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Abstract
Let q > 2 be a prime number. We obtained in this thesis asymptotic formulae for two different

moments of L-functions.

In the first part, we study a twisted fourth moment of Dirichlet L-functions of the form∑
χ(q) |L(χ, 1

2 )|4χ(`1)χ(`2), where the sum runs over characters of F×
q and `1,`2 are natural

numbers less than q . The principal tool is a careful analysis of a shifted convolution problem

involving the divisor function and it is made through the spectral theory of automorphic

forms.

In the second part, we analyse a generalized cubic moment
∑
χ(q) L( f ⊗χ, 1

2 )L(χ, 1
2 )χ(`),where

`< q , f is either a cuspidal Hecke eigenform with trivial central character and level dividing

q , or an Eisenstein series χ1�χ2 associated to an arbitrary pair (χ1,χ2) of multiplicative

characters modulo q . This requires an extention of the work of Fouvry, Kowalski and Michel

on correlation between Hecke eigenvalues of modular forms and a certain class of q-periodic

functions called algebraic trace functions modulo q .

Finally in the last chapter, we combine the first two parts together with the mollification

method to obtain some simultaneous nonvanishing results for these families of L-functions.
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Résumé
Soit q > 2 un nombre premier. Dans cette thèse, nous obtenons des formules asymptotiques

pour deux différent moments de fonctions L.

Dans la première partie, nous étudions un quatrième moment tordu de fonctions L de Diri-

chlet de la forme
∑
χ(q) |L(χ, 1

2 )|4χ(`1)χ(`2), où χ parcourt les charactères de F×
q and `1,`2 sont

des nombres naturels plus petit que q . L’outil principal est une analyse fine d’un problème

de convolution impliquant la fonction diviseur et est réalisé grâce à la théorie spectrale des

formes automorphes.

Dans la deuxième partie, nous analysons un moment cubique généralisé de la forme
∑
χ(q) L( f ⊗

χ, 1
2 )L(χ, 1

2 )χ(`), où ` < q , f est soit une forme cuspidale de Hecke avec charactère central

trivial et de niveau divisant q , soit une série d’Eisenstein χ1�χ2 associée à une paire de cha-

ractères multiplicatif (χ1,χ2) de module q . Cela requiert une extension du travail de Fouvry,

Kowalski et Michel sur la correlation entre les valeurs propres de Hecke de formes modulaires

et une certaine classe de fonctions q-périodique appelé fonctions trace modulo q .

Finallement, nous combinons dans le dernier chapitre les deux premières parties à la mé-

thode de mollification pour obtenir certains resultats de non-annulation simultanée pour ces

familles de fonctions L.
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Introduction

The zeros of automorphic L-functions on the critical line have received considerable attention

these last years [12, 17, 48, 43, 35]. In particular, at the central point s = 1
2 , an L-function is

expected to vanish only for either a good reason or a trivial reason. For example, if E is an

elliptic curve defined over Q and L(E , s) is its associated L-function, then according to the

Birch and Swinnerton-Dyer conjecture, L(E , 1
2 ) = 0 if and only if the group of Q-points E(Q)

has positive rank. A trivial reason is for instance when the sign of the functional equation is

−1, which is the case if the L-function is attached to an odd Hecke-Maass form.

A typical approach in the study of nonvanishing problems is to consider a family of L-functions

{L(π, 1
2 )} for π varying in some finite set A and try to give a lower bound for the proportion of

π ∈A such that L(π, 1
2 ) 6= 0 as |A| →∞. In [31], H. Iwaniec and P. Sarnak examined L(χ, s) at

s = 1
2 as χ ranges over all primitive Dirichlet characters modulo an integer q > 2. They proved

that at least 1
3 of the central values L(χ, 1

2 ) are not zero as q →∞. This proportion has been

slightly improved to 0.3411 by H.M. Bui [11] and finally to 3
8 by R. Khan and H.T. Ngo [40] with

the restriction to prime moduli q .

0.1 Simultaneous nonvanishing and the mollification method

In [50], P. Michel and J. Vanderkam considered simultaneous nonvanishing problems : given

three distinct Dirichlet characters χ1,χ2,χ3 of fixed modulus D1,D2,D3 (satisfying some tech-

nical conditions), they proved that a positive proportion of holomorphic primitive Hecke

cusp forms f of weight 2, prime level q and trivial nebentypus are such that the product

L( f ⊗χ1, 1
2 )L( f ⊗χ2, 1

2 )L( f ⊗χ3, 1
2 ) is not zero for sufficiently large q (in terms of D1,D2,D3).

They derived various arithmetic applications, especially the existence of quotients of J0(q)

of large dimension satisfying the Birch and Swinnerton-Dyer conjecture over cyclic number

fields of degree less than 5.

In this thesis, we let q > 2 a prime number, χ1,χ2 be arbitrary Dirichlet characters of modulus

q 1, χ0 be the trivial character modulo q , D(q) (resp. Dχ1,χ2 (q)) the set of primitive characters

modulo q (resp. different from χ1,χ2) and f a cuspidal Hecke eigenform for SL2(Z) (holo-

morphic or Maass). We are interested in the distribution of the values of the two families

1We point out that there is no additional difficulty by considering fixed χ1,χ2 of conductors D1,D2 < q .

1
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{
L

(
χ, 1

2

)
L

(
χχ1, 1

2

)
L

(
χχ2, 1

2

)
: χ ∈Dχ1,χ2 (q)

}
(0.1)

and {
L

(
f ⊗χ, 1

2

)
L

(
χ, 1

2

)
: χ ∈D(q)

}
, (0.2)

as q →∞ through the prime numbers. Set

φ∗(q) := |D(q)| and φ∗
χ1,χ2

(q) := |Dχ1,χ2 (q)|

and observe that φ∗(q) = q −2 and |φ∗
χ1,χ2

(q)−q|6 4. We state the two main results of this

thesis :

Theorem 1. Let ε> 0 be a real number. There exists an explicit absolute constant c1 > 0 and

Q =Q(ε) > 2 such that for any prime q >Q and every Dirichlet characters χ1,χ2 of modulus q,

we have the lower bound∣∣∣∣{χ ∈Dχ1,χ2 (q) :
∣∣L (

χχi , 1
2

)∣∣> 1

log q
, i = 0,1,2

}∣∣∣∣> (c1 −ε)φ∗
χ1,χ2

(q),

where χ0 is the trivial character modulo q.

Theorem 2. Let f be a Hecke cusp form for SL2(Z) which we assume to satisfy the Ramanujan-

Petersson conjecture and let t f be its spectral parameter. Let ε> 0 be a real number. Then there

exists an explicit absolute constant c2 > 0 and Q =Q(ε, t f ) > 2 such that for any prime q >Q,∣∣∣∣{χ ∈D(q) :
∣∣L (

f ⊗χ, 1
2

)∣∣> 1

log2 q
,
∣∣L (

χ, 1
2

)∣∣> 1

log q

}∣∣∣∣> (c2 −ε)φ∗(q).

We now discuss the general principle that has made the success of many of the papers cited

above. It starts with the so called method of moments. Assume that we are interested in the

non-zero values of the family (0.1), we can consider the following moment

M3(χ1,χ2; q) := 1

φ∗
χ1,χ2

(q)

∑
χ∈Dχ1,χ2 (q)

L
(
χ, 1

2

)
L

(
χχ1, 1

2

)
L

(
χχ2, 1

2

)
.

Noting that the summation can be restricted to the χ ∈Dχ1,χ2 (q) such that the triple product

is not zero, we obtain using the generalized Hölder inequality

∣∣M3(χ1,χ2; q)
∣∣6 (

M4(q)
)3/4

 1

φ∗
χ1,χ2

(q)

∑
χ:L(χ, 1

2 )L(χχ1, 1
2 )L(χχ2, 1

2 )6=0

1


1/4

,

2



0.1. Simultaneous nonvanishing and the mollification method

where M4(q) is the fourth moment

M4(q) := 1

φ∗(q)

∑
χ∈D(q)

∣∣L (
χ, 1

2

)∣∣4
.

It follows that the proportion of χ ∈Dχ1,χ2 (q) such that L
(
χ, 1

2

)
L

(
χχ1, 1

2

)
L

(
χχ2, 1

2

) 6= 0 is at

least given by the ratio

|M3(χ1,χ2; q)|4
M4(q)3 . (0.3)

However, we know from [29] that M4(q) ∼ c log4 q for some explicit positive constant c and

M3(χ1,χ2; q) ∼ 1 as we will see in Theorem 4 with `= 1. Therefore, the proportion (0.3) tends

to zero when q goes to infinity !

The mollification method is usually used to remedy this situation. The origin of the method

goes back to the works of Bohr and Landau [10] and of Selberg [54] on zeros of the Riemann

zeta function. The starting idea is to attach to the supposedly nonvanishing value L(χ, 1
2 ) a

quantity M(χ), called the “mollifier”, which, on average, approximates its inverse. The goal

is to choose a mollifier such that the two mollified moments M 3(χ1,χ2; q) and M 4(q) are

comparable; that is, we want

M 3(χ1,χ2; q) := 1

φ∗
χ1,χ2

(q)

∑
χ∈Dχ1,χ2 (q)

2∏
i=0

L(χχi , 1
2 )M(χχi ) ³ 1 (0.4)

M 4(q) := 1

φ∗(q)

∑
χ∈D(q)

∣∣L(χ, 1
2 )M(χ)

∣∣4 ³ 1, (0.5)

where χ0 is the trivial character modulo q . From this a positive nonvanishing proportion can

be inferred, namely at least
|M 3(χ1,χ2; q)|4

M 4(q)3 À 1.

In [31], Iwaniec and Sarnak introduced a systematic technique that has since served as a

model for other families of L-functions. They took the mollifier

M(χ) = ∑
`6L

χ(`)x(`)

`1/2
P

(
log

(L
`

)
logL

)
,

where L is a small power of q , (x(`))` is a sequence of complex numbers and P (X ) ∈ C[X ] is a

polynomial satisfying P (0) = 0 and P (1) = 1.

Given integers 16 `,`1,`2 < q such that (`1,`2) = 1, the above treatment suggests us to study

3
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three twisted moments

T 3(χ1,χ2,`; q) := 1

φ∗
χ1,χ2

(q)

∑
χ∈Dχ1,χ2 (q)

L
(
χ, 1

2

)
L

(
χχ1, 1

2

)
L

(
χχ2, 1

2

)
χ(`) (0.6)

T 3( f ,`; q) := 1

φ∗(q)

∑
χ∈D(q)

L
(

f ⊗χ, 1
2

)
L

(
χ, 1

2

)
χ(`) (0.7)

T 4(`1,`2; q) := 1

φ∗(q)

∑
χ∈D(q)

∣∣L (
χ, 1

2

)∣∣4
χ(`1)χ(`2). (0.8)

We will prove

Theorem 3. Let q > 2 be a prime number, `1,`2 ∈ N be cubefree integers such that (`1,`2) =
(`1`2, q) = 1, `1,`26 L and ε> 0. Then the twisted fourth moment defined in (0.8) admits the

following decomposition

T 4(`1,`2; q) = MTD (`1,`2; q)+MTOD (`1,`2; q)+O

(
(`1`2)3/2L5

qη−ε

)
, (0.9)

where MTD (`1,`2; q), MTOD (`1,`2; q) are main terms given respectively by (3.10), (3.87) and

η= 1/14−3θ/7 with θ = 7/64.

The cubefree assumption is not essential but it simplifies a lot our treatment. Since the primary

goal of this paper is mollification, we did not concentrate our efforts on the optimization of

the power of L and on the value of η, but rather on the computation of the main terms.

Theorem 4. Let q > 2 be a prime number, χ1,χ2 be Dirichlet characters of modulus q, f a

primitive Hecke cusp form of level 1 or q and trivial central character. Assume that f satisfies

the Ramanujan-Petersson conjecture, then for any 16 `6 q3/13 and ε> 0, we have

T 3(χ1,χ2,`; q) = δ`=1 +O
(
q− 1

64+ε
)

, (0.10)

T 3( f ,`; q) = δ`=1 +O
(
q− 1

52+ε
)

, (0.11)

where the implied constant only depends on ε > 0 and polynomially on the Archimedean

parameters of f (the weight or the Laplace eigenvalue) in (0.11).

In Chapter 4, we use Theorem 3 to compute an asymptotic formula for the mollified fourth

moment of Dirichlet L-functions M 4(q) defined in (0.5). More precisely, if L = qλ with λ> 0,

we will obtain

4



0.2. Structure of the twisted fourth moment

Theorem 5. Let x` =µ(`) be the Möbius function and P (X ) = X 2. Then for any 0 <λ< 11
8064 , we

have the asymptotic formula

M4(q) =
4∑

i=0
ciλ

−i +Oλ

(
1

log q

)
,

for some calculable coefficients ci ∈ R.

0.2 Structure of the twisted fourth moment

In 2010, Young established in a breakthrough paper [58] the following asymptotic formula for

the fourth moment of Dirichlet L-functions at s = 1/2 and for prime moduli q with a power

saving error term

1

φ∗(q)

∑
χ∈D(q)

∣∣L (
χ, 1

2

)∣∣4 = P (log q)+O
(
q− 5

512+ε
)

, (0.12)

for any ε > 0 and where P is a degree four polynomial with leading coefficient (2π2)−1 and

5/512 = (1−2θ)/80 with θ = 7/64 is the best known approximation towards the Ramanujan-

Petersson conjecture and it is due to Kim and Sarnak [41].

More recently, Blomer, Fouvry, Kowalski, Michel and Milićević revisited the problem in [5] by

considering more general moments, namely of the form

M4
f ,g (q) := 1

φ∗(q)

∑
χ∈D(q)

L( f ⊗χ, 1
2 )L(g ⊗χ, 1

2 ),

where f and g can be cuspidal Hecke eigenforms (holomorphic or Maass) or E (z), the central

derivative of the unique non-holomorphic Eisentsein series for the full modular group PSL2(Z).

They obtained various asymptotic formulae depending on the nature of f , g (see [5, Theorems

1.1,1.2,1.3]). In particular, the case f = g = E corresponds to (0.12) since the twisted L-function

associated to E is given by

L(E ⊗χ, s) =
∞∑

n=1

τ(n)χ(n)

ns = L(χ, s)2, ℜe(s) > 1,

where τ(n) =∑
d |n 1 is the divisor function. [5, Theorem 1.1] gives a significant improvement

in the error term by passing to an exponent −1/32. They used on one hand, powerful results

coming from algebraic geometry concerning general bilinear forms involving trace functions

associated to `-adic sheaves on the projective line P1
Fq

[23, 46]. On the other hand, they

managed to almost eliminate the dependence in θ in their error bound by using an average

result concerning Hecke eigenvalues (see [51, Lemma 2.4] and [5, § 3.5]). More recently, the

five authors lowered the exponent to −1/20 in [2] using a smooth version of a Theorem of

Shparlinski and Zhang [55, Theorem 3.1] where the trace function corresponds to rank 2

Kloosterman sums.

5
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The mollification method and its view toward nonvanishing results is an example of why we

may consider more general moments, called twisted moments. Indeed, asymptotic formulae

for (0.8) can also be applied to the resonance method, as in the work of Bob Hough on the

angle of large values of L-functions [30] where he established a formula for the same moment

(see Theorem 4 and the proof is in the Appendix) by adapting the method of M.P. Young. We

mention that our present approach is different and allows us to deal with not necessarily

squarefree integers `1,`2, which is crucial for our application.

0.2.1 Outline of the proof of Theorem 3

In this section, we outline the proof of Theorem 3. Using the functional equation for |L(χ,1/2)|4
(c.f. (1.28)), we represent the twisted central values as a convergent series

∣∣L (
χ, 1

2

)∣∣4
χ(`1)χ(`2) = 2

∑∑
n,m>1

τ(n)τ(m)

(nm)1/2
χ(n`1)χ(m`2)V

(
nm

q2

)
,

for some function V (t ) which depends on the archimedean factor L∞(χ, s) and decays rapidly

for t > qε. An important fact is that V depends on the character χ only through its parity. It

is therefore natural to separate the average into even and odd characters. Assuming we are

dealing with the even case, the orthogonality relations (c.f. (3.2)) gives

1

φ∗(q)

∑+
χ∈Dχ1,χ2 (q)

∣∣L (
χ, 1

2

)∣∣4
χ(`1)χ(`2) = 1

φ∗(q)

∑
d |q

φ(d)µ
( q

d

) ∑∑
`1n≡±`2m (mod d)

τ(n)τ(m)

(nm)1/2
V

(
nm

q2

)
,

where the + on the summation means that we restrict to even characters. A first main term

MTD (`1,`2, q) is extracted from the diagonal contribution `1n = `2m and is computed in

section 3.1. Putting this part away, applying a partition of unity and we are reduced to the

evaluation of the following expression

1

(N M)1/2φ∗(q)

∑
d |q

φ(d)µ
( q

d

) ∑∑
`2n≡±`1m (mod d)

`1n 6=`2m

τ(n)τ(m)W
( n

N

)
W

( m

M

)
,

(0.13)

where 16M 6 N (up to switch `1 and `2), N M 6 q2+ε and W is a smooth and compactly

supported function on R>0 satisfying W ( j ) ¿ j 1. Since q is prime, the arithmetical sum over

d |q could be separated into two terms corresponding to d = 1 and d = q . However, as expected

by the beautiful work of Young, an off-diagonal main term MT±
OD (`1,`2, N , M ; q) arises when

N ³ M and this sum facilitates its calculation since it cancels some poles whose contributions

seem to be big (c.f. Section 3.5.2 and Lemma 3.9). This technical step allows us to rebuild the

partition of unity and to express the second main term as a contour integral of the form

MTOD (`1,`2; q) = 1

2πi

∫
(ε)
F(s,`1,`2; q)

d s

s
,

6



0.2. Structure of the twisted fourth moment

for some function F(s,`1,`2; q) (c.f. (3.73)). A critical feature of this term is that the q s has

disappeared, making it impossible to evaluate the integral by standard contour shift on the left.

The situation is similar to that of § 4.3 in [44] where they study mollification of automorphic

L-functions. Fortunately, using the functional equation for the Riemann zeta function, a

crucial trigonometric identity for the gamma function (c.f. (3.85)) and a careful analysis of a

Dirichlet series involving the `′i s variables, we show that the integrand is odd and therefore,

we are able to evaluate explicitly this integral through a residue at s = 0 (see Lemma 3.14 and

Proposition 3.15). Computing such contour integral exactly using the symmetry properties of

the integrand was also observed in the work of Soundararajan [56], Blomer-Harcos [7] and

Blomer [4].

For the rest of this outline, we only consider the case d = q in (0.13) and we put this off-diagonal

main term aside by writing

Err±(`1,`2, N , M ; q) = 1

(M N )1/2

∑∑
`1n≡±`2m (mod q)

`1n 6=`2m

τ(n)τ(m)W
( n

N

)
W

( m

M

)

− MT±
OD (`1,`2, N , M ; q). (0.14)

We mention that MTOD becomes small when N À M . More precisely, we prove in Lemma 3.13

MT±
OD (`1,`2, N , M ; q) ¿ L2qε

(
M

N

)1/2

.

The conclusion of Theorem 3 will follow as soon as we prove that

Err±(`1,`2, N , M ; q) ¿ L A q−η

for some absolute constants A,η> 0. By the trivial bound

Err±(`1,`2, N , M ; q) ¿ Lqε
(N M)1/2

q
,

we may assume that N M is close to q2+ε. We will treat (0.14) by different methods depending

on the relative ranges of N and M .

The shifted convolution problem

When M and N are relatively close to each other, we interpret the congruence condition

`1n ≡±`2m (mod q) (`1n 6= `2m) as `1n ∓`2m −hq = 0 with h 6= 0. Hence for each h 6= 0, we

need to analyze the shifted convolution problem for the divisor function. This problem is

interesting in its own right and has a long history. Blomer and Milićević in [9] used Jutila’s

variant of the circle method. This has the main advantage to have a certain degree of freedom

with respect to the choice of the moduli and one can deal directly with the congruence

subgroup Γ0(`1`2) in the trace formula. Unfortunately, this method is useless here essentially

7
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because the uniform estimate for Hecke eigenvalues of cuspidal forms (Wilton’s bound) fails

for the divisor function.

In the case `1 = `2 = 1, Young used an approximate functional equation for the divisor function

[58, Lemma 5.4] to separate the variables n and m. Adapting this technique to our case involves

the choice of a lift of a multiplicative inverse `2 (mod q) whose location is hard to control.

Another possibility would be to use a recent method of Topacogullari [57], but in the end we

would face similar issue .

The first thing to do is to smooth the condition `1n ∓`2m −hq = 0. We chose to return to the

classical δ-symbol method which was developed by Duke, Friedlander and Iwaniec in [18, 19].

We follow closely the first steps of [20] and are reduced to estimate sums of the shape (see

(3.29))

Q−1

(M N )1/2

∑
di |`i

∑
h

∑
n,m

τ(n)τ(m)
∑

(c,`′1`
′
2)=1

c³Q

S(hq,d1`
′
1n −d2`

′
2m;cd1d2)

c
G(n,m,cd1d2), (0.15)

where Q is the parameter of the delta symbol, G is a weight function, `′i = `i /di and the inverse

of `′1 (resp `′2) have to be taken modulo cd2 (resp cd1). For this, we exploit cancellations in the

Kloosterman sums using spectral theory of automorphic forms. Returning to (0.15), we focus

on the quantity ∑
(c,`′1`

′
2)=1

S(hq,d1`
′
1n −d2`

′
2m;cd1d2)

c
G(n,m,cd1d2).

At this step, we cannot apply directly the usual Kuznetsov formula because of the different

inverses `′1, `′2 which are not with respect to the modulus (they are mod cd2 (resp cd1)) and

we need first to transform the Kloosterman sum. Inspired by [57], we factor in a unique

way di = d∗
i d ′

i with (d∗
i ,`′i ) = 1, d ′

i |(`′i )∞ and use the twisted multiplicativity to obtain the

factorization (we set v := d ′
1d ′

2),

S(hq,d1`
′
1n −d2`

′
2m;cd1d2) = S(hq, v2(d1`

′
1n −d2`

′
2m);cd∗

1 d∗
2 )

× S(hq, (cd∗
1 d∗

2 )2(d1`
′
1n −d2`

′
2m); v),

where all multiplicative inverses are this time modulo the modulus of the Kloosterman sum.

We then exploit an idea of Blomer and Milićević [9] to separate the variable c

S(hq, (cd∗
1 d∗

2 )2(d1`
′
1n −d2`

′
2m); v) = 1

φ(v)

∑
χ(v)

χ(cd∗
1 d∗

2 )Ŝv (χ,n,m,`i ,hq),

with

Ŝv (χ,n,m,`i ,hq) := ∑
y(v)

(y,v)=1

χ(y)S(hq y , (d1`
′
1n −d2`

′
2m)y ; v).

In this way we obtain sum of Kloosterman sums twisted by Dirichlet characters which we can

8
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evaluate using Kuznetsov formula for automorphic forms with non trivial nebentypus. We

finally obtain the bound

Err±(`1,`2, N , M ; q) ¿ L A qε−1/2+θ
(

N

M

)1/2

,

for some A > 0 and it is exactly the expected error term (modulo the power of L) according to

the treatment of Young. We thus obtain Theorem 3 as long as

N

M
6 q1−2θ−2η.

The analysis of the shifted convolution sum in the complementary range has already been

done first in [5] and then improved in [2]. We briefly recall their work in Section 3.2.1.

0.3 Structure of the twisted cubic moment

Before going in the sketch of the proof of Theorem 4, we mention the work of S. Das and R.

Khan [13] who evaluated a moment of the form

1

q −1

∑
χ (mod q)

χ 6=1

L
(

f ⊗χ, 1
2

)
L

(
χ, 1

2

)
.

As the authors explained, the complex conjugation above L(χ,1/2) was introduced to avoid

difficulties connected to the oscillations of Gauss sums. What we show here is that these

difficulties are resolved using variants of the methods of [24] [46]. We point out that there is

also an advantage in considering the two moments without the complex conjugation. In this

case we obtain a main term only when `= 1 and this main term is 1 (in particular independent

of q,χi or f ), which greatly facilitates the average over ` in the mollification method (see

Section 7.1).

After an application of the approximate functional equation to (0.6) and (0.7), which expresses

the central value of automorphic L-functions as a convergent series, and an average over the

characters, we isolate a main term which appears only if `= 1 (c.f. § 6.1.1-6.1.3).

The treatment of the error term passes by the analysis of sums of the shape

S(χ1,χ2; q) = 1

(qN0N1N2)1/2

∑∑∑
n0∼N0,n1∼N1

n2∼N2

χ1(n1)χ2(n2)Kl3(n0n1n2,χ1,χ2,1; q), (0.16)

C( f ; q) = 1

(qM N )1/2

∑∑
n∼N ,m∼M

λ f (n)Kl3(nm; q), (0.17)

9
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where Kl3 is the 2-dimensional normalized hyper-Kloosterman sum, Kl3(χ1,χ2,1; q) is the

twisted version as defined in (2.9), {λ f (n)}n>1 are the Hecke eigenvalues of f and N0, N1, N2, N , M

are parameters satisfying

16Ni , N , M , N0N1N26 q3/2+ε and M N 6 q3/2+ε.

The ultimate goal is to obtain a bound of the form

S(χ1,χ2; q),C( f ; q) =O
(
q−δ

)
,

for some absolute constant δ> 0. Using Poisson summation in the three variables in (0.16),

or Voronoi formula in the n-variable in (0.17) (followed by Poisson on m) allows us to get rid

of the cases where the product of the variables is larger than q ; namely in Sections 6.1.4 and

6.2.3, we prove

S(χ1,χ2; q) ¿ qε
(

q

N0N1N2

)1/2

and C( f ; q) ¿ qε
( q

N M

)1/2
.

Combining these two estimates with the trivial bounds

S(χ1,χ2; q) ¿
(

N0N1N2

q

)1/2

and C( f ; q) ¿ qε
(

N M

q

)1/2

,

we can assume for the rest of this outline that

N0N1N2 = N M = q.

We treat these sums differently according to the relative size of the various parameters. If

N1 ∼ 1 (say) and M ∼ 1, we exploit the n0,n2-sum (resp. the n-sum) in (0.16) (resp. in (0.17))

and average trivially over the others. Grouping n0n2 into a long variable n and we need to

analyze roughly

1

q

∑
n∼q

λχ2
(n,0)Kl3(nn1,χ1,χ2; q) and

1

q

∑
n∼q

λ f (n)Kl3(nm; q),

where for any t ∈ R,

λχ2
(n, i t ) = ∑

n0n2=n
χ2(n2)

(
n2

n0

)i t

.

In [23] and [24], Fouvry, Kowalski and Michel studied these sums when f is a fixed cusp

form for the group SL2(Z), λχ2
(n, i t) is replaced by the generalized divisor function di t (n) =∑

ab=n ai t b−i t and for a general Frobenius trace function modulo q instead of Kl3. We will

show in Chapter 5 that their theorems [24, Theorem 1.2] [23, Theorem 1.15] can be extended

to a Hecke eigenforms (cuspidal or not) of level q and arbitrary central character ω. More

10



0.3. Structure of the twisted cubic moment

precisely, for V a smooth and compactly supported function on R×+, we consider the sums

SV ( f ,K ; q) := ∑
n>1

λ f (n)K (n)V

(
n

q

)
, (0.18)

SV (ω, i t ,K ; q) := ∑
n>1

λω(n, i t )K (n)V

(
n

q

)
. (0.19)

Theorem 6. Let q > 2 be a prime number, ω a Dirichlet character of modulus q, f a primitive

Hecke cusp form of level q, nebentypus ω and spectral parameter t f . Let K be an isotypic trace

function modulo q of conductor cond(K ) such that its Fourier transform is not ω-exceptional,

as defined in (2.3) and (2.5). Let V be a function satisfying V (C ,P,Q) (see Definition (2.1)). Then

there exists constants s> 1 and A> 1 such that

SV ( f ,K ; q) ¿C ,δ (1+|t f |)Acond(K )s q1−δ(PQ)1/2 (P +Q)1/2 ,

SV (ω, i t ,K ; q) ¿C ,δ (1+|t |)Acond(K )s q1−δ(PQ)1/2 (P +Q)1/2 ,

for any δ< 1/16, where A depends on ε and s is absolute.

Therefore, Theorem 6 provides the desired power saving (set P =Q = 1) in the special case

where one of the variable is very small in (0.16) and M ∼ 1 in (0.17). Assume now that

N0, N1, N2 > qη and M > qη for some small real number η > 0. From now, we need to take

care of the different nature of expressions (0.16) and (0.17). Indeed, for (0.16), the fact of

having three free variables allows us to factorize two of them (say n0n2) in such a way that

N0N2> q1/2+η. In this case, we can form a bilinear sum and use a general version of Polyá-

Vinogradov (see Theorem 2.19) to obtain a power saving in the error term. The same method

also works for (0.17), as long as M 6 q1/2−η or N 6 q1/2−η, because in this case N > q1/2+η or

M > q1/2+η. Hence the critical range for the second sum, i.e. when Polyá-Vinogradov is useless,

appears when M ∼ q1/2 and N ∼ q1/2 and here we apply the general result of Kowalski, Michel

and Sawin concerning bilinear forms involving classical Kloosterman sums [46, Theorem 1.3].
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1 Preliminaries I : Automorphic Forms

1.1 Summation formulae

We give here two versions of the Voronoi summation formula. The first one concerns the

divisor function τ(n) and it is provided by [36, Theorem 1.7]. The second one involves Hecke

eigenvalues of cusp forms of prime level and a reference for this result can be found in [45,

Appendix A.3-A.4].

Proposition 1.1. Let g be a smooth and compactly supported function in R×+ and d ,`> 1 be

integers such that (d ,`) = 1. Then

∞∑
n=1

τ(n)e

(
dn

`

)
g (n) = 1

`

∫ ∞

0
(log x +2γ−2log`)g (x)d x +∑

±

∞∑
n=1

τ(n)e

(
±dn

`

)
g±(n),

where d denotes the inverse of d modulo ` and g± are the Bessel transforms of g defined by

g+(y) := 4

`

∫ ∞

0
g (x)K0

(
4π

p
x y

`

)
d x

and

g−(y) :=−2π

`

∫ ∞

0
g (x)Y0

(
4π

p
x y

`

)
d x,

where K0, Y0 are the usual Bessel functions.

Proposition 1.2. Let q > 2 be a prime number, ω a Dirichlet character of modulus q and f

a primitive Hecke cusp form of level q and nebentypus ω with associated Hecke eigenvalues

(λ f (n))n>1. Let a be an integer coprime with q and g : R×+ → C a smooth and compactly

supported function. Then we have the identity

∑
n>1

λ f (n)e

(
an

q

)
g (n) = ω(a)

q

∑
±

∑
n>1

λ f (n)e

(
∓an

q

)
g±

(
n

q2

)
, (1.1)
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Chapter 1. Preliminaries I : Automorphic Forms

where

g±(y) =
∫ ∞

0
g (x)J±(4π

p
x y)d x,

with

J+(x) = 2πi k Jk−1(x) , J−(x) = 0

if f is holomorphic of weight k and

J+(x) =− π

sin(πi t f )

(
J2i t f (x)− J−2i t f (x)

)
, J−(x) = ε f 4cos(πi t f )K2i t f (x)

if f is a Maass form of parity ε f ∈ {−1,+1} and spectral parameter t f .

Finally, we consider the decay properties of the Bessel transforms g± (see [5, Lemma 2.4]).

Lemma 1.3. Let g : R∗+ → C be a smooth and compactly supported function satisfying

xi g (i )(x) ¿i ,ε qεi (1.2)

for any ε> 0 and i > 0. In the cuspidal and non-holomorphic case set ϑ=ℜe(i t f ), otherwise

set ϑ= 0. Then for any ε> 0, for any i , j > 0 and all y > 0, we have

y j g ( j )
± (y) ¿i , j ,ε

(1+ y) j /2(
1+ (yq−ε)1/2

)i

(
1+ y−2ϑ−ε

)
.

1.2 Automorphic forms

In this section, we briefly compile the main results from the theory of automorphic forms. An

exhaustive account of the theory can be found in [33] and [32] from which we borrow much of

the notations.

1.2.1 Hecke eigenbases

Let N > 1 be an integer, ω a Dirichlet character of modulus N , κ= 1−ω(−1)
2 ∈ {0,1} and k > 2

satisfying k ≡ κ (mod 2). We denote by Bk (N ,ω) (resp. B(N ,ω)) a Hecke basis of the Hilbert

space of holomorphic cusp forms of weight k (resp. of Maass cusp forms of weight κ) with

respect to the Hecke congruence subgroup Γ0(N ) and with nebentypus ω. The continuous

spectrum is continuously spanned by the Eisenstein series Ea(·,1/2+ i t ) where a runs over the

singular cusps of Γ0(N ) with respect to ω.

Sometimes it is useful to employ another basis of Eisenstein series formed of Hecke eigenforms:

the adelic reformulation of the theory of modular forms provides a natural spectral expansion

of the Eisenstein spectrum in which the basis of Eisenstein series is indexed by a set of

14
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parameters of the form

{(ω1,ω2, f ) | ω1ω2 =ω, f ∈B(ω1,ω2)}, (1.3)

where (ω1,ω2) ranges over the pairs of characters of modulus N such that ω1ω2 = ω and

B(ω1,ω2) is a finite orthonormal basis in some induced representation. We do not need to be

more explicit here and we refer to [26] for a precise definition of these parameters. The main

advantage of such a basis is that the Eisenstein series are eigenforms of the Hecke operators

Tn with (n, N ) = 1 : we have

TnEω1,ω2, f (z,1/2+ i t ) =λω1,ω2 (n, t )Eω1,ω2, f (z,1/2+ i t ),

with

λω1,ω2 (n, t ) := ∑
ab=n

ω1(a)ai tω2(b)b−i t . (1.4)

The Eisenstein series in the special case N = 2q

Let q > 2 be a prime number. For some technical reasons, it is convenient for the proof of

Theorem 6 to embed our form f of level q in an orthonormal basis of forms of level 2q (see the

beginning of Section 4.1 and Section 5.5 in [24]). For arbitrary level N , the Eisenstein series

Ea(·,1/2+ i t ) are usually not eigenfunctions of the Hecke operators. In the special case where

N = 2q , there are exactly four inequivalent cups for Γ0(2q) which are

a= 1 ,
1

2
,

1

q
,

1

2q
,

see for example [32, Proposition 2.6] and all are singular. The main advantage in this situation

is that these Eisentein series are eigenforms of the Hecke operators Tn for (n,2q) = 1. More

precisely, if a= 1/v with v ∈ {1,2, q,2q}, then we have for (n,2q) = 1,

TnEa(·,1/2+ i t ) =λa(n, i t )Ea(·,1/2+ i t ),

with explicitly

λa(n, i t ) =


∑

ab=nω(a)
( a

b

)i t if v = q,2q

∑
ab=nω(b)

( a
b

)i t if v = 1,2,

(1.5)

see [21, (6.16)-(6.17)].

Remark 1.4. In the case N = q , there are exactly two inequivalent cusps a= 1,1/q and the two

Eisenstein series are eigenfunctions of the Hecke operators Tn for (n, q) = 1 with eigenvalues

given by (1.5). Moreover, they are also Eisenstein series of level 2q after the normalization by

1/
p

3.
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Remark 1.5. It can be shown more generally that Eisenstein series are always Hecke eigen-

functions for squarefree level.

1.2.2 Hecke eigenvalues, Fourier coefficients and boundedness properties

Let f be a Hecke eigenform for Γ0(N ) with central character ω and Hecke eigenvalues λ f (n)

for all (n, N ) = 1. We write the Fourier expansion of f at a singular cusp a as follows (z = x+ i y)

:

f|kσa
(z) = ∑

n>1
ρ f ,a(n)n

k−1
2 e(nz) for f ∈Bk (N ,ω),

f|κσa(z) = ∑
n 6=0

ρ f ,a(n)|n|−1/2W n
|n|

κ
2 ,i t f

(4π|n|y)e(nx) for f ∈B(N ,ω),

where σa is a scaling matrix of a, i.e. σa ∈ SL2(R) is such that σa∞= a and σ−1
a Γ0(N )aσa =

B := {(
1 b
0 1

)
: b ∈ Z

}
where Γ0(N )a denotes the isotropy subgroup of a, W n

|n|
κ
2 ,i t f

is the Whittaker

function and t f is the spectral parameter of f . i.e. λ f = 1/4+ t 2
f with λ f the eigenvalue for the

hyperbolic Laplace operator. For any γ= (
a b
c d

) ∈ SL2(R), the two slash operators |kγ and |κγ of

weights k and κ are defined by

f|kγ(z) := (cz +d)−k f (γz) and f|κγ(z) :=
(

cz +d

|cz +d |
)−κ

f (γz).

For an Eisenstein series E♦(·,1/2+ i t ) indexed by ♦= (ω1,ω2, f ) or ♦= b is a singular cusp for

Γ0(N ), we write its Fourier expansion as

E♦|σa
(z,1/2+ i t ) = c1,♦,a(t )y1/2+i t + c2,♦,a(t )y1/2−i t

+ ∑
n 6=0

ρ♦,a(n, i t )|n|−1/2W |n|
n

κ
2 ,i t (4π|n|y)e(nx).

When f is a Hecke eigenform and a=∞ is the usual cusp, there is a closed relation between

the Fourier coefficients and the Hecke eigenvalues λ f (n) ; for (m, N ) = 1 and n> 1, one has

λ f (m)ρ f (n) = ∑
d |(m,n)

ω(d)ρ f

(mn

d 2

)
. (1.6)

In particular, for all (m, q) = 1,

λ f (m)ρ f (1) = ρ f (m). (1.7)

If f is primitive, the relations (1.6) and (1.7) are valid for every m > 1. In particular its first

Fourier coefficient is not zero and we have the following lower bounds for ρ f (1) : for any ε> 0

|ρ f (1)|2 Àε


cosh(πt f )

N (1+|t f |)κ(N+|t f |)ε if f ∈B(N ,ω)

(4π)k−1

(k−1)!N 1+εkε if f ∈Bk (N ,ω),

(1.8)
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see [21, (6.22),(7.16)] and [49, Lemma 2.2 and (2.23)]. For an Eisenstein series Eb(·,1/2+ i t),

we have

|ρb(1, i t )|2 À cosh(πt )

N (1+|t |)κ(log(N +|t |))2 , (1.9)

see [21, (6.23),(7.15)].

The Hecke eigenavlues λ f (n) satisfy the following multiplicative property : for (nm, N ) = 1, we

have

λ f (m)λ f (n) = ∑
d |(n,m)

ω(d)λ f

(nm

d 2

)
, (1.10)

and also

λ f (n) =ω(n)λ f (n). (1.11)

Note that if f is holomorphic, then by the work of Deligne and Serre, we have the Ramanujan-

Petersson conjecture, namely

|λ f (n)|6 τ(n). (1.12)

The same bound is of course trivial if f is an Eisenstein series with eigenvalues (1.4) or (1.5)

in the case where N |2q . In the case of a Maass cusp form f , the best result is due to Kim and

Sarnak [41] and it is given by

|λ f (n)|6 τ(n)nθ , θ = 7

64
, (1.13)

with an analogous bound for the spectral parameter

|ℑm(t f )|6 θ, (1.14)

However, the conjecture is true on average, in the sense that for every X > 1,∑
n6X

|λ f (n)|2 ¿ (N (1+|t f |))εX , (1.15)

with an implied constant depending only on ε [21, Proposition 19.6]. We will also need later

similar bound for the fourth-power on average and it is enough for our purpose to restrict to

prime numbers p not dividing the level N ,∑
p6X

(p,N )=1

|λ f (p)|4 ¿ (X N (1+|t f |))εX , (1.16)

for any ε > 0 and the constant only depends on ε. This bound is a consequence of the

automorphy of the symmetric square Sym2 f [25] and Rankin-Selberg theory.
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1.3 Spectral identities

1.3.1 Bessel transforms

We collect here some facts about Bessel functions and their integral transforms. Letφ : [0,∞) →
C be a smooth function satisfying φ(0) =φ′(0) = 0 and φ(i ) ¿i (1+ x)−3 for all 06 i 6 3. For

κ ∈ {0,1}, we define the following three integral transforms

φ̇(k) := i k
∫ ∞

0
φ(x)Jk−1(x)

d x

x
,

φ̂(t ) := πi tκ

2sinh(πt )

∫ ∞

0
(J2i t (x)− (−1)κ J−2i t )φ(x)

d x

x
,

φ̌(t ) := 2i−κ
∫ ∞

0
f (x)cosh(πt )K2i t (x)

d x

x
.

(1.17)

Here are some useful estimates concerning the above Bessel transforms.

Lemma 1.6. Let φ be a smooth and compactly supported function in (X ,2X ) satisfying

φ(i ) ¿i X −i

for any i > 0. Then for all t > 0 and real k > 1, we have

φ̂(t )

(1+ t )κ
, φ̌(t ), φ̇(t ) ¿ 1+| log X |

1+X
, t > 0, (1.18)

φ̂(t )

(1+ t )κ
, φ̌(t ), φ̇(t ) ¿k

(
1

t

)k (
1

t 1/2
+ X

t

)
, t >max(2X ,1), (1.19)

where all implied constants are absolute.

Proof. The case κ= 0 is covered in [3, Lemma 2.1]. The proof carry over to the case κ= 1 with

minimal changes.

1.3.2 The Petersson formula

For k > 2 an integer such that k ≡ κ (mod 2), the Petersson trace formula expresses an average

of product of Fourier coefficients over Bk (N ,ω) in terms of sums of Kloosterman sums (see

[33, Theorem 9.6] and [34, Proposition 14.5]) : for any integers n,m > 0 and a,b two singular

cusps, we have

(k −2)!

(4π)k−1

∑
g∈Bk (N ,ω)

ρg ,a(n)ρg ,b(m) = δ(n,m)+2πi−k
Γ0(N )∑

c

1

γ
Sab
ω (n,m;c)Jk−1

(
4π

p
mn

c

)
, (1.20)
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where Sab
ω (n,m;c) is the generalized twisted Kloosterman sum and it is defined by

Sab
ω (n,m;c) := ∑

(
a b
c d

)
∈B\σ−1

a Γ0(N )σb/B

ω

(
σa

(
a b

c d

)
σ−1
b

)
e

(
na +md

c

)
.

The notation
∑Γ0(N )

c means that we sum over all positive c such that Sab
ω (n,m;c) is not empty.

Remark 1.7. If a= b=∞, the Kloosterman sum becomes

Sω(n,m; ) = ∑
d (mod c)

(d ,c)=1

ω(d)e

(
md +nd

c

)

and the sum
∑Γ0(N )

c is taken over N |c.

1.3.3 The Kuznetsov formula

Let φ : R+ → C be a smooth function satisfying φ(0) =φ′(0) = 0 and φ( j )(x) ¿ε (1+x)−2−ε for

06 j 6 3 and every ε> 0. Let � be a finite set indexing the basis of the continuous spectrum

(� is the set of singular cusps or (1.3)).Then for every integers m,n > 0 and every pair of

singular cusps a,b, we have the following spectral decomposition of the Kloosterman sums

[33, Theorem 9.4 and 9.8].

γ0(N )∑
c

1

c
Sab
ω (n,m;c)φ

(
4π

p
mn

c

)
= ∑∑

k≡κmod 2
k>κ

g∈Bk (N ,ω)

φ̇(k)
(k −1)!

π(4π)k−1
ρg ,a(n)ρg ,b(m)

+ ∑
g∈B(N ,ω)

φ̃(tg )
4π

cosh(πtg )
ρg ,a(n)ρg ,b(m)

+ ∑
♦∈�

∫ ∞

0

φ̃(t )

cosh(πt )
ρ♦,a(n, i t )ρ♦,b(m, i t )d t ,

(1.21)

and

γ0(N )∑
c

1

c
Sab
ω (n,−m;c)φ

(
4π

p
mn

c

)
= ∑

g∈B(N ,ω)

φ̌(tg )
4π

cosh(πtg )
ρg ,a(n)ρg ,b(−m)

+ ∑
♦∈�

∫ ∞

0

φ̌(t )

cosh(πt )
ρ♦,a(n, i t )ρ♦,b(−m, i t )d t .

(1.22)

1.3.4 The spectral large sieve inequality

Often the Kuznetsov formula is used hand in hand with the spectral large sieve inequality.

Before stating the result, we denote by N0 the conductor of ω and we also recall that each cusp

for Γ0(N ) (not necessarily singular) is equivalent to a fraction of the form u/v , where v > 1,
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Chapter 1. Preliminaries I : Automorphic Forms

v |N and (v,u) = 1. We define the following quantity :

µ(a) := N−1
(

v,
N

v

)
. (1.23)

Furthermore, if (am) is a sequence a complex numbers and M is a real number such that

M > 1/2, we set

||am ||2M := ∑
M<n62M

|am |2,

Σ(H)(k, f , M) :=
√

(k −1)!

(4π)k−1

∑
M<m62M

amρ f ,a(m),

Σ(M)
± ( f , M) := (1+|t f |)±

κ
2√

cosh(πt f )

∑
M<m62M

amρ f ,a(±m),

Σ(E)
± (♦, i t , M) := (1+|t |)± κ

2p
cosh(πt )

∑
M<m62M

amρ♦,a(±m, i t ).

Then the following bounds are known as the spectral large sieve inequalities.

Proposition 1.8. Let T > 1 and M > 1/2 be real numbers, (am) a sequence of complex numbers

and a a singular cusp for the group Γ0(N ). Then

∑
26k6T
k≡κ (2)

∑
f ∈Bk (N ,ω)

∣∣Σ(H)(k, f , M)
∣∣2 ¿

(
T 2 +N

1
2

0 µ(a)M 1+ε
)
||am ||2M ,

∑
|t f |6T

∣∣∣Σ(M)
± ( f , M)

∣∣∣2 ¿
(
T 2 +N

1
2

0 µ(a)M 1+ε
)
||am ||2M ,

∑
♦∈�

∫ T

−T

∣∣∣Σ(E)
± (♦, i t , M)

∣∣∣2
d t ¿

(
T 2 +N

1
2

0 µ(a)M 1+ε
)
||am ||2M ,

with all implied constants depending only on ε.

Proof. We refer to [16].

We can improve the above Proposition in the case where a = ∞ is the usual cusp and the

conductor of ω is odd and squarefree.

Lemma 1.9. Let N > 1 be an integers andω a Dirichlet character of modulus N whose conductor

is odd and squarefree. Then for any m,n ∈ Z and N |c, we have the Weil bound

|Sω(m,n;c)|6 τ(c)(m,n,c)1/2c1/2.

Proof. The proof is a consequence of the twisted multiplicativity of Kloosterman sums and

[42, Propositions 9.7 and 9.8].
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Proposition 1.10. Let N > 1 be an integer,ω a Dirichlet character of modulus N with squarefree

and odd conductor. Let T > 1, M > 1/2 and (am)M<m62M a sequence of complex numbers.

Assume that a=∞ and let ε> 0. Then each of the three quantities appearing in Proposition 1.8

is bounded, up to a constant depending only on ε, by(
T 2 + M 1+ε

N

)
||am ||2M .

Proof. The extra factor N 1/2
0 in the conslusion of Proposition 1.8 comes from [16, Lemma 4.6,

(4.20)] and is a consequence of the general estimation [42, Theorem 9.3]

Sω(m,n;c) ¿ τ(c)O(1)(m,n,c)1/2(N0c)1/2.

By the hypothesis on the conductor of ω (that it is squarefree and odd), we can apply Lemma

1.9 whose consequence is the cancellation of the factor N 1/2
0 in [16, Lemma 4.6, (4.20)] and

the rest of the proof is completely similar.

1.4 L-functions and functional equations

1.4.1 Dirichlet L-functions

Let χ be a non-principal Dirichlet character of modulus q > 2 with q prime, κ ∈ {0,1} satisfying

χ(−1) = (−1)κ and define the complete L-function

Λ(χ, s) := q s/2L∞(χ, s)L(χ, s),

where

L∞(χ, s) :=π−s/2Γ
( s +κ

2

)
. (1.24)

It is well known thatΛ(χ, s) admits an analytic continuation to the whole complex plane and

satisfies the functional equation [34, Theorem 4.15]

Λ(χ, s) = iκε(χ)Λ(χ,1− s), (1.25)

where ε(χ) is the normalized Gauss sum defined by

ε(χ) := 1

q1/2

∑
x∈F×

q

χ(x)e

(
x

q

)
. (1.26)

Using (1.25), we can express the central value of a Dirichlet L-function as a convergent series

[34, Theorem 5.3] and thus, extend in an easy way the proof to a product of three or four

L-functions.

Lemma 1.11. Let χ,χ1,χ2 be Dirichlet characters. Let κ (resp κ1, κ2) ∈ {0,1} be such that
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Chapter 1. Preliminaries I : Automorphic Forms

χ(−1) = (−1)κ (resp χ1(−1) = (−1)κ1 , χ2(−1) = (−1)κ2 ).

1) If χ 6= 1,χ1,χ2, we have

L
(
χ, 1

2

)
L

(
χχ1, 1

2

)
L

(
χχ2, 1

2

)= ∑∑∑
n0,n1,n2>1

χ(n0n1n2)χ1(n1)χ2(n2)

(n0n1n2)1/2
Vχ,χ1,χ2

(
n0n1n2

q3/2

)
+ χ(−1)iκ+κ1+κ2ε(χ)ε(χχ1)ε(χχ2)

∑∑∑
n0,n1,n2>1

χ(n0n1n2)χ1(n1)χ2(n2)

(n0n1n2)1/2
Vχ,χ1,χ2

(
n0n1n2

q3/2

)
,

where

Vχ,χ1,χ2 (x) := 1

2πi

∫
(2)

L∞
(
χ, 1

2 + s
)

L∞
(
χχ1, 1

2 + s
)

L∞
(
χχ2, 1

2 + s
)

L∞
(
χ, 1

2

)
L∞

(
χχ1, 1

2

)
L∞

(
χχ2, 1

2

) x−sQ(s)
d s

s
. (1.27)

2) If χ 6= 1, we have

∣∣L (
χ, 1

2

)∣∣4 = 2
∞∑

n=1

∞∑
m=1

τ(n)τ(m)

(nm)1/2
χ(n)χ(m)Vχ

(
mn

q2

)
, (1.28)

with

Vχ(x) := 1

2πi

∫
(2)

L2∞(χ,1/2+ s)L2∞(χ,1/2+ s)

L2∞(χ,1/2)L2∞(χ,1/2)
x−sQ(s)

d s

s
. (1.29)

In (1) and (2), Q(s) is an entire and even function having exponential decay in vertical strips

and satisfying Q(0) = 1.

Remark 1.12. Observe that for V = Vχ or V = Vχ,χ1,χ2 , the function V depends on χ only

through its parity. Shifting the s-contour to the right in (1.27) or (1.29) and we see that for

x > 1 and any A> 0, we have the estimation

V(x) ¿A x−A .

Now moving the s-line to ℜe(s) =−1
2 +ε, we pass a simple pole at s = 0 of residu 1 and thus,

we obtain for 0 < x 6 1

V(x) = 1+Oε

(
x1/2−ε) .

1.4.2 Twisted L-functions

Let q > 2 be a prime number, ω a Dirichlet character of modulus q and f a primitive Hecke

cusp of level q or 1 and nebentypus ω (ω = 1 if the level is 1). For χ a non trivial character

modulo q , we can construct the twisted modular form f ⊗χ whose n-th Fourier coefficient

is given by ρ f (n)χ(n). This form is a Hecke eigenform of level q2 with nebentypus ωχ2 and

eigenvalues λ f (n)χ(n) for (n, q) = 1 (see [32, Chapter 7]). The following proposition says when

f ⊗χ stills a primitive form and derives the functional equation of the associated L-function

L( f ⊗χ, s) (see for example [27] and [28]).
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1.4. L-functions and functional equations

Proposition 1.13. Let q > 2 be a prime number, f ,ω and χ as above and assume further that

χ 6= 1,ω. Then the twisted modular form f ⊗χ is a primitive Hecke cusp form of level q2 and

nebentypus χ2ω with associated Hecke eigenvalues χ(n)λ f (n) for every n> 1. If

L( f ⊗χ, s) :=
∞∑

n=1

λ f (n)χ(n)

ns , ℜe(s) > 1 (1.30)

is its associated L-function, then there exists a factor L∞( f ⊗χ, s) such that the product

Λ( f ⊗χ, s) := q sL∞( f ⊗χ, s)L( f ⊗χ, s)

extends holomorphically to C and satisfies the functional equation

Λ( f ⊗χ, s) = ε∞( f ,χ)ε( f ⊗χ)Λ( f ⊗χ,1− s), (1.31)

where ε( f ⊗χ) = ε(χ)ε(ωχ), ε(χ),ε(ωχ) are defined by (1.26), the infinite factor ε∞( f ,χ) satisfies

|ε∞( f ,χ)| = 1 and both L∞( f ⊗χ, s) and ε(χ),ε(ωχ) depend on χ only through its parity.

Remark 1.14. The infinite factor presents as a product of Gamma functions

L∞( f ⊗χ, s) =π−sΓ

(
s −µ1, f ⊗χ

2

)
Γ

(
s −µ2, f ⊗χ

2

)
,

where µi , f ⊗χ are the local parameters at the infinite place (encodes the weight in the holomor-

phic setting or the Laplace eigenvalue if f is a Maass form) and we recall that they depend on

χ at most through its parity. In any case, a consequence of the work of Kim and Sarnak [41]

toward the Ramanujan-Petersson conjecture is that

ℜe(µi , f ⊗χ)6
7

64
. (1.32)

We finally state the analogous of Lemma 1.11 for the product L( f ⊗χ, s)L(χ, s) on the critical

point s = 1/2.

Proposition 1.15. Let q > 2 be a prime number, ω a Dirichlet character of modulus q and f a

primitive Hecke cusp form of level q or 1 and nebentypus ω with associated Hecke eigenvalues

λ f (n) for all n> 1. Then for every character χ modulo q such that χ 6= 1,ω, χ(−1) = (−1)κ with

κ ∈ {0,1}, we have

L
(

f ⊗χ, 1
2

)
L

(
χ, 1

2

)= ∑∑
n,m>1

λ f (n)χ(n)χ(m)

(nm)1/2
V f ,χ

(
nm

q3/2

)

+ iκε∞( f ,χ)ε( f ⊗χ)ε(χ)
∑∑
n,m>1

λ f (n)χ(n)χ(m)

(nm)1/2
V f ,χ

(
nm

q3/2

)
,

(1.33)
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where

V f ,χ(x) := 1

2πi

∫
(2)

L∞
(

f ⊗χ, s + 1
2

)
L∞

(
χ, s + 1

2

)
L∞

(
f ⊗χ, 1

2

)
L∞

(
χ, 1

2

) x−sQ(s)
d s

s
, (1.34)

for any entire even function Q(s) with exponential decay in vertical strips and satisfying Q(0) = 1.

Remark 1.16. Shifting the s-contour on the right in (1.34) and we obtain that for every x > 1

and any A > 0,

V f ,χ(x) ¿A x−A .

By (1.32), moving the s-line to ℜe(s) =−1/4, we catch a simple pole at s = 0 of residue 1 and

thus

V f ,χ(x) = 1+O(x1/4) for 0 < x 6 1.
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2 Preliminaries II : Algebraic Trace
Functions

2.1 `-adic twists of modular forms

In this chapter, we fix q > 2 a prime number, ω a Dirichlet character modulo q , f a primi-

tive Hecke cusp form of level q and nebentypus ω and we denote by {λ f (n)}n>1 the Hecke

eigenvalues of f . For any t ∈ R, we also define the twisted divisor function λω(n, i t ) by

λω(n, i t ) := ∑
ab=n

ω(a)
( a

b

)i t
, (2.1)

which, for (n, q) = 1, appears as Hecke eigenvalues of Eisenstein series Ea(·,1/2+ i t ) of level q

and nebentypus ω for a suitable choice of cusp a (c.f. Section 1.2.1 and (1.5)).

As announced in Section 0.3, for K : Z −→ C a q-periodic function, a crucial step in the proof

of Theorem 6 requires non trivial estimates for sums of the shape

SV ( f ,K ; q) = ∑
n>1

λ f (n)K (n)V

(
n

q

)
, (2.2)

SV (ω, i t ,K ; q) = ∑
n>1

λω(n, i t )K (n)V

(
n

q

)
, (2.3)

where V is a smooth and compactly supported function on R∗+. Assuming that |K (n)|6M for

every n ∈ Z, we obtain by Cauchy-Schwarz inequality and (1.15),

SV (ω, i t ,K ; q),SV ( f ,K ; q) ¿ M q1+ε, (2.4)

with an implied constant depending only on V , ε and the spectral parameter t f and this

bound can be seen as the trivial one. Theorem 6 improves on (2.4) with a power saving in the

q-aspect, namely

SV (ω, i t ,K ; q),SV ( f ,K ; q) ¿ q1− 1
16+ε,
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for any ε> 0 and with an implied constant depending on ε,V , t f (or t ) and controlled by some

invariant of K , called the conductor (see Definition (2.5)). As in [24, Definition 1.1], we make

the following definition about the test function V .

Definition 2.1 (Condition V (C ,P,Q)). Let P > 0 and Q > 1 be real numbers and let C = (Cν)ν>0

be a sequence of non-negative real numbers. A smooth compactly supported function V on R

satisfies Condition (V (C ,P,Q)) if

(1) The support of V is contained in the dyadic interval [P,2P ];

(2) For all x > 0 and all integer ν> 0, we have the inequality∣∣xνV (ν)(x)
∣∣6CνQν.

In practice, the test function V is not compactly supported, but rather in the Schwartz class.

We give here a simple Corollary of Theorem 6.

Corollary 2.2. Let q > 2 be a prime number, f ,ω and K as in Theorem 6. Let Q > 1, C = (Cν)ν a

sequence of non-negative real numbers and V a smooth function on R with the property that

for any M > 0,

V (x) ¿A
1

(1+|x|)M
and

∣∣xνV (ν)(x)
∣∣6CνQν, ν> 0. (2.5)

Then for every X > 0 and every ε> 0, we have

∑
n>1

λ f (n)K (n)V
( n

X

)
¿C ,ε (q X )ε(1+|t f |)Acond(K )s XQ2

(
1+ q

X

)1/2
q−1/16,

∑
n>1

λω(n, i t )K (n)V
( n

X

)
¿C ,ε (q X )ε(1+|t |)Acond(K )s XQ2

(
1+ q

X

)1/2
q−1/16,

where A is the constant appearing in Theorem 6.

Proof. We consider the cuspidal case since the other is completely similar. Applying a partition

of unity to [1,∞) leads to the decomposition∑
n>1

λ f (n)K (n)V
( n

X

)
=∑

N

∑
n>1

λ f (n)K (n)V
( n

X

)
W

( n

N

)
,

where W is a smooth and compactly supported function on (1/2,2) satisfying |x j W ( j )(x)|6 c̃ j

for some sequence c̃ = (c̃ j ) of non-negative real numbers and N runs over real numbers of

the form 2i with i > 0. Since V has fast decay at infinity, we can focus on the contribution

of 16 N 6 qεX at the cost of an error of size O(q−10), (say). Hence, we just need to bound

O(log(q X )) sums of the form ∑
n>1

λ f (n)K (n)V
( n

X

)
W

( n

N

)
.
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By Mellin inversion formula, we have for any ε> 0

∑
n>1

λ f (n)K (n)V
( n

X

)
W

( n

N

)
= 1

2πi

∫
(ε)

(
X

N

)s

Ṽ (s)

( ∑
n>1

λ f (n)K (n)Ws

( n

N

))
d s,

where the function Ws(x) := x−sW (x) satisfies

x j W ( j )
s (x) ¿c̃, j (1+|s|) j . (2.6)

For fixed s with ℜe(s) = ε, we apply Theorem 6 to the inner sum with the function V (x) =
Ws(xq/N ) which satisfies condition V (C̃ , N /q,1+|s|) for some C̃ depending on c̃, obtaining

the bound

(1+|t f |)Acond(K )s q
1
2− 1

16+ε
(

X

N

)ε ∫
(ε)

|Ṽ (s)|(N (1+|s|))1/2
(

N

q
+1+|s|

)1/2

d s.

Using the fact that the Mellin transform Ṽ (s) satisfies

Ṽ (s) ¿
(

Q

1+|s|
)B

,

for every B > 0 with an implied constant depending on B and ℜe(s), we see that we can

restrict the integral to |s|6 qεQ. Hence replacing 1+|s| by its maximal value, maximizing over

N 6 qεX and average trivially over |s|6 qεQ in the integral yields the desire result.

2.2 Trace functions of `-adic sheaves

The functions to which we will apply Theorem 6 are called trace functions modulo q , which

we now define formally.

Let ` 6= q be an auxiliary prime number. To any constructible Q`-sheaf F on A1
Fq

and any point

x ∈ A1
Fq

, we have a linear action of a geometric Frobenius Fx acting on a finite dimensional

Q`-vector space Fx . We can thus consider the trace Tr(Fx |Fx ). Because this trace takes values

in Q`, we also fix a field isomorphism

ι : Q`
'−→ C,

and we consider functions of the shape

K (x) = ι(Tr(Fx |Fx )
)

, (2.7)

as defined in [39, (7.3.7)].

Definition 2.3 (Trace sheaves). 1) A constructible Q`-sheaf F on A1
Fq

is called a trace sheaf if

it is a middle extension sheaf (in the sense of [22, Section 1]) whose restriction on any non

empty open subset U ⊂ A1
Fq

where F is lisse is pointwise pure of weight zero.
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2) A trace sheaf is called a Fourier trace sheaf if in addition, it is a Fourier sheaf in the sense of

[38, Definition 8.2.2].

3) We say that F is an isotypic trace sheaf if it is a Fourier trace sheaf and if for every non empty

open subset U as in (1), the associated `-adic representation

π1(U ⊗Fq Fq ,η) −→ GL(Fη),

of the geometric etale fondamental group is an isotypic representation [38, Chapter 2]. We

define similarly an irreducible trace sheaf .

Definition 2.4. Let q be a prime number. A function K : Fq −→ C is called a trace function

(resp. Fourier trace function, isotypic trace function) if there exists a trace sheaf (resp Fourier

trace sheaf, isotypic trace sheaf) F such that K is given by (2.7).

There is an important invariant which measures the complexity of a trace function which we

define now.

Definition 2.5 (Conductor). Let F be a constructible Q`-sheaf on A1
Fq

with n(F) singularities

in P1
Fq

. The conductor of F is the integer defined by

cond(F) := rank(F)+n(F)+ ∑
x∈P1

Fq

Swanx (F),

where Swanx (F) = 0 if F is lisse at x (see for example [37, Section 4.6]). If K is a trace function,

the conductor cond(K ) of K is the smallest conductor of a trace sheaf F with trace function K .

Let F be a trace sheaf with associated trace function K : Fq → C. The normalized Fourier

transform of K , denoted by K̂ or FT(K ), is the function on Fq defined by

K̂ (y) := 1

q1/2

∑
x∈Fq

K (x)e

(
x y

q

)
.

When F is a Fourier sheaf, there is a deep interpretation of the Fourier transform at the level of

sheaves that was discovered by Deligne and developed by Laumon, especially in [47]. To be

precise, there exists a Fourier sheaf G whose conductor satisfies

cond(G)6 10 cond(F)2, (2.8)

and with the property that

ι
(
Tr

(
Fx |Gx

))=−K̂ (x).

Moreover, the sheaf G is geometrically isotypic (resp. geometrically irreducible) if and only if F

has this property [24, Lemma 8.1].
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2.2. Trace functions of `-adic sheaves

2.2.1 Kloosterman sheaves

Let k > 2 be an integer, χ1, ...,χk be multiplicative characters on F×
q . The twisted rank k

Kloosterman sum Klk (χ1, ...,χk ; q) is the function on F×
q defined by

Klk (a,χ1, ...,χk ; q) := 1

q
k−1

2

∑
x1,...,xk∈F×

q
x1···xk=a

χ1(x1) · · ·χk (xk )e

(
x1 + ...+xk

q

)
, (2.9)

for every a ∈ F×
q . If χ1 = ... = χk = 1, we write Klk (a; q) instead of Klk (a,1, ...,1; q). The main

result is the existence of Kloosterman sheaves and it is due to Deligne [38, Theorem 4.1.1].

Theorem 2.6 (Kloosterman sheaves). For every prime ` 6= q, there exists a constructible Q`-

sheaf on A1
Fq

, denoted by K`k (χ1, ...,χk ; q) (or simply K`), of rank k satisfying the following

properties :

(1) For every a ∈ F×
q , we have the equality

ι
(
Tr

(
Fa |(K`)a

))= (−1)k−1Klk (a,χ1, ...,χk ; q);

(2) K` is geometrically irreducible, lisse on Gm,Fq and pointwise pure of weight zero;

(2) K` has wild ramification at ∞ with Swan∞(K`) = 1, tamely ramified at 0 and has

conductor k +3.

In particular, K` is an irreducible trace sheaf in the sense of Definition 2.3 (3).

Corollary 2.7. For every a ∈ F×
q , we have the sharp bound

|Klk (a,χ1, ...,χk ; q)|6 k. (2.10)

It will be convenient in Chapter 6, specially because of the Poisson summation and Fourier

inversion formula, to present the Klososterman sum Kl as a Fourier transform of a function

defined on Fq . For this, we set

Kl1(a,χ1; q) :=χ1(a)e

(
a

q

)
,

and we see that for any k > 2 and a ∈ F×
q , Klk (a,χ1, ...,χk ; q) is given by the formula

Klk (a,χ1, ...,χk ; q) =χk (a)FT
(
Fq 3 x 7→χk (x)Kk−1(x,χ1, ...,χk−1; q)

)
(a), (2.11)

where the function Kk−1 is defined by

Kk−1(x,χ1, ...,χk−1; q) :=


Klk−1(x,χ1, ...,χk−1; q) if x ∈ F×

q ,

0 if x = 0.

(2.12)
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Remark 2.8. There are several ways to extend the function Klk to a = 0. One can choose for ex-

ample the extension by zero. We choose here the middle extension, i.e. that Klk (0,χ1, ...,χk ; q)

coincides with the trace of the Frobenius at x = 0. It is a deep result of Deligne that the estimate

(2.10) remains valid for a = 0 (see [14, (1.8.9)]).

2.3 Twisted Correlation Sums and theω-Möbius Group

The strategy in the proof of Theorem 6 is to estimate an amplified second moment ofSV (g ,K ; q)

for g varying in a basis of cusp forms of level q and nebentypus ω. After completing the spec-

tral sum, applying Kuznetsov-Petersson and Poisson formula, we have to confront some sums

that we call twisted correlation sums, which we now define.

We let PGL2(Fq ) acts on the projective line P1(Fq ) by fractional linear transformations

γz = az +b

cz +d
, γ=

(
a b

c d

)
∈ PGL2(Fq ).

Definition 2.9 (Twisted correlation sum). Let γ = (
a b
c d

) ∈ PGL2(Fq ). For ω a multiplicative

character modulo q and K : Fq → C, we define the twisted correlation sum C(K ,ω;γ) by

C(K ,ω;γ) := ∑
z∈Fq

z 6=−d/c

ω(cz +d)K (γz)K (z).

Remark 2.10. Note that for γ ∈ PGL2(Fq ), C(K ,ω;γ) is well defined up to multiplication by

ω(−1) ∈ {−1,+1}. This is in fact not a problem since only the complex modulus |C(K ,ω;γ)| will

be considered later. We also mention that unlike the definition of correlation sum that the

authors made for the original Theorem (see [24, eq. (1.10)]), we have the presence here of a

twist by the nebentypus of the modular form f . This is because the Kloosterman sums that we

obtain after the application of Kuznetsov trace formula are also twisted by ω.

Note that for K a trace function, we have the bound ||K ||∞6 cond(K ). Hence using Cauchy-

Schwarz and Parseval identity, we get

|C(K ,ω;γ)|6 cond(K )2q. (2.13)

In order to obtain better bounds, we introduce a geometric object associated to the correlation

sum C(K ,ω;γ).

Definition 2.11. Let q be prime number and F an isotypic trace sheaf on A1
Fq

. Let ω be a

multiplicative character modulo q and Lω the associated Kummer sheaf. Theω-Möbius group

GF,ω is the subgroup of PGL2(Fq ) defined by

GF,ω :=
{
γ=

(
a b

c d

)
∈ PGL2(Fq ) | F'geom γ∗F⊗Lω(c X+d)

}
.
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Remark 2.12. Note that Definition 2.11 makes sense in the sense that if γ,γ′ ∈ GL2(Fq ) are

equal in PGL2(Fq ), then γ=±I2γ
′ and thus

γ∗F⊗Lω(c X+d) = γ′∗F⊗Lω(−c ′X−d ′) 'geom γ′∗F⊗Lω(c ′X+d ′) ⊗Lω(−1) 'geom γ′∗F⊗Lω(c ′X+d ′).

The crucial property here is that GF,ω is indeed a subgroup of PGL2(Fq ).

Proposition 2.13. GF,ω is a subgroup of PGL2(Fq ).

Proof. Let F be the set of geometric isomorphism classes of trace sheaves. To show that GF,ω

is a subgroup, it is enough to prove that the map F ×PGL2(Fq ) −→F given by

(F,γ) 7−→F ·γ := γ∗F⊗Lω(c X+d), (2.14)

defines a right group action because GF,ω will be the stabilizer of F. For this, we will use the

fact that we have geometric isomorphisms (we use the notation ' instead of 'geom)

Lω(d) ' Q` 'Lω(c X+d) ⊗Lω(c X+d), (2.15)

where Q` denotes the constant sheaf. The first isomorphism implies that the identity matrix

acts trivially. For the second part, note that for γ1 =
(

a b
c d

)
and γ2 =

(
a′ b′
c ′ d ′

) ∈ PGL2(Fq ), we have

Lω(c X+d) ' j (γ)∗Lχ, j (γ) :=
(

0 1

c d

)
,

and

j (γ1γ2) =
(

0 1

ca′+dc ′ cb′+dd ′

)
, j (γ1)γ2 =

(
c ′ d ′

ca′+dc ′ cb′+dd ′

)
.

Combining the above equality with the second isomorphism in (2.15) leads to

j (γ1γ2)∗Lω ' ( j (γ1)γ2)∗Lω⊗ j (γ2)∗Lω.

Hence we obtain

F · (γ1γ2) ' (γ1γ2)∗F⊗ j (γ1γ2)∗Lω ' γ∗2γ∗1F⊗γ∗2 j (γ1)∗Lω⊗ j (γ2)∗Lω

' γ∗2
(
γ∗1F⊗ j (γ1)∗Lω

)
⊗ j (γ2)∗Lω

' (F ·γ1) ·γ2,

which completes the proof of this Proposition.

We will also need the following fact about the conductor of F ·γ.
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Lemma 2.14. Let F be a trace sheaf and γ ∈ PGL2(Fq ). Then∣∣cond(F ·γ)−cond(F)
∣∣6 2.

Proof. Since the Kummer sheaves are of rank one and tamely ramified at the singularities, we

have for any x ∈ P1
Fq

(by definition (2.14) of the action of γ on F),

rank(γ∗F⊗Lω(c X+d)) = rank(γ∗F) = rank(F), Swanx (F ·γ) = Swanx (F),

see [37, 4.6 (iv)]. Moreover, if n(F) (resp n(Lω(c X+d))) denotes the number of singularities

of F (resp. of Lω(c X+d)), the tensor product γ∗F⊗Lω(c X+d) satisfies (see for example [53,

Proposition 1.23])

n(F)−n(Lω(c X+d)) = n(γ∗F)−n(Lω(c X+d))

6 n(γ∗F⊗Lω(c X+d))

6 n(γ∗F)+n(Lω(c X+d)) = n(F)+n(Lω(c X+d)),

which completes the proof since n(Lω(c X+d)) = 0 or 2 depending on whether c = 0 or not.

The following proposition establishes the link between the correlation sum C(K ,ω;γ) and the

ω-Möbius group GF,ω. The proof uses deep results on `-adic cohomology for varieties over

finite fields.

Proposition 2.15. Let q > 2 be a prime number, F an isotypic trace sheaf with associated trace

function K modulo q of conductor cond(K ). Letω : F×
q → C× be a multiplicative character. Then

there exists absolute constants A, s> 1 such that for any γ ∈ PGL2(Fq )−GF,ω,∣∣C(K ,ω;γ)
∣∣6 A(cond(K ))s q1/2.

Proof. See [24, Theorem 9.1].

The last part of this section is devoted to the structure of the group GF,ω ⊂ PGL2(Fq ). For

some technical reasons due to the amplification method and the fact that we are dealing

with forms of level q , we want to avoid the presence of unipotent elements in our group GF,ω

because in contrast to [24, Theorem 1.2], parabolic matrices could appear in our case and

their contribution seems to be big. We therefore impose an additional hypothesis on our sheaf

F and prove that under this extra assumption, the group GF,ω does not contain any unipotent

elements. Before doing this, we introduce the following notation :

− For x 6= y in P1, the pointwise stabilizer of x and y in PGL2 is denoted by Tx,y (this is a

maximal torus) and its stabilizer in PGL2 (or the stabilizer of the set {x, y}) is denoted by

Nx,y .
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Definition 2.16. LetF be an isotypic trace sheaf. We say thatF isω-exceptional if its geometric

irreducible component is of the form Lψ ·γ= γ∗Lψ⊗Lω(c X+d) for some Artin-Schreier sheaf

Lψ and some γ ∈ PGL2(Fq ).

Proposition 2.17. Let q > 2 be a prime number, F an isotypic trace sheaf on A1
Fq

and ω : F×
q →

C×. Assume that F is not ω-exceptional and that q is large enough compared to the conductor

cond(K ). Then GF,ω satisfies one of the following :

(a) |GF,ω|6 60 and the non trivial elements of GF,ω belong to at most 59 different tori.

(b) GF,ω is cyclic and is contained in the normalizer Nx,y of a certain maximal torus Tx,y for

x 6= y in P1.

(c) GF,ω is dihedral and its cyclic subgroup is contained in a maximal torus Tx,y and any

element not contained in it is in the normalizer Nx,y (x 6= y).

In particular, GF,ω does not contain parabolic elements.

Proof. If the order of GF,ω is coprime with q , the first paragraph in the proof of [24, Theorem

1.14] says that GF,ω is one of the three types of groups cited above.

We now show that the order of GF,ω cannot be divisible by q . Assume by contradiction that it

is the case and fix an element γ0 ∈ GF,ω of order q . Then γ0 is necessarily parabolic, so it has a

unique fixed point x ∈ P1(Fq ). Let σ ∈ PGL2(Fq ) be such that

σ

(
1 1

0 1

)
σ−1 = γ0,

and define

G :=F ·σ=σ∗F⊗Lω(c X+d), σ=
(

a b

c d

)
.

Since geometrically we have [+1]∗F'F · (1 1
0 1

)
, we see that we have a geometric isomorphism

[+1]∗G'G.

Suppose first that G is ramified at some y ∈ A1(Fq ), then by the above, G is also ramified at

y +1, ..., y +p −1 and we obtain by Lemma 2.14

cond(F)> cond(G)−2> q −2+ rank(G)> q −1,

which is a contradiction with the fact that cond(F) < q−1. Assume now thatG is lisse on A1(Fq ).

Since F is geometrically isotypic, the same is true for G and the geometrically irreducible

component G1 of G also satisfies [+1]∗G1 ' G1. Using [22, Lemma 5.4, (2)] with G = Fq and

Ph = 0, we have either

cond(G)> Swan∞(G1)> q + rank(G1)
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and in this case we are done as before, orG1 is geometrically isomorphic to some Artin-Schreier

sheaf Lψ for some additive character ψ. It follows that G is geometrically isomorphic to a

direct sum of copies of Lψ and thus, by definition of G, we have a geometric isomorphism

F' (⊕
Lψ

) ·σ−1 =⊕
Lψ ·σ−1,

which contradicts the fact that F is not ω-exceptional.

2.4 Bilinear forms involving trace functions

We begin with a classical result, which is a simple consequence of the Poisson summation

formula.

Proposition 2.18 (Polyá-Vinogradov method). Let q be a prime number and F be a Fourier

trace sheaf on A1
Fq

with corresponding trace function K modulo q. Let f be a smooth and

compactly supported function on R and N > 0 be a real number. Then for any ε> 0, we have

∑
n∈Z

K (n) f
( n

N

)
¿ min

{
N ,

N

q1/2

(
1+ q1+ε

N

)}
,

where the implied constant depends on ε, f and the conductor of F.

A more elaborate treatment of the Polyá-Vinogradov method can be used to obtain bounds for

bilinear sums [23, Theorem 1.17].

Theorem 2.19. Let K be an isotypic trace function modulo q associated to an isotypic `-adic

sheaf F such that F does not contain a sheaf of the form Lω⊗Lψ in his irreducible component.

Let M , N > 1 be parameters and (αm)m , (βn)n two sequences of complex numbers supported on

[M/2,2M ] and [N /2,2N ] respectively.

(1) We have

∑∑
n,m

(m,q)=1

αmβnK (mn) ¿||α||2||β||2(N M)1/2

(
1

q1/4
+ 1

M 1/2
+ q1/4 log1/2 q

N 1/2

)
,

with

||α||22 =
∑
m

|αm |2 , ||β||22 =
∑
n
|βn |2.

(2) We have ∑
(m,q)=1

αm
∑

n6N
K (mn) ¿

(∑
m

|αm |
)

N

(
1

q1/2
+ q1/2 log q

N

)
.

In both estimates, the implicit constants depend only, and at most polynomially, on the conduc-

tor of F.
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The above theorem beats the trivial bound and gives a power saving in the error term as

long as max(N , M)> q1/2+δ and min(M , N )> qδ for some δ > 0. In the critical case where

N ∼ M ∼ q1/2, we have the powerful result of Kowalski, Michel and Sawin, which still saves a

small power of q , but has been proved in the special case of classical hyper-Kloosterman sums

[46, Theorem 1.3].

Theorem 2.20. Let q be a prime number and a an integer coprime with q. Let M , N > 1 be

such that

16M 6N 2, N < q, M N < q3/2. (2.16)

Let (αm)m6M be a sequence of complex numbers and N⊂ [1, q −1] be an interval of length N .

Then for any ε> 0, we have

∑
n∈N

∑
16m6M

αmKlk (anm; q) ¿ qε||α||1/2
1 ||α||1/2

2 M 1/4N

(
M 2N 5

q3

)−1/12

, (2.17)

with

||α||1 =
∑

16m6M
|αm |

where the implied constant in (2.17) only depends on ε and k.
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3 Proof of Theorem 3

Let q > 2 be a prime number and `1,`2 be two cubefree integers such that (`1,`2) = 1,

(`1`2, q) = 1 and `i 6 L with L a small power of q . The fundamental quantity that we will study

in this chapter is the twisted fourth moment defined in (0.8). It is in fact more natural to split

the family {χ (mod q)} separately into even characters and odd characters because they have

different gamma factors in their functional equations. In this chapter, we concentrate almost

exclusively on the even characters because the case of the odd characters is similar (we could

treat both cases simultaneously but it would clutter the notation). We briefly describe the

necessary changes to treat the odd characters at the end of Section 3.5.3 since we need to take

them in account for the symmetry of a certain function (see Section 3.5.3). We thus study

T 4(`1,`2; q) := 2

φ∗(q)

∑+
χ (mod q)

χ 6=1

∣∣L (
χ, 1

2

)∣∣4
χ(`1)χ(`2), (3.1)

where the symbol + over the summation means that we restrict ourselves to the case of even

characters and we recall that φ∗(q) denotes the number of primitive characters modulo q

(here q −2).

Using the approximate functional equation (1.28) from Lemma 1.11 (we omit the dependence

in χ in the definition of Vχ since we deal with even characters and Vχ depends on χ only

through its parity) we can rewrite (3.1) as

T4(`1,`2; q) = 4

φ∗(q)

∑
n,m

τ(n)τ(m)

(nm)1/2
V

(
nm

q2

) ∑+
χ (mod q)

χ 6=1

χ(n)χ(m)χ(`1)χ(`2).

We now use the following identity which allows us to average the sum over the characters and

it is valid for (m, q) = 1 (see for instance [31, (3.1)-(3.2)])

∑+
χ (mod q)

χ 6=1

χ(m) = 1

2

∑
±

∑
d |q

m≡±1(d)

φ(d)µ
( q

d

)
. (3.2)
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Hence we obtain T 4(`1,`2; q) =∑
±T 4,±(`1,`2; q) with

T 4,±(`1,`2; q) := 2

φ∗(q)

∑
d |q

φ(d)µ
( q

d

) ∑∑
`1n≡±`2m (d)

(mn,q)=1

τ(n)τ(m)

(nm)1/2
V

(
nm

q2

)
.

(3.3)

We now decompose T 4(`1,`2; q) into a diagonal part and a off-diagonal term by writing

T 4(`1,`2; q) =∑
±

T 4,±
OD (`1,`2; q)+T 4

D (`1,`2; q), (3.4)

where T 4,±
OD (`1,`2; q) is the same as in (3.3) but with the extra condition that n`1 6= m`2 and

the diagonal part is given by

T 4
D (`1,`2; q) := 2

∑∑
`1n=`2m
(nm,q)=1

τ(n)τ(m)

(nm)1/2
V

(
nm

q2

)
. (3.5)

3.1 Computation of the Diagonal Part

In this section, we extract a main term coming from the diagonal part T 4
D (`1,`2; q). We use

the standard technique consisting in shifting the contour of integration. We first remark that

up to an error of size O(L1/2q−1+ε), we can remove the primality condition (nm, q) = 1. Once

we have done this, we write V as inverse Mellin transform (see definition (1.29)), obtaining

(up to an error term of O(L1/2q−1+ε))

T 4
D (`1,`2; q) = 2

2πi

∫
(2)

G(s)q2s

( ∑∑
`1n=`2m

τ(n)τ(m)

(nm)1/2+s

)
d s

s
, (3.6)

where G(s) is the integrand in V, i.e. (see (1.29) and recall that κ= 0 here)

G(s) =π−2s
Γ

(
1
2+s

2

)4

Γ( 1
4 )4

Q(s). (3.7)

Lemma 3.1. We have the factorization

∑∑
`1n=`2m

τ(n)τ(m)

(nm)1/2+s
= f (`1`2;1+2s)

(`1`2)1/2+s

ζ4(1+2s)

ζ(2+4s)
, (3.8)

where n 7→ f (n; s) is a multiplicative function supported on cubefree integers whose values on p

and p2 are given by

f (p; s) = 2

1+p−s , f (p2; s) = 3−p−s

1+p−s . (3.9)

Proof. Since (`1,`2) = 1, the condition `1n = `2m is equivalent to n = `2 j and m = `1 j with

38



3.1. Computation of the Diagonal Part

j > 1. Thus, the lefthand side of (3.8) can be written as

1

(`1`2)1/2+s

∑
j>1

τ(`1 j )τ(`2 j )

j 1+2s .

Using the fact that the `′i s are cubefree, we factorize the above sum as an infinite product over

the primes ∏
p-`1`2

Lp
∏

p||`1

Lp
∏

p2|`1

Lp
∏

p||`2

Lp
∏

p2|`2

Lp ,

with

Lp =


∑
α>0

(α+2)(α+1)
pα(1+2s) if p||`i ,∑

α>0
(α+3)(α+1)

pα(1+2s) if p2|`i ,∑
α>0

(α+1)2

pα(1+2s) if p - `1`2.

Using ∑
α>0

(α+1)

pα(1+2s)
= 1

(1−p−1−2s)2 and
∑
α>0

(α+1)2

pα(1+2s)
= 1+p−1−2s

(1−p−1−2s)3

and we get for p||`i

Lp = ∑
α>0

(α+1)

pα(1+2s)
+ ∑
α>0

(α+1)2

pα(1+2s)
= 1

(1−p−1−2s)2 + 1+p−1−2s

(1−p−1−2s)3

=
(

1−p−1−2s

1+p−1−2s +1

)
1+p−1−2s

(1−p−1−2s)3 = 2

1+p−1−2s

1+p−1−2s

(1−p−1−2s)3 .

We proceed in a similar way for p2|`i and we obtain

Lp = 3−p−1−2s

1+p−1−2s

1+p−1−2s

(1−p−1−2s)3 .

We conclude the lemma by the well known identity

∑
n>1

τ(n)2

ns =∏
p

1+p−s

(1−p−s)3 = ζ4(s)

ζ(2s)
.

We insert the factorization (3.8) in (3.6), obtaining

T 4
D (`1,`2, q) = 2

2πi

∫
(2)

G(s)q2s

ζ(2+4s)

f (`1`2;1+2s)

(`1`2)1/2+s
ζ4(1+2s)

d s

s
,

Moving the s-line on the left to s =−1/4+ε, we pass a pole of order five at s = 0. Note that for

ℜe(s) = δ>−1/2, we have uniformly f (`1`2,1+2s) ¿δ,ε (`1`2)ε and thus, we can bound the

remaining integral by O(q−1/2+ε(`1`2)−1/4). Hence we obtain
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Proposition 3.2. The diagonal part given by (3.5) can be written as

T 4
D (`1,`2; q) = MTD (`1,`2; q)+O

(
qε−1/2

(`1`2)1/4

)
, (3.10)

where MTD (`1,`2, q) is given by the residue

2Ress=0

{
G(s)q2s

sζ(2+4s)

f (`1`2;1+2s)

(`1`2)1/2+s
ζ4(1+2s)

}
,

and f (`1`2,1+2s) is defined in Lemma 3.1.

3.2 The off-diagonal term

We evaluate in this section the off-diagonal part in the decomposition (3.4). Removing the

primality condition (mn, q) = 1 in (3.3) for an error cost of O(Lq−1/2+ε) and we are reduced to

analyze the following quantity

T 4,±
OD (`1,`2; q) = 2

φ∗(q)

∑
d |q

φ(d)µ
( q

d

) ∑∑
`1n≡±`2m (mod d)

`1n 6=`2m

τ(n)τ(m)

(nm)1/2
V

(
nm

q2

)
. (3.11)

It is convenient for the analysis of (3.11) to localize the variables n and m by applying a

partition of unity. We choose a partition on R>0 ×R>0 as in the work of Young (c.f. [58]),

namely, of the form {WN ,M (x, y)}N ,M where N , M runs over power (positive and negative)

of 2. In consequence, the numbers of such N , M such that 16 N , M 6 X is O(log2 X ). The

functions WN ,M (x, y) are of the form WN (x)WM (y) with WN a smooth function supported

on [N ,2N ]. Moreover, it is possible to take WN (x) = W (x/N ) with W a fixed, smooth and

compactly supported function on R>0 satisfying W ( j ) ¿ j 1. Applying this partition to (3.11),

we obtain T 4,±
OD (`1,`2; q) =∑

N ,M T 4,±
OD (`1,`2, N , M ; q) with

T 4,±
OD (`1,`2, N , M , q) := 2

(N M)1/2φ∗(q)

∑
d |q

φ(d)µ
( q

d

)
× ∑∑

`2n≡±`1m (mod d)
`1n 6=`2m

τ(n)τ(m)W
( n

N

)
W

( m

M

)
V

(
nm

q2

)
, (3.12)

where we made the substitution

W (x) ↔ x−1/2W (x). (3.13)

Because of the fast decay of the function V (y) as y →+∞ (see Remark 1.12) we can assume

that N M 6 q2+ε for arbitrary fixed ε> 0 at the cost of an error term O(q−100). Furthermore,

since each dependency in `1,`2 which will appear in the error terms will be of the form (`1`2)A

or LB , we can also assume that N >M . We will treat differently (3.12) according to the relative
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size of M and N . We also note that the trivial bound is given by

T 4,±
OD (`1,`2, N , M ; q) ¿ qεL

(M N )1/2

q
. (3.14)

3.2.1 The off-diagonal term when N À M

In this section, we treat the shifted convolution sum (3.12) when N and M have relatively dif-

ferent sizes (see (3.17)). As a first step, we replace φ∗(q) by φ(q) for an error cost of O(Lq−1+ε).

Once we have done this, we separate the arithmetical sum over d |q . When d = q , since

(`1, q) = 1, we detect the congruence condition n ≡ `1`2m (mod q) using additive characters.

We thus get (up to O(Lq−1+ε))

T 4,±
OD (`1,`2,N , M ; q) = 2

q(M N )1/2

∑
m
τ(m)W

( m

M

) ∑
a (mod q)

(a,q)=1

e

(
±a`1`2m

q

)

× ∑
n

`1n 6=`2m

τ(n)e

(
an

q

)
W

( n

N

)
V

(
nm

q2

)
(3.15)

+2
q−1 −φ∗(q)−1

(M N )1/2

∑
n,m

`1n 6=`2m

τ(n)τ(m)W
( n

N

)
W

( m

M

)
V

(
nm

q2

)
, (3.16)

where the line (3.16) is the contribution of the trivial additive character and the case d = 1 (the

minus sign comes from the Möbius function) and is of size at most O(q−1+ε). Hence we are

reduced to the estimation of (3.15). It is also convenient to separate the variables n,m in the

test function V . This technical step can be achieved using the integral representation of V

(see for example [58, Section 4.1]). Hence, we are reduced to bound sums of the shape

K±(N , M ; q) = 1

q(N M)1/2

∑
a (mod q)

(a,q)=1

∑
n,m>1
`1n 6=`2m

τ(n)τ(m)e

(
±a`1`2m

q
e

(
an

q

))
W1

( n

N

)
W2

( m

M

)
,

where the functions Wi are smooth, compactly supported on R>0 and satisfy W ( j )
i ¿ε, j qε j for

every ε> 0 and every j > 0.

Let N = qν, M = qµ and let η> 0 be a small real number. By the fast decay of V (y) as y →+∞
and the bound (3.14), we can assume that 2−2η6 ν+µ6 2+ε. Anticipating the results of

Section 3.3, we also make the additional assumption that

ν−µ> 1−2θ−2η, (3.17)

where θ = 7/64 is the current best approximation toward the Ramanujan-Petersson conjecture

(c.f. (1.13)). Following [2, Section 4], we obtain
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Chapter 3. Proof of Theorem 3

Proposition 3.3. Assume that we are in the range (3.17). Then for any ε> 0, we have

K±(N , M ; q) ¿ q−η+ε,

where the implied constant depends only on ε and

η= 1−6θ

14
= 11

448
. (3.18)

Proof. We sketch the proof of this proposition. Applying Voronoi summation formula in the

n-variable and opening the divisor functions reduces the problem of bounding sums of the

shape

S±(M1, M1, M3, M4) = 1

(qM N∗)1/2

∑
m1,...,m4

4∏
i=1

Wi

(
mi

Mi

)
Kl2(±m1m2m3m4`; q),

where ` is an integer coprime with q , Wi are smooth and compactly supported functions on

[1,2] satisfying W ( j )
i ¿ j qε j and N∗ = q2/N , Mi = qµi , M = M1 +M2 satisfying

06µ16µ26µ36µ4,
∑
µi =µ+ν′, ν′6 ν∗, ν∗ = 2−ν.

Using the trivial bound for the Kloosterman sum and (3.17), we can assume that

1−2η6µ+ν′6µ+ν∗6 1+2θ+2η. (3.19)

The strategy is the following : if the largest variables m3,m4 are large enough, we apply [2,

Proposition 1.2] to them (fixing m1,m2); otherwise, we find it more beneficial to group vari-

ables differently producing a bilinear sum of Kloosterman sums to which we apply Theorem

2.19.

Explicitly, using [2, Proposition 1.2], we obtain that

S±(M1, M2, M3, M4) ¿ qε
M1M2

(qM N∗)1/2

(
q1/2 + M3M4

q1/2

)
¿ qε

((
M1M2

M3M4

)1/2

+ (M N ′)1/2

q

)
¿ qε

((
M1M2

M3M4

)1/2

+q−η
)

,

assuming that 1
2 (1+2θ+2η)−16−η. We may therefore assume that

µ3 +µ4 − (µ1 +µ2)6 2η. (3.20)

We now apply Theorem 2.19 with M = M4 and N = M1M2M3 so that N M = qµ+ν
′
6M N∗ and

derive

S±(M1, M2, M3, M4) ¿ qε
(
q

µ1+µ2+µ3−1
2 +q− 1

4+
µ4
2

)
.
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3.3. The off-diagonal using spectral theory of automorphic forms

For the first term, we have since µ4>µi for i = 1,2,3,(
1+ 1

3

)
(µ1 +µ2 +µ3 +µ4)6

4∑
i=1

µi 6 1+2θ+2η⇒µ1 +µ2 +µ36
3

4
+ 3

2
(θ+η),

so that
µ1 +µ2 +µ3 −1

2
6−1

8
+ 3

4
(θ+η)6−η

assuming that

η6
1

14
− 3θ

7
. (3.21)

For the second term, we use (7.6) and µ16µ26µ36µ4 to get

µ46 2η+µ1 +µ2 −µ36 2η+µ16 2η+ 1

3
(1+2θ+2η−µ4).

Hence

µ46
5

4
η+ 1

4
+ θ

2

and

−1

4
+ µ4

2
6−1

8
+ 5

8
η+ θ

4
6−η,

as long as η6 1−2θ
13 , which is true assuming (3.21).

3.3 The off-diagonal using spectral theory of automorphic forms

We analyze in this section the shifted convolution problem when N , M are relatively close.

More precisely, by the trivial bound (3.14) and the Proposition 3.3, we can assume that N = qν

and M = qµ are located in the range

2−2η6 ν+µ6 2+ε and ν−µ6 1−2θ−2η. (3.22)

In particular, this restriction implies that

µ>
1

2
+θ and 1−η6 ν6 3

2
−θ−η+ε/2. (3.23)

After an application of the Voronoi summation formula, we will see that the off-diagonal part

given by (3.12) decomposes as

T 4
OD ,±(`1,`2, N , M ; q) = MT±

OD (`1,`2, N , M , q)+Err±(`1,`2, N , M ; q),

where the first is a main term and the second is an error term. We treat here the error term

Err± and evaluate MT±
OD in Section 3.5.
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3.3.1 The δ-symbol

We follow [20]. Let Q > 1 be a real number and choose a smooth, even and compactly

supported function w in [Q,2Q] satisfying w(0) = 0, w (i ) ¿Q−1−i and
∑∞

r=1 w(r ) = 1. We can

express the delta function in terms of additives characters in the following way

δ(n) =
∞∑
`=1

∑∗
k(`)

e

(
kn

`

)
∆`(n),

where the superscript ∗ means that we restrict the summation to primitive classes modulo `

and

∆`(u) :=
∞∑

r=1
(r`)−1

(
w(r`)−w

( u

r`

))
.

The function ∆` satisfies the following bound [20, Lemma 2]

∆`(u) ¿ min

(
1

Q2 ,
1

`Q

)
+min

(
1

|u| ,
1

`Q

)
, (3.24)

and we also have a good control on its derivatives [1, Lemma 4.1]

∆i
`(u) ¿i

1

(`Q)i+1
.

To keep partial track that `1n ±`2m −hd is not too large, it is also convenient to pick ϕ a

smooth function such that ϕ(0) = 1, ϕ(u) = 0 for |u|>U and ϕ(i ) ¿U−i for some U satisfying

U 6Q2. We thus remark that ∆`(u) = 0 if |u|6U and `> 2Q (the parameters U and Q will

be explicit in Lemma 3.5). We now return to the expression (3.12) and write the congruence

condition `1n ≡±`2m (mod d) as `1n ∓`2m = hd for h 6= 0 (since `1n 6= `2m). We see that

if d = q , we can assume that (h, q) = 1 for a cost of O(Lq−1+ε), an extra condition that will

be used only in Section 3.3.3 and will not be srated under each h-summation until there. It

follows that (3.12) can be written as

T 4,±
OD (`1,`2, N , M ; q) = 2

(M N )1/2φ∗(q)

∑
d |q

φ(q)µ
( q

d

) ∑
`62Q

∑
h 6=0

∑∗
k(`)

e

(−khd

`

)

×
∞∑

n=1

∞∑
m=1

τ(n)τ(m)e

(
k(`1n ∓`2m)

`

)
E∓(n,m,`), (3.25)

with (omitting the dependence in d and `i in these definitions)

E±(x, y,`) := F±(x, y)∆`(`1x ±`2 y −hd), (3.26)

and

F±(x, y) :=W
( x

N

)
W

( y

M

)
ϕ(`1x ±`2 y −hd)V

(
x y

q2

)
.
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3.3. The off-diagonal using spectral theory of automorphic forms

3.3.2 Application of the Voronoi summation formula

We apply the Voronoi summation formula twice (c.f. Proposition 1.1) on the (m,n)-sum in

(3.25) and get eight error terms plus a principal term [20, (23)]. We write explicitly the principal

term in Section 3.5 (c.f. eq (3.49)). All error terms can be treated similarly, so we only focus

here on the one which is of the form (recall that (`1,`2) = 1)

Err±(`1,`2, N , M ; q) := 1

(M N )1/2φ∗(q)

∑
d |q

φ(d)µ
( q

d

) ∑
`62Q

(`1`2,`)

`2

∑
h 6=0

∑∗
k(`)

×e

(−khd

`

) ∞∑
n=1

∞∑
m=1

τ(n)τ(m)e

(
−n

`′1k

`′

)
e

(
±m

`′2k

`′′

)
I∓(n,m,`),

(3.27)

where `′i = `i /(`i ,`), `′ = `/(`1,`), `′′ = `/(`2,`), the overlines denote the inverse modulo the

respective denominators and where I∓(n,m,`) involves the Y0 Bessel function :

I∓(n,m,`) := 4π2

∞∫
0

∞∫
0

E∓(x, y,`)Y0

(
4πd1

p
nx

`

)
Y0

(
4πd2

p
my

`

)
d xd y, (3.28)

where we also set di := (`i ,`). The main result of this section is the following non-trivial

bound.

Theorem 3.4. The quantity defined by (3.27) satisfies

Err±(`1,`2, N , M ; q) ¿ qε−1/2+θ(`1`2)3/2L5
(

N

M

)1/2

+qεL8
(

N

q2

)1/4

.

where the implied constant only depends on ε.

From now on, we only consider the case Err+(`1,`2, N , M , q) since the other treatment is

completly identical and we write I (n,m,`) and Err instead of I−(n,m,`) and Err+. As in

Section 3.2.1, we can also remove the test function V in the definition of E(x, y,`) using its

integral representation for an error cost of qε and a minor change on the function W . To not

clutter further notations and computations, we will assume that W ( j ) ¿ 1 instead of ¿ qε j .

The following Lemma allows us to assume that ` is not too small and further that n,m are not

too big for a suitable choice of the parameters Q and U .

Lemma 3.5. Set Q− := N 1/2−ε, Q = LN 1/2+ε and U = LN .

(a) The `-sum is very small (¿C q−C for any C > 0) unless

Q−6 `6 2Q.

(b) If Q−6 `6Q, then the integral is negligible unless

n6N0 := Q2+ε

N
, m6M0 := Q2+ε

M
.
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Proof. The lemma is proved by successive integration by parts. We refer to [1, Lemmas 4.1,4.2]

for the details.

3.3.3 Preparation for the Kuznetsov formula

We go back to (3.27) (remember that we are dealing with Err+OD ) and multiply the arguments

of the exponential in the n-sum (resp the m-sum) to obtain the numerators −nd1`
′
1k (resp

md2`
′
2k) over the same denominator `. Once we have done this, we execute the k-summation

over primitive class modulo `, obtaining the complete Kloosterman sums. Applying finally

a partition of unity to the interval [Q−,2Q], we are reduced to estimate O(log q) sums of the

shape

1

Q(N M)1/2

∑
di |`i

1

φ∗(q)

∑
d |q

φ(d)µ
( q

d

) ∑
(c,`′1`

′
2)=1

c−1ϑ

(
cd1d2

Q

) ∑
h 6=0

∑
n>1

∑
m>1

×τ(n)τ(m)S(hd ,d1`
′
1n −d2`

′
2m;cd1d2)I (n,m,cd1d2),

(3.29)

where Q− 6 Q6Q and ϑ is a smooth and compactly supported function on R>0 such that

ϑ( j ) ¿ j 1 for all j > 0. The first obstruction for the application of the trace formula is the

presence of inverses in the Kloosterman sums which are not with respect to its modulus.

Indeed, `′2 (resp `′1) need to be understood modulo cd1 (resp cd2). We note that if the original

`′i s were squarefree, then one could take these inverses to be modulo cd1d2.

To solve this problem, we factor in a unique way di = d∗
i d ′

i with (d∗
i ,`′i ) = 1 and d ′

i |(`′i )∞. Now

since (cd∗
1 d∗

2 ,d ′
1d ′

2) = 1, we may apply the twisted multiplicativity of the Kloosterman sums,

getting

S(hd ,d1`
′
1n −d2`

′
2m;cd1d2) = S(hd , (d ′

1d ′
2)2(d1`

′
1n −d2`

′
2m);cd∗

1 d∗
2 )

× S(hd , (cd∗
1 d∗

2 )2(d1`
′
1n −d2`

′
2m);d ′

1d ′
2),

where the inverse of d ′
1d ′

2 (resp cd∗
1 d∗

2 ) is taken modulo cd∗
1 d∗

2 (resp d ′
1d ′

2). In the first line,

both `′i are coprime with cd∗
1 d∗

2 and therefore, we can take the inverse to be with respect

to this modulus. In the second line, the quantity d1`
′
1n −d2`

′
2m does not depend anymore

on c since we are modulo d ′
1d ′

2. Following an idea of Blomer and Milićević [9], also used by

Topacogullari in [57], we separate the dependency in c in the second Kloosterman sum by

exploiting the orthogonality of Dirichlet characters, namely writing v := d ′
1d ′

2, we have

S(hd , (cd∗
1 d∗

2 )2(d1`
′
1n −d2`

′
2m); v) = 1

φ(v)

∑
χ(v)

χ(cd∗
1 d∗

2 )Ŝv (χ,n,m,`i ,hd),

with

Ŝv (χ,n,m,`i ,hd) := ∑
y(v)

(y,v)=1

χ(y)S(hd y , (d1`
′
1n −d2`

′
2m)y ; v), (3.30)
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3.3. The off-diagonal using spectral theory of automorphic forms

and where the inverse of `′1 (resp `′2) has to be taken modulo d ′
2 (resp d ′

1). We note that the

trivial bound for Ŝv is (recall that d = 1 or q and (v, q) = 1 since (`i , q) = 1)

Ŝv ¿ qε(h, v)1/2v3/2.

Altough we do not really need it in our treatment, it is in fact possible to do better. In [57, (3.6)],

he obtained

Ŝv ¿ qε
(
h,

v

cond(χ)

)
v. (3.31)

Inserting the previous factorization of the Kloosterman sums in (3.29), we obtain

1

Q(N M)1/2

∑
di |`i

1

φ(v)

∑
χ(v)

χ(d∗
1 d∗

2 )
1

φ∗(q)

∑
d |q

φ(d)µ
( q

d

)
× ∑

h 6=0

∑∑
n,m>1

τ(n)τ(m)Ŝv (χ,n,m,`i ,hd) (3.32)

× ∑
(c,`′1`

′
2)=1

χ(c)
S(hd , v2`′1`

′
2(d1`

′
2n −d2`

′
1m);cd∗

1 d∗
2 )

c
ϑ

(
cd1d2

Q

)
I (n,m,cd1d2).

The strategy is to analyze carefully the two last lines of (3.32) and then to average trivially over

the first line. It is convenient from now on to localize the variables n,m and h by applying

a partition of unity. Inspired by [9], we also localize b := d1`
′
2n −d2`

′
1m and are therefore

reduced to estimate O(log4 q) sums of the form

D(N,M,B , H ;d ,χ) := ∑
h³H

∑
|b|³B

∑∑
d1`

′
2n−d2`

′
1m=b

n³N,m³M

τ(n)τ(m)Ŝv (χ,n,m,`i ,hd)

× ∑
(c,`′1`

′
2)=1

χ(c)
S(hd , v2`′1`

′
2b;cd∗

1 d∗
2 )

c
ϑ

(
cd1d2

Q

)
I (n,m,b,h,cd1d2)

=: D++D−+D0, (3.33)

where 16N6N0, 16M6M0, 16H 6 LN /d , and where D0 (respectively D+, D−) denotes

the contribution of b = 0 (respectively b > 0, b < 0) and the function I (n,m,b,h,cd1d2) is

given by the product G(n,m, |b|,h)I (n,m,cd1d2) with G a smooth and compactly supported

function on [N,2N]× [M,2M]× [B ,2B ]× [H ,2H ] satisfying

G (i , j ,k,p) ¿N−iM− j B−k H−p .

Remark 3.6. The size of B depends on the sign of d1`
′
2n −d2`

′
1m = b. If b > 0, then B 6

d1`
′
2N6 L2N while for b < 0, B 6 L2M which is much larger (c.f. Lemma 3.5 (b)).
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Evaluation of D0

To estimate the contribution of b = 0, we use the bound Y0(z) ¿ z−1/2 for z > 0 [45, Lemma

C.2], the fact that x ³ N , y ³ M ,n ³N,m ³M and (3.24) for the delta function which allows us

to bound the integral :

I (n,m,cd1d2) ¿ c(d1d2)1/2

(M NMN)1/4

∫ ∞

0

∫ ∞

0
|E(x, y,cd1d2)|d xd y

¿ (M N )3/4

(MN)1/4(d1d2)1/2Q
.

We now use (3.31), the Weil bound for Kloosterman sums and H 6 LN /d , N6N0 to obtain

(recall that v = d ′
1d ′

2)

D0 ¿ qε
(N MN)3/4v(d∗

1 d∗
2 )1/2

M1/4Q

∑
h³H

∑
c6 Q

d1d2

(h, v)(hd ,cd∗
1 d∗

2 )1/2

c1/2

¿ qεLd−1 (N MN)3/4v1/2NQ1/2

(d1d2)1/2M1/4Q
¿ qεLd−1 v1/2M 3/4NQ2

(d1d2)1/2Q
. (3.34)

We come back to (3.33) and we write D± in a uniform way (recall that v |(`′1`′2)∞ and di = d∗
i d ′

i )

D± = 4π2d1d2

√
`′1`

′
2

∑
h³H

∑
b³B

∑∑
d1`

′
2n−d2`

′
1m=b

n³N,m³M

τ(n)τ(m)Ŝv (χ,n,m,`i ,hd)

× ∑
(c,`′1`

′
2v2)=1

χ(c)
S(hd , v2`′1`

′
2b;cd∗

1 d∗
2 )

cd1d2

√
`′1`

′
2

Φ

 4π
√

|b|hd

cd1d2

√
`′1`

′
2

 ,

(3.35)

where the functionΦ depends also on the variables n,m,b and h and is defined by

Φ(z,n,m,b,h) :=G(n,m, |b|,h)ϑ

4π
√
|b|hd

zQ
√
`′1`

′
2

∫ ∞

0

∫ ∞

0
E

x, y,
4π

√
|b|hd

z
√
`′1`

′
2


×Y0

zd1

√
`′1`

′
2

|b|hd
nx

Y0

zd2

√
`′1`

′
2

|b|hd
my

d xd y.

Remark 3.7. We can always assume that we are treating the case where h ³ H is positive since

otherwise, we write h ↔−h and use S(−hq,`′1`
′
2b;cd1d2) = S(hq,`′1`

′
2(−b);cd1d2).

Proposition 3.8. The functionΦ is C∞
c

(
R5

)
with each variable supported in

z ³ Z :=
p

B Hd

Q
√
`′1`

′
2

, n ³N, m ³M, b ³ B , h ³ H .
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3.3. The off-diagonal using spectral theory of automorphic forms

Further, its partial derivatives satisfies the following bound

Φ(α) ¿α
M 3/4N 1/4

L(d1d2)1/2(MN)1/4
Z−α1N−α2M−α3 B−α4 H−α5 , (3.36)

for any multi-index α= (α1, ...,α5) ∈N5.

Proof. Setting ξ := 4π
√

|b|hd/`′1`
′
2, using the bound Y0 ¿ z−1/2, the fact ∆`(u) ¿ (`Q)−1

provides by (3.24), the ranges x ³ N , y ³ M and the value Q = LN 1/2+ε lead to

Φ¿ ξ

z
(d1d2)−1/2(M NNM)−1/4

∫ ∞

0

∫ ∞

0
|E(x, y,ξ/z)|d xd y

¿ (d1d2)−1/2(M N )3/4

(MN)1/4Q
¿ M 3/4N 1/4

L(d1d2)1/2(NM)1/4
.

For the second part, we take the derivatives under the sign of the integral and we use the

following estimations [45, Lemma C.2]

zi Y (i )
0 (z) ¿ j

1+| log z|
(1+ z)1/2

,

and
∂i

∂`i
E(x, y,`) ¿i

1

`i (`Q)
.

We mention that when we differentiate ϕ(`1x −`2 y −hd)∆`(`1x −`2 y −hd) with respect to h,

we catch a factor d/LN but since H ¿ LN /d , we get the desired 1/H .

3.3.4 Applying the trace formula

Before applying the Kuznetsov trace formula to the second line in (3.35), we need the following

identity (c.f. [15, (9.1)-(9.2)] or [57, (2.3)]) which allows us to get rid of the inverses in the

Kloosterman sum by moving to a suitable cusp (apply this identity with r = `′1`′2v2, s = d∗
1 d∗

2

and c = c) :

∑
(c,`′1`

′
2v2)=1

χ(c)
S(hd , v2`′1`

′
2b;cd∗

1 d∗
2 )

cd∗
1 d∗

2

√
v2`′1`

′
2

Φ

 4π
√
|b|hd

cd∗
1 d∗

2

√
v2`′1`

′
2

,n,m,b,h


= e

(
−bd∗

1 d∗
2

v2`′1`
′
2

)
Γ0(v`1`2)∑

γ

Sχ∞a(hd ,b;γ)

γ
Φ

(
4π

√
|b|hd

γ
,n,m,b,h

)
,
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where a := 1/d∗
1 d∗

2 is a singular cusp for the congruence group Γ0(v`1`2). We now apply the

Kuznetsov formula (1.21) to the γ-sum and we write separatly

D+ =
4π

√
`′1`

′
2

(d1d2)−1

∑
h³H

∑
b³B

e

(
−bd∗

1 d∗
2

v2`′1`
′
2

) ∑∑
d1`

′
2n−d2`

′
1m=b

n³N,m³M

τ(n)τ(m)Ŝv (χ,n,m,hd)

× (
H (n,m,b,h)+M +(n,m,b,h)+E +(n,m,b,h)

)
,

D− =
4π

√
`′1`

′
2

(d1d2)−1

∑
h³H

∑
b³B

e

(
−bd∗

1 d∗
2

v2`′1`
′
2

) ∑∑
d1`

′
2n−d2`

′
1m=b

n³N,m³M

τ(n)τ(m)Ŝv (χ,n,m,hd)

× (M −(n,m,b,h)+E −(n,m,b,h)) ,

where H , M and E denote the contribution of the holomorphic part, the Maass cusp forms

and the Eisenstein spectrum and are given respectively by

H +(n,m,b,h) = ∑
k>2

k≡κ (2)

Φ̇n,m,b,h(k)
(k −1)!

π(4π)k−1

∑
f ∈Bk (v`1`2,χ)

ρ f ,∞(hd)ρ f ,a(b),

M +(n,m,b,h) = ∑
f ∈B(v`1`2,χ)

Φ̂n,m,b,h(t f )
1

cosh(πt f )
ρ f ,∞(hd)ρ f ,a(b),

E +(n,m,b,h) = ∑
χ1χ2=χ

f ∈B(χ1,χ2)

1

4π

∫
R

Φ̂n,m,b,h(t )
1

cosh(πt )
ρ f ,∞(hd , t )ρ f ,a(b, t )d t .

We have the same expressions for M − and E −, but with Φ̌n,m,b,h instead of Φ̂n,m,b,h (see (1.22)).

We will analyze in detail D−, whose contribution is bigger than the plus case. This is due to the

fact that if b > 0, then B is at most N¿ qεL2 while for b < 0, B could be of size M¿ qεL2N /M

(c.f. Remark 3.6). Furthermore, the holomorphic setting and the continuous spectrum will

give a better bound than the discrete part since the Ramanujan-Petersson conjecture is true

for both of them. Finally, since the treatment of these three terms is similar, we only focus on

the Maass cusp forms in D−.

3.3.5 Spectral analysis of D−

As said in the previous paragraph, we only focus on the discrete spectrum, writing D−,M for its

contribution to D−. By D−,M
K , we mean that we restrict the spectral parameter to the dyadic

interval K 6 t f < 2K in the definition of D−,M. Using Proposition 3.8 and Lemma 1.6 (eq

(1.19)), we see that we can restrict our attention to K 6 qε(1+Z ) at the cost of O(q−100). We

now separate the variables in Φ̌n,m,b,h(t ) using the Mellin inversion formula in n,m,b,h :

Φ̌n,m,b,h(t ) = 1

(2πi )4

∫
(0)

∫
(0)

∫
(0)

∫
(0)

˜̂Φ(t )(s1, ..., s4)

ns1 ms2 |b|s3 hs4
d s4d s3d s2d s1,

50
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where the Mellin transform equals

˜̌Φ(t )(s1, ..., s4) =
∫

(R>0)4
Φ̌n,m,b,h(t )ns1ms2bs3hs4

dndmdbdh

nmbh
. (3.37)

By virtue of Proposition 3.8 (the bound (3.36)), we see that we can restrict the supports of the

integrals to |ℑm(si )|6 (K q)ε for a cost of O((K q)−100). We have therefore

D−,M
K =

4π2d1d2

√
`′1`

′
2

(4πi )4

∫∫∫∫
|ℑm(si )|6(K q)ε

B−,M
K (s1, ..., s4)d s4d s3d s2d s1 +O

(
(K q)−100) , (3.38)

where we defined

B−,M
K (s1, ..., s4) := ∑

f ∈B(v`1`2,χ)
K6|t f |<2K

˜̌Φ(t f )(s1, ..., s4)

cosh(πt f )

∑
h³H

h−s4

× ∑
b³B

|b|−s3α(b,h, s1, s2)ρ f ,∞(hd)ρ f ,a(b),

(3.39)

and

α(b,h, s1, s2) := e

(
−bd∗

1 d∗
2

v2`′1`
′
2

) ∑∑
d1`

′
2n−d2`

′
1m=b

n³N
m³M

τ(n)τ(m)

ns1 ms2
Ŝv (χ,n,m,h). (3.40)

Since we want to apply Cauchy-Schwarz in (3.39) to make the square of the h and b sum

appear in order to use the large sieve inequality, we need to separate h from b in α(b,h). Using

the Definition (3.30) of Ŝv (χ,n,m,h) and opening the Kloosterman sum, we have

B−,M
K (s1, ..., s4) = ∑

x,y(v)
(x y,v)=1

χ(y)AK (x, y, s1, ..., s4),
(3.41)

with this time

AK (x, y, s1, ..., s4) := ∑
f ∈B(v`1`2,χ)

K6|t f |<2K

˜̌Φ(t f )(s1, ..., s4)

cosh(πt f )

∑
h³H

δ(h, s4)

× ∑
b³B

|b|−s3ω(b, s1, s2)ρ f ,∞(hd)ρ f ,a(b),

(3.42)

where

δ(h, s4) := h−s4 e

(
hd y x

v

)
,
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and

ω(b, s1, s2, s3) := e

(
−bd∗

1 d∗
2

v2`′1`
′
2

) ∑∑
d1`

′
2n−d2`

′
1m=b

n³N
m³M

τ(n)τ(m)

ns1 ms2
e


(
d1`

′
1n −d2`

′
2m

)
x y

v

 .

Since the supports of the integrals in (3.38) are restricted to |ℑm(si )|6 (K q)ε, we can just

estimate the quantity (3.39) and then average trivially over the si -integrals for an error cost

of (K q)4ε. In fact, we will analyze AK (x, y, s1, ..., s4) and then apply the trivial bound BK 6
φ(v)2 supx,y,si

|AK (x, y, s1, ..., s4)|. Using Cauchy-Schwarz inequality, we infer

∣∣AK (x, y, s1, ..., s4)
∣∣6 sup

K6t<2K
ℜe(si )=0

∣∣∣ ˜̌Φ(t )(s1, ..., s4)
∣∣∣ (3.43)

×

 ∑
f ∈B(v`1`2,χ)

K6|t f |<2K

(1+|t f |)κ
cosh(πt f )

∣∣∣∣∣ ∑
h³H

δ(h, s4)ρ f ,∞(hd)

∣∣∣∣∣
2


1/2

×

 ∑
f ∈B(v`1`2,χ)

K6|t f |<2K

(1+|t f |)−κ
cosh(πt f )

∣∣∣∣∣ ∑
b³B

|b|−s3ω(b, s1, s2)ρ f ,a(b)

∣∣∣∣∣
2


1/2

,

where κ ∈ {0,1} satisfies χ(−1) = (−1)κ. We mention that we implicitly used the fact that

cosh(πt f ) is always positive since |ℑm(t f )|6 θ = 7/64 by (1.14) (it is enough to have |ℑm(t f )| <
1/2). Before applying the spectral large sieve, we need to control the size of the Mellin-

Kuznetsov transform

t 7→ ˜̌Φ(t )(s1, ..., s4).

To do this, we return to Definitions (3.37) and (1.17) and note (by permutation of integrals)

that this is in fact the Bessel transform of the function

z 7→Ψ(z, s1, ..., s4) :=
∫∫∫∫
(R>0)4

Φ(z,n,m,b,h)ns1ms2bs3hs4
dndmdbdh

nmbh
.

Using again Proposition 3.8, we see that the support of Ψ is z ³ Z and that it satisfies the

uniform bound (recall that ℜe(si ) = 0)

Ψ(i ) ¿ qε
M 3/4N 1/4

L(d1d2)1/2(MN)1/4
Z−i .

Therefore, it follows from Lemma 1.6 (the bound (1.18)) that

˜̌Φ(t )(s1, ..., s4) ¿ qε
M 3/4N 1/4

Z L(d1d2)1/2(MN)1/4
. (3.44)
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We substitute the bound above in the first line of (3.43). In the second line, we exploit the fact

that we are at the cusp ∞ by mean of the Hecke relation between the Fourier coefficients and

the eigenvalues (c.f. (1.6)), namely (we recall that we assumed throughout that (h, q) = 1 and

we use this hypothesis only here)

ρ f ,∞(hd) =λ f (d)ρ f ,∞(h).

Note that we also used the fact that q is coprime to the level of the group Γ0(v`1`2) since

(`1`2, q) = 1 and v |`1`2. We now use the bound |λ f (d)| 6 2dθ (c.f (1.13) and recall that

either d = 1 or d = q is prime), the large sieve inequality (c.f Proposition 1.8), the fact that

µ(a) = (v`1`2)−1 (c.f (1.23)), cond(χ)6 v , the two bounds

||δ||H 6H 1/2 , ||ω||B ¿ qεNB 1/2

and we obtain

AK ¿ qεdθ M 3/4N 1/4(B H)1/2N3/4

Z L(d1d2)1/2M1/4

(
K + v−1/4B 1/2

(`1`2)1/2

)(
K + v−1/4H 1/2

(`1`2)1/2

)
.

For K , we have since Q>N 1/2−ε and H 6N L/d ,

K 6 qεZ = qε
(B Hd)1/2

Q(`′1`
′
2)1/2

¿ qε
(LN )1/2

Q

B 1/2

(`′1`
′
2)1/2

¿ qε
(LB)1/2

(`′1`
′
2)1/2

.

Hence,

AK ¿ qεdθL−1/2 M 3/4N 1/4B H 1/2N3/4

Z (`1`2)1/2M1/4(`′1`
′
2)1/2

(
(LB)1/2 +H 1/2) .

Using Z ³Q−1(`′1`
′
2)−1/2(B Hd)1/2 leads to

AK ¿ qεd−1/2+θL−1/2 M 3/4N 1/4B 1/2N3/4Q

M1/4(`1`2)1/2

(
(LB)1/2 +H 1/2)

=: AK (B)+AK (H).

For the first expression, we have using B 6 L2M and the maximum values of M and N given

by Lemma 3.5 (b)

AK (B) ¿ qεd−1/2+θL2 (MMN)3/4N 1/4Q

(`1`2)1/2

¿ qεd−1/2+θL2 Q3Q

(`1`2N )1/2
¿ qεd−1/2+θL5 NQ

(`1`2)1/2
.
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For the second term, we have using also H 6 LN /d

AK (H) = qεd−1/2+θL−1/2 M 3/4N 1/4(B H)1/2N3/4Q

M1/4(`1`2)1/2

¿ qεd−1+θL
(N MN)3/4M1/4Q

(`1`2)1/2
¿ qεd−1+θL

Q2M 1/2Q

(`1`2)1/2

¿ qεd−1+θL3 N M 1/2Q

(`1`2)1/2
.

3.3.6 Conclusion of Theorem 3.4

We insert these two estimations first in (3.41), so that it will be multiplied by φ(v)2. We

next multiply by d1d2

√
`′1`

′
2 as in (3.38). Finally, we replace the two last lines of (3.32) by

these bounds and execute the first line summation, obtaining that the contribution of D− to

Err(`1,`2, N , M ; q) is

qε−1/2+θ(`1`2)3/2

((
L6N

q

)1/2

+
(

L10N

M

)1/2)
¿ qε−1/2+θL5(`1`2)3/2

(
N

M

)1/2

, (3.45)

since M/q 6 1. We do exactly the same thing with D0 (see (3.34)), getting that its contribution

to Err is at most

qεL8 M 1/4N 1/2

q
¿ qεL8

(
N

q2

)1/4

, (3.46)

which completes the proof of Theorem 3.4.

3.4 Combining the error terms of sections 3.2.1 and 3.3

We combine now the error terms coming from Sections 3.2.1 and 3.3. We remind that N = qν

and M = qµ with ν>µ. If we are in the case ν+µ6 2−2η, then we can apply the trivial bound

(3.14), obtaining

T 4,±
OD (`1,`2, N , M ; q) ¿ Lqε−η. (3.47)

Assume now that we are in the range 2−2η6 ν+µ. Ifν−µ> 1−2θ−2η, we apply Proposition 3.3,

getting the same as (3.47) (without the factor L). In the complementary case ν−µ6 1−2θ−2η,

we apply Theorem 3.4 to the error term Err and we obtain

Err±(`1,`2, N , M ; q) ¿ qε(`1`2)3/2 L5

qη
+qεL8q

1
4 (ν−2).
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Finally, applying the second part of (3.23) on the second term yields

Err±(`1,`2, N , M ; q) ¿ qε
(

L5(`1`2)3/2

qη
+ L8

q
1
4 ( 1

2+θ+η)

)
. (3.48)

Setting L = qλ, the first term is automatically bigger than the second if λ< η, a condition we

henceforth assume to hold and that gives the desired error term of Theorem 3.

3.5 The Off-Diagonal Main Term

We return to the main term that we left besides in the beginning of Section 3.3.2. This expres-

sion corresponds to the product of the two constants terms after the application of Voronoi

summation formula to (3.25) and is given by (see also [20, Section 5])

MT±
OD (`1,`2, N , M ; q) := 2φ∗(q)−1

(M N )1/2

∑
d |q

φ(d)µ
( q

d

) ∑
h 6=0

∑
`62Q

(`1`2,`)

`2 S(hd ,0;`)I±, (3.49)

and I± is the integral defined by

I± :=
∫ ∞

0

∫ ∞

0

(
log`1x −λ`1,`

)(
log`2 y −λ`2,`

)
E±(x, y,`)d xd y, (3.50)

with E± given by (3.26) and

λ`i ,` := log

(
`i`

2

(`i ,`)2

)
−2γ.

As a first step, we need to remove the delta function ∆` in our integral because this is an

obstruction for the calculation. This can be done as follows : we make a first change of

variables `1x 7→ x and `2 y 7→ y and then, x =∓y +hd +u, getting

I± = 1

`1`2

∫ ∞

0

∫
R

C (∓y +hd +u, y)∆`(u)dud y, (3.51)

where we defined

C (x, y) := (log x −λ`1,`)(log y −λ`2,`)F

(
x

`1
,

y

`2

)
.

For the inner integral in (3.51), we use equation [20, (18)] and obtain

∫
R

C (∓y +hq +u, y)∆`(u)du =C (∓y +hd , y)+O

((
`Q

`1N

) j
)

,

where the implied constant depends on j > 1. Assuming `< (`1N /`Q)1−ε, we make the error

term above very small by choosing j large enough. Therefore, we have for ` in this range

I± = 1

`1`2

∫ ∞

0
C (∓y +hd , y)d y +O

(
q−100) .
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On the other hand, we also have the bound (c.f. (30), [20]) I± ¿ M logQ which is valid for all

`. Hence, using |h|6 LN /d , the bound for the Ramanujan sum S(hd ,0;`) ¿ (hd ,`) and the

definition of Q = LN 1/2+ε, we get

MT±
OD (`1,`2, N , M ; q) = 2(φ∗(q)`1`2)−1

(M N )1/2

∑
d |q

φ(d)µ
( q

d

) ∑
h 6=0

∞∑
`=1

(`1`2,`)

`2 S(hd ,0;`)

×
∞∫

0

C (∓x +hd , x)d x +O
(
L2qε−1/2) , (3.52)

where the error term takes care of the tail of the `-sum. We now recall that we have made the

substitution W (x) ↔ x−1/2W (x) (c.f. (3.13)), so up to an error term of O(L2qε−1/2), we have to

compute the following expression

MT±
OD (`1,`2, N , M ; q) = 2

φ∗(q)(`1`2)1/2

∑
d |q
φ(d)µ

( q

d

) ∑
h 6=0

∞∑
`=1

(`1`2,`)c`(hd)

`2

×
∫ ∞

0
Λ±(x,hd ,`1,`2,`; q)d x,

where c`(hd) = S(hd ,0;`) and where the functionΛ± is defined by

Λ±(x,hd ,`1,`2,`; q) := (log(∓x +hd)−λ`1,`)(log x −λ`2,`)

(x(∓x +hd))1/2

× V
(

x(∓x +hd)

`1`2q2

)
W

(∓x +hd

`1N

)
W

(
x

`2M

)
.

(3.53)

Before evaluating the x-integral, we use the well known formula for the Ramanujan sum

c`(hd) = ∑
ab=`
b|hd

µ(a)b,

to get

MT±
OD (`1,`2, N , M ; q) = 2

φ∗(q)(`1`2)1/2

∑
d |q

φ(d)µ
( q

d

) ∑
a>1

µ(a)

a2

∑
b>1

(`1`2, ab)

b

× ∑
h 6=0
b|hd

∫ ∞

0
Λ±(x,hd ,`1,`2, ab; q)d x.

(3.54)

It is convenient to replace the condition b|hd by b|h. If d = 1, there is nothing to do. Now

if d = q , we use the fact that the integral is supported on x ³ `2M , the h-summation to

|h|6 LN /q and b6 LN to obtain that up to an error term of O(L2q−1+ε), we can assume that

(b, q) = 1. Once we have done this, we can also remove the condition (b, q) = 1 for the same

cost.
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3.5.1 Evaluation of the x-Integral

For this evaluation, we need to separate the ± case. Using the integral representation for V

from (1.29) and the Mellin inversion formula for W , we have for the minus case

∞∫
0

Λ−(x,hd ,`1,`2, ab; q)d x = 1

(2πi )3

∫
(∗)

∫
(∗)

�WN ,M (w1, w2)

×
∫

(∗)

G(s)q2s

`
−s−w1
1 `

−s−w2
2

∞∫
0

x1/2−s−w2

(
log x −λ`2,ab

)(
log(x +hd)−λ`1,ab

)
(x +hd)1/2+s+w1

× (δh>0 +δh<0δx>−hd )
d x

x

d s

s
d w2d w1, (3.55)

while for the plus case, we clearly have zero if h < 0 and otherwise

∞∫
0

Λ+(x,hd ,`1,`2, ab; q)d x = 1

(2πi )3

∫
(∗)

∫
(∗)

�WN ,M (w1, w2)
∫

(∗)

G(s)q2s

`
−s−w1
1 `

−s−w2
2

×
∞∫

0

x1/2−s−w2

(
log x −λ`2,ab

)(
log(hd −x)−λ`1,ab

)
(hd −x)1/2+s+w1

δx<hd
d x

x

d s

s
d w2d w1.

(3.56)

Here (∗) means that we choose contours such that the x-integral is convergent. More precisely,

for (3.55), we need to impose

ℜe(s +w2) < 1/2 , ℜe(2s +w1 +w2) > 0 if h > 0

ℜe(s +w1) < 1/2 , ℜe(2s +w1 +w2) > 0 if h < 0,
(3.57)

and for (3.56), we must have

ℜe(s +w1) < 1/2 and ℜe(s +w2) < 1/2. (3.58)

In order to perform this computation and to deal later with real Dirichlet series, we put the

logarithm factors in a more appropriate form, namely

(log x −λ`2,ab)(log(±x +hd)−λ`1,ab) =Dγ ·
(

x(`2, ab)2

`2(ab)2

)u2 (
(±x +hd)(`1, ab)2

`1(ab)2

)u1

,

where

Dγ := (∂u1 +2γ)(∂u2 +2γ)|u1=u2=0.

Assuming that (3.57) and (3.58) hold, we can rewrite the two last lines of (3.55) in the form

Dγ ·
 (`1, ab)2u1 (`2, ab)2u2

`
u1
1 `

u2
2 a2u1+2u2 b2u1+2u2

∞∫
0

x1/2−s−w2+u2
δh<0δx>−hd +δh>0

(x +hd)1/2+s+w1−u1

d x

x

 , (3.59)
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and the last line of (3.56) equals

Dγ ·
 (`1, ab)2u1 (`2, ab)2u2

`
u1
1 `

u2
2 a2u1+2u2 b2u1+2u2

∞∫
0

x1/2−s−w2+u2
δx<hd

(hd −x)1/2+s+w1−u1

d x

x

 . (3.60)

Now using [52, (2.21)&(2.19)], we obtain that the Mellin transform (3.59) equals

Dγ·
{

(`1, ab)2u1 (`2, ab)2u2

`
u1
1 `

u2
2 a2u1+2u2 b2u1+2u2 (|h|d)2s+w1+w2−u1−u2

×


Γ(2s+w1+w2−u1−u2)Γ( 1

2−s−w2+u2)

Γ( 1
2+s+w1−u1)

if h > 0,

Γ(2s+w1+w2−u1−u2)Γ( 1
2−s−w1+u1)

Γ(1/2+s+w2−u2) if h < 0.

(3.61)

Similarly, we use [52, (2.20)] for (3.60) and we obtain

Dγ·
{

(`1, ab)2u1 (`2, ab)2u2

`
u1
1 `

u2
2 a2u1+2u2 b2u1+2u2 (|h|d)2s+w1+w2−u1−u2

×


Γ( 1

2−s−w1+u1)Γ( 1
2−s−w2+u2)

Γ(1−2s−w1−w2+u1+u2) if h > 0,

0 if h < 0.

(3.62)

According to (3.57) and (3.58), we choose finally the following contours

ℜe(s),ℜe(w1),ℜe(w2) =


ε ,0 ,ε if h > 0

ε ,ε,0 if h < 0,

(3.63)

assuming of course that the u′
i s variables are sufficiently small compared to ε.

3.5.2 Assembling the Partition of Unity

The partition of unity is an obstruction for the computation of the second main term, so

we need to rebuild it. This step requires some preparations. We return to Expression (3.54)

(recall that we have removed b|hd ↔ b|h) and separate the case h < 0 from h > 0 by writ-

ing MT±
OD (`1,`2, N , M ; q) = MT±,h>0

OD (`1,`2, N , M ; q)+MT±,h<0
OD (`1,`2, N , M ; q), recalling that

MT+,h<0
OD = 0. In order to have a symmetric situation, we may group the terms as follow :

MTOD :=∑
±

MT±
OD =

(
MT−,h>0

OD + 1

2
MT+,h>0

OD

)
+

(
MT−,h<0

OD + 1

2
MT+,h>0

OD

)
=:C1(`1,`2, N , M ; q)+C2(`1,`2, N , M ; q).

(3.64)
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In MT+,h>0
OD appearing in the second term, we just change the w1, w2-contours to have the

same as MT−,h<0
OD (see (3.63)). Inserting the results (3.61) and (3.62), we obtain

C1(`1,`2, N , M ; q) = 2

φ∗(q)

∑
d |q

φ(d)µ
( q

d

) ∑
a>1

µ(a)

a2

∑
b>1

(`1`2, ab)

b

∑
h>1
b|h

× 1

(2πi )3

∫
(0)

∫
(ε)

�WN ,M (w1, w2)
∫

(ε)

G(s)q2s

`
1/2−s−w1
1 `

1/2−s−w2
2

×Dγ ·
{

(`1, ab)2u1 (`2, ab)2u2 H1(s, w1, w2,u1,u2)

`
u1
1 `

u2
2 (ab)2u1+2u2 (hd)2s+w1+w2−u1−u2

}
d s

s
d w2d w1.

(3.65)

where

H1(s, w1, w2,u1,u2) := Γ(2s +w1 +w2 −u1 −u2)Γ( 1
2 − s −w2 +u2)

Γ( 1
2 + s +w1 −u1)

+ 1

2

Γ( 1
2 − s −w1 +u1)Γ( 1

2 − s −w2 +u2)

Γ(1−2s −w1 −w2 +u1 +u2)
.

(3.66)

The definition of C2(`1,`2, N , M) is the same, but with ℜe(w1) = ε, ℜe(w2) = 0 and H2 instead

of H1 with

H2(s, w1, w2,u1,u2) := Γ(2s +w1 +w2 −u1 −u2)Γ( 1
2 − s −w1 +u1)

Γ( 1
2 + s +w2 −u2)

+ 1

2

Γ( 1
2 − s −w1 +u1)Γ( 1

2 − s −w2 +u2)

Γ(1−2s −w1 −w2 +u1 +u2)
.

(3.67)

Shifting the s-contour

The goal here is to move the s-line on the right to make the h-summation absolutely conver-

gent and bring up the zeta function. We will see that we catch some poles whose contributions

seem to be big. Fortunately, the arithmetical sum over d |q cancels these extra factors and

this is the reason why we did not separate it at the beginning of Chapter 3. We treat here only

C1(`1,`2, N , M ; q) since the other is completely similar by changing w1 ↔ w2 in our arguments.

Since we deal with the s, w1, w2-integrals, we can put the differential operator Dγ outside and

only focus on the following quantity :

I := 1

φ∗(q)

∑
d |q

φ(d)µ
( q

d

)∑
b|h

1

(2πi )3

∫
(0)

∫
(ε)

W̃N ,M (w1, w2) (3.68)

×
∫

(ε)

G(s)q2s H1(s, w1, w2,u1,u2)

`
1/2−s−w1+u1
1 `

1/2−s−w2+u2
2 (hd)2s+w1+w2−u1−u2

d s

s
d w2d w1.

We now move the s-line of integration to ℜe(s) = 1/2− ε/3, passing a simple pole at s =
1/2−w2 +u2 coming from the factor Γ(1/2− s −w2 +u2) in the function H1(s, w1, w2,u1,u2).
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Note that since we moved to the right, the residue has to be taken with the minus sign. Hence

we obtain that I = −R+ I′ where I′ is the same as (3.68) but with ℜe(s) = 1/2−ε/3 and the

residue part is given by

R=− 3

2φ∗(q)

∑
d |q

φ(d)µ
( q

d

)∑
b|h

1

(2πi )2

∫
(0)

∫
(ε)

�WN ,M (w1, w2) (3.69)

× G(1/2−w2 +u2)q1−2w2+2u2

`
w2−w1+u1−u2
1 (hd)1+w1−w2+u2−u1

d w2d w1.

In R, we shift the w1-contour to ℜe(w1) = 2ε, passing no pole. Since ℜe(1+w1−w2+u2−u1) >
1, we can switch the h-summation with these two integrals, obtaining

R=− 3

2φ∗(q)

∑
d |q

φ(d)µ
( q

d

) 1

(2πi )2

∫
(2ε)

∫
(ε)

�WN ,M (w1, w2) (3.70)

×ζ(1+w1 −w2 +u2 −u1)
G(1/2−w2 +u2)q1−2w2+2u2

`
w2−w1+u1−u2
1 (bd)1+w1−w2+u2−u1

d w2d w1.

Now we deal with I′. Since ℜe(2s+w1+w2−u1−u2) > 1, we can also switch the h-summation

with the three integrals. Once we have done this, we move the s-line to ℜe(s) = ε, passing two

poles : one at 2s +w1 +w2 −u1 −u2 = 1 coming from the new factor ζ(2s +w1 +w2 −u1 −u2)

and the other again at s = 1/2−w2 +u2. Hence we have (this time the residues have to be

taken with positive signs) I′ = I′′+R′+R where R′ is the same as (3.70), but with ℜe(w1) = 0

instead of 2ε and R is the residue at 2s +w1 +w2 −u1 −u2 = 1. In summary, we obtained the

following decomposition of (3.68) :

I= I′′+R′−R+R. (3.71)

Lemma 3.9. With the above notations, we have

|R′−R|+ |R| =O((qb)−1+ε).

Proof. We begin with R′−R. Since the only difference between these two expressions is the

w1-contour, we want to shift it in R to ℜe(w1) = 0. Before doing this, we switch the arithmetic

sum over d with the wi -integrals, obtaining

R=− 3

2φ∗(q)

1

(2πi )2

∫
(2ε)

∫
(ε)

�WN ,M (w1, w2)
G(1/2−w2 +u2)q1−2w2+2u2

`
w2−w1+u1−u2
1 b1+w1−w2+u2−u1

×ζ(1+w1 −w2 +u2 −u1)

(
φ(q)

q1+w1−w2+u2−u1
−1

)
d w2d w1.

From the obvious observation that

φ(q)

q1+w1−w2+u2−u1
−1 = (

q w2−w1+u1−u2 −1
)− 1

q1+w1−w2+u2−u1
,
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we can separate R as a sum of two terms R=R1 +R2, according to the above decomposition.

In the second expression, we can average trivially over the wi -integrals, obtaining the bound

O((qb)−1+ε). In R1, since the pole of the zeta function at w1 −u1 = w2 −u2 is cancelled

by the factor q w2−w1+u1−u2 − 1, we can shift the w1-line to ℜe(w1) = 0. Writing the same

decomposition for R′, namely R′ =R′
1 +R′

2, we obtain that R′
1 =R1 and R′

2 =O((qb)−1+ε). We

play the same game for R. We have, after summing over d |q ,

R = 1

2φ∗(q)(2πi )2

∫
(0)

∫
(ε)

�WN ,M (w1, w2)
G( 1−w1−w2+u1+u2

2 )q1−w1−w2+u1+u2

`
w2−w1+u1−u2

2
1 `

w1−w2+u2−u1
2

2 b

×H1

(
1−w1 −w2 +u1 +u2

2
, w1, w2,u1,u2

)(
φ(q)

q
−1

)
d w2d w1,

which is bounded by O((qb)−1+ε).

We substitute the decomposition (3.71) of I together with Lemma 3.9 in the expression (3.65)

of C1(`1,`2, N , M ; q). After doing this, we only retain in the d-summation the case where

d = q ; the other contributes O(q−1+ε). We collect the previous computations in the following

proposition.

Proposition 3.10. The quantity defined by (3.65) is equal, up to O(q−1+ε), to

C1(`1,`2, N , M ; q) = 2
∑

a,b>1

µ(a)(`1`2, ab)

(`1`2)1/2a2b

1

(2πi )3

∫
(0)

∫
(0)

�WN ,M (w1, w2)

`
−w1
1 `

−w2
2

×
∫

(ε)

G(s)

(`1`2)−s Dγ ·
{

(`1, ab)2u1 (`2, ab)2u2

a2u1+2u2

× ζ(2s +w1 +w2 −u1 −u2)H1(s, w1, w2,u1,u2)

`
u1
1 `

u2
2 b2s+w1+w2+u1+u2 q w1+w2−u1−u2

}
d s

s
d w2d w1.

Remark 3.11. The previous Proposition is also valid for C2(`1,`2, N , M ; q) but with H2 re-

placed by H1.

Adding the missing pairs (N , M)

We recall that at this step, the variables N and M belong to the set{
(N , M) | 16M 6N ,

N

M
6 q1−2θ−2η, N M 6 q2+ε

}
.

If we could add all the other pairs (N , M) to complete the partition of unity, then we could use

the following lemma (see [58, Section 6])

Lemma 3.12. Let F (s1, s2) be a holomorphic function in the strip a <ℜe(si ) < b with a < 0 < b

61



Chapter 3. Proof of Theorem 3

that decays rapidly to zero in each variable (in the imaginary direction). Then we have

∑
N ,M

1

(2πi )2

∫
(∗)

∫
(∗)

�WN ,M (s1, s2)F (s1, s2)d s2d s1 = F (0,0).

Proof. Let f (x, y) be the inverse Mellin transform of F (s1, s2) ; then the left handside equals

∑
N ,M

∫ ∞

0

∫ ∞

0
f (x, y)

(
1

(2πi )2

∫
(∗)

∫
(∗)

�WN ,M (s1, s2)xs1 y s2 d s2d s1

)
d xd y

x y

= ∑
N ,M

∫ ∞

0

∫ ∞

0
f (x, y)WN ,M (x−1, y−1)

d xd y

x y

=
∫ ∞

0

∫ ∞

0
f (x, y)

d xd y

x y
= F (0,0),

and the lemma is proved.

In order to apply Lemma 3.12, we have the following result which allows us to add all the

missing pairs (N , M) at the cost of a negligible error.

Lemma 3.13. The quantity defined in Proposition 3.10 satisfies the following bound

Ci (`1,`2, N , M ; q) ¿ qεL2 min

{(
M

N

)1/2

,

(
q2

M N

)C

,
(N M)1/2

q

}
,

where in the second estimation, the implied constant depends on C .

Proof. This lemma is obtained by moving suitably the different lines of integration. By suitably,

we mean that we need to avoid the poles coming from the three different factors (we focus on

C1)

ζ(2s +w1 +w2 −u1 −u2) , Γ(2s +w1 +w2 −u1 −u2) , Γ(
1

2
− s −w2 +u2).

In other words, after each manipulation, we must have (recall that ui are arbitrarily small)

0 <ℜe(2s +w1 +w2) < 1 and ℜe(s +wi ) < 1/2, i = 1,2.

For the first bound, we just shift the w2-contour to ℜe(w2) = 1/2−2ε and then, the w1-contour

to ℜe(w1) =−1/2+2ε.

For the second bound, we fix a constant C > 1 and we shift the wi -contours toℜe(wi ) =−ε/42C .

The first step is to move to ℜe(s) = 1/2 and then to ℜe(wi ) =−1/2+ε/42C . The second step is :

ℜe(s) = 1−2ε/42C and then ℜe(wi ) =−1+4ε/42C . Again, the third step is ℜe(s) = 3/2−8ε/42C

and ℜe(wi ) =−3/2+16ε/42C . It follows that after the j th step, we are at ( j > 2)

ℜe(s) = j

2
− 4 j−1ε

2 ·42C
and ℜe(wi ) =− j

2
+ 4 j−1ε

42C
.
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Taking j = [2C ] finishes the proof.

The last part is obtained by shifting ℜe(wi ) to 1/2−2ε.

This Lemma allows us to sum over all (N , M), getting (recall Decomposition (3.64))

MTOD (`1,`2, q) := ∑
N ,M

MTOD (`1,`2, N , M , q) =
2∑

i=1

∑
N ,M

Ci (`1,`2, N , M , q)

= 2

2πi

∫
(ε)
F(s,`1,`2, q)

d s

s
,

(3.72)

where the function s 7→F(s,`1,`2; q) is defined by

F(s,`1,`2; q) :=Dγ ·
{

G(s)H(s,u1,u2)ζ(2s −u1 −u2)L(s,u1,u2,`1,`2)

(`1`2)1/2q−u1−u2

}
, (3.73)

with

H(s,u1,u2) := H1(s,0,0,u1,u2)+H2(s,0,0,u1,u2),

L(s,u1,u2;`1,`2) = `s−u1
1 `

s−u2
2 L(s,u1,u2;`1,`2),

and L(s,u1,u2;`1,`2) is the Dirichlet series given by

L(s,u1,u2;`1,`2) := ∑
a>1

∑
b>1

µ(a)(`1, ab)1+2u1 (`2, ab)1+2u2

a2+2u1+2u2 b1+2s+u1+u2
. (3.74)

3.5.3 A Symmetry for the Function F(s,`1,`2; q)

As we note actually in Expression (3.73), we have completely removed powers of q in the

s-aspect in (3.72). Thus the usual method of evaluation consisting in shifting the s-contour to

the left (as in section 3.1) to get a negative power of q and taking the residues passed along

way cannot work here. As it turns out, we will be able to evaluate explicitly the s-part through

a residue at zero since the function s 7→F(s,`1,`2; q) is even in s. This affirmation does not

follow directly from definitions (3.73) and (3.74) and requires a finer analysis on the Dirichlet

series L, the functional equation for the Riemann zeta function and a crucial identity for the

function H .

Analysis of L(s,u1,u2,`1,`2)

We will use the following notations

r = 2+2u1 +2u2 and t = 1+2s +u1 +u2 (3.75)
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and factorize L as an infinite product (recall that `1,`2 are cubefree and coprime)

L= ∏
p-`1`2

Lp
∏

p||`1

Lp
∏

p2|`1

Lp
∏

p||`2

Lp
∏

p2|`2

Lp , (3.76)

where for each prime p, we have

Lp = pvp (`1)(s−u1)pvp (`2)(s−u2)
∑

06a61
b>0

(−1)a p
∑2

i=1 min(a+b,vp (`i ))(1+2ui )

par+bs
.

We will compute the above expression according to the different cases appearing in decompo-

sition (3.76). When p - `1`2, we easily get

Lp =
(
1− 1

pr

)(
1− 1

p t

)−1

. (3.77)

If p||`i , we have

Lp =
(

1

p−s+ui
− 1

p t−s+ui
+ 1

p t−s−1−ui
− 1

pr−s−1−ui

)(
1− 1

p t

)−1

. (3.78)

Finally, assuming p2|`i , we obtain(
1

p−2s+2ui
+ 1

p t−2s−1 − 1

pr−2s−1 − 1

p t−2s+2ui
− 1

p2t−2s−1

+ 1

p2t−2s−2−2ui
+ 1

p t+r−2s−1 − 1

p t+r−2s−2−2ui

)(
1− 1

p t

)−1

.

(3.79)

From (3.77), (3.78), (3.79) and the change of variables (3.75), we infer the following factoriza-

tion

L(s,u1,u2;`1,`2) = ζ(1+2s +u1 +u2)

ζ(2+2u1 +2u2)
δ(`1; s,u1,u2)δ(`2; s,u2,u1), (3.80)

where n 7→ δ(n; s,u1,u2) is the multiplicative function supported on cubefree integers and

whose values on p and p2 are given by

δ(p; s,u1,u2) :=
{

1

p s+u2

(
1− 1

p1+2u1

)
+ 1

p−s+u1

(
1− 1

p1+2u2

)}
×

(
1− 1

p2+2u1+2u2

)−1

,

(3.81)
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δ(p2; s,u1,u2) :=
{

1

p2s+2u2

(
1− 1

p1+2u1

)
+ 1

p−2s+2u1

(
1− 1

p1+2u2

)
+ 1

pu1+u2

(
1+ 1

p2u1+2u2
− 1

p1+2u1
− 1

p1+2u2

)}
×

(
1− 1

p2+2u1+2u2

)−1

.

(3.82)

Parity of F(s,`1,`2; q)

We split the differential operator Dγ =∑2
i=0D

i
γ with D0

γ = 4γ2, D1
γ = 2γ(∂u1 +∂u2 )|ui=0, D2

γ =
∂2

ui=0 and separate the function F(s,`1,`2; q) =∑2
i=0Fi (s,`1,`2; q) according to this decompo-

sition. We will show that each Fi is even in s. For this, we exploit the factorization (3.80) and

define

A(s,u1,u2; q) := G(s)H(s,u1,u2)ζ(2s −u1 −u2)ζ(1+2s +u1 +u2)

ζ(2+2u1 +2u2)q−u1−u2
,

B(s,u1,u2;`1,`2) := δ(`1; s,u1,u2)δ(`2; s,u2,u1)

(`1`2)1/2
, (3.83)

in order to have

F(s,`1,`2; q) =Dγ ·
{

A(s,u1,u2; q)B(s,u1,u2;`1,`2)
}

.

We also mention the functional equation for the Riemann zeta function

ζ(1+2s) =π1/2+2sζ(−2s)
Γ(−s)

Γ( 1
2 + s)

, (3.84)

and a crucial identity for the function H(s,u1,u2) (see [58, (8.5)&(8.6)])

H(s,u1,u2) =π1/2
Γ

(−u1−u2+2s
2

)
Γ

(
1+u1+u2−2s

2

) Γ
(

1
2+u1−s

2

)
Γ

(
1
2+u2−s

2

)
Γ

(
1
2−u1+s

2

)
Γ

(
1
2−u2+s

2

) . (3.85)

Lemma 3.14. Each of the following functions are even in s : A(s,0,0; q), B(s,0,0;`1,`2), (∂u1 +
∂u2 )|ui=0B, ∂ui=0 A, ∂2

u1u2=0 A and ∂2
u1u2=0B.

Proof. We begin with A(s,0,0; q). Recalling Definition (3.7) of G(s) and using the Identity

(3.85), we have

A(s,0,0; q) =Q(s)
π1/2−2sΓ

(
1
2+s

2

)2

Γ

(
1
2−s

2

)2

ζ(2)Γ(1/4)4 ζ(2s)ζ(1+2s)
Γ(s)

Γ( 1
2 − s)

.
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Applying now the functional equation (3.84) to ζ(1+2s), we obtain

A(s,0,0; q) =Q(s)π
Γ

(
1
2+s

2

)2

Γ

(
1
2−s

2

)2

ζ(2)Γ(1/4)4 ζ(2s)ζ(−2s)
Γ(s)Γ(−s)

Γ( 1
2 − s)Γ( 1

2 + s)
,

which is of course even. For the function B(s,0,0;`1,`2), we easily see from Definitions (3.81)

and (3.82) that it is even, since each local factor is even. To compute the others, it will be very

convenient to express them as logarithmic derivatives. To be more precise, we can express

∂ui=0 A as

∂ui=0 A = A(s,0,0; q)

(
Hui

H
+ ζ′(1+2s)

ζ(1+2s)
− ζ′(2s)

ζ(2s)
−2

ζ′(2)

ζ(2)
+ log q

)
.

On one hand, we have using (3.85),

2
Hui

H
=−Γ

′(s)

Γ(s)
− Γ

′( 1
2 − s)

Γ( 1
2 − s)

+
Γ′

(
1
2−s

2

)
Γ

(
1
2−s

2

) +
Γ′

(
1
2+s

2

)
Γ

(
1
2+s

2

) .

On the other hand, we have by applying the logarithm derivative to (3.84),

2
ζ′(1+2s)

ζ(1+2s)
= 2log(π)−2

ζ′(−2s)

ζ(−2s)
− Γ

′(−s)

Γ(−s)
− Γ

′( 1
2 + s)

Γ( 1
2 + s)

.

It follows that ∂ui A is even. Similarily, we can compute ∂2
u1u2=0 A in a fancy way :

∂2
u1u2=0 A = A(s,0,0; q)

{(
Hu1

H
+ ζ′(1+2s)

ζ(1+2s)
− ζ′(2s)

ζ(2s)
−2

ζ′(2)

ζ(2)
+ log q

)2

+ ∂u2=0

(
Hu1 (s,0,u2)

H(s,0,u2)
+ ζ′(1+2s +u2)

ζ(1+2s +u2)
− ζ′(2s −u2)

ζ(2s −u2)
− ζ′(2+2u2)

ζ(2+2u2)

)}
.

We already know that the first line is even. For the second, we have by (3.85),

Hu1 (s,0,u2)

H(s,0,u2)
=−1

2

Γ′
(−u2+2s

2

)
Γ

(−u2+2s
2

) − 1

2

Γ′
(

1+u2−2s
2

)
Γ

(
1+u2−2s

2

) + 1

2

Γ′
(

1
2−s

2

)
Γ

(
1
2−s

2

) + 1

2

Γ′
(

1
2+s

2

)
Γ

(
1
2+s

2

) ,

and using again (3.84), we infer

ζ′(1+2s +u2)

ζ(1+2s +u2)
= log(π)− ζ′(−2s −u2)

ζ(−2s −u2)
− 1

2

Γ′(−2s−u2
2 )

Γ(−2s−u2
2 )

− 1

2

Γ′( 1+2s+u2
2 )

Γ( 1+2s+u2
2 )

.

Hence the parenthesis in the second line of ∂2
u1u2=0 is preserved under the action of ∂u2=0.

It remains to evaluate (∂u1 +∂u2 )|ui=0B and ∂2
u1u2=0B . In this case precisely, it is very useful

to express as logarithm derivatives since B(s,u1,u2;`1,`2) can be written as a product of the
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primes dividing `1`2 and the logarithm derivative transforms this product into a sum in which

each term will be even. Indeed, we compute

(∂u1 +∂u2 )|ui=0B = B(s,0,0;`1,`2)
2∑

i=1

∑
p|`i

(∂u1 +∂u2 )|ui=0δ(pvp (`i ); s,u1,u2)

δ(pvp (`i ); s,0,0)
,

and it is easy to check that each term appearing in the sum above is even. We mention that

the ∂ui=0δ are not individually even; it is (∂u1 +∂u2 )|ui=0 that creates the symmetry (see (3.86)).

Finally, we have for the last one (recall that u1 and u2 are swapped when we deal with `2)

∂2
u1u2=0B = B(s,0,0;`1,`2)

{(
δu1 (`1; s,0,0)

δ(`1; s,0,0)
+ δu2 (`2; s,0,0)

δ(`2; s,0,0)

)
×

(
δu2 (`1; s,0,0)

δ(`1; s,0,0)
+ δu1 (`2; s,0,0)

δ(`2; s,0,0)

)
+∂u2 |u2=0

(
δu1 (`1; s,0,u2)

δ(`1; s,0,u2)

)
+ ∂u1 |u1=0

(
δu2 (`2; s,u1,0)

δ(`2; s,u1,0)

)}
.

Using the symmetry

δu1 (`i ;−s,0,0)

δ(`i ;−s,0,0)
= δu2 (`i ; s,0,0)

δ(`i , s,0,0)
, (3.86)

we remark that the product of the two parentheses is invariant under s ↔ −s since it just

switches the two factors. We conclude this Lemma by checking that the local value (at a prime

p) of the two order two terms is given by

2∑
i=1

(
δu1,u2 (pvp (`i ); s,0,0)

δ(pvp (`i ); s,0,0)
− δu1 (pvp (`i ); s,0,0)δu2 (pvp (`i ); s,0,0)

δ(pvp (`i ); s,0,0)2

)

and each individual term is even by a direct computation and (3.86) (using of course (3.81)

and (3.82)).

Proposition 3.15. The function Fi (s,`1,`2; q) is even for i = 0,1,2.

Proof. We do not mention the arguments of the functions and write Aui instead of ∂ui=0 A.

Since Au1 = Au2 , we have

F0 = 4γ2 AB , F1 = 2γ(Au1 + Au2 )B + A(Bu1 +Bu2 ),

F2 = Au1u2 B + (Bu1 +Bu2 )Aui + ABu1u2 ,

and the conclusion follows directly from Lemma 3.14.

Corollary 3.16. The off-diagonal main term (3.72) equals

MTOD (`1,`2; q) =
2∑

i=0
Ress=0

{
Fi (s,`1,`2; q)

s

}
. (3.87)
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A note on odd characters

In this chapter, we concentrated exclusively on even characters. The contribution of the odd

characters carries through in the same way with slight changes that we mention now. First of

all, the function G(s) defined in (3.7) becomes

G(s) =π−2s Γ
(3/2+s

2

)4

Γ(3/4)4 Q(s),

so we need to remove the original G(s) in the diagonal main term (3.10). The estimations of

the error terms as did in Sections 3.2.1 and 3.3 carry through as before. The most significant

change appears in the treatment of the off-diagonal main term. Here, the last gamma factor

coming from the dual terms (c.f (3.62)) is subtracted in the definition of H instead to be added.

Fortunately, the parity of the functionF(s,`1,`2; q) is preserved trough a similar identity (apply

[58, Lemma 8.4] with a = 1/2− s +u1 and b = 1/2− s +u2)

H(s,u1,u2) =π1/2
Γ

(
2s−u1−u2

2

)
Γ

(
1−2s+u1+u2

2

) Γ
(

3
2−s+u1

2

)
Γ

(
3
2−s+u2

2

)
Γ

(
3
2+s−u1

2

)
Γ

(
3
2+s−u2

2

) . (3.88)
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4 The Mollified Fourth Moment

In this chapter, we explain how to use Theorem 3 to prove Theorem 5, i.e. to establish an

asymptotic formula for a mollified fourth moment of the form

M 4(q) := 1

φ∗(q)

∑
χ∈D(q)

|L(χ, 1
2 )M(χ)|4, (4.1)

where M(χ) is our mollifier which is expressed as a short linear form

M(χ) := ∑
`>1

x(`)χ(`)

`1/2
, (4.2)

and the coefficients x(`) are given by

x(`) :=µ(`)δ`6LP

(
log

(L
`

)
logL

)
, (4.3)

for some suitable polynomial P ∈ R[X ] that satisfies P (0) = 0 and P (1) = 1. The parameter

L will be a small power of q (L = qλ with λ > 0) and µ is the Möbius function. Now for

P (X ) =∑
k>1 ak X k ∈ R[X ], we define

P̂L(s) := ∑
k>1

ak
k !

(s logL)k
. (4.4)

Then we have the following integral representation which can be easily deduced using contour

shift.

Lemma 4.1. For L > 0 not an integer and ` ∈ N, we have

δ`6LP

(
log

(L
`

)
logL

)
= 1

2πi

∫
(2)

Ls

`s P̂L(s)
d s

s
.
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Chapter 4. The Mollified Fourth Moment

4.1 Reduction to the twisted fourth moment

Opening the fourth power in (4.1), we obtain

M 4(q) = ∑∑
a,b,c,d

x(a)x(b)x(c)x(d)

(abcd)1/2
T 4(ab,cd ; q),

where T 4 is the twisted fourth moment defined in (0.8). To ensure the coprimality condition

between ab and cd , we use the definition of the coefficients x and then use the integral

representation provided by Lemma 4.1

M 4(q) = 1

(2πi )4

∫
(2)

∫
(2)

∫
(2)

∫
(2)

4∏
i=1

Lzi P̂L(zi )

×∑∑
a,b,c,d

µ(a)µ(b)µ(c)µ(d)

a1/2+z1 b1/2+z2 c1/2+z3 d 1/2+z4
T 4(ab,cd ; q)

d z1d z2d z3d z4

z1z2z3z4
.

(4.5)

For the sum in the second line, we group the variables ab = `1, cd = `2 and then set d = (`1,`2),

obtaining

∑∑∑
d>1 (`1,`2)=1

(d`1`2,q)=1

µ2,z1−z2 (d`1)µ2,z3−z4 (d`2)

d 1+z1+z3`
1/2+z1
1 `

1/2+z3
2

T 4(`1,`2; q), (4.6)

where for any complex number ν ∈C, µ2,ν is the inverse of the generalized divisor function

σν(n) =∑
d |n dν for the Dirichlet convolution, namely

µ2,ν(n) = ∑
ab=n

µ(a)µ(b)bν. (4.7)

In particular this is a multiplicative function supported on cubefree integers and whose values

on prime powers are given by

µ2,ν(p) =−1−pν , µ2,ν(p2) = pν µ2,ν(p j ) = 0 , ∀ j > 3. (4.8)

Inserting (4.6) in (4.5), we see (by shifting the zi -line to ℜe(zi ) =C > 1) that we can assume

that `i 6 L2+ε for an error cost of O(q−100) because L is a positive power of q . We are now in

position to apply Theorem 3 to T 4(`1,`2; q). Once we applied the Theorem, we can again

remove the condition `i 6 L2+ε for the same cost and sum over all `i . The decomposition into

a diagonal, off-diagonal and error term leads to the following decomposition

M 4(q) =M 4
D (q)+M 4

OD (q)+E (L, q), (4.9)
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4.2. Evaluation of M 4
D (q)

where

M 4
D (q) := 1

(2πi )4

∫
(2)

∫
(2)

∫
(2)

∫
(2)

4∏
i=1

Lzi P̂L(zi )
∑∑∑

d>1 (`1,`2)=1
(d`1`2,q)=1

µ2,z1−z2 (d`1)µ2,z3−z4 (d`2)

d 1+z1+z3`
1/2+z1
1 `

1/2+z3
2

× 1

2

(
T 4

D (`1,`2; q)+T 4,−
D (`1,`2; q)

) d z1d z2d z3d z4

z1z2z3z4
,

(4.10)

M 4
OD (q) := 1

(2πi )4

∫
(2)

∫
(2)

∫
(2)

∫
(2)

4∏
i=1

Lzi P̂L(zi )
∑∑∑

d>1 (`1,`2)=1
(d`1`2,q)=1

µ2,z1−z2 (d`1)µ2,z3−z4 (d`2)

d 1+z1+z3`
1/2+z1
1 `

1/2+z3
2

× 1

2

(
MTOD (`1,`2; q)+MT−

OD (`1,`2; q)
) d z1d z2d z3d z4

z1z2z3z4
,

(4.11)

E (L, q) := 1

(2πi )4

∫
(2)

∫
(2)

∫
(2)

∫
(2)

4∏
i=1

Lzi P̂L(zi )
∑∑∑

d>1 (`1,`2)=1
(d`1`2,q)=1

µ2,z1−z2 (d`1)µ2,z3−z4 (d`2)

d 1+z1+z3`
1/2+z1
1 `

1/2+z3
2

×O

(
qε

(`1`2)3/2L10

qη

)
d z1d z2d z3d z4

z1z2z3z4
,

(4.12)

where T 4
D (`1,`2; q), MTOD (`1,`2, q) are respectively given by (3.10), (3.87) and T 4,−

D ,MT−
OD

are the contribution of the odd characters (see the end of Section 3.5.3 for the necessary

changes). We can immediately evaluate the error term E(L, q). For this, we move the zi -lines

to ℜe(zi ) = 2+ε, making all summations absolutely convergent, obtaining therefore

E (L, q) =O

(
qε

L18

qη

)
, (4.13)

which is non-trivial as long as

λ< η

18
= 1−6θ

18 ·14
= 11

8064
≈ 1

733
. (4.14)

4.2 Evaluation of M 4
D(q)

We focus on TD (`1,`2; q) since the other term gives the same result. Indeed, the change is on

the function G(s) but we will see that the terms which contribute in the asymptotic formula

only involve G(0), which is equal to 1 in any case. We now recall that TD (`1,`2; q) is given by

the following residue (up to some error term, see Proposition 3.2)

2Ress=0

{
G(s)q2s

16s5ζ(2+4s)
F (`1`2; s)H(s)

}
,
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Chapter 4. The Mollified Fourth Moment

where we factorize ζ(1+2s) = (2s)−1H(s) with H(0) = 1. Since it is a pole of order five, this

residue can be expressed as a linear combination in which the sum of the order of derivation of

each function (except s−5) is four, but it turns out that only the terms where G(s)H (s)ζ(2+4s)−1

are not differentiated that contribute in our asymptotic formula; the contribution of the others

are at most Oλ(log−1 q). Hence we infer

M 4
D (q) = 1

8ζ(2)

∑
i+ j=4

(i ! j !)−1(2log q) j M 4
D (i )+Oλ

(
1

log q

)
, (4.15)

where

M 4
D (i ) := 1

(2πi )4

∫
(2)

∫
(2)

∫
(2)

∫
(2)

4∏
k=1

Lzk P̂L(zk )∂i
s=0L(s, z1, z2, z3, z4)

d z1d z2d z3d z4

z1z2z3z4
, (4.16)

and L(s, z1, ..., z4) is the Dirichlet series defined by (recall the definition of F (`1`2; s) given in

Proposition 3.2)

L(s, z1, z2, z3, z4) := ∑∑∑
d>1 (`1,`2)=1

µ2,z1−z2 (d`1)µ2,z3−z4 (d`2) f (`1;1+2s) f (`2;1+2s)

d 1+z1+z3`
1+z1+s
1 `

1+z3+s
2

. (4.17)

Writing L(s, z1, z2, z3, z4) as an Euler product using (4.8) and (3.9) and examining the polar

parts leads to (see also [6, Lemma 2.24 & Corollary 2.25])

Lemma 4.2. The Dirichlet series L(s, z1, z2, z3, z4) factorizes as

L(s, z1, z2, z3, z4) =P(s, z1, z2, z3, z4)
2∏

i=1

(
ζ(1+ z1 + zi+2)ζ(1+ z2 + zi+2)

ζ2(1+ zi + s)ζ2(1+ zi+2 + s)

)
, (4.18)

where P(s, z1, z2, z3, z4) is an explicit Euler product which is absolutely convergent in the region

ℜe(s),ℜe(zi )>−κ for some κ> 0.

It will also be convenient to isolate the polar parts of the various zeta functions appearing in

Lemma 4.2. Namely, we write

L(s, z1, z2, z3, z4) = (z1 + s)2(z2 + s)2(z3 + s)2(z4 + s)2

(z1 + z3)(z1 + z4)(z2 + z3)(z2 + z4)
F (s, z1, z2, z3, z4), (4.19)

where this time F (s, z1, z2, z3, z4) is a holomorphic function which does not vanish in a domain

that we describe now. From the Prime Number Theorem, we know that there exists an absolute

constant c > 0 such that the Riemann zeta function does not vanish in

Ω=
{

s ∈C | ℜe(s)> 1− c

log(2+|ℑm(s)|)
}

.

The function F is therefore holomorphic in the domain

{ℜe(s),ℜe(zi )>−κ}∩ {1+ zi + s ∈Ω , i = 1, ...,4}.
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D (q)

We insert now the factorization (4.19) in (4.16) and apply the operator ∂i
s=0. In this linear

combination, we again retain only the terms where F still not differentiated since the others

will also not contribute in the the formula of Theorem 5. This is of course not obvious right

now, but it is enough to convince yourself to apply exactly the same calculations that follow

from now on, but with js + j1 + ...+ j4 < 4 and with at least one derivative of F at s = 0 in

expressions (4.20), (4.21) below. It follows that (4.15) can be written in the form

M 4
D (q) = 1

8ζ(2)

∑∑∑∑
js+ j1+ j2+ j3+ j4=4
06 jk62 , k=1,...,4

(2log q) js C js , j1,..., j4M
4

D ( j1, ..., j4;F )+Oλ

(
1

log q

)
, (4.20)

where

C js , j1,..., j4 :=α( j1, ..., j4)C js , j1,..., j4 ,

C js , j1,..., j4 := 1

js ! j1! j2! j3! j4!
,

α( j1, ..., j4) :=
4∏

i=1
α( ji ) , α(0) = 1 α(1) =α(2) = 2,

and

M 4
D ( j1, ..., j4;F ) := 1

(2πi )4

∫
(∗)

∫
(∗)

∫
(∗)

∫
(∗)

4∏
i=1

Lzi P̂L(zi )F (0, z1, z2, z3, z4)

× z2− j1

1 z2− j2

2 z2− j3

3 z2− j4

4

(z1 + z3)(z1 + z4)(z2 + z3)(z2 + z4)

d z4d z3d z2d z1

z4z3z2z1
.

(4.21)

By (∗) under the integrals, we mean that 1+ zi ∈Ωwith ℜe(zi ) > 0 and furthermore, we want

that the real parts sufficiently small so that all future manipulations are justified, for example

1+ z1 + ...+ z4 also belongs toΩ.

4.2.1 Shifting the zi -contours

We focus now on the calculation of M 4
D ( j1, ..., j4;F ) for a fixed multi-index ( j1, ..., j4) such

that j1 + ...+ j4 6 4. We also choose the polynomial in 1 in (4.3) to be P (X ) = X 2. Using the

1Of course we could take a general polynomial P (X ) =∑
k>1 ak X k and try to minimize the coefficients at the

end. In [6, Prop 6.5], the authors found P (X ) = X for the mollification of the second moment of twisted L-functions
L( f ⊗χ), where f is a cuspidal Hecke eigenform. This polynomial does not work in the case where f = E is the
Eisenstein series mentioned in Section 0.2 because of the pole of the zeta function. The choice P (X ) = X 2 appears
to be the simplest adaptation to our treatment
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Chapter 4. The Mollified Fourth Moment

Definition (4.4) of P̂L and we get

M 4
D ( j1, ..., j4;F ) = 16

(logL)8(2πi )4

∫
(∗)

∫
(∗)

∫
(∗)

∫
(∗)

Lz1+z2+z3+z4F (0, z1, ..., z4)

(z1 + z3)(z1 + z4)(z2 + z3)(z2 + z4)

× d z4d z3d z3d z1

z1+ j4

4 z1+ j3

3 z1+ j2

2 z1+ j1

1

. (4.22)

We start by shifting the z4-contour left to zero such that ℜe(z1 + z2 + z3 + z4) < 0, passing three

poles : one of order 1+ j4 at z4 = 0 and two of order one at z4 = −z1 and z4 = −z2. Since

ℜe(z1 + z2 + z3 + z4) < 0, the resulting integral is at most O(log−8 L). We will analyze separately

the three poles and find out that each of them contributes.

The pole at z4 =−z1

Since it is a simple pole, the residue at z4 =−z1 is given by

16(−1)1+ j4

(logL)8(2πi )3

∫
(∗)

∫
(∗)

∫
(∗)

Lz2+z3F (0, z1, z2, z3,−z1)

(z1 + z3)(z2 + z3)(z2 − z1)

d z3d z2d z1

z1+ j3

3 z1+ j2

2 z2+ j1+ j4

1

. (4.23)

In this integral, we move the z3-line such that ℜe(z2 + z3) < 0, passing a pole of order 1+
j3 at z3 = 0 and one of order one at z3 = −z2. We immediately see that the one at z3 =
−z2 contributes at most O(log−8 L). The residue at z3 = 0 is given by the following linear

combination (again we do not take in account the z3-derivatives of F

16(−1)1+ j4
∑∑

k+`+n= j3

β(k,`,n)
(logL)k−8

(2πi )2

∫
(∗)

∫
(∗)

Lz2F (0, z1, z2,0,−z1)

(z2 − z1)z3+`+ j1+ j4

1 z2+n+ j2

2

d z2d z1,

where for any (a,b,c) ∈N3, we defined

β(a,b,c) := (−1)b+c

a!
. (4.24)

We fix k +n +`= j3 and we move the z2-line to ℜe(z2) < 0, passing two poles : one at z2 = z1

of order 1 and the other at z2 = 0 of order 2+n + j2. The last one is easily see to be bounded

by O((logL)1+k+n+ j2−8) = O((logL)1+ j2+ j3−`−8) and thus, will contribute at the end at most

O(log−3 q) (recall that L = qλ). The residue at z2 = z1 equals

16(−1)1+ j4
∑∑

k+`+n= j3

β(k,`,n)
(logL)k−8

2πi

∫
(∗)

Lz1F (0, z1, z1,0,−z1)

z5+ j1+ j2+ j4+`+n
1

d z1.

Finally shifting to ℜe(z1) < 0 and we obtain that the above sum is

16F (0,0,0,0,0)γ( j1, j2, j3, j4)(logL) j1+ j2+ j3+ j4−4 +O
(
(logL) j1+ j2+ j3+ j4−5

)
, (4.25)
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4.2. Evaluation of M 4
D (q)

with

γ( j1, j2, j3, j4) := (−1)1+ j4
∑∑

k+`+n= j3

β(k,`,n)

(4+ j1 + j2 + j4 +`+n)!
. (4.26)

The pole at z4 =−z2

It is not difficult to see that in fact, the pole at z4 = −z2 has the same main term as in the

previous case. In fact, applying the changes z1 ↔ z2 and we see that this residue is given by

(4.23), but with the first two variables switched in F . This is not a real problem since the main

term only involves F (0,0,0,0,0).

The pole at z4 = 0

We return to Expression (4.22). The residue at z4 = 0 is given by the linear combination (we do

not mention the derivatives of F )

16
∑∑

k+`+n= j4

β(k,`,n)(logL)k−8A( j1, ..., j4,k,`,n),

where β(k,`,n) is defined by (4.24) and

A( j1, ..., j4,k,`,n) := 1

(2πi )3

∫
(∗)

∫
(∗)

∫
(∗)

Lz1+z2+z3F (0, z1, z2, z3,0)d z3d z2d z1

(z1 + z3)(z2 + z3)z1+ j3

3 z2+ j2+n
2 z2+ j1+`

1

.

We now move the z3-line such that ℜe(z3) <−ℜe(z1+z2), passing three poles : one at z3 = 0 of

order 1+ j3, one at z3 =−z1 of order 1 and the last at z3 =−z2, that is also simple. We thus get

the decomposition

A( j1, ..., j4,k,`,n) =
2∑

i=0
Ri ( j1, ..., j4,k,`,n)+O(1).

It is the routine now to see that

R0 =
∑∑

a+b+c= j3

β(a,b,c)
(logL)a

(2πi )2

∫
(∗)

∫
(∗)

Lz1+z2F (0, z1, z2,0,0)

z3+ j1+`+b
1 z3+ j2+n+c

2

d z2d z1.

Now moving the z2-line to ℜe(z2) < −ℜe(z1) and then the z1-contour to ℜe(z1) < 0 and we

obtain that

R0 =
∑∑

a+b+c= j3

β(a,b,c)
F (0,0,0,0,0)(logL)4+ j1+ j2+ j3+`+n

(2+ j2 +n + c)!(2+ j1 +`+b)!

+O
(
(logL)3+ j1+ j2+ j3+`+n

)
.

(4.27)
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For R1, we just obsere that

R1 = (−1)1+ j3

(2πi )2

∫
(∗)

∫
(∗)

Lz2F (0, z1, z2,−z1,0)

(z2 − z1)z3+ j1+ j3+`
1 z2+ j2+n

2

d z2d z1,

and we can proceed as in the previous case (the pole at z4 =−z1), obtaining

R1 = (−1)1+ j3F (0,0,0,0,0)(logL)4+ j1+ j2+ j3+`+n

(4+ j1 + j2 + j3 +`+n)!

+ O
(
(logL)3+ j1+ j2+ j3+`+n

)
.

(4.28)

Finally, we see that R2 =R1.

Assembling the main terms

We define

η( j1, j2, j3, j4) := ∑∑∑
k+`+n= j4
a+b+c= j3

β(k,`,n)β(a,b,c)

(2+ j2 +n + c)!(2+ j1 +`+b)!
, (4.29)

and

S( j1, j2, j3, j4) := 2γ( j1, ..., j4)+2γ( j1, j2, j4, j3)+η( j1, ..., j4). (4.30)

Then we obtain

Proposition 4.3. The quantity defined by (4.21) equals

M 4
D (i1, ..., j4;F ) = 16

F (0, ...,0)S( j1, ..., j4)

(logL)4−( j1+... j4)
+O

(
1

(logL)5−( j1+...+ j4)

)
,

where S( j1, ..., j4) is defined by (4.30).

In order to finalize our computation, we have

Lemma 4.4. The value of F (s, z1, ..., z4) at (0, ...,0) is ζ(2).

Proof. Examining (4.18) and (4.19) and we see that

F (0,0,0,0,0) =P(0,0,0,0,0).

To prove the result, it is enough to show that for each prime p, we have

Pp (0, ...,0) =
(
1− 1

p2

)−1

.
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By (4.18), the local factor at p of P(s, z1, ..., z4) is given by the local factor of L(s, z1, ..., z4)

divided by the one of the righthand side involving the zeta functions. Since we evaluate at

(0, ...,0), we obtain

Pp (0, ...,0) =Lp (0, ...,0)

(
1− 1

p

)−4

.

Thus, it is enough to show that

Lp (0, ...,0)

(
1− 1

p2

)
=

(
1− 1

p

)4

.

Writing µ2 for µ2,0, we have

Lp (0, ...,0) = ∑∑
06d+`i62
`1`2=0

µ2(pd+`1 )µ2(pd+`2 ) f (p`1 ;1) f (p`2 ;1)

pd+`1+`2

= 2
∑∑

06d+`62

µ2(p`+d )µ2(pd ) f (p`;1)

pd+` − ∑
06d62

µ2(pd )2

pd
.

Using (3.9) and (4.8) (with ν= 0), we obtain that this expression is

1+ 4

p
− 8

p +1
− 8

p(p +1)
+ 1

p2 + 2

p

(
3−p−1

1+p

)
.

Finally, multiplying by (1−p−2) = p−2(p2 −1) leads to the desired factor (1−p−1)4.

We now replace F (0, ...,0) by ζ(2) in Proposition 4.3 and then insert the value of M4
D ( j1, ..., j4)

in (4.20). Writing log q =λ−1 logL, we get

Proposition 4.5. We have the following asymptotic formula for the diagonal main term ap-

pearing in decomposition (4.9)

M 4
D (q) = 2

∑∑∑∑
js+ j1+...+ j4=4

06 jk62, k=1,...,4

(
2

λ

) js

C js , j1,..., j4S( j1, ..., j4)+Oλ

(
1

log q

)
. (4.31)

4.3 Evaluation of M 4
OD(q)

We proceed in a completely analogous way as in the previous section. First of all, we also

restrict the computation to MTOD (`1,`2, q) since the dual term gives the same result. We will

begin by evaluating the residue (3.87) up to some terms that will not contribute. After that, we

will return to (4.11) and find an appropriate expression for a certain Dirichlet series in order to

localize the various poles. Finally, we will see that the resulting expression matches perfectly

with (4.21) whose value has already been established in Proposition 4.3.
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4.3.1 Computation of the residue of F(s,`1,`2; q) at s = 0

We recall that

MTOD (`1,`2, q) =
2∑

i=0
Ress=0

{
Fi (s,`1,`2; q)

s

}
.

A very pleasant fact is that Ress=0Fi will not contribute in the final asymptotic formula unless

i = 2; the two others will be at most Oλ(log−1 q). The heuristic reason is the following : in

Section 4.3.2, we will express our main term as the zi -integral in which a certain differential

operator (see (4.38)) depending on s,u1,u2 and log q acts on a function. If we look at this

operator, we remark that for each term, the sum of the order of differentiation plus the power

of log q is 4. If we take in count the residue of Fi with i 6 1, then we just add some lower ’order’

terms to (4.38). We therefore focus on i = 2. By Proposition 3.15 and Lemma 3.14, we see that

each part of F2 is even, so we can take the residue at s = 0 for each of them separately. We first

isolate the polar part in the function A around s = 0 by writing

A(s,u1,u2; q) = qu1+u2A (s,u1,u2)

(2s +u1 +u2)(2s −u1 −u2)
, (4.32)

where A (s,u1,u2) is entire and does not vanish in a neighborhood of ℜe(s) =ℜe(ui ) = 0. We

now easily get

∂u1=0 A = A (s,0,0)

4s2

(
log q + Au1 (s,0,0)

A (s,0,0)

)
,

and

∂2
u1u2=0 A = A (s,0,0)

4s2

{(
log q + Au1 (s,0,0)

A (s,0,0)

)(
log q + Au2 (s,0,0)

A (s,0,0)

)
+ 1

2s2 +∂u2=0

(
Au1 (s,u1,0)

A (s,u1,0)

)}
.

Writing

B0(s;`1,`2) := B(s,0,0;`1,`2),

B1(s;`1,`2) := (∂u1=0 +∂u2=0)B(s,u1,u2;`1,`2),

B2(s;`1,`2) := ∂2
u1u2=0B(s,u1,u2;`1,`2),

(4.33)

we infer that the contribution of F2(s,`1,`2; q) to our final asymptotic formula comes from the

residue at s = 0 of the following quantity (in fact we drop out all factors where we derive A )

A (s,0,0)

4s3

{
B0(s;`1,`2)

(
1

2s2 + log2 q

)
+B1(s;`1,`2) log q +B2(s;`1,`2)

}
, (4.34)

which is

A (0,0,0)

8

(
1

4!
∂4

s=0B0(s;`1,`2)+ log2(q)∂2
s=0B0(s;`1,`2)

+ log(q)∂2
s=0B1(s;`1,`2)+∂2

s=0B2(s;`1,`2)
)
+E(`1,`2; q),

(4.35)
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where the error term E(`1,`2; q) is such that when we average it over the `i ,d in (4.11), we

obtain O((log q)−1) (here E(`1,`2; q) contains all term where A is derived at least one time).

By construction, we have A (0,0,0) = 2ζ(0)ζ(2)−1 = −ζ(2)−1 (see (3.83), (3.85), (4.32)) and

thus, taking into account the error coming from Fi , i 6 1, we can summarize all previous

computation in

Proposition 4.6. Let MTOD (`1,`2; q) defined by (3.87). Then we have the formula

MTOD (`1,`2; q) = c(`1,`2; q)+E(`1,`2; q),

where c(`1,`2; q) is given by (4.35) with A (0,0,0) =−ζ(2)−1 and the error term E(`1,`2; q) is

such that when we average it over `i in (4.11), we get Oλ((log q)−1).

4.3.2 Averaging over `i

We come back to (4.11) and insert the quantity MTOD given by (4.35). We can remove the

primality condition (k`1`2, q) = 1 for an acceptable error term and we obtain our off-diagonal

main term

M 4
OD (q) = −1

8ζ(2)(2πi )4

∫
(2)

∫
(2)

∫
(2)

∫
(2)

4∏
i=1

Lzi P̂L(zi )D4
q ·{L(s,u1,u2, z1, ..., z4)

}
× d z4d z3d z2d z1

z4z3z2z1
,

(4.36)

whereL(s,u1,u2, z1, ..., z4) is the Dirichlet series defined by (recall Definitions (4.33) and (3.83))

L(s,u1,u2, z1, ..., z4)

:= ∑∑∑
k>1 (`1,`2)=1

µ2,z1−z2 (k`1)µ2,z3−z4 (k`2)δ(`1; s,u1,u2)δ(`2; s,u2,u1)

k1+z1+z3`
1+z1
1 `

1+z3
2

,
(4.37)

and D4
q is an order four differential operator given by

D4
q :=

(
1

4!
∂4

s + log2(q)∂2
s + log(q)∂2

s (∂u1 +∂u2 )+∂2
s∂

2
u1u2

)∣∣∣∣
s=ui=0

. (4.38)

It is very important now to have an adequate expression for (4.37) in a way to locate the poles

and their orders for future contour shift in the zi -integrals. The classical method, as in Section

4.2, is to compute for each prime p the local factor Lp at p. This is a quite tedious calculation,

but is not difficult since all arithmetic functions are cubefree and we already computed their

values on prime powers (see (4.8), (3.81) and (3.82)). We do not want to figure out all details,

but by close examination of the polar part in the local factor, we can conclude that L admits
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the following factorization

L=P(s,u1,u2, z1, ..., z4)
2∏

i=1

(
ζ(1+ zi + z3)ζ(1+ zi + z4)

ζ(1+ s + zi +u2)ζ(1− s + zi +u1)

)

×
4∏

i=3

(
1

ζ(1+ s + zi +u1)ζ(1− s + zi +u2)

)
,

(4.39)

where P is an Euler product absolutely convergent in a "good" neighborhood of the domain

of holomorphy of the above product. Furthermore, if we factorize now the poles of the zeta

functions, then we can rewrite (4.39) as

L=F (s,u1,u2, z1, ..., z4)Q(s,u1,u2, z1, ..., z4), (4.40)

where F is an entire function in a neighborhood of (0, ...,0) which does not vanish and

Q ∈ C(s,u1,u2, z1, ..., z4) is the rational function defined by

Q(s,u1,u2, z1, ..., z4) := (z1 + s +u2)(z1 − s +u1)(z2 + s +u2)(z2 − s +u1)

× (z3 + s +u1)(z3 − s +u2)(z4 + s +u1)(z4 − s +u2)

(z1 + z3)(z1 + z4)(z2 + z3)(z2 + z4)
.

(4.41)

Using our classical argument concerning the derivatives of F and we obtain

M 4
OD (q) = −1

8ζ(2)(2πi )4

∫
(2)

∫
(2)

∫
(2)

∫
(2)

4∏
i=1

Lzi P̂L(zi )F (0,0,0, z1, ..., z4)

×D4
q ·{Q(s,u1,u2, z1, ..., z4)

} d z4d z3d z2d z1

z4z3z2z1
+Oλ

(
1

log q

)
=:

4∑
i=1

M 4
OD (i ; q)+Oλ

(
1

log q

)
,

where this decomposition takes care of the separation of the operator D4
q in (4.38). We will

compute each term separately.

4.3.3 Computation of M 4
OD (i ; q)

We compute in this last section M 4
OD (i ; q) for i = 1, ...,4. Fortunately, we will see that these

main terms can be expressed as the same integral as (4.22), which has already been computed.

We start with i = 1; first of all, we have

1

4!
∂4

s=0(Num(Q(s,0,0, z1, ..., z4))) = ∑∑∑∑
i1+ j1+...+i4+ j4=4

06ik , jk61

Bi1, j1,...,i4, j4

4∏
k=1

z2−ik− jk

k ,
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where

Bi1, j1,...,i4, j4 =
(−1) j1+...+ j4

i1! j1! · · · i4! j4!
. (4.42)

Hence, writing explicitly P̂L(zi ) and we obtain

M 4
OD (1; q) = −2

ζ(2)

∑∑∑∑
i1+ j1+...+i4+ j4=4

06ik , jk61

Bi1, j1,...,i4, j4M (i1 + j1, ..., i4 + j4;F ), (4.43)

where for any (a,b,c,d) ∈N4, we define

M (a,b,c,d ;F ) := (logL)−8

(2πi )4

∫
(∗)

∫
(∗)

∫
(∗)

∫
(∗)

Lz1+z2+z3+z4F (0,0,0, z1, ..., z4)

(z1 + z3)(z1 + z4)(z2 + z3)(z2 + z4)

× d z4d z3d z2d z1

z1+a
1 z1+b

2 z1+c
3 z1+d

4

.

We remark that this integral is exactly the expression M 4
D ( j1, ..., j4;F ) in (4.22) (modulo the

factor 16), then its value is given by (see Proposition 4.3)

M (i1 + j1, ..., i4 + j4;F ) =F (0, ...,0)S(i1 + j1, i2 + j2, i3 + j3, i4 + j4)

× (logL)−4+∑4
k=1 ik+ jk +O

(
(logL)−5+∑4

k=1 ik+ jk

)
,

(4.44)

where S is given by (4.30).

Let M 4
OD (2; q) denotes the contribution of log2(q)∂2

s=0, then we get

M 4
OD (2; q) = −4

ζ(2)
log2(q)

∑∑∑∑
i1+ j1+...+i4+ j4=2

06ik , jk61

Bi1, j1,...,i4, j4M (i1 + j1, ..., i4 + j4;F ). (4.45)

We now compute the part with log(q)∂2
s (∂u1 +∂u2 )|s=ui=0. We remark that the action of (∂u1 +

∂u2 )|ui=0 consists of a sum of eight terms in which one of the eight factors is missing. We have

therefore

M 4
OD (3; q) = −4

ζ(2)
log(q)

4∑
`=1

∑∑∑∑
i1+ j1+...i4+ j4=2

06ik , jk61
i` j`=0

Bi1,..., j4M
(`)(i1 + j1, ..., i4 + j4;F ), (4.46)

where M (`) means that we add 1 at the `th component.

Finally, we can focus on the action of ∂2
s∂

2
u1u2

|s=ui=0. We see first that ∂2
ui=0(NUM(Q)) consists

of a sum of sixteen terms where there are two missing factors (one indexed by in and the other
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by i`). It follows that

M 4
OD (4; q) = −4

ζ(2)

4∑
n,`=1

∑∑∑∑
i1+ j1+...i4+ j4=2

06ik , jk61
in= j`=0

Bi1,..., j4M
(n,`)(i1 + j1, ..., i4 + j4;F ), (4.47)

where this time, M(n,`) means that we add 1 to in and 1 to j`. To finalize the calculations, we

have

Lemma 4.7. The value of F (0, ...,0) is given by the infinite product

F (0, ...,0) = ζ(2)
∏
p

(
1+2

1+p−1

p2(1−p−1)3

)
.

Proof. As in Lemma 4.4, we have by examining (4.39) and (4.40),

F (0, ...,0) =P(0, ...,0)

and for each prime p,

Pp (0, ...,0) =Lp (0, ...,0)

(
1− 1

p

)−4

.

By (4.37), we see that

Lp (0, ...,0) = ∑∑
06k+`i62
`1`2=0

µ2(pk+`1 )µ2(pk+`2 )δ(p`1 ;0,0,0)δ(p`2 ;0,0,0)

pk+`1+`2

= 2
∑∑

06k+`62

µ2(pk+`)µ2(pk )δ(p`;0,0,0)

pk+` − ∑
06k62

µ2(pk )2

pk
,

with (see (3.81) and (3.82))

δ(p;0,0,0) = 2

(
1− 1

p

)(
1− 1

p2

)−1

and δ(p2;0,0,0) = 4

(
1− 1

p

)(
1− 1

p2

)−1

.

Hence (recall (4.8))

Lp (0, ...,0) = 1+ 4

p
+ 1

p2 − 8

p

(
1− 1

p

)(
1− 1

p2

)−1

=
{

1− 1

p4 − 4

p
− 4

p3 + 8

p2

}(
1− 1

p2

)−1

=
{(

1− 1

p

)4

+ 2

p2

(
1− 1

p2

)}(
1− 1

p2

)−1

.

Multiplying by the factor (1−p−1)−4 finishes the proof.
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5 Proof of Theorem 6

This chapter is devoted to the proof of Theorem 6. For the cuspidal case, we will indicate the

necessary changes in [24, Sections 4,5,6] due to the level q and the presence of a nebentypus.

Finally, we will explain in Section 5.2 how to adapt [?, Section 2] and put together with Section

5.1 to obtain the conclusion of Theorem 6 in the Eisenstein case.

5.1 The cuspidal case

Let q > 2 be a prime number, ω a Dirichlet character of modulus q and κ ∈ {0,1} such that

ω(−1) = (−1)κ. Let f be a L2-normalized primitive Hecke cusp form of weight k f ≡ κ (mod 2)

(resp. with Laplace eigenvalue 1/4+ t 2
f ) if f is holomorphic (resp. if f is a Maass form) of level

q and nebentypus ω. For some technical reasons, it is convenient to view f as a modular form

of level 2q (see the beginning of § 1.2.1) under the isometric embedding (with respect to the

Petersson inner product)

f (z) 7→ f (z)

[Γ0(q) : Γ0(2q)]1/2
= f (z)p

3
,

which can be embedded in a suitable orthonormal basis of modular cusp forms of level 2q , i.e.

either Bk f (2q,ω) or B(2q,ω).

5.1.1 The amplification method

The strategy is to estimate an amplified second moment of the sum SV (g ,K ; q) where g runs

over a basis of Bk f (2q,ω) and B(2q,ω).

To be precise, let L> 1 and (b`) a sequence of coefficients supported on 16 `6 2L. For any

modular form g , we let

B(g ) := ∑
16`62L

b`λg (`).

83



Chapter 5. Proof of Theorem 6

For an Eisenstein series Ea(·,1/2+ i t ), we set

B(a, i t ) := ∑
16`62L

b`λa(`, i t ),

where for any singular cusp a, λa(`, i t ) is given by (1.5). Since the original form is of level q and

L will be at the end a small power of q , we cannot choose the standard coefficients b` =λ f (`)

for ` a prime p ∼ L, but rather the less obvious amplifier found by Iwaniec in [?],

b` =



λ f (p)ω(p) if `= p ∼ L1/2 and (p,2q) = 1,

−ω(p) if `= p2 ∼ L and (p,2q) = 1,

0 else.

(5.1)

Since we will apply the trace formula, it is also better to consider the Fourier coefficients ρg (n)

instead of the Hecke eigenvalues λg (n) in the definition of SV (g ,k; q). For this, we define

S̃V (g ,K ; q) =∑
n
ρg (n)K (n)V

(
n

q

)
and note that for g primitive, it is related to the original sum SV (g ,K ; q) by the simple relation

(c.f. (1.7)),

S̃V (g ,K ; q) = ρg (1)SV (g ,K ; q). (5.2)

We then let

M(L) := ∑
k≡κ (mod 2)

k>κ

φ̇(k)(k −1)M(L;k)

+ ∑
g∈B(2q,ω)

φ̃(tg )
4π

cosh(πtg )
|B(g )|2 ∣∣S̃V (g ,K ; q)

∣∣2

+ ∑
a

∫ ∞

−∞
φ̃(t )

1

cosh(πt )
|B(a, i t )|2 ∣∣S̃V (Ea(·,1/2+ i t ),K ; q)

∣∣2
d t ,

(5.3)

where for any k ≡ κ (mod 2) with k > κ,

M(L;k) := (k −2)!

π(4π)k−1

∑
g∈Bk (2q,ω)

|B(g )|2 ∣∣S̃V (g ,K ; q)
∣∣2

, (5.4)

and we refer to [24, Section 3.2] or [8, (2.9)] for the choice and properties of the test function

φ=φa,b . The key Proposition is the following [24, Proposition 4.1].

Proposition 5.1. Let K : Fq → C and V as in Theorem 6. Let (b`) be the sequence of complex

numbers defined by (5.1). Then for any ε > 0, there exists k(ε) > κ such that for any k > k(ε)
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and any integers a > b > 2 satisfying

a −b> k(ε), a −b ≡ κ (mod 2),

we have the bound

M(L), M(L;k) ¿ cond(K )s {
q1+εL1/2P (P +Q)+q1/2L2PQ2(P +Q)

}
, (5.5)

for some absolute constant s> 1, provided

qεLQ < q1/4 (5.6)

and where the implied constant depends on C ,ε, a,b,k and polynomially on the archimedean

parameter of f .

Theorem 6 can be deduced from Proposition 5.1 exactly in the same way as in [24, Section 4.2].

The only changes is to use (5.2) to pass from |B( f )|2|SV ( f ,K ; q)|2 to |B( f )|2|S̃V ( f ,K ; q)|2 and

then (1.8) for the upper bound on |ρ f (1)|−2. Finally, since for any prime p different from q we

have the elementary relation

λ f (p)2 −λ f (p2) =ω(p),

we obtain the lower bound

B( f ) À L1/2

logL
,

simply using the prime number Theorem. Hence it remains to prove Proposition 5.1.

Expanding the square in |B(g )|2 and |S̃V (g ,K ; q)| (choosing the variables `1,`2 for those

comming from the amplifier), we get a first decomposition of M(L) and M(L;k)

M(L) = Md (L)+Mnd (L) and M(L;k) = Md (L;k)+Mnd (L;k), (5.7)

depending on weither (`1,`2) > 1 (the diagonal term) or not. For the diagonal term, we have

the following lemma which is the analogous of [24, Lemma 5.1].

Lemma 5.2. For any ε> 0, we have

Md (L), Md (L;k) ¿ cond(K )2q1+εL1/2P (P +1),

where the implied constant depends only on ε.

Proof. We consider Md (L) which decomposes as a sum of the holomorphic, Maass and Eisen-

stein contributions

Md (L) = Md ,hol(L)+Md ,Maass(L)+Md ,Eis(L).

We treat only Md ,Maass(L) since the other contributions are the same and even simpler. For
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instance, we have

Md ,Maass(L) = ∑
g∈B(2q,ω)

φ̃(tg )
4π

cosh(πtg )
C (g ,L)

∣∣∣∣∑
n

K (n)ρg (n)V

(
n

q

)∣∣∣∣2

,

with

C (g ,L) := ∑
(`1,`2)>1

b`1 b`2λg (`1)λg (`2).

By definition of the coefficients b` (c.f. (5.1)), the case (`1,`2) > 1 appears when `1 = `2 =
p ∼ L1/2, `1 = p2 = `2

2 ∼ L (or the inverse) and `1 = `2 = p2 ∼ L. We write C (g ,L) =C1(g ,L)+
C2(g ,L)+C3(g ,L) according to the different possibilities and we estimate the three quantities

individually. We first have by Cauchy-Schwarz inequality and (1.16),

C1(g ,L) = ∑
p∼L1/2

p prime

|λ f (p)|2|λg (p)|2

6

 ∑
p∼L1/2

|λ f (p)|4
1/2  ∑

p∼L1/2

|λg (p)|4
1/2

¿ (qL(1+|t f |)(1+ tg ))εL1/2,

where the implied constant only depends on ε. For the second case, we have using |λ(p2)|6
1+|λ(p)|2 (c.f. (1.10)), Hölder and again (1.16),

|C2(g ,L)|6 ∑
p∼L1/2

p prime

|λ f (p)||λg (p)||λg (p2)|6 ∑
p∼L1/2

p prime

|λ f (p)||λg (p)|(1+|λg (p)|2)

6

 ∑
p∼L1/2

|λ f (p)|4
1/4  ∑

p∼L1/2

|λg (p)|4
1/4 ( ∑

p∼L1/2

(1+|λg (p)|2)2

)1/2

¿ (qL(1+|t f |)(1+ tg ))εL1/2.

Using the inequality |λg (p2)|26 2(1+|λg (p)|4), we treat in the same way C3(g ,L). The rest of

the proof is exactly the same as [24, Lemma 5.1], except that we must use Proposition 1.10 for

the spectral large sieve (possible since the conductor of ω is either 1 or a prime q) instead of

the original version of Deshouillers-Iwaniec [?, Theorem 2, (1.29)].

Now comes the contribution of the `1,`2 such that (`1,`2) = 1. We first change the complex

conjugateλg (`2) =ω(`2)λg (`2) in Mnd (L) and Mnd (L;k) appearing in the decomposition (5.7)

(c.f. (1.11)). By the primality condition, we use the multiplicativity of the Hecke eigenvalues

(1.10) followed by the relation (1.6) to obtain

λg (`1`2)ρg (n1) = ∑
d |(`1`2,n1)

ω(d)ρg

(
`1`2n1

d 2

)
.

86



5.1. The cuspidal case

Once we have done this, we apply the Petersson trace formula (1.20) to Mnd (L;k) in (5.7),

obtaining

πMnd (L;k) = M1(L;k)+M2(L;k),

where M1(L;k) corresponds to the diagonal term δ(`1`2n1d−2,n2). Similarily, we apply

Kuznetsov formula (1.21) to Mnd (L) and since there is no diagonal term, we write Mnd (L) =
M2(L). The treatment of the diagonal term M1(L;k) is contained in [24, Lemma 5.3], with the

appropriate changes using (1.15) for the coefficients of the amplifier,

M1(L;k) ¿ cond(K )2(q(1+|t f |))εqL1/2P, (5.8)

with an implied constant depending only on ε.

5.1.2 The off-diagonal terms

This is the most important case of M2(L) and M2(L;k) and thus we write explicitly the quanti-

ties to study. For φ an arbitrary function, we write

M2[φ] = 1

2q

∑
(`1,`2)=1

b`1 b`2ω(`2)
∑

d |`1`2

ω(d)
∑

n1,n2
d |n1

K (n1)K (n2)V

(
n1

q

)
V

(
n2

q

)

× ∑
c>1

c−1Sω(`1`2n1d−2,n2;2cq)φ

 4π

2cq

√
`1`2n1n2

d 2

 ,

(5.9)

in order to have

M2(L) = M2[φa,b] and M2(L;k) = M2[φk ]

where φk = 2πi−k Jk−1 is the Bessel function. We transform the sum as

M2[φ] = ∑
(`1,`2)=1

b`1 b`2ω(`2)
∑

de=`1`2

ω(d)M2[φ;d ,e], (5.10)

where

M2[φ;d ,e] = 1

2q

∑
c>1

c−1Eφ(c,d ,e)

and

Eφ(c,d ,e) = ∑
n1,n2

Sω(en1,n2;2cq)K (dn1)K (n2)φ

(
4π

p
en1n2

2cq

)
V

(
dn1

q

)
V

(
n2

q

)
= ∑

n1,n2

Sω(en1,n2;2cq)K (dn1)K (n2)Hφ(n1,n2),

with

Hφ(x, y) =φ
(

4π
p

ex y

2cq

)
V

(
d x

q

)
V

(
y

q

)
. (5.11)
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As in [24, Section 5.4], we truncate the parameter c in M2[φ;d ,e] by writing M2[φ;d ,e] =
M2,C [φ;d ,e]+M3[φ;d ,e] where M2,C [φ;d ,e] denotes the contribution of ther terms with c >C

for some C =C (d ,e)> 1/2 and correspondingly

M2[φ] = M2,tail[φ]+M3[φ]. (5.12)

It turns out that with the choice

C = max

(
1

2
, qδP

√
e

d

)
¿ qδLP, (5.13)

the contribution of c >C is negligible (see [24, (5.9)]), so we focus on the complementary sum,

which is given by

M3[φ;d ,e] = 1

2q

∑
16c6C

c−1Eφ(c,d ,e). (5.14)

In particular, the above expression is zero if C < 1.

Recall that we factored the product `1`2 as de = `1`2. Since we allow `1 and `2 to be square

of primes, there are more types of factorization to consider. We distinguish three types :

• Type I (balanced case) : this is when both d and e are 6= 1 and d/e ∼ 1, so d and e are

either primes ∼ L1/2 (type (L1/2,L1/2)) or square of primes ∼ L (type (L,L)) with (d ,e) = 1

in each case.

• Type II (unbalanced case) : this is when (d ,e) satisfies e/d À L1/2, i.e. is of type

(1,L), (1,L3/2), (1,L2), (L1/2,L) and (L1/2,L3/2).

• Type III (unbalanced case) : this is when (d ,e) satisfies d/e À L1/2, so is of type

(L,1), (L3/2,1), (L2,1), (L,L1/2) and (L3/2,L1/2).

Assuming the harmless condition

qδP ¿ L1/2, (5.15)

we obtain by (5.13) :

Lemma 5.3. Suppose that (d ,e) is of Type III and that (5.15) is satisfied. Then we have the

equality

M3[φ;d ,e] = 0.

It remains to deal with the types I and II. The goal now is to transform the sums Eφ(c,d ,e)

to connect them with the correlation sums C(K̂ ,ω;γ) of the Fourier transform of K defined

in 2.9 for suitable matrices γ. This is the content of [24, Section 5.5] and it is achieved using
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5.1. The cuspidal case

principally twisted multiplicativity of the Kloosterman sums and Poisson summation formula.

The only difference here is the appearance of the nebentypusωwhen we open the Kloosterman

sum. We also mention that it is in this treatment that we use the fact that the level is 2q and

not q . The result is that for any c > 1, we have the identity

Eφ(c,d ,e) = ω(−d)

q

∑∑
n1n2 6=0, (n2,2c)=1
n1n2≡e(mod 2c)

Ĥφ

(
n1

2cq
,

n2

2cq

)
C(K̂ ,ω;γ), (5.16)

where Ĥφ is the Fourier transform of Hφ and

γ= γ(c,d ,e,n1,n2) :=
(

n1
n1n2−e

2c

2cd dn2

)
∈ M2(Z)∩GL2(Q). (5.17)

Remark 5.4. Observe that det(γ) = de which is coprime with q . Hence the reduction of γ

modulo q provides a well defined element of PGL2(Fq ).

5.1.3 Analysis of Eφ(c,d ,e)

The first step in the analysis of (5.16) passes by the study of the Fourier transform of Hφ(x, y).

This is the content of [24, Sections 5.6-5.7] and it is contained in Lemmas 5.7,5.9. One of the

consequences is that it allows to truncate the n1,n2-sum in Eφ(c,d ,e) to

0 6= |n1|6N1 := qεcd

(
Q + P

2c

√
e
d

)
P

, 0 6= |n2|6N2 := N1

d
, (5.18)

(see [24, (5.21)]). The final strategy is to separate the terms in (5.16) (with the restriction

(5.18) on n1,n2) according to whether the reduction of γ modulo q belongs to GF̂,ω or not (see

Definition 2.11). In the first case, we use the bound (see (2.13) and (2.8))

|C(K̂ ,ω;γ)|6 cond(K̂ )2q 6 100 cond(K )4q,

while for γ not in GF̂,ω, we have by Proposition 2.15

|C(K̂ ,ω;γ)|6 A(cond(K̂ ))s q1/2 ¿ cond(K )2s q1/2.

We thus write

Eφ(c,d ,e) =Ec
φ(c,d ,e)+En

φ(c,d ,e),

where Ec
φ(c,d ,e) is the subsum of (5.16) where we restrict to the variables n1,n2 such that the

reduction modulo q of γ(c,d ,e,n1,n2) belongs to GF̂,ω and En
φ(c,d ,e) is the contribution of
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the remaining terms. According to (5.14), (5.12) and (5.10), we also write

M3[φ;d ,e] = 1

2q

∑
c6C

c−1
(
Ec
φ(c,d ,e)+En

φ(c,d ,e)
)

= M c
3 [φ;d ,e]+M n

3 [φ;d ,e],

and

M3[φ] = ∑
(`1,`2)=1

b`1 b`2ω(`2)
∑

de=`1`2

ω(d)
(
M c

3 [φ;d ,e]+M n
3 [φ;d ,e]

)
= M c

3 [φ]+M n
3 [φ].

Lemma 5.5. With the above notations, we have

M n
3 [φa,b] ¿ cond(K )4q1/2+εL2PQ2(P +Q), M n

3 [φk ] ¿ cond(K )4k3q1/2+εL2PQ2(P +Q),

for any ε> 0 where the implied constant depends on ε, a,b for φ=φa,b and on ε for φ=φk .

Proof. This is the content of [24, pp. 625-626], with minimal changes due to the different

nature of pairs (d ,e) of type I and II.

To conclude the proof of Proposition 5.1, it remains to evaluate the contribution M c
3 [φ;d ,e]

corresponding to the matrices whose reduction modulo q is in GF̂,ω. The final lemma is the

following:

Lemma 5.6. Under the assumption

q3εLQ < q1/4, (5.19)

we have

M c
3 [φk ] ¿ cond(K )2sk3q1+εL1/2PQ, M c

3 [φa,b] ¿ cond(K )2s q1+εL1/2PQ,

where s> 2 and the implied constant depends on ε, a,b.

Proof. The proof is [24, Sections 6.1,6.3,6.5] (recall that here there are no parabolic elements

by Proposition 2.17). Various arguments use the fact that the discriminant of certain binary

quadratic form is not zero. For example, if γ= γ(c,d ,e,n1,n2) is a toric matrix, then we need

to have (n1 +dn2)2 −4de 6= 0 and we cannot say that de = `1`2 is squarefree since we allow

square of primes in the amplifier. This is not a problem here because if (n1+dn2)2 = 4de, then

we would get (see (5.17))

Tr(γ)2 −4det(γ) = 0 in Fq .

This means that γ has only one distinct eigenvalue, so it is necessarily scalar since not parabolic
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5.2. The Eisenstein case

by assumption. But for γ scalar, we have cd ≡ 0 (mod q), which is not possible by (5.19) and

(5.13).

Another argument uses the fact that dn2
2 − e 6= 0 in a situation where n1 −dn2 = 0 (c.f. [24,

Section 6.3, p.p 629]). Again, d and e are not necessarily coprime here so we cannot argue in

the same way. However, if dn2
2 = e, then since n1 = dn2, we obtain n1n2 −e = dn2

2 −e = 0 and

the matrix γ(c,d ,e,n1,n2) takes the form

γ(c,d ,e,n1,n2) =
(

n1 0

2cd dn2

)
.

Since dn2 = n1, this matrix is parabolic with single fixed point z = 0, which contradicts the fact

that GF̂,ω does not contain parabolic elements.

5.2 The Eisenstein case

We recall the notations from Section 2.1. For q > 2 prime, ω a Dirichlet character modulo q

and t ∈ R, we set

λω(n, i t ) = ∑
ab=n

ω(a)
( a

b

)i t
,

and

SV (ω, i t ,K ; q) = ∑
n>1

λω(n, i t )K (n)V

(
n

q

)
,

for K an isotypic trace function such that its Fourier transform is notω-exceptional (see Defini-

tion 2.16) and V satisfying condition V (C ,P,Q). Since λω(n, i t ) appears as Hecke eigenvalues

(for (n, q) = 1) of the Eisenstein series E1(·,1/2+ i t) (the cusp a= 1) lying in the continuous

spectrum of the Laplacian on the space of modular forms of level q (and thus also of level 2q

after a normalization) and nebentypus ω (see Section 1.2.1 and Remark 1.4), we may estimate

an amplified second moment of SV (ω, i t ,K ; q) by embedding in the Eisenstein spectrum and

using Kuznetsov trace formula as in the cuspidal case.

For τ ∈ R, we define as in (5.1)

b`(τ) :=



λω(`, iτ)ω(`) if `= p ∼ L1/2 and (p,2q) = 1

−ω(`) if `= p2 ∼ L and (p,2q) = 1

0 else,

(5.20)

and for g a cuspidal form, we set

Bτ(g ) = ∑
16`62L

b`(τ)λg (`).
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For an Eisenstein series Ea(·,1/2+ i t ), we let

Bτ(a, i t ) = ∑
16`62L

b`(τ)λa(`, i t )

and we also write Bτ(ω, i t ) so that it corresponds to the Eisenstein series E1(·,1/2+ i t ) having

λω(n, i t ) as Hecke eigenvalues. Since the trace formula involves Fourier coefficients instead of

Hecke eigenvalues, we define as in Section 5.1

S̃V (ω, i t ,K ; q) = ∑
n>1

ρω(n, i t )K (n)V

(
n

q

)
,

with the relation

SV (ω, i t ,K ; q) = ρω(1, i t )−1S̃V (ω, i t ,K ; q). (5.21)

Remark 5.7. Actually, the relation (5.21) is true if we restrict the n-summation in SV (ω, i t ,K ; q)

to (n, q) = 1. However, we could consider directly this restriction at the beginning since the

error to pass from one to the other is given by

SV (ω, i t ,K ; q) = ∑
(n,q)=1

λω(n, i t )K (n)V

(
n

q

)
+O

(
qεM(P +1)

)
.

Using the lower bound for ρω(1, i t ) given by (1.9) and φ̃a,b(t ) ³ (1+|t |)κ−2b−2 (c.f. [8, (2.21)]),

we obtain exactly as in Section 5.1 (see Proposition 5.1),

∫
R

∣∣SV (ω, i t ,K ; q)
∣∣2

(1+|t |)2b+2−ε |Bτ(ω, i t )|2 d t ¿ q1+ε
∫

R

(1+|t |)κ−2b−2

cosh(πt )

∣∣S̃V (ω, i t ,K ; q)
∣∣2 |Bτ(ω, i t )|2 d t

¿ q1+ε
∫

R

φ̃a,b(t )

cosh(πt )

∣∣S̃V (ω, i t ,K ; q)
∣∣2 |Bτ(ω, i t )|2 d t

¿ cond(K )2s {
q2+εL1/2P (P +Q)+q3/2L2PQ2(P +Q)

}
.

(5.22)

In order to apply (5.22), the following Lemma gets a suitable lower bound for the amplifier

Bτ(ω, i t ) when τ is close enough to t (see [?, Lemma 2.4]).

Lemma 5.8. For L large enough, we have

Bτ(ω, i t ) À L1/2

logL
,

uniformly in t ,τ ∈ R satisfying

|t −τ|6 1

log2 L
.
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5.2. The Eisenstein case

Proof. Observe that since ` has at most three divisors, we have |b`(τ)|6 3 and thus

|Bτ(ω, i t )−Bτ(ω, iτ)|6 ∑
`

|b`(τ)||λω(`, i t )−λω(`, iτ)|

6 3
∑

p∼L1/2

p prime

{|λω(p, i t )−λω(p, iτ)|+ |λω(p2, i t )−λω(p2, iτ)|}

6 6
∑

p∼L1/2

p prime

{
|p i t −p iτ|+ |p2i t −p2iτ|

}

6 36|t −τ| ∑
p∼L1/2

p prime

log(p) ¿ L1/2

log2 L
.

It is therefore enough to prove the result for t = τ. But this is a consequence of the elementary

relation

λω(p, i t )2ω(p)−ω(p)λω(p2, i t ) = 1,

valid for (p, q) = 1, and the prime number Theorem.

The above Lemma combining with the average bound (5.22) allows us to deduce a first upper-

bound for short averages of twists of Eisenstein series. For this, we introduce the notation

I (τ, q) :=
{

t ∈ R | |t −τ|6 1

log2 q

}
.

and

K(P,Q; q) := cond(K )s q1− 1
16 (PQ)1/2(P +Q)1/2,

so that Theorem 6 claims that

SV (ω, i t ,K ; q) ¿ε qε(1+|t |)AK(P,Q; q)

for any ε> 0 and some A> 1 depending on ε.

Proposition 5.9. For any ε> 0, there exists B > 1, depending only on ε, such that for any τ ∈ R

we have∫
I (τ,q)

∣∣SV (ω, i t ,K ; q)
∣∣2 d t ¿ε qε(1+|τ|)BK(P,Q; q)2, (5.23)

where the implied constant depends only on ε.
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Proof. Using Lemma 5.8 and (5.22), we obtain

L

log2 L

∫
I (τ,q)

∣∣SV (ω, i t ,K ; q)
∣∣2 d t ¿

∫
I (τ,q)

(1+|τ|)2b+2

(1+|t |)2b+2−ε
∣∣SV (ω, i t ,K ; q)

∣∣2 |Bτ(ω, i t )|2 d t

¿ (1+|τ|)2b+2cond(K )2s {
q2+εL1/2P (P +Q)+q3/2L2PQ2(P +Q)

}
,

and we conclude as in [24, Section 4.2] by choosing

L = 1

2
q1/4−εQ−1,

and B = 2b +2 which depends on ε.

The last step is to derive a pointwise bound for SV (ω, i t ,K ; q). For this, we separate the

variables n,m in the twisted divisor function λω(n, i t ) and using a partition of unity, we can

decompose SV (ω, i t ,K ; q) into O(logP q) sums of the shape

SV ,M ,N (ω, i t ,K ; q) = ∑
n,m>1

K (mn)ω(m)
(m

n

)i t
W1

( m

M

)
W2

( n

N

)
V

(
nm

q

)
,

where the parameters (M , N ) belong to the set

P :=
{

(M , N ) | P q

4
6N M 6 4P q , 16N , M

}
(5.24)

and W1,W2 are smooth and compactly supported functions on [−1/2,2] satisfying x j W ( j )
i (x) ¿ j

1 for every j > 0. It follows that

SV (ω, i t ,K ; q) ¿ log(P q) max
(M ,N )∈P

∣∣SV ,M ,N (ω, i t ,K ; q)
∣∣ . (5.25)

The relation between SV ,M ,N (ω, i t ,K ; q) and an average of SV (ω, i t ,K ; q) is given through the

Mellin transform (see [?, Lemma 2.1]).

Lemma 5.10. Given s ∈ C and x > 0, we define

Vs(x) :=V (x)x−s .

Then for every ε> 0, we have

SV ,M ,N (ω, i t ,K ; q) ¿ε

Ï
|t1|,|t2|6qε

∣∣∣SVi t1
(ω, i t2 + i t ,K ; q)

∣∣∣d t1d t2 +O
(
q−100) . (5.26)

Proof. Using Mellin inversion formula for W1 and W2, we can write

SV ,M ,N (ω, i t ,K ; q) = 1

(2πi )2

∫
(0)

∫
(0)

Ŵ1(s1)Ŵ2(s2)TV (s1, s2)M s1 N s2 d s1d s2,
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where Ŵ1,Ŵ2 denote the Mellin transform of the smooth functions W1,W2 and

TV (s1, s2) = ∑
n,m>1

K (nm)ω(m)mi t−s1 n−i t−s2V

(
nm

q

)
.

Note that this sum can be expressed as a twist of Eisenstein series, namely

TV (s1, s2) = q−θ1SVθ1
(ω,θ2 + i t ,K ; q),

with

θ1 = s1 + s2

2
, θ2 = −s1 + s2

2
.

For ℜe(θ1), the smooth function Vθ1 satisfies condition V (C ,P,Q(θ1)) with

Q(θ1) ¿Q +|θ1|, (5.27)

where the implied constant is absolute. Thus by a change of variables, we get

SV ,M ,N (ω, i t ,K ; q) = 1

(2πi )2

∫
(0)

∫
(0)

Ŵ1(θ1 −θ2)Ŵ2(θ1 +θ2)

(
M

N

)θ2

×
(

M N

q

)θ1

SVθ1
(ω,θ2 + i t ,K ; q)dθ1dθ2.

(5.28)

Because we have the estimations

Ŵ1(s),Ŵ2(s) ¿ 1

(1+|s|)C
,

with an implied constant depending on C and ℜe(s), we can truncate the integral (5.28) to

|θ1|6 qε, |θ2|6 qε for a cost of O(q−100) by taking C large enough in term of ε and using the

trivial bound for ℜe(θ1) =ℜe(θ2) = 0

SVθ1
(ω,θ2 + i t ,K ; q) ¿ MP q log q.

5.2.1 Conclusion

We are now in position to obtain the conclusion of Theorem 6 in the Eisenstein case. In-

deed, fix ε > 0 and take B = B(ε) as in Proposition 5.9. By (5.25), it is enough to estimate

SV ,M ,N (ω, i t ,K ; q) for (M , N ) ∈ P. Now let ε′ = ε/B such that we have the estimate (5.26) of

Lemma 5.10. We thus get

SV ,M ,N (ω, i t ,K ; q) ¿ε′ qε
′

max
|t1|6qε′

∫
|t2|6qε′

∣∣∣SVi t1
(ω, i t2 + i t ,K ; q)

∣∣∣d t1d t2 +O
(
q−100) .
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We split the above integral into O(qε
′
) integrals over intervals of length log−2 q . For such

interval I centered at τ, we obtain by Proposition 5.9, the value (5.27) and Cauchy-Schwarz

inequality, the bound

SV ,M ,N (ω, i t ,K ; q) ¿ qε(1+|τ|)B/2K(P,Q +qε
′
; q),

(the function Q 7→K(P,Q; q) is increasing). Finally, taking the maximal value |τ|6 |t | + qε
′

yields the desired result.

96



6 Proof of Theorem 4

6.1 The triple product

As in Chapter 3, we separate the sum (0.6) into even and odd primitives characters and we

treat only the case of even characters since the odd case is completely similar. We therefore

consider

T 3(χ1,χ2,`; q) := 2

q −1

∑+
χ∈Dχ1,χ2 (q)

L
(
χ, 1

2

)
L

(
χχ1, 1

2

)
L

(
χχ2, 1

2

)
χ(`), (6.1)

where
∑+

means that we sum over even characters and Dχ1,χ2 (q) denotes the set of primitive

characters modulo q different from χ1 and χ2.

6.1.1 Applying the approximate functional equation

Applying the approximate function equation provided by Lemma 1.11, we decompose (6.1)

into two terms

T 3(χ1,χ2,`; q) = S1(χ1,χ2,`; q)+ iκ1+κ2S2(χ1,χ2,`; q),

with

S1(χ1,χ2,`; q) := 2

q −1

∑+
χ∈Dχ1,χ2 (q)

∑∗
n0,n1,n2>1

χ(n0n1n2`)χ1(n1)χ2(n2)

(n0n1n2)1/2
Vχ,χ1,χ2

(
n0n1n2

q3/2

)
, (6.2)

and

S2(χ1,χ2,`; q) := 2

q −1

∑+
χ∈Dχ1,χ2 (q)

∑∗
n0,n1,n2>1

χ(n0n1n2`)χ1(n1)χ2(n2)

(n0n1n2)1/2

×ε(χ)ε(χχ1)ε(χχ2)Vχ,χ1,χ2

(
n0n1n2

q3/2

)
,

(6.3)
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where the symbol ∗ over the n′
i s sum means that we restrict to (n0n1n2, q) = 1 and the function

Vχ,χ1,χ2 is defined in (1.27). In particular, since we sum over even characters, this function is

constant on the average and we write V instead of Vχ,χ1,χ2 .

Remark 6.1. The function V has rapid decay at infinity by Remark 1.12, so that the sums (6.2)-

(6.3) are essentially supported on 16 n0n1n26 q3/2+ε. It follows that the sum over n0,n1,n2

is trivially bounded by O(q3/4+ε), so we can remove as it suits us the contribution of χ= 1,χ1

or χ=χ2 for an error of size O(q−1/4+ε).

6.1.2 Average over the primitive and even characters

We need to average the sum over the characters in (6.2)-(6.3). For this, we use the orthogonality

relations asserting that for any prime q > 2 and any integer a coprime with q , we have (c.f. [31,

(3.2)-(3.4)])

∑+
χ (mod q)

χ 6=1

χ(a) = q −1

2
δa≡±1(q) −1, (6.4)

and for κ ∈ {0,1},

∑κ

χ (mod q)
χ 6=1

χ(m)ε(χ) = q −1

2q1/2

∑
±

(±1)κ
(
e

(
±m

q

)
+ 1

(q −1)

)
, (6.5)

where the supscript κ means that we sum over χ such that χ(−1) = (−1)κ. In (6.2), we remove

the contribution of χ=χ1,χ2 (see Remark 6.1) and after applying (6.4), we get S1 = S+1 +S−1 +
O(q−1/4+ε) with

S±1 (χ1,χ2,`; q) = ∑∑∑
n0,n1,n2>1

n0n1n2`≡±1 (mod q)

χ1(n1)χ2(n2)

(n0n1n2)1/2
V

(
n0n1n2

q3/2

)
. (6.6)

For (6.3), we remove the contribution of χ= 1,χ2 and note that for (m, q) = 1 we have, opening

the Gauss sum ε(χχ2) and using (6.5),

2

q −1

∑+
χ 6=χ1

χ(m)ε(χχ1)ε(χχ2) = 1

q1/2

∑
a∈F×

q

χ2(a)e

(
a

q

)(
2

q −1

∑+
χ 6=χ1

χ(am)ε(χχ1)

)

= χ1(m)

q1/2

∑
a∈F×

q

χ1χ2(a)e

(
a

q

)(
2

q −1

∑κ1

χ 6=1
χ(am)ε(χ)

)

= 1

q1/2

∑
±
χ1(±m)

 1

q1/2

∑
a∈F×

q

χ1χ2(a)e

(
a

q

)(
e

(±am

q

)
+ 1

q −1

) .

(6.7)
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The second expression in the above parenthesis is easily computed as a Gauss sum. For the

first term, we have

1

q1/2

∑
a∈F×

q

χ1χ2(a)e

(
a

q

)
e

(±am

q

)
= χ1χ2(±m)

1

q1/2

∑
a∈F×

q

χ1χ2(a)e

(
a

q

)
e

(±ma

q

)
= χ1(±m)Kl2(±m,χ1,χ2; q),

where the twisted Kloosterman sum is defined by (2.9) (see also (2.11)). Hence we see that

(6.7) is equal to

2

q −1

∑+
χ 6=χ1

χ(m)ε(χχ1)ε(χχ2) = 1

q1/2
Kl2(±m,χ1,χ2; q)+ ε(χ1χ2)χ1(m)(1+ (−1)κ1 )

q1/2(q −1)
. (6.8)

Now opening the Gauss sum ε(χ) and using (6.8), we obtain for every (m, q) = 1,

2

q −1

∑+
χ 6=χ1

χ(m)ε(χ)ε(χχ1)ε(χχ2) = 1

q1/2

∑
a∈F×

q

e

(
a

q

)(
2

q −1

∑+
χ 6=χ1

χ(am)ε(χχ1)ε(χχ2)

)

= 1

q

∑
a∈F×

q

Kl2(±am,χ1,χ2; q)e

(
a

q

)
+O

(
q−3/2)

= 1

q1/2
Kl3(±m,χ1,χ2,1; q)+O

(
q−3/2) .

(6.9)

Finally, using (6.9) in (6.3) with m = n0n1n2` yields S2 = S+2 +S−2 +O(q−1/4+ε) (recall Remark

6.1) with

S±2 (χ1,χ2,`; q) = 1

q1/2

∑∗
n0,n1,n2>1

χ1(n1)χ2(n2)

(n0n1n2)1/2
Kl3(±n0n1n2`,χ1,χ2,1; q)V

(
n0n1n2

q3/2

)
. (6.10)

We will evaluate each of the two terms ((6.6) and (6.10)) separately and find that a main term

appears only in S+1 (χ1,χ2,`; q) when `= 1. The others will contribute as an error term.

6.1.3 The main term

The main contribution comes from n0 = n1 = n2 = `= 1 in (6.6). Indeed, assuming n0n1n2`=
1, we obtain by the Remark 1.12

V
(

1

q3/2

)
= 1+O

(
q−3/4+ε) .

When n0n1n2` ≡ ±1 (mod q) with n0n1n2` 6= 1, we write the congruence equation in the

form n0n1n2`=±1+kq with 16 k 6 `q1/2+ε+1. Therefore, we get that the contribution of

n0n1n2` 6= 1 is at most

`1/2qε−1/2
∑

16k6`q1/2+ε+1

1

k1/2
¿ `q−1/4+ε.
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We conclude with

S+1 (χ1,χ2,`; q) = δ`=1 +O
(
`q−1/4+ε) and S−1 (χ1,χ2,`; q) =O

(
`q−1/4+ε) ,

which gives the desired main term and error term of Theorem 4 (0.10) provided

`6 q
1
4− 1

64 = q
15
64 . (6.11)

6.1.4 The error term

In this section, we analyze the expression (6.10) and will find that it contributes as an error

term. Applying a partition of unity to [1,∞) for each variable in order to locate n0,n1,n2 and

we obtain S±2 (χ1,χ2,`; q) =∑
N0,N1,N2

S±2 (`, N0, N1, N2; q) with

S±2 (`, N0, N1, N2; q) = 1

(qN0N1N2)1/2

∑∗
n0,n1,n2∈Z

χ1(n1)χ2(n2) f1

(
n1

N1

)
f2

(
n2

N2

)
×Kl3(±n0n1n2`,χ1,χ2,1; q) f0

(
n0

N0

)
V

(
n0n1n2

q3/2

)
,

(6.12)

where the functions fi are smooth and compactly supported on (1/2,2) and the N ′
i s runs over

real numbers of the form 2i , i > 0. By the fast decay at infinity of V, we can assume that

16N0, N1, N2 and N0N1N26 q3/2+ε.

Hence it remains to bound O(log3 q) sums of the shape (6.12). It is also convenient to separate

the variables n0n1n2 in the test function V. This can be done using its integral representation

(1.27) as in Section 3.2.1. We keep the same notation S±2 (`, N0, N1, N2; q), but with the factor V

removed, and also for the functions fi , i.e.

S±2 (`, N0, N1, N2; q) = 1

(qN0N1N2)1/2

∑∗
n0,n1,n2∈Z

χ1(n1)χ2(n2)Kl3(±n0n1n2`,χ1,χ2,1; q)

× f0

(
n0

N0

)
f1

(
n1

N1

)
f2

(
n2

N2

)
,

(6.13)

with

x j f ( j )
i (x) ¿ j qε j . (6.14)

Note finally that the trivial estimate is

S±2 (`, N0, N1, N2; q) ¿
(

N0N1N2

q

)1/2

. (6.15)
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Pólya-Vinogradov bound

We show here that (6.13) is very small if we assume that one of the parameters Ni is bigger

than q . Indeed, since the argument is the same, we suppose that N1> q/2. In this case, for

fixed (n0n2, q) = 1 we focus on the n1-sum

P(N1; q) = ∑∗
n1∈Z

χ(n1)Kl3(±n0n1n2`,χ1,χ2,1; q) f1

(
n1

N1

)
.

By Remark 2.8, we can add the contribution of q|n1 for an error of size O(N1/q) (since N1>
q/2). Hence, applying Proposition 2.18 with the Fourier trace sheaf

Lχ⊗
[
×

(
±n0n2`

)]∗
K`3(χ1,χ2,1; q),

we get

P(N1; q) =O

(
qε

N1

q1/2
+ N1

q

)
=O

(
qε

N1

q1/2

)
.

Finally, averaging trivially over n0 and n2 in (6.13) yields

S±2 (`, N0, N1, N2; q) ¿ qε
(

N0N1N2

q2

)1/2

.

Since N0N1N26 q3/2+ε, we obtain

Proposition 6.2. Assume that Ni > q/2 for some i ∈ {0,1,2}. Then for any ε> 0, we have

S±2 (`, N0, N1, N2; q) =O
(
q−1/4+ε) ,

with an implied constant depending only on ε.

Applying Poisson summation in the three variables

In this section, we obtain an estimate for S±2 which is satisfactory if the product of the three

variables N0N1N2 is greater that q . This can be done using successive applications of Poisson

summation formula. Before this, we just note that by Proposition 6.2, we can assume that

Ni < q/2 for i = 0,1,2, which allows us to ignore the primality condition (n0n1n2, q) = 1

in (6.13) since we also have Ni > 1. We begin with the n0-variable. In (6.13), we write the

Kloosterman sum as the Fourier transform of the function

Fq 3 x 7→ K2(x) := K2(x,χ1,χ2; q)
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Chapter 6. Proof of Theorem 4

defined in (2.12). Hence, an application of Poisson summation in n0 and Fourier inversion

formula gives (recall that (n1n2, q) = 1)

∑
n0∈Z

K̂2(±n0n1n2`) f0

(
n0

N0

)
= N0

q1/2

∑
n0∈Z

̂̂K2(±n0n1n2`) f̂0

(
n0N0

q

)
= N0

q1/2

∑
n0∈Z

K2(∓n0n1n2`) f̂0

(
n0N0

q

)
.

Since by Definition K2(x) = 0 for q |x, we obtain

S±2 (`, N0, N1, N2; q) = N 1/2
0

q(N1N2)1/2

∑
n0,n1,n2∈Z

(n0,q)=1

χ1(n1)χ2(n2)Kl2(∓n1n2n0`,χ1,χ2; q)

× f̂0

(
n0N0

q

)
f1

(
n1

N1

)
f2

(
n2

N2

)
.

(6.16)

We continue with the n2-variable. As before, since the argument of Kl2 is non zero modulo q ,

we can express the Kloosterman sum as suitable Fourier transform, namely (see (2.12))

Kl2(∓n1n2`,χ1,χ2; q) =χ2(∓n1n2n0`) á[
χ2K1(χ1; q)

]
(∓n1n2n0`). (6.17)

Using exactly the same argument as before, after replacing Kl2 by (6.17) in (6.16), we get

S±2 (`, N0, N1, N2; q) = χ2(∓`)N 1/2
0

q(N1N2)1/2

∑
n0,n1,n2∈Z
(n0n2,q)=1

χ1χ2(n1)χ2(n0)[ áχ2K1(χ1)](∓n1n2n0`)

× f̂0

(
n0N0

q

)
f1

(
n1

N1

)
f2

(
n2

N2

)
.

Applying Poisson in the n2-variable yields

∑
n2∈Z

áχ2K1(χ1)(∓n1n2n0`) f2

(
n2

N2

)
= N2

q1/2

∑
n2∈Z

ááχ2K1(χ1)(∓n2n1n0`) f̂2

(
n2N2

q

)
= N2

q1/2

∑
n2∈Z

χ2(±n2n1n0`)K1(±n2n1n0`,χ1; q) f̂2

(
n2N2

q

)

= N2

q1/2

∑
(n2,q)=1

χ1χ2(±n2n1n0`)e

(
±n1n2n0`

q

)
f̂2

(
n2N2

q

)
.

Hence

S±2 (`, N0, N1, N2; q) =χ1(±`)χ2(−1)

(
N0N2

q3N1

)1/2 ∑
n0,n1,n2∈Z
(n0n2,q)=1

χ1(n2n0)χ2(n2)e

(
±n1n2n0`

q

)

× f1

(
n1

N1

)
f̂0

(
n0N0

q

)
f̂2

(
n2N2

q

)
.

(6.18)
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6.1. The triple product

It remains to do Poisson in the n1-variable. Let a ∈ Fq , we denote by δa the Dirac function on

Fq defined by δa(x) = 1 if x = a and zero else. Then the exponential map

n1 7→ e

(
±n1n0n2`

q

)

is the additive Fourier transform of the Dirac function x 7→ q1/2δ±n0n2`
(x). It follows that the

n1 sum in (6.18) is equal to

∑
n1∈Z

áq1/2δ±n0n2`
(n1) f1

(
n1

N1

)
= N1

∑
n1∈Z

δ±n0n2`
(−n1) f̂1

(
n1N1

q

)
.

Summarizing all the previous computations yields the bound

S±2 (`, N0, N1, N2; q) ¿
(

N0N1N2

q3

)1/2 ∑
n0n1n2`≡∓1(mod q)

∣∣∣∣ f̂0

(
n0N0

q

)
f̂1

(
n1N1

q

)
f̂2

(
n2N2

q

)∣∣∣∣ .

Finally, using the fact that all these Fourier transform have fast decay at infinity, we see that

the above sum is essentially supported on |ni |6 q1+ε
Ni

and thus, a trivial estimate leads to

S±2 (`, N0, N1, N2; q) ¿ qε
(

N0N1N2

q3

)1/2 (
q2

N0N1N2
+1

)
¿ qε

(
q

N0N1N2

)1/2

. (6.19)

Estimation of S±2 using Theorems 6 and 2.19

We return to expression (6.13). The combination of (6.15) and (6.19) shows that it remains to

deal with the case where the product N0N1N2 is of length about q . The strategy is as follow :

if one of the variables Ni is very small, then we factorize the two others to form a new long

variable and apply Theorem 6 for the twist of Eisenstein series. If none of the Ni ’s are too

small, then it is possible to factorize two variables and form a bilinear sum in such a way that

an application of Theorem 2.19 is beneficial.

We prove in this section :

Proposition 6.3. Let N = max(N0, N1, N2), M = min(N0, N1, N2) and write D for the remaining

parameter, i.e. M 6D 6N . Then for every ε> 0, we have

S±2 (`, N0, N1, N2; q) ¿ε qε
(

N0N1N2

q

)1/2


(
1+ qM

N0N1N2

)1/2
q−1/16

1
q1/4 + 1

D1/2 + q1/4

(N M)1/2 .

(6.20)

Proof. To fix the ideas, we assume that

M = N06N1 = D 6N2 = N ,

103



Chapter 6. Proof of Theorem 4

and we leave it to the reader to ensure that the other cases can be treated with minimal changes.

We first focus on the n1,n2-sum in (6.13) and write it in the form (recall that N1, N2 < q/2 so

the primality condition is satisfied)

∑
n1,n2>1

χ1χ2(n1)χ2(n1n2)Kl3(n0n1n2`,χ1,χ2; q) f1

(
n1

N1

)
f2

(
n2

N2

)
. (6.21)

We show now how to transform this expression in order to obtain the same as in Corollary 2.2.

To simplify notations, we define

K (n) :=χ2(n)Kl3(±nn0`,χ1,χ2; q). (6.22)

Using Mellin inversion on f1 and f2 in (6.21) leads to

1

(2πi )2

∫
(0)

∫
(0)

f̃1(s1) f̃2(s2)N s1
1 N s2

2

∑
n1,n2>1

χ1χ2(n1)K (n1n2)n−s1
1 n−s2

2 d s1d s2.

Making the change of variables

θ1 = s1 + s2

2
, θ2 = −s1 + s2

2
,

and we see that the above integral takes the form

2

(2πi )2

∫
(0)

∫
(0)

f̃1(θ1 −θ2) f̃2(θ1 +θ2)

(
N2

N1

)θ2

× ∑
n1,n2>1

χ1χ2(n1)

(
n1

n2

)θ2

K (n1n2)

(
N1N2

n1n2

)θ1

dθ1dθ2

= 2

(2πi )2

∫
(0)

(
N2

N1

)θ2 ∑
n>1

λχ1χ2
(n,θ2)K (n)V

(
n

N1N2
,θ2

)
dθ2,

(6.23)

where for any x > 0 and ℜe(θ2) = 0, we defined

V (x,θ2) :=
∫

(0)
f̃1(θ1 −θ2) f̃2(θ1 +θ2)x−θ1 dθ1. (6.24)

Because the Mellin transforms satisfy (c.f. (6.14))

f̃1(s), f̃2(s) ¿
(

qε

1+|s|
)B

, (6.25)

with an implied constant depending on ε, B and ℜe(s), the function V (x,θ2) satisfies

V (x,θ2) ¿B
1

(1+x)B
and xνV (ν)(x,θ2) ¿ν,ε qνε,

uniformly in ℜe(θ2) = 0. Since we want to estimate the inner sum in (6.23) using Theorem 6

104



6.1. The triple product

and then average trivially over the θ2-integral, we also need to control the function V (x,θ2)

with respect to the θ2-variable. By (6.25), for any B > 1, we have uniformly on x > 0 and with

an implied constant depending only on B ,

V (x,θ2) ¿
∫

(0)

(
qε

(1+|θ1 −θ2|)(1+|θ1 +θ2|)
)B

dθ1.

Note the identity

(1+|θ1 −θ2|)(1+|θ1 +θ2|) = 1+|θ2
1 −θ2

2|+ |θ1 −θ2|+ |θ1 +θ2|
> 1+|θ2

1 −θ2
2|+2max(|θ1|, |θ2|).

Hence, splitting the integral depending on whether |θ1|6 |θ2| or not and we get

V (x,θ2) ¿
∫

ℜe(θ1)=0
|θ1|>|θ2|

(
qε

1+|θ2
1 −θ2

2|+2|θ1|

)B

dθ1 +
∫

ℜe(θ1)=0
|θ1|6|θ2|

(
qε

1+|θ2
1 −θ2

2|+2|θ2|

)B

dθ1

6
∫
|t |>|θ2|

(
qε

1+2|t |
)B

d t +
∫
|t |6|θ2|

(
qε

1+2|θ2|
)B

d t ¿
(

qε

1+|θ2|
)B−1

.

Therefore, for any ε′ > 0, we obtain that (6.23) is bounded, up to a constant which depends

only on ε′, by

qε
′

max
|θ2|6qε′

ℜe(θ2)=0

∣∣∣∣∣ ∑
n>1

λχ1χ2
(n,θ2)K (n)V

(
n

N1N2
,θ2

)∣∣∣∣∣ . (6.26)

We now apply Corollary 2.2 with the Schwartz function V (x,θ) and with the sheaf

F :=Lχ2
⊗ [±n0`]∗K`3(χ1,χ2,1; q)

having trace function (6.22). Note that since Kl3(·,χ1,χ2,1; q) is invariant under permutation

of the triple (χ1,χ2,1), we have by (2.11) a geometric isomorphism

F' [×(±n0`)]∗FT
(
Lχ2 ⊗ [x 7→ x−1]∗K`2(χ1,1; q)

)
and hence F is not Fourier-exceptional since by Fourier inversion, its `-adic Fourier transform

is a rank 2 irreducible sheaf. It follows that for any ε> 0, we can estimate (6.26) by

qε
′

max
|θ2|6qε′

(qN1N2)ε(1+|θ2|)A N1N2

(
1+ q

N1N2

)1/2

q−1/16.

Choosing ε′ = ε/A, maximizing the above quantity by setting θ2 = qε
′
, replacing the obtained

bound in (6.21) and finally, averaging trivially over n0 in (6.13) yields the first estimate of (6.20)
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S±2 (`, N0, N1, N2; q) ¿ε qε
(

N0N1N2

q

)1/2 (
1+ q

N1N2

)1/2

q−1/16. (6.27)

For the second bound, we group together the variables n0n2 = m in (6.13) and we obtain

S±2 (`, N0, N1, N2; q) = 1

(qN0N1N2)1/2

∑
n,n1

αmβn1 Kl3(±nn1`,χ1,χ2,1; q), (6.28)

with

αm := ∑
n0n2=m

χ2(n2) f0

(
n0

N0

)
f2

(
n2

N2

)
and βn1 :=χ1(n1) f1

(
n1

N1

)
.

Applying Theorem 2.19 (1) with N = N0N2 and M = N2 gives

S±2 (`, N0, N1, N2; q) ¿ qε
(

N0N1N2

q

)1/2
(

1

q1/4
+ 1

N 1/2
1

+ q1/4

(N0N2)1/2

)
, (6.29)

as wishes.

6.1.5 Conclusion of the triple product

Write Ni = qµi with µi > 0 and let η> 0 be a parameter. If µ0+µ1+µ2 < 1−2η or µ0+µ1+µ2 >
1+2η, we use the trivial bound (6.15) or the estimate (6.19) to obtain

S±2 (`, N0, N1, N2; q) =O
(
q−η+ε) .

We therefore assume that we are in the range

1−2η6µ0 +µ1 +µ26 1+2η. (6.30)

Let δ> 0 be an auxiliary parameter. As we already see, there is no loss of generality assuming

that µ06µ16µ2. Suppose first that

µ06 δ. (6.31)

In this case, we apply (6.27) which, combining with (6.30) and (6.31) gives

S±2 (`, N0, N1, N2; q) ¿ε qε
(
qη−

1
16 +q

δ
2 − 1

16

)
¿ε q−η+ε,

provided

η6
1

32
and δ6

1

8
−2η, (6.32)

which condition we henceforth assume to hold.
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6.2. The cuspidal case

Suppose now that we are in the case

µ0> δ. (6.33)

The estimate (6.29) leads to

S±2 (`, N0, N1, N2; q) ¿ qε
(
qη−

1
4 +q

1
2 (µ0+µ2−1) +q

1
2 (µ1− 1

2 )
)

.

The first term is clearly smaller than q−η+ε by (6.32). For the second, note that µ1 > µ0 > δ
and thus, by (6.30)

µ0 +µ2 −16 2η−δ.

It follows that

qε+
1
2 (µ0+µ2−1)6 qε+η−

δ
2 6 q−η+ε,

under the assumption that

δ> 4η. (6.34)

Finally, the combination of (6.30), µ16µ2 and (6.33) gives

µ16
1

2
+η− δ

2

and hence

qε+
1
2 (µ1− 1

2 )6 qε+
η

2 − δ
4 6 q−η+ε,

provided

δ> 6η, (6.35)

which is more restrictive than (6.34). To finalize the computations, we just note that the second

condition in (6.32) and (6.35) are simultaneously satisfied as long as η6 1
64 , which gives the

correct exponent of the error term in Theorem 4.

6.2 The cuspidal case

We consider as in Section 6.1 the average over primitive and even characters (recall that the

nebentypus is trivial)

T 3( f ,`; q) := 2

q −1

∑+
χ (mod q)

χ 6=1

L
(

f ⊗χ, 1
2

)
L

(
χ, 1

2

)
χ(`). (6.36)
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6.2.1 Applying the approximate functional equation

Using Proposition 1.15, we can write (6.36) in the form

T 3
even( f ,`; q) =C1( f ,`; q)+ε∞( f ,+1)C2( f ,`; q)

with

C1( f ,`; q) = 2

q −1

∑+
χ (mod q)

χ 6=1

∑
n.m>1

λ f (n)χ(nm`)

(nm)1/2
V f ,χ

(
nm

q3/2

)
,

C2( f ,`; q) = 2

q −1

∑+
χ (mod q)

χ 6=1

∑
n.m>1

λ f (n)χ(nm)χ(`)

(nm)1/2
ε(χ)3V f ,χ

(
nm

q3/2

)
,

where we recall that V f ,χ depends on χ only through its parity. Since we assume that f satisfies

the Ramanujan-Petersson conjecture, we have |λ f (n)|6 τ(n). Hence, proceeding as in Section

6.1.2 for the average over the characters and writing V = V f ,χ, we find

Ci ( f ,`; q) =∑
±
C±

i ( f ,`; q)+O
(
q−1/4+ε) ,

where

C±
1 ( f ,`; q) = ∑∗

nm`≡±1 (mod q)

λ f (n)

(nm)1/2
V

(
nm

q3/2

)
, (6.37)

and

C±
2 ( f ,`; q) = 1

q1/2

∑∗
n,m>1

λ f (n)

(nm)1/2
Kl3(±nm`; q)V

(
nm

q3/2

)
. (6.38)

6.2.2 The main term

The extraction of the main term is done is a similar way as in Section 6.1.3. We just conclude

with

C+
1 ( f ,`; q) = δ`=1 +O

(
`q−1/4+ε) , C−

1 ( f ,`; q) =O
(
`q−1/4+ε) .

Note that the error terms are O(q− 1
52+ε) (c.f. Theorem 4) if we assume that

`6 q
1
4− 1

52 = q
3

13 . (6.39)
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6.2.3 The error term

Applying a partition of unity to (6.38), removing the test function V using its integral represen-

tation (see § 6.1.4), we are reduced to analyze O(log2 q) sums of the shape

C±
2 ( f , N , M ; q) := 1

(qN M)1/2

∑∗
n,m∈Z

λ f (n)Kl3(±nm`; q)W1

( m

M

)
W2

( n

N

)
, (6.40)

where Wi are smooth and compactly supported functions on (1/2,2) such that x j W ( j )
i (x) ¿ε, j

qε j for all j > 0 and M , N are reals numbers with the standard restriction due to the fast decay

of V at infinity

16M , N and N M 6 q3/2+ε.

Note that the trivial bound is

C±
2 ( f , N , M ; q) ¿

(
N M

q

)1/2

. (6.41)

Moreover, if M > q/2, then an application of Polyá-Vinograov method in the m-variable (see

Proposition 2.18 and Section 6.1.4) leads to

C±
2 ( f , N , M ; q) ¿ε qε

(
N M

q2

)1/2

¿ q−1/4+ε.

Hence we can suppose from now on that M < q/2 in such a way that the condition (m, q) = 1

under the summation in (6.38) is automatically satisfied.

Application of Poisson/Voronoi summation formula

The first step is to apply Voronoi summation formula in the n-variable. To get in a good

position, we write the Kloosterman sum Kl3 for (a, q) = 1 in the form

Kl3(a; q) = 1

q1/2

∑
x∈F×

q

Kl2(x; q)e

(
ax

q

)
. (6.42)

Note that this definition can be extended to a = 0 with the value

Kl3(0; q) = 1

q

 ∑
x∈F×

q

e

(
x

q

)2

= 1

q
.

It follows that after writing Kl3(±nm`; q) in the form (6.42) and adding the contribution of q|n
for negligible error term (of size at most q−3/4+ε), we get

C±
2 ( f , N , M ; q) = 1

(qN M)1/2

1

q1/2

∑
x∈F×

q

Kl2(x; q)
∑

m∈Z
W1

( m

M

) ∑
n>1

λ f (n)e

(
±nm`x

q

)
W2

( n

N

)
.
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(6.43)

Assuming we are dealing with the plus case and applying Voronoi formula (c.f. Proposition

1.2) to the inner sum in (6.43), we obtain

C+
2 ( f , N , M ; q) =

(
N

q3M

)1/2 1

q1/2

∑
±

∑
x∈F×

q

Kl2(x; q)
∑

n>1
λ f (n)W ±

2

(
nN

q2

)

× ∑
m∈Z

e

(∓nmx`

q

)
W1

( m

M

)
.

Changing the order of summation, making the change of variable x ↔ xm (recall that (m, q) =
1) allows us to write

C+
2 ( f , N , M ; q) =

(
N

q3M

)1/2 1

q1/2

∑
±

∑
x∈F×

q

∑
n>1

λ f (n)e

(∓nx`

q

)
W ±

2

(
nN

q2

)
× ∑

m∈Z
Kl2(xm; q)W1

( m

M

)
. (6.44)

By Poisson formula and since Kl2 is the Fourier transform of the function defined by (2.12), we

see that the m-sum in (6.44) is equal to

M

q1/2

∑
(m,q)=1

e

(
−xm

q

)
Ŵ1

(
mM

q

)
.

Replacing this identity in (6.44) yields

C+
2 ( f , N , M ; q) =

(
N M

q3

)1/2 ∑
±

∑
n>1

∑
(m,q)=1

λ f (n)Ŵ1

(
mM

q

)
W ±

2

(
nN

q2

)

× 1

q

∑
x∈F×

q

e

(
x
∓n`−m

q

)
,

(6.45)

with the same expression for the minus case C−
2 , but with ∓ replaced by ± in the exponential.

Because of the fast decay of Ŵ1 and W ±
2 at infinity (c.f. Lemma 1.3), the n,m-sum (6.45) is

essentially supported on |m|6 q1+ε/M and |n|6 q2+ε/N . In this range, we use the estimate

|λ f (n)|6 τ(n) ¿ε nε and we apply Lemma 1.3 withϑ= 0 (recall that f satisfies the Ramanujan-

Petersson Conjecture) to bound W ±
2 by qε. Adding the contribution of x = 0, estimating this

extra factor trivially and executing the complete x-summation gives

C+
2 ( f , N , M ; q) =

(
N M

q3

)1/2 ∑
±

∑∑
nm`≡∓1 (mod q)

λ f (n)Ŵ1

(
mM

q

)
W ±

2

(
nN

q2

)

+O

(
qε

( q

N M

)1/2
)

.
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Therefore using |λ f (n)|6 τ(n), we obtain as in § 6.1.4,

C±
2 ( f , N , M ; q) ¿ε qε

( q

N M

)1/2
, (6.46)

uniformly on `< q .

Estimation of C2 using bounds for bilinear forms and Theorem 6

We finally state the analogous of Proposition 6.3 which is an immediate application of Theorem

2.19 (1)-(2), Theorem 2.20 and Corollary 2.2.

Proposition 6.4. For any ε> 0, the quantity defined in (6.40) satisfies

C±
2 ( f , N , M ; q) ¿ qε

(
N M

q

)1/2



1
q1/4 + 1

M 1/2 + q1/4

N 1/2

1
q1/2 + q1/2

M

(
N 2M 5

q3

)−1/12

(
1+ q

N

)1/2
q−1/16,

where the implied constant depends on ε and polynomially on t f in the last bound and the

third bound is valid in the case where 16N 6M 2, M < q and N M < q3/2 (c.f. (2.16)).

6.2.4 Conclusion of the cuspidal case

Fix η> 0 a parameter and write M = qµ, N = qν with µ,ν> 0. By the trivial bound (6.41) and

(6.46), we can assume that

1−2η6µ+ν6 1+2η, (6.47)

otherwise we get C±
2 ( f , N , M ; q) = O(q−η+ε). We now let δ1,δ2,δ3 > 0 be sufficiently small

auxiliary parameters and we distinguish four cases :

(a) Assume that µ6 δ1. In this case we apply the fourth estimate of Proposition 6.4 and we

get by (6.47)

C±
2 ( f , N , M ; q) ¿ε,t f qε

(
qη−

1
16 +q

δ1
2 − 1

16

)
6 q−η+ε,

provided

η6
1

32
and δ16

1

8
−2η. (6.48)
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(b) If δ1 <µ6 1
2 −δ2, the first bound of Proposition 6.4 yields

C±
2 ( f , N , M ; q) ¿ε qε

(
qη−

1
4 +q

1
2 (ν−1) +q

1
2 (µ− 1

2 )
)

.

The first term is less than qε−η since η6 1
32 . For the second, we have ν−16 2η−δ1 (use

(6.47) and µ> δ1). Thus it is less than qε−η under the assumption that

δ1> 4η. (6.49)

The third term is at most q−δ2/26 q−η if

δ2> 2η. (6.50)

(c) Suppose that 1
2 −δ2 <µ6 1

2 +δ3. In this configuration, we apply the third bound and we

obtain

C±
2 ( f , N , M ; q) ¿ε qε−

1
4+ ν

3 +
µ

12 = qε−
1
4+ 1

12 (µ+ν)+ ν
4 .

Using (6.47) and ν6 1+2η−µ6 1
2 +2η+δ2 allows us to bound the above expression by

qε−
1
4+ 1

12 (1+2η)+ 1
4 ( 1

2+2η+δ2) = qε−
1

12 ( 1
2−8η−3δ2)6 qε−η,

provided

3δ26
1

2
−20η. (6.51)

(d) Assume that µ> 1
2 +δ3 the second bound gives

C±
2 ( f , N , M ; q) ¿ε qε

(
qη−

1
2 +qη+

1
2−µ

)
6 qε−η+qε+η−δ3 ¿ qε−η,

if we assume that

δ3> 2η.

Finally, the combination of conditions (6.48) and (6.49) forces η6 1
48 and (6.50)-(6.51) are

simultaneously satisfied as long as η6 1
52 , which gives the correct exponent of the error term

in Theorem 4 (0.11).

Remark 6.5. The treatment carried out in Section 5.1 remains almost identical if f is level 1

Hecke cusp form. The only change we have to make is to replace the exponent 1/16 by 1/8 in

the fourth bound of Proposition 6.4, which is due to the original Theorem [24, Theorem 1.2]

for small level compared with q . However, it does not improve the final exponent 1
52 since

(6.50)-(6.51) is more restrictive and independent of (6.48)-(6.49).
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7 Proof of Theorems 1 and 2

7.1 The mollification method

We show here how to derive Theorems 1 and 2 from Theorems 3 and 5. Let 1 < L < q be a

real number such that logL ³ log q . For any multiplicative character χ (mod q), we define the

short linear form

M(χ;L) := ∑
`6L

χ(`)µ(`)

`1/2

(
logL/`

logL

)2

, (7.1)

where µ is the Möbius function. Let {λ f (n)}n>1 denotes the sequence of Hecke eigenvalues of

a Hecke cusp form of level one and µ f (n) be the convolution inverse of λ f (n) given by

L( f , s)−1 =∏
p

(
1− λ f (p)

p s + 1

p2s

)
=

∞∑
n=1

µ f (n)

ns , ℜe(s) > 1.

For 1 < L′ < q with logL′ ³ log q , we also define

M( f ⊗χ;L′) := ∑
`6L′

χ(`)µ f (`)

`1/2

(
logL′/`

logL′

)
. (7.2)

We finally consider the two mollified cubic moments

M 3(χ1,χ2; q) := 1

q −1

∑
χ∈Dχ1,χ2 (q)

2∏
i=0

L
(
χχi , 1

2

)
M(χχi ;L), (7.3)

where χ0 is the trivial character, and

M 3( f ; q) := 1

q −1

∑
χ (mod q)

χ 6=1

L
(

f ⊗χ, 1
2

)
M( f ⊗χ;L′)L

(
χ, 1

2

)
M(χ;L). (7.4)
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Note that (7.3) and (7.4) can be written in the form

M 3(χ1,χ2; q) = ∑
`1,`2,`36L

x(`1)x(`2)x(`3)

(`1`2`3)1/2
T 3(χ1,χ2,`1`2`3; q),

M 3( f ; q) = ∑
`6L,`′6L′

x f (`)x(`′)
(``′)1/2

T 3( f ,``′; q),

where T 3(χ1,χ2,`1`2`3; q) are T 3( f ,``′; q) are the twisted cubic moments defined in (0.6)

and (0.7) respectively and with

x(`) :=µ(`)

(
logL/`

logL

)2

and x f (`′) :=µ f (`′)
(

logL/`′

logL

)
.

Since f satisfies the Ramanujan-Petersson conjecture, we have for 16 `6 L and 16 `′6 L′,

|x(`)|6 1 and |x f (`′)|6 τ(`′),

Hence an immediate consequence of Theorem 4 is the following corollary :

Corollary 7.1. For any ε> 0, the mollified cubic moments (7.3) and (7.4) satisfy the asymptotic

formula

M 3(χ1,χ2; q) = 1+O
(
L3/2q− 1

64+ε
)

, M 3( f ; q) = 1+O
(
(LL′)1/2q− 1

52+ε
)

,

where the implied constant only depends on ε> 0 and polynomially on t f in the second expres-

sion.

7.2 Proof of Theorem 1

We first present the proof of Theorem 1. For any χ (mod q), we define the following character-

istic function

1(χ) := δ|L(χ,1/2)|> 1
log q

δ|L(χχ1,1/2)|> 1
log q

δ|L(χχ2,1/2)|> 1
log q

.

Using the generalized Hölder’s inequality, we infer∣∣∣∣∣ 1

q −1

∑
χ∈Dχ1,χ2 (q)

1(χ)
2∏

i=0
L

(
χχi , 1

2

)
M(χχi ;L)

∣∣∣∣∣6
(

1

q −1

∑
χ∈Dχ1,χ2 (q)

1(χ)

)1/4 (
M 4(q)

)3/4
,

where M 4(q) is the mollified fourth moment of Dirichlet L-functions defined in (0.5). On the

other hand, we have the lower bound for the left handside∣∣∣∣∣ 1

q −1

∑
χ∈Dχ1,χ2 (q)

1(χ)
2∏

i=0
L

(
χχi , 1

2

)
M(χχi ;L)

∣∣∣∣∣> ∣∣M 3(χ1,χ2; q)
∣∣−D ,
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where M 3(χ1,χ2; q) is defined in (7.3) and

D := 1

q −1

∑
χ∈Dχ1,χ2 (q)

1(χ)=0

∣∣∣∣∣ 2∏
i=0

L
(
χχi , 1

2

)
M(χχi ;L)

∣∣∣∣∣ .

To estimate D , note that the condition 1(χ) = 0 means that one of the central values is less

than log(q)−1. Therefore, if for i = 0,1,2, Di is the subsum of D restricted to χ such that

|L(χχi , 1
2 )|6 log(q)−1, we obtain, by positivity, D 6D0 +D1 +D2 with for each i = 0,1,2,

Di 6
1

log(q)

(
1

q −1

∑
χ (mod q)

∣∣M(χ;L)
∣∣2

)1/2 (
1

q −1

∑∗
χ (mod q)

∣∣L (
χ, 1

2

)
M(χ;L)

∣∣4

)1/2

using again twice Cauchy-Schwarz inequality. Assuming that L = qλ with 0 <λ< 11
8064 , we can

use the asymptotic formula provided by Theorem 5 to obtain

Di ¿λ
1

log(q)

(
1

q −1

∑
χ (mod q)

∣∣M(χ;L)
∣∣2

)1/2

.

Moreover, opening the square in |M(χ;L)|2 and applying the orthogonality relation yields

1

q −1

∑
χ (mod q)

|M(χ;L)|26 ∑
`≡`′ (mod q)

`,`′6L

|x(`)x(`′)|
(``′)1/2

6
∑
`6L

1

`
¿ logL, (7.5)

since L < q . Hence we get

1

q −1

∑
χ (mod q)

1(χ)>

∣∣M 3(χ1,χ2; q)
∣∣4

M 4(q)3 +Oλ

(
1

log(q)1/2

)
= 1

P (λ−1)3 +oλ(1).

If

c1 := max
0<λ6 11

8064

P (λ−1)−3,

then for any ε > 0, there exists 0 < λ̃ < 11
8064 depending on ε satisfying |P (λ̃−1)−3 − c1|6 ε/2.

Finally, choosing Q =Q(ε) large enough such that |oλ̃(1)|6 ε/2 for q >Q and the result follows.

7.3 Proof of Theorem 2

We proceed in a similar way. Setting

1(χ, f ) := δ|L(χ,1/2)|> 1
log q

δ|L( f ⊗χ,1/2)|> 1
log2 q

,
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we obtain∣∣∣∣∣ 1

q −1

∑
χ 6=1

1(χ, f )L
(

f ⊗χ, 1
2

)
M( f ⊗χ;L′)L

(
χ, 1

2

)
M(χ;L)

∣∣∣∣∣ 6
(

1

q −1

∑
χ 6=1

1(χ, f )

)1/4

× (
M 4(q)

)1/4 (
M 4( f ; q)

)1/2

(7.6)

where M 4( f ; q) is the mollified twisted second moment

M 2( f ; q) := 1

q −1

∑
χ (mod q)

χ 6=1

∣∣L (
f ⊗χ, 1

2

)
M( f ⊗χ;L′)

∣∣2
.

In [6], the authors proved establishes the following asymptotic formula

M 4( f ; q) = 2η(1+ 2

λ′ )+oλ′,t f (1), (7.7)

for L′ = qλ
′

with 0 < λ′ < 1
360 and η is an absolute constant satisfying η6 ζ(3/2). As in the

previous part, the left handside of (7.6) admits the lower bound

>
∣∣M 3( f ; q)

∣∣−C ,

where C is the same as M 3( f ; q), but with the absolute values inside and with the restriction

in the summation to χ such that 1(χ, f ) = 0. Writing C1 (resp. C2) for the contribution of

|L(χ,1/2)|6 1
log q (resp. |L( f ⊗χ,1/2)|6 1

log2 q
), we get C 6C1 +C2 with

C16
1

log q
(M 4( f ; q))1/2

(
1

q −1

∑
χ (mod q)

|M(χ;L)|2
)1/2

¿λ,λ′
1

(log q)1/2

by (7.7) and (7.5). Finally, using again Theorem 5, we have

C26
1

log2(q)

(
1

q −1

∑
χ (mod q)

|M( f ⊗χ;L′)|2
)1/2 (

1

q −1

∑∗
χ (mod q)

∣∣L (
χ, 1

2

)
M(χ;L)

∣∣2

)1/2

6
1

log2 q

(
1

q −1

∑
χ (mod q)

|M( f ⊗χ;L′)|2
)1/2

M 4(q)1/4

¿λ
1

log2(q)

(
1

q −1

∑
χ (mod q)

|M( f ⊗χ;L′)|2
)1/2

,

with
1

q −1

∑
χ (mod q)

|M( f ⊗χ;L′)|26 ∑
`≡`′ (mod q)

`,`′6L′

τ(`)τ(`′)
(``′)1/2

= ∑
`6L′

τ(`)2

`
¿ log3 L′.

Hence,

C2 =Oλ′,λ

(
1

log(q)1/2

)
,
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7.3. Proof of Theorem 2

and the rest of the proof is exactly the same as in the previous case.

Remark 7.2. Let f be a primitive Hecke cusp form of prime level q satisfying the Ramanujan-

Petersson conjecture. The formula (0.11) could be used to prove simultaneous non-vanishing

for L( f ⊗χ, 1
2 )L(χ, 1

2 ) as χ runs over non trivial Dirichlet characters modulo q provided that it

is possible to evaluate a second twisted moment of the form

1

q −1

∑
χ (mod q)

χ 6=1

∣∣L (
f ⊗χ, 1

2

)∣∣2
χ(`1)χ(`2),

where (`1,`2) = 1 and are coprime with q . An asymptotic formula for this moment is given in

[5] in the special case where the level is 1 and `1 = `2 = 1 and for general (`1,`2) = 1 in [6] (also

for level 1). The principal difficulty here is that since the level is q , we have the solve a shifted

convolution problem of the shape∑∑
`1n−`2m=hq

λ f (n)λ f (m)W1

( n

N

)
W2

( m

M

)
,

for Hecke eigenvalues λ f (n) of level q .
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