 1 )\Y Ji
0x | 51 Zz k41 (Gx— Ax.)’ Oy | 571 Zz k+1 (Gy — Av.i)’
and Ax; = \; (XX)ESXand)\YZ—A (e )es
The criterion is satisfied if the curve is monotone increasing.
Remark 4.2.5.1.
We can use this as a criterion to argue that the expectation of a residual spike is monotone
increasing in #. However, when 0 is large compared to m, this estimator fails and we should
use an asymptotic estimator of a based on:
ok = 1+-= (1— Z AX1>
i=k+1
2
2 &4y 3 [ & 4y 2 o, 1
23 e b (30 ) -2 3 ) o ()
i=k+1 i=k+1 i=k+1
1
ox = (6-1) +— Z Mo+ 0, (02)

z k+1
Using this approximation, the estimated curve criterion makes an error of O, (1 / 02).
Theorem 4.2.2.

Assume X € R™*"X gnd Y € R™*™ qare random matrices from class Cg defined in . By
definition of Cp,

X = PY2X and Y = PY/?v,
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where P =1, + (6 — Duul. We define

X = PY2X and Y = P'/? ,

such that P = I, + (5 — l)uut and lim \/im 0o. Moreover, we define Ag.m and o, as the largest

residual spikes obtained using (X,Y) and (X,Y) respectively.
If the criterion defined in[{.2.5 is such that

VO > 0, ux(d,Sx,Sv) < Ghm ux(0, Sx, Sy) + 0(1/\/72),
—00

then

1. If the variances in probability of Ox, Oy, (ix,uy) are O (1/m), our model is asymptotically
strongly robust on the right,

Ep(m) [/\B,m] < Ep(m) [)‘07771] :
The equality occurs when

Varp(m) (AB,m
lim ~ 2ot ABm)
m—0o0 Varp(m) ()\O,m)

2. If the variances in probability of Ox, Gy, (Ux,Uy) are op, (1), our model is asymptotically weakly
robust on the right,

Ep(m) [ABm] < Ep(m) [Ao,m] -

Remark 4.2.2.1.

1. If the criterion is satisfied, then applying the Main Theorem to data generated by model
B leads to conservative tests.

2. This theorem can be extended to the minimum residual spike to show robustness on
the left.

(Proof page [202)

Class C

In this part we define the class Cc. Then, we introduce a theorem proving the robustness of our model
applied to data from Cc which satisfies the criterion

Definition 4.2.6.
We define the class Co of models assuming random matrices X € R™*"X guch that

X = pY/?
P =T+ (0 —1esel,
1,9 482,05 eeey my Nﬁa
.i are vectors with i.i.d. independent symmetric entries.

Finally we assume m/nyx = cy is a fixed constant. (Or m/ny — cx = o(1/m'/?)).
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Theorem 4.2.3.
Assume X € R™"X and Y € R™™ are random matrices from class Cc defined in [{.2.6. By
definition of Cp,

X = PY2X and Y = PY?v,
where P =1, + (0 — 1)uu’. We define

X = P/2% andi’:pl/2~,
such that P = T, + (0 — 1uu?, lim\/im = oo and X (respectively Y ) is invariant by rotation with
spectrum equal to the spectrum of X (respectively Y ). Moreover, we define Ao and o, as the

largest residual spikes obtained using (X,Y) and (X,Y) respectively.
If the criterion defined in[{.2.9 is such that

Vo > 0, /L)\(H, Sx, Sy) < Ghm u)\(a, Sx, SY) + 0(1/\/7%)
—00

and if the variance in probability of x, Oy, (Ux,uy) are o (1), our model is asymptotically weakly
robust on the right,

Ep(m) [)\C,m] < Ep(m) [)\O,m] :
Remark 4.2.3.1.

1. We can show that assuming data of the classes Cg and Co with same spectrum leads to
Epm) [Aeim (0)] < Epm) [Apm(0)] -

2. 1f 0 is large, Ep(m) [A\c;m] = Epgm) [Ao,m] but we have no information about the variance.

3. If the criterion is satisfied, then applying the Main Theorem to data generated by model
C leads to conservative tests.

4. This theorem can be extended to the minimum residual spike to show robustness on
the left.

(Proof page [203)

Class D

In this part we define the class Cp and a criterion. A theorem shows the robustness of our model
applied to data from Cp satisfying the criterion

Definition 4.2.7.
We define the class Cp(u) of random matrices, where u € R™. We say that X € R"™ "X and
Y € R"™*™ are in Cp(u) if

X = P'2912X  and Y = PY/?x1/?
P=1,+ (60— 1)uut, where u is a unit uniform random vector,
Var (X ;) =1, fori =1,2,...,nx,
Var (Y ;) =1, for i = 1,2,...,ny.

Finally we assume m/nx = cx and m/ny = cy are fixed constants. (Or m/nx —cx = 0(1/m1/2)
and m/ny — ¢y = o(1/m!/?)).

We define a second criterion for small 6.
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Definition 4.2.8.

Suppose <SX,UX) and (Sy,UY

matrices deformed by a perturbation P of order k in direction ui,us, ..., us.
um)t to Ux and Uy and rename them Ux and Uy. We

random rotation U = (U1, Ug, ..., Uy U1y vy
define W x and Wy as

) are the spectra and the eigenvectors of X and Y, two random

We apply the same

m
2 S A At
Wx (SX>UX> = Z AXiUx iU

i=k+1

m
2 S A At
Wy <5Y, UY) = E Ay iUy iUy

1=k+1

where Ax ; and ux ; are the ith eigenvalue and eigenvector of %XXt.

Then, we define for 6,

A
2 X,i N ~t
Qx <97 Sx, UX) = E W“X,iux,i»
i=k+1 /X T X
m .
- ~ N X,1,20
9 _ 1 _ . 5Ly
iiq1 0x = Axi

N
A Y,i ~ ~t
QY (9’ SY7 UY) = Z é 5\ uY,iuY,i’
i=k4+1 7Y T AYi
m

0 _ 1 _ . IR S}
i1 Oy — Ay

The matrices Qx = Qx (0,53(,[)')() and Qy = Qy (9,Sy,Uy) are in Mat((m — k) x (m — k)).
Then, we define

> 2 _ QX,T,S QY,T,S
T,.s (0, 5, Sy, Ux, Oy ) oo [
T (6, 9x, Sy, Ux, Uy ) = ml_kmz_:anT (6,5x, Sy, Ux. Uy ).
S r#s

1. We define T’ (9, Sx, Sy, Ux, Uy> as the first part of the second criterion for small 6.

2. We define the general criterion for small 6 as ,uf(@, Sy, Sy, Ux, Uy) constructed from m by
replacing the estimation of a by

a:axay—i—T\/I—a%{\/l—a%,.

Remark 4.2.8.1.
1. Assuming our model, T = O,(1/m'/?). Moreover, it seems that in practice T tends to
be positive. Therefore, the general criterion is bounded by the first criterion
pn > .
If this hypothesis holds, then the general criterion would always be useless. However,
we are not able to prove such a result.
2. In practice we could replace T' by the simpler estimator:

d m—k

1
T:gZZTT’S’

S r#s

where d is smaller than m — k. If T tends to be strictly larger or smaller than 0, then
a finite d is asymptotically sufficient to detect it.
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3. This criterion check case for consistency is necessary because X and Y are no longer
independent! Indeed the random wu is the same in the two matrices.

Theorem 4.2.4.
Assume X € R™*"X gnd Y € R"™™ are random matrices from class Cp(u) defined in for
u € R™. By definition of Cp,

X = P/2X = pPY25Y2X and Y = PY?Y = pY/2xl/?
where P =1, + (0 — 1)uu’. We define
X = PY2X and Y = PY/?Y,
such that P = T, + (6 — 1)uu?, lim\/iﬁ = 00 and X (respectively Y ) is invariant by rotation with
spectrum equal to the spectrum of X (respectively Y ). Moreover, we define Ap ., and Ao, as the

largest residual spikes obtained using (X,Y) and (X,\?) respectively.
If the criterion defined in[{.2.5 is such that

VO >0, (975X,SY7UXa UY) < 91131 O (9,SX, Sy, Ux, ffY) +o(1/yv/m)

and the variance of (Ux,uy) is oy (1), then

1. If the criterion[{.2.8 is such that T = 0, then our model is asymptotically weakly robust on the
right,

Ep(m) P‘D,m] < Ep(m) [)\O,m] .

2. If the criterion of [{.2-§ is such that T > d for d a positive constant, then our model is asymp-
totically strongly robust on the right,

Epm) [AD.m] + D(d) < Epny [Mosm] + 0m(1), where D(d) is a positive function of d,
lim Var,,) (Apm) = lim Vary,m) (Ao,m) = 0.

m—o0 —00

Remark 4.2.4.1.

L. If Epm) [ADm) = Ep@m) [Mo,m] when 0 tends to infinity, the asymptotic variances are not
necessarily the same. We recall that models letting 6 tend to infinity are in class C4.
Therefore, assuming 3 # I,,, leads to conservative tests.

2. Simulations seem to show that for all , when X # I,,,, we usually have
Epm) [Ap.m] < Epim) [Aom] -

3. If the criterion is respected and the variance of the residual spike tends to 0, then
applying the Main Theorem to data generated by model D leads to conservative tests.

4. This theorem can be extended to the minimum residual spike to show robustness on
the left.

(Proof page [204)

4.2.3 Uncertainties

In this section, we discuss the shortcomings of the robustness investigation.
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1. The robustness is proven for perturbations of order 1.

()
(b)

Ca can probably be extended to finite perturbation of order k with some assumptions on
3.

Some additional work is needed to check if criteria and still work for perturbation
of order k in class Cg and Cp.

It is easy to show that if the data are perturbations of order k, then the criteria still checks
if the residual spike of a perturbation of order 1 is increasing. However, the criteria do
not check if a perturbation of order k creates an increasing residual spike as a function of
(01,09, ...,6k).

This extension is not in the thesis but can probably be proven using its theorems. Indeed
when 6 is small many theorems have a weak form that usually allows the computation of
expectations or bounds on the expectation.

The Main Theorem assumes [2.2.2( A1) and (A3). We do not show that data satisfying
only [2.2.2(A1) and (A4) would lead to a conservative test. It is reasonable to think that
small perturbations are not as problematic as large one. Moreover, it seems that all the
material to prove such a result is provided in this thesis and we refer to the proof of the
Main Theorem and Lemma [6.2.4] to convince the reader.

2. We have proved weak robustness in a large number of scenarios. However, if 6 is small and the
perturbation is not random (for example linked to ¥ as in class C4), we are not able to prove
robustness.

3. The weak robustness only assumes that we are conservative in expectation. Assuming that the
variance tends to 0, this robustness is sufficient. However, the variance does not necessarily tend
to 0. Moreover, even if the variance tends to 0, a finite number of data could easily create a
residual spike with smaller expectation but larger variance such that the quantile 0.95 is enlarged.

4.2.4 Summary

This section summarises in Table [£.]] all the classes where our test is conservative with their weak-
nesses and their strengths. The weak points are in red and the strong one are in blue. The black
comments are considered as interesting generalisations or results. Nevertheless, because another class
is more general or provides more powerful results, these comments are not in blue.

0 P Temporal u Distribution Criteria Robustness
A unique
Our 0 temporal No condition Invariant
— 0 Y=1 .
model vm " fluctuation on u distributions No
trough the rows
‘Weak Small temporal No condition ‘Weak conditions Weak,
Ca 6 — oo conditions on differences in on on the No Strong if
b)) direction u distributions Y #ELn
A unique
temporal No condition Invariant Simple
C 1 ¥=1 . Stron,
B 6 > " fluctuation on u distributions criterion &
trough the rows
A unique
temporal No condition Symmetric Simple
C ¥=1I . Jea,
c Vo1 " fluctuation on u distributions criterion Wealk
trough the rows
Temporal Weak if
c Vo> 1 No condition differences in all w is uniform No condition on Heavy T=0,
b on X directions are i the distributions criterion Strong if
allowed T>0
Table 4.1 — Summary of all the classes.
Remark 4.2.1.

1. The Table[4.I]shows that the most interesting classes are C4 and Cp. The temporal cases
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of C4 just says that the temporal fluctuation, ¥y, in the direction of the perturbation has
to be closed to the fluctuation, ¥, in the other directions such that Trace <(\I/1 — \I/)2> =
o(nx) as in the remark of Definition

2. If ¥ =1,,,, then C4 is still weakly robust. If T' < 0, then Cp is no longer robust!

3. Although we write the invariant distributions in red in the table, this condition is
already more general than the condition of Gaussianity.

4.2.5 Simulation

Chapter [§] simulates many scenarios and confirms the good behaviour of our model.
Assuming X with X; ; i.i.d. random variable with finite fourth moment, the main conclusions of these
simulations are:

1. For X = P,i / 2X, the procedure still seems weakly robust and “nearly” strongly robust. Moreover,
the first criteria [£.2.5] seems to be always satisfied.

2. The procedure appears to be strongly robust for X = Pk1 / 22},{2X.

3. The criterion for Class Cp with general k seems to be always respected.

These conclusions hold for autoregressive X;.. The problems appearing in the simulations are:

1. It is not so clear that the procedure remains strongly robust with X = Pk1 X and 0; large. The
simulations only show that using the quantile 0.95 leads to conservative procedures.

2. We can create spectra such that the largest residual spike appears for small 8. Moreover, this
construction is feasible for data that are invariant by rotation.
However, such an example is based on data with a complex temporal structure leading to a
spectrum with isolated eigenvalues.

4.2.6 Conclusion

This Chapter argues that, despite strong underlying assumptions, our procedure is a good choice to
treat all kinds of data and protects against wrong discoveries.

As seen in the part uncertainties [4.2.3], our four classes do not cover all possibilities. However, it seems
that data with large perturbations lead to conservative tests. If this theoretical part does not convince
the reader, simulations of Chapter [8| demonstrate the conservative properties of the test applied to
other data.

In conclusion, the procedure developed in this thesis is an intuitive test constructed on the basis of a
model that is difficult to treat with traditional tools. Moreover, this test has good robustness properties
and can easily be applied in practice without risking of mistake in the level of false rejections.

4.3 Power

Our procedure seems to have interesting robustness properties. However, we have not yet investigated

its power.

A good test must necessarily have an asymptotic power of 1 when nx and ny tend to infinity for fixed

m. Moreover, it would be interesting to reach a power 1 when m also increases with constant ratio,
m m

cX:Eandc;/:W.

First, we define the continuity property.

Definition 4.3.1.

Let P =1, + 2?21(91' — 1)u;ul. We say that the perturbation, f;u;ul for i = 1,2, ..., k, satisfies the
continuity property if 8; x m.
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Remark 4.3.0.1.

The property of continuity is intuitive for imaging. Assuming that we increase the number
of pixels, then a perturbation affects more pixels and increases with m.

If we call hy, = /O, then h,,ht is the perturbation applied to the matrix. For m large
we define hqg such that, 6,,, = ||hn||?> = m||ho||?>. Then, we can use an argument of continuity
to argue that 0o, ~ 20,,.

h2m = (hm,lyhm,17hm,27hm,2a--~7hm,7n7hm,m>7

with

hm = (hm,lahm,2>---,hm,m)7

b = (ts o2, ooos o)
and by continuity we can reasonably assume that
1mll* = [1hul[* + o]|R]?).
Finally
Om = |lhaml|* = 2+ o(W)llhm||* = 26m + 0(8m) = 2m||ho||* + o(m).

The same computation holds for 03,,, 04,...
Therefore, assuming 6 oc m seems plausible in practice.

Theorem 4.3.1.
Suppose X = PY2X € R™*"X qnd Y = PY2Y € R™"™ are data such that for X € R™*"X and
Y € Ry and furthermore P € R™ ™ satisfies Assumption [2.2.9(A4). We test

Ho : Px = Py,
H;: Py = Px + (A — 1w,

where Px is a finite perturbation such that

We define the Power as
Bm = P {Ho rejected }.

1. Assuming the continuity properties defined in[{.3.1], then the Power tends to 1 in the following
two cases:

(a) (v,u;) =0 fori=1,2,...,k,
(b) Zf:l (v, i) # 1,

2. Assuming the classical multivariate assumption, nx,ny — oo with sy 0 and a fized

dependence between the columns (temporal structure), then the Power tends to 1 in the two
cases defined above.
8. Assuming m,nx,ny — oo with cx = %, cy = %, then

(a) If (v,u;) =0 fori=1,2,...,k, and

)\>MQ+\/M22—1,
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where

the Power tends to 1.

(Proof page [208)

This shows that despite the good robustness properties, our procedure keeps a good asymptotic power.

4.4 Application of the model

When applying the procedure to real data, we typically want to achieve the following:

e Estimation of the spectra and their moments,

e Standardisation the data,

e Estimation of k, the order of the perturbation,

e Avoiding the effects of temporal finite perturbation which can lead to a failed test.
Our main result provides a tool to deal with two well-known problems:

e A first group of size nx looks at m features. What should be the size of the second group in
order to obtain results?

e How should the number of principal components be selected and justified in a principal compo-
nent analysis?

This section will study this problem theoretically and the simulation in Chapter [§] presents some con-
crete cases of spectrum estimations, standardisation of the data, and control of temporal perturbations.
All the routines for the analysis are proposed in our R package ” RMTResidualSpike”.

4.4.1 Spectrum estimation

Assume data X € R™*"X and Y € R™*" respect Assumption such that
X = P/’X and Y = P}*Y,

where X, Y are invariant by rotation random matrices with compact bounded spectra and P, =
I, + Ele(&i — l)uzuf has distinct eigenvalues whose kx and ky respectively are detectable in X and
Y. We build the estimated covariance matrices,

- XX?
Z —

- YY!
X = and EY = .

nx ny

In case of difficulties in estimating kx and ky the last remark of Theorem recommends under-
estimating them for the estimation of the spectra.

Theorem [3.1.1] provides the variance and the expectation of random variables leading to the extreme
residual spikes:

At 0% and 0252.
However, these values are expressed in function of the four first moments of the spectra of Wx and
Wy where
B XXt YY!

WX = and Wy =
nx ny
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Theorem suggests estimating the moments with

Mg, (kx) = m_lkx i (sz,)S:;i(Xin)nO (;>:Ms,wx+0p<;),

i=kx+1 i=1
1 " S 1 m 1 1
Mgy (hr) = m — ky i:kzy;rl ( S ) om zz; <>\WX l) <m> = Mowy +Gp (m) ’

where )\Wx ; is the i*® eigenvalue of Wy and )\ S is the i*" eigenvalue of $x. These estimators
provide good results in practice as we will see in the simulation section.

Nevertheless the estimation of A* could lose conservative properties when m is not large enough, k
is large and the extreme eigenvalues of Wx are far from 1. This problem is partially solved by using
a bounded estimation of My x and Msy. This second estimator is provided in the second part of

Theorem [.4.1]

1 z kx+1( ) +2kx <;\E k -|r1>2 1
Mawy + Op () Z Mywy + Op < > ;
m (m X)M Six (kx) + 2]{:)()\2 Jx+1 m

1 Ditky 11 < Sy z) + 2ky (AEY k +1>2 1
MQ,WY + Op — P MQ,WY + Op 53 |
m (m —ky)M, ¢ (ky) + 2ky Ag 0o m

Using the previous notation, we present the theorems of this section:

Theorem 4.4.1.
Using the notation of Section and assuming ¢ is an increasing function on the support of the
spectrum, the following holds.

1. If the values ;\ixi fori=kx,kx +1,...,k are finite (k > kx ),

< 25 o) - 35 (i) <on(5)
i=1 X iskx+1

In particular if p € R is outside the spectrum support, for si, s > 0,

~ S1

m AWy i
Ms1,32,Wx (P) = % Z; (f;;/))sg + Op (1/m) = Ms1,527f3x (p) + Op (1/m) .
1= - X,0

More precisely

kx 3 py 1@ (S‘i)x,i)

m(m — kx)
-3 00

1 m
=1 i=kx+1

- 2k (S\WXJ) - Zi‘v:kXJrl ¢ <5\§A3x7i) N kx Z?;kx+1 ¢ (5‘2)”) ‘

X

m m(m — kx)

2

2. The estimator can be improved when ¢(x) = x* using another estimator. We assume that the
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variance of the entries of the data is 0% and o? — M, Sx = Op (ﬁ), then

U Dkt (Xix,i(kX))Q +2kx (Xix,kzxﬂ)?

11 . 2
- Mvyi) — A
aZm 2( X ) (m —kx)M, ¢ +2kx)s ;4

72)(

_ 2k (S\WXJ)Z - Zf:kx—s—l (j‘ix,i)Q — 2kx (A2x7kx+1)2

= 2

(Z;nkx+1 <5‘ix,i) 2) '

2 .
mo Ml,Ex

m

+

i . .
Dichn+1 M T 2kxAsy ko — (RH1)M, 5
m

, -
(Ml,ix_a +

Remark 4.4.1.1.

1. The first inequality shows that the error of the intuitive estimator is of order 1/m.

Moreover, we always underestimate the true value and this underestimation can lead
to a non-conservative test. Nevertheless, asymptotically, this estimation is enough and
simulations show very good performance with reasonably large m.

. We propose the second estimator to improve the conservative properties of the first one.
The first estimator underestimates M x with an error of size

2k¢ (XWXJ) 1 @ (;\2x,vz> _ K (XWX’I)Q ~Yiin (Xﬁxﬂy
m m .

This estimator has also an error of order 1/m and tends to bound Ms x. However,

assuming j‘ix hx 1 close to 5\WX,1, the terms that contribute to the underestimation
are

. . 2
2kxAg, kyi1 o (k—kx) </\WX,1) |

m o’m

~

2
The error is of order 1/m, but the numerator is smaller than & <)\2x kx +1> .

. We do not treat the case kx > k because,

o If kx < k, the estimators are O, (1/m) when the missing perturbations are small.
Moreover, underestimation of k leads to overestimation of Moy

o If kx > k, we tend to underestimate Ms and the procedure loses the property of

conservativeness.

Before concluding that choosing kx < k is better, we should remember that this scenario
creates errors on the statistics used for the Main Theorem [3.1.11 A better answer could
be:

Choose kx < k to estimate the spectrum and kx > k for the rest of the
procedure.

Of course all this discussion can be neglected when m is large enough.

55

X) +0yp (1/m?) .
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(Proof page [211])

Simulations: In this paragraph we investigate the consequences of Theorem [4.4.1| on the Main
Theorem All the simulations are on page

We recall that Theorem [4.4.1] proposed two estimators, the intuitive estimator and the corrected one
which improves the properties of conservativeness.

e The main conclusion of the simulations is the better performance of the intuitive estimator when
m is sufficiently large. This does not contradict the theorem that says that both estimators
commit an error of order 1/m and the corrected one tends to overestimate M x.

e The simulations directly compare the estimators in the estimation of the residual spikes for
known and unknown k. This leads to the second main conclusion. Although we recommend
underestimation of ky and kx to favour conservativeness, we find in simulation that neither a
small overestimation nor a small underestimation substantially affect the test.

e Finally we see that asymptotically both estimators provide good results, even though for small
m, large k, and nx,ny >> m, the intuitive estimator tends to underestimate the residual spike.

4.4.2 Standardisation

Raw data X and Y are not centred and scaled. In order to use our procedure we need to standardise
our data. The aim of this section is to argue that some standardisations can be applied without
perturbing the procedure.

In this section we suppose k as known and defined some colour code and operators for the data
X € Rmxne,

1
X) = X, €R,
w(X) — ; J €
He (X) = (N (Xl,lznx) 7///(X2,1:nx) 7---7///(Xm,1:nx)) S Rm)
M (X) = (M (Xltm,l) s (Xlrm,2) yeey M (Xlrm,nx)) € R"™X,
1
X) = [ X2 R
U( ) mnx ZZJ: %,] € )
Oc¢ (X) — (U (Xl,l:nx) 7U(X2,1:1’Lx) 7"')U(Xm,1:nx)) S Rm;
Or (X) = (U (Xlzm,l) y O (Xlzm,Z) y ey O (Xlzm,nx)) S RTLX’
Pl (X) = UimkstmMNettim 1my Vimx.1mx Where we use the svd X = UAV™.

In this section, we use red, as in X, to denote the raw data, and blue as in X, the processed data
ready for our procedure. The other colours allow us to distinguish the data as it moves through the
steps of the standardisation process.

The different procedures of the standardisation processes are as follows.

Centring the column vectors:

We can subtract from column the column average in order to simplify the computation of covariance
matrix estimator.

1
X =X — (e(X), pe(X) oy (X)) = X — —11'X € R™*"X,
nx

Y=Y— (MC(Y)ta MC(Y)ta e MC(Y)t) € R™M,
i]x = XXt/nX and iy = YYt/ny.
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Justification: Assume
X = P*X 4 Mor X ; = P/*X.; + i,

where M = (fi, fi, ..., i) is a matrix of size m x nx and X is invariant by rotation.
Then, the matrix ¥x is invariant by rotation because

X, = X pel(X)
(X = 1) = (pe(X) — /i)

1 &

= (APX) - =Y (X, i)

n
X =1

1 &
1/2 1/2
- (Pk/ X) -3 %
nx 4
7=1
Moreover,

1 1/2
X =X (Inx - nX11f>

12 1 . 1/2
= PPX(1,, - —11 .
nx

The right perturbation does not affect the global spectrum and the spike of P.X except by adding
a null eigenvalue.

Adaptation of the method: We cannot directly apply the Main Theorem Indeed the
spectrum of the matrix X is not standardised. This generalisation is not proposed because we can
just replace M, x and My by

t t
where 02 = E |Trace (XX ) | = E | Trace [ XX }
nx ny

This value can be estimated by Theorem [4.4.1] assuming ox # oy or ox # oy.
In the first case we recommend to use

ox = Ml,i]x’
oy — Ml,i:Y .
In the second scenario we could choose,

nXMl,ix + nYMl,iJY

oxXyy =
’ nx +ny

We recall that a second estimator is given by Theorem and the choice of k should be an
underestimate of the correct value to protect conservatism.

Centring and rescaling the column vectors:
Instead of rescaling the matrices, the above procedure rescales the spectra when using the Main
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Theorem. We could also rescale the data.

=X- (MC(X)tMUC(X)t? "'7#C(X)t) € RanX,
X = X/o (P H(X)),
Sx = XX /nx.

Justification: It is clear that if the procedure works for X and Y, then it also works asymptot-
ically for X and Y despite the fact that a small mistake on k creates an error of order 1/m.

Adaptation of the method: In this case we can directly apply the Main Theorem by replacing
M, x and Mgy by their estimators introduced in Theorem [{.4.T}

When m is not large enough and in case of uncertainty on k, we recommend to overestimate it a
little in o (Pk_ Y )) and to underestimate it when using Theorem m

Centring and rescaling of Subgroups column vectors:

If the nx samples are divided in 72y subgroups, then we could standardise each subgroup separately.
We use the notation X, to look at the data matrix created by the subgroup s.

Gs — XGs - (MC(XG’S)t7MC(XGs)t> "'MUC(XGs)t) € Rmxnx’
XGs = Gs/a (P]g_l( Ge))

Then, we could also rescale the whole matrix by the estimated standard error.

Adaptation of the method: In this case we can directly apply the Main Theorem by replacing
My x and My by their estimators introduced in Theorem
When £ is unknown we should overestimate it a little in o (Pk_ ( Gs)) and underestimate it when

using Theorem

Remark 4.4.1.
The procedure does not work for all partitions of ny and ny in subgroups. We are only
able to treat the data if at least one of the following conditions holds:

e all the sizes of the subgroups are of same size,
e the subgroups do not create isolated temporal spikes presented in Section

In other cases, the subgroups could create temporal spikes that we can not distinguish
from the spatial spikes.

Centring and rescaling the row and the column vectors:

Some temporal structure interfering with the study could be minimised by a stronger standardisa-
tion. However, this kind of processing creates weaker, but not necessarily less useful tests.

=X- (NC(X)tﬁ MC(X)t> R NC(X)t) € RanX7

e (X)

X=X- MT(. € R™XmX,

Mr(. )
X =X/o (P! (X)).



4.4. APPLICATION OF THE MODEL 59

Justification: Assume
X = PPX + M+ Mor X.; = P*X i + ji+ s,

where M = (ji, i, ..., i) and M* = (77,7, ...,7)" are matrices of size m x nx and X is invariant by

rotation. Therefore, i = (115 112 «oey o) a0 77 = (01,72, «vy Ny, )-
The matrix Xx is invariant by rotation because

i = }(Z — /,LC(X)t

= (X i H— nzim) - (MC(X) —f— nzim)
1 &
= (Pkl/ZX ,z) - (X-,j ﬁ_ ni1m>
ny <
7j=1
/ L ™ (pl/
1/2 1/2 g
= (Pk X,z) —W;<Pk X+ nilm —nil )
/ L ™ (pl/
1/2 1/2 _2 g

where 1,, = (1,1,...,1) € R™.

Then,
Xei = Xei— pr(X);
1 &
= (Pkl/ZXﬂ) - — (P,CI/QX.,]-) —nN+mn
t nx 4
7j=1
m ) 1 m nx /
1/2 1/2 _
_Z (Pk X’Z)h+m7mgzz (P’“ X’j)h+(n_ni)
h=1 h=1j=1
1/2 1 & 1/2 1/2 1 x & 1/2
o (Pk Xﬂ)t_a (Pk X’J) _Z(Pk X"i)h+mnxzz B, X"j)h
j=1 h=1 h=1 j=1
Therefore
1 1/2 1 1/2
X = <Im—11t> X<Inx —11t>

m nx
1 1/2 1 1/2

- <1m - 11t> P*x <1nX - 11t>
m nx
1/2

= HY*P/’XH}/?2.

The temporal perturbation H,, just adds a null eigenvalue; however, the spatial perturbation is
projected on a subspace without the direction 1 by H,,. We define

P, = HY?P.H}/?
such that
Sx = HY?PY’XH, X'P/?HL?
= OAU'XH, X'UAO!
— OAO'OU'XH,  X'UO'OAO"
— PPOU'XH, X'UO'E)?
~ PY*XH, X'P?
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where the last line is obtained by invariance under orthogonal transformation and H,ln/ 2Pk1/ 2 =
OAU! is a singular value decomposition.

Remark 4.4.2.
If X and Y are not invariant by rotation, this transformation is still allowed. Because

Sx = PY?ouxH,, XU0'P? = B*XH, X' P/
Sy = PPoutyH,,Y'WO'B)? = B/*YH,, Y'B?

the distributions of X and X are different but X has still same distribution as Y.

Therefore,

X = B'/PXHY? =P HY*XHY?
Y = B\AYH!?=PPH Y H?

where Py, is a finite perturbation with a null eigenvalue and Py, replaces the null eigenvalue of Py
by 1.

The resulting matrices are ready for our procedure. We still look at a finite spatial perturbation after
adding two null eigenvalues. The spectra bulk of the matrices were asymptotically unaffected by
the standardisation process. However, the eigenvectors of the perturbation are strongly modified by
the projection cancelling the direction 1. Therefore, if the difference is exclusively in this direction,
the procedure will not detect it.

Adaptation of the method: As for the previous processes, we can use Theorem[£.4.1]to estimate
the parameters of the Main Theorem The choice of k has an impact when m is not large
enough and was discussed previously.

Centring and rescaling of subgroups row and column vectors:

Some temporal structure could be divided in nnx groups. In this case we would like to standardise
each subgroup separately. We use the notation X, to look at the data matrix created by the
group S.

Gs — XGS - (MC(XGS)tHuC(XGs)ta "'HuC(XGs)t) € Rmxnx’

pr(Xa,)

Xa, = Xa, - |00 | emmen,

s

/‘r( : Gs)
Xa, = Xa, /o (P! (Xa,)) -

The problem of data pre-processing is created by the effect that the preprocessing has on the distri-
bution of the data. Can we still justify our model ?

Through the description of all the processes, we see that if the data can be expressed as a trans-
formation of X invariant by rotation, then we can invert the transformation to keep the invariance
properties.

More generally if we can express the data as a transformation of X such that the procedure is justified
for X, then the procedure is valid for the pre-processed data applying the inverse of the transformation.

Simulations: We comment on the effect of the pre-processing on page
The five processes introduced in Section provide good results when applying them to appropriate
data. If the data are adapted for the procedure, it seems that we can apply the processing and build
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conservative tests.

However, the two last standardisations, which center the rows, loose all power in the direction 1
by applying a projection. We think that this loss a power is not important for two reasons. First,
differences in this direction are directly found by other methods. Second, it is important in addition
to cancel temporal structures as well as possible in order to decrease large temporal perturbations.

4.4.3 Temporal perturbation

The strongest point of our method is its ability to deal with temporal structures. As shown previously,
temporal structures do not affect our result as long as we are able to distinguish temporal spikes from
spatial spikes. In practice, this is typically not the case! Temporal and spatial perturbations are
merged in the spectrum and treating a temporal spike as a spatial spike leads to mistakes. In this
section we call X, the data before preprocessing, X the transformed data suitable for our procedure
and X the data without any finite perturbations.

On the one hand, dealing with compact temporal structures is our strength. These structures do not
create isolated estimated eigenvalues. On the other hand finite isolated temporal perturbations are
our weakest point as we explain below. We want to test

Ho . PX :Py,
H, : Px # Py.

This null hypothesis is wrong if the data create temporal finite perturbations. It is also the case even
if these perturbations are the same in the two groups. The correct hypotheses would be,

X = PY/?XPY2,
Y = R/*YP);
such that X and Y have no isolated spike and we test
Ho: Px = Py and Px1 =1,,, Py = I,
Hi: Px # Py or Pxr #1,, or Pyr #1,,.
Therefore, Hy could be rejected because of temporal perturbations.

In this section we proposed a heuristic method to filter temporal perturbations. In this context, the
data under Hy are such that

_ pl/2 1/2
X = pY/ XPy 1,

and create k either temporal or spatial spikes.
In order to treat the temporal perturbation we proposed the following algorithm based on the singular
value decomposition.

Algorithm:
1. Fori=1,2,...,nx, compute R; such that
Xim,—i = Ri\iVi.

Define
X =(Xq,Xg, ..., Xy ),

where Xl' = R;;Xl:m,i-

2. Compute
X — qu)—l/2’
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where
k
v = (m—k) (Inx +> (A(W_p) = 1)u(11'k)u(ll'k)t> :
i=1
W_, = X§6+1:m,1:nxxk+13m»13nx € RMX Xnx
_ p— :
3. Finally we call X the temporal filtered matrix,
Ximi = BiXqm .
Justification:

The following algorithm is heuristic. It works for data X that are invariant under rotations or are
such that the singular values allow for spatial-temporal separability. We have not formally proved
it, but we present a convincing heuristic argument for this case.

If the temporal and spatial perturbations correspond to different eigenvalues, then the rotation, R;
in the first part of the algorithm sends all the spatial perturbations on e; to e but does not affect
the temporal perturbation.

The reason for this temporal robustness to the rotation R; is the lack of precision of the spatial
eigenvectors corresponding to temporal spikes. More precisely, let A\; be an eigenvalue corresponding
to a temporal perturbation in direction v; € R™X and denote by @; € R™ a spatial noisy estimated
eigenvector. Because )\; is mainly temporal, the estimation of the same perturbation without the
ith column (nx — 1 samples) provides an other noisy Ui with (4—; 4, Ut) tending to O.

Luckily for us this noisy estimator allows us to invert the temporal perturbation without touching
the spatial perturbation. Indeed in the second step we estimate the temporal perturbation, 1]1, with
only m — k rows and this estimation tends to the correct perturbation.

Therefore, we do not affect the spatial perturbation and neutralise to some degree the temporal
perturbation.

The question is whether we neutralize enough of the temporal perturbation ?

By simulation, the answer seems to be yes if the temporal perturbation is not too large.

Simulations:

The simulations on page [8.7] indicate the following:

e [f there is no temporal perturbation, then the algorithm does not affect the existing spikes.
The procedure creates k temporal spikes that do not change the asymptotic behaviour of the
residual spike.

e Assuming a data matrix X that is invariant by rotation and a finite temporal perturbation,
then the algorithm deletes the temporal spikes without touching the spatial perturbation.

e Intuitively we would expect worse simulations for temporal perturbations of order larger than
o(m). However our simulations still show good conservative properties in this case.

Remark 4.4.3.

Another temporal filtered procedure consists of rescaling each column by its variance. This
process will delete canonical temporal perturbations. We will not pursue this procedure
any further in this thesis.

Summary:

In conclusion, if the data X and Y are suspected to have temporal perturbations, we should use
the algorithm of this section. Alternatively, the user can simply apply the usual procedure and
check in the end if the residual eigenvalue is due to a temporal eigenvector. Therefore, instead of
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looking at the eigenstructure of

~
A

2X1/22Y2;(1/2,

we look at the eigenstructure of

m k

5—1/2 PO ) s

EX/ < E Ay, 0% ; + E (Oy,; — 1)UY,W§/,1‘) ;
=1

i=k+1

where 9y; is the it" singular vector of Y. If the square of extreme residual eigenvalue of the
previous matrix is too large compared to the theory, we can then investigate its corresponding
temporal eigenvector.

4.4.4 The problem of selecting the number of components

The method of this section is completely heuristic and could probably be improved. In the section of
the Main Theorem we showed by simulation that an error on k does not lead to a less conservative
test. If we add too many perturbation we build a very conservative test and on the other hand if we
miss some small perturbations we still build a conservative test when m is large.

How to choose k7

We recall that we look at

Amax (2;(121/) and Amin (i;(liY) )

where Sy and Yy are the filtered estimators of Sy and 3y. We reject if the value is outside an
interval.
The estimated covariance matrices are assumed to be finite perturbations of Wx and Wy,

Sx = PY*WxPY? and Sy = Py Wy Py,

where Py and Py are finite perturbations of order kx and ky respectively.
The method of this section selects the numbers kx and ky respecting the three following points:

e The algorithm tends to choose the correct kx and ky asymptotically (if easily detectable).
e The procedure is conservative.

e If a perturbation is only detectable in the group X, the procedure must not reject this pertur-
bation.

We propose the following method. We define the interval,

I(km kya Six,sz’ Siyyfkyﬂ B)

= [Quantileﬁ (Amin,max(kx Jky ),S

) Quantﬂel—ﬁ ()‘max,max(kx,k’y),SA Siy 7ky)

EX,*kz’Siy,*ky> Ex.—kx’

where Xmin,max(k’x,ky), Se o Se . is the random residual spike defined in the Main Theorem |3.1.1
X7 rX Y —FY
when the perturbation is of order k = max(kx, ky). The estimated spectra are Six kx and Siy

—ky
the spectra of respectively X x and Yy without respectively the kx, ky largest eigenvalues.

The idea of the algorithm is the following :
The matrices Y x and Xy have some biased perturbations. It seems obvious that if an unbiased ob-
served eigenvalue falls inside the interval, I(kx, ky, SEX Chx? Siy ey B) for [ close to 1, this value
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will not create an interesting residual spike and can be neglected. Indeed, it will create a residual
spike much smaller than our threshold.

We look at different values of kx and ky in K chosen by the user.

1. For kx,ky € K, define Six kx and Siy ky the estimated spectra of £y and Xy without
respectively the kx and the ky largest eigenvalues.

2. Compute two tables with entries (kx, ky) equal to
e 1 if the k%}l unbiased eigenvalue of f]y, éy}ky is larger than 1 (k:X, ky, Six Ckyo Siy _ky>,
e 0 else,
and the second

e 1 if the k_t)? unbiased eigenvalues of f)x is such that 1/9AX7kX is smaller than
I (kX’ by, Six,—kx’ Sﬁ)}a—ky)’

e 0 else.

For example

ky kx
kix 112131415 oy 112131415
1 0/0|0]0]0 1 0/0]0]01]0
2 111/0(0]0 2 1{1]0(0|0
3 11111010 3 11111010
4 11117010 4 1111710
5 11117010 5 1111710
Selection of ky Selection of kx

3. Finally we choose the largest kx such that the k}? column contains a 1 in the selection table of
kx. The second table chooses ky similarly. In the example, we set kx = 4 and ky = 3.

Remark 4.4.4.
When a perturbation 6 is detectable only in X but not in Y, the test should not reject
the equality. Indeed the worst possible case occurs when ny tends to infinity and the k"
perturbation 6 is not detectable in Y. In this case, if we want to avoid detecting a difference
in 0, we need

0, << —1.

1+ M27y \/(1 -+ MQ,Y)2
2 + 4

Assuming Wishart distributions for Wx and Wy then the spectra tend to Marcenko-Pastur
distributions and May = 1+ cy. In this case the property is straightforward:

e 0, is not detectable in Y because 6, < 1+ /¢y by

2
e 0 is detectable as a difference if 6 > 1 + %Y +1\/ey + CTY > 14+ /ey > 0.

Therefore, the algorithm satisfies the condition in this case.
However, we were not able to prove this property for general spectra. Therefore, when Z—;{
is large, we recommend checking if the unbiased eigenvalues are detectable in both groups.

The following could be applied:
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Suppose that nx is larger than ny, we test if 6 x,k could have been detected in Y. We solve

~

11 i Ay i
2 ~ s,

Oxr—1 M7 ky i—ky 41 PY i

to find py. Then, we could apply a test to see whether py is strictly larger than 5\2
just look whether

viky+1 OF

PY — Agy,ky—‘rl >> /\iy,kyﬂ - /\f:y,ky+27

where the difference should be important in practice.
When the difference does not seem significant enough, we should just neglect this perturba-
tion.

4.4.5 Other applications

The method developed in this thesis can also be used in different situations.

Estimation of the size of the second group

65

Suppose a study has already collected nx data on healthy patients. The analysis seems to show a
perturbation of order k. The researchers need to estimate a minimum number ny < ny of patients

for the second group. The Main result can be used to estimate this number.

We know the distribution of the residual spike under Hg. Moreover, if an additional perturbation

(n— l)unuf7 orthogonal to the other is applied to the group Y, the reader can show that

ENp H; 2
)\max (2X12Y> Af\s}y n,

1. First we choose some group sizes ny that we would like to test. For example n, = 100, 300, 800.

2. We need to estimate the spectrum of Y for different values ny by the spectrum of X[1 : m,1: ny]|

without the k largest eigenvalues.

3. We use the Main Theorem to estimate the distribution of the residual spikes under Hy. The
spectrum of X is known, the spectrum of Y is replaced by its estimator and k is replaced by

kE+1.

4. For ny and a fixed «a, we can plot the power in function of 7,

Ba(n) = P, {ﬁ = q)\max,k+1(1 - a)} )

where gAmax k+1(1 — @) is the (1 — a)—quantile of the largest residual spike assuming a pertur-

bation of order k + 1. This value is easily computed by the Main Theorem |3.1.1
This allows us to choose ny such that interesting 1 can be detected with good probability.

Remark 4.4.5.
This heuristic way to estimate the power can be criticised for many reasons such as for
example:

e The model is conservative and leads to an overestimation of ny,

e The estimation is slow because we compute the eigenvalues of huge matrices for each
size ny.
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Estimation of the number of principal components

The Main Theorem [3.1.1] can help to solve the famous problem of selecting the number of principal
components.
In this case, we have only one matrix Y = Pk1 /2Y'. The idea of the selection criterion is to assume

that the 7" component with unbiased eigenvalues 0; is interesting if

é > q)‘max,i(l - Oz),

@Amax,i(1 — ) is the (1 — o)—quantile of the largest residual spike assuming perturbation of order i
and Sx is a spectrum of 1.

The distribution of this largest eigenvalues is computed in the remark of the Main Theorem or
by assuming M x =1 for s = 1,2, 3, 4.

This method considers that 6; creates a new principal component if, applying our procedure to
Y = Pil/QY and X, = Pil_/fXOO, a sample of size ny — oo with P, — P;_1 = (6; — 1)u;ul, would detect
the difference between perturbations.

Of course if the st component with s > r is accepted as principal component, then the 7" is also
accepted.

Remark 4.4.6.

1. The same idea could be used to compute

P { éz > )\max <P;_11EJKP¢71>

i),

where P;_1 is the perturbation containing the ¢ — 1 largest perturbations of Pj.

2. We let the user decide how many component have to be tested. But we recall that our
test only allows a finite number of principal components and we recommend k < 15.

3. We could imagine a less restrictive criterion that would compare each principal compo-
nent to the residual spike created by a perturbation of order 1. Indeed in our criteria,
the k™ component is significant if it is larger than the residual spike induced by per-
turbation of order k.

Testing a particular covariance matrix

Suppose that the data X € R™*™ have centred normal entries with covariance ¥. We divide the

21,1 21,2> with 2171 c lexml,

columns of X into two groups of size m; and mo and write X = <
do1 Y22

2272 e Rm2xm2 g5y 21,2 = 2571 c Rmixms,
The books of Muirhead| [2005], Anderson| [2003] and Mardia et al.| [1979] proposed a test for

Hy : %12 =0.

Using the ratio of the likelihood, the classical theory proposed to use the test statistic,

E'ml—‘,—I:m,ml—l—lmz - 2m1+1:m,1:m1 Zjlz'rnl,l:'nu Elzmhml—&-l:m
T =

~

Em1+1:m,m1+1:m
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Using the independence of

~ A

Wl =N (Em1+1:m,m1+1:m - Zm1+1:m,1:m1 El:ml,l;ml El:mhmlJrl:m) ~ Wishart (22,2’ df —n—1-— ml)
and
Wy =n <2m1+1:m,1:m1 Zl:m1,1:m121:m17m1+1:m> ~ Wishart (22727 df = ml) 7

this random variable is a Wilks.
This statistic is looking at the difference between two independent Wishart random matrices, W7 and

Wy. We easily see that
1

As is usual for a test from the classical theory, this test is weak when the differences are finite
perturbations and affects only a few eigenvalues.

We propose to directly test equality between W7 and W5 using the Main Theorem On one hand,
this new test will be more powerful in some situations. On the other hand, some investigations of the

robustness are still necessary for non normal entries.
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Chapter 5

Theorems

5.1 Introduction
In this chapter, we introduce the main theorems of this thesis :
e The convergence of the eigenvalues, the angle and the double angle.

e The joint distribution of the asymptotic eigenvalues and angles for perturbation of order 1.

Invariant Eigenvalue Theorem.

Invariant Angle Theorem.

Invariant Dot Product Theorem.

Invariant Component Theorem.
e The Double Invariant Angle Theorem. (Corollary)

The name “invariant” comes from invariant statistics as functions of k, the order of the perturbation.

Definition 5.1.1.

Suppose W is a random matrix. Moreover, define P; = I,,+(6;—1)uju} and P, = Im+2f:1(6’i—1)uiu§
to be perturbations of orders 1 and k respectively. We say that a statistic T (W,,, P1) is invariant
with respect to k, if T' (W, Py) is such that

€m e
T m;P :T maP ms h ’ i ’
(Wins Py) = T (Win, 1) + €, where m“(EmW,Pl)J Var<T<W,P1>>> oY

Before introducing the theorems of this thesis, we need to clarify the notation.

Notation 5.1.1.
Although we use a precise notation to enunciate the theorems, the proofs often use a simpler notation
when no confusion is possible. This difference is always specified at the beginning of the proofs.

e If W is a symmetric random matrix, we denote by </\W’i, aW,,) its i*? eigenvalues and eigenvec-

Ran

tors. If a random matrix X € is not symmetric, Ax ; and @x ; denote the ith eigenvalues

and eigenvectors of 1 XX,

e A finite perturbation of order k is denoted by Py = I, + Ele((% — 1)wut. Similarly, a pertur-
bation in the direction u; is denoted by P; = I, + (6; — 1)u;ul.



70

CHAPTER 5. THEOREMS

e We denote by W € R™*™ an invariant by rotation random matrix as defined in Assumption
Moreover, the estimated covariance matrix is 3 = Pk1 / 2I/VPk1 2,
When comparing two groups, we use Wx, Wy and )y X, Sy.

e When we consider only one group, )y P, = Pr1 / 2VVPT1 /% is the perturbation of order r of the matrix
W and:

ip, ; is its " eigenvector.

ip,;; is the j'" component of the i eigenvector.

j\pmi is it§ ith eigenvalue. If 61 > 6, > ... > 0,, then for ¢ = 1,2,...,r we use also the
notation fp, ; = )1 Pri- AWe call these eigenvalues the spikes. When r = k, we just use the
simpler notation 0; = 0p, ;.

a%ﬁ = > =1 (Ui u;)? is called the general angle.

With this notation, we have 3= ﬁ]pk = Pkl/2WPk1/2.

e When we look at two groups X and Y, we use a notation similar to the above. The perturbation
of order r of the matrices Wx and Wy are ¥x p. = P,,UQWXP?}/2 and 2}/7137, = PT1/2WyPrl/2
respectively. Then, we define for the group X x p, (and similarly for Xy p,):

ﬂgx b is its i*" eigenvector.
o
ﬂix Y is the j*™ component of the i eigenvector.
,Pr ot
/\ix o is its it® eigenvalue. If 61 > 62 > ... > 0,., then for i = 1,2, ..., we use the notation
s ro
eix,p,«,z = )‘Ex y . When r = k, we just use the simpler notation 9X1 = HiX,Pk p
/\2 ~ 2
i = e <U2X o)
2
A9 _ r o o . . . _
OXyp.i= ijl <u2X o uEy,pr,j> is the double angle and, when no confusion is pos

sible, we use the simpler notation d%r ;- When this simpler notation is used, it is stated

explicitly.

e The theorems can assume a sign convention

up,i; >0, fors=1,2,...,kand it =1,2,...,s,

as in Theorem or On the other hand, some theorems assume the convention

Up,is >0, fors=1,2,....,kand 1 =1,2,...,s,

as in Theorem B.11.1]

Other theorems are not affected by this convention and do not specify it precisely. Nevertheless,
the convention will be given in the proofs when confusion is possible.

e We define the function My, 5, x(px), Ms, s, v (py) and My, s, (px, py) as

1 & i
My, 50 x(px) = 72 =

N 27
= (PX - )\Wx,z‘)

- Nty
MS17827Y(PY) = Z L - N2
=1 <PY - >‘Wy, >
MSl,Sz,X (,OX) + MSl,SQ,Y(pY)

MSLSQ (pX7PY) = 5
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In particular, when sy = 0, we use My, x = My, o, x. When we only study one group, we use the
simpler notation Mj, s,(p) when no confusion is possible.

e We use three transforms:

— T} is used for the T-transform defined in Definition using fg, but if no confusion is
possible we call it T

Awi  sa . . . . .
— Twau(z) = >0, z—;VvaZ <UW,i;u>2 is the transform in direction u using the random matrix
w. ’

A

Ae . Ao s

— T —15m IEx — 1 5m Wi ;

Ty (2) = 5 2 itpi v and Tywy (2) = - > ity P v are the estimated transforms
Xt 5

using Sx and W respectively.

e Finally, we define some convenient notations for the eigenvectors. Assuming @; the i*" eigenvector
of size m with j'! entry 4; ;, then
= e = (G, G gy ooey Tm ),
= Uprisj = (ur,j7 Upr41,59 s us,j)a

~ t ~
- Z ug:r,s:t = Z;:q Zj=5 u%’j'

Assumptions

In this section, we assume two sets of data, Xy, ..., X,,, and Yi,...,Y,, satisfying Assumption

This means that without loss of generality the perturbations are canonical. We build Sx and By,
. k.
YXx =1, + Z(QX’i - 1)12)(’1"&&7@-,
i=1

N ko
Sy =Im+ Y (Oyi — Dy,
i=1

where
2 1
Ox; = 14+ ——F7—
Ty <9x,i>

m
= 1 + — s
Zm )‘iX,i
i=k+1 Ixihsy

K

where the S‘EX , are the eigenvalues of Yx.
The aim of all the following theorems is to understand the joint behaviour of all the unbiased eigen-

values, 0 x,i, and all the possible dot products between the eigenvectors.
This task is difficult and we must assume detectable perturbations of order k satisfying Assumption

B2.7A4),
6 #6; il i # j,
Fori=1,2, ...k, 0; = pie with 6; — o0,
Fori=Fki+1,k1 +2,....k, 6; are finite.
These assumptions allow us to prove the theorems, although they are not necessary for all the theorems.

First, assumption (0; # 6;) is necessary for the second moment results of many theorems, but seems
to be useless in the Main Theorem B.1.1]
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Then, the finite proportionality p; does not seem necessary even though many arguments in all the
proofs use the fact that p; is fixed when 6; is large.

Finally, a detectable perturbation is just a perturbation that we can see in the spectrum of our data.
More precisely,

Definition 5.1.2.

1. We assume that a perturbation P = I,, + (§ — 1)uu’ is detectable in 3 = P2 P2 if the
perturbation creates a new largest isolated eigenvalue, 6.

2. We say that a finite perturbation of order k is detectable if it creates k largest eigenvalues well
separated from the spectrum of W.

In the following theorems, we always assume that the perturbations are detectable. Nevertheless, with
a small amount of additional calculation, we could extend all the results to the existence of a finite
number of non-detectable perturbations.

5.2 Convergence of eigenvalue, angle and double angle

In this section, we study the convergence of the random variable Ox and the angle between the
eigenvectors. The parts 2.a and 2.b are proven in |Benaych-Georges and Rao| [2009] which also provides
the main idea of the theorem. We only proves convergence results for perturbations of order k = 1,
P = Py, although we express eigenvectors and eigenvalues of a matrix PY/2W P/2 as a function of the
eigenstructure of W in general.

Theorem 5.2.1.
In this theorem, P =1, + (0 — 1)uu® is a finite perturbation of order 1.

1. Suppose W is a symmetric matriz with eigenvalues 5\W,i > 0 and eigenvectors Uy, for i =
1,2,...,m (without any additional assumptions on the eigenstructure).
Fori=1,2,...,m, we define up; and \p; such that

W Piip; = Apjiip;,
and the usual ip; such that if f)p = P1/2WP1/2, then
Spip; = PY2WPY20p; = Apiiip,.
e The eigenvalues S\RS are such that for s =1,2,...,m,

~ Wiis == .
i=1 Aip,s = Awi Op — 1

e The eigenvectors tup, are such that

5 2
AW.i N N
(3 52— (v ) (s )

<aP,S”U>2 = 32 9
Zi (A (i @)
In particular if v = u,
- 1
(ips, u>2 = -

22

00 (St g )
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Moreover,

~ Pl/Z'&P,s
Uups = .
\/1 + (0 —1) (apg, u)?

Therefore, for u and v such that (v,u) =0,

(ips,u)> = 0<ﬁp7s,u>2 S 0
> 1+ (60— 1) (aps,u)? (0 — 1)2Ap T, (Aps)
~ 2
N Upg, U
<uP,S7U>2 = < b ) 2

1+ (9 — 1) <71p75,u>

A a
where Ty, (2) = ZZ’; Z_K\VW (Uw, u>2.

2. Suppose that Wx, Wy and P = Py = Py satisfy Assumption [2.2.1. Moreover, suppose that 0
1s large enough to create detectable spikes, HX and Hy, i the matrices EX ]31/2WX]31/2 and
Sy = PY2Wy PY2. Then,

a) éx,éy P, 0,

7,1 —+00

b) <aXa ’LL> — ax, <’lALy,U> — Qy L 07

n,M—>00
¢) (ux,uy) —axay N 0,
,1M—00
where
A P
QX — PX,
n,Mm—00
QX - 1 + ~ ~ - 1 + mn 5\ )
T (6’ ) mo My
sx (X Zi:k-‘rl éx—/{;x,i
0
o = - :
(0 — 1)2px Ty, (px)
0
of = -

(0 — 1)2py T}y, (py)

; and )\i%i are the eigenvalues of respectively Sx and Dy

X

Remark 5.2.1.1.
If the spectra of Wx and Wy tend fast enough to the Marcenko-Pastur distribution with
parameter cx and cy respectively, then

1 - @i

2
Ay = —————
X 1_|_9¢_7X17

éX is such that éx = éX (1 + = X ) ,and

Ox —1
. A c
Jm o =0 (14575 ).

(Proof page [103)
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The second part of Theorem 2 is very surprising! We already knew that the eigenvectors are not
consistent. We show in the proof that the difference between ux and 4y is larger than the difference
between 4y and u or uy and wu.

The consequences of this Theorem are simple:

We can not conclude that two estimated eigenvectors are different even if they are
asymptotically different! There is always a bias !

5.3 Asymptotic distribution of the eigenvalue and the angle

Suppose that you observe a perturbation of order k = 1 applied to two random matrices X € R x R"X
and Y € R™ x R™ such that Assumption is respected. We investigate the distribution of éx7

éy, <ﬁx,u>2 and (fbx,ﬂy>2.

Theorem 5.3.1.
Suppose Wx and Wy satisfy with P = Px = Py, a detectable perturbation of order k = 1.
Moreover, we assume that the spectra of of Wx and Wy are known. We defined

Yx = PYVPWxP'?
2Y — P1/2WYP1/2,
P = I,+(0—1udt,

where u 1s fized and the eigenvalues of Wx and Wy are S\WX,Z' and S\WYﬂ: fori=1,2,...,m ,respectively.
We construct the unbiased estimators of 0,

m m

A~
~

1 1
Ox

1 1

AWy i AWy i

—=—  and éy
0x —1 m- = Ox — Awy,i

Oy —1 mei4 Oy — 5‘Wy,i

where Oy = 5‘53)(,1 and Oy = 5\2%1 are the largest eigenvalues of respectively Sx and By corresponding
to the eigenvectors ix = ﬂix,l and Gy = aiﬂ.

We can also construct these estimators using the m — 1 smaller eigenvalues of Sy and By instead of
)\WX’Z' (J/I’Ld AWYJ"

1. If\/% — 0, we define

_ 1 AWXJ _ 1 & )\f/Vx,i
MS,T,X = Ms,r,X(pX) = — § 3 5 MS,T,Y = Ms,r,Y(pY) = — E < s
m 4 r m T
where we assume

pX:E[éx}ﬁ-O(\/o%), py:E[éy}-i-O(\/o%).

and convergence rate of (Ox,0y) to (px,py) in O, (8/\/m),

2 0
Ox ~ N < 0 ) l UgvX 96,02, X + Op (77”)
<ﬁX7u>2 a%( "m 09,02, X 0327)( 0p (L) )

2 0

2 o

Ox 0 1 [ %ox S 09,a2,X P Vg’n

i 0 — 0 o o .

0Y ~N 2 ’ m 0,y g’aQ’Y + Op vm ’
XY 99,02,X 00,a2Y 942 xy 1
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where
0 1
(0 —1)2pxMiox’
e 1
*xy = (0 —1)*pxpyMioxMioy’
2 (M M)

0' =
X Mﬁl,X ,

o =

2 0 2 o)+ (2o 222 ) 21 x)
Op2.x = px (M2ax — Mi, x) + (2PX = = 1) Mo x — M7 x
((0— 1)PXM1,2,X)4 M2 x

My 3 x ) ( My X))
-2 2 e | M - ,
px ( px M2 x 23T Miax
20 (M M? +2M 3 x M.
1,1,X 2, XPX 1,3, XM22 XxPX
M12,1,XM§2,XP§((*1 +0)? 12X

06,02, X —

+M12,1,X(M1,2,X —2Mi 3. xpx) — My 2 x(M2ax + M2,3,XPX)>,

2 _ 2 4 2 4 2 2 2
0oz Xy = 02 xQy 052 yax +4ak y (1 —ax)(l —ax).

2. If % — oo (Assumption|2.2.4 (A1) ), then we can simplify the formulas. We define

R 1 &
M, x = — g AMyi and M.y = — E AWy i
m m“
=1 =1
Using this notation,

) 040, (1)
(1) = (o 2870, ()
1 202 (1 — My, x) 2 (2M3 x — M, x — M3 x) N (%)
m 2( ) : ’

2M3Z x — Mo x — Mg,X) 2 (4]\43}( — M3 x —AMy x M3 x + My x

Oy 6+ Op (1)
oy ~N 2 M. 6+1\2p(1) ’
— My x —Ms vy
(ix, dy)? L+ Q + O (9%)

262 (1 — M x) 0 2 (2Mz2‘x - Mz, x — Ms,x) °op (\/%)
0 202 (1 — Ma,y) 2 (2]%22’3, —Myy — Mg,y) + | op ( o ) ,
2 (2M22,X - My x — MS,X) 2 (QM;Y —Myy — M3’Y) 5

Ile

3 2 3 2
s=2 (4M2’X — M3 x —AMy x M3 x + ]VI41X) +2 (4M2’y — M3y —4May M3y + M41y) +4(My,y — 1)(Ma x —1).

Moreover, the asymptotic distributions of Ox and Ox are the same.

s, If % — d, a finite constant, then a mixture of the two first scenarios describes the first two
moments of the joint distribution.

The formula of the second moment is asymptotically the same as the variance formula when
% — 00.

The formula of the first moment is asymptotically the same as the expectation formula when
0

ﬁ—m.

4. The random wvariables can be expressed as functions of invariant unit random statistics of the
form:

m
U

pu
M5 x(p) = %@LWXJ,’@Q-
i=1 (,0 - >‘Wx,i>
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(Assuming a canonical perturbation leads to a simpler formula)

o Fxact distributions:

o 1 u ~
Ox ‘9 — = My x (9X> :
lix, e1) 0 1
X, €1 —35 =% -
(-1 Ox M2 x <9X>
Moreover,
(ix,ay) = (dx,e1)(y,e1)+ \/1 - <ﬁX7€1>2\/1 — (iy, 1)’ 2,

m
S axaivy = \/1- (ix,en)?1— (ay,e1)Z,
=2

7 ~ N<o,1>+0p <1>
m m

where Z is independent of (ix,e1), (iy,e1), éX and éy. In order to get the exact distribu-
tion, we should replace Z by Eﬁ_ll v;U; where v;v; are independent unit invariant random
vectors.

e Approximations:

(s ) - dr0x))
Ox = p+ +0 ()
M 2. x (p) "\m
= QMLX +Op (1)7
. " 9
Ox = 0+ (0—1)° <M1,1,X (p) — Ml,l,X(PX)) + Op (m> :

We provide three methods of estimation of the angle in order to estimate it for all 6.

(iix,e1)? = 0 1 <2M1,3,X(px) B 1> Mi1x(px) — g2
) (0 —1)2 \ pxMi2x(px) Miax(px)  px (Mi2.x(px))?

Mo x(px) — Mipx(px) ( 1 >
o 2 + Op >
px (Mi2x(px))

1 U U
= 1+ (1 — Ma x + 2Ms x (MLX - 1)>

1 U u 2 u 1 1
+ﬁ (1_2M2,X+3M2’X —2M37X> +Op <93> +Op (97’)’1)’

1 1w 2 v 1 1
= 1+-—--M —-M Mix —1 Op| = Op | -—
+9 0 27)(-0—9 2,X( 1,X >+ p(02> + p<0m>

Finally, the double angle is such that

I X . VM x —1/Myy — 1 1
(ix,ay) = (dx,e1)(dy,e1)+ 7 Z+0p Zym )

Remark 5.3.1.1.
If the spectra of Wx and Wy tend sufficiently fast to a Marcenko-Pastur distribution of
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parameter ¢ we have,

2¢2(0—1)6°

(= (0-1)*)(c+0-1)?

2¢°0 (¢ +(0(042)—2)c+(0—1)%)

(o) () 5 e
. 2 (6-1) ’ 2¢2(0-1)6°
(iix,uo) 4557 m T = (0-1)2)(c+0-1)2

(e=(0—1)*)(c+6-1)*

and
5 0
X . 0
( g )AwbyN ez
(ax,ay)? ( T+557 )
_ 2¢(6—1)262 o B 2¢2(0-1)03
c—(6-1)2 (C_(9_1)2)(c+9—1)2
1 0 _ 2¢(6—1)262 B 2¢2(9-1)03
- c—(0-1)2 (C_(9_1>2)(c+9—1)2
B 202(0—1)03 B 2:2(0—1)03 4(;292(07(971)2)2(03+4c2(971)«{»0(971)(9(9«#5)75)4»2(971)3)
(c=(6-1)2)(c+6-1)2 (c=(6-1)2) (c+0-1)2 (6—1)%(c+o—1)7

If 0 tends to infinity, then

éX Asy N - QC 1 2692
N 2| -2 |~ 2
<uX7 u> 1+ 555 m \ 2c

Moreover,
éX 0 2092
5 Afiy N 90 Iy l 0
Y, _(6-1)? m\ 9.2
<UX, UX> 1+ 555
(Proof page [110)

5.4 Invariant Eigenvalue Theorem

2¢2

2¢2(c41) ) ) .
02

0
2cH?

2¢2

2¢2
2¢2

4c%(c42)
02

7

The previous section provides results for perturbations of order 1. This section shows the invariant

behaviour of the estimated eigenvalue as a function of the orders of the perturbation.

Theorem 5.4.1. (Invariant Eigenvalue Theorem)
Suppose that W respects Assumption and

Py =1, + (0 — Degel, fors=1,2,..,k,

k
P, =1, + Z(@Z —1)esel satisfies (A4),

i=1

where 01 > 0y > ... > 0. We define

Sp, = PPWER2,
& 1/2 1/2
Sp, = PPWPRY2.

Moreover, for s =1,2,.... k, we define

~ ~

Up,1,0p,1 st Xpup 1 =0p 1Up ;,

ﬁPk,&QPk,s S‘t‘ Epkaplws = ePk,s'&/Pk,&

1. Then, for s > 1,
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and

j p 0 02
he L2 2
;1 Pl m3/27

where 61 and 0y are the largest and the second largest eigenvalue, respectively.
The distribution of Hpk s 1s therefore asymptotically the same as the distribution 0f0 1 studied
in Theorem [5.3.11

2. More precisely we define for r,s € {1,2, ...k} withr # s,

k
pP.,.=1,+ Z (0; — 1) ezet
=2
e IfO,>0,, then
) ) _ éPfr,séPk,swr - 1) ~92 1 0,
O =00 = Ty T G, e TG ) O G )
e IfOs <0, then
A X 0p . s-10p, (0, — 1) , 1 0,
HPmS - 9p7T7S_1 = - 0, —1— éPk,s Up . s—1,r + OP + O 3/2

Remark 5.4.1.1. A A
In this work, we are interested by the unbiased estimation of 0p, ;. The invariance of fp, ; is
a direct consequence of the theorem. Moreover, Theorem [5.3.1| provides the distribution of

Op, 1.

(Proof page for k =2 and for all k.)

5.5 Invariant Angle Theorem

In this section, we introduce the most important theorem of this thesis, the Invariant Angle Theorem.
The usual angle between two vectors is (u,v). Here we define the general angle between a vector and
a subspace of dimension k as Zle (u,v;)%, where (vy,...,v;) is a orthonormal basis of the subspace.
This generalization of the angle used with the correct subspace leads to an invariance.

Theorem 5.5.1. (Invariant Angle Theorem)
Suppose that W satisfies Assumption and

P, —Im—i—(é? —1egel, fors=1,2,..,k,
P, =1,+ Z 1)e;el respects 2 (A4),

where 01 > 09 > ... > 0. We define
£, = BIPWRY?,
o 1/2 1/2
Sp, = PPWPRY,
Moreover, for s =1,2,.... k, we define

~ A

p 1,05, st Spip =0p ap ),
up, s,0p,.s st EPkﬁPk,s:ePk7squ,Sa

and épk s = Ag

155,1 ’ Zpk,s'

P
I

where 9]5311 =
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1. Then,

R 1
Zupwzu 1ot 00 ()
S

Therefore, the distribution of Zle ﬁ%}wsﬂ. is asymptotically the same as the distribution of 4%
studied in Theorem [5.3.1.

511,

2. Moreover,

Remark 5.5.1.1.

1. If

then

o? 1
Zup i~ o 22 4o, [ =
beo L8 79%?77, P 91\/771 ’

My—1

where o? =1 — + O, (0%> < 1 can be computed more precisely as in Theorem
1

B.3.1l

1 ¢ _
2. Assuming a Marcenko-Pastur spectrum, o = H(Lj and ai2 =2c%(c+1) + og(1).
971
In particular if % is large, then o? ~ 1 — ¢/61,

3. In the general case, if % is large,

1- M
a1+ T” and 025 ~ 2 (4M3 y — M3y — 4Mo, x M3 x + My x) -
1

(Proof page [132)

5.6 Asymptotic distribution of the dot product

In this section, we compute the distribution of a dot product used to compute the distributions of the
residual spikes.

Theorem 5.6.1. (Dot Product Theore
Suppose that W respects Assumption and P, =1, + 25:1 (0; — 1)eiel with 61 > 63. We define

Sp, = Py*WP)? and $p, = PPWP}/?,
Moreover, for s,k =1,2 and s < k, we define
Wps,0p,s st Spip.s =0p, sips
where ép,ws = j\ipk,s' Finally the present theorem uses the convention:

Fors=1,2,...kandi=1,2,...,s, up,;; > 0.
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1. Assuming that Assumptions[2.2.4(A2) and (A3) (6; = p:f — co) hold,

m m
. " . 1 1 1 < .
> ip,1sipes = Upaa (o — o | = i D APLR TR 2
01 09 0 /
s=3 2 g>1

1 1
+0p | 5 | + 00 | T35
’ (91/ 0,/ 2m> ’ (91/ 05/ 2m1/2>

- _(1—|-M2)W1,2+(W2)1,2+O # +0 ;
Vo0 P\oPam) T ol P )

Thus, we can estimate the distribution conditioned on the spectrum of W,

mo (14 Mo)2 (M — 1) + (M — (Mo)?) — 2 (1+ My) (Ms — My)
E Upy1,5tp,2s ~ N0, 00
3 102

1 1
o (9}/205/%) o (a%%/?mw) |

2. If 8, — oo and 02 is finite, then

- . 1
SZ:;UPQ,LsUPﬂ,s = 0Op <\/91—m> :
3. If 01 and 0y are finite, then
- . 1
gUPk,Lsqu,Zs =0p (\/m> '

Remark 5.6.1.1.

1. We can easily show

11 i
Upy1,2 <91 - 92> S+ ip,1sipas

s=3
O Waat (W) 1)
B V0105 P\ om P\ o2m1/2

( (6 + My)? (My — 1) + (My — (M2)2) — 2(6 + My) (M — M2)>
~N 0’ 9192777,

1 1
O (em> O (am/) -

2. If W is a standard Wishart random matrix, then Assumptions A2) and (A3) lead
to a Marcenko-Pastur spectrum and

m
fip 1 o8 (1—of)(1—aj) 1

s=3

where o2 = ngnoo S22 {ipy.ui)?.

(Proof page [142)
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5.7 Invariant Dot Product Theorem

Theorem 5.7.1. (Invariant Dot Product Theorem)
Suppose that W satisfies Assumption|2.2.1] and

2
Ps,r =1In+ Z (01 - 1)62'61;

i=s,r

k
P.=1,+ Z(Gz — 1)esel respects (A4),

i=1

where 01 > 0y > ... > 0. We define

Sp,, = PPWP?,

Sp, = PPWPRY2,
Moreover, for s,r =1,2,....k with s # r, we define

ap,,1.0p,,1 st Spap,1=0p, 10p,, 1,
Upys:0ps st Spp.s = Op, siip,s,

where éps’hl = 5\21) and ép,ﬁs = 5\2}%

s, 7ol

Assuming the convention:

»S

Fors=1,2,...k andi=1,2,....s, up,;; > 0.

leads to
m m 1
> iip, 160,20 = Y, Upsilipri + Oy <) :
— £ 0s0,m
1= i=k+1
1#£S,T

(Proof page [150)

5.8 Component Distribution Theorem

Theorem 5.8.1.
Suppose Assumption holds with canonical P and[2.2.9(A4). We define:

~1
Up, 1
al A A

U — Pg2 | UP, 1:k,1:k UPy 1:k,k+1:m
: UP, k+1:m,1:k WP, k+1:m,k+1m-
~t
qu,m

To simplify the result we assume the sign convention,
Fors=1,2,...,k andi=1,2,...,s, up, ;; > 0.
1. Without loss of generality on the k first components, the k' element of the first eigenvector is

N Vb min(61, 0,) 1
B e A e ANV T

010, 1 - min (61, 0y) ( 1 )
VO 2N a2z o, (LI o (2
|0k — 01| m 412+ Qiﬂ@;mm T V010m

\/01«9;@ 1 min(Gl,Hk) ( 1 >
= YR My —12+40, — ) 10, ),
I T W I W
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where Z is a standard normal and My = L+ ) S} )\%,Vl 1 obtained by conditioning on the spec-

trum.

e Therefore knowing the spectrum and assuming 01,0, — oo,

010, My —1
91 —Hk‘ m

ﬂkalvk A'\SJy N (O’ ’
e If 01 — oo and 0y is finite,

. 1
qu,l,k:Op \/ﬁ .

o Therefore, assuming 01 and 0y are finite,

R 1
inas =0 ().

This result holds for any component Up, s where s #t € {1,2,...,k}.

Remark 5.8.1.1.

The sign of ip, 14 obtained by construction using Theorem is always positive.
By convention (up, ;; > 0, for i = 1,2, ..., k), we multiply by sign (@p, 1,1) obtained in
the construction. Therefore, the remark of Theorem describes the sign of the
component assuming the convention.

. . . A A . . 1
P {Slgn (Gp, 1) = sign ((9&71 - 9Pk_1,1) qufl,l,kqu_1,1,1>} =1+0 <m> :

2. For s =1,...,k, the vector =™ where G2 = Zf 1 42, is unit invariant by rotation. More-

\/@ S 18’

1—a?
Ujs ~ N (0, s) ,
m
where o? is the limit of 2.

Moreover, the columns of Utlk +1:m,k+ 1:m] are invariant by rotation.

over, for j >k,

3. Assuming P, =1, + 2?11(01- — 1)e;el is such that

01,02, ...,0, are proportional, and

Ok, +1, 0k, 42, ..., O are proportional,

then

ZukJrlml Zuk+1m1k1
1 1 min(61, 0x)
w (O (91) ¢ <9%m>> O <max(91»9k)m) '

Moreover, if P satisfies Assumption |2.2.9(A4) with min (9—1 %’;) — 0, then

Sitons - w(o(3) 0 () 10 ik)

(Proof page for Part 1 with kK = 2 and for Part 2 and 3 for £ = 1. For general k, proof page
for Part 1 and for Part 2 and 3)
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5.9 Invariant Component Theorem

Theorem 5.9.1. (Invariant Component Theorem)
Suppose that W satisfies Assumption|2.2.1] and

2
Ps,r =TIn+ Z (91 - 1)67?611‘:

i=Ss,T

k
P, =1,+ Z(QZ — 1)esel respects (A4),

i=1
where 01 > 0y > ... > 0. We define
o 1/2 1/2
EPS,’V‘ = PS,{‘ WPS,;’ ’
& 12 1/2
Yp, =P WP,/ ".
Moreover, for s,r =1,2,...,k with s # r, we define
up,,1,0p,,,1 st Xp,up,,1=0p, 1P, 1,

’IlPk,Sﬂepk,S S't' Epkapk,s = epk,sﬂpk,sa

where Op, 1 = )\iPs,r,l and Op, s = )\ﬁ)pk,s'
Therefore, for 05 < 0.,

m

1/2
X " 05
qu,T,S = uPT‘,S71)s + Op 01/2 b
T

and

1/2
N N bs
qu7S7T = uPT,5727T + Op 01/2 .
m
T

(The proof of this theorem is similar to the other theorems using|5.11.1} Because it is not used in this
thesis, it is left to the reader.)

5.10 Invariant Double Angle Theorem

The Double Angle Theorem and its Invariant Theorem are two main contributions of this thesis to
Random matrix theory.

Corollary 5.10.1.
Suppose Wx and Wy satisfies Assumption and

Py =1, + (05 — Degel, fors=1,2,..,k,

k
P.=1,+ Z(GZ —1)esel respects (A4),
i=1
where 01 > 02 > ... > 0. We define
S 5= PYPWAPY? and £ 5, = PYPWy B2
Sx.p, = PPWxPY? and Sy p, = PY*Wy P2,
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Moreover, for s =1,....k, we define

A~ ~

>

U 0 st XYy p Us =0 U
EX,}S5717 EX,PS71 X,Ps EX,PS71 EX,I:’S71 EX,}S5717
uEX,Pk75’ GZX,Pk,S s. X, Py uEX,Pk75 gzx,kasuzx,kas’
where 02X7P371 = AEX - and HEx,pk 5= Aix P The statistics of the group Y are defined in analogous
manner.
Then,

2 k 2 O 1
G 1, = > (i g, , 0) +
< EX '5717 EY "S,1> — EX,PMS’ EYszs p HSm
1=
k+e€ 9 1
= <uZXPk,s’ Z‘ypk,z> +OP (93m> )
=1

where € is a small integer.

Remark 5.10.0.1.

1. The procedure of the proof shows an interesting invariant:
Assuming the sign convention dp,;; > 0 for s =1,2,...,kand i = 1,2, ..., s,

m m 1
Y g aitipti = Y e 150, 10+ Op ()
1=k

) 01m
i=k+1

2
2. The distribution of <1l , U > is computed in Theorem |5.3.1
Yx,p,17 "By py sl

3. An error of e principal components does not affect the asymptotic distribution of the
general double angle. This property allows us to construct a robust test.

(Proof page [156])

5.11 Tool Theorems

This section introduces three theorems. Two theorems are key of most of the proofs and the last one
is used to prove the Main Theorem [3.1.1

The first theorem gives a characterization of the eigenvalues and the eigenvectors of a random matrix.
It provides more precise results than Theorem [5.2.1].

The second theorem gives the distribution of statistics using unit orthonormal random vectors.

The third theorem reveals an important quantity to be a functions of the invariant statistics.

5.11.1 Characterization of eigenstructure

Theorem 5.11.1. (Characterization of eigenstructure)

Using the same notation as in the Invariant Theorem and under Assumption [2.2.1]

and (A4), we can compute the eigenvalues and the components of interest of the eigenvector of
Yp,. Using assumption we can without loss of generality suppose the canonical form for the
perturbation Py.
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o Figenvalues :

m 3 A k—1 A
Z )\Pk—lyi 02 4= 0Pk7175 02 + Z Hpkflvi 02 1
A Upy,_1,ik A Upy,_1,s,k A A Up,_1ik = _ 1’
k 0Pk7 )\Pk 1,8 HPk s 0Pk-1, i=1 91’1@78 - 9Pk—1 i O — 1
~~ 1#s
0, —0s ~
@05 (3) O~ (%)

(05 (%)
fors=1,2,... k.

Remark 5.11.1.1.

1. The formula is still valid without Assumption[2.2.1] However, the size estimations
of each term are not necessarily accurate anmore.

2. If we do not assume canonical perturbations, then the formula is longer but the
structure remains essentially the same. Assuming Assumption [2.2.1]leads matrices
that are invariant under rotations. Elementary linear algebra methods extend the
result to any perturbations.

e Figenvectors :
We  define ﬂpki such  that W Pup, ; = Op,itup,; oand ap,; such that

]31/21/1/191/2 Up, i = ka Zqu l To simplify notation we assume that 6; corresponds to épw-. This
notatzon is explained in [7.1.1) and allows to describe the k first eigenvectors more efficiently.

_ 2
<qu,1761>

2
(a)Op | —g7— Vo m (e)O 1
3/2 N VAS P\ o172
61/ vm (&)~ min(67,6) 01/ m
A ) § k—1 § .
m >\Pk71’1 . B N GPkfl-,l N N N Z GPk—lv'L N N
S —— i,1%p ikt 4P, 1,10pP,_; 1,k I S — i,10p ik
CUPR 1.1 k—1:% — k—1> k—1> PR 1,61 Py 1,
ik Py 1 — AP, _q i Op,1—0p,_ 1 i=2 Opy1 — 0P,

62 6%

i P—1,d a2 P11 a2 +Z Pr_1.i
5 Up, ikt P11,k i,
=5 (Opyg a1 —Ap, )2 TR (Op,1—0p,_;,1)2 k1 3 (0p, 1 —0p, | )2 k-1
61m 1
1 2 )~ 1
@on () O min(er.0)? or (o)
<_ 2 1 (@)
ap, 1,e > =——(9
Jol Bk D1(6p —1)2 77
~ 2
<UP,‘,,1765>
(h)Op 1/% min(6q1,0s)
0l/%0, ym ~ /65 min(61,05,)
O APy 1 0P 1.1 _ _
=5 > R SN SPPE L ISR
1| k0P — APy Pl —0p, 11
in(61,0;) min(04,0;) in(0].05) 2
) min(0y,0;) min(0s.0; min(0y,0s
o ax | 2in(01.0;) min(6s.0;) k)O,p [ mint01.0s)
@) p(i?%’fs( V8501057 /m )) (k) p(«/esel‘ﬁm)
k-1 5 ) 5
OPe_y.i OPy_y.s N
+ T 4P,y isUP_ ikt WP, ,s,s0P, sk

iz2,ms 0P 1 = 0P i Op,1— 0P, 4.5

Finally,
(WP 11, WP, 125 -+ VOKTP, 1 ks o Up)

ﬂP 1= ;
' 1+ (0 — 1)@
k Pplk

140y (st i)
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where \/1 +(0-1) ﬂ%,kl i 18 the norm of Pklﬂﬂpk,l that we will call N7.

Remark 5.11.1.2.

1. By construction, the sign of ip, 1 is always positive. This is, however, not the
case of ip, , ;. We can show that :

P {Sign (ﬁPk,l,l) = Sign ((éPk,l — épk_hl) ﬂpk_17171ﬁpk71717k>} — 1.

m—o0

Moreover, the convergence to 1 is of order 1/m. If 6; tends to infinity, then

P {sign (ip,,1,1) = sign ((61 — k) ip,_,,1.%) } e L
Therefore, if we use a convention such as sign (4p, ;;) > 0for i =1,...,k—1, then
the sign of @p, ;1 is distributed as a Bernoulli with parameter 1/2.

2. Without loss of generality, the other eigenvector up, , for r = 1,2,...,k — 1 can
be computed by the same formula thanks to the notation linking the estimated
eigenvector to the eigenvalue 6;.

However, the formula does not work for the vector up, . Applying a different
order of perturbation shows that similar formulas exist for 4p, ;. (If the pertur-
bation in e; is applied at the end for example.)

This observation leads to a problem in the proofs of the Dot Product Theorems
and Deeper investigations are necessary to understand the two eigen-
vectors when k = 2.

52 ~2 s ~2
Dy = E e lp ot e Up 1 95
0 )\ 2 1,2, 6 9 2 1,4,
= (Op2 — Apyi) (Opy2 — 0P 1)

(%) ol

NoDy = Do+

1 1 0,
S g1t (%) O ((92—91)m>'

Furthermore, the theorem must investigate the m — k noisy components of the
eigenvectors. For r = 1,2 and s = 3,4, ..., m,

Ap.
m Pq,i ~ ~
. %UP ; uP P2
N Zz_l 9P2,r_>\P1,z‘ 1,%,8 152,
Py,r,s — \/7
" D, N,

The estimations using this last formula are difficult. When we investigate these
components, it is profitable to look at

m m
~ ~9 ~ ~2
Upy,t/ E Up, 1,5 and @p, 2./ ZUP2,2,S
s=3 s=3

for t = 3,4,...,m.

3. If the perturbation is not canonical, then we can apply a rotation U, such that
Uus = €5, and replace ap,_,; by Udp,_,;. Then, <'L~ka71765>2 is replaced by

<aPk,17 us>2-
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(Proof page for k =2 and for all k.)

5.11.2 Unit invariant vector statistic

Theorem 5.11.2.
Let W be a random matriz with spectrum, Aw,1, A\w,2, ..., \w,m such that its trace is 1. We denote by
Up, and Up,, two orthonormal invariant random vectors independent of the eigenvalues of W. We set

$s1

AL

. ZZZ1 %Uphiupmi M

Bm (pa §a 77,15) = m (p A)\Tvlv’l) - o1e 1P1=P2 )
)‘Wi MT1,T2

2t mupmupz,i

where §= (s1,82), ¥ = (r1,r2) and p= (p1,p2) with indices 1 < p1 < p2 < m and s1, S2,71,72 € N.
Conditioning on the spectrum, if p = p1 = po,

e il 2Ol AEL) 20— My )
By, (p, 5,7, ~N {0, 51,282 $1,81 S1TT1,527T2 SL2 2 + 0p:m (1),
(p ﬁ) ( (2 (Ms1+7'1752+7'2 — M51782M7‘1,7'2) 2 (M27-1727-2 — M72-177-1) p; ( )
1 —m /A\av,i

where M, = My (p) = .- > "4 G=wa)

Moreover, for p1 # ps,

- = Moy, 26 — M? My 41,55+, — M. M,

B sST.o)~N|0 1,282 81,81 171,822 5185272 + 0p:m(1
m (p, ) >ﬁ) < ’ <M31+r1,32+7‘2 — Msl,ngrl,m M2r1,2rz - Mr21,r1 pym( ),

In particular, with the notation Mg = Mg = % S ;\SV:V“
Yoy S\Wiug , 1 = ( 2(My—1) 2(Ms— My)
M) ~ N0 (1),
v <<Z:n1 A%/V,iu;tgo,i Mo "\2 (M3 — M) 2 (M4 — M22) + 0p;m (1)

and
S AW ity ity i <0> (* ( M; -1 M- M2>>
m o e — ~N |0, 4+ 0p:m (1).
v ((Z;nl )‘%Miuphium,i 0 Mz — My My — M22 p7m( )
Finally if we look at K bivariate normal random variables :
B, (ﬁv S, T, p) = <§m (p17 gla Flaﬁl) ) ém (p2> §2a FQaﬁQ) PRREE} ém (IOK, §K7 FK?ﬁK)) s

where ,p; # pj if © # j. Then, B, (p,s,r,p) tends to a multivariate Normal. Moreover, all the
bivariate elements are asymptotically independent.

Remark 5.11.2.1.

1. In order to obtain this simple result we assume the trace of W is one. This property
can easily be obtained by rescaling the matrix by the trace.

2. The condition of independence between eigenvectors and eigenvalues of W is strong but
is an automatic consequence if the eigenvectors are Haar distributed. Moreover, if the
fluctuation of the spectra is small, the result is still valid without conditioning on the
spectra. For example for independent vector data, we can easily show that the result
still holds using Bai and Silverstein [2010] (page 259-261, Theorem 9.10).

3. If the convergence of the spectrum to fg is fast, then we can define M; = [ N fs(N)dA.

4. If the data are such that the spectrum of W tends to Marcenko-Pastur distribution
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sufficiently fast, then fs can be replaced by fisp. and we obtain

S Awiti? 1 a 2¢ 2¢(2 + ¢)
o — — N {0, .
vm ((Zyil )\124/1@12 1+¢) ] mooo 2¢(24+¢) 2c(c+1)(c+4)
Nevertheless the result is wrong if we only assume this spectral distribution! The
independence with invariant eigenvectors is necessary.

(Proof page

5.11.3 Double dot product

Theorem 5.11.3.
Suppose Wx and Wy satisfies Assumption and P, =1, + Zle(& —1)e;el satz’sﬁes (A4),
where 01 > 03 > ... > 0. We set

2){ = iX,Pk = Pkl/ZWXPkl/2 and 2Y7Pk = Pkl/QWyPkl/2.

and for s =1,...,k,

p)
Fors=1,2,...kandi=1,2,...,s, ﬁEX” > 0, ﬁzy“ > 0.
Finally, we define
s = Ul
S X Yy ,s?
where,
UX = (U17U27 T 7”771) = (aix,l"&ixﬂ’ o 'af}X7kvvk+17vk+27 o ,’Um> )

where the vectors viy1, ..., vm are chosen such that the matriz Ux is orthonormal. Then,

° If 9]',9,5 — 00!
m m m m
Z Uyt = Z Ussy iy i T Z Uy ,i%Sx ti Z Usx iyt
i=k+1 i=k+1 i=k+1 i=k+1
m
= > g e o= (et ) (62— 6l
Yy gt TBx b Xx,tg Yy ,gt Sx,j Sx,t
i=k+1
1 1
2 b
O1m 07v/m
A9 kE  »2
where &4 =Y s
Yx,t i=1 Yx,tyi

o If0; — oo and 0; is finite:

8 =0, ()
gt — Yp \/mm .

i=k+1
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o If0; and 0; are finite:

TN 1
Z uj,ium == Op (\/TTL> .

i=k+1

Moreover, for s=1,...k, t=2,...k and j=k+1,...m,

k k 9
-9 ~ ~
D=3 (i, 0ls,)
i=1 i=1

~ oA ~ O 1 O 1

) A R min(fs, 0;) 1
Usp = Ug 4ot gy o0+ Op (m max (0 et)> O (etml/Z) ’
R min(fs, 6;) < 1 )
Up g = O + O 179 |

t, P(m max(&j@)) P 0ml/2

5 . R . R 1
Usj =Usy 55~ USx s, <uiy7j’ ui)x,j> +Op <91/2m ’
S

(Proof page [163)
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Chapter 6

List of lemmas

6.1 Lemmas for Invariant Dot Product Theorem

This section introduces a Lemma used in the proof of the Dot Product Theorem [5.6.1]

Lemma 6.1.1.
Assuming W and ¥ p, as in Theorem then by construction of the eigenvectors using Theorem

111,

2
. Wiz Wi,2 (w )1 2 1 1
U = . — —=(-1/2+3/2Ms)+ —== 4+ 0, | —— | +Op | ——
Py,1,2 \/EWLI Qf/Q ( / / 2) Hf/2 P ef/Qm P 91)/2m1/2
Wia 1 1
= =+ O | ——— | +O0p | ———— |,
Vi o <9i”m> ” (95’/%“2)
m < . 1
Eizz A%—ﬁ,iu%hiz =Wa2+ Oy <m> )

m e ) ) M,y 9 1 1 1
" AP, ; ; =Wiog—— — (W — 4+ 0, ——— | +0, | ———— | .
2172 Py iUpy i 1UP, 2 1,2 0, ( )1,2 /0, P <91/2m> P <0§/2m1/2>

Remark 6.1.1.1.
Because the perturbation is of order 1, the two sign conventions defined in [5.1.1] are the same.

(Proof page [138)

6.2 Lemmas for the Main Theorem

This section introduces some results from linear algebra used in the proof of the Main Theorem [3.1.T

Lemma 6.2.1.
Suppose

D= (L, + (6 — l)uxutx)—l/2 (I + (6 — Duyuy) (I + (6 — l)uxutX)—l/2.

The eigenvalues of D are 1 and

1
A(D) = ~% <—1 +a? —20%0 — 6%(1 — a?) + \/_492 +1+62—(-1+ 9)2a2]2> :

where o2 = (ux, uy)?.
Moreover, if

Dy = (L, + (0x — 1)uxufx)*1/2 (Im + (0y — Duyuy) (I, + (0x — 1)uXutX)*1/2‘
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The eigenvalues of Dy are 1 and

1 1+ (fy —1)a2 +\/—40y0x + (1 + 0y 0x — (By — 1)(6x — 1)a2)’
A(Dz2) = (9y+a2—9ya2+ 0y —1) \/ yOx + ( vOx — (y — 1)(0x — 1)a?) |
2 Ox
where a? = (uX,uy>2,
(Proof page [176])
Lemma 6.2.2.

Suppose wy, ..., wx, € R™ and A1, ..., \p, € R*, then if the function \() provides non-trivial eigenvalues,

k
A(ZAiwiwf =\ (H)
=1

N——

where
A1 VAL A2 (w1, wa) VA1 (wr, w3) Ak (w1, wi)
VA2 (w2, w1) A2 A2 (w2, w3) A2y, (w2, wi)
H = | VAsAL (wz,w1)  VAzA2 (w3, wa) A3 A3k (w3, wr)
VAR (WE, w1)  VARA (W, wa) VAR (wg, w3) - Ak
(Proof page [177])
Lemma 6.2.3.
Suppose e1,w € R™ and a,b € R. Then, if ||w|| = 1, the two (£) non-trivial eigenvalues and
eigenvectors are
+ t t 1 2 2
AT | aere] + bww =3 a+b+y/4abwi + (a —b)? ),
ME (aeleﬁ + bwwt> +0b (w12 — 1)
1
U:t <(Z€16§ + bwwt> = Normi bw1 , W2, W3, Wy, ..., Wy |,
2
()\i (aeleﬁ + bwwt> +0b (wl2 — 1)>
Norm*)? = +1—w?.
( ) b2w?

If [Jwll # 1,

At <aelet1 + wwt> =
X AE (aeleﬁ +wwt> — ||w||? + w?

+ ¢ ¢
u— | aere; + ww = I , W2, W3, W,y .., Wn, |
Norm w1

2
<)\i (aele’i + wwt> — ||w]|? + w%)

(Norrni)2 = 2 + | |w]|* = wi,
1

(W(w [wl?)? — 4a (|le]l? - w?) +a+ ||w||2> ,

N | —
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(Proof page [178)

Lemma 6.2.4.
Suppose u1, ...,up, € R™ are orthonormal and A1 > ... > \;, € RT where k is finite. Suppose v € R™
and pn € RY such that (u;,v) = O, (1/v/m) and p— X1 < d <0 for a fized d, then

k
1
)\max< E )\Zuzuﬁ + /,wvt> =M +0, <) .
m

=1

Moreover, if p— A, > dg > 0 for a fized do,

k
1
)\min (Z /\mzuf -+ Mm}t> = )\k + Op <m> .

=1

(Proof page [179)

6.3 Lemmas for robustness

In this section we introduce lemmas that characterise the residual spike when 6 is large. These results
are used to prove properties of robustness of our methods. In particular we use the moment in
probability E, and Var, defined in

Lemma 6.3.1.

Suppose X € R™ "X gnd Y € R™™ are members of the same class, C4(2), Cp, Cc or Cp(u).
Moreover, define Wx = %th and Sx = %XX‘%, where X = PY2X, and P is a finite perturbation
of order 1. (Without loss of generality we can assume a canonical perturbation, but Ux 1.m1 is not
necessarily uniform. In particular the following formulas are only true for Cp(u) after a rotation to
change u in eq.)

The largest residual spike obtained using X and Y 1is

2 N ~ 2
M= [dr(1—a2) 114+ 24| a2 <0Y<1—a2> ) Oy (1)
’ 2 H 0
0x 0x 0x

where

m

1 )‘WX, ~92
= UW 1o
6—1 z; Ox — Awyi "

m

1 1

Ay i

~ ~ 9

5}( -1 m i=1 HX - /\WX,i

Ox =0 Z S\WX,ia%/[/X,l,i +0p (1),
=1

. 0 1
A%( (9_1 < - 02 Z WX'LUWXZ].>+O <02>

i=1

R A 1
& = dxby +Z“Exzu2yz+0 <92>

Q

Uwy 1, 5 the first entry of the ith eigenvector of Wy and Ox = b, is the largest eigenvalue of $x.

$x,1
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Moreover for class C4(X2), Cp and Cc,

Oy 1 1

X

2 R 1 2 1 1
(=) = g (), 052),) - 2 0,40, (5) + 0, ().

(Proof page [191)
The next lemmas are used to prove the robustness of our model in the class defined in [4.2.3]

Lemma 6.3.2.
In the class C4 (X) defined in Definition the limit of the expectation of the residual spike is

mwariant of . This means that:
Suppose X5, Yy € Cao(2) and Xy,,, Y1, € Ca (L) such that

XZ — P1/221/2 c Rmxnx and YE _ P1/221/2 c Rany’
X, = P/2X € R™™X and Yy, = P2V € R™™.

Let A\, s and A\, 1, be the resulting residual spikes using (Xg, Yg) and (XIm,YIm) respectively. We
have

Ep(min(m,@)) [)‘m,Z] = Ep(min(m,@)) [)\m,Im] .

(Proof page [193)

Lemma 6.3.3.
We define in the class Ca (Im), X1, = pP/2 £y € R™"X and Yy, ¢, = p1/2 Ly € RNy,
Moreover, X, and Y ¢, have temporal structure such that

Lx,1,5 Lx,2,5 Lx,m, ™ EX?
Ly s Yy 2oy Y oyom,. ~ Ly

1

t _ t
Lx Koy and Wy gy = 2=V, Yo

We define |V x 0 = —= .

X

If the spectra of ( X.L1 y,£3> and < X,Lo y7[;4> are rescaled and the second moments of the

E[ZX X, Lyt :E[ZS\ XLQI] =1land E 25\2 X,Lq5% =E Zj\QXL%l]?
=1 =1 i=1 i1
E [le\ viegii| =B Z;;\ Y,£4vi] =1and E ;5\2 vigi| =B [Z; A2 Yﬁﬁ] ’

then

Ep(min(m,0)) [Am,£1,25] = Epmin(m,0)) [Am,c2.24] 5
where Ay g, oo and Ay g, c, are the resulting residual spikes wusing (le,£17YIm,£3> and
<X1m’ Lo Y1,,.0 4> respectively.

(Proof page [196)
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Lemma 6.3.4.
Suppose that Xp, Xpx € R™*"X gnd Y, Y € R™*™ are in C4 (1,,) such that,

Xey =PYV%py, Yo, =PV,
Xy = P2 cyy Yoo = P2 Ji
where P =1, + (6 — 1)e1¢€}.
Moreover, ( Lx> £Y> and< £ L;,) have temporal structure such that

Lx,l XLy 20 XLy m, ~ L£X5
£Y717'7 LY727" ceey Ey,m,~ ~ £Y,
oy~ Lxa,
L4525 AL, 3,0 ey S5 L% my ™ ﬁX,
oy~ Ly,
E;,Q,w £;737., ceny L;’m’. ~ LY-

In particular, Cov (X 1.) = Y1 x = Uy, Cov(Ygy1.) = U1y = Uy , Cov(Xge1,.) = Ul xs
Cov(Yge1.) = \Il“f’y, Ax = Uy — \Iﬁf,x and Ay = Uy — \II’LY respect the conditions of the class
Ca(Ly).

Therefore we have

Ep(min(m,@)) [)‘m,ﬁx,ﬁy] = Ep(min(m,@)) |:)\m,£§(,£§,i| ’

where Ay, £y .2y and /\m7£§(75*y are the resulting residual spikes using <X£X,Y£Y> and <X£;(,Y£*Y>
respectively.
(Proof page [198)

Lemma 6.3.5.
Suppose that X = PY2X € R™"x gnd Y = P2V € R™ " gre two random matrices in class
Ca(X) such that

We define A, c,(s) as the resulting residual spike between X andY .
The Main Theorem [3.1.1] says that knowing the spectra, the estimator of the expectation of residual

spike assuming our model is
M (M) = My + /M3 — 1.

This expectation of A, c,(x) is conservative in the sense of the second robustness defined in .
This means that the following results are true when nx, ny and 0 tends to infinity.

1: If S =1y, then Xt (My) = My + /M3 = 1 = Eymin(m.0)) [Amcacs)]-
2: If £ # Ly, then AT (Ma) = My + /M3 —1 > Eppmin(m.0) [Mmca)]-
(Proof page [199)
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Chapter 7

Proofs

7.1 Proofs of the main theorems

In this section, we prove the theorems of the Chapter

1. The Unit invariant vector statistic Theorem [5.11.2]and the characterisation of the eigenstructure

2.1,

2. The distributions of statistics when the perturbation is of order 1, Theorem [5.3.1
3. Most of the Invariant Theorems using a circle induction procedure,

4. The Dot Product Theorem and its invariant

5. The double invariant angle Corollary

7.1.1 Unit invariant vector statistic

Theorem 5.11.2.
Let W be a random matriz with spectrum, Aw,1, A\w,2, ..., \w,m such that its trace is 1. We denote by
Up, and Uyp,, two orthonormal invariant random vectors independent of the eigenvalues of W. We set

.
by

. > Sy Ups,illps,i M
B,, (P, 3, Faﬁ) = /m ! (P*f\rle,z) _ 51,52 1p1:p2 ’
m )\W,i . . Mrl T2
> i (—wa)? Upy,illps,i ’

where § = (s1,82), 7= (r1,72) and p = (p1,p2) with indices 1 < p1 < po < m and s1,$2,71,72 € N.
Conditioning on the spectrum, if p = p1 = pa,

>3 - = ~ 2(M29 2s *Mz ) 2(M9+r 9+rf*Ms sMr rf)
Bm , 5T, ~ N 07 51,282 S1,81 s1+71,82+7T2 51,82 1,72 + 0pm (1 ,
(p ﬁ) ( (2 (M31+7”1732+7‘2 - M31782M7"1»T2) 2 (M27’1727’2 - M72'1,r1) P ( )
j\s

where Mg, = M, ,(p) = % > i ﬁ

Moreover, for p1 # pa,

2
B’ - = N [‘)‘ M2817282 - M51,51 MS1+7”1752+7"2 - MS1782MT177‘2 1
m(p,S,T,ﬁ)N "\ M. M. M. M- M2 +0P§m( )7
s1+r1,s2+re — Msy,so Ve ro 2r1,2rg — ey ey

In particular, with the notation Mgo = My = % Yoy 5\‘?4/2,

o ([ZE ) - () - (5 (200, 203 o
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and
S AWty ithp i <0> (* < M;—-1  M;s— M2>>
m S ~N |0, 4+ 0p:m(1).
vm ((szl A%V,iuplyium,i 0 Mz — My My — ]\422 pm(1)
Finally if we look at K bivariate normal random variables :
B, (p)s,r,p) = (ém (p1, 51,71, 51) B (p2, 52,72, 52) , --r, By (PK;gKfK,ﬁK)) ;

where ,p; # p;j if © # j. Then, B, (p,s,r,p) tends to a multivariate Normal. Moreover, all the
bivariate elements are asymptotically independent.

Remark 5.11.2.1.

1. In order to obtain this simple result we assume the trace of W is one. This property
can easily be obtained by rescaling the matrix by the trace.

2. The condition of independence between eigenvectors and eigenvalues of W is strong but
is an automatic consequence if the eigenvectors are Haar distributed. Moreover, if the
fluctuation of the spectra is small, the result is still valid without conditioning on the
spectra. For example for independent vector data, we can easily show that the result
still holds using |Bai and Silverstein [2010] (page 259-261, Theorem 9.10).

3. If the convergence of the spectrum to fs is fast, then we can define M; = [ A fs(A\)dA.

4. If the data are such that the spectrum of W tends to Marcenko-Pastur distribution
sufficiently fast, then fs can be replaced by fisp. and we obtain

S Awiti? 1 - 2¢ 2¢(2 + ¢)
noRo — —- N{O0 .
Vim ((Zznl Ay iU 14+c¢) | m=oo "\2¢(24¢) 2c¢(c+1)(c+4)
Nevertheless the result is wrong if we only assume this spectral distribution! The
independence with invariant eigenvectors is necessary.

(Page

Proof. Theorem [5.11.2

The proof is divided into three steps. First, we compute the two first moments of the statistics
using the same eigenvectors. Then, we show the asymptotic joint normality. Finally, we show the
asymptotic independence of the statistics using at least one different eigenvector. In each step of
the proof, we condition on the spectrum of W.

e For any non-random ¢ function in R,

m R 1 m R
E ZQ(AW,OU%J‘] = EZQO‘W@)’
=1 =1
E [Z g(j\mi>ul7iUQ’i] = 0
=1

This proves the formulas for the first moments. We can now compute the covariance matrix
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knowing that for unit invariant eigenvectors, Cov (u% i UY J> = —2/(m?(m — 1)). Therefore
m 5\51 '
Var Z IA/V’Z = u%’l
i=1 (p - /\W,z)
) SIEACINE N o ¢ Nty 2
- - 252 2 < 52 < 52 2(1m —
i=1 (p— /\W,i) Mt G0 (p* AW,z') (P* )\W,j) m(m — 1)
i
_ 2Mps, 255 (P) _ 2Ms, 55 (p )2 + 2M251,2S2( )
m m—1 m(m — 1)
2

and
m 5\81 ] m 5\r1 )
W, W’
Cov | D7~ D 7~
i=1 (p - AW,@') =1 (P — /\I/V,z>
3 A 25 b Aip 2
- N So+12 2 ~ 52 ~ T2 _ 2
i—1 (p — AW,Z’) me S (,0 - >\W,z‘> (P — )\W,i> (m —1)m
itj
_ 2MS1+T‘1752+T2 (P) _ 2MS1,S2 (p)MThTQ (,0) 2M81+T1,82+7‘2 (p)
m m—1 (m—1)m
2

1
= E (M51+7"1,52+T’2 (p) - M81,82 (p)Mm,w (P)) + OP (7712)

Similarly, we can show that

~ 52 ) ) 2
i—1 (,0 - )\W,i> m m
and
m S1 m T1
AW,Z' AW,Z
Cov Z - 55 U1,iU2,, Z - 5 UL, U2,
i—1 (P - )\W,z) (P /\I/V,i>

Mg, 47y 55475 (p) — Ms, s, (P)Mh,rz (p) 1
- + O — |-

e In order to prove the joint normality we show that any projections of a vector with unit
statistics components built using w1, us, ..., ux are Normal with an error tending to 0. This
vector contains all the elements of the following matrix:

= . 1
(\/mzl Ay s <)\W,z) (us,iur,i - 1rsm>> >

S,r

where a; s (XWZ) are constant depending on 5\W1

We start with pp independent Normal random vectors of size m, v, v, ..., vp, (P2 = p1), where
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Var (v;) = %Im. Then, we apply Gramm-Schmidt.

vs = 32101 ((vs,00) + 0, (57)) Tl +0,()
[lvsl| + Oy (37)

Us —

s
= E bs,ivi.
=1

Moreover, the central limit theorem of Bentkus| [2005] shows that for any tq,t3 = 1,2, ...k,

= . 1
\/%Z Ay s (Mm) <Ut1,z'vt2,z' — 14—, m> (7.1)
i=1

can be jointly estimated by a centred multivariate Normal when k is finite.
In particular using Slutsky’s Theorem we show that

Vs, t=1,2,...,k, s #t, V/m bs, (7.2)

tends to centred joint Normal random variable with variance of size O, (1). Moreover,

Vs=1,2,....k, v/m(bss—1) (7.3)

tends to a centred joint normal random variable with variance of size O) (1) .

Finally we show that any projections of the unit statistic are Normal. Without loss of gener-
ality we keep the constant a, s (5\W1>

> fZars (i) ( ) 1”;)

s,r=1
Z ZZbStl rtz\/izars< th”tzz_*Z\/iZass()\Wz)
s,r=1t1=1tx=1

)
Y Y, W\anm( )( 1;)
8

s,r=1t1=1t2=1

k  min(r,s)

+ Z Z bstbrt\F Zars W,z) — Zk:m;ia&s (;\W,z'>
s=1 =1

s,r=1 t=1

m
— Z Z Z bs7tlbr,t2mz Qs (;\Wz) (vtl’i%,i — 1t1t2;>
i=1

s,r=1t1=1t2=1

A

kL min(r,s)

+3° basbrev/m— Zam(AWz)

s,r=1 t=1
S#ET

Az
k

V(b Zass(xw,)

As
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We show asymptotic normality of the three elements using Slutsky’s Theorem:

m
R 1
A = bstbrg,v mz ar,s <)‘W71> <Ut1,iUt2,i — 14 =t, ’m>
i=1

- ] 1 1
E [bs,t1 br,tz] mz G/’I‘,S (AW,Z> (Utl,ivtg 7 1t1 =ty ) + O (\/ﬁ) .
=1

We recognise the equation on the right and we know that we can neglect all the terms
when s # t; or r # to. Indeed in these cases by equation bs,t,brt, = Op (1/4/m) and the
terms become of order O, (1//m).

k min(r,s)

Ay = Z bs tbr,t\/a% Z Qp s (S\W,z)
1 =1

s,r=1 t=
SFET

min(r,s)—1

= Z bs min(r,s) 7‘ ,min(r,s) V 1 Z Qr,s <)\Wz> =+ i bS,th,t \% m% i Ay s (5‘W,Z>
s,r=1 =1
SFET

s,r=1 t=1
s;ér

k

1 & < 1
= Z E [bmin(r,s),min(r,s)] \/ﬁbmax(r,s),min(r,s)% Z Qr.s <>\W,'L) + Op <\/77L)
=1

s,r=1
S#ET

: 1 & ' 1
= Z \/Ebmax(r,s),min(r,s)a ;ar,s <>\W,z> + Op <\/m) .

s,r=1
SF#T

We recognise the equation multiplied by a constant.

k m
; Vi (112, % z; Gs s (}W) ,

We recognise the equation multiplied by a constant. Therefore, we obtain :

srzl fzars (AWZ) <Us,iur,i - ls:r:n>
Z fza” ()‘WZ) (U&“’m’ — L= > Z fbmln(s t),max(s,t) Zars( z)

s,r=1 s,r=1

SH#ET
k 1 m
+Z2\/ m (bs,s - 1)) E Zas,s <)\W,z) .
s=1 =1
Because all the quantities in the finite three sums are approximately jointly normal, then the
quantity is approximately normal with an error o, (1).
e Assuming s; < 1y, if (s1,71) # (s2,72), then by invariance under rotation,
- 1) & 1
Cov <Zl Qry,s1 (AW,Z) <u31,iur1,i - 17‘1:31 m) 7; Qrg,s9 (AW,2> <u52,iur2,i - 17"2:52 m)) =0.
1= 1=

Therefore, when (s1,71) # (s2,72), the resulting joint Normal statistics are asymptotically
independent. However, when (s1,71) = (s2,72), then the statistics are jointly Normal and
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correlated.
Note that when s; = r1 and so = ro we use the linearity of the covariance and the fact that

.2
.1 Uy 5

m 2 m o~ 2 o m 2 m
Cov (21:1 auy 4, >in aiuz,z) = Cov (Zi:1 a;uy Diny Qi t >

7.1.2 Convergence and general characterization

Theorem 5.2.1.
In this theorem, P = 1, + (6 — 1)uu® is a finite perturbation of order 1.

1. Suppose W is a symmetric matriz with eigenvalues S\W,i > 0 and eigenvectors Uy, for i =
1,2,...,m (without any additional assumptions on the eigenstructure).
Fori=1,2,...,m, we define up; and \p; such that

W Piip; = Ap;iip;,
and the usual ip; such that if Sp = PY2WPY2 | then
Spip; = PYPWPY2up; = Apiiip,.

e The eigenvalues S\RS are such that for s =1,2,...,m,

m

S T
< < R - .
o1 Asps T AW O — 1

e The eigenvectors tup, are such that

N 2
AW.i N N
(Z;L T (G, v) (G, U>>

<aP,57U>2 = 32 9
m 7 A~
Zi:l (j\Psl/ViWi)2 <UW1,U>
In particular if v = u,
- 1
<uP,S7 u>2 =

m i

-1y <Z"=1 (s @W’“u)Q)
Moreover,
X PY2ip,
Ups = =
V140 1) (g )

Therefore, for u and v such that (v,u) =0,

<ﬁp u>2 = 0 <’l]p’5, u>2 = — 0
. L+ (0 - 1) (@pew)?® (60— 1)2ApsTyy, (Aps)
~ 2
N 2 <uP,S7 U>
<UP787 U> = PR

14+ (0—1)(aps,u)

Awi  a
where Ty, (2) = > ity # (g, u)?.
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2. Suppose that Wx, Wy and P = Px = Py satisfy Assumption [2.2.1. Moreover, suppose that 0

1s large enough to create detectable spikes, 9X and 9y, in the matrices ZX PI/QWXPI/2 and
Sy = PY2Wy PY2. Then,

a) éx,éy £, 0,

n,Mm—00

b) (iix,u) —ax, (iy,u) —ay — 0,

,1M—00

N N P
¢) (ux,uy)—axay —> 0,

n,m—o0
where
- P
GX — PX,
n,m—00
A 1
Ox =1+ —F—— =1+ = 3 ;
Ts, (0x) S
Yx X Z;ik—&-l éX_jf;X’i
0
o = -
C(0-1)? pxTyy (px)’
0
a3 =

(6 — 12y Ty, (py)

j‘ix,i and 5\2%1. are the eigenvalues of respectively Sx and Dy
Remark 5.2.1.1.
If the spectra of Wx and Wy tend fast enough to the Marcenko-Pastur distribution with

parameter cx and cy respectively, then

1 — & _
0l — (6-1)2
X 1+ eci(l Y

éX is such that éX = éX (1 + = X > ,and

Ox —1
. A CX
lim 6x =601 .
mevoo X <+9—1)

(Page

Proof. Theorem [5.2.1

In the proof of this theorem, we use two transforms:

Swei -
o Twyu(e) = S 5 (g i w),

~

o Ty () = L3, et

2=AWy i

1. In order to study PY2W P2 where P =

L f + (0 — 1)uu®, we define the diagonalisation
W = Uty Aw Oy
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Eigenvalues: The matrix of interest has the same eigenvalues as W P. Thus, for z an eigen-
value of P1/2W p1/2,
0 = det (2L, — PY2wp'2)
= det (2L, — W (L, + (0 — Duu))
— det (2T — Ul AwOw (I + (6 = Duat’) )

= det <zIm ~ Aw <Im +(0-1) (Uévu) (Uﬁvu)t»
— det (=T, — Ay) det <1m (2l — Aw) Ay <(9 1) (Tu) <U€Vu)t>> .

If z is not an eigenvalue of W but an eigenvalue of W P, then

det (21, — Aw) # 0.

det <1m ~ (- Aw) Ay ((e ~ 1) (Tlyu) (Uévu)t>> _
= Trace <(zIm ~ Aw) Ay <(9 1) (Uwu) (Uwu ))
1

= Trace ((zlm — Aw) M Aw (( ) (UWu)t)> 01

Awi . 2 1
=y —— (Uw,,u)” = :
; Z = Aw,i 0—1

Therefore,

[an}

In our notation, we can replace z by the eigenvalues of PY2w pl/2, 5\]375 fors=1,2,...,m.

Eigenvectors: We first study up, for s = 1,2,...,m, the eigenvectors of W P. Because Xp’s
is the eigenvalue of W P corresponding to ups,

Apsiips = WPips = W(ly, + P)ips = (W +WP)ip
Therefore, we have
. -1
aRS = ((9 - 1)utaP,s) ()‘P,s:[m - W) Wu.

R -1
Using the fact that up is proportional to <)\ Pslm — W) Wwu and its norm is unit, we get

(Aol —=W) W

ups =
\/ W (Apln = W) W

which leads to most of the results about eigenvectors.

Assuming v € R™, then
. —1 \2
(th (Apstn = W) u>
2

<ﬂP,87 ’U> = R )
utW ()\ P - W) Wxu
3 2
m AW, N N
<Zi:1 ﬁ (Awis v) (Gwi, U>)

m 5‘!Q/Vz ~ 2
2 G (W)

u,
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In particular, when v = u, UtWX(S\p’sI — Wx)™'u = 1/(6 — 1) by the previous part on
eigenvalues.

In order to obtain a more elegant formula, we need to study the denominator and its “pseudo”-
transform:

22 T 2 /
/(Z_gg)gf(x)dx =— / mf(z)dm + Z/Mf(x)da: = —T(2) — 2T'(2),

where T is defined in Definition [I.3.2] Therefore,

~ 2 TW,’LL(S\P,S)2
<UP,37 U> = < = p =
_TW,u<)\P,s) - AP,5T1/1/7u()\P,s>
1

(0= 1)2ApsTyy, (Aps) + (6 —1)
Then, we focus on @ps. Some simple results of linear algebra show that,
Pl/?aRs

Up, = —UPs
C it Pa
P,S P:‘S

Using the fact that &},Spﬂp,s =14 (0 —1) (ips,u)?, the angle can be written,
(PP
- b Pipg
2
<<Im + (\/§ — 1)uut) ﬂp7s,v>
14 (0 — 1) (ips, u)?
2

(¢@ps, 0} + (VO = 1) Gips, w) u,0))

1+ (0 — 1) (iips, u)? '

For u and v such that (v,u) = 0, we easily obtain,

<ﬂP,S’ U>

T C—
1+ (0 —1) (aps,u)?
. 0
(6 — 1)2ApsTYy,(Aps)
(i)t = — et

1+ (0 —1) (aps,u)®

2. The second part of the theorem is a direct consequence of the first part. Because Wx and
Wy satisfy assumption and P is assumed detectable, then )‘ix

= éX and j\f)y 1= éy
are the spikes.

,1

(a) We can write

1 A < AWy i .
— =Twu(0x) =) _ X gy, u)?

6—1 i=1 éX - )\Wx,i
where (Uw, i, u)? = w; creates an unit uniform vector w independent of the spectrum of
Wx.
Because )
1 1 ; 1~ As
g1 = Twallx) = 3" 5 ),
- Ox —1 miT Ox — /\ZX,Z‘ LI
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we obtain fx Py 9. The convergence is obtained using Theorem [4.4.1| to replace

n,M—>00
)\WX i by Ae

EX i
(b) Moreover, assuming that 0x i X,
n,m—00
N 0 0

2 2 P
ux,u)” —o = — = — + — 0.
(ix, ) X (6 —1)%6x T}y, (0x) (0 = 1?px Ty, (px) nm—oo

(c) Finally, a minor result from linear algebra proves the limit of the double angle. If
W = O'AO, with invariant uniform O independent of the bounded spectrum A, then for
two fixed vectors v,u € R™,

m
vV'Wu = o' Ai = Z Awi0iii; = (u,v) Trace (W) /m + O, (1/m).
i=1
This result is easily proven because v, 4 are uniform, (0, %) = (v,u) and we easily show
that

E[vu;]) =E Z 0; s0; yvsv | = (v,u) /m,

s,r=1

ar (Z ﬁiﬁi) = 0 and Var (0;4;) = O, (1/m2) ,

=1
Cov (31, ;i) = Op (1/m?)..

Using the notation Ox = )\ ol and Oy = )\ Sy, , for the estimated eigenvalues, we can
combine the first part and thls small linear algebra result to obtain

(utWX(éXIm W) By T — Wy)*lwyu)2
utWx (OxT — Wx) " 2Wx Wy (Oy T — Wy ) 2Wyu
(utWX(éXIm W) Gy — Wy)_IWyu>2
(e i)~ o) (v )75 ()
(Trace (Wx(éxlm - WX)—l) Oy Ty — Wy) TWyu + O, () )
(i 5 - () (- () T )

= (u,ax)* (u,ay) + O, <1>

mo

(ix,dy)® =

As in the first part, we use the relation between @ x and @ x to get

L. \2 <(Im+P) /Zf‘X?(I +P)1/2~ >2
W= G T P (# (L + Piy)

—0

(Ux,u) (u,ay) 0 + ((ix, dy) — (Gx,u) (u, @y))

(1 +(0-1) <axju>2) (1 + (1) <ay,u>2)
This leads to the result,

A A \2 2 2 P
(Ux,Uy) —aXaYnm—Joo 0.
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7.1.3 Asymptotic distribution of the eigenvalue and angle

Theorem 5.3.1.

Suppose Wx and Wy satisfy with P = Px = Py, a detectable perturbation of order k = 1.
Moreover, we assume that the spectra of of Wx and Wy are known. We defined

Sx = PYPWxpP'?
XA:Y — PI/QWYpl/Q,
P = I,+(0—1ud,

where u is fived and the eigenvalues of Wx and Wy are S\WX,i and S‘Wy,i fori=1,2,...,m ,respectively.
We construct the unbiased estimators of 0,

m m

2 1 1 Ay i A 1 1
Ox | ——=—S " gnd by | - ==Y -

Ox —1 M4 Ox — Awyi by —1 ™M Oy — ;\Wy,i

AWy i

where 0).( = )\2)(71 and 0y = )\2%1 are the largest eigenvalues of respectively Xx and Xy corresponding
to the eitgenvectors ux = Ug g and uy = (T

We can also construct these estimators using the m — 1 smaller eigenvalues of Sy and By instead of
Ay ,i and Ay ;.

1. If% — 0, we define

1 AW i 1 X?/V .
Mo = M) = 230 iy gy = LSS A

where we assume

px=E[ix] 4o (). o =B ] +o( ).

and convergence rate of (Ax,0y) to (px,py) in Op (8//m),

N 2 6
(W) () () ()

~ Y
N 2 (@) —
Ox 0 1 [ %ex S 09,02,X P\ Vm
2 Y
Oy ~ N 0 , E 0 Ty y 09,02y op —W
iy Gy )2 %y 0002 X Opa2y Ooa 1
<UX7 UY> ) k) k) E} k) « ,X,Y m
where
) 9 1
oy =
X (0-1)2pxMiox’
02 1
Oxy =

(0 — 1% pxpyMiox Moy’
b2 2 (M2,2,X - M12,1,X)
h,x = ’
My x
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262 M3 x 2
2 2 2 1,3 2
Oa2,x = px (Mo, x —Mis x) + (QPX — - 1) (Mag x — M1,1,X)
o (0 - 1)PXM1,2,X)4 ( ( ) M2 x
M3 x My x
—2px <2 X = -1 M. 3,X — — ,
P P Mo x >3 M2 x
20 <M M? + 2M 5. x M.
g 2 =
0,02,X M12,1,XM13,2,XP,2X(_1 1 0)2 1,1,x M1 9 xPX 1,3,xM22,XPX

+M? ) x(Myox —2Mi s xpx) — Mo x (Moo x + Mz,s,xpx)),

2 _ 2 4 2 4 2 2 2
Oa2 Xy = 02 xQy + 052 yax +4ax y (1 —ax)(l —ay).

2. If % — 00 (Assumption |2.2.2 (A1) ), then we can simplify the formulas. We define

1 — 1 —
Mrx=—% Ny and My =—3% Xy
i=1 i=1
Using this notation,

5 040, (1)
<<a§}fu>2) ~r <<1 + 22X 1o, (éz)) ’
1 202 (1 — My, x) 2 (2M3 x — M, x — M3 x) op (ﬁ)
m 2( ) + 1 ’

2MZ x — Mz x — Mg x) 2 (4MZ x — M3 x — 4Mp x M3 x + My x

bx 0+ Op (1)
éy ~N 2— M. o +18p o ’
My x —Mj vy
(ax,ay)? 1+ [ +0p (9%)

202 (1 — M3 x) 0 2 (2M3 x — Mz x — M3 x) on ()
0 202 (1 — My,y) 2(2M3y — Moy — Mgy ) | |+ | o (\/Lm) ,
*( o ()

2M32 x — Mo x — M3YX) 2 (2M§,Y —Myy — Mgwy) 5

3=

S=2 (4M23,X — M3y —4AMy x My x + M4,X) +2 (4M§’7y — M3y —4Myy My y + M4,y) +4(Myy — 1) (Mg x — 1).

Moreover, the asymptotic distributions of Ox and Ox are the same.

s, If % — d, a finite constant, then a mixture of the two first scenarios describes the first two
moments of the joint distribution.
The formula of the second moment is asymptotically the same as the variance formula when
% — 0.

The formula of the first moment is asymptotically the same as the expectation formula when

)

Jm

4. The random wvariables can be expressed as functions of invariant unit random statistics of the

form:
u m ATW . 9
K N
MT,S,X(IO) = E AX 5 <uWX7i’u> .
i=1 (p )\Wx,i>

(Assuming a canonical perturbation leads to a simpler formula)

o FExact distributions:

L= (0x) |
_ 0 1
O 0% it ()
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Moreover,

lix,ay) = (ax,en) (ay,en) + /1 — (ax, en)?y/1 - (ay, 1),

m
D dxatyy = \/1 - <ﬁx,€1)2\/1 — (iy,e1)*Z,
i=2

Z ~ N<0,1>—|—Op <1>,
m m

where Z is independent of (ix,e1), (iy,e1), Ox and Oy . In order to get the exact distribu-
tion, we should replace Z by Zg}l v;0; where v;V; are independent unit invariant random

vectors.

e Approximations:

X <M1,1,X (p) — M1,1,x(p)> ;
Ox = p+ Miax (7) + 0, <m)

= M1 x+0,(1),

bx = 0+(0—1) (A?LLX () — Ml,l,X(pX)> +0, (i) .

We provide three methods of estimation of the angle in order to estimate it for all 6.

lix,e)? = —0 1 <2M1,3,x(px) B 1) My x(px) — 55
) (0 —1)% \ pxMi2x(px) Mz x(px)  px (Mi2.x (px))”

M - M 1
- Mo x(px) 12.x(px) Lo, ( > 7

px (Mi2.x(px))? m

1 U U
= l—i-g (1 — Mo x + 2M> x (MLX - 1>>

1 u u 2 u 1 1
oo (12t ol i) 0, (55) 40 (7).
1 1

b s (1) 10 (3) v ()

Finally, the double angle is such that

= 1+

VMo x —1,/Myy — 1 1
)+ 7 Z+ 0, )

(x,uy) = (ux,e1)(Gy,er

Remark 5.3.1.1.
If the spectra of Wx and Wy tend sufficiently fast to a Marcenko-Pastur distribution of
parameter ¢ we have,

2 0 2¢(0—1)26> 2¢%(0—1)6°
Ox Asy N e 1 T e—(0-1)2 (===
(ax, u >2 [CESTERY L _ 2¢2(9—1)63 _2c%0 (2 +(0(0+2)—2)c+(0—1)?)
5 50 I+g5 (= (0—1)2)(c+6-1)2 (= (O=1)2) (co-1)7
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and
2 0
0x 0
A Asy c 2
(A by 2) N =N
(ax,ay) T+557
_ 2¢(6—1)262
c—(0—-1)2 0
1 0 _2c(0-1)262
— c—(6—1)2
m
2c2(0—1)03 2¢2(0-1)03
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2¢2(0-1)03
(c—(9—1)2)(c+9—1)2
2¢2(0-1)03
(c—(9—1)2>(c+6—1)2
4c202 (u7(971)2)2 (u3+4c2(971)+u(971)(9(9+5)75)+2(971)3)

T (e (01D (ero-1)2

)

<c7(971)2)(c+971)2

If 0 tends to infinity, then

Ox AV N 1— QC
N 2 (0-1)2
(ix,u) T+ 5

Moreover,
0 0
:X Afgy N 0 l
W e | Tm
<UX, UX> 1+455
(Page [74)

Proof. Theorem [5.3.1

of generality that P is canonical. Therefore, u = €.
In this proof, we use the following notation

and M

T8,

In Theorem we show that M, s x(p)

for M, s x(p).

m

u
In particular, M1 1 x(p) = Twy e, (p) and My 1 x(p) =

—1)F(c+0—1)7

2c6? 2¢2
27, .

202 2c (e(é-i—l)
2¢6? 0 2¢2
0 2cH? 2¢2

2
2 2@ Al

The proof of the theorem is divided into six parts. First, we simplify the problem and introduce
the notation. Then, we recall the characterisation of eigenvalues and eigenvectors of perturbations
of order 1. This allows us to demonstrate the fourth part of the theorem divided into three points:

eigenvalues <§X>, angle ((ﬂx,u>2> and double angle ((ﬂx,ﬂy>2>. Finally, the three first parts

of the theorem are just consequences of the fourth part. The computation of the particular case
assuming a fast convergence of the spectrum to Marcenko-Pastur distribution is left to the reader.

Prerequisite discussion Using the invariant by rotation property, we can assume without loss

” m T
Wx, N
Mr,s,X(P) = Z AXZ su%/[/x,z,la
i—1 (p - )\WX,Z>
Ny
Mr,s,X(p) = Z AXﬂ 59
i—1 (p )\WX,z‘>
K
M s (p) = Z =

TWX (p)

Sy (p) are asymptotically the same. Therefore,

both transforms lead to the same asymptotic unbiased estimator Ox and we can prove results only
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Using characterisations presented in Benaych-Georges and Rao| [2009],

Characterisation:
1
0 = 1+4——
M1 x(0x)
1
W ,i ~D
> ity i _;;/X ZUWX,i,l
and
0
<ﬂx, u>2 =

(0 —1)20x M5 x(0x)

This result is generalised in Theorem and its proof can be found in page [103]

Unit invariant vector statistics for eigenvalues: Assuming that E [éx} = px and the rate

of convergence is 6/1/m, then

_ < >‘WX, A2 j‘Wx,i 2 é
7_ )\ Wx’Ll N UWX11<X_PX)
AV 4 R . 2
T MiXJ 3y i1 <0X - pX)
o)
Therefore,
Muix(px) = gy | Muigx(@
A 1,,x\Px) — g7 M A 2 ~
Ox = px+— =3 1’3’X(~X> (9)( _PX> , where 0x ~ px,
Mo x(px) My x(0x)
u
M11X(P)—9%1 Mllx(px) 911<u 9
= + — — Mi2x(p) — Mo x X>+O ()
px M2 x(p) Mo x(px)? 2x(p) (px) P\m

We show that M1 x (px) — 505 = Op (ﬁ)

u 1 u u ~
M1 x(px) — -1 = M1 x(px) — M x(0x)
u A 1
= M2 x(px) (9X - px) + 0, (m@)
1
= o ()

u
Moreover, a similar argument shows that <M172’X (px) — M1’27X(px)> =0, <\/%92>.

This leads to the first important equation:

A ]\ufllx(px)—gfll (0)
Ox = + - +0, | — 7.4
X PX MI,Q,X(pX) p m ( )
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Then, we study the unbiased eigenvalue,
1

Ml,Q,X(éX)
m

S g

=l o —Awy

Ox —1 =

1
M1 x(px) — Mi2x(px) (9)( —px ) + 0, (3%)

1 0
= u 1 + P E
M x(px) — Mi1x(px) + g=3

= 9—1—(0—1)2<M1717x(px) MllXpX)+Op( >
This leads to the second important equation:
2 U 0
Ox =0+ (60— 1)2 <M1,1,X(PX) Ml,l,X PX ) + O, (m> (7.5)

When 6 is large we can use

1
’LUW)(’LI_'_ A ZAWXZUWXZI—i_O <03>
Xz 1

to show
u

~ . u M27X 1 1
0x = (9 1)M17X My x p<m>+0p <9> (76)

)

= OMix+0,(1). (7.7)

Unit invariant vector statistics for angles: We propose 3 Taylor expansions of the angle.
1:  Expansion of fx around px- Applying a Taylor expansion around px as computed previously

A~ u A
for 6 1} and a similar one for M1 s x(6x) lead to

. 2 0
<UX7U> = ~ u ~
B 0 1 <2M1,37X(px) - 1) M1 x(px) — 57
(0 —1)% \ pxMi2x(px) Miax(px) px/) (Miax(px))®

M2 x(px) — Mi2x(px) < 1 )
- D) +0, | — |-
px (Mi2,x(px))

2: Expansion of order 2 of the transform when 6 is large. Using the fact that 6 is large with
1} and that M171(0AX) =1/(60 — 1) leads to a different estimation,

1 0 u
<11X,U>2 = 1+ o ?MQ,X +Op <>

1 1u 9 u 1 1
— 14-—-M My ([ Myx—1 .
T X Ty ”( 1LX )+Op(92)+0 (em)
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3:  Expansion of order 3 of the transform when 6 is large. Using better estimations of Ox 1)

u A~
and M1 2 x(0x) when 0 is large leads to

. 9 1 u U
(ix,u)” = 1+5 1—Mox +2My x ( M1 x —1

1 u u 2 u 1 1
+-§§ <1—-2JV[2¢X *‘EiAIQFX —'2Jk[&)(> 4—()p <6ﬁ}> +_()P <6hql> .

The study of the angle (ux, u>2 is separated in many cases when 6 grows,

. 93 02 92
0 finite ‘ ‘ N — constant ‘ ‘ NG — constant ‘ ‘ -~ — constant ‘

A |B]| C | D | E | F | G | H

A: A delta method using the first expansion of the angle leads to the result. In this case the
standard error is of order 1/y/m; therefore, the error of order 1/m is negligible.

B — >F: Studying the first expansion shows that the error is not important. Indeed assuming
that § — oo allows an expansion for large 6. This shows

1
Va ( tx, 2) ~
r{ (Gx,u) P
Moreover, 1 — E {(ﬂ X,u)ﬂ is of order 1/0. Assuming € ~ 1/m is the error of the first expansion,
then

1
€ m 0
e~ 1T m Y
1
€ = 0
~ = — 0.
Var ((ﬂX,u>2) Ovm "

D-E-F: The previous arguments are still valid in these cases. Moreover, we can also show the
same result using the third expansion. Therefore, the estimations are asymptotically the same.

G: This scenario is the most difficult and only the third approximation works in this case. How-
ever,

e The expectations obtained by expansions 1 and 3 are asymptotically the same.

e The variances obtained by expansions 2 and 3 are asymptotically the same.

The equivalence between the variance is direct, but the expectation requires some computations
left to the reader.

H: Using expansion 2 leads to a negligible error compared to the standard error and the expec-
tation. This study provides the behaviour of the statistic for all 6

o If % — 0, then we use the first expansion.

o If % — 00, then we use the second expansion.

o If % — d, where d is a fixed constant, then we use the first expansion to estimate the

expectation and the second expansion to estimate the variance.
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Unit invariant vector statistics for double angle: Assuming that 4x and @4y are the first
eigenvectors of X x and Yy respectively, then without loss of generality, if u = e,

m
(Ux,ty) = fLX,17fLY,1+E Ux iUy
i—

= dxaiva /1 - % ,/1 - #3,2/vim
= ixaiya + /1 o/l - b Z/vm.

where og( and a%, are the limits of ﬂ%( ; and ﬂ%q respectively. Because the eigenvectors are invariant
by rotations that do not affect the first compbnent, we can easily show that Z is independent of
tx,1 and @y,1. Moreover, Z is the scalar product of two independent unit invariant vectors of size
m — 1 and can be estimated by a standard Normal divided by +/m.

Joint distribution: Using Theorem and applying a simple delta method to the estimation
of Oy, by, (ux,uy), (ux,u), (4y,u) and Z leads directly to the joint distribution.

The computations are lengthy but straightforward. Therefore, it is left to the reader, who simply
needs to separate the three rates of 8/,/m as previously.

7.1.4 Induction proof of Invariant Theorems

In this section, we prove some invariant theorems all at once by induction. The procedure is summarize
in Figure First we initialize the induction in pink. Then, the induction assumes the proven results
in the grey part and tries to prove the blue, red and green parts.

Theorem [5.5.7] Theorem (2,3) 641 BITT 5.8.1)(1)

1 ° ° ° ° °
— ® — .\. o —— o
k-1 — e — ° \\"o e — e

c——e—

Figure 7.1 — Proof procedure.

Theorem 5.5.1. (Invariant Angle Theorem)
Suppose that W satisfies Assumption and

Py =1, + (05 — Degel, fors=1,2,..,k,
k
P, =1, + Z:(GZ — 1)ezel respects (A4),
i=1
where 01 > 0y > ... > 0. We define

£, = PVPWDL,
- 1/2 1/2
Sp, = PPWPRY,
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Moreover, for s =1,2,...,k, we define

A~ ~

“155,17915571 s.t. EPSUPS, —9153,1 P10

Up, s, 0p.s st Npip,s=0p, sip,s,
where 9;,871 =g and Op, s = s

Bs,1 ’ Xpg,s’

1. Then,

k

1

~92 _ 52

- O )
S04 00 (1)

i=1

Therefore, the distribution of Zle fc%;kysﬂ. is asymptotically the same as the distribution of 4%
studied in Theorem [5.3.1.

5,1,

2. Moreover,

Remark 5.5.1.1.
1. If

2 2 032 1
up g~ N a’e%m +0p 0 )

then

2
2 Tp2 1
Zupk,lz ~ (Oé ) 9%m> + Op <91m) )

where o? = 1 — Mgl_l + O, (i> < 1 can be computed more precisely as in Theorem

92
1
m

1—_¢c
2. Assuming a Marcenko-Pastur spectrum, a? = 1_?%21)2 and 02, = 2c¢*(c+ 1) + 0p(1).
01—1
01

In particular if o is large, then o ~ 1 — ¢/61,

3. In the general case, if % is large,

(Page
Theorem 5.8.1.
Suppose Assumption holds with canonical P and[2.2.9(A4). We define:

~1
Up, 1
at ” ”

U — Py,2 _ UPp, 1:k,1:k UPy 1:k,k+1:m
: UP, k+1:m,1:k WP, k+1:m,k+1:m-
At
ka

To simplify the result we assume the sign convention,

Fors=1,2,...,kandi=1,2,...,s, up,;; > 0.
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1. Without loss of generality on the k first components, the k™ element of the first eigenvector is

N Voo min(6;, 6;,) 1
R R VT R W

01\/@ 1 R min(&l, Hk) ( 1 )
= Y N1 -&2 240, —al | +0, | ———
10k = 61| m e ( 91/29;1/2m o VO Om

vV 91019 1 min(&l, Qk) < 1 >
= ———— \/My—-1Z24+0,| ——— O | ———
b= onlvm ¥ T g, ) T\ Vaion )

where Z is a standard normal and Mo = % oy 5\12/‘/’1 1s obtained by conditioning on the spec-

trum.
o Therefore knowing the spectrum and assuming 01,0, — oo,

919k MQ — 1>
’ ’01—9]{‘ m

R Asy
,U’Pk,l,k ~ N<0

e If 0y — oo and 0 is finite,

. 1
fU/Pk”l’k - Op \/ﬁ .

e Therefore, assuming 01 and 0y are finite,

. 1
qu117k = Op <\/m> °
This result holds for any component ip, s where s #t € {1,2,...,k}.

Remark 5.8.1.1.

The sign of ip, 1 obtained by construction using Theorem is always positive.
By convention (up, ;; > 0, for i = 1,2,..., k), we multiply by sign (4p, 1,1) obtained in
the construction. Therefore, the remark of Theorem describes the sign of the
component assuming the convention.

S . A A . N 1
P {Slgn (UPIml,k) = sign ((9131@71 - 0Pk—171) qu—hl,kqu—hLl)} =1+0 <m> .

Thg ot 1: . k- } L ) .
2. For s = 1,....k, the vector "™ yhere &2 = i “1257 18 unit invariant by rotation. More-

V/1-a2’

1— 2
iy ~ N (0, m%) ,

over, for j >k,

where o? is the limit of 2.
Moreover, the columns of Utlk +1:m,k + 1:m] are invariant by rotation.

3. Assuming P, = 1, + Zle(ei — 1)e;€l is such that

01,02, ...,0, are proportional, and

Ok, +1, 0k, 42, ..., O are proportional,
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then

ZukJrlml ZukJrlmlkl
1 1 min(61, Ox)
~ W (O (91) ¢ <912m>> O <maX(91,9k)m) '

Moreover, if P satisfies Assumption |2.2.9(A4) with min 9—1 9—") — 0, then
1 1 1
2
Zuk+1:m71 ~ RV <O <01> ,O (9%m>> + Op <617’n> .
(Page

Theorem 5.4.1. (Invariant Eigenvalue Theorem)
Suppose that W respects Assumption and

Py =1, + (0, — Degel, fors=1,2,..,k,

k
P, =1, + Z(@l — 1)esel satisfies (A4),

i=1

where 61 > 0y > ... > 0. We define
S, = BIPWBY?,

& pl)2 1/2
Yp, =P, WP/’
Moreover, for s =1,2,.... k, we define
uPsJ’ePs,l S't' EPI'LLPS’ _0}55,1 P8717

Up,s,0p,s st Npip.s = 0p, slip,.s
where 0p | = /\2155 ) and Op, s = AEP}WS.

1. Then, for s > 1,

A ; 0,
epkvs P,s,]. ~ E
and
j p B2 B2
Pel = VP10 ™ T s

where 01 and 0y are the largest and the second largest eigenvalue, respectively.
The distribution of Hpk s s therefore asymptotically the same as the distribution of 9P 1 studied
in Theorem [5.3.1]

2. More precisely we define for r,s € {1,2,....k} withr # s ,

k
Po=Tn,+Y (6 —1) e}

=1
i#ET
o If0s > 0,, then
N ~ ép_msépk,s(er — 1) ~9 1 07"
Ve = OPre = =y T g P PO ) O ()

o IfO, <0, then

A A o éP_T,sfléPk,s(er - 1) ~9 1 9
Opps —Op_,s-1 = — 0, —1— éPk,s up_ . s—1rt Op +0p m3/2
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Remark 5.4.1.1. A .
In this work, we are interested by the unbiased estimation of 0p,_ 1. The invariance of 0p, 1 is
a direct consequence of the theorem. Moreover, Theorem [5.3.1| provides the distribution of

0p,.1-

(Page

Theorem 5.11.1. (Characterization of eigenstructure)

Using the same notation as in the Invariant Theorem and under Assumption [2.2.1]

and (A4), we can compute the eigenvalues and the components of interest of the eigenvector of
Yp,. Using assumption we can without loss of generality suppose the canonical form for the
perturbation Pj,.

e Figenvalues :

m 3 A k—1 A
)\Pk—lal ) 0Pk7175 ) HPkflvl <9 1
z : A 3 Py_1,4k T 5 5 Py_1,8,k z : A A Py_1,i,k _ 1
i=k epkas Pr_1,i epk s epk 1,8 i=1 0Pk75 Py, O — 1
i#s
1 9k—9g)
(@0 () o~ (%

fors=1,2,... k.

Remark 5.11.1.1.

1. The formula is still valid without Assumption However, the size estimations
of each term are not necessarily accurate anmore.

2. If we do not assume canonical perturbations, then the formula is longer but the
structure remains essentially the same. Assuming Assumption [2.2.1]leads matrices
that are invariant under rotations. Elementary linear algebra methods extend the
result to any perturbations.

e Figenvectors :
We define up,; such that WPup,; = Op,itup,; oand ap,; such that

P,i/QWPkl/Qprk’i = épmﬂpk’i. To simplify notation we assume that 6; corresponds to épw-. This
notation is explained in and allows to describe the k first eigenvectors more efficiently.

- 2
<qu,1ye1>

2
1 1
(a)Op<93/2 - ) (b)~ _\/917” (C)op<91/2 >
SN min(61,05) im
i APy _q.i N _ OPp_y,1 " _ Iiil OPy_1.i A N
e —— i,1%p, ikt z————> ——1up 1,1%p, 41,k + T S— i,10p, ik
k—1,51%Pg 1.4, k—1,1,1%P, 1,1, k—1>61 %Pk 1.3,
ik 0Py 1 — AP, _q i Op,1—0p, 11 i=2 0Py — 0P, i
= 32 ‘ 62 k—1 02 )
S Pr—1 a2 " Pr—1.1 a2 +3 Pr—1-t a2
5 5 Py_1,ik T 5 5 Pp_1,1,k 5 5 Pp_1.ik
iZh Op 1 —Ap, ;)2 Tk Op, 1 —0p,_,,1)% k1 = Op 1 —0p,_,,0)% k1
61m 1
1 ~ 1
in(0. 0.2 j
(d)op<p> (O~ in(01.07) (f)0p<91M)
1

1
<"1Pk,1’ 5k>2 = m(g)w
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~ 2
<upk,17 es>

Finally,

(R)Op [ —5L1—— .\ . min(07,05)
p("i/%l\/m) “ V05 min(671,6})

APy, N N OPy_1,1
s 1 UPy_q,4,sUP,_ gkt >

Upy_1,1,s%P,_ 1,1,k

D1 | iz Opp1 = APyp_q.i Ope1 = 0P, 11

2
min(61,6;) min(6s,6;) min(0;,6s)
o i i 1)O,,  2in(01.05)
<2 7’( ’;‘f’,‘s( V0501 0;m RO\ oo, vim
N i Opy_y.i 4o OP_q.s _
P ~0 qu 1%, ""Pk 1,1,k F Iy qufl*s*squ—l*‘f‘vk
i=2,%#s " Pp,1 Py _ 1,1 Pp.1 Pr_1,s

(@p,1,1, 0P, 1,2, s VOKTEP, 1 ks s TP,

VIO =1,

min(61,0)
1+Op (max(@l,ek)m)

Up, 1 =

9

where \/1 +(0-1) ﬂ%kl i 18 the norm of Pkl/2’L~ka71 that we will call Ny.

Remark 5.11.1.2.

1.

By construction, the sign of 4p, 1 is always positive. This is, however, not the
case of up, ,;;. We can show that :

P {Sign (ip,1,1) = sign ((éPk,l - équ,l) ﬂPkfl,Ll@Pk_l,l,k)} - L

m—00

Moreover, the convergence to 1 is of order 1/m. If 6; tends to infinity, then

Ps =s 0, — 0 — 1.

{sign (tip,,1,1) = sign ((61 — O) ap,_,1.%)} P

Therefore, if we use a convention such as sign (ip, ;;) > 0 fori =1,...,k—1, then
the sign of 4p, 1 is distributed as a Bernoulli with parameter 1/2.

Without loss of generality, the other eigenvector ip, , for r = 1,2,...,k — 1 can
be computed by the same formula thanks to the notation linking the estimated
eigenvector to the eigenvalue 6;.

However, the formula does not work for the vector up, . Applying a different
order of perturbation shows that similar formulas exist for 4p, ;. (If the pertur-
bation in e; is applied at the end for example.)

This observation leads to a problem in the proofs of the Dot Product Theorems
and Deeper investigations are necessary to understand the two eigen-
vectors when k = 2.

m 2 N2

Dy — >‘P17 02 + 9P1,1 02

2 = 0 )\ Pl,’LQ 9 0 2 P1,1,27
i=2 Pz 2 7 APy, l) ( P2 = VP 1 )

0
Op(%) Op<(02—911)27n)
1
N2 = 14—~
2 * (03 — 1)Dy’
1
NoDy = Dz+92_1

1 1 01
= 5 11O (92>+O <(92—91)m>‘

119
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Furthermore, the theorem must investigate the m — k noisy components of the
eigenvectors. For r = 1,2 and s = 3,4, ..., m,

A )
m Py,i ~ ~
. %’UJP ; uP i.2
N Zz_l 6P2,r_>\P1,z‘ 152,58 171,52,
Por.s = \/7
ELE) DTZ\TT

The estimations using this last formula are difficult. When we investigate these
components, it is profitable to look at

m m
- 9 N ~92
Up,1.t/ E :ng,l,s and dp, 2.t/ E :uP2,2,s
s=3 s=3

for t =3,4,...,m.

3. If the perturbation is not canonical, then we can apply a rotation U, such that
Uus = €5, and replace ip, ,; by Uup,_, ;. Then, <l~bpk’1,€5>2 is replaced by

(Upy1, u5>2.
(Page
Proof
Pink
First, we show the initialization pink part.

Theorem [5.5.1] Theorem [5.8.1] (2,3) 541 G.ILT [(.8.1)(1)

1 ° > e ° ° °
°

\)o o —— o

The Invariant Theorem [5.5.1] is trivially true for perturbations of order £ = 1. We directly prove
Theorem [5.8.1] (2,3) for k=1.

Proof. Theorem (2,3), k=1

We prove the theorem for k£ = 1. In the following picture we can assume the first result for £ = 1
is proven.

Theorem [5.5.3] Theorem (2,3) 641 BITT 5.8.1)(1)

1 ° >0 __ ° ° °
° TTYe----e---->0
We define
t
Up, 1
at - -
U — Pg2 | Up, 1:k,1:k UPy 1:k,k+1:m
: UP, k+1:m,1:k WP, k+1:m,k+1:m-
~t
qu,m
and

(L 0

where O,,,_1 is a rotation matrix.
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2. Assuming a canonical P = I, + (1 — 1)ejel, we know that Y~ P11/2WP11/2 and Olf]O'i
follow the same distribution under Assumption Although the eigenvectors change, they
still follow the same distribution, O;U* ~ U?. Therefore, Uj (k+1):m 18 rotationally invariant
and Corr (a5, , @i j,) = 0j, (Jj2)-

We can show that knowing the first line of the matrix, then @p, ; 2. /||@p, i,2:m|| is unit uniform
for i = 1,2,...,m. Therefore, these statistics are independent (not jointly) of the first line.
Uniformity of 4p, ; 2., implies for s = 2,3, ...,m,

m% Vm——2ubs Up,1,s ~N(0,1) + op (1).

|[@py 1,2:m]| /1-a3 |

By Slutsky’s Theorem and the distribution of the angle for k£ = 1, Theorem

R 1—o? 1
up 1,s ~ N <0, ml) + op <\/ﬁ> )

where o2 is the limit of the angle and can be approximated by 1 — Mgfl +0, <i) < 1.

o7

3. Using the distribution of &%317171 given in Theorem m

. R 1 1
ZUQ:m,l =1- 0‘%1,1,1 ~ RV <O <91> .0 <02m>) :
i

Then, we prove the Invariant Angle Theorem for the eigenvalues, Theorem for k=2.
Proof. Theorem k=2

We prove the theorem for k£ = 2. In the following picture we can assume the grey results as proven.

Theorem [5.5.1] Theorem (2,3) B4T BILT [5.8.1(1)

1 ° ° ° ° °

. .\).”h.””}.

Without loss of generality, we prove the invariance of éphl. For simplicity, we assume 61 > 65 but
this assumption is only used to simplify notation. Each step can be done assuming #; < 0. Using
Theorem and the canonical perturbation P, lead to

m

>\P1, 02 9P17 02 1
A Pl,Z,Q P1,1,2 _ °
= 0p )\Pl i 9P2 1— 9P1 02 — 1
Therefore,
m
9P1, 02 _ )\PL 02 1

Upy 1,2 P1ﬂ,2 0y — 1

i=2 HPQ 1— APl,z

! + — ! +0, <1>
UP, 2
0P27 =2 Z " 0 -1 9%

1% 1 1 1 1
= - (1 — il
iy 00 (7)) v -0 ()

Oy —1—0 1 1
— _?—1:'27+O ( 2>+O <>7
Op,1(62 — 1) 0 01v/m

9P2,1 - 9P1
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where 1* is true because

m m

Y A2 _ 3 .2 A )
E )\Pl,iupl,i,Q = E )\Pl,iupl,m—9P1,1UP1,1,2
=2 =1

S j a2
= Yp 22— 0p1Up 129

i A2
= Wap— 9P1,1uP1,1,2

1
= 14+0,| — .
*P(WJ
The last line is obtained using the fact that the canonical perturbation P; does not affect Wa.y, 2.m-

Moreover, W respects assumption therefore, Wo 9 =1+ O, (1/4/m). On the other hand the
second term 9]317112%3171’2 = Op (1/m) by Theorem (2) for k = 1.

Thus, by Theorem [5.8.1)(2),

02 > ( 02 >> - - 9AP11éP21(92—1)A2
1+0,( —— | +0,| ————— 0 —0 = - 2 - U
< ’«%%—%> G =y ) ) O =) Oy —1—0p,0
60
@<m5ﬂn>
2 — VU1

We note that even without Assumption [2.2.2(A4),

~ ~ min 91 92
O,y — Op 1 ~ (m)

More precisely we can write

A A Op, 10p, 1 (2 — 1) 1 min (6, 62)

9 . 9 - _ 1, 2, - a? 4 O — )+ O e N2 .
Pa,1 Pyl 0y —1— 9P2,1 P,1,2 P\ m D m3/2

Each step of the computation can be done for éﬁz 1 épz,g. Therefore, for s # ¢t € {1,2} we obtain
the general result

b Oy i Op,10p,s (6:— 1) ,
1 O S D W B T R Wl
< * Op <98(9t - 93)) * Op <\/m(9t — 95)>> < Pz, Ps’l) 0, —1— 0P2,s uPsJ,t

016
m(92 — 91) )

This leads to

A N éﬁs 1éP27s (Gt - 1) ~9 1 min(@l,ﬂg)
Op,s —0p1 = — 010 Pt +0p <m) +Op (m3/2)
2,8
min (61, 62)
—

Proof. Theorem [5.11.1}, and [5.8.1)(1), k = 2

I We prove the theorems for k = 2. In the following picture we can assume the grey results as proven.
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Theorem [5.5.11 Theorem [5.8.1] (2,3) 541 GILT [.8.1)(1)

1 . . . ° °

° o\o o — 0

These proofs are exactly the same when the perturbation is of order k. Therefore, we will do it only
once in pages and As we will see the proof of these theorems uses only the grey results
and the proof of Theorem ( ) for k uses Theorem m 1| for k. Moreover, although the proof
of Theorem [5.11.1] for k > 2 uses Theorem [5.8.1(1) for k — 1, the initializing part k¥ = 2 does not
need Theorem ul

O]

Blue

In this section, we assume all the results true for £ — 1. These results appear in grey in the following
picture. We want to prove |5.4.1} |5.11.1f and [5.8.1|(1) for k.

Theorem [£.5.7] Theorem (2,3) 641 BITT 5.8.1)(1)

1 ° ° ° ° °
—e— e Ep p—
k-1 — e — ° \\"o e — e

e —— O

First, we prove the Invariant Eigenvalue Theorem.
Proof. Theorem [5.4.1

To prove this result we can assume the grey results in the following picture as proven.

Theorem 5511 Theorem [5.8.1] (2,3) E.41 BILT [5.8.11)

1 ° ° ° ° °

— e — o\o e — @
k-1 e ° \\'lo e — e
k o ° TS e----e--—->e

The proof for k is the same as the proof for £k = 2 with a small negligible error. We present the
proof for ép,ws — épkilys, where the last added perturbation is of order 6 and 61 > 6y > ... > 6.
Similar computations can be done to prove the result when the last added perturbation is of order
0, r # s.
By using Theorem ( 1) for k—1 and using the fact that the p; are different in Assumption
EZ3(Ad),

k

m

Z : )‘Pkﬂ,i 02 4= 9Pk7175 02 + GPkflui 02 1
A N Pk 1727k A Pk: 17Sk A A Pk: 177'7k _
i=k 0Pk:5 - )\Pkfl ( HPk s 0Pk—1 s i=1 0Pk:5 - ‘9Pk71, 9’“ 1
i#£s
)\p ép 1 1
AP 02 k—1,8 )
= E Up + U + O =
k—1,5k Pi_1,8,k D : — —
i=k—1 0Pk E )\Pk 1,8 ePk s — aPk,l,s m_ 1 (65 92) O — 1
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Therefore,
épk—l s a2 - )\Pk 1,0 02 1 1
————Up,_, sk = — : p, ikt 7=+ O0p | —
HPJWS - 9Pk—17 e ; HPImS - /\Pk 1,8 kot O —1 mbs

L1 1 1 1
¢ g Cro (@) ram o () w0 (@)

0, —1—0p_, 1
L N e
HPk,s (Qk — 1) m@s (95
where 1* is true because

m m k-1

Z 5 2 _ } : 3 72 2 : i) 02
APk_l,iqu717i7k - )\Pk—lazupkfl,i,k - 0Pk—177'upk,1,i,k'

i=k i=1 i=1

k—1
_ 3 o a2
= EPkfl,k,k—E Op,_1iUP, ik
=1
k—1
_ i 22
= Wk,k—E Op,_1,iUp, ik
=1

1
= 140, —|.
The last line is obtained because the canonical perturbation Py_; does not affect Wi.p, pm.

Moreover, W respects Assumption u 2.2.1} therefore, Wy, = 1 —|— O, (1/4/m). On the other hand the
second term E Lop, 1,Zupk ix = Op(1/m) by Theorem ( ) for k — 1.

Thus, by Theorem [5.8.1)(2) for k — 1,

(1 +Or <95(9k0k—9s)) +Or <\/777(06:—03)> tO (m(Qk - 95;?5191 - 05))> (épk’s - éPk_w)

_ 9Pk71789Pk75(0k - 1)/&2
- N Pk—1757k
O, —1—0p,s

and
. “ min (6, 0y,
Opy,s = 0P, 1,5 ~ (TnS)
More precisely we can write
R . Op. , 0p, s(0p — 1) 1 min (s, 0,)
Opps —Op_ys = —— a7 +O0, (=) +0, ( —55— ).
k»S k—1,S ek _1- HPk,s Py_1,8,k p m P m3/2

The min function can be simplified in our case 6 < 65; however the above notation is more
generalisable.

Each step of the computation can be done assuming that the last applied perturbatlon is 0, instead
of 0 for r = 1,2, ...,k. Moreover, in this case, similar computations lead to Hpk s 9p s Where
s=1,2,..,k, s#r. We define the notation

k
pP..=1,+ Z:(HZ — 1)e;el.

=1
iFET

Therefore, for s # r € {1,2,...,k} we obtain the general result.
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e If 65 > 0,, then

N N épfmsép 7S(QT —-1) 1 0,
eplws - 9P—7’7S = - 0 1k ép uzp—msy'r + Op E + Op m3/2
r - L % S

IES

e If 65 < 0,, then

~ A ép7 s_lép s(0,—1) 1 0
9 < — 0 . — o T k> N 2 O _ 0 73
P = OPorsl 0, 1—bp, et O ) O

3|

Finally, we obtain for s > 1,

and for s =1,

Now, we prove the characterization of eigenvalues and eigenvectors.

Proof. Theorem [5.11.1
To prove this result we can assume the grey results in the following picture as proven.

Theorem [5.5.1] Theorem [5.8.1] (2,3) G541 GITT [(.8.1)(1)

1 ° ° ° ° °

—  — o\o e —— o
k-1 — . — . e e — e
k L o \.—)07777>0

The initialisation of the induction, k = 2, is easily proven using Theorem for k =2 and
for k = 1. Therefore, we directly prove it for k.

Assuming Assumption (A4) means that we have two groups of eigenvalues composing the per-
turbation. The first group is finite with bounded eigenvalues and the second group has proportional
eigenvalues tending to infinity.

In order to do a general proof we need to discuss the notation.

Notation 7.1.1.

e Usually we assume 6; > 03 > ... > 0 such that épk,s, the s largest eigenvalue of i?pk
corresponds to 6.
In this proof we relax the order 61 > 02 > ... > 6 to do a general proof. The order of 65 in
the eigenvalues 61,02, ...,0¢, t > s is ranks(05) = r¢ 5. Therefore, assuming a perturbation P;,
0, corresponds to the rf; largest eigenvalue of by p,. In order to use simple notation, we again

call this corresponding estimated eigenvalue, épms.
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Moreover, we change the notation for the eigenvector. In this theorem, for i =1,2,...,r, up, ,
is the eigenvector corresponding to 0p, .

e We assume two groups of eigenvalues of size k1 and k& — k1 such that these groups respect
Assumption [2.2.2(A4). Moreover, 6; is supposed to be in the first group. We say that the
groups are of order 01 and 0 respectively, such that only one of them tends to infinity.

Using this new notation we can without loss of generality build the proof for ip, 1. However, 6; is
not the largest eigenvalue anymore.

(a),(h) By Cauchy-Schwarz and using p; = E |:épk71i|,

m m

)\Pkflzi ~ ~
0 5\ UPy_1,i,1UPy_1,i,k
i=k P1 = APy,

)\Pk 1,0

qu 1,2,1qu 1,’Lk) <

1

1
Up, 1 8.t Zupk i1 =0p (01> (By Theorem part 3),

quflyiJC ~ RV (07 1/m) I

i=k GPIm )\Pk 1,8

Some prerequisite results are easily proven using theorems for k — 1:

E [)\Pk_lji’llpk_lViylﬂpkil%k} =0, (By invariance under rotation),
m k—1 1
ar [ Y apyaip ik | = Var | D dpiadp ik | =0 (7).
—k i—1 91m
1= 1=

This leads to

m m

N N _ 42
Zvar (upk71>ia1upk—17i7k) - ZE |:qu 1,11 Pk 1,1 k‘:|
i=k i=k

k—
= m — k-_|_1ZE [qu 1,11( Zqu 1,15)]
=1

-0 <1> .
91m
In order to obtain the order size, we use the last part of Theorem[5.8.1} Either the perturbation
in direction e is finite and the result follows directly, or the perturbation tends to infinity
and we can separate the perturbations into two groups, one finite and the other one tending
to infinity. The last result of Theorem leads to the estimation.

V Pk:*lvl ~ ~
ar S UPp,_1,i,1UP,_q,ik
TR PL— APy

o V Pk—laz ~ ~
- ar N qu—lvivlquflﬂ':k

P1— APy

n A A
C Pe_ 1, . N P19 . N
+ ov p X quflzivlqu717i7k7 p 5\ qu*l?jvlquflzjvk
17 AP_qi 1= APg_1,j
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The parts A and B are studied separately. By Assumption A P,_,.k is bounded by a

constant \.
m -
A4 - V AP v -
= ar | ——————uUp,_,,i,1UP,_,,ik
i—k P1— APy
~ 2
m
o E APy i ) ~2
— < qu—lvivlqufhivk
i—k PL— AP
2 m
o A E a2 2
~X p _)\ Pk 1,7,1 Pk 1,Zk‘
1 i=k
AV &
— < — /\> g Var (ip, ,i14p, k)
P i—k
1
= O(—4—].
O?m
. A R
/\Pk 1,0 >‘Pk71~,j N ~
|B| = Z Cov qu 1,8, lqu 1,8,k Aiquflxjalqufhjxk
itk )\Pk 1,0 PL = AP 1)
. R N
B . APy 1, AP, 1 . oA A . . 0
- Z N S UPy_1,i1WP,_1,jAUP,_1,i,kUP,_1 5,k | —
it — APy 1, PL = APy_1,j
m 3 A\ U ]
B Z 1 B l /\Pk,l,i )\Pkflaj ip 1dip . Z,&P Ap )
= — P 3 3 k—1,0,1 %Pk —1,], k—1,87 5k~ 1,07
il P1 = AP 1,i P1 = AP r=h 1
m “ ~ k—1
-y L o] A APy CTRT TR N T T 1
— — = = 150, k—1575 k=1,0T ", —1,7,T
i£j=k m—k+1 - >\Pk—17i P1— )‘Pk—le r=1
2
( A )\) k—1 m
P1— ~ ~ ~ ~
S Tk SE| D |an intie gty irie, ]

r=1 |i#j=k

m 2
E, E [Up, 1 ,i,1UP il
1=k

(3] (B2

N
Q
3
—
3
N————
T

VA
Q
N N
RS
g
~
Ea
L
=
S

Thus
o
AP,y 1
Var —kWY Gp L i1Gp ik :0<>.

Therefore, because the expectation is 0 by invariance under rotation,

m

Ap 1

k— 17 ~ A~

) e up i1 ik = Op| mm—— ]
i=k HPk, )\Pk—lyi 01/ vm

(b) We study

epkflal ~ ~
qu717171qu_1717k'

Op,1— 0P,
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By Theorem and Theorem for k — 1, we obtain respectively

If 6, > D, for D > 0 fixed ,3 d(D) such that, 1 > |ap,_, 11| > d(D) >0,

. 1
up,_4,1,k ~ .
k—1 /Hlm

We see thanks to Theorem [5.4.1] for k that

0Pk:7171 Hlm

Op.1 —0p,_,1 min(01,0)

The result is straightforward.

(c) We study

By Theorem

Therefore,

epkfl»i N N
~ UPp,_1,i,1UP,_q,ik

Studying the different possibilities for 6; and 6; leads to the result.

Hlel - HPkflyi

(d) We study

A straightforward computation leads to

- 5\%3 i 1 k—1 1
k—1, ~92 9
) A\ Up,_ ,‘,kgO () 1- Up, 1k =0 ()
i=k (epkﬁl - )\Pkflyi)Q kot 8 9% i—1 ko1t p (9%

)

(e) We study

By Theorems and

N2
0Pk—171 - Q%mQ
= ~ - 35
(epk,l - epk71,1)2 min (917 ek)
2 L
Py_1,1,k mb,

The result is straightforward.
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(f) We study
k—1

N2
epk—hi 02
E : A A Pr_1,3,k*

2 k—15%
i=2 (91%1 - 9Pk71,z)

By Theorem and

Then,

G%k 1,8 0

-1, ~2 )

- - ip, k=0 () .
Op1 —0p,_,0)? " "N —60:)*m

Studying the different possibilities for 6; and 61 leads to the result.

(g) The result is obtained directly from Theorem
(h) The same proof of (a) leads to the result.

(i) We study
9Pk—1,1 A N
A A quflvlzsquflyl’k7
Hpkal - 0Pk—111
fors=2,...,k—1.

By Theorems and ,

N ~ min (91708)

UP,_1,1,sUP,_1, 1,k ™ Glﬁm )
S

R N min (61, 0y,

apkvl _9Pk71,1 ~ (,rnlv)'

The result follows directly.

(j) We study
k—1 A
9Pk7177; ~ ~
A ~ WPy 1,i,8UP, 1,3k
iz 0P — 0Py

By the Theorems [5.4.1] and the result is straightforward as for part c.

(k) We study

gpk—lvs a a
N A Py_1,8,8WP;_q,8,k-
epk,l - 0Pk71,5

By Theorem and Lemma [5.8.1

If 6 > D, for D > 0 fixed ,3 d(D) such that, 1 > |up,_, ss| > d(D) >0,
1

Osm

ﬂpkflrs:k ~
The result is straightforward.

The link between p, 11 and @p, 1,1 is just obtained by basic notions of linear algebra and similar
estimations of the norm.
We now prove the first point of the remark.




130 CHAPTER 7. PROOFS

1. First we study sign (’llpk7171) by investigating tp, 1,1 which was defined in the statement of
the theorem. Then, by construction, the results hold for @p, 1,1 because we just rescale up, 1
to obtain @ p, 1. The theorem says

sign (’&pk , 111)

(a)Op | —g7dt— Vo m ()Op | ——
372 ~ P\ 172
oy/? v ) win(61,07) 61/ %m
m APy _q.i Op, ;.1 k=1 0P, _1,i
> = < Apy_q,i,10pP, Lkt ——————dp,_,110p, 1+ T ———4p,_,,i10p, ik
_1.1 —1.1s - _1.4, 101
— cign | = Op 1 — AP, _q,i Op,,1—0p, 11 =2 0P, — 0P,
A2 62 k=1 62
i Py _q,i Pp_q,1 N Z P _q.i
b ikt P 1,k WP ik
= 6p 1 —Ap, )2 TRL (bpy1 —0p, _, 1)% F-D =5 (0p 1 —0p,_, )2 TFU
61m
1 1
—
(d)op<¥> (O~ in(01.67) mo”(‘hm)

The first convergence is directly obtained from

1 1
up, 71,1’&p7 ,1,k+O — |+ Oy | —— .
e ’ (61/%) ' (eﬁ””m))

Using Theorem and assuming m and 6 sufficiently large lead to

sign ((éPk,l - éPk,1,1> ﬂPk_l,Lk)
sign ((91 — ek) ﬁpk7171’k) .

0P, 11

sign (4p,1,1) = sign| =
9Pk71 - 0Pk—171

sign (ip,,1,1)

. The second remark supposes a perturbation of order k = 2. Then, we already know how to
investigate the behaviour of the first eigenvector. In order to obtain the second vector, we
need to replace 0 P,,1 by épk,g in the formula and the order size changes. Similar arguments
as above lead to the result.

For the last part of the proof of the blue part in the Figure we study the first point of the
component Theorem

Proof. Theorem [5.8.1

To prove this result we can assume the grey results in the following picture as proven.

Theorem 5511 Theorem [5.8.1] (2,3) 541 EILT [5.8.11)

1 ° ° ° ° °
2 — ® — .\. e —— 0
k-1 — e — ° \\"‘o e — e
k i . o0 — e

This proof computes @p, 1%, but the method can be used to study any components ip, s; where
s #t € {1,2,....k}. In order to extend it we should use the notation defined in Notation
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First we assume the convention of Theorem [5.11.1} 4p, 1 > 0.

<aPk,1aek>
Xp i éP 1 éI"‘ i
m ko1 p2 k-1 #AQ
D ik TS VL 1,zk+9PkY1_9Pk Up, 11k+21 2 epkl Gr s Pk
m 32 42 ap)
APk—lvi ~2 9Pk-—171 9Pk 1,0
H R 2 WPy 1,1k + 0 0 qu 1,1k + 9 _9 2 Pk 1,0,k
i 1 _)\Pk—l,i) ( Pr,1 — Pk—lal) Pk7 Py 1")
~ 61m
Op<é) min(@l,ek)2 Op(ellm')
1 1 min (6, 0;)> min (6, 0;,)>
S : O Gz ) T G
0’%—11@ KO RO
(éPk,l gpk N 1)? Pk 1,1,k

1 |0p.1—0p,_, in(61,0)3 in(6y, 0))?
JP,l AP,,l Lo, mlng/; k) +0, mlng/; k) .
Ok —110p,_, allap, 1kl 0r0, “m3/? 010, “m>/2

Then, iip, 1 = P/ iip,1/N1, and

Nt = Zquz+9kquk+ Z P, i

i=k+1
We also know by Theorem that
N N éPk_l,léPk (0 — 1) 2 1 01
Op,1—0p,_,1 = — o1 9Pk,1 Up, 1kt Op + O, Yo

and
éPk_1,1 - éPk,l =0, (

Therefore, Theorem [5.11.1 and [5.4.1] for &k leads to

~ U e
up, 1k = 7< B, k>\/@

Norm

min(6y, Hk)> .

m

1 |0p1—0p, 1l +0, (min(Ql,ek)P’) Lo (min(alaek)3> VO

Ok = 110p,_, alliip,_, 1.k) 0,0, *m3/2 06 m>/2 ) | 1+ 0y ()

min(0q,0%)
gkei/2m1/2

_ 1 \épm _éPk_l,l L0 min (61, 0y)
VO |0p, _, 1llip, 1kl 6226, m3/?

éPk71719APk,1(9k—1) 2 <m1n(01,6'k)>
S Up, 1,1k+0 ( )+O Tmdz Lo < min(6y, 0y,) )

VOlOp,_, alltp, 1k 6,267 *m3/?
Qképk 1 . min(@l, Hk) 1
= VOB, IO W (i EEL N IR (R —
il O 0126} *m "\ 01202 m1 /2

|0k — 0p, 1]

Note that the sign is always positivel We can use the Remark of Theorem [5.11.1) and set 4p, ;; > 0
fors=1,2,....,kand ¢ = 1,2, ..., s. Then, the previous result becomes more convenient:
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Under the sign condition for the eigenvector,

Up, 1,k Up, 1,k
% 0, — 0, k1

~9 . ~ 2
ap,_ 1 = <qu71,1’Ei> )
th

and the second part of this Theorem for k —1,

then

and

N 0101 My —1
~ N
Up, 1k <0, (9k — 91)2 m ) + Op (

Finally, we extend this result to small eigenvalues,

Red

Vi1 . <min(91, Or.)
AL Op | =t

6,26, *m

. 1 My —1
a%’k—l,l = O‘%—i_OP( )Zl_ :

N ~92 Asy
Up,_y1kl6p, 1 ™~ N<0,

0,02 Gp_ 1 —1
~ ~92 kY1 k—1)
0P Lk AP ~ N (0’ (O, — 601)? m +Op

If 61 and 0, are finite, then ip, 1 = Op <

CHAPTER 7. PROOFS

1
) o (9}/ 0/ 2m1/2> |

Therefore, we directly obtain the distribution when 6,0, — oco. Using the notation

1 1
w0 () + (arym)
1-ap
m Y
min(61, Ox) 1
—— | + [0) I —
0}/20;;/2771 P 9%/292/2m1/2

min(&l, Hk) 1
PO L0, [ e |
91/29’1/21% p ai/QQi/zml/Z

1
If 61 — oo and 6y, is finite, then ip,_1 1, = O) < ) ,

le

)

Using induction we show the part of the Invariant Theorem shown in red in the picture. We

assume the grey theorems as true.

Theorem [(.5.1] Theorem (2,3) B.4T BITT 5.8.1)(1)

1 ° . . °
— & — o\o e — e

k-1 — ® — ° o e —— @

k 9 e ¢ — 00—

Proof. Theorem [5.5.1
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We assume the induction hypotheses and prove the result for k. The idea of the proof is to use
Theorem |5.11.1] to simplify the £ first entries of the eigenvector @p, 1. Then, we show that

F3 =

1 1
3 Z qu,lz Zupk 171,Z+ p<m01> FPk 1 +O (m01>

i=k+1

Finally, we easily prove

1
=i vo,()

Remark 7.1.1.

The following proof studies Z;Zk_ﬂ ﬂ%%l,i with 61 > 6y > ... > 0. However, the proof
is easily extended to Zz@k—&-l a%k,svi for s = 1,2,...,k and 05 > 0. Finally, the proof is
also valid for 05 > 0 with more difficult notation as in[7.1.1} In order to simplify the two
expansions for the reader, we will not reduce values such as min(61, 6;).

A: First, we study

Sp=Sp P

using Theorem |5.11.1| and |5.2.1l The eigenvectors of N p, are

(Op,ilm — Sp_) 'SR e

a —
Pyi e - - e
ekzpk—1(0PkJI - EPk—1) p €
Then,
2
<ﬁP 17es>
Kk
P, op, 1 6p 2
k1, k1> k1,
up, sUp, K+ 1,s%p e+ S8 ap, up k
7<1k9Pk1 Spy_ 1 k=1t tPe—1 bk T gy T 9Pk11 Pe—115%Pk—1, 129Pk1 Opy_1i k=188t Pr—18
62 02
m Pk 1.4 Pp_1,1 T Pp_1.1
=k (Gp 1 >‘Pk71 2 Pk ik T Oppi gpkil B Pk 11k i=2 7((”%1 py_ .02 Pk 100k

 (Alskem + A1e1 + A1 s 200-1)
Dy kim + D11 + D1 2:p—1
2
Al,s
Dy

The size of each element of the equation can be estimated by Theorem [5.11.1

B: We investigate the norm of the noisy part of the eigenvector. We set

k 2
= 35 1o i -1 - Sl
P Pyl — Pplg — -
k k k -Dl

i=k+1

We want to show that FI%k R~ FP%k—l using Theorem [5.11.1
First, we make an approximation of A , Ais and Dq:

1/2 12
0 m 1
Op<m1m<wk>> Op<91/2m>
N k—1 N
0P, i

qu lzlvlupk 1717k + : : N apkflv’hlapkflﬂ'vk
0p,.1 ka 1,1 9Pk7 —0p, .

1
JrOp <6§/2m1/2> ’
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1o min(61,0s) 19) (max (min(Gl,Qi)min(Gs,Qi)))
p(ei/Q min(07,0y,) P\i#Lsk 01/20,0,m1/2
N 1 N
epk 1, N o HPkfhi A N
At = = ——ilp_1s0p ok Y s Op, islp, ik
Op1—0p._1 0 i=2,#s Ope1 — 0Py
19) min(61,0s) )
p<0§/291m1/2
éP 1
k—1,8 N N
+ = A UPy_1,5,5WUP,_q,s,k +Op 1/2 12 ]
epk,l - QPkfl,S 03 91m /
1
Ayg
’ 0, —1’
o, _—om _ 1
P min(6q ,Gk)Q Op (m)
0 k—1 32 ‘
_ Py_q,1 ) Pr_1,i ~9 1
D= T LRV .y ik PO | g
(Op1 = 0p, 1) = (Op.1—Op, i)
Glm
=0y (— ),
min (61, 0y)
A? = 71
1,k (ek — 1)27
A1s

0 .
2 _2 : Pr_1,i ~9 )
Al,s - A A QUPk 1,2, squ 1,8,k
i=1 (‘91%1 - GP/cfl,i)

9 ka—lviepk—lvj N « - A
+ 9 é A A WPy _q,i,sWP,_q,i,kUP,_q,5,sWP,_1,5,k
i=1 j>i (0P, 1 Py, (0P1 — ‘9Pk71,j)

A2

1
+Op <91 min(@l, Hk)> '

More investigations allow the estimation of Zﬁ;% A% o

k—1
;A%S ZA151+ZA152+O (01H1111(¢91,9k)>

k—1k—1 H2
o Pr_1,1 ~2 ~2
> Ansa = Grr—Op )2 Pemiss Uik
s=1i=1 \VFg,1 Pr_1,i
k-1 /k—1 N2
_ <2 GPkfl,i )
- Upy_1,i,s 0 iy ] S UP,_y,ik
i=1 \s=1 Py,1 Pk—lﬂ/)
k—1 k-1 /k—1 é2
_ A2 2 Py_1,i ~2
= W s | D1+ DD i E :“Pkfl,l,s ; 2 SUP,_ ik
s=1 i=1 \s=1 ( P,1 — Pk—lyi)

] ) min(61.0;)
Op (4rnin(911 ) ) by induction Op ( 01(01 *97‘,)"‘)

o max
P\i=2, k—101(01-0;)m
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k—1
E Ais2
s=1

k—1k—1k—1 A A
- 9 GPA 1 ZaPk 1,J N N . N
= ~ ~ WPy, _y,i,8UPy_1,i,kWP,_1,5,sUWP, 1,5,k

s=11i=1 j>i (HPIH HPk 1 1)(9Pk epk—lvj)

k—1k—1 k—1
- 9 9Pk717i91:’k—17j N A ) N s ‘
= é é é é UPy_1,i,kUPy_1,5,k WPy, _y,i,sUPy_1,j,s

i=1 j>i ( Py, 1 Pk—l’i)( Py, 1 — Pk—hj) s=1

k—1k—1 A A

epk—l-,iepk—l-,j N N S N N

= 2) ) 7 i i 7 Up_y i k0P, ik = ey islip s

i=1 j>i ( Py, 1 — Pk—l;i)( Py, 1 — Pk—hj) s—k

. min(67,6,) A min(6; Gl)mm(e ,01)
If i=1, Op <4mm(91 8k>91/2‘1/2> and if i>1, Op (‘ 9291/2‘1/2 ) OP<91_1/216J1_/2’>

O m L
P\ j=2,.. e 1min(6q, 0x) max(01,6;) )
Therefore,

k-1
FQ - 1_ 1 . Zi:s A%,s
B D1(0 — 1)° Dy

01
= 1-0 <01m) ZUP" 1Ls T p<max(6?1,9k)2m>
1
= ]‘_Zupk 1’175 <017’n>

1
= Fpk 1—|—O (01m>

C: The result is proven for the eigenvector of

Spk = iPk,lplv
Now, we need to study

Sp, = P*sp P2
The link between the eigenvectors is

1/2 -

N _ P, up
quflvl - N
orm
2 _
NOI'HI = Zupk11+9kupklk+ Z qu,lz
i=k+1
91
Op(max(ﬂlﬁk)zm>
~2
= 14+0—1)  dp s

Op(57)

Using the induction hypothesis, the result is true for & — 1; therefore, by Theorem

. 1 1
Fro =1 (0, ()0, <9%m>> .
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Then,

_—
Fp, = E, WP,y 14
i=k+1

Norm2 Z Up,_q,1,
i=k+1

1 _
S P
14+0, (L) ™

: <>< 0 (a1m))

BN

This last equation concludes the proof by induction

k 1

9 2
E Up, 1 ="Up 11+ Op <91m> :
i=1

Green

In this section we want to prove the green part in the following picture. In order to prove Theorem
5.8.1] (2, 3) for k, we only assume as true the grey results in the picture.

Theorem [5.5.11 Theorem [5.8.1] (2,3) 541 GITT [.8.1)(1)

1 ° ° ° ° °

— & — o\o [ Y
k-1 — & — ° \\'lo e — > e
k — ® — ° ° o — o

Proof. Theorem 1} (2,3)

To prove this theorem for £ we use the same procedure as for k = 1.

Let
At
Up,.1
at - ”
U — P2 | UP, 1:k,1:k UPy, 1:k,k+1:m
Upy k+1:m,1:k UP, k+1:m k+1:m-
At
qu,m
and

(L0

where O,,,_; is Haar invariant.
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2. When P;, is canonical, we know that 3 ~ Pk1 / 2VVPk1 /2 and O;.CflO}tC follow the same distribution
under Assumption Therefore, w; j41.m is rotationally invariant and Corr (a5, , Ui j,) =
;. (j2). Knowing Up, 1.m1:k, we can show that @p, ; kt1:m/||0p, i k+1:m|| is uniform for i =
1,2, ...,m. Therefore, these statistics are independent (not jointly) of 4p, 1.m 1.5. Uniformity
of ip, rk+1.m implies that, for s =k +1,...,mand r = 1,2,..., K,

\ﬁ% \/@M ~N(0,1) + 0, (1),

[ o

k

O‘JQD,C, = Z (Upy,rs 6i>2 .

=1

where

By Slutsky’s Theorem and the Invariant Angle Theorem for k,

1—a? 1
iLPIc,T,S ~N <07 TTlaT> + Op (\/m) )

where o? = lgn a%rzl M2 L+0, (%)<1.
m—00

3. Then, we estimate the order of Zﬂ%H:mJ.
Without loss of generality we assume that the perturbation

k
Pe=Tn+) (6
=1

respecting Assumption [2.2.2( A4) is such that

01,02, ...,0y, are proportional,

Ok,+1,0%,+2, .., O are proportional.

Then by Theorem [5.5.1] and [5.8.1] Part 1 for perturbations of order k,
Z Ukt1:m,1:ky = Z Uky4+1:m, 1k — Z azl-&-l:k,l:kl
= Z% by +1:m T+ Op (M)
= Z W1iky Jot1:m + Op <m12$(99: bié%)
= (0 @) 0 (am)) + 0 (i)

The result is straightforward.

7.1.5 Dot Product Theorem and its Invariant

In this section we prove the results concerning the partial dot product between two estimated eigen-
vectors. First, we show a useful small Lemma. Then, we investigate its distribution when k = 2.
Finally, we prove the invariance to increasing k.
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Prerequisite

Lemma 6.1.1.
Assuming W and ¥Xp, as in Theoremm then by construction of the eigenvectors using Theorem

[6-11.1

2
. W12 Wi,2 (W )12 1 1
Up; 1,2 = ) - (—1/2+3/2M2)+,7’+O — | +0 -
ot \/EWI,I 9;’/2 ef/Q p ef/2m P 9§/2m1/2
Wi 1 1
SELAE SOR (S [RRON) p—
Vo p(ﬂ”m) p(ﬁ“"ﬂ”>
m 3 ~ 1
dimo )‘%91,1'“?91,1',2 =Ws2+ Oy <m> )

m ] . . My 9 1 1 1
" Ay nipgs = Wis ez — (W2, —— 40, [ |+ 0, [~ .
i Aratninge =Wag = (W) 7 ”(ei/%) p(ai’”mv?)

Remark 6.1.1.1.
Because the perturbation is of order 1, the two sign conventions defined in are the same.

(Page 1)

Proof. Lemma [6.1.1

The proofs of the three results use Theorem [5.11.1
First, we recall that

m
o .o &2 A2 A2
Y Abilpis = Shoo—0p 103 10,
=2
m
E Apitlip i1tp i2 = Xp12—0p 1tp 1,1Up 12

Moreover, if P, = (VB — 1) erel, then

Yp = W+WP +PW+PWP,

Spoi2 = Wia/és,

~ ~ ~ ~ ~\ 2
(2?;)2 - (W + WP+ PW + P1WP1> 2,2]
(W) + (- 1) (1),

where A[2,2] is the entry A9 of the matrix A.
In order to prove the formulas, we need some prerequisite estimations of

9 Up, 1,2

42
Up, 1,15 9P1,1 and —
L—ap 44
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A more precise estimation of 122131 1.1 leads to

3((w?),,)”

Wit

Q(WZ)L1
(Wi,1)?

1+ 2(W3)1,1

(W2) 1,1 (Wlﬁl)z

UP1,1 1

(W1,1)3 i
Z O (e%) ’

z(vv?)L1 2(w?)

0, (W1,1)2
3(w?), )’

(Wi1)*

(W2),, = W) 14

up;,1,1

L —up 14 N

: 42
Then, we estimate 9P1,17

0

W) T W)® +0, (1

20, (W1,1)2 207

1
1—1

1%
Ly

Op, 1

1

1,1

— 2 +<)p <;3>
%)1,1 1

(W2>1, - (M 1)2

= éPl,1 =0Wia1+

= 0%, = 03WE, + 26, ((W2)171 - (W1,1)2> +0,(1).

Finally, we estimate the rescaled component,

up; 1,2

S g
i=1 0P 1—Aw,i

~2
\/ L—dap 1,

m, )\Wl
1 1 9P =AW

Uw,i,1Uw,i2
\/Zé 2

2
uW,i,l“W,i,s)

— (W)
(W?)

\/(W2)1,1 -

1,2

(W1,1)2éP1,1

Using this estimation, the three formulas are easily proven.
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We start with the first formula:

X Upy 1,2 >
up 12 = 7\/ 1- Up 1.1
\/ 1 - uP1,1,1

Wio Wia (W2)1 2 1 1
. — = (—=1/2 + 3/2M — 10, ——— O, | ——— | .
/*01“/171 0?/2 ( / + / 2) + 03/2 + D 93/2m + P Qf/2m1/2

Then, the second formula:

Z )‘Pl zupl i2 W2)272 = (h—1) (VVL2)2 - épl 1“2131 1,2
= (O =) (W2)* = (63 (W10)” + 200 (W), = (Wi)?) + O, (1))
(W1,2)* R
(91 (W) O (92m>>

(W2)? ((Wz)m - (W1,1)2) ‘1o, ( 1 >

- e (Wi m

~o(h).

Finally, some computations lead to the last formula,

m

Op 1P, 11Up 1,2

(W2)1,1 B (Wl’1)2> (1 _ (W2)1,1 - (W1,1)2>

Wl 1 291 (W171)2

)

Wip Wio (W?),, 1
2 DL 94 3/90) + 2) 40, [ —— | +0
<\/EW1,1 9?/2 ( / / 2) 0:1),/2 4 9}/2771 P

My 2 1 1 1
= Wia <\/E— \/@) +(W?),, 7 O <M> +0p <93/2m1/2> :
1 1

= <91W1,1 +

1
9?/2m1/2

Therefore,

m
E Apitp i1tp g2 = VO1Wi2 —0p 1Up, 11Up, 1,2
i—2

Mo 1 1 1
= W w? — 4+ 0, | —— Op| =1
v (7)1 Vb o (ﬁmm) o (9?/21711/2)

Distribution

Theorem 5.6.1. (Dot Product Theore
Suppose that W respects Assumption and P, =1, + Zle(ei — 1)eiel with 61 > 6. We define

Sp, = PYPWPY? and Sp, = PPWP?,
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Moreover, for s,k =1,2 and s < k, we define
ﬁPk,S7 GPk,S S't' Zpkﬁpk,s = GP]mSﬁ/Pk,S?
where Op, s = /\ip - Finally the present theorem uses the convention:
k7

Fors=1,2,...,k andi=1,2,...;s, Up, ;; > 0.

1. Assuming that Assumptions|[2.2.9(A2) and (A3) (6; = p;@ — o0) hold,

il 1 1 1 —
E Upy1,sUpy2s = Upy12 <9 - 9> Y] E APy jUPy 1 TPy 52
s—3 1 2 0" =1

1 1
O (91/295%) o (91/203/2m1/2>

- _(1+M2)W1,2+(W2)1,2+O # + 0 ;
_ Vo0 "\o0m) "\ o0y i)

Thus, we can estimate the distribution conditioned on the spectrum of W,

0102m

1 1
40, [ | 40y | = | .
() o ()

2. If 01 — oo and 0, is finite, then

G 1
Z Upy1,stpy2s = Op < ) :
91m

i 1,sUp, 2,5 ~ N(O (1+M2)2(M2_1)+(M4—(M2)2)_2(1+M2)(M3—M2)>

3. If 01 and 6y are finite, then

S 1
> inssinas =0n (7).

Remark 5.6.1.1.

1. We can easily show

. 1 1
Upy 1,2 <91 92> o+ ZUPQ, 1,sUpP, 2.

5=3
(0 My Wap + (W?), o (LYo 1
N \/0102 P Om P 92m1/2

e <0 (6 + M)? (Mg — 1) + (My — (M)?) — 2(6 + My) (Ms — M2)>

01927?7,
1 1
+05 (52 ) + 00 (gomirs )

2. If W is a standard Wishart random matrix, then Assumptions[2.2.2(A2) and (A3) lead
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to a Marcenko-Pastur spectrum and

- (1-0a})(1 —a3) 1
Z Upy1,5tipy 25 ~ N (0 m + op m )

where a? = nlgnoo 2 (tpys wi)>.

(Page [
Proof. Theorem [5.6.1

We begin this proof with a remark about the sign convention. This Theorem assumes ip, ;; > 0
fors=1,2,..,kand ¢ =1,2,...,s. The Theorem [5.11.1] builds the eigenvectors of random matrices
with another sign convention,

Up,is >0, fors=1,2,...,kand i =1,2,...,s

We will use the same notation for both conventions and only precise the convention. The parts A
and B use the convention of Theorem [5.11.1] The convention changes in the end of part B. Finally
part C uses the convention of this theorem.

In order to prove the theorem, we divide the proof into three parts. The first part, A, tries to
express the components of an eigenvector using Theorem The second part, B, expresses the
dot product of )y p, with the eigenstructure of )y p,. Finally, with the previous part leading to a nice
formula, we investigate in C the distribution of this statistic.

We will often replace éphl by A pi,1 to simplify computations.

A: Fort=1,2, we study the expression:

A A
m Py, ~ m Plz
7@6 i e —
z 1 9F2 A P1,i,s WPy .2 Ez 1 9F2t )\F r

Uup s = =
: Az, - /Dy ’
Tk s
ZZ 1 0P2 — B\ Pl,’L 2

APy, l)

up, i, suP1 ,0,2

where by Theorem [5.11.1] and assuming 61 > 65,

m
D, = >\P1, A2 + 0P17 A2
= T SUp ot a2 SUp 12
= (Op,1— Api)? (Op,1 — Op,1)?
_ 0P17 O 1
- 0 9 2 P17 ,2 + 92
(Op,,1 — 0P, 1)
bim
03
m 12 N2
>‘P1,z ~9 9P1,1 ~9
Dy = E - 3 Up, ;2 » ~ Upy 1,2
0 )\ 2 1,2, 0 0 2 1,1,
= (0p, 2 — Apy i) (Op,2 — 0P 1)

1/2 .~
~ P, a
By Theorem [5.11.1} ip, ;s = 2Tf132’t, where
2 _ 2 ~2 2

Ni = Up,p1+ E Up, 1 + Up, ¢ 262

i=3
-2
= 1+ (92 - ]‘)uPQ,t,Q

1

= 1+

(6 — 1)D;
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Then,
N!D; = D+ (92?;1),
N2D; = aﬁﬂ%xbl)uﬂlg+0 <é),
M0 = i+ 0 () + 0 ()
Therefore,

1 _ |‘9P2 91’11‘ 9%
Niv Dy Op,1|tp, 12| ' gi’/Qmsm

)
— O —_—_— s
p (0}/2m1/2>

1 1 03/
= \/02_1+Op W +Op —_— 1.
2

NQ\/DQ 91m

B: We are now able to study the quantity:

m
: :QPK7175QPK7275
s=3

First,
Ap; APy
m Pqp,i\P1,j ~ ~ ~ ~
ii—=1 72 N A N Up, i,sUpPy,5,sUPy i 2UP; 52
i i ZZ’J*I (Opy1=Ap i) (Opy 2a=Ap i)~ 0% TS TELLE LT,
Pr,1,sUPy 2. s —
bt < /D];‘D2]V'1]V'2
Then,
m
E up, 1, suP223
s=3
APy APy
m m Pq,i\Py,j ~ ~ ~ ~
— i i1 72 T A 3 Up, isUpP;j,sUP i 2UP; 52
B 25—3 Zz,]_l (9P2,1—)\P1,i)(9P2.,2—>\P1,j) 1,,8%171,7,8 1,2, 1,7,

VD1 Do N1 Noy

m

1 APLiAPL; - - S
= — = = = = up, i, 2UP; 5,2 P sUP 2J»8
v D1Dy N1 Ny z',j;,i;ﬁj (Opy1 — AP i) (0P 2 — APy j) phee 23 " '

+ ? 17} ? P i Up, s
2 Opy1 = Ari)Opyo — Ap) (Z o ))

=1
1

D1D2N1N2

APiAP

~D ~2 ~ ~ N ~
9 3 i 3 (“P1 i,2UP; 2 T UP i 1UPy j1UP, i 2UP ,j,z)
i,j= lz#j Pl APl»i)( P2 — Phj)

Part 2

m \2
> o
i=1 (9132,1 - )‘PLZ')(HPm? - )‘PM)

Part 1

_l’_

.9 .9 .9
Wpy o (1= h 31 — U i2)
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Using the part A,

1 93/2
- —-0 2 |
v D1DyN1No P 01/27%1/2

Then, we can study Part 1 and Part 2 and neglect terms smaller than O, (i) (If at least one

03

term is of order 92 )

Part 1: We decompose the sum of Part 1 into ¢ = 1 and ¢ > 1. Then, using Theorems
[5.11.1} [5.8.1] and [5.4.1} each term can be estimated.

1.1) i=1:
)\Pl ~2 ~2 2
~ < x < U, 1o (1—dp, 11 — P, 19)
(Op,1 — Ap 1) (02 — Ap1) ' '
02 | 62
1, A2 ~2 Pyl ~4
= —= = = = Up, 1,2 (1 — ap ,1) - = A ~ A Up,1,2 -
(0py1—0p,1)(Opy2 —Op, 1) ! (Opy1 — Op 1) (02 — 0Py 1)
O”(ﬁ) Op<91912m)

1.2) i>1:
x First, we show a small non-optimal result

m

1
Z i2Ub i1 = Op<01m1/2>-

We easily obtain this result by using some inequalities on the sums,

m
Z UPMJ lel
=2

N\
o
NE
>
:Uylk
~_
—
. ~
[N}
VoY
NE
>
L
=
~—
=
[N}

By Theorem [5.8.1| Part 3, > 7", up1 i1=0p (02) and the estimation ) ;" uPhZ 9 =

O, (1/4/m) is obtained by the spherical property. Indeed, because wp, ; 2., is invari-
ant by rotation, then @p, ; 2.m/||0p, i2:m|| is uniform. Therefore,

o[ b o ( 1 ) dp | Tz o ( 1 )
— bt = — ] an = — .
HUP1,Z'72:mH4 PA\m? HUPM,?:mHS P\ m?

We see that 12‘}3171.72 ~ RV (O (#) , O (#)) Finally, summing the random variables

leads to
1
Z1131,2 2] = OP <m> 5

. 1
u%,z’a) = O <m2>

E

Var <

'MS

s
||
N

NE

[|
I\
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x Now, we can estimate the sum of interest:

m

)\P
1,52 2 ~2 ~2
3 —p, o (L= P, i1 — TP, 2)
i=2 9P2 >‘P1 i)(9P2 - )\Pl z) o o o

1
~2 ~2
Z /\Pl, UP1 i, 2 —Up i1~ “Pl,z',2) +Op <9 92>
9P2 19P2, Pt

: m m 1
Z 1774’&/2P1)Z‘72 + Op (1) Z ﬂ%17i72d%317i71 + O Z upl 42 <9 92>
9P2 19132 i=2 i=2 e

=2

1 m

_ 12

= — Z )‘P1,iuP17i72 + O (9 0y Z Up, 2% P1,%71
9P2,1‘9P272 i=2 1 i=2

1) & a4 1
O (9192> Z_: Pzt Oy <919§>

=2
1 = 1 1 1
1 SR @k L40 <>+o <)+o ()
9P2,19P2,2§ P1itPa,12 TP 0209m1/2 P\ 0,0om P\ 6,03
0 (77%5;)

Part 2: As for the previous part, we divide this term.

Ap iAp, . . . .
2.1 . — Ll Up, i 1Up, j1UP 5 2UP, 2.
) 217]—1713&] (0}3271—)\131,i)(epgg—)\pl’j) 1,2 157, 1,8, 1,7,

2.1.1) i=1,j>1: We want to prove

9P1, )‘PLj A~ - -0 1
) iy Up,,1,10p,,1,2 E : f 3 up, ji1up, j2 = Up 02 )"
(Opy1 P1,1) i>1 (0p,,2 PLJ) 2

The order size follows from Theorems [5.11.1] [5.8.1] and [5.4.1],

9P17 )\PIJ 1
e ———Up 117Up, 12 E 9 ——ip, j1ip 2 = Op 2
2

(9P2, HPL ) §>1 9P27 - )‘Pm)
01/27711/2
o T
2 P 0120, m1/2
Remark 7.1.2.

The Theorem [5.11.1| estimates the order size of the second term for ép%l
However, the same proof is still valid in this case.

2.1.2) i>1,j=1 : Using the fact that 5\p172‘ is bounded for ¢ > 1, then

m

)\p 1
1,? ~ ~
> U iUpi2 = Op | 5 )
i>1 (0P27 )‘Pl,i) (91m

0, (1) )
Op(1) O\ Lz )
! Op 03/2,,1/2
1

Op 1 . .

~ ~ uP1,1,1 uP1,1,2
(Opy2 = 0p 1) —~— ~—~—
—_———
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2.1.3) i>1,j>1,i#j:

. .
APLiAPy

i,5>1,i#j (éPg,l - 5‘Pm)(éPz,? - S‘PIJ)

Upy i,1UPy 51UPy ,2UP; 5,2

1 1 Tl . e X
< < + Op <992>> (Z APy il i, z‘2> > Apyglie, jallip o
0p;,10p;,2 103 i>1 i1
1
S|l +0 < ) max Up, ;1 Up, ;2
(‘9132,1913272 9192 ’ Dzl v Dzl v

1 1 .
< —F + @) — )‘max A2 1— ~2
<9P2,19P272 P <919§>> (1 O‘P1,1) ( uP1,1,2)

1
=0, 1.
p<9f92>

APiAP

2.2)

m

W, i 20ip, o
A N N N 1717 17.77
i,j=1,i£j (913271 - )‘Pl,i)(ePz,Q - /\P17j)

“ Ap idp. i m A2,
_ Z PyiAPy g P 5l P y— Z Py A;g )
A N 2 N 7Z7 9. N A N 7Z7
ij=1 (9P2,1 - )‘Phi)(ePz,? - >‘P1,J) ' b i=1 9P2 - )‘Phi)(epz,? - )‘Pl,l) '
52 12
— 1 _ 9P171 4}) 19 i )\Pl,i 4}) )
A A N A b ] N N N N 717 :
(02 —1)2  (Op,1 —0p,1)(Opy2 —Op,1) — Op,1 — Api) (2 — Api)
O (5775 ) s (77757 )
Combining Part 1 and Part 2 leads to
m
Zﬁpg,l,sﬂPg,z,s
s=3
1 é%l 1 ~2 ~2
= - - = P 10 (1 —dp, 1) A, il o
vV D1DyN1 N, ((9132,1 —0p,1)Opy2 —0p 1) ' 9P2 19p2 z; R
9]31 . N 1 A . . 1
—’UP A11UP 125 APjUp jaUP G2 — 775
O —0p) 7 s ; R (62 — 1)2
03/ 1
+0, | =—— | +0p | =5—75—
(Qi’)/ m3/2 P 913/29;/27,11/2
42
|9P —0p 10p,1 — Opa| = Op, 1 X X
- : h 7 h u2P17172 (1 - O‘%l,l)
Op, 1P, 12| (Opy1 — 0P 1) (Opy2 — Opy 1)
1 <o o
T Z)‘Pl,z Up, o2
0p,10p, 2
9p1, 1

—ﬂpl,l,lﬁPl,lziA § AP jUP j1UP 2 — 5
(Opy1 —Op,1) Op,2 551 (62 —1)

o 6" Noo (ot N 1
P 9?/2m3/2 P 9?/29;/27711/2 b 9%/293/27711/2 ’
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In this second part we simplify the terms using Theorems [5.8.1] and [5.4.1}

. Vo 91 min(6y, 0y) 1
Up, 1k = lip,_ 1kl +O0p | == | +Op | ———5—
bk = g — gy Ptk O im0 \ it

5 5 Op10p,1 (02— 1) 02 1
Op,1 —Op 1= — bs—1— O Up 12+ Op eyl Op m

and

We remember that without the convention ip, 11 > 0, then, by construction, we have ip, 15 > 0.
Because 61 > 05,

o P1:
fp, 1 — 0 02
p, — a0l gy P11 2, (1-ad )
9P1 1)p, 12| 9P2 1— 9P1 1)(0py2 —0p, 1)
A (9p
:sy 92—1A 1,1 |uP112](1—0z%3171)
0p,2 — 9P1,1

Asy ~ A2 O 91/2 [0) 1
= —upau2(1-dp )+ 6?3/2 T Up 93 2012,1/2 |
1 2

. A .1 . . .
We use the notation =’ because the probability that the sign is wrong tends to 0 in 1 /m
when 6; tends to infinity. Moreover, when 6 is finite, the order size is 1/y/m.

o P2:

[0p,1 = Opy 1l oy 1t
P = 2l = Z P it %31,1',2

9P11|UP112| 9P2,1 P22 =2
0p, 10p, 1602 . 1

_ 1,1V P,

= SRR VO — 1 ZAPH T
\92 — 9P2,1| Op, 1’UP1,1,2| 01’27191327 i=2

0,/ 1
+O 93/2 * Op 9?/2‘9%/2 1/2

sV — Ty 0/° 1
- ~ )\Pl,’iupl,i72 + Op 93/2m + Op 9?/29;/2?”1/2

|02 - 9P2,1’ =2

_ ‘UP2,12’Z)\ +O ﬂ +0 ;
2 Pyt Pl,z,2 02 P 911’)/2 %/leﬂ )

e P3: Using Lemmal|6.1.1

\9131—9131! 0p, 1 1 &

) 1 1, ~ N N ~

Py = ——=——1/0 —A Upy11Up 12— E APy 0Py 0P, 52
Op, 1ip, 10| (0,1 —Opy 1) P2 i1

As

v . N 1 ¢ N N 1 1
= sign(p,1,1) =75 ) APjup jitpr 2+ O0p | =552 | tO0p | =555 | >
2 01/2 Z 1,1 11,7 1,] p 91/203/2m1/2 p ei/geé/gm

2 g>1

where the sign equality is obtained by the remark of Theorem [5.11.1] and tends to be correct
in 1/m.
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o P4

O 1T\ G123 0

By construction we know that ip, 12 > 0, but this is not the case for ip, 1. We will correct this
convention later. First, we can combine P; + P> — P4 to obtain

m 2 A2
Z A131,1 Py,i,2 _ 1>

01 B2

01> 1
+O 93/2 + Op 01/293/2 1/2

2 22 2 .
Asy . (_Z;T;l)‘ wailwii1 — 1+Zm >‘P17z PLi2 1)

= Upy1,2
2,4, 01 61 02

91/2 1
. L1 0L/> 1
= Up,1,2 (01 92)+O <93/2 +0p 91/293/27711/2 '

Indeed Lemma [6.1.1] shows that

A ~
Pi+P =P = ipy ( (1—ap )+

UEA 1
> Abilibaz = (W), + 0y <m) :
The result follows by invariance of W? under rotation.

Finally, we combine the different parts

Asy . 1 1 P 1 . N
Pi+P—Ps— Py = dp,s (91 - 02> — sign (dp,,1,1) a2 Z APy jUPy j1UP, 2
2 j>1

1 1
+0p | 15— | Y00 | 55— |-
’ (91/ 0,/ 2m> ’ (01/ 05/ 2m1/2>

where the asymptotic equality is discussed in the remark

We change the convention of the sign such that ip,;; > 0, i = 1,2. Therefore, we multiply by
sign (ip,1,1). With this convention #p, 12 is not strictly positive anymore. Nevertheless, we keep
using the same notation.

X 11 1 & . R
Po+P—P3—PFPy = Up,12 <01 — 92> — Q;ﬁ jZ:l)\Pl’jUPthuPl’j’g

1 1
40, [ —=— | +Op | —=—— | -
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Remark 7.1.3.
First we remember that the O errors are in probability and take care of this possible
fluctuation with probability tending to 0.

The simplification of P, + P, — P3 — P, is possible thanks to the remark of Theorem [5.11.1
showing that the signs are correct with probability tending to 1 in 1/m when 65 is large.

In particular, there is a probability of order 1/m to have an error of size O, 91/201}21/2> .
1 Vprom

Luckily this rare error will not affect the moment estimation of the statistic.
Then, when 65 is finite, the formula just provides order size.

This estimation concludes part B. Nevertheless, the part C uses this formula to provide a distri-
bution.

C: In this section we express

1 1 1 1
i — 5= E :)\ - - -
Upy,1,2 (91 92> 91/2 PP j1tp 2+ Op <91/2€;/2m> +0Op (91/293/27711/2)

j>1

as a function of the unit statistic defined in Theorem [5.11.2] First, using Theorem and Lemma
leads to the following estimations,

Vo . 05/ 1
- ‘52_9 | up 12+ Op 91/2 + 0y 9}/29;/2m1/2 ’

. Wi 1 1
~ Ve O (e/m/) tO (wm) |

m { N . Moy 1 1
21':2 Apilip i1lp 2 = WLQ\/TT - (W )1 2 \/» + O (27n> + Op (W) .

Therefore, we can show that

11 1 —
Upy1,2 <9 - 9> 0= =7 > by jip i o
Lo 0" i>1

__(5+M2)W1,2+(W2>1,2+O 1 +0 S —
_ it "\o20Pm) "\ ooy )

The result is straightforward using a delta method and Theorem [5.11.2

Upy 1,2

Invariant

Theorem 5.7.1. (Invariant Dot Product Theorem,)
Suppose that W satisfies Assumption and

2
Ps,r =1, + Z (01 — 1)61'61;
i=s,r

k
P, =1, + 23(9z — 1)ezel respects (A4),

i=1
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where 01 > 09 > ... > 0. We define

i, = PLLWPL?

s,r
Sp, = PPWPY2.
Moreover, for s,r =1,2,....k with s # r, we define

aPS,T7179PS,T‘71 S't' Zps,raps,ml = Hps,rylaps,r717

aPk7879Pk75 S't' EPkﬁPk,S = HPk”gr&Pk’s;

and ép,ws ="

where Op, .1 = Ag S s°

Ps,'ml
Assuming the convention:

FO’[" S = 1,2, ,k‘ and Z = 1727 "'787 aPS:i?i > O

leads to

CHAPTER 7. PROOFS

m m 1
> i, 10l 20 = Y psilpri + Op (
— £ 00, m
=1 i=k+1

i#£Ss,T

).

(Page BT)
Proof. Theorem [5.7.1]

We begin this proof with two important remarks.

convention in the end of the proof.

but the reader can also read this proof as if 81 > 6y > ... > 0, an

to simplify formulas.

Thus, Theorem [5.11.1]leads to

)\Pk—lxi)\Pk—lvj

where N1 and Ny are scalars such that the vectors are unit. Therefore

m
E Up, 1,sUp, 2,5

e This proof will assume the sign convention of Theorem [5.11.1] Nevertheless we correct this

e We use the notation to prove the result only for 1 > 65 and relaxing the order of the
other eigenvalues. This notation permutes the estimated eigenvalues and their eigenvector

d realize that the notation

allows a generalisation. Moreover, we add the notation A\p. ; = 0p, ; for i = 1,2, ...,7 in order

. . 1 . N . .
Upy,,1,sUP, 2,5 = § " - - N WPy _1,i,kUP,_1,5,kWP,_1,i,sUPx_1,j,s)
VD1D2N1N2 4= (91%.,1 - /\PzH,z') (‘91%,2 - APkfl,j)

k
- : : aPk717i7TﬂPk71>jvr
r=1

s=k+1
1 APk*lﬂ’)\Pkflvj fL /I:\L
§ " - - - P _1,5,kWP, 1,5,k
v/D1D9 N1 N- — ) .
12220142 i#j HPkJ _)\Pkflﬂ 0Pk72_)\Pk711]
Part 2
m 32
Py_1,1

i=1 <9Pk,1 - )\Pk_l,i> <9Pk,2 — AP, i

k
~2 ~2
W g | 1= D by
) r=1

Part 1
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First we will study Part 1 and Part 2 in A. Then in B, we will show

1 _0 min(61, 0x) min(a, Ox)
VD1D;NiN; 0,20 *m '

Finally, in part C, we combine A and B to conclude the proof.

A: Assuming the previous estimation, we can neglect all the terms of order o, (m.m(el 9,:{111(62 9k)>

in Part 1 and 2. The order size of the elements are obtained using Theorems[5.8.1} [5.3.1] [5.4.1],
5.11.1] the Invariant Angle Theorem the Dot Product Theorem and its Invariant
Theorem B.7.1]

Part 1 : We will show that we can neglect this part.

1.1) ¢ =1 : Assuming without loss of generality that 6; < 62 leads to

)2
epk—lyl ~2
" - - - Up,_1,1,k qu L1
(91%,1 - 9P;H,1> (9Pk.,2 - 9PH,1>

i H%k 1,1 ~2 1 02
= — " A " Up, | 1k - E :qu Ll TUP 1k
<0Pk 1= QPk71,1> (QPImQ - 9Pk71-,1) ( )
Op (otm
R 177l
1 =(1=&%,_1,1)=0p 7
OP(min(Bl,Bk)) ' ( 1)

1
- Op (01 m1n(91,0k)> ’

12) i=2:

é%)k 1,2 ~2 ( > 1
" - — " Up, ok 1*ZUP L2 | = (>
(9131“1 _ GPk7172) (GPkQ _ 01’;@71,2) k= k= 91 mln(92, 9k)

02 k

LN [ oy S —
~ ~ ~ k—1:% k—1:%7 | T P . ) :
(GPRJ B 9Pk,1,z‘) (QPk,z B 9Pk,1,i) ot max(61,0;) max(62,0;)m

—
N
\Y

k:

/A\%k,l,i 9 ( > ( 1 )
(épk’l N 5\Pkil’i> (épk,Q - S\Pk,—lai) upk_hz’k Z qu v 0102m
;\QP’C 158 .9 < ) — <1>
= Z <0Pk L 5\Pk l 1) <épk’2 B S\Pkihi) Upy_y,ik ZUPk i | T ;D 0.0, )

Part 2 : The second part is trickier but many elements can be neglected.
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2.1) i # j > k : By the previous part, if i = j > k, then the sum is O, (ﬁ).

N . &
)\Pk—lai)\Pk—le N A . R 1
- 2 = = UPy_1,i,kWP, 1,5,k | — E WP,y iP5 | +O0p 0.0
it 0 - A i) (0 - A i — 1v2
i#j2k \ VP, 1 P11 P2 Pr_1,J r=1

N\ N k

_ APy 1,iAP_1 g X . , X o _

= ~ A ~ < UPy 1,3,k WP, _q 5,k | — UPy_1,i,rUP,_y,5,7
1,52k (gpkal - )\Pk—lai) (0Pk72 - )\Pk—lsj) r=1

& . .
_ APy _1,iAP, 1, N o ) - o )
= - - - < UPy_y,i,kUP, 1,5,k (_quﬂ,lmquﬂy]m)
r=1i,j>k (91%1 - )\P;H,i) (01%2 - )\Pkfl,j)
2
1 % N N
< Op (1) X E é é E Apk—lviqu—l7iﬂk5qu71aivr
r=1 YPr,2YPp,1 \ >k
<0, (1 1 32 .2 .2
<0, (1) x PR Pyp_1,iUPy_ ik UPy_1,i,r
r=1 YPr,2YPp,1 \ >k i>k
k AQ
max ~2 ~2
<Oy (1) x § T — UP,_ 1,1,k UPy_qi,r
=1 0P 20p, 1 ik i>k

~ ~ k—1
Ap. A :
k—1,8"\Pr_1,] A A N A
E )qufhi,kqufl,Lk - E :qufhiﬂ'qufth‘
j r=2

ik (91%,1 - /\Pkfm) (9Pk,2 APy

APy 1Pyt
< Z . . k—1, Ak 1, .
>k (9Pk,1 - APk,l,z‘) (9Pk2 - >\Pk71,j)

k—1
ﬂPk,l,i,k| |ﬂpk,1,j,k| (Z |71Pk,1,i,r| ﬁPkl,j,r-‘>

r=2

m

k—1
1 Q Q . .
< Op (9192 E )\P}c—hi |qu717i7k‘“Pk717i,7‘| E :/\Pkfhj |qu717jykqu71,jf'“|
r=2

=k
0(ihm)  °
1

The size could be improved; however, this estimation is enough to justify neglecting the
term.

222) r=k:

Op (ml/2)

Apk—l-,i)\Pk—lvj
>k (9Pk,1 - APkfl,i) <9Pk,2 — APy,

1 3 .9 5 .9
< Op (9192> AP_1,i Wpy_y ik Z APy jUPB,_, jk
——

=k
1
o Op (9192m) '

) Up,_y ik 0Py gk (0P, ikl jik)

or(7) 0,(1)

23)i=1,j>k:
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2.3.1) r=2,3,4,...k— 1:

r=2 j=k
o min(0q,0,)1/2
P\ 612 max(61,0m1/2m

01/% min(6:,6,)"/?

epk—hlAPk:flaj
i>k <9Pk,1 - 91’1«—1’1) (epk.? - >\Pk—1’j

1
- Op (02 mm(@l,@k)) '

< 3 2
S Or (02 max (61, 0,)1/2 min(61, 0x) > (ZAPIC 1 UPL 1,

k—1
9P1«—171>‘Pk_1,]' N N N N
- - - " Upy_y 1 kWP gk | — D UPe 1 1,rUPy_y e
ik (9&-,1 - 9P;H,1) (aPk,z - /\Pk-fl,j) r=2

k—1 m
Op (21 )S" g,y 1 i S Aey s [ar gu
= A A A\ UPy,_1,1,kUP,_ l,r‘ Pi_1.,j ‘UP_ j kWP, _ '7"
p 92 Hlln(@hek) k—145 k—1> k—15J k—1:7> k—157>

1/2 1/2
1‘) (Zupk 1,357 >
=k

) Up, 1 k0P, gk (0P, 1 k0P jk)

2.3.3) 7 =1: We use the Theorem [5.11.1| for eigenvectors part (b) and (h).

QPk 1,1)‘PA 1,] A N A N
- - - A UPy_1,1,kWP,_1,j,k (7UP1¢717171UP1¢717]}1)
ik (91%1 - 91%1,1) (9Pk,2 - AP,H,J')
6‘Pk—1,1 N A )\PA 1,] N N
~ ~ UPy,_1,1,kUP,_1,1,1 UPy,_1,5,kWP,_1,j5,1
GPk,l - GP}c—lyl >k 0Pk7 )\Pk'flvj

1/2, 1/2
Ov(%)
1
B Op (02 min(@l,Ok)> '
2.5) i,j <k

25.1) i,j<k i#l, j#2

9Pk—177;9Pk—1~,j

24) j<k,i>k: Asin 2.2 and 2.3, we can show that this part is O, (

1
Or (626}/2111,1/2)

1
01 min(02,0) ) :

k
- - N N ﬁpk—lyi,kﬁpk—hjvk E Plc 1127TuPA 1,J,T
(QPkJ - epk—l-,i) (HPkQ - gpk—l’j) r=1

1
=0, ()

252) i=1,7=34,...k—1:

Op, ,19p,

1/2,1/2 1 : :
0,/ %0 Op | —5—5—— | (by induction on k — 1)
Op (max(el,@i) III;X(GZ,QJ)NL) P (9,}/29:’1-/27”1/2 )

k
- - - - WPy 1,k UP, 5k E WPy 1, WP,y g,
(9Pk,1 - 9PH71) (9Pk,2 - 9Pk71,j) r=1

~ TP\ Gomin(fy, 0,)m1/2 )

1/2,1/2 1 . .
0,"70; O, <71 3 - ) (by induction on k — 1)
OP(W 0,20}/ m1/2

153
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2.5.3) j=2,i=3,4,....k — 1. By similar simplifications as 2.5.2,

k
Op, 1,i0p, 2 N X X N
N ~ ~ N UPy_1,i,kUP,_1,2,k | — E :qu—hi,Tqu—l,QW
(9&,1 - 9Pk_1,i) (9Pk,2 - 9Pk_1,2) r=1

1
P <91 min (s, 05 )m1/2 ) ’

254) i=1j=2:

A A k
epk—lvlapk—hQ A N z : N
~ ) ) )upk—lylykupk—lﬂ-,k up Pi_1,1, rqu 1,2,7

(ép,ml — Gp,%l@) (ePk,Q - Qp,%hz

9}/26;/27n Op| 75 1/5 173 1}2 (by induction on k — 1)
~\ W™in(0y,05) min(03,0,) 01705/ 2 m1/2

o ml/2
~ P \min(6y, 6y ) min(hz, by) )
This term is non-negligible and its estimation is presented in C.

Therefore,

m

E rlLPk,l,squ,Q,s

s=k-+1

1 Op, 110p, ;.2

k
N N < < ﬁPkflyLk'&Pkfl,Zk - 2 :apkfl,l,rﬂPk,l,Zr
VDD:NN: \ (1~ b, 1) (B — O, 2) =

1
+0, | =———7— 1 -
(o)

B: In this paragraph we study m.

m ;\2 éz 52
_ Pp_1,i ) Pr_1,1 Pr_1,i 02
Dy = ) 7 3 S WPkt g 7 S, 1,1,k+z y SUPe ik
= (Op.1— Ap,_1) (Op,1—0p,_ 1) Pe—1,i)
61m
Op(fz) ™ min(01,05)2 Op(fellm)
1

éIQD 1 2 1 1
— _ kil7 A~ O O
Op,.1— 1913,,”.,1,1)2upk_l’u€ O (91 ) * (92)

o 01m
= O (min(@l,Qk)z)'

N Pkl/QUP t
Because up, s = =5, then
m
N} = Zﬁ%m +p, 1 10k
itk
= 1+ 0k — 1)5‘%271,2
1
(0x —1)D4

= 140, (min(el’e’“) )

max (01, 0;)m
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We easily obtain

1 ‘éPkJ - éPk—1-,1| min(ala ok)
= Buls +0, [ )
N1V Dy Ope 1 1lUp,_y 1,k 6,/ “m3/2
min(6y, 0y)
= O\ e
1 m
and
1 _ 0pa—0pial 1p2 —Op 2 min (61, 0)
N1N2v/ D1 Do Op,_,1ltp, 1.k 0Py, 2|0p,_, 2.k P 91/29;/27712
_ min(@l, Gk) min(eg, Gk)
- OP 91/291/2 ’
1 Vg m

C: From A and B, we conclude using Theorem [5.4.1

m

E UP,1,5UP,2,s

s=k+1

Opp_1.10P, 4,2

. . koA .
) Upy, 4 1,k UP, g2k (= Dy WPy 1, 1,0UP, 4,2,

1
+0p |
VD1D2N1 N> v <91/29%/2m>

- 1
Up,_1,1,00UpP_1 20 | +Op | 7575
— k—1 k—1 ) p <€i/20;/2m>

S 1
= si1gn (U’Pk—l7171,U‘Pk—172a2qu«,1a1quv212) E UPy,_1,1,sUP,_1,2,s +O0p ‘91/201/2 :
m
s=k+1 1 2

(épk,1—91ﬁk,l,1) (ka.z—f?r)k,l,z

= sign (@p,_,1,10p,_,,2,20p,,1,10p,,2,2) (
T

Using the remark of Theorem [5.11.1} the sign of the third line is correct with a probabil-
ity tending to 1 in 1/m. Therefore, using the convention ap,;; > 0 for i = 1,2,...,s and

s=1,2,...,k leads to

m . . m A . 1
Z Up,1,s0p, 25 = Z Up,_1,1,5Up,_;,2,s + Op <1/21/2>
s=k+1 s=k+1 0,70, "m
S iy iy 4 0 ( ! )
= Py,1,sWPy,2,s P\ “1/2.1/2 |
= 6126y *m
where we remember that the error O is in probability.
O
7.1.6 Invariant Double Angle Theorem
Corollary 5.10.1.
Suppose Wx and Wy satisfies Assumption and
P, =1, + (05 — 1esel, fors=1,2,...,k,
k
P, =1, + Z(QZ — 1)esel respects (A4),
i=1

where 01 > 03 > ... > 0. We define
Syp, = PYPWxPY? and Sy 5 = PY?Wy P2,
2X7Pk = P;/2WXP]§/2 and iY,Pk _ P]i/2WYP]i/2
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Moreover, for s =1,....k, we define
Qg 0 st Sy p s =0s i
EX,P5’17 EX,~S’1 X,Ps EX,PS’I EX,PS’I EX,IBS’I,
iX,kas Xx, Py s.1. EX’Pkuzx Ps aix,Pk,Suix,Pk,S’
where GEX’P 1= Aix - and GEX’Pk s )‘ix,pk s The statistics of the group Y are defined in analogous
manner.
Then,
k 9 o 1
< Xx,pso L’ EYP’ > - EXPMS’ EYPk’ P\ Osm
=
k+e

i=1

where € is a small integer.

Remark 7.1.0.1.

1. The procedure of the proof shows an interesting invariant:
Assuming the sign convention up, ;; > 0 for s = 1,2, ...

m
E qu,17’iqu,1,’L

i=k+1

E p,_y1,iUp,_ 10+ Op
1=k

2
2. The distribution of ( u¢ Uy is computed in Theorem
Yx,p,1? "8y, pp 1

2 1
<uEXPk’3’ ZYPk’> +Op <93 )7

3

,kand 1 =1,2,...;s,

()

5.3.1

3. An error of € principal components does not affect the asymptotic distribution of the
general double angle. This property allows us to construct a robust test.

(Page

Proof. Corollary [5.10.1

We change the notation in order to obtain shorter equations

Moreover, we use a specific notation for this proof,

Finally, using the notation and relaxing 6, > 6y > ...
without loss of generality.

> 0
Up, 1

QA S5 :9 D x, Pyt UPp,,t :uiX,P £ {‘Ps,t = AiX,Psvt
0 :9 Y,Psot’ uP“t UEY,PSat’ /\Pé’t:/\iy,Ps,t

ues = s , where u is a vector of size m,
|||
api = lapisl
ap i = |lapgis|

allow us to study only 4p, 1 and

The proof is essentially based on Theorem [5.3.1][5.6.1], [5.7.1] and [5.5.1}
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. 2
1. First we study <ﬂp1,1,ftpl,1> :

2 m m 2
N A 9 29 R A . A . 2
<UP1,1’ UP171> = Up 11Up 11T 2up 1,1Up; 1,1 E :uPLl,iuPl,l,i + E :uPlzLiuPhLi
=2 =1
= a0 + C +0, (o
= Up ,1,1Up; 1,1 Py P\ o2m |-
N—— g 1

o)) (o)
2. Now we want to prove
N T . 1
(i aiima) = > (i 1viing) +0, (Qm) |
Using Theorem [5.8.1] and [5.3.1]

N A 2 N 2 2 ~ N " ~ N 1
<qu,1,UPk,1> :<UPk,1,1:k7UPk,1,1:k> + 2Up, 1,1UP, 1,1 E Up,1,:Up, 1, +0p 9 ]
. 1
i=k+1

Cp,

. 2 R 2 1
Y s 7 = l . 9 U . O A AN *
<’Lka’1 qu,s> <qu,1,1_/g upk,s,l.k> +Up (max(@l,ﬁs)m>

In this theorem we assume Assumption 2| (A4) and without loss of generality, we can
assume 01, ..., 0, are of same order and 9k1+1, ..., 0 are also of same order but different from
the first group. Moreover, no assumptions are made between the groups except Assumption
(A4). This means that either all the eigenvalues are proportional or one group has finite
eigenvalues. Therefore,

k ) ) k1 ) )
Z<ﬁpk,1,ﬁpk,i> = Z<ﬁPk,1,ﬁPk,z> + 0, (9 m)

i=1 i=1
Moreover, we easily see that for i = 1,2, ..., kq,

ap i = |lap, ikl

2 1
2 2
~ lirsanl?+0, (7).

Thus

k1 )
N 2 1
Z<qu117qu,i> = Z<qu,l,1k7UPk,z,1k> + Cr + Oy <9 m>

i=1 i=1

k1 R .
= Z <apk71711k1 ’ aPk,i,l:k1> + Ck; + O ( >
i=1 O1m
o ~2 22 ckl 2 Ckq 1
— ~Chq Ckl C O 1
- aPk 1aPkIZ qu 10 Pkl + k;+ 0 m

k1 9
~92 29 29 Ckq Ackl
+Oépk’1 Z (apk,l - aPk,l) <qu 1 ka >

1=2

k1

A2 29 Ckq Ckl 1

= Qp 10p 1 E <qu 1 Pk ’L> + CPk +O (9 m) ’
i—1 ~~ 1

Part 2

Part 1
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Where the last equality is obtained because for ¢ = 1,2, ..., k1, osz ; &%k 1 =0,(1/61).
Therefore, we just need to show that

k1

Ck ACk 2 1
Z<“Pkl,1’ Pk1,> RRRRA T

=1

1
Cp, =Cp, + 0, <91m).

Part 1 : First we prove that

k1

> (i) =100 (51

=1

Ckl Ckl
We apply Gramm-Schmidt to uP 1 qu g e quJCl’
2 2Chy
Wp,,1 = Up q-

2 A N N 1
Wp,2 = (u;kQ <u;3k]\2,wpk >ka71) <1+O (92 ))
Indeed by Theorems [5.6.1] and [5.7.1]
NE N ~ N ~C N 2 1
lies = (i drayinal=1- (i) =140, ()
—_———

—Opy 0Py 2 D WPy 1Py 2,

p—1
2 c c N 1
Wp,p = (u];::p E <u1:f}c p,wpk 7>wp,“,;> (1 +0, (92 >) .

=1
However, the norm is more difficult to estimate for p = 3,4, ..., ky:

p—1 p—1

2
[ arr b p | = 1-— T
Up, p Pr,p> VPt Pyt - Pkp7 Py i
i=1 i=1
p—1 2
_ "Ckl AChy - .
= 1- E Up' s E ajup!; ) , for some la;| < 1,
=1
p—1 %
_ NG ) 2Cy 2Cky 2Chy
- 1_2 Z <“Pk,p7%“Pk,j1>< Upp G2 p, g,
i=1 j1,j2=1

Therefore, we can express the truncated eigenvectors in a orthonormal basis,

Qck - N
= Up 1 = WP,
For p =2, ..., ky,

—1
A B +p§ : fopp a0\ A 110, 1
Pkp ka7p qu,p7kav’L ka,l e%m :

=1
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Thus

qunl? szp
2

A A A 1
_ - Cl, A § : § : A A
- <qu,1’ka71> + <qu 17ka7p+ <qup’ka7]>ka7]> +O <02
k:1 2 k’l pfl 2
_ ~Cky 2 ~Chky 2Chky 2 A\ 2 )
= E Up 1, WPp) + E Up] 1v§ Up, p» WP,j ) Why,j

p=1 p=2 7j=1
k1 p—1 1
Z ACky 2 ACkq Z 2Cky 2 \ 2 ‘
+2 <qu71’ka7p> qu,l’ <qu,,p7ka7]>kav] +O (92m>
p=2 j=1 1
2
ki [p—1
_ Z Z 2Cky 2 ] ~Ck; 2 '
- 1 + <qu,p7/ka7]> <qu,1’ka7]>
p=2 \j=1
k’l pfl 1
2 Chkq 2 Cky ~Chky 2 )
+2 E E <qu p’ka:]> <qu 1vak7p> <qu,17kaJ> +Op <92 >
p=2j=1

1
= 1+A+B+0, <92 >

Next we prove separately that A and B are negligible.

A : By Theorem

<ﬁ?1p,kaa>’ kh=2p>j:
. 2ck 2 ~C A e 1
i= s (i) = (i, i50) = 00 (57 )
j—1

) 2 1 2 2 g 2 2k, A
1. i) (10 () = 5 82 -5 ) i )

=1
0 (777) 0 ()
1
=0, ——]).
? (%ﬁ)
<ﬁ?§,pﬂ5pm> k1>
1 =

. ~Ck N ~C N N NE ~C N
j#EL: <UPkl’1,ka,j> (1 + O (92 )) = <quk11’ Pkklj> <ka’i’u}Dkkl’j> <upkkl’1,wpk,i>

i=1

olom) o0
1
= O —_— 5
()
j=1: <u;k1wpk1> =0,(1).
Consequently,
p—1 2
N A N N -0 1
Up, pr WPL,j ) \Up, 15 WP,j P\ p2
j=1 1

Therefore, A = O, (ﬁ)
1
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B : The same estimations as previously lead to

k1 P— 1 1
- 9 ACky R ~Chy % ACky R\ 10)
= Up, 1y WP ) (Up, 1, WPp ) (Up, 1, WP,,5 ) = Op Oom )

p=2 j=1 -~
o) o) OO

Therefore,

S e e 1
k k

S (i) =140, (55).

=1

Part 2 : In this part we prove the invariance of C'p,. We need to show:

Cp, = 2up,11Up, 1,1 § Up, 1,iUP, 1,
i=k+1
" 1
= 20p 0P Y e ite 1+ Op [ 7—
i—2 o1m

1
= Cp +0, (9 m)

In order to prove this result we show Cp, = Cp,_, + O, (9 m) and more precisely,

m m 1
2/&/Pk7171ﬂpk’171 : : aPk717ZﬂPk>177' = 2ﬂpk717171apk717171 : :ﬂpkflylﬂ'ﬂpkflylvi + Op <0 m> :
. . 1
i=k+1 i=k

The proof is similar to the proofs of invariant eigenvectors structure [5.7.1] and [5.5.]] - We use
Theorem in order to estimate each term of the sum. Assuming P;_; respects[2.2.2(A4)
the last added eigenvalue can be either proportional to #; or to the other group.

In this proof we do not use the convention of the sign : @p, ;; > 0 for i =1,2,..., k.

We start by studying @p, 1. As in Theorem [5.11.1], for s > k,

m . ~
N 1 )\Pk—l;i 0Pk7171 N ~
Up,1,s = — ~ N uP;. 1,0 Squ 1ik T = A UPe_1,1,sUP,_1,1,k
VDiN1 \Zp 9ch 1= )\Pk—l i 0Pk 0Pk-71-,1
k1 k—1 A
epk 1,7 0P;,~,,1,i ~ ~
+ W“Pk 1,4, s'UJP;C 1k T Wul%fhi,sul%—l%k :
i=2 VPg,1 Pr_1,1 i=ki1+1 Pp,1 Pr_1,1

By a similar proof as part (a), (b) and (c) of Theorem [5.11.1

m
A _ )\Pkflzi N . _ O 1
s N N quflv’LvSqufle:k - p \/mel ?

B, = _Ohoa Up, 1,sUp, 1k~ Lt
S T/ A ~ k—1,1,8 k—1,4, 3 ’
Op.1 —0p, .1 min (61, O)

k1

. 0p 1
§ k—1,0 ~ ~

Cs - qufl ,i,Squ,I,i,k = Op me ?
= 0pr —Op L




7.1. PROOFS OF THE MAIN THEOREMS

k—1

. Op. . 1
G Pr_1,i N .
Cy = U istR ik = Op | o )
i1 01 — 0P 1
42
~ Py_q,1
Dy

1
A N 2“2F7k 1,1k+0p <92> +O <92 >
(epk,l - epkfl,l)

o min(61, 0x)
Ni=1+0, <max(01,9k)m )

Thus,

. 1 N N R AG

UPyl,s = ~—F=— <As + Bs + Cs + C; ) .

DNy
Therefore,
. St (Au+ Bot Cut 0F) (Au+ By + 64 )
Z qu717iqu:17i =
s=k+1

VDN DNy

Many terms are negligible

“ 2 1 - 2 1
E:Bscs:o< ) §jéé:0<
p 9 b)) S S P 2
min(6y, 6 mb
s=k+1 1 ( 1 k) s=k+1 1
Moreover, because @p, , 1, is invariant by rotation, then
m m ~
P 913 A AP 1 . .
E A B, = —— qu 1,1k Z UPy,_1,1,s Z #uf’kﬂmsuﬂfﬂyk
s=k+ epkv GPk 1,1 s=k+1 i=k GPkJ - )\Pk—hi

o)
1
Op (91 min(@l,Gk)) '

Using the remark of Theorem [5.11.1] the last term leads to
m

§ Up, 1:Up, 1,

s=k+1
1 1
E B, B + Oy
0m
/D Nl Nl s=k+1
9P ,1 9}) 1 ~ ~
k—1> k—1> m ~ A
U ks 0P 1k D gy U s TP L
P, 17 YPe_ 4,1 pk’l—epkilyl 1
; +Op | 57—
9Pk,1,1 Op,_ 1,1 2 6im
A A ‘UPIC 1,4, A quflzng
‘QPkJ*@Pk_l 1‘ 1—0p, |, 1‘
N ~ m
sign ((9&,1 - 9Pk_1,1> WPy, Lk (9Pk,1 - 9Pk_1,1> ﬁPk_hl,k) >, Gp 1R L

s=k+1

m

sign (4p,1,1) sign (ﬂPk,l,l) sign (@Pk71,1,1> sign (ip,_,11) D, 4Py 1508 18

s=k+1
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Therefore,

m m
A ~ ~ ~ ~ ~ ~ N 1
2up, 11Up,,1,1 E Upy1,i 0P 1, = 2Up,_4,1,10P, 1,1 E Up,_y1,i0p,_ 11, + Op (9 =
i X 1
1=k+1 i=k

and the remark is straightforward assuming the sign convention.

7.1.7 Double dot product

Theorem 5.11.3.
Suppose Wx and Wy satisfies Assumption and P, =1, + Zle(@- —1)eel satz’sﬁes (A4),
where 01 > 03 > ... > 0. We set

2){ = i:X,Pk = P;/2WXP;/2 and 2Y7Pk = Pkl/QWyPkl/Q.

and for s=1,...,k,

~ A

g o 92){75 s.t. EXU2X78 = eiX,suiX,sv
ui:y,S’ Hﬁ:y,s S't' Yui:y,s = 92)/,5“‘2)/,8’
where 92%8 = Aiy,s and 02X7s = Aix,s' To simplify the result we assume the sign convention:

Fors=1,2,...kandi=1,2,...,s, ﬁEX” > 0, ﬁzy“ > 0.
Finally, we define
iy = Uk,
where,
Ux = (v1,v2,++ ,Upy) = (aixﬂ,aiﬁ, e ﬁibk,vk_,_l,vk_,rg, e ,vm> ,

where the vectors vii1,...,Um are chosen such that the matrix Ux is orthonormal. Then,

o If 9]',9,5 — 00!
m m m m
D il = Y s st Y g s o= Y ds s
i=k+1 i=k+1 i=k+1 i=k-+1
m
= > g e = (b aZ - a2
Xy, gt 2x i Xxt.j Yyt Sx,j Sxt
i=k+1
1 1
10 < 10, (-
P p\ 72 )
t1m 07v/m
where 62, =S a2 .
Yx,t i=1 Yx,ti

o If0; — oo and 0; is finite:

8 =0, ()
gt — Yp \/mm .

i=k+1
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o If0; and 0; are finite:

S 1
Z Uj iUt i = Op <\/m> .

i=k+1

Moreover, fors=1,...k, t=2,...,kand j=k+1,..m

k
E 712 _E
Usi = <uZ‘X,z’ Eys> ’

=1
~ ~ 2 1 1
Us,s = Usy 5,5USy 5,5 + Op m + Op m ’
S

o R 0, min (6, 6;) 0, 1
Us,t = uf)X7t75 =+ uflx,s,t + m\/m t Gtml/Q

. min (s, 0;) ( )
be P\m max (0, 0;) mi/?
Us,j = ﬁ’iy,s,j ZX, 8,3 <u2y g7 UEX J < )
(Page [88)

Proof. Theorem [5.11.3

The proof of this theorem is divided into two main parts. First, we suppose Assumption [2. (A3)
Thanks to this assumption, all the eigenvalues are of same order. This property w111 be helpful in
the computation of the dot product. In the second part we suppose Assumption [2.2.2(A4).

As in the proof of Theorem we change the notation in order to obtain shorter equations :

Under Assumption [2.2.2|(A3) : The proof is divided into two parts. First, we build the basis
V1, V2,..., Um using Gramm-Schmidt. Then, we directly compute the dot product.

Construction of vy, ...,v,,

The construction of the terms v + 1,...,0,, is free. Therefore, we use Gramm-Schmidt and can
neglect some terms thanks to Theorems [5.3.1] [5.5.1] [5.6.1][5.7.1] and [5.8.1}

1.
Ul - a17 7U]€ - ’&k
2.
Vg1 = €yl — § Wi 184
k k
~ 2 _ ~2 ~2
[Ok4all® = 1+ E U g1 — 2 E U3 |41
=1 i=1
k
_ ~2
= 1- 2 ui,k-‘rla
=1
Ukt 1
= Vk41

[ty
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3.
k .
- ~ N ~ Vk+1
Dryo = ekt — Y fikrotl — (ko Dp1) T
: [Tkl
=1
k k k 1
= ekt2— g Ui, k2l + E Ui k104, k42 €kl — E Ui, k10 TSk a2
i=1 i=1 i=1 -2 1 Uikt
140 (777)
k k 1
= epp2— E Ui o2l + E Us k41U, k+2 +Op (m> €rt1 — E O, <93/2 )ﬁz‘,
i=1 i=1
1
O (g )
k
- 2 2 1
el = 1= iesa+0s ()
pt 02m
4.
p—1 ~
— Vs
Up = E Ui,pUs — E <6P7US> Hﬁ H2
s=k+1 s

k k
. . 1
= Zm i + Z (Zuj,suj,p> (es —;umw> oy

1+O (0771 )

k p—1 k k p—1 1
= e~ Zﬁimﬁi + Z (Z ﬂquaj,p> €s — Z < Z ﬂj,5ﬂ¢,5> Uj,pli (1 +0p (%))
i=1 = i

s=k+1

by dot product
theorem :0y (ﬁ)

k k
= ZU'L pUz + Z Z'&i,s’ai,p +Op (ﬁ) €s — ZOp (ﬁ) 1]1-,

s=k+1 i=1 =1
S —
%(77)
k
1
~ 2 ~2
5] =1—Mwwﬂ%%ﬂ-

This concludes the construction of the orthonormal rotation

A

U= (ala a2a ey akv”k‘-}—l?”k-‘y—?a ey Um) .

Simplification of the partial scalar product

First, we express 1, as a function of 4; and 4; for i = 1,2, ..., k. Then, we estimate ; ,t; . Finally,

we propose a formula for > 70, ) U iy p.
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Forp=k+1,k+2,....m
Ujp = <Upvﬁj>
k p—1 k
oo £ (o
i=1

>> zi: (93/2 )uuj>

_ s=k+1 \i=1
= 1
1+ 0, (55)
R o, (—L
ﬂi,j+ﬂj,i+0p(m)+0p(9m+/g) p(sg/z )
k
o — i (8 ) = D iy (e ) +zuz 0 S a0, (55
B i=1,i%) s=k+1
140y (55)
- 1
= Gy, — 1, <aj7ﬂj> > g (u” +uﬂ +O (01/2 ) + 0, (m) )
i=1,i#]
k
Ujplt,p = (ﬁj,p — ljp <ﬁj:ﬁj>) (ﬁt,p Gt ,p <Ut:“t>) - (ﬁt,p Ut p <Ut7ﬁt>) Z Ui p (ﬁzﬂ,j + ﬁjﬂ')
i=1,i%j
- 1 1
(aj-,p — Ujp <Aj»ﬁj>> Z tip (uz b+ T 2) + Op (9m2) +Op (92m3/2)
i=1,it
= ﬁj,p'&t,p - ﬁj,pat,p <'&t7 ﬁt> - ﬁt,pﬁj,p <ﬂja 73’J> + U, plit,p <ﬁt7 "it> <'aja ﬁ]>
k
— (’&z p— Utp <At7ﬁt>> Ut,p (Ut i+, t) - (ﬂt,p — Ut,p <ﬂt,ﬂt>) Z Uip (ﬁzg + ﬁ]z>
i=1,i5,t
k
(g = 130 (5,85 ) ) 3 (A + 005 ) = (30 = s (05,85 ) ) D2ty (i + )
i=1,i4,t

m m m m m 1
E , UjplUtyp = E , UjpUt,p — E Uj pUt,p — E , U plljp + § U ptiep + Op (92m1/2>

p=k+1 p=k+1 p=k+1 p=k+1 p=k+1
m m
N 2 2. N 2 ~2 A 2
- (Uw‘ +uj,t) > gl | - (Ut,j +“j,t> > 4, <Ut,ut>
p=k+1 p=k+1
Op (71
k m m
- E E il — E U p U p <ﬂtﬂlt> (uu + ﬁj,z')
i=1,i#%j,t \p=k+1 p=k+1
Op(7m)
m m
N 2 2. N 2 ~2 ~ 2
- (Uj.,t + Ut,j) E Ujpljp | — (Uj,t + Ut,j) E U5 p <ug'7ug‘>
p=k+1 p=k+1
Op (1)
k m m
- E E Ui pljp — E s pljp <u7 ﬁj> (“zt + ﬁt,z')
i=14#5,t \p=hk+1 p=k+1
Oy ()

1 1
100 (1) +0r (3
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m m m m
= E , Uj,pUt,p — E Uj,pUt,p — E , U pljp + E, Uj,pUt,p

p=k+1 p=k+1 p=k+1 p=k+1
~ N A ~ N A 1 1
- (ut,j + um) (1-a7) - (“j,t + um‘) (1—65) + 0y (gm) +0p (92m1/2)
—_——

= (544,040, (5;))

m m m m
_ 2o P 2 o (A 22 a2
= E Uj,pUt,p — E Uj,pUt,p — E U plUjp + E Uj,pUt,p (utu + uj,t) (aj at)

p=k+1 p=k+1 p=k+1 p=k+1
1 1
+0, (55 ) + 00 (gomirs )

Under Assumption [2.2.2|(A4) : Under this assumption, the eigenvalues are separated into two
groups: 01,0z, ..., 0k, tending to infinity and O, 41, 0k, +2, ..., Ok of finite size.

If k1 <j,t <k : The same proof as shown previously is still valid. However, because some
eigenvalues are finite, the formula leads to

" 1

> il = Oy <12> :

ikt 1 m!/

If j<kj and k; <t <k : Assuming p < k1 < r < k, then by Theorem [5.8.1

Upr = <paur>

k1

k m 1
= > s lpst Y s Gps Y sl =Op | |-
~~~ ~~~ 01/ m1/2
1

<333

s=1 s=k1+1

1
o)

Then,

m k
E Uj iUty = — E Uj i Wt,i
=1

i=k+1
k1 k
= UG UG T Ul — E Uj,iUti = E Uj,iUt,i
i=1 i=k1+1
i#] it

1
Op (91/27111/2) '

If j,t < ki: In this case we will apply two rotations to the eigenvectors in order to get the result.
We define three rotation matrices:

U = (1,1, Uk, Vg1, Vk12," " 5 Um)
UOO - (ala aQa Tt ﬂk17voo,k+17 UOO,k—l—Q; Tt 7Uoo,m) ’
Up = ULU.

Therefore

ULUL i = Uty = .
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We define (;101 such that

1=k1+1

does not affect the first k; first components,

m
© 0
g UjiUti

i=k1+1
2. We compute

. S
uy = U¢Cu1

i=k1+1

p=k1+1

p=k1+1

Forp=Fki + 1,k +2,...,m,

~ 0o .
Ugb = €1,€2, ..., €Ly, E Vi, Uk 41

o oo 0 e
= UL,1, U1,2," " 5 UL,k E <Uz‘,uk1+1>

m
~ oo ~ ~
ULk +1 = E Vp, Uk +1 ) Ep, U1

By SR
U1 = UgUt.
The proof is divided into two parts.
1. First, we estimate
k
> % (5,
U iUt — .
] 75t 5t p 91m
i=k1+1
2. Then, we show
F1 o oo k1
ujﬂ ut77' = Z ujziutvi'
=1 =1
1. Because
m

>i (

m
E umut,i.

i=k1+1

oo
Ciy W1 )y "y,
i1=k1+1

We now show that i, for i = k1 +1,...,k are O, 1/+ .
’ 91 ml/2

oo

m
0o o
= E <'Up7uk1+1> <€p7 u1

;
)

We need to estimate this sum using the first part of the proof and Theorem [5.8.1}

k1

i=1,i#£1

)

k1 p—1 k1 1 k1 1
=S 3 S0, () =300 (i )
i=1 s=ki+1 | i=1 1 i=1 mby
. 0, (21
Up o 1 k1 9 O 1
_Z¢:1U¢,p+ » \ 0Zm

oo A R A 1 1
U1y = figp—dn, (a6 ) — 5 p (W51 + i)+0 — = Jt+0, |-
Lp Lp 1,p< 1 1> Z ,p( 1 1 P (9%/27713/2) P <9‘I)/2m

)
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and
p—1 k1 ) ,
v l U ] 7 A
<Up7uk1+1> = (Uk1+17p + Z (Z Ui sUip + Op (92m2>> uk1+178> (1 +0, (9 m))
s=ki+1 \i=1 1 1
p—1 ki .
= dkpipt Y Y listiple, 11,6 +0p (93/2>
s=ki+1 i=1 m
Op (ﬁ) by Theorem
. 1
= g1+ 0, (01m> .
Therefore,

m
- o . B
Ul,ky4+1 = E VUpy Uk +1) Ulp

p=k1+1
m 1
= Z <ﬂk1+17pa1,p — Uky 41,pU1,p <111, ﬂ1>) +0p 012172
p=k1+1 01 "

Where the last line is obtained by Theorems and

Therefore, because of a similar proof as in paragraph “Simplification of the partial scalar product”
shows

m m m m m
© A PN ~ 2 A
E UjiUti = E Ujiut,i + E Uj iUty — § Uj iUty — § Uj iUt

i=k1+1 i=k1+1 i=k1+1 i=k1+1 i=k1+1
N 1 1
. 2 A2 2
— <Ut,j + uj7t> (aj — at) + O, <91m> +0, (9%7”1/2) .

The proof of the formula is straightforward
k1 1
E ﬂjJﬂt,i = Op <91m> s

k1
Ujile; = E Uy Ut 5.
i=1

Finally, the small results are all proven in the proof of the formula and are left to the reader.

7.2 Proof of the Main Theorem

Results necessary to prove the Main Theorem are separated into subsection.
First, we present a sketch of the proof without detail to explain the main idea.
Then, we prove some small useful lemmas of linear algebra.

Finally, we detail each part of the sketch of the proof.

Theorem 3.1.1.
Suppose Wx, Wy € R™ ™ respect Assumptions |2.2.1] and |3.1.1 and for i = 1,2,....k, 0; respects

Assumptions[2.2.9 (A3) and (A1).
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1. Let B, =1, + (0; — 1)eiel € R™™ and define

The induced filtered estimators become

Syp =Im+(0s  —Dig ot andSyp =In+ (05 —ig
X’ i m ( 2X7ﬁz ) Exﬂﬁl EX,P@ Y7PZ m ( EY? ~’L ) EYPZ ZYﬁz’
where Gix 5 and Giy 5 are the unbiased estimators of the largest eigenvalues of Xy p and Xy p

respectively: as deﬁnedl in Definition [2.2.1].

Then, conditioning on the spectra of Wx and Wy,

()\max (§_1{2§:Yﬁ§_1{2) B )\+)
\/m X,P; 0-’+ X, B ~ N(O7 1) + 0P§m(1)7

where

M=/ M2 -1+ My,

+2 1
g =
(M27X + M27y — 2) (M27X + M27y + 2)

<9M§7XM2,Y +AMS M3y +AM3 x Moy + 2M3 x Msy — 2M3 x M3y

+4AMF x M3y — 11M3 x My — 8Msz x M3 x Moy + 2M3 x My Msy

—2M3 x Msy + Mj x Myy + 4Ma x M3y + M x M3y + 4Ma x May
—4AM3 x My x M3y — AM3 x My x My y — 2Ma x M3y Msy — 4Ma x Moy M3y
—6Ma x M3y + 2My x Mo x Moy + 2Mso x Moy My y — 2M3,XM22,Y

+2Ms x Moy + My x M3y + 4M3 x + 2Mj x — AMs x M3 x — 13M3

—2Ms x M3 x + My x M3 x — 2M3 x + 10Ms x My x + 4Ms x + 4Ms x
—2Myx + Msy +2M3y — M3y — 2M3y + 4May — 2M3y My y

—2M227YM3,Y + 2M27yM37y + 4M37y + M227YM4,Y — 2M47y — 4)

1

+
V(Mo x + Moy —2) (M x + May + 2)

<5M23,XM27Y — M3 x M3y +2M3 x My 'y + 2M3 5 My — Mo x Msy

+2Ma x M3y — 4Mo x Moy — 4M3 x My, x Moy — 2Mo x M3y + Mo x My
—2M37xM27y =+ M4,XM27Y + 4M§,X + 2M§,X — 4M37)(M227X — 5M22,X
—2M3 x Mo x + My x Ms x +2Ma x + 2M3 x + Mﬁ{y + 2M§,Y + M22,Y

+2Myy — 2M3yMsy — 2Myy Msy — 2Msy + MQ,YM4,Y> :
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SX -
s Y = Z Wy i)
M M
Ms _ s$,X + s,Y
2
Moreover,
(Ao (2‘1/22”3 2‘1/2> )
vm B — B ~ N(0,1) + 0pin (1),
where
AT = —\/Mg—l—I-MQ,
o = (A7)40'+2.
Let P, =1, + Zle(ﬁi — 1)e;elR™*™ and define
Sx.p, = PPWxPY? and Sy p, = PP Wy P2,

The induced filtered estimators become

EX’Pk - m + Z QEX Pk7

where 0, - and Oy, .
X, Py 5T Y, Py 50

i]y’ p, respectively.
Then, conditioning on the spectra of Wx and Wy,

- 1
Amax (EXll/DiEYPkEX,l]/Di) = Amax (HT) + 1+ 0, <m> +0, (

— 1
Amin <2X1F/’52YP1€2X,11/32> = Amax (Hi) + 1+ Op <m> + Op (

where
Cli/CéEo wicz wit,g
+ +
Wy CQ /Coo !
+ + s
H* =(5 | wi w3, G /¢x
+ + +
Wr 1 W2 W3
and
/\+ ~ 1/2 ~ 2 1/2
i = Amax (EX,REYEEX,R-) - L
P 81/2 & &1/2
i = Amin (EX,EEY,PZEX,P) -1,
£ = lim ¢F =2t -1,
—00
vt o (o L20Mx — )Moy —1) + Bx + B
" mo((CE —2My +1)2 + 2(My — 1))

At A . 5
D i WS and Xy, p, = L + Z(GZKPM
=1

GE/ct

) oo

1

e

)

At
1)UZY Pkﬂ Ey Pk’

are the unbiased estimators of the i ' largest eigenvalue of i]x,pk and

i
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2
B} = (1 — My +2Ms x + 1/ M3 — 1> (Mg, x — 1)

+2 (—1 + My — 2M27z — 1/M22 — 1) (M37X — MQ’X) + (M47X — M22,X)7

2
B;t = <1+M2+M27Y—M27X — \/M22—1> (Mg’y—l)

+2 (—1 — My — Myy — My x — \/ M3 — 1> (Msy — May) + (Myy — M3y),

2
By = (1 — My +2My x — \/ M2 — 1> (Max — 1)

+2 <—1 + My —2Ms 5 + 4/ M22 — 1) (M37X — M27x) + (M47X — M227X),

2
By = (1 + My + Myy — My x + 1/ M2 — 1) (May — 1)

+2 (—1 — My — Moy + Mo x — \/ M3 — 1> (Msy — Moy )+ (Myy — M22y)

The matrices HT and H~ are strongly correlated. However, within a matriz, all the entries are
jointly independent.
Remark 7.2.1.

1. Without Assumption the red parts of the theorem are weaker. The entries wj ;
have the same two first moments but not necessarily the asymptotic normal distribution.
Then, the entries of H* are just uncorrelated instead of being independent.

2. If the spectra follow Marcenko-Pastur distributions, then

cx +cy

2 ?
M =c+e(c+2) +1,

2 2 2 2
+ :c§(—|—cX0y—|-3cX+4cXcY—cx+cy—|—0y

+(8cX + 20% + (cg( + 503( + C%(CY +4exey + bex + 3ey + c%,) clc+2)

c+2 ’
w%wN(O,ﬁ”),
2ex (Vele+ ) +2) + 2y (Ve t 9 +2) + & +
- 40(—\/m+c+2)2 ‘

g

3. If cx tends to 0, then

2
ot = <M25Y +2Myy — 2May M3y + M3y — 4May M3y + My M3y +2M3y
+2M4’yM2’y + 2M2,Y — 2M3,y — M47y — 2> / ( (Mg,y — 1) (Mz,y + 3))

+ (Mé,y + M3y —2Msy M3y +2M5y —2Msy Moy + Myy Moy

—2M3y + M4,y> /\/(Mz,y — 1) (May + 3).
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4. When m is not large enough, the normality assumption of \; is not respected. In this
case, and in particular if k is large, it could be profitable to estimate the order 1 residual
spike (P;) with the following algorithm.

Let S\WXJ, S\WYJ- be the eigenvalues of Wx and Wy respectively.
Generate u, and u,, two independent uniform unit vectors of size m.
Generate Z, a standard normal independent of u, and w,,.

We define

m
§ : § : \ 2
2;71,1 )\WX Zux i and W 1,1 = )\WX1iux7i7

m

N 2

Wyzg = E )\WY Zuyz and W 292 = g )\Wy,iuy,z"
=1 =

Assuming the statistics Wy 1,1 and Wil,l follow the distribution of the first
entry of Wx and W2 respectively.

(e) Construct

0 =0 Wy11and o2 =1+1/0—6/62 W2, |,
Oy =0 Wyooand a) =1+1/60—0/62 W2, ,,

]

m

2 _ 2,2
o =a? -|—2 azay

(f) Finally, because 6 is large enough

2
ey(1—a)+1+ +\/—4gz+<0 (1—a2)+9”+1>
2 Y

2
. ) 0y(1_a2)+1+§z—\/—4§z+(9y(1_az)+gz+1>

In practice the spectra of WX and Wy are not observed and will be replaced by the
m — k smallest eigenvalues of )y x,p, and Zy Py -

5. Assuming that we would like to use Monte Carlo methods to estimate the distribution,
we should first estimate the eigenvalues of the covariance matrices.
Without the theorem, the loops of the simulation generating the residual spikes generate
O (mQ) elements.
Using the theorem, the loops generate k? elements.
Finally, using the previous algorithm, the loops generate O(m) elements.

(Page 5]

7.2.1 Sketch of the proof

In this section we show the sketch of the proof. The details are presented in the next sections.

Residual spike for perturbations of order 1 :
Using Lemma and Theorem a delta method proves the first part of the Main Theorem
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for perturbations of order 1.
The details are presented in Section [7.2.3

Decomposition of the matrix :
Generalisation of the previous result to perturbations of order £ is not straightforward. We recall that
we want to study the largest eigenvalue of

where 3 p,,x is the filtered estimator of the random covariance matrix )y P X = P,i / 2VVXPk1 /% defined
in m First, we define a rotation matrix Up, x such that Uka xlp, x,; = e for i =1,2,... .k and
ﬁf)k xUp, v, = up, as in Theorem [5.11.3, Then, we propose the matrices with same eigenvalues,

. - _1/2 1
P X (‘9Pk,Yl - 1) qu,iu%k,isz,/X + <2 - 1) eieg] )
Op, x,i

Sk SnyEpx = m+z

where ZPImX =1, + Zf:l (éPk,X,i -1 eief and ipk,y =1, + Z?:l (ép]my’i — 1) a,a;f

The details are presented in Section

Pseudo Invariance of the residual spike :
The residual spike is not invariant when k grows. We define for ¢ = 1,2, ..., k, S5 x = pY 2WX]541/ 2,
where P, = 1,,, + (0; — 1)e;el is a perturbation of order 1.

Therefore, an invariance is proven,
= $o128 53]71/2 -14+0 e
PuX PLY P, X P\m)’

where A() provides the non null eigenvalues. This result is proven assuming either that 6; is large
or that the two non-trivial residual spikes of the perturbation of order 1 are distinct. The second
condition is clear because the eigenvectors are biased. However, when nx,ny >> m, this could create
some imprecision.

The details are presented in Section

A <2Pk (épk,Yl - 1) Up, lqu 121;,3,/)3 + (9:
P, X1

Pseudo residual eigenvectors :

The previous part demonstrates the pseudo invariance of the residual spike. The next step studies the
pseudo residual eigenvectors.

For s =1,2,...., k, we set

- . - — 1
C =A ( 1/2 (Hpk,Ys - 1) ’LLPk’sUtpk’SZPk{/)? + (2 — 1) esefi)

0p, X,s

and

L _ 1
wy = U<2pl/x ((913;c Y — 1)UPk,sU§3k,y,s) Spol% + ( 5 - 1) 6s€§>=

0p, x,s

its corresponding eigenvector. The notation + allows f; and fj to be distinguished. We define for
s=1,2,...,k,

¢ (6.) = lim CE,
(% = lim ési
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Then,

i = N (G (1) (- 0h) + 0, (1)
Normg \/ePk,Y,iqu,s’s

R 1
_ =T (e(0s) = (0. =) (1= 0a2)) + O, (\/m>

Norm
(Coo —2 (MQ - 1)) 1
- TO0p| 7= ) +ope (1),
\/(C§—2(M2—1))2+2(M2_1) p(ﬁ) o

A qu s,1 ﬂ/Pk,s,s—l 'aPk,s,s—O—l qu s,k
\/ 0P, vs — .y —~ yUP, 5 k415 - WPy sm
\/'913,C X, 1 \/9Pk,x,571 \/9Pk,X,5+1 \/9Pk X,k
w, =
5,2:m\s Normgt

N qu s,1 'aPk,s,sfl ﬂPk,s,s+1 qu s,k
\/ epk,Y,l ceey ~ ) N quSk‘—‘rly" qu,sm
\/9}9]C X, 1 \/9Pk,x,571 \/ka,x,su \/GPk X,k

\/(Coo— 2( 2_1))2+2(M2—1)+0p<ﬁ)+0p;e(1)

)

(Norm)? — Op,x.s (Cét - (éPk,Y,s - 1) <1 ah, s >>2 I (éPk,Y,s _ 1) (1—a3.,) +0, (;)

(éPk,Y,s - 1) a%;kvsvs
= 075 + . . —a B Ca 1
— e ) - @D (=) 60 (- ad) +0, ().

The details of the proof are presented in Section [7.2.6

Remark 7.2.2.

These results concerning pseudo residual structure are proven for all 8. This extension is not
used in the Main Theorem, but it could be interesting in the robust part to argue that
the largest residual spike occurs when @ is large.

Dimension reduction :
The three previous parts showed that

k
)\(2 I/QEpkyZ 1/2) — A(Im+z by
=1

2 B 5 1
" (9Pk,Y,i - 1) UPmUth,zﬁp:/;? + ( - 1) €i€fD

Op, x.i

and for i = 1,2, ..., k, we showed

. o oa ¢ 1/2 1
Cjw;rw;r + ¢ w; w, = [EPk/ <9Pk,yl - 1) qu,Zupk lEPk/X + ( — 1) eief] ,
Op, x.i

where 4 allows the distinction of the pseudo eigenvalues and eigenvectors such that + is the largest
and — is the smallest. Some easy arguments of linear algebra in Lemmas and lead to

Amax (zp 1250,y S 1/2) = Amax (HT) +1+ 0, (;) :

_ 1
Awin (S5 88 pr S5 % ) = Ain (H7) +1+ 0, <m> ,
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where H* are matrices of dimension & such that

i \ Cl C2 wl » W \V C1 Cs <w1 » W \ izct@i
\/ 2jE f 42 \V C2 C3 <w2 » W3 > \ Czicl:gt
H* = \/ 3i ) V GG <w3 w3 ) G Y @ECI::

\/ wk7w1> ClcC2 wk7w2 \/élf§§:<wlfaw§t> Ck

The details are explained in Section

Elements of H
In this part we assume Assumptions (Al) and (A3). The matrices H* are functions of ;- and
<wjE w; > fori,j =1,2,...,k. By the pseudo invariance of the residual spike, we know that ff behaves

like residual spikes of perturbation of order 1. However, the behaviour of <w§t, w]i> is unknown. Using

Theorem |5.11.3| and the investigation of w;t of the previous paragraph, <wii, wi> can be expressed

J
in function of well-known statistics. We directly see that (wF,wF) = 1. Moreover, for s # t,

O pp— VOl x
(CGo —2My+1)" +2(My — 1)

m m
- : : aPk7Y7S’pﬁPkaY7t7p + : : /&/Pk:X’s»p,&Pk ,Xt,p

p:k+1 p=k2+1
m m
- : : /&/P]mya's’pﬂpk >X7t>p - : : ﬂPk7Y»t7p/&/Pk7X737p
p=k+1 p=k+1

—(tp, xts +UP, Vs,t) <d2 —a? - ((OO 2 (M — 1)) <91t _ 01>> >

0(2)-0ls)

By using the distribution Theorems and the Invariant Theorems, we can compute the

asymptotic moment of <w§t, w]i>

<wi w > ~ RV i2(M2,X —1)(Myy — 1)+ B + Bf

2
BY = <1 — My + 2My x + /M3 — 1) (M x — 1)

+2 <—1 + Mo — 2M> ;. — \/M22 — 1> (M37X — szx) + (M47X — M22,X)

2
By = <1 + My + My — My x — \/@) (May — 1)

+2 (—1 — My — Myy — My x — /M3 — 1) (Msy — May )+ (Myy — M22y)
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2
By = (1 — My + 2My x — \/ M2 — 1) (Myx —1)

+2 (—1 + My — 2M2,$ + \/M22 — 1) <M37X — MQJ() + (M47X — M22,X)

2
By = (1 + My + My — Ma x + 1/ M3 — 1) (May — 1)

+2 <—1 — My — Moy + My x — \/ M3 — 1) (Msy — May) + (Myy — M3y).

The details of the computation are presented in Section [7.2.8

Normality discussion

When the perturbation is of order 1, we can easily show the asymptotic normality using [5.3.1]
When the perturbation is of order k and nxy >> ny, then the rotation of Theorem [5.11.3|is simpler

and the joint normality is straightforward consequence of Theorem [5.11.2].

Nevertheless, in the general case we can only express the entries of H as a function of marginally
Normal statistics. The Assumption [3.1.1] in particular says that these statistics are asymptotically

jointly Normal. This leads to the result.
The details of the computations are presented in Section [7.2.9

7.2.2 Prerequisite Lemmas

In order to prove the Main Theorem [3.1.1] we introduce small lemmas.

Lemma 6.2.1.
Suppose

D= (I, + (0 - 1)uxu§()—1/2 (Im + (6 — Duyuy) (Im + (6 — 1)uXutX)—1/2'

The eigenvalues of D are 1 and

A(D) = —% (—1 +a? —2a%0 — 0*(1 — a?) + \/—492 +[1+62—(-1+ 9)2a2]2> ’

where o = (ux, uy)>.

Moreover, if

Dy = (I, + (0x — 1)uxufx)—1/2 (Im + (6y — Duyuy) (L + (0x — 1)UXU§()_1/2.

The eigenvalues of Dy are 1 and

1+ (0y —1)a® + \/—49y9x +(1+6y0x —(0y —1)(0x — 1)a2)2

1
)\(DQ) = = 9y+0¢2 —an2+
2 Ox

where a? = <UX,Uy>2.
(Page

Proof.
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First, we see that for any m — 2 orthogonal vectors, orthogonal to ux and uy, the eigenvalues are
1. Consequently, we just need to compute the two last eigenvalues, A1 and 2. We will consider the
Trace of Dy and D3.

Trace (D) = Trace <(Im + (Oy — Duyuby) <Im + <91 - 1> “X“&»

X

= m+ Oy — 1)+ (61—1) + (Oy — 1) <;{—1> (ux,uy)?

uy, UY>2 (0y — 1)
0x ’

Trace (D3) = Trace (((Im + (0y — Duyuy) (Im - (;X - 1) uxutx>)2>

2
= m-2+ <uX,uY)4 + 9%/ ((uX,uY>2 — 1> — 20y <uX,uY>2 ((uX,uY)2 -1)

1
= m-2+ <UX,UY>2 + Oy (1 — (ux,uy>2) + +<

2
(1 + Oy — 1) <UX7UY>2> B 2(0x — 1)2 <UX7UY>2 (<UX,Uy>2 -1)

* o fx

Moreover,

Trace (D) = m—24 A1 + A9,
Trace(D%) = m—2+X\ + A3

Therefore, the result is obtained by solving an equation of second order and is left to the reader.
O

Lemma 6.2.2.
Suppose wy, ..., wx, € R™ and A1, ..., \p € R*, then if the function X() provides non-trivial eigenvalues,

() 1)

where
A1 VAL A2 (w1, w2) VA1 A3 (w1, ws) A2 (w1, wy)
VA2 (we, wr) A2 A2 Az (we, ws3) Aok (w2, W)
o= | V2AsA(ws,w1)  VAsAs (ws, wo) A3 A3 (w3, w)
VAR (Wi, wi) VAR (W, w2) VAR (W, ws) - v
(Page
Proof. Lemma [6.2.2
We define
A O 0
0 Mo 0
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then
K t
A(inwiué) = A(WAWt> :)\<(WA1/2> (war2) >
i=1
t
= A( (WA1/2> (WAl/Q) ) (for nonzero eigenvalues! )
= A(Al/QWtWA1/2> = A(H)
O
Lemma 6.2.3.
Suppose e1,w € R™ and a,b € R. Then, if ||w|| = 1, the two (£) non-trivial eigenvalues and

etgenvectors are

AE <a616t1 + bwwt> =
AE (aeleﬁ + bwwt> +b (wl? — 1)
1

+ t t
u™ | aere] + bww = T y W2, W3, Wy wevs Wi |
Norm bw.

<a+b:i: \/4abw%+(a—b)2>,

N =

2
()\i (aeleﬁ + bwwt> +b (wl? — 1))
(Normi)2 =

= +1- w%.
b2w?

If [lwl] # 1,

At (aeletl + wwt> =
AE (aeleﬁ + wwt> — ||w||? + w?
1

+ ¢ t
u~ | aere; + ww = T y W2, W3, Wy, .., W |
Norm w1

<i¢<a+ [wl[?)? — 4a (|le]l? - w?) +a + ||w||2> ,

DN | —

2
</\jE <a616§ + wwt> — [|wl||* + w%)
(Normi)2 = 2

= > + [Jw]|* — w?.
w1

(Page
Proof. Lemma [6.2.3

These results were computed with Wolfram Mathematica 11.1.1. and the reader can check them
by computing

(aeletl + bww') ut = At
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Lemma 6.2.4.
Suppose u1, ...,up € R™ are orthonormal and A1 > ... > \;, € RT where k is finite. Suppose v € R™
and p € R such that (u;,v) = Op (1/y/m) and p— X1 < d <0 for a fized d, then

k
1
)\max< E )\Zuzuf + /,wvt> =M +0, <) .
m

i=1
Moreover, if 4 — A > do > 0 for a fized ds,

k
1
)\min (Z /\Zuzuf + /mwt> = /\k + Op <m) )

i=1
(Page

Proof. Lemma [6.2.4

Suppose w is the maximum unit eigenvector of 2?21 Aiujul + povt. Then,

k
w = Zaiui + Bv,

=1

where
k k
Za? + 52 —1—2204,-5 (ui,v) = 1.
i=1 i=1
If 5= O,(1/y/m), then

k k k 2
w' <Z gl 4 ,wuvt> w = Z)‘i (i + 8 <’U,ui))2 + i <Z a; (u;,v) + B)

i=1 =1 i=1

b 1
= Z)\ZQZZ + Op (>
i=1 m

1
)\1 —|‘ Op <m> .
If 5 is larger than Op(1/y/m),

k k k
w? (Z Nuiul + ;wvt> w o= Z Ai (a; + B (v, ui))2 + i (Z a; (ug,v) + ﬁ)
i=1

i=1 i=1

k k 2
A1 (Z (o + 8 <vvui>)2> +u (Z i (u,v) + ﬁ)
i=1

N

2

<
i=1
k k k 1
= A\ (Z aj +2) aif <'U>Ui>> +u <262ai (us, v) + 52) +0p (m)
i=1 i=1 i=1
k
= M+(p—\)p+ 2/15206 (us,v) + Op (;)
i=1
< )\1 + Op (;) )

where the two last lines are obtained using Zle a? +2 Zle ;3 {u;,v) = 1 — B2 and because

m—ro0

k
P{(M—A1)52+2u62ai<ui,v><()} — 1.
=1
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On the other hand,

k k
1
)\max< E )\luluf + ,vat) > u’i ( g )\Zuluf + ,uvvt> ur =M +0, () .
m

=1 i=1

This concludes the proof.

7.2.3 Residual spike for perturbations of order 1

First we assume a perturbation of order 1, P =1,+(61— )6161 The Lemma 1| gives a formula for
the residual spike as a function of 0 X, 9y and &2 = = (Ux 1, uY1> We call this formula, A* (9 X, 9y, ) .

For all 0, the asymptotic joint distribution of the three parametersﬁx, HY and &2 = <7lx71,12y,1>2,
is known by Theorem Therefore, applying Slutsky’s Theorem shows the asymptotic normal
distribution of the residual spike.

The computation of the asymptotic variance is left to the reader. It only requires the first derivative
of the residual formula of Lemma [6.2.1]

This proves the first part of the Main Theorem

7.2.4 Decomposition of the difference matrix

As proposed in the Section |7.2.1, we decompose the matrix EP /XEp,wyZ_l/;

1
N At
R —1|ap, x,itp, x| -
Op,,x,i

. . A e A~ Srt N ~ .
Then, we define a rotation matrix Up, x such that UPk,XuPImX,i = e; and UPk,Xqu:YJ = up, as in
Theorem [5.11.3] Because this rotation does not affect the eigenvalues,

kT .
E / EPk,YEp:,/z = Tn+), Ep:,/z (9Pk,Yz - 1) Up, y,ilip,, YzZP:,/)? + (

A (E 1/22Pk oy 1/2) = A (UPk,Xifo:,/)?ﬁka,XUPk,XiPk,YUka,XUPk,Xi;:,/)?@’k,x)
k . 1
Y (Im + 30155 % (Orvi = 1) tpaiin, S5 5 + (2 ~ 1) eieﬁb :
i—1 Op,,x,i

where ¥p, x = 0};}67)(213]“)(0]3]“)( =1, + Zle (ép,mxvi — 1) e;et and \() provides the eigenvalues of
the matrices.

7.2.5 Pseudo invariant residual spike

Assuming that i?ka = P1/2W Pl/2 and i:pk y = P1/2W P1/2, we define f% pX = 151/2W 151/2

where P, = I,,, + (0; — 1)e;et. We show that if 6; is large or if we assume that the residual spikes of
the perturbations of order 1 are distinct,

-~ N _ 1 2 2 2 1
A (2,{_@ (Opvi = 1) @piiie, Sal5 + (0 - 1) emf) A (S R) -1+ 0, <m) .
P, X,i

The proof of this equality is computed in two steps.
1. First we compute the non trivial eigenvalues and eigenvectors of

—-1/2 o —-1/2
EPk <0Pk YZ - 1) quaiqu7iEPk,X'



7.2. PROOF OF THE MAIN THEOREM 181

2. Then, using the Lemma we establish the equality.

1. We define

Sx o= I+ (Ox, — Vgl
Ui = 1y

The vector w; is just Uf,ﬁxﬂ- or Ue;. Using the fact that for a matrix M, the non trivial
eigenvector of eleﬁM is eq,

A(E 1/2 ((9y1 - 1)u1u1> 2X1/2> - A<2X1/2 ( (By1 — Deyet

)=
- A(((0y1—1elel 1)

= ((0y1 — 1)6161) Yilter

k
= ei(éy’l — ]_) <(€16§) + Z( = — 1)’54)161’&5) €1
i=1

= (fy1—1) <
= (Oy,—1) <

The computation of the eigenvector leads to

u<2;1/2 ((By.s — Dyt 2;1/2> o 2;}%( (B - Dmnat) 2;})

x % V2

uy,1 -
( e ot T )

Because the previous eigenvector is not standardised, we compute its norm,

2
a a2 a?
G e SLE G ety oo Wt S 5 Rl & R @ g,
\/9X1 \/9)(2 \/exk Ox1  Oxp 9Xk
k
TS Sy
P &
A(E‘”Q ((0Y1 - 1)uY1uY1) 2;1/2>

We conclude the first part with the two formulas:

(o) - - (S

i=1
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and

u<2X1/2 ((éy,1 - 1)@@3) 2X1/2>
- \/Oy1—1 iy

k -
- ) 1k+17'-'7u1,m
X,k

\l)‘<le/2 ((93/1 — Dy, 1dy, ) 1/2> \/GX ! \/HXQ \/6

2. The second part uses the Lemma to establish the following relation

—1/2 _1/2 1
Zpk/ <9Pk:Y1_1) qu,lqu 12Pk,/)(+ (é —1) 6165
P, X1

1
=) (EP /szl,xz 1/2> -14+0, (m) )

(a) We start with the order 1,

— N - - _ 1
A (2 1/2 Epl XEPI{/Q) = )\ Epll’{)? ((91:)17}/’1 — 1)uP1’1’U,§:>1’1) Zplly{)? + | = -1 61(33 +1
0p,.x.1
A t 1 t
= M apugpub,, + | =—— =1 ] et | +1,
Op,,x1

where,

. _ 1/2 —12\ épl,y.l -1 2 A .

np, = A ZX ((9y1 — l)ulul) EX = éi P11 + (9p17y)1 — 1) (1 — uPl,l,l) s

P,X,1

Op, v —1 [t g i
1,Y, 1 ma P1,1,25 -5 WP 1,m
1.X,

J (55 (0 vmat) )

By the Lemma the non trivial eigenvalues are functions of different parameters. Using
a similar notation to the Lemma we set

Ui, = u(z;(”? (B = D) 577 | =

1
ap, = ~ - 1’
Op,x1
Op, y1— 1 ;
_ bpy, 2 9
bpy = — Upy,1,1+ <9P1,Y,1 - 1) (1= tp1a)
Op, x1
~2
~ u
2 P11
bpwd, = (epl,y,l - 1) lehty

Op,x1

The Lemma [6.2.3] provides a function g such that

R 1
)‘<77p1u77P1 u%Pl + < H - 1) 6163) = gi(apl,bpl, bP1w%31)'

Op, x1

Therefore

)\<E 1/22P1,X2 1/2> - gi(aPlvbPl’bplw?Dl)'
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(b) For perturbations of order k,

—~1/2 . . ~1/2 1 . .
A (EP /X ((ePk,Yl 1)“Pk,Y,1U§Dk,Y,1> Zpk,/x + (9 - 1) quuXJung,X,l)
Py, X,1

- - - - 1
= )\(Epkl/z ((ePk,Yl 1)upk,1u§:k71) EPklf)? + ( = — 1> 6183)

Op,,x1
) 1
= )\<77Pkuﬁpku%Pk + (é — 1) ewﬁ),
Pp,X,1

where
k
~ 1 9
NP1 = (9Pk,Y,1 1) >3 — 1) up
i=1 0Pk7Xﬂ
A k
Op,vq—1 1
ksl ~2 2
) Zqu,lz +(9Pk,Y,1_1> 1‘2“&11 +0p m )’
P, X1 i=1 i=1
A up, 1,1 up, 1,2 up, 1,k
Op,,v1—1 o b b Up, 1 kg 1y e WP 1im
\/QPk,X,l \/epk,x,z \/913,c X,k

2-1/2 (/4 N 5 $—1/2
A <2Pk,/X <(9Pk,Y,1 - 1)UPk,Y,1U§sk,y,1) ZP;JX)

As previously by the Lemma the non-trivial eigenvalues are functions of different
parameters. Using a similar notation to the Lemma we set
1

aPk - ~ - 17
Op, x1

6 —1 . 1
bp, = ngil <ZZ; UPk,1,i> + <0Pk7Y,1 - 1) (1 - Zqu,l,'L> (m> )

-9 k
A U « § ad 1
2 Pk,l,l =1 Pk,l,l
bPkak,l = (GP]mY,l - 1) éi = (GP}mY,l - 1) 97 + Op <m> .
Py, X1 P, X1

The Lemma [6.2.3] provides the function g such that

A 1
A(UPkUﬁpkU%Pk + <é - 1) 6163) = g~ (ap,. b, bpwh, ).

P, X1

(c) Finally we show that

1
gi(apk,bpk,bpkw%phl) = gi(aplabPuble%Dl,l) + OP <m> :

By the Invariant Theorems,

1
CLPk = aPl + Op <07’n> y

1
bpk = bpl + Op <m> ,

1
bpkw%_)k’l = bplw%gl + Op (m) .
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Moreover, the three parameters do not converge to 0.
Because we know from Lemma that g is continuous,

gi(x,y,2)=%<x+yi\/m).

This function is Lipschitz if 4zz + (x — 3)? is not closed to 0. The reader can show that the
perturbation creates two residual spikes different from 1 when 6; is detectable. (In other
cases the covariance matrices are the same.) In particular we can show that when 6; is
large, the pseudo residual spike is distinct from 1.

Therefore, using this property we conclude,

S-1/28 2-1/2 . 1
<>‘ (EPL/XEPhXEPL/X) - 1> - (A <77Pk71uﬁpk,1u$7pk,1 + (éP 1 - 1) 61(23))‘
k<X

= ‘gi(aPpprbplw%l,l) - gi((lpk, bPk’ bPkwIQDIml)‘

Remark 7.2.3.
The hypothesis assuming that AT — A~ 4 0 is clear except when ny,ny >> m.
Nevertheless, the Main Theorem [3.1.1] assumes proportional values and so avoids

this critical case.

7.2.6 Pseudo residual eigenvectors

Knowing the pseudo residual spike, it is not difficult to find the pseudo residual eigenvector. For
s=1,2,...,k, suppose

12 (/4 . ~1/2 1
wi = U<EPk,/)( ((GPk’y”g - 1)qu75u§3k7y75> EPk,/)( + ( - - 1> ese';>
0p, x,s

are the pseudo residual spikes corresponding to the eigenvalues

2 “1/2 (A R ~1/2 1
(o= A <2Pk,/x ((HPk,Y7s - 1)UPk,sU§3k,Y,s) Epk,/;( <é - 1) 6s€§>-

Pk,X,S
We define
GE0) = lim G
£ =  lim fj
0s,m—o0
Then,

\/ éP ,X,s ~ A 1
w:s = - k (C;t — (ePk,Y,s — 1) (1 — d2Pk,s)) + Op <m>
Normf\/epk’y@ —lup, s

B NEA + _ B —a? 1
- (6 -6~ (1~ a) +0, (=)

Normsi 0, — lag
(C£_2(M2_1)) 1
- +O0p | = | +opo. (1),
\/(C§*2(M2*1))2+2(M271) (\/ﬁ) ’
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I'A Upy ,s,1 Up,,s,s—1  UP s 541 Up, s,k ~ ~
ka7y7s—1 = 5 eney = = g eeny = 7qu,s,k+17"'aqu,s,m
\/GPk,X,l \/ng,X,sfl \/9Pk,x,s+1 \/GPk,X,k

w = )
s,2:m\s NOI‘m;E
VOpoy — 1| st SRt SRt SRk g am
RE (\/GPk,,X,l \/OPk,X,s—l \/ePk,X,S 1 \/ePk,X,k Pkt Fless,
2 )
\/(ggg —2(My—1))" +2(M;—1)+ O, (ﬁ) + 0p.0,(1)
s (C2— (0 (1-a3.)
Py, X,s ( s — ( Pe.Y,s — 1) 1—ap, s ) . 1
(Norrn‘f)!t)2 = ~ - - + (opka7s - 1) (1 — oﬁ%s) +0, <>
(epkxyvs - 1) UQPk,s,s m

= L + - - —OZ2 2 — —a2 L
= e ) - e D -ad) -0 s)w”(m)'

We used the fact that the rate convergence of épk’X7s, ép,w;gS and d%kﬁ is in 1/4/m.
Moreover, when 6 is large, (1 —a?) = 2(M972;1) + 0, (1/62).

7.2.7 Dimension reduction

The previous parts showed that the non-trivial eigenvalues of

are the same eigenvalues of
k k
Aot po =t m m
ECiwiwi—FECiwiwi e R™ xR™.
i=1 i=1

We can use to show that for all non null eigenvalues,

k k
N t ~_  _  _t
y (z Fruturt + 3 Eurw; ) ),
=1

=1
where
H+ HP
v ()
& VGG (wF k) G (wtwf) o GG (i)
V& (wf ui) EG () e GG (i)

HE — \/C?Tf%wét’wﬂ \/@(wiwﬁ (F o JEEEE (wE ) |
VGG (i wt) GG (wfwg) GG (wfwd) e
+ —
|

+
k
GG (wifwy) GG (wfwy) Vs (wi,wy)
GG (wy,wy) 0 GG (wiwg)y - (G (wfwp)
H' = |G (whwr) (/& (wiwy) 0 o GG (wh )

VS (wibwr) VGHG (witwy ) VGG (wtwy ) - 0
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Then, we can use Lemma to argue that

A () = Amax (H?) + 0, (;)

Nain (H) = A (H7) + 0, <n{b>

We will see that the covariance between all the entries of HT is null. However, the entries of H+ and
H~ are correlated. Therefore, this step is very useful to avoid the need to study this correlation.

7.2.8 Elements of H

Computation of the distribution of the entries of H requires the distributions of éf and <wfc, w;E>,
for i, =1,2, ...,k with j # i. By the pseudo Invariance Section [7.2.5]

st £ (1280 S-1)2 1
EE =) (Epiy)(EP“YZPZ_’X)—lJrOp <m>

Therefore, using the Section we obtain the two first moments of the diagonal elements.
The off-diagonal terms are more difficult to estimate and we assume that Assumptions [2.2.2(A2) and
(A3) hold.

+ .+

First, we will express <wi ;W3 > as a function of the usual statistics when all the eigenvalues are of

order #. Then, we will compute its two first moments. Finally, a small argument similar to Lemma
leads to a result for all perturbations.

Remark 7.2.4.
Using Theorem|5.11.3| the reader can prove that the off diagonal terms are of order O,(1//m)
when at least one eigenvalue 6; or 6; is finite (Assumption [2.2.2((A4) ).

Formula Suppose & > 1 and

_1/2 (A . ~1/2 1
wy = U<Epk,/ <(9Pk,Y,z‘ - 1>“Pw’“53k,Y,z‘) Shrx + <ﬁ - 1) 61@5)
9Pk7X7i

We want to prove the following formula :

+ Vv eset

:l: pr—
(s’ wi) (ggg—21\42+1)2+2(1\42—1)><

m m
: : ﬁPk,Y,S,paPk,Y,t,p + : : ﬂPk7X757paPk7X7t7p

p=k+1 p=k+1
m m
- : : aPk7Y787pﬁPk7X7t7p - : : aPk7Kt7paPk7X757p
p=k+1 p=k+1

. . - - 1 1
— (qu,X,t,s + qu,Y,s,t) (ag - 0‘? - (Céco —2(My — 1)) <9t - 9>> )

1
+Op;m,0 <ml/2> ,

. Op;m,9< 11/2) . s .
where lim,, g_,oo ——="% = 0 with probability tending to 1.
172

3
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e In section Pseudo residual eigenvector, [7.2.6| we proved that assuming € = O, <ﬁ> + 0p (1),
T —2(My—1
(ws’s):l: _ (Coo ( 22 )) +e,
V(G —208 - 1) +2(0, - 1)
+ \/ éPk,Y,s - 1QTLPK,S,kJrlzm
ws7k+1:m = i D) )
\/(Coo—2(M2—1)) +2(My—1) +¢
L Tl L
4 FiYos (\/QPk,X,1 \/9Pk,x,s—1 \/HPk,X,s+1 \/ePk,X,k
wo, .
s,1:k\s

e Then, by Theorem [5.11.3

. R . 1
qu,S,t = qu,X,t,S + qu7Y7$7t + Op + Op

Vs -2

(My —1))° +2(My — 1) 4 ¢

1
9m1/2 ’

m

First, we set b = 4+ or b = — and separate the scalar product in three parts.

k m
A b b b b b b
<ws’wt> = E W, Wy ; + E W Wy ; + E W Wy j -

i=s,t

i#£s,t i=k+1

3)

1) If k = 2, the second term does not exist. However, if k£ > 2, then asymptotically for i = 1, ...

i# s,t,

1) 2)

\/(éPk,Y,s —1)(0p. e — 1)

qu,S,i qu R

1
o (1)
2) By Theorem [5.11.3
m
Z Uj iUy,

i=k+1 i=k+1

i=k+1

1 1
+0s (g ) + 0 (g

Therefore,

(Cgo — 2 (M, — 1))2 +2(My;—1)+e€ \/éPIwX,t \/éP;wX,S

m m m
Us . AUe . E Ue . U . — E Ue . U .
Z Sy, Jyi 2yt + Ex,J0 Bxtye Xx,00 Dyt

i=k+1

m
~ ~ ~ N ~9
— Ug U — | U A+ U ag
Z Yy, Jyi XXt ( Yx,t,J ™ Ey,],t) ( Sx,j

i=k+1

~2
O[ix,t)

)

\/ka,y,s -

1\/épk,y7t -1

m
b b
E W Wy i

i=k+1

Ve 20

m
: : upk’s>pupk7t7p'

1)2+2 (Mo — 1) + € p=hr1
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3) Asymptotically,

o —2(My—1) +e

wgewbs+w2 wb = (U} s T ws
T T T LTy R
¢S —2(My — 1) (wu VO, ) ( 1 >
— m s+ —Up st | +0, —= )€
(Cgo_Q(MQ—l))2+2(M2—1) /93 Py t, /gt Py,s,t p m1/2

(¢t —2(My —1)) 0,0,

(Ch —2(My —1))* +2(My — 1)

(915 (Upy, X5t + 0Py yit,s) + 9% (hpex.t,s + ﬁPk,Y,s,t)) +0p (Tr;/g> €
(Co —2(M2—1)) VO,0:

(Ch —2(Mz —1))* +2(Mp — 1)

1 1 . . !
97 — e—s (Up, X t,s +Up, v,s.t) + Opom mi/2 )-

Therefore, we obtain

V050,
<w27 w5> = — > X
(Coo_2M2+1) —|-2(M2—1)
m m
< : : /&/kaxsvpapkvyztap + : : /&’Pk,X,S,paPk,X,t,p
p=k+1 p=k+1
m m
- : : ﬂPk,Y,S,paPk,X,t,p - : : /IlPk7Y7t7pﬂPk7X7S7p
p=k+1 p=k+1

N . " 5 1 1
—(Up, x,ts +Up,vst) (Oé? — a2 — (Cflo —2(My — 1)) <9t - 98>> )

1
+0p.0.m (m1/2> .

Moment We separate the formula into three parts
N . " ~ ~ 1 1
2 Y W X p Xt + s (63— 62 = (G =20z = 1) (3 - 7))

m A A~ m ~ ~
3o D gkt WP Y5 p Py, X tp T Dyt g1 WP, X,5,pUP Y b

Without loss of generality, we present the proof for s =1 and ¢t = 2.
In order to compute the moments of the first and second parts, we use the remark of Theorem

11 Ui
ipy,1,2 <9 - 9) 0+ dpy1,iiipy 2,
1 2 X
1=3

~N<O (1+Mz+5)2(M2—1)+(M4—(M2)2)—2(1+M2+5)(M3—M2)>

9192m
1 1
+%<%)+@«mmm>
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1.
- N N <9 <9 b 1
p=k+1 2 1
i i i + M. ¢ o+2My —1 Lo o, (e
= qu7Y71’Pqu,Y:27P qu7Y71a2 (_ 27X  Soo 2= ) n. p 2 ‘
p=kt1 01 0o 62/m
Using the remark, we set § = —Ms x +2Ms — 1 — b
p;lﬂpk,YJ,pﬂPk,Y,z,p —4p,,v,1,2 (543 -af - (C(l;o —2(Mz — 1)) (é - %)) +Op (%) +Op (gzm;l/g)

6102m

2
( (1 + My + My y — My x F /M2 — 1) (Mg — 1) + <M4 - (MQ)Q) —2 (1 + My + My y — My x F /M2 — 1) (M3 — Mg))
=N|o,

2. Similar computation leads to

i Up, ,X,1,pUP,,X,2,p + 0P x12(dz—&2—(cb —2(M2—1))(i—i)>+0 (L)+O (;>
p=k+1 k ? k P k 2 * > 0o 01 P oOm F 92m1/2

2
( (17M2+2M2,Xi1/M§71) (M271)+(J\/I4—(M2)2)72<17M2+21V12Yxi«/M2271> (1V[3M2))
=N | o, .

0102m

3. We easily show that

m m
X X X X 2(Mz,x —1) (May —1)
> b ovaplexept Y e x1plp.v2y = RV (0, 0 0m
p=k+1 p=k+1 1Y1

1 1
+0, () + 00 (gmers)

Indeed the covariance between the first and the second term is negligible. This can be shown
using the independence between X and Y, and Theorem

m m
Cov Z Up,,Y,1,pUP, X2 Z Up,,Xx,1,pUP,,Y,2,p

p=k+1 p=k-+1
m m
X X X X 1
= Y Elip vipir.yvey Y. Blip x1pir,x20) = 0p <92m>
p=k+1 p=k+1

Because the null covariance between the three parts is easily proven by the independence between X
and Y, we conclude:

1 2(Myx —1)(May — 1) + B% + B 1 1
<w?,w§?> ~ RV 0,% i X 2Y + 0O, om +0p 22 )
((¢oo — 2M3 + 1)2 + 2(M, — 1)) m m

2
B = <1 — My +2Ms x + 1/ M3 — 1) (Mg x — 1)

+2 <—1 + My — 2Ms ;. — \/M22 — 1> (Mg,x — MQ’X) + (M4,X — MQZ’X),

2
Bf = <1 + My + May — Ma x — \/@) (Myy —1)

+2 (—1 — My — Myy — My x — /M3 — 1) (Msy — May) + (Myy — M3y),
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2
By = (1 — My + 2My x — \/ M2 — 1) (Myx —1)

+2 (—1 + My — 2My  + \/ M3 — 1) (M3 x — My x) + (Msx — Mix),

2
By = (1 + My + My — Ma x + 1/ M3 — 1) (May — 1)
+2 <—1 — My — Moy + My x — \/ M3 — 1) (Msy — May) + (Myy — M3y),
where b =+ or b= —.

7.2.9 Normality discussion

Assuming nx >> ny, the normality is straightforward to prove using [5.11.2)and [5.11.3] Nevertheless,
when nx ~ ny, new marginally normal statistics enter in the formula. These statistics are

m m
E: Up,,,Y,s,pUPy, X t,p T E Upy,, X,s,pUP,.Y t,p-
p:k+1 p=k+1

Despite this difficulty, the reader can check that assuming large 6, asymptotic joint normality of the
entries of H is equivalent to asymptotic joint normality of
1

Wx st Wy,s,ts (WXQ)M ; (WY2)S¢ and NG Z Wx s,iWy i

i=k+1

for s,t = 1,2, ..., k. Note that joint normality holds for the first four elements by Theorem [5.11.2]
The part left to the reader is nearly done. Theorem and Lemmal6.1.1] already showed that nearly
all the statistics that composed H are functions of the first four elements. Then, a similar proof to
Theorem proves that for s,t =1,2,..., k,

m

: : /&/Pk7)/7'svpapkvx7t7p
p=k+1

can be expressed in function of the statistics.

7.3 Proof of the robust theorems

In this part we use the moment in probability E, and Var, defined in [£.2.1]

7.3.1 Preliminary proofs

Before proving the theorems concerning the robustness, we need to prove the following small Lemma
that characterises the residual spike when @ is large.

Lemma 6.3.1.

Suppose X € R™ "X gnd Y € R™™ are members of the same class, C4(2), Cp, Cc or Cp(u).
Moreover, define Wx = %th and Sx = iXXt, where X = PY2X, and P is a finite perturbation
of order 1. (Without loss of generality we can assume a canonical perturbation, but Ux 1.m1 is not
necessarily uniform. In particular the following formulas are only true for Cp(u) after a rotation to
change u in eq.)

The largest residual spike obtained using X and Y 1is

2 2 N 2
2 0 0 A 1
Ame == | Oy(1— &%) +1+ = + —42Y+<ey(1—a2)+f+1> +op(9>,
Ox Ox
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where

m

1 )‘WX, A2
= Uy 1
6—1 Z; Ox — Awyi = © b

L Z )‘Wx,z

HX >\WX,

9X

Oy = GZ ;\Wx,iﬂ%vx,u +0p(1),

=1

0 0—1 <X - 1
~92 2 ~2
IENCESY (1 R ZAW“'“WX’“> O (02>

i=1

Uwy 1,0 5 the first entry of the ith eigenvector of Wx and Ox = éix 1 18 the largest eigenvalue of $x.
Moreover for class Co(X), Cp and Cc,

by 1 1
— = 1+Op(9>+(ml/2>v

(1= = S (), + (1)) - 5 ()40, (5) + 0, ().

) )

Proof. Lemma [6.3.1

First, we study the limit of the expectation of the residual spike when 6 is large. Using Lemma

A A2 22 A A 2
+ By — )&% + \/491/9)( + (1 +0yv0x — (0y —1)(0x — 1)&2)

Amec = = |0y +a° — éyoz + =
' 2 6
X

A 2 2 2
2 N 1
= Mhva—ay 1+ o | L hva—any+ X ) 1o, ().
2 F ; : P\ 9
X

Ox

The idea of the proof consists of looking at the expectation of Z—Y and Oy (1 — a2).
X

1: By Theorem

0 O A 2 0, (1 1
Oy _ O iz w1 Op (D) Wyaa Op(1/9):1+op<9>+0 < 1 )

éx - 0> % wa,iﬂivx,u +0,(1)  Wxaa ml/2
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2: By Theorem

1 1 (Wx?) 10+ (7)1, 1 1
ay A — 1 _ Pit) I _ - .
e ( 0T - (B 2 +Op<02>+0”(9m1/2>

3: We can estimate Y ;- uEX ZuE ; as in the proof of Lemma 1} Nevertheless, this previous

proof does not directly solve the problem. Indeed, the term VVQ)1 , 18 not of order 1 /v/m
anymore. The reader can show that the following extended result remains true. For s =
2,3, ...,m, there exist By and By two finite constants such that

2
- Wx1s B1Wx 16 n By (Wx )1,2
USixis — 01/2Wx 1 1 093/2 93/2

Thus,

“ 1 “ 9 1
= Yis O, | =
Z: iy i O(Wx 11 Wy 1)2( L)+ p<92>

sty 3Ly —
= 1=

_ e 2 1
= 9(2171)2 ; (2133) + Op (02> .

This last result follows from bounded spectra of Wx and Wy, which imply the following
bounded quantities,

m 2
(Z Wx1,s (WY2)1,5> S (WX2)1,1 (WY4)1,1 ’

s=2

m 2
(S0 ) < e, o),
s=2

(S0, W)LS)Q < (W), (),

s=2

Despite the fact that the error could be large for some ¥, when 6 tends to infinity, it is small.

17 ((w)ﬁ),u (%), +Z 50 )) () <0 (o)

2 2 (Wx?) ,, + (Wy? 1 1
i2 2 1,1 1,1 2 1
v <1+ 6 6(1) ( 2 +;(EI’S) o <92> o <9m1/2>'

Finally, because Oy = OWy11+0,(1) =051+ 0,(1)+ O, (m_l/Q),

) 1 2 ) 1 1
by(1-6%) = 281+ 5— ((WXQ)}L1 + (WYQ)M) o > (Z10)7 40, <9> +0, (m1/2>

1,1 i—2

>
\
N
[
+
|~
\
D
—
I\l
-
-
e

1

2 1 1
= ﬁ ((WX2)7171 + (WYQ)L]_) - ﬁ (22)1’1 + Op <9> + Op (m1/2> .
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Then, we prove four lemmas necessary to prove [4.2.1

Lemma 6.3.2.

In the class C4 (X) defined in Definition the limit of the expectation of the residual spike is
imwvariant of 3. This means that:

Suppose X5, Yy € Cao(2) and Xy, , Yy, € Ca (L) such that

XE — PI/QEI/Q c RanX and YZ — PI/QZI/Q c Rany’
X1, = PY/?X € R™"X and Yy, = P2V € R™™

Let A\, s and Ay, 1, be the resulting residual spikes using (Xg, Y2> and (XIm, Y1m> respectively. We
have

Ep(min(m,@)) [)\m,Z] = Ep(min(m,@)) [)‘m,Im] .
(Page
Proof. Lemma [6.3.2

Using we just need to show

E[Ts x] = E[T1,, x] + Omin(m,0) (1),

where
1 (X2)11
Tox = — (Wy?2),  — =21t
XX 2171 ( )1,1 2171 ’
WX — i21/2 752:1/27
nx
TImaX = ( X2)1,1 - 1’
1 t
X =— :
nx

The proof is divided into two parts. First, we compute E[T% x| and, then, we compare it to

1.
ETox] = 217113[(WX2)171]_(2;311
- EiliE[(Wst)] (221)71,1
- 2171§Var(wx71,8)

1 & 1
= 5 ;Var (Wx15) +O <m) :

=2

The last line is obtained using the condition Var (Wx 1) = O (1/m) of class C4.
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We recall that Wy = Y211 x321/2. Then,
ZVar Wx1s) = iVar ((21/2 X21/2> 175)
N ZZ (Em)ii (21/2>; Var (11 x,i,)

A

+ Em: i 2 (21/2>1i (El/2>sj (21/2)1 J <21/2)SiVar( X’i’j) '

s=2 i>j ’ ’

B

The last equality is obtained using the fact that X.; have independent entries. Indeed,
assuming p < g and r < ¢,

1
COV ( X»Pv‘]’ X7T7t) = 72 Z COV ( pvl q7i7 T»j t:.])
ny 4=

The expression depends on Var (11" x ; ;) and this terms can take four values.

IfiZjZI, Var( X,i,j): —

Ifizl, j>1 Var( X,i,j):7’7

v
Ifi=j>1, Var (I x,;) = —=,
nx

V:
Ifi>1, j>1,i#j Var(IWxi ) = —=.
nx

Therefore,

A:

A= 22(21/2) ( 1/2)2 Var (W x.1;)

s=2 1,j 52

= 3 () () e S (), () e S () ()]

s=2j>2 s=21>2

EE L R (),

n n
s=2 i>2 st X2 25>2 53 X

w
[|
N

i#g

(s () ) S ) (s () )

+i (21,1 - (21/2);) (Zs,s _ (21/2)?1) %

s=2

2
= (El/z)l mVi.z/ne + 51, 1 max {20} @ + (21,1 _ (El/z)l 1) m@ +0 (L)

nx nx

.....

1
= Yi1cxVos + (21/2>1 L X (Viz—V23)+0 (T) .
) X
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5] -

: : \I/17Z7J (VR

1,j=1

m and Holder

Below, we show that Vi 9 — Va3 = 0,(1). For r <t
1 &
Var (W x,¢) = Var (nX ; ri tn)
1 &
= Z Cov ( R R N t,j)
Xi,j=1
1 &
= — > E[Xi XX, Xy
X =1
1 &
= 5 > B[ X,;]E[X
X i,j=1
Therefore,
Vip = — Z E[Xq,X;]E]
,j=1
V2’3 = o Z \Ij 7.77
’L] 1
Vig=Vas = — Z Wi (P55 — Pij)
t,j=1
nx
< Z U2 (W — 04 5)?
,7=1 ,7=1
= Om(1)7
where the last line is obtained by the condition on W in the class C4 defined in Definition
123
B: The fact that Apax () is bounded implies 3;; is bounded for i = 1,2, ...,
inequalities,
m m
B = 2 (xV/ ) »/ ) »l/ )
2.2

21 ) Var X,i,j)
El ) V1 2/’/1)(

() Vs

§=2 i>j 1/2)3,3 El/Q)l,j 21/2>S Vas/nx + 0O <n1)<>
_ SZ:;; <21/2)1,¢ <El/2)s,j (El/2>1,j <21/2)57i Vos/nx
_ii (21/2); <21/2)S Vos/ny + 0 ( 1 )
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Therefore, we conclude
ETs x] = cxVig+on(l).

2. On the other hand, when ¥ = I,,,,

BT, x] = > Var(ixus)

nx
= cxVig +on(l).

Therefore, the expectation in probability of the residual spike is asymptotically independent of X
in the class C4.

O

Lemma 6.3.3.
We define in the class Ca (In), X1, = p1/2 cx € R™"™ and Y, 2, = pi/2 £y € R™X7Y,
Moreover, Xz, and Y ¢, have temporal structure such that

Lx,1,5 Lx,2,5 0 Lx,m, ™ £X7
Lyt Yy 200 Yoy m,. ~ Ly

1 t 1 t
We define W x o = e N Lx Xy and Wy, = Yy Ye,

If the spectra of ( X.L1 Y,£3> and < X,Lo) y7£4> are rescaled and the second moments of the

m m m m

E[ZA Xy :E[Z)\ XW] 1 and E vam ) Z)\Q X’W.],
=1 =1 =1 =1
m . m R m R m R

E[Z)\ veai| =B DA Y,W-] =1 and B|Y A\ vtaid —E[Z QY,W],
i=1 i=1 i=1 =1

then

Ep(min(m.0)) [Am.c1.5] = Epmin(m.0)) [Am.cs.04]5
where Ay, oo and Ay, o, are the resulting residual spikes wusing (le,ﬁlaYIm,Eg) and
<X1m7 Los Y1,,.L 4> respectively.

(Page
Proof. Lemma [6.3.3

Lemma [6.3.1] implies

2 . 1 2 L !
Oy (1 — a2) = S ((WXQ)J’1 + (WY2)171> Ty (22)1,1 +Op <9> + O, (m1/2> '

Thus, we only need to check the result for

TX,,CX = (WX7£X2)171 - 17
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where, in this case, (WX7£X2) ( X,£x2)1 1 Therefore, we need to show that

1,1
E [TX»El] =E [TX,C2] .

Because each row of the matrix X, has the same distribution, we obtain

1 m 1 m m
{2 _ b {2 -9
EE ZA X,l:17i - mE Z)\ X,£1>izu X,l:lziyj
i=1 i=1 =1
1 m m
. N2 ~2
- m ZE Z )\ X,E17iu X,Lq 7i7j
=1 Li=
1 m
= E Z E [( Xuﬁl )] ]]
Jj=1

- E[ X,E12)171}'

The last line is true because each row has same distribution and can be permuted. Therefore,
E [( X7£12)1 1} =E [( X7[412)“} for ¢ = 2,...,m. The same path leads to

1 UL
mELZ;Az X] = B|(7xe)1)-

This concludes the proof.

Lemma 6.3.4.

Suppose that Xp, Xpx € R™"X and Y, Yy € R™*™ are in Cy (L) such that,
Xpy =PV, Yo, = P2V,
Xy, = p1/? iy, Y = p1/? s

where P =1, + (6 — 1)eqel.
Moreover, < Lx> [;Y> and < L L;) have temporal structure such that

Lx s KLy 200 ey XL m, ~ Lx,
Ly YLy 205 Y oyom, ~ Ly,
£y~ Lxa,
ﬁ},?,-a ﬁ;@g’., ceny [,},m; ~ ﬁX,
oot~ Ly,
£3205 You 30 Yoy m, ~ Ly

In particular, Cov (X 1.) = U1 x = Ux, Cov(Yeyp1,.) = U1y = ¥y , Cov(Xp-1.) = T x,
Cov(Ygea,.) = Uy, Ax = Uy — U} ¢ and Ay = Uy — U7 respect the conditions of the class
Ca(l).

Therefore we have

Ep(min(m,@)) [)‘m,ﬁx,ﬁy] = Ep(min(m>9)) [Amvﬁ}vﬁ;} ’

where Ay, 2«2,y and )\mﬁﬁ(’ﬁ; are the resulting residual spikes using (XﬁX,ng> and <X£§(,Y5;>

respectively.
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(Page
Proof. Lemma |6.3.4

Using Lemma we just show that the expectations of ( X,llx2)1 1 and QX’L;(’M tend to the
same value.

1 m nx
2 _ . ) . .
E{( XLy )1,1} = > > B[ X i Xeg Xex i Xegn]
X = 2,7=1
12 nx
2
= n2 E[ L%, 1,8 *, :| § E L5, 1,545 L5 1,5 § L ,ryi oTsd
X 1,j=1 3,7=1

nx

+*§ E [Xcy £§,1,jJEl§ Ly ri £;<.,r,j]
i,j=1 r=2
m
> KegeriXeg g -

r=2

nx
E : L%,1,0
nx

= Var( X’g}gl +1+ ZE LA ,1,0 ,c},l,j]E

1,j=1

The same computation leads to

m
E [( X’£X2)1’1:| = Va'r( X7£X71»1 + 1 + Z E 'CX)lvl 'CX’ 7] [Z £X’T7i 'CX’T’j] *
1,j=1

Because in class C4, Var ( X,/J*X,Ll) and Var (V' x £ 1,1) are O (1/m),

‘EL; [( X"§2)1J —E[(Wxex?), ]

1] X . |
= 2 Z Ll,X,i,l £1,X7j>1j| - E [ EX,Z’,l ‘CX,],l]) E Z LXJ:’T' ﬁx’j’r + O <m>
"X =1 >
cx X 1
X *
|nx £ (V1505 = Uaxiig) Uxiig + O <m>
1/7]:]-
= \/ 2 2 1
nx ace( X) race( X)+ <m>
= o (1).

This concludes the proof.

Lemma 6.3.5.

Suppose that X = PY2X e R™*"x gnd Y = PY2Y € R™"Y gre two random matrices in class
Ca(X) such that

=1
1 o=
—> A —ngand—Z)\Q .= My,
mz:l =1
M. M-
M, 2x + Moy
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We define Ay, c,(s) as the resulting residual spike between X and Y .
The Main Theorem |3.1.1| says that knowing the spectra, the estimator of the expectation of residual

spike assuming our model is
M (M) = My + /M3 — 1.

This expectation of A, c,(x) is conservative in the sense of the second robustness defined in .
This means that the following results are true when nx, ny and 0 tends to infinity.

1: If B = Ly, then AT (Ma) = Mz + /M5 — 1 = Eppmin(m.0)) [Amca(m))-

2: If £ # Ly, then AT (M) = My + /M2 — 1 > Epminm.0) [Am.ca)]-
(Page
Proof. Lemma [6.3.5
Our simple model assumes X = Im and elliptical data. Therefore, Lemma [6.3.1]is still true and we
just need to investigate 9Y and Gy(l —&2). We call Esimpte and E¢,, (v, the expectations assuming

our simple model and a model in the class C4(X). By analogy we define E,,gimpie and E,.¢ A(X) 88
the expectation in probability.

by 1
p(m) szmple[a ] = 1+O<>’
X m

Ep(mln(m 0));simple [HY ) M = Esimple {(WX2)7171 + (WYQ)Ll’ M2:| —2
= 2M> - 2.

In order to prove the robustness in expectation of the estimators obtained assuming this model, we
just need to show that

Ep(min(m,@));simple [éY(l - &2)‘ MQ] 2 Ep(min(m,@));CA(E) [ey(l - dQ)‘ MZ} :
Using the Lemma [6.3.4] we can assume that W1 = ¥ in the class C4.

1. If ¥ =1,,, then using the restriction, ¥; = ¥, leads to

Eeattn) |[(Wx) 1] = ;iEcuIm) [(Wx?) ] + o)

= %ECA(IW) [Trace ((Wx?))] + om(1)

= M27X + Om(l)

Therefore,
Ep(min(m,@);simple |:éY(l - dQ)’ M2i| =2My; -2 = Ep(min(m,@);C(Ln) [éy(l - dz)] .

2: If ¥ # I,,, then, by using the proof of Lemma (and its estimations of A and B), we
obtain

A | 2
Ep(min(m,0))iC(%) [9Y(1 - 042)} = Ee,») [211 ((WXQ),M + (WY2)1,1> 5 (22)1,1}

Y ueg Vare, sy (Wx1,s) + 20ty Vare, sy (Wyn,s)
Y11

= m (Vare,(s) (W x,1,2) + Vare, ) (Wy1,2)) »
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where W x = % tis such that Wy = 21/2WX21/2.
We remember that assuming our model leads to

Ep(min(m,@));simple [éy(l - &2)‘ MQ] =2M; — 2.

Therefore, using the same argument as above and the restriction ¥; = U,
WMy—2 = e [; (Trace ((Wx?)) + Trace (W2y))] 9
- 2
= D Eeuom |[((Wx),,+ (12 ,,) =2 (22),,] + —Trace (27) 2
i=1
1 m
= E Z Em‘ (m (VarcA(E) ( X,1,2) + VarcA(E) ( y71,2)))
i=1
—i—zTrace (22) -2
m
2
= m (VarCA(Z) ( X’LQ) + VarcA(z) ( Y,1,2)) + ETI"&CG (22) — 2.
Because (Trace (X1,,))? < mTrace (£2), then ZTrace (£2) — 2 > 0. Therefore

2My — 2 > Ep(min(m,@));CA(E) [éY(l - &2)} .

Finally, the last inequality follows from the formula of the residual spike.

AT (M) = My + /M3 — 1> Eymin(m,0)) [Am.ca)] -

7.3.2 Proof of Model A

Theorem 4.2.1.
Assume X € R™ "X gnd Y € R™™ are random matrices from class Co(X) defined in . By
definition of C4,

X = PY2512% and Y = PY/?51/2
We define
X = PY/2% (deN':Pl/QN,

such that X and Y are invariant by rotation with spectra equal to the spectra of X and respectively.
Moreover, we define Aa,m and o, as the largest residual spikes obtained using (X,Y) and (X,Y)
respectively.
Then,

1. The new data X and Y satisfy the conditions of our model.

2. Our model is asymptotically weakly robust on the right,

Ep(min(m,@)) [)‘A,m] < Ep(min(mﬂ)) P‘O,m] with equality when % = Ip,.
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3. If Trace (X) — 1 > d, where d is a positive constant, our model is asymptotically strongly robust
on the right,

Epmin(m,0)) [Aam] + D(d) < Epmin(m,0)) [Aom] »
where D(d) is positive and depends on d,

m1611—1>100 Varp(min(m,&)) (>‘A,m) = mIGH—I)loo Varp(min(m,&)) (AO,m) =0.

Remark 4.2.1.1.

1. The theorem shows that applying the procedure based on our base model to data
generated by model A leads to conservative tests.

2. This theorem can be extended to the minimum residual spike to show robustness on
the left.

(Page
Proof. Theorem [4.2.1
The proof of Theorem uses four lemmas.

1: By Lemma the expectation of the residual spike depends only on the temporal structure
when @ is large. Therefore, the result is invariant of 3.

2:  Using the first point, we can consider only models with ¥ = I,;,. By Lemma[6.3.3] if ¥ =1,,,
the expectation is the same for all the temporal structures with the same two first moments
of the spectrum.

3: A small fluctuation of the first rows (time) does not affect the expectation by Lemma [6.3.4]

4: Lemma|6.3.5| proves that applying our model leads to a conservative test when the true model
is A.

Moreover, in the class C4, the variance of Wx 11 and (WX2)1 1 tends to 0. Combining this obser-
vation with Lemma shows the limit of the residual spikes variances.
The combination of the four lemmas and the convergence of the variances prove Theorem [4.2.1

O]

7.3.3 Proof of Model B

Theorem 4.2.2.
Assume X € R™™X and Y € R™™ are random matrices from class Cp defined in [{.2.4, By
definition of Cp,

X = P'Y?X and Y = P'/?

)

where P =1, + (0 — 1)uu’. We define

X = PY?X and Y = P'/? ,
such that P = I, + (é — Duu! and lim \/L% = 00. Moreover, we define A, and \om as the largest

residual spikes obtained using (X,Y) and (X,Y) respectively.
If the criterion defined in[{.2.5 is such that

Vo > 0, /"')\(07 SXa SY) < ehm N’)\(ea Sx, SY) + 0(1/\/7%)7
— 00

then
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1. If the variances in probability of Ox, Oy, (ix,uy) are O (1/m), our model is asymptotically
strongly robust on the right,

Ep(m) [)\B,m] < Ep(m) [)‘07771] :
The equality occurs when

V. AB.m
i Yatpm) (Agm)
m—ro0 Varp(m) ()\O,m)

2. If the variances in probability of Ox, Oy, (ix,dy) are op, (1), our model is asymptotically weakly
robust on the right,

Ep(m) [)\B,m] < Ep(m) [)\O,m] .
Remark 4.2.2.1.

1. If the criterion is satisfied, then applying the Main Theorem to data generated by model
B leads to conservative tests.

2. This theorem can be extended to the minimum residual spike to show robustness on
the left.

(Page [45)
Proof. Theorem [4.2.2]

We recall the formula for the residual spike :

2 PN P 2 2 2
. 1] 2 A 1+ (0y — 1)@2 + \/_491/9)( + (1 +0y0x — (0y —1)(0x — 1)@2)
)\residual =3 eY + d2 - ede + =

2 Oy

1 : First, we note that if the variance of 6 X, éy, a? is O, (1 / mpP ), the expectation of the residual
spike tends to the function of the criterion ux(0,Sx, Sy ), with Sx and Sy the spectra
of the random matrices before applying the perturbation P. The error is of size o, (1 / mbP/ 2).
(If the variances are just o(1), the error is op(1).)
However, we need to check that asymptotically E[a¢] = a = axay. Indeed we already know

by construction that O is asymptotically an unbiased estimator of 6.

2 : Because the matrices X and Y are in the class Cp defined in we can suppose without
loss of generality that u = e;. Therefore,

Bla] = B [ig, is, | + B

N . . S XXt S XYY
where (5 and Uy, are the largest eigenvectors of Yx = ix and Yy = 'y~ lespec-

tively. The last equality is obtained because the invariance by rotation implies E [ﬂE } =
Y
B |-ig, | =0fori>1.

3: Therefore, the criterion [4.2.5] is the expectation of the residual spike of model B with a small
error of size o, (1/m?/?) or 0,(1) depending on the variance of the estimators.

Therefore, assuming that the criterion py(6) increases as a function of 0, the largest expectation
appears for large 6 and this scenario corresponds to our model.
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7.3.4 Proof of Model C

Theorem 4.2.3.
Assume X € R™™X and Y € R™™ are random matrices from class Cc defined in [{.2.6. By
definition of Cp,

X = PY2X and Y = PY/?V,
where P =1, + (0 — Duul. We define

X = PY2X and Y = PY/?V,
such that P = L, + (6 — 1)uu?, lim\/im = 00 and X (respectively Y ) is invariant by rotation with
spectrum equal to the spectrum of (respectively Y ). Moreover, we define A\cm and Xom as the

largest residual spikes obtained using (X,Y) and (X,?) respectively.
If the criterion defined in[{.2.5 is such that

VO >0, pux(0,Sx,Sy) < alim pa(8, Sx, Sy) + o(1/v/m)
—00

and if the variance in probability of Ox, Oy, (Ux,uy) are om (1), our model is asymptotically weakly
robust on the right,

Ep(m) [)‘C,m] < Ep(m) [)‘O,m] .
Remark 4.2.3.1.

1. We can show that assuming data of the classes Cp and C¢o with same spectrum leads to
Epm) [Aeim(0)] < Epm) [ABm(0)] -

2. If 0 is large, Ep(n) [Ac,m] = Ep(m) [Mo,m] but we have no information about the variance.

3. If the criterion is satisfied, then applying the Main Theorem to data generated by model
C leads to conservative tests.

4. This theorem can be extended to the minimum residual spike to show robustness on
the left.

(Page
Proof. Theorem [4.2.3]

The proof of is the same as the proof of Lemma Because the data are symmetric and
identical, we can apply rotations that permute elements of the matrices or change the sign of rows.
Therefore, the expectation of the residual spike is exactly the same as for model B, page [202

O]

7.3.5 Proof of Model D

Theorem 4.2.4.
Assume X € R™*"X gnd Y € R"™™ are random matrices from class Cp(u) defined in for
u € R™. By definition of Cp,

X = PY2X = p1291/2% qnd Y = PY2y = pY/2xnt/2
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where P =1, + (6 — Duul. We define
X = PY?X and Y = PV/?Y,

such that P = T, + (6 — 1uu?, lim\/im = oo and X (respectively Y ) is invariant by rotation with

spectrum equal to the spectrum of X (respectively ~Y)~ Moreover, we define Ap,, and Ao, as the
largest residual spikes obtained using (X,Y) and (X,Y) respectively.
If the criterion defined in[{.2.9 is such that

VO >0, (975X,8Ya Ux, UY) < el'gn X (9,5X, Sy, Ux, UY) + o(1/v/m)

and the variance of (ux,Uy) is om (1), then
1. If the criterion |4.2.8 is such that T = 0, then our model is asymptotically weakly robust on the
right,

Ep(m) [AD,m] < Ep(m) [)‘O,m] .

2. If the criterion of [{.2.8 is such that T > d for d a positive constant, then our model is asymp-
totically strongly robust on the right,
Epm) [Ap.m] + D(d) < Epny [Mosm] + 0om(1), where D(d) is a positive function of d,

nlgnoo vaer(m) ()‘D,m) = n%gnoo Varp(m) ()‘O,m) =0.

Remark 4.2.4.1.

L. If Epy [ADm] = Epgm) [Mo,m] when 6 tends to infinity, the asymptotic variances are not
necessarily the same. We recall that models letting 6 tend to infinity are in class Cy4.
Therefore, assuming X # I, leads to conservative tests.

2. Simulations seem to show that for all 8, when ¥ # I,,,, we usually have
Ep(m) AD.m] < Epm) [Mo,m]

3. If the criterion is respected and the variance of the residual spike tends to 0, then
applying the Main Theorem to data generated by model D leads to conservative tests.

4. This theorem can be extended to the minimum residual spike to show robustness on
the left.

(Page
Proof. Theorem [4.2.4

To prove Theorem [£.2:4] we need to understand how the T criterion [£.2.8]is built. Then, the proof
uses simple results of linear algebra.
In this theorem we use the following notation:

Sy = XX a0

= nxt’ ux = uE 1 X = )\Ex,l
YY s N — X
Yoy = nx uy = uEy,l’ 9y = )\Ey,l

1: First we can without loss of generality apply the same invariant by rotation matrix to X
and Y in order to change u by e;. Then, the matrices without perturbation, X and Y are

rotationally invariant but not independent anymore.
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2 : We realize that only the expectation of & changes compared to model B. (Indeed the expec-
tations of Ox and fx are asymptotically 6.)

m

E[d] = axoy + Z E [ﬂyﬂ'ﬁxﬁ'] = axoy + mE [QALYQQALXQ] .
=2

The characterisation [5.11.1] of the perturbed eigenvector shows that the component ¢ of the
eigenvector is

Ux,s Qx.1,s
\/1 — %, \/Zt;ﬁl(QX,l,sP’
Qx,1,s = (WX (61, — WX)*l)1 .

)

where Wx = %XX"/.
Therefore, we have

Uy 2l x 2 Qx.1,2 Qv
\/1 - “Y1\/1 - “X 1 \/Zt;ﬁl Qx,1.)? \/Zt;ﬁl Qv11)?

This last equation explains the T criterion. The scalar product is computed from Qx and
Qv . Therefore, the criterion replacing @x and Qv by Qx and Qv seems intuitive. In the
next part, we will show that this replacement is valid.

3: The previous part express E [Gy 20 X,g] as a function of ()x,1,2; however, we can only look at
@x 2,3 To prove that replacing X by X has no asymptotic impact, we need to show

Qx.23 ~ 0Qx23,

where

Qxza = (Wx (0L, —Wx) ), .

Qx23 = ((2)( — 9)(?1)(113() (91m - (flx = éxﬁxﬁtx»_l)Q .

To simplify equation, we use the following notation:

Q(M,0) = (M (01,,, — M)_l) .

The equivalence is proven in three steps.

(a) Q@ (W, 9)273 =Q (ix,—1,—1, 0)1 ) +0, (ﬁ), where 2){7_1,_1 is the matrix 3y without

)

the first row and the first column.

1) Q (Sx1-10) |, =@ (8x.6), +0, (5h).

)

() Q (ix,e)m —Q (2X _ éxaxag(,e)m +0, ().

)

(a) @(Wx,0)y5=0Q <2X,—1,—1; 9>1 , T Op (25)-

)

Because X x = PY2Wx PY/2 and P is a canonical perturbation of order 1, then

Xx,-1,-1=Wx,_1,-1.
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Moreover,

QWx.0)y; = (Wx (On—Wx)")

_ < Wxi1  Wxi,-1 ) (91 B < Wxi1  Wxi,-1 >>_1
Wx._11 Wx—1,-1 " Wx_11 Wx,_1-1 03

~1
_ < Wxi1  Wxi,-1 ) (9 - Wx 11 ~Wx1,-1 )
Wx 11 Wx,—1,-1 —Wx,—11 Oly1 —Wx 11 - ’

If Kk = (9 - WX71’1) - WX,l,—l(HIm—l — WX7_17_1)_1WX’_1’1, then xk ~ 6 and

(9*Wx‘1,1 —Wx 1,-1 )71
-Wx 11 0lpm—1—Wx, 1,1

1/k
_ t
< 1/k ((9Im71 _WX,—I,—1)71WX,1,—1)

L 1/6(0Lm—1 — WX,—l,—ll)_le,l‘—l ).
(0I—1 —Wx —1,-1)" " +1/6(01pm—1 — Wx —1,-1)" Wx1,-1Wx, 1,101 —Wx _1,-1)"

Therefore,

Q(Wx,0)s3

1 -1
= (01,1 — 11— 1% _
— (Wxoa1 Wy 1) <( (01 1 —Wx _1,-1) X,1,-1 ) 1)
2

Ol — Wx, —1,-1) " 4+ 2 (011 — Wx 1 1) T W 1,1 W 1,1 (011 — Wx 1, 1)~
1 1 1
7WX,2,1; ((0177L717WX,—1,—1> WX,l‘—1)2+(WX,—l,—1<017n—1*WX,—I,—l) )1’2

1 1 1
+(WX,—1,—1;<91771—17WX,—1,—1) Wx1,-1Wx,-1,1(0m—1 — Wx, _1,-1) )
1,2

_ 1
= (WX,—l,—l(eIanl - Wx, —1,-1) 1)1 ) + Op (m) .

The last line is obtained in two steps.

e Using the invariance by rotation of B = ((Hlm_l — ny,l,,l)_IWXJ,,l) e Rm1
implies that, for s = 3,4, ...,m,

By = ((elm—l - WX,—l,—l)_IWX717_1)1 ~ ((QIm_l — WX,—17—1)_1WX71,—1)8_1 = B,.

(iuy)z

Then,

N
3
VR

NE
E
~

s=2
m||B||?
= m(Wx1-1) (01 —Wx_1-1) *Wx1_1
< M (01 — Wx —11) ™) W]

Because the spectrum of Wx is bounded, there exists C' a constant such that
[[Wx 1,-1]|> < C?%. Therefore,

Amax ((Hlm_l — WX,fl,fl)_l) L
E[|B:] < C 7 #0071z

Because k ~ 6 and Wx 21 = O, (1/4/m), then

_ 1
Wx211/6 ((0Ln—1 — Wx,—1,-1) 1WX,1,—1)2 =0, () .
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e By invariance under rotation, for 1 < i # j < m,

By 3

)

= (Wx,—1,-1(0L—1 — Wx—1,-1) " Wx1,-1Wx,—1,1(0Ln—1 — WX,—1,—1)_1)L2

~ Wy —1,21 (011 — W —1,21) " "W, —1Wx —1,1(0Ln—1 — WX,—I,—I)_l)Z»_Lj_l
= Bi;.

N

> |Bijl (Z (Bi,j)z) m?
ij=2 ij=2

i#j

Trace (BQ) m?
2

g O)\max ((elm—l - WX,—l,—l)ile,—l,—l(elm—l - WX,—l,—l)il) m2~
Therefore
Amax ((0Lm—1 —Wx —1,-1) " *Wx 1, 1(0L,—1 — Wx 1. 1)} 1
E [|Bas|] < C a (( 1 X,—1,-1) Tr); 1,-1( 1 X,—1,-1) )Jrop <92m)'

. 1
Because k ~ ), the last term is of order O, (m)

This concludes the first step.
3 - 3 1
(b) @ (ZX’_I’_1’0)1 2 @ (EX’Q)Q,?) + Op ()

This equality is proven as in the previous step by replacing W 11 and Wx _11 by )y X,1,1
and X x 1,1 respectively. In this case, the constant C' change,

C=1Ex-11ll =0, (0).
However, we still can prove the result with a weaker power of 1/6.

(© Q (2){,9)273 = Q (Sx - fxaxil, 0)273 +0, ().

We directly compute

. . . . . . -1
Q (ZX — GX?]X&&,G)T = <<2X — fotxﬂtx> (91m - (EX - 9X?1X@3<)> )
, 2,3
m 5\* 4
= <Z ; Ej\x,z uleule>
i=2 7 g 2,3
R o1 )
= ZX (91m — Zx) — ~U2U3
23 0 —
(z (01, -5 )‘1) e (1)
= X —2x — |-
m 2.3 P\ om
This concludes the third step.
3: Finally if T is the criterion,
Eld] = axay +mE UY2Ux.2 \/1—0@,\/1—0&—&-07%(1)
VI @/l —
= axay +mE @x,12 @v2 \/1 - oz%;\/l - o@( + om (1)
|V (@x00)? /0 @y 10)?

= axay—&—T\/l—a%,\/l—a?X—i—om(l).
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The theorem assumes the criterion defined in iy as strictly increasing with 6.

First, this condition proves that if 7' = 0, then uy, < p, + om(1).

Then, the expectation of the residual spike is strictly decreasing as a function of T'. Therefore,
the estimation puy,, neglecting strictly positive 7', is asymptotically strictly larger than puy,,.
Moreover, assuming that the variance of the angle tends to 0 proves the second point of the
theorem.

7.3.6 Proof of Power

Theorem 4.3.1.
Suppose X = PY2X € R™"x and Y = PY2Y € R™™ are data such that for X € R™"X and
Y € Rmxny and furthermore P € R™*™ satisfies Assumption [2.2.4(A4). We test

Hy : Px = Py,
Hy: Py = Px + (A — 1w,

where Px is a finite perturbation such that
k
Px = 1,+ Z:(QZ — Dugut.
i=1

We define the Power as
Bm = P {Hq rejected }.

1. Assuming the continuity properties defined in[{.3.1], then the Power tends to 1 in the following
two cases:

(a) (v,u;) =0 fori=1,2,..k,
(b) Sy () # 1,

2. Assuming the classical multivariate assumption, nx,ny — oo with oy 0 and a fized

dependence between the columns (temporal structure), then the Power tends to 1 in the two
cases defined above.
3. Assuming m,nx,ny — oo with cx = 2%, cy = =, then

nx ny

(a) If (v,u;) =0 fori=1,2,....k, and

A> My + /M2 -1,

where

the Power tends to 1.

(Page
Proof. Theorem [4.3.1
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We prove each part of Theorem in a different order.
(v,u;) = 0:

e m/nx =cx and m/ny = cy:
Under Hy, the asymptotic residual spike tends to My + /M2 — 1. We just need to show
that the asymptotic residual spike tends to be larger than A under H;.

Under H;, we build 5\, the unbiased estimator of A used in Sy with its corresponding
eigenvector 0, then

Amax (2)_(1/223/2)_(1/2) > @ti}liyﬁ

WV
>
=,
M>>

<L
>

\Y
P
+
PN
_
~
>
>
|

Naw?
)
<
v

> A+0,(1/m).

The first part of the result follows because A tends to A. Therefore, when A\ > M, +

/M3 — 1, the power tends to 1.

e cx and cy tend to O:
When nx and ny tend to infinity, we are in the classical theory. Under Hg, the residual
spike tends to 1 and because the previous computation still holds under H;, the power
tends to 1.

e Continuity property:
Assuming the continuity property, A tends to infinity and the power tends to 1.

Zf:l <’U, ’LLi)Q 7& 1:

In this case the difference is not orthogonal. We use the same computation as previously,

(1/0x.; — 1) (0, 1ix,)?

E

Amas (525v577) = A+

@
I
i

2 5\ - <@7uX,i>2

pN
-

-
I
N

) k
> A (1 - <@,axﬂ->2> .
i=1
e cx and cy tends to 0: R
Under Hy, the residual spike tends to 1, but, under Hj, X does not tend to 1. Therefore
the power tends to 1.
e Continuity property:
Because Zle (0, fLX7Z'>2 < 1 and A tends to infinity, then Apax <i;(1/22y2;(1/2> neces-
sarily tends to infinity. Therefore the power tends to 1.
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7.4 Application proofs

7.4.1 Spectrum estimation

Theorem 4.4.1.
Using the notation of Section and assuming ¢ is an increasing function on the support of the
spectrum, the following holds.

1. If the values j‘ixi fori=kx,kx +1,....,k are finite (k > kx ),

0<;§;¢<5\Wx,i) Z ¢( EX’) <Tln>

i=kx+1
In particular if p € R is outside the spectrum support, for si,s2 > 0,

Moo (9) = = Ejj ( OV:WX)) 0y (Um) = M, ¢ (p)+ Oy (1/m).
More precisely
bx Y1 6 (M)
i — )
<o () i 2 00

i=kx+1

_ % (S\WXJ) _ ZfszH & (Xix,i) . kx D i1 ® (5\2“) ‘

m m(m—kx)

2

2. The estimator can be improved when ¢(x) = x° using another estimator. We assume that the

variance of the entries of the data is o® and 0> — M, $x =0, (mnx> then

m ')2 Sl (A Z(/cx))g + 2k (ng,lml)Q

mi3 (m —kx)M 15 T QkX/\EX,kXH

2 2 2
N k S N
_ 2k ()\WXJ) =D ik 41 (Aﬁ)x,i> —2kx ()‘ix,ka)

2
(Zﬁkxﬂ (5‘2”)2)

2 .
mo Ml,Ex

asm

_l’_

k
SR Ae 2k Ag k4 1M,
<M1XA: _0_2+ Z kx+1 EX Yx,kx+1 ( ) 1,2){) +O (1/m2)
=X m

Remark 4.4.1.1.

1. The first inequality shows that the error of the intuitive estimator is of order 1/m.
Moreover, we always underestimate the true value and this underestimation can lead
to a non-conservative test. Nevertheless, asymptotically, this estimation is enough and
simulations show very good performance with reasonably large m.

2. We propose the second estimator to improve the conservative properties of the first one.
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The first estimator underestimates My x with an error of size

26 () = S (sr) 2 () =S (s’

m m

This estimator has also an error of order 1/m and tends to bound M x. However,

assuming 5\2}( kx 11 close to XWX,l, the terms that contribute to the underestimation
are

. . 2
2kXAfIX,kX+1 and (k - kX) (AWXJ)
m o?m '

2
The error is of order 1/m, but the numerator is smaller than & (Aix kx +1) .

3. We do not treat the case kx > k because,
o If kx < k, the estimators are Oy, (1/m) when the missing perturbations are small.
Moreover, underestimation of k leads to overestimation of My
o If kx > k, we tend to underestimate Ms and the procedure loses the property of

conservativeness.

Before concluding that choosing kx < k is better, we should remember that this scenario
creates errors on the statistics used for the Main Theorem B.1.1l A better answer could
be:

Choose kx < k to estimate the spectrum and kx > k for the rest of the
procedure.

Of course all this discussion can be neglected when m is large enough.

(Page

Proof. Theorem [4.4.1]

We look at the eigenvalue of Wx and P,C1 / 2I/VXPk1 /2. Without loss of generality we assume Py is
canonical.
We define P, =1,,, + (6; — 1)e;el. Therefore,
1/2 1/2 _ 51/25351/2 51/2 51/2 51/2 51/2
P WxP/' " =P/ P - P WxP'"-- PP
1. We first compute the error of the intuitive estimator. We start by assuming kx = k = 1, then

k=kx > 1 and finally k > kx.

(a) First we show the result for a perturbation of order k = 1.
o 1/2 1/2 Sp X,1,1 2P1,X,1,2:
S x = P2y P :(A s m>
Ypx2m1 Wx2:m2m

We use the notation Wx 11 = Wx 2.n,2.m to simplify equations. By the Cauchy
interlacing law for symmetric matrices we have
)\Wx,l 2 )\Wx_yflyfl,l 2 >\Wx,2 > )\WX’,17,1,2 2 te 2 >\Wx,m—1 > )\WX’,lyfl,m—l > AWx,m'
Therefore,

m m—1

0< Z¢ (wa,z) - Z ¢ (S\WX,_L_I,O < ¢ (XWXJ) :

i=1 i=1
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Using the same argument,

0< mz_: ¢ (XWX[,L,lLZ-) - i¢ (5‘21,”) < 6 (}\ny_l’_hl) .
Therefore, ) )
0 < i 6 (Aw.i) - i 6 (s, i) <0 (i) +0 (dww) <20 ().
Finally, B h
i ¢ (&LX,Z')
m(m — 1)
A ) o)

< 2¢ <5‘Wx,1> B 222 ¢ (Xilyx,i) '

m m(m — 1)

We can apply the same idea to perturbations of order k and assuming kx = k.
Yx = Pkl/QWXPkI/2 — | ZXLELE X,1,(k+1):m .
XX,k D)im 1 WX (ke 1)im, (k+1):m
By successive applications of the Cauchy interlacing law,

m—s m—s—1

0 < Z ¢ (;\WX,75,75’1> - Z ¢ <5\WX,7571,757177:> < ¢ (XWX,fs,fsJ) *
i=1 i=1
Therefore,
m m—k k—1
0< ZQS ()‘Wxﬂ') - Z ) ()\WX,fk,—k»i> < ¢ (AWX,fs,fsvl) :
i=1 i=1 s=0
Moreover, by successive Cauchy interlacing law,
m—s—1 ) m—s . .
0< Z ¢ (Aix,fsfl,fsfl,i) o Z ¢ (Aix,fs,fs,l) < ¢ (A2X,7571,75717k75> ’
i=k—s i=k+1—s

Then, because ¢ ()\ix,—s—l,—s—l»k*L?) <o (Aix,—k,flml) and ¥x .k = Wx _p _k,

o<m_k¢(ﬁwx,k,k,i)— > 6(s) < k6 (e ua).
=1 i=k+1
Finally,
0<3 6 (s~ 3 0 (hss) < o0 (wnn) 480 ()
i=1 i=k-+1 s=0
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leads to

m

0<

Suppose o = % E

<320 () -

Uech (S\WX,1> _ Zf:kxﬂ & (Xix,z‘) . kx D i1 ® (S‘fjx,z) ‘

m m(m — kx)

LS i) -

030 0we) = Y 0 (i) <26 (wea) = 3 0(hs)
i=1 i=kx+1 i=kx+1
Therefore
kx 31 @ (xix,i)
m(m — kx)

i ¢ (j‘ix,z’)

i=kx+1

213

(¢) Suppose that we choose kx < k principal components. Then, the previous equation

X

In particular, if the eigenvalues j\ixi for i =kx,kx + 1, ..., k are finite,

Lo () -t 3 o) <0 (L),

i=kx+1

2. The error can be improved with the estimator

Z?;kx+1 ¢ ()‘ix,z) +2kx¢ (Aix,kX‘H)
(m —kx)M, 5 (kx) +2kxAs o1

[Tr (Wx)], then we compute the following error,

Dk 41 @ (Ai)x,i) +2kx¢ <)‘ﬁ)x,kx+1>
= (m —kx)M, ¢ (kx) +2kxAs, o1

Zﬁ1 ¢ 5‘Wx,i) - Zﬁkxﬂ ¢ (S\ix,z) —2kx¢ (Xix,kx-l-l)

> o
=1

2

o‘m
* i ¢ (szz) +2kx¢ (Xﬁx,karl)
i=kx+1

1 1
(Uzm (m —kx)M, 5, (kx) + 2]€X§\2x,kx+1> |

By the previous computations, we see that

(o) = 20 0 (o) ~ 2650 (i)

i=kx+1

< 2ko (XWX71> — i ¢ (Xix,i) —2kx¢ <5‘§)X,kx+l> .

i=kx+1
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and using (m — kx)M, ¢ (kx) = (m — k)M, ¢ (k) = Sl 1 As,

1 1
o*m (m—kx)M, ¢ (kx)+2kxAs 4o
1 1
= 2. k 3 3
osm - (m — k)MLEX(k) - Zz‘:kx—l—l )‘ix,i + 2kX>‘2X,kX+1
(m— k) (M g, (k) = 02) = S Agye s+ 2hxcAsy g iy — (1o
m(m —k)o*M, ¢ (k) +mo? <2kX5‘ix,kx+1 - Z§:kx+1 j‘zxz)
We assumed that o2 — M, Sy = Op (%), therefore,
(m - k) (Ml,ix(k) - 02) - Z§:kx+1 S\ixﬂl + ZkXXix,kx-f—l - (k + 1)02 1
- 252 M + Op 3
meo 1’2)(
i . .
M1,2x(k) —o? X - Zi:kx-l-l Aflx,i + 2kX)‘2X,kX+1 —(k+ 1)M172X(k) 40 L
mo?M, ¢ m2o2M, ¢ (k) PA\m3 )’
Finally,

2k¢ (XWX,l) - Zf:kx-&-l ¢ (;\2x7i) — 2kx¢ (5\2%’“{“)

o2m

(Zyikx-&-l ¢ (S\Exz))
+ mUQMl,ﬁ)x

& R
, -
(Ml,ix — 0" +

Zil:kx—&-l Aﬁlx,i + 2kX)\f3x7k’x+l — (k + I)Ml,flx (k)
m

) + O, (1/m?).

Replacing ¢(z) by x? concludes the proof.




Chapter 8

Simulations

In this section we present some simulation results in order to convince the reader that the most
important theorems announced in the thesis are confirmed. In addition some conjectures, not proven
in the thesis, are supported by the simulations. In order to highlight some weaknesses of the procedure
developed in this thesis, some values in the tables will be in red.

In section we give an example of analysis. All the useful routines are proposed in our R package
"RMTResidualSpike”.

8.1 Main Theorem

In this first section, we extend the simulations of Chapter [3] We test our Main Theorem under
different hypotheses on X € R™*"X and Y € R™*"Y (recall that Wx = iXXt and Wy = %YYt):

1. The matrices X and Y contain independent standard normal entries.

2. The columns of the matrices X and Y are i.i.d. Multivariate Student with 8 degrees of freedom.
Fort=1,2,...,nx and j =1,2...,ny,

N (6, Im> N (6, Im>
X, iid and Y. ; i
9 X2 9, X2
A8 8
8 8

3. Therows of X and Y arei.i.d. ARMA entries of parameters AR = (0.6, 0.2) and MA = (0.5,0.2).
Moreover, the traces of the matrices are standardised by the estimated variance.

The two Tables|8.1)and [8.2| compare the estimations of the mean and the standard error of the residual
spikes ({1, ) to their empirical values (u, o).

The simulations are computed for the three scenarios described above.  The perturbations
P, =1,+ Zle(ﬁi — 1)uju; are without loss of generality assumed canonical and the eigenvalues
0; are all fixed to 5000.

The numbers in red highlight bad results. Indeed, the number of data is large but the procedure is
not conservative enough. We explain this red values by the strong temporal correlation of the data.

Details of the simulations of Tables [8.1] and [8.2]

We apply our procedure to elliptical data after adding a perturbation P, = I,,, + Zle(é?i — 1)uul
of order either k =1, 4 or 10 with eigenvalues 6; = 5000.

This leads to observed residual spikes and repeating the experience 1000 times allows the estimation
of their moments.

On the other hand, the theoretical moment of the extreme residual spikes are obtained by applying
Theorem using the spectra of X and Y.
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8.1.1 Blue and orange estimations of the residual spike

Suppose nx > ny. We easily see that

_ 1
Amax (2 1/22ypkzx,1§,f) = , (8.1)
1/2 —1/2\ _ 1
Amin (EXP zypkzxfk) = . (8.2)
Using the Main Theorem, estimation of the blue or the values leads to an error of order O, (1/m)

in the equalities. We already observed this difference in Section The Table [B.3] compares the
estimations of the blue and the orange values assuming that nx is larger than ny.

Recall that we try to estimate the distributions of Apn (flglézﬁ)y,pkf];]/;i) and

Amax (E XlléiEY sz_l/ 2). The simulations results show that conservative properties can be main-

tained if we observe the following rules.

e Estimate the maximum by applying the Main Theorem to

Then invert the distribution.

e Estimate the minimum by applying the Main Theorem to
1/2 —-1/2
Amin (2 / Eypkzxyl/gk).

On the other hand, when both nx and ny are sufficiently large, it is seems reasonable to use only the
blue estimators for the minimum and the maximum.

Although inversion of the estimates leads to conservative properties, it usually also leads to worse
estimates.

Details of the simulations of Table [8.3]

We apply our procedure to normal data after adding perturbations P, = L, + Zle(ﬁi — 1)uul of
order k =1, 4 or 10 with eigenvalues 6; = 5000.

Repeating the experience 1000 times, we can estimate the moments of the observed extreme resid-
ual spikes.

The observed residual spikes are obtained using f]}%if)y} P2 1/ > On the other hand, the the-

oretical residual spikes are obtained by two different ways. Elther we apply our procedure to
1/2

Z

Ey P E X, 1/3 , or to . In this last orange case, we invert the estimations.

8.2 Robustness

In this section we present simulation results to check the validity of our procedure by simulating some
scenarios assuming that the columns of X and Y have i.i.d. entries with a particular distribution and
the data have the form:

1. X = PY/2X and Y = PY/2X.

2. X = P2912X0Y/? and Y = PY/221/2X0y/?, where Uy € R™ ™ and Uy € R™X™ are
temporal covariances that do not create spikes and ¥ € R™*™ ig a spatial covariance matrix
that does not create spikes.
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In these cases, we present the number of false rejections in the table using our procedure with a
level of 0.05. Note in particular that the second table contains only zeroes. This is, however, to be
expected from the theory, because when the trace of 32 is larger than m, we tend to overestimate the
location with probability 1.

Moreover, the red results show that our model does not work very well with the binomial distribution
with success probability 0.9. We believe that the reason of this failure is the large fourth moment.
The same underestimation could appear with a strongly asymmetric gamma distribution.

Despite the weakness of the estimation of some quantiles, our procedure estimates the location of the
spikes very well. The results show that wrongly assuming that ¥ # I,,, leads to asymptotic conservative
tests for any distribution.

Indeed, assuming > = I,,, when ¥ # I,,, leads to an overestimation of order O,(1). On the other hand,
the location underestimation or overestimation due to non-spherical distribution is small compared to
the previous overestimation due to assuming ¥ = I,,.

Details of the simulations of Table [8.4]
We apply perturbations P, = I, + Ele(&- — Dugul of order k = 1, 4 and 10 with §; = 5000
to matrices containing i.i.d. data. Then we use the procedure with level 0.05 assuming that the
spectra of X and Y is known. (Estimation are proposed in the next section.)
Finally by repeating the operation n = 1000 times, we estimate the percentage of false rejections
of our generated data respecting Hy : ¥ x = Xy

8.2.1 Small perturbations

Our procedure implicitly assumes that the largest and the smallest residual spikes occur for large
0. This assumption can be proven for particular spectral distributions such as Marcenko-Pastur.
Nevertheless, the universality of this assumption is wrong.

The second part of this section assumes perturbations of order 1 and in Figure [8.1] exhibits the curve
of the residual spike as a function of 8. As expected, all the curves are monotonic and diverge from 1.
Nevertheless, we also create an artificial example where the curve decreases!

To understand why this counterexample is different from the other simulations we need to explain
how we generate the curve.

e The increasing curves are built from data X = PY2R1/2X¥ e R™™x and
Y = PY2212Y W € R™*™ defined as previously where P = 1I,, + (8 — 1)uu'. Thus the covari-
ance matrices become 3y = iXXt and Yy = %YYt both in R™*™ and we can construct
the residual spike as a function of 6.

e The decreasing curve is built directly from Wy € R™*™ and Wy € R™*™ such that
Sx = PY2S12Wysl/2pl/2 and Sy = PY2R12Wy1/2PY2. In addition, Wx = OxAxO%
and Wy = OyAyOg/, where Ox,Oy € R™*™ are uniformly distributed and Ax, Ay € R™*™
are diagonal matrices with entries generated by independent exponential random variables of
parameter 1.

Therefore, we argue that this second scenario is less plausible in practice. However, even if it occurs,
the criteria [£.2.5] allows us to detect it.

Remark 8.2.1.
The last curve is noisy before becoming monotone. This behaviour is due to largest eigen-
values being created by the spectra instead of the perturbations. Indeed in some cases,
Amax (X) is such that the perturbation of order 1 is not detectable as the largest eigenvalue
of X = P1/2X.
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Table 8.4 — Simulations of the percentage of false rejections when the a-level of the procedure is 0.05.

In the second table, the values O'iz

are 0.5,1,4 for ¢ = 1,2,3. The red values are not accurate enough.

However they show that the location of the residual spike is well estimated. (Number of replicates:

1000, ¢; = 5000)
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Xi . Yi; “"Binomial(1,0.9)-0.9 = Diag(W1, Wa, Wa, W), X and Ay dissonal with
Wi ~ Wishart(a21,, 4, 5m)/5m, o
v=1 Axijs Ay~ Exp(l)

Figure 8.1 — Estimation of residual spikes (with quantiles 0.05 and 0.95) as a function of 6, the
eigenvalue of P, a perturbation of order 1. The simulations always assume m = 400, nx = 800 and
ny = 200.

8.3 Estimation of the spectrum

Usually we do not know the spectra of the random matrices X € R™*"X and Y € R™*"Y, but we
estimate them in the Main Theorem by using the spectra of X = P/2X and Y = PY/?Y as in
Theorem K.4.1]

The Table presents the false rejection rates of our procedure assuming a level of 0.05. Two ways
of estimating the spectra are tested, the usual and the robust method defined in Theorem [4.4.1

As expected from the theorem, the usual estimator tends to underestimate the extreme residual spikes
and this can be corrected by the more conservative robust estimator.

When nx or m is small, an interesting idea could be to combine this robust estimation of the spectra
and the orange estimator of the residual spike introduced in Table

Despite the poorer results of the procedure when k is large, the table confirms a good asymptotic
performance for reasonably large k.

Details of the simulations of Table [8.5]
We apply perturbations of order £ = 1,4, 10 with 8; = 5000 to normal data.
Then, we use the procedure with level 0.05. In particular, we use two different methods to estimate
the moments of the spectra, the usual and the robust one defined in
Finally by repeating the operation n = 1000 times, we estimate the percentage of false rejections
of our generated data respecting Hy : X x = Xy



223

ESTIMATION OF THE SPECTRUM

8.3.

(000G = '© ‘0007 :seyeorded Jo IsquIny]) ‘POYRUIIISd [[9M ST SIS [RNPISSI S} JO UOIIRIO[ 9]} ‘I9ASMOY
"3 93xe[ 10y 10 Au Xu ‘ut [[ews 10} N0 ATUO q ‘YSNoud 9jRINIIR J0U 9IR SoN[RA Pol oY, [['§ ' welooy ], ur pasodoid Iojemirise snqol
S91 IO I0JRWIIISO [RNSN S31 AQ POJRUIIISO oI8 ©I)09dS o) UM G()'() = © [9AJ] & UOIJISSI dSTe] JO 98ejuao0ld o) JO SUOI)R[NWIS — G’ O[(R],

350G

rensn

350G

rensn

350G

rensn [1snqoy

rensn

350G 0

rensn

350G 0N

rensn [1snqoy

1snqoy 1snqoy

000T 009 00T
L Y re ot
QNN Q\ww QNN :_54
T/1-% S C/1-5
00°0 00°0 00°0 v1°0
00°0 00°0 00°0 80°0 000T
70°0 10°0 00°0 S0°0
00°0 00°0 00°0 610 | 000 0z°0 00°0 00°0 6T°0
00°0 00°0 00°0 00| 100 010 00°0 00°0 60°0 00¢
€0°0 00°0 10°0 900 | ¥00 90°0 10°0 10°0 80°0
00°0 00°0 00°0 10 [ 000 62°0 00°0 00°0 veo | 900 000 zg0 000 090
000 000 000 1o | 000 110 000 000 o | go00 00°0 qTo 00°0 910 00T
200 200 10°0 : 10°0 10°0 : :

1snqoy

rensn

1snqoy

rensn

4snqoy

rensn |1snqoyg

rensn

1snqoy

rensn

X 97
N\TN g

1snqoyg

X
T/1—

m XNE<




224 CHAPTER 8. SIMULATIONS

8.4 Estimation of k

In this section we show in Table 8.6l that a small underestimation or overestimation of k& does not
affect the estimation of residual spikes.
Recall that in the simulations of Section we assumed the spectra of X = P71/2X and Y =
P~Y2Y are known. In this scenario, neglecting overly large perturbations led to loose conservatism.
The simulations of this section estimate the spectra using the observed spectra of X = PY/2X and
Y = PY/2Y. In this case it seems that,

Errors on k lead to conservative procedures in all cases. However, underestimation of &
can lead to a large loss of power!

Details of the simulations of Table [8.6]
We apply a perturbation of order k£ = 4 to normal data.
Then we use the procedure with different k.ot = 1,2, 3,4,5,6.
The moments are estimated using the usual estimators of the spectra assuming k = k.s and
n = 1000 replicates of the experiment.
The correct perturbation, Py, that is applied to the data has eigenvalues, #; = 1000, 5 = 200,
A3 =16, 4 = 2.1.

8.5 Criterion

In Section we investigate the criterion T' defined in In this section we use simulation to
argue that assuming class Cp as defined in T is never negative. In particular it becomes strictly
positive when ¥ # I,,,. The simulations of Table compute the criterion for different scenarios.
The simulations always give positive values for the criterion. Therefore, our procedure leads to con-
servative tests in class Cp.

8.6 An application

In this section, we apply our procedure to data X and Y. First, each step is briefly explained. Then,
an analysis is presented on simulated data together with the mathematical work and the important
plots.

This procedure is not unique and other solutions better adapted to the problem could be implemented.
For example, the choice of k and the number of perturbations, could certainly be improved. The goal
of this section is to provide a procedure as conservative as possible with reasonably good asymptotic
power.

1. First, we center the data with regard to the rows and columns.

2. Then, we need to estimate k£ and rescale the variance. However, in order to rescale the matrix
we need to know k! There are two ways to select k:

(a) The user chooses k by looking at the spectra and keeping in mind that overestimation is
preferable to underestimation of the actual value.

(b) i. By looking at the spectra, we can select different interesting values for kx and ky to
test.
ii. Assuming some kx and ky, we rescale the matrices by assuming HAXJ, - 0 X kx pertur-
bations in the matrix X and éy,l, e éyvky perturbations in the matrix Y.

iii. If the perturbations 6 added to one matrix respect the condition proposed in Section
depending on kx and ky, then the couple (kx, ky) is relevant.
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S = Diag(5,5,..., 1,1, ...,0.5,0.5, ...),
_ Lo 2
S =1L, S =A A~MP(c=05), ¥ =1 \I,:[(;; i ]’p:(w

0.009 0.001]-0.005
0.002 0.004] 0.015 0.009 J0.004 -0.000
0.022 0.008] 0.036
0.002
0.012 0.008 0.019 0.005
0.051

0.108 0.176 #0.158 0.086
0.189 0.108]0.266 0.127]40.270 0.18180.168 0.089]10.239 0.125§0.267 0.159
0.104 0.182|80.181 0.092]0.241 0.118]0.283 0.160
0.304 0.175]0.358 0.217
0.279 0.165]0.377 0.214
0.295 0.176]0.372 0.217
0.434 0.279
0.462 0.295
0.430 0.292

100

200

400

Table 8.7 — Results of the simulations of the criterion [4.2.8] for data with normal entries. The order
size of T under Hy is O(1/m'/?) ~ 0.07 and 0.05. The values in the table are computed once from
generated data and may fluctuate.

iv. Finally, the user wisely chooses k = mgx(kx, ky ), where P is the group of the relevant

pairs. In the case of doubt, the user can also set kx yop < k and ky,op < k two probable
underestimations of the true values.

Using appropriate kx rop and Ky, we can rescale the matrices X and Y to create X and Y.

3. Next, we apply the procedure to X and Y by assuming the relevant k. This leads to two observed
extreme residual spikes.

4. We compute the distribution of the residual spike. As in the previous part, we assume k perturba-
tions. Nevertheless, to ensure conservative properties, the estimation of My uses (kx rob, Ky rob)-
In this step we can use either the usual estimator of My or the bounded estimator defined in

Theorem [1.4.1]

5. Finally, we can compare the extreme values with their distribution under Hg for testing purposes
or we can compute the expectation and the variance of the theoretical residual spike and use
Chebyshev’s inequality to discuss the likelihood of Hy.

Remark 8.6.1.

1. By simulations of Section[8.4] the choice of k does not affect the conservative properties.
However strong underestimation greatly reduces the power. This explains the advice
to overestimate k.

2. We could also rescale the matrices by groups as in Section Moreover we can
rescaled each columns by its variance. As consequence of this strong transformation,
we will loose some power.

8.6.1 Analysis

We observe data X € R™*™X and Y € R™*™ that we suppose already centred in rows and columns
using Section [4.4.2] Knowing the size of the perturbation, k, we can estimate the variances,

i=k+1 nx
63 = 1 Em: n( vy
Y m — ’ ny
i=k+1

In this example we have:

m = 1000, nx = 2000, ny = 500.
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Spectrum of Y without the 3 largest values

Figure 8.2 — Spectra of X and Y with largest isolated eigenvalues indicated by arrows.

Method 1

The first method overestimates k based on Figure [8:2] The spectrum of X seems to have 6 isolated
eigenvalues, but we could argue that two other eigenvalues are perturbations. The spectrum Y clearly

shows 5 isolated eigenvalues and at most 2 additional ones.
We thus set k& = 8 knowing that we probably overestimate the true value.

Knowing k, we can rescale the matrices X and Y by 6x and &y respectively to create the covariance

matrices

- 1

1
Yx =

ny&%

XX! and Dy = YY:

nxﬁg(

Next, we filter the matrices as in definition [2.2.1

~ k A
Sx=Lo+ (ex,i - 1) g, i

=1
A 1
Ox; =1+ 3
1 Zm Sx.d
Tk 2uj=k+1 X 3
Sx

i S x g

The computed residual spikes of f];(lf]y are shown in Table

56.03
0.04

10.25 9.88 896 8.29 7.27 5.71
0.10 0.13 0.13 0.18 0.21 0.34

)\max

)\min

Table 8.8 — Observed residual spikes.

5.10
0.36

Using Figure [8.3] a, these values are compared to the theoretical distributions of the extreme residual
spikes assuming equality of the perturbations of order k. The distribution in blue uses the usual
estimator of the spectra and the orange uses the conservative estimator introduced in Theorem

The moments of the spectra are summarize in Figure [8.3] b.
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Figure 8.3 — a: Distribution of the extreme residual spike assuming equality of the covariance, k = 8
and 0; large. (Robust estimation of the spectra in orange.) b: Estimated residual spikes moments,
(11, 0) using usual or robust estimators of the moments spectra.

We finally clearly detect two residual spikes. Figure presents the residual eigenvectors of the
residual eigenvalues.

A = 56.03 A=0.04
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Figure 8.4 — Representation of the entiere residual eigenvectors and only the 20 first entries.

We conclude that the differences are in direction es and eq. As we see in the figure, two other
eigenvectors also exhibit a structure. Without our test, we could have concluded that they also
represent significant differences, but this residual structure is merely due to the biased estimation of
the eigenvectors.

A structure in a residual eigenvector does not imply a real difference!
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8.6.2 Method 2

An alternative way to choose k could be to define the set of the possible pairs kx and ky by looking
at the spectra of X and Y on the Figure In our example, we set P = {{4,5,6,7} x {4,5,6,7}}.
Next we estimate o2 with 6%731_ and &32,7791_ for a pair P; € P.

The second method tries to be less conservative by estimating k wisely. In case of overestimation of
k, we are in the same case as previously. On the other hand, neglecting some values could lead to a
mistake.

Therefore, an algorithm checks if the neglected eigenvalues could interfere with the maximum residual
spike. This algorithm is presented in Section Assuming that we choose the quantile 0.05, we
obtain the following table:

kx
ky 4 5 6 7
411 1 0 O
5(1 1 0 O
60 0 0 O
710 0 0 O

When the table displays 1, the pairs (kx, ky) contain only perturbations that can interfere with the
maximum residual spike. When the value is 0, this means that with high probability the smallest
estimated eigenvalues will not affect the residual spike.

In this example we would choose k = 5 and the rest of the analysis is similar to the first method. In
this case it provides the same results, but in some scenarios it could increase the power.

8.7 Temporal algorithm

In this section, we apply the algorithm presented in section to simulated data

1. without temporal perturbations,

2. with small temporal perturbations of order +/m,

3. with large temporal perturbations of order m?.

The data are of the form:
X = P/2XPY2 € R™™ and Y = PY/2Y P2 e R

where P € R™*™ is the same spatial perturbation of order k for both groups and Px r € R"X*"X Py ¢ €
R™ XY are temporal perturbations of order kp. We apply the algorithm to matrices with normal
entries and present the results in Table
The main conclusion of the simulations is that the algorithm seems to improve the non-asymptotic
conservative properties of the procedure. ) ) )

Moas (Sx B Svn S5 Fr )

Small perturbations Large perturbations

P =T, Prr = Ty

Px . and Py Px . and Py

k'T (lav 5‘) (:uv U) (Iav 6) (:u’ U) (/lv a-) (M’ U)
1 (4.34,0.29) (4.31,0.31)f(4.35,0.27)  (4.18,0.26)
g 432027 (4.230.26) (4.30,0.24)  (4.38,0.27)§(4.37,0.25)  (4.19,0.24)

Ao (P v S f
min X, Py, Y, Py X, Py
Small perturbations Large perturbations
Pxr and Py Py and Py

kT (/17 6') (M? 0') (ﬂ’ 6) (M? U) (ﬂa &) (:LLv U)

1 (0.230,0.015)  (0.230,0.018) §(0.227,0.013)  (0.234,0.019)

(0.230,0.015)  (0.229,0.017) (0.227,0.017)  (0.226,0.018) §(0.230,0.017)  (0.233,0.018)

Table 8.9 — Moment of the extreme residual spikes when m = 300, nx = 400, ny = 200 and k& = 2.

Small temporal perturbation are of order y/m and large pertrubation are of order m?.
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8.8 Confirmation by simulation of some important theorems
In this section, we demonstrate by simulation the central theorems of this thesis. We assume three
scenarios,
1. nx = 400, ny = 400, m = 400, p = 0.5,
2. nx =400, ny = 200, m = 300, p = 0.5,
3. nx = 200, ny = 200, m = 400, p = 0.5.
First, we generate Wy = iXXt € R™*"x and Wy = %YYt € R™*"Y  where

X.ﬂ' ~ Nm (6, Im> and X-,i—l—l = pX.ﬂ' + 1-— p2 €i+1, With €i+1 lfl\fd Nm (6, Im> y
Y.ﬂ' ~ Nm <6, Im) and Y.7i+1 == pY.ﬂ' + 1-— p2 €i+1, with €i+1 Z'Ld Nm <6, Im) .

Then, we apply canonical perturbation Py = I, + >, ; k(6; — 1)e;el € R™ ™ to the matrices Wy
and Wy,

Sx.p, = PPWxP?
Sy.p, = PP Wy P2

8.8.1 Invariant Double Angle Theorem
In this part we compute the generalized double angle of Theorem [5.10.1

k 2
Z <u2x Pk 2Y,Pk,i> ’

=1

where we assume 61 < 6; for i > 1.

Figure shows that in the first scenario, the value of the double angle is invariant of k. Indeed for
a fixed color pink, we generate Wx and Wy . We successively apply Pi, Ps,...,Ps to the pink matrices
and compute the pink statistics. Then we generate new matrices IV and 1y with same spectra as
Wx and Wy . Applying successively P;, Ps,...,Ps to the matrices leads to the cyan lines.

The ﬂuctuations within the colour lines are small compared to the fluctuations between the color lines.
The Table [8.10| shows that the moments of 1000 replicates of X and Y coincide with the Theorem
1| when the perturbation is large.

6=8 6=300

0.990
I

0.989

Angle double
Angle double

0.988
I

0.987
I

0986 0987 0988 0989  0.990

0.986
I

Figure 8.5 — Generalized double angle corresponding to 67 of <P,€1/2W Pl/2 Pl/zTT” 1/2>,
(PR PP B2), (PP py? B2 Wy PR . in function of k. (The spectrum of all
the Wx (respectively Wy ) are the same.) The perturbation is P, = I,,, + Z 1(0; — D)ejel with 6; = 8 in

the first figure and #; = 300 in the second one. The fluctuation between the colors lines represents the

variance of the statistic, O,(1/y/m), and the stability inside each line shows the invariance, O,(1/m).
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k Theory 1 2 3 8
scenario 1 1—w 0.0113 0.0114 0.0113 0.0113 0.0113
o 0.0010 0.0011 0.0011 0.0011 0.0011
scenario 2 1—p 0.0128 0.0124 0.0123 0.0123 0.0123
o 0.0014 0.0015 0.0015 0.0015 0.0015
scenario 3 1—p 0.0219 0.0222 0.0222 0.0222 0.0222
o 0.0023 0.0025 0.0026 0.0026 0.0027

231

Table 8.10 — Moments of the double angle when the perturbation is large, §; = 300 and 6; > 6, for i > 1.
(Number of replicates: 1000)

8.8.2 Invariant Dot Product Theorem
In this part, we compute the dot product for & > 1 of Theorem [5.7.1],

m

Z uiX,Pk7i7k’u2X,Pk7i72’
i=k+1

where we assume 61,605 < 6; for ¢ > 2 and the convention ﬂﬁx b i 0.
s P2t

Figure [8.6| shows that in the three scenarios, the value of the dot product is invariant of k. This figure
is explained in the previous section. The Table shows that the moments of 1000 replicates of X
and Y coincide with the Theorem [5.3.1| when the perturbation is large.

6=8, 6=20 6=300, 6=800

Dot product

Dot product
-003 -002 -001 000 001 002 003

Figure 8.6 — Dot product corresponding to #; and 65 of Pkl/glf’VXPkl/Q, P,Cl/zﬂi\-Pkl/g, Pkl/zl/VXPklm,...

in function of k. (The spectrum of all the Wx are the same.) The perturbation is P, = I, +
Zle(ei — 1)eief with 6; = 8, 65 = 20 in the first figure and ¢; = 300, 6o = 800 in the second one.
The fluctuation between the colors lines represents the variance of the statistic, Op,(1/1/m), and the
stability inside each line shows the invariance, O,(1/m).

k Theory 1 2 3 8

scenario 1 | M 0 0.0000 0.0000 0.0000 0.0000
o 0.000208 0.000214 0.000214 0.000213 0.000212

scenario 2 | H 0 0.0000 0.0000 0.0000 0.0000
o 0.000182 0.000176 0.000176 0.000175 0.000177

scenario 3 | M 0 0.0000 0.0000 0.0000 0.0000
o 0.000483 0.000493 0.00049 0.000492 0.000498

Table 8.11 — Moments of the dot product when the perturbation is large, #; = 300, 62 = 800 and
0; > 0 for i > 2.
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Chapter 9

Conclusion

In this thesis, we defined the new notion of the residual spike in Chapter [2 Using it, we built a
statistical test for comparing two populations in Chapter The proposed test is based on some
hypotheses. Therefore, we investigated

1. Its good robust properties in Section
2. The consequences of the preprocessing in Section
3. The impact of correlated data on the results in Section [4.4.3

On the other hand, in Chapter [5] we proved many theorems of Random matrix theory such as the
central theorem of this thesis, the Invariant Angle Theorem

This thesis also addressed difficulties in relaxing some assumptions, and we now list some interesting
possibilities for future work.

Extension to any eigenvalues: The Main Theorem assumes large eigenvalues. An interesting
extension could show the distribution of the residual spike for any perturbations.

Large eigenvalues: We assume that real data will always create a larger residual spike when the
eigenvalues are large. An interesting question concerns the necessary conditions to satisfy this as-
sumption. Recall that we already proposed some criteria.

General distribution: The simulations of Chapter [§|seem to show that the variance of the residual
spike depends on the fourth moment of the random matrices entries. It would be of interest to find a
bound on this variance as a function of the fourth moment.

Faster procedure: The computation of the spectra is the most computationally intensive part of
the procedure. Finding a bound on the extreme residual spikes as a function of “worst spectra”
computed only with a few extreme eigenvalues of the spectra would be of interest. Because we only
look at the first four moments of the spectra, another interesting work could compare the speed of the
estimation of the spectra with the traces of the first four powers of the covariance matrices.

Outlier and temporal perturbation: We already proposed an heuristic algorithm to cancel tem-
poral perturbations in Section [£.4.3] An interesting alternative could be to use robust estimators of
the covariance matrices. This approach is proposed by (Couillet et al.| [2014], Couillet et al.| [2015] or
Kammoun and Alouini [2017].
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Complex and quaternion: Many existing results of random matrices concern random matrices
with complex or quaternion numbers. Some examples using quaternions could be [Mays and Ponsaing]
[2017], Mays| [2013] or [Wang| [2009]. The extension of our procedure beyond R could find applications
in shape analysis as in [Dryden and Mardial [2016].
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