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Abstract

Adversarial learning is an emergent technique that provides better security to machine learn-

ing systems by deliberately protecting them against specific vulnerabilities of the learning

algorithms. Many adversarial learning problems can be cast equivalently as distributionally

robust optimization problems that hedge against the least favorable probability distribution

in a certain ambiguity set.

The main objectives of this thesis center around the development of novel analytics toolboxes

using advanced probability and statistics machinery under the distributionally robust op-

timization/adversarial learning framework. Using a type-2 Wasserstein ambiguity set and

its Gelbrich hull, which constitutes a conservative outer approximation, we propose new

solutions with strong performance guarantees to several problems in statistical learning and

risk management, while at the same time mitingating the curse of dimensionality inherent to

these problems.

The first chapter proposes a distributionally robust inverse covariance estimator that mini-

mizes the worst-case Stein’s loss. The optimal estimator admits a closed-form representation

and exhibits many desirable properties, none of which are imposed ad hoc but arise naturally

from the distributionally robust optimization approach. The optimal estimator is closely

related to a nonlinear eigenvalue shrinkage estimator. For this reason we refer to it as the

Wasserstein shrinkage estimator. Furthermore, the Wasserstein shrinkage estimator can also

be interpreted as a robust maximum likelihood estimator.

The second chapter proposes a distributionally robust minimum mean square error estimator.

Under a mild assumption on the nominal distribution of the uncertain data, we show that

the optimal estimator is an affine function of the observations, which can be constructed effi-

ciently using a first-order optimization method to solve the underlying semidefinite program.

The third chapter studies distributionally robust risk measures under the Gelbrich hull ambi-

guity set, which is an outer approximation of the Wasserstein ambiguity set. We prove that

the robustified Gelbrich risk of many popular law-invariant risk measures admit a closed

form expression. The result is extended to provide tractable reformulations for the worst-case

expected loss as well as the value-at-risk of nonlinear portfolios.
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Zusammenfassung
Gegnerisches Lernen (adversarial learning) bezeichnet eine Methodik des Maschinellen Ler-

nens, die gezielt die Schwachstellen der lernenden Systeme absichert. Viele dieser Methoden

können als ein robustes Optimierungsproblem bezüglich Verteilungen (distributionally ro-

bust optimization problem) formuliert werden, welche sich gegenüber der ungünstigsten

Wahrscheinlichkeitsverteilung einer spezifischen Unsicherheitsmenge absichern.

Das Hauptziel dieser Dissertation ist die Entwicklung von neuen analytischen Techniken

zur Berechnung und Beschreibung der erwähnten Optimierungsprobleme anhand von sta-

tistischen und wahrscheinlichkeitstheoretischen Ansätzen. Wir stellen neue, mit starken

Garantien ausgestattete Lösungen zu verschiedenen Problemen des Statistischen Lernens

und des Risiko-Managements vor. Diese Lösungen werden mit Hilfe einer Wasserstein typ-2

Unsicherheitsmenge und ihrer sogenannten Gelbrich-Hülle, d.h. einer konservative Approxi-

mation der Unsicherheitsmenge, hergeleitet. Gleichzeitig zeigen wir, dass diese Lösungen den

sogenannten Fluch der Dimensionen (curse of dimensionality) elegant umgehen.

Im ersten Kapitel beschreiben wir einen gegen die zugrundeliegende Wahrscheinlichkeits-

verteilung robusten Schätzer für die inverse Kovarianz, welcher die Steinsche Verlustfunk-

tion im ungünstigsten Fall minimiert. Wir zeigen, dass dieser optimale Schätzer analytisch

berechnet warden kann und viele begehrenswerte Eigenschaften besitzt. Diese Eigenschaf-

ten entstammen der robusten Betrachtungsweise und werden in keiner Weise als Bedin-

gung vorausgesetzt werden. Der beschriebene optimale Schätzer ist eng verwandt mit dem

nichtlinearen Schrumpfschätzer (shrinkage estimator). Deshalb nennen wir ihn Wasserstein

Schrumpfschätzer. Der Wasserstein Schrumpfschätzer kann des Weiteren als ein robuster

Maximum-Likelihood-Schätzer interpretiert werden.

Das zweite Kapitel befasst sich mit einem robusten Schätzer zur minimalen mittleren quadra-

tischen Abweichung. Unter schwachen Annahmen über die nominale Verteilung unbekannter

Daten zeigen wir, dass dass der optimale Schätzer durch eine affine Funktion der Beobachtun-

gen beschrieben wird, welche mit Hilfe einer Optimierungsmethode erster Ordnung für das

zugrundeliegende Semidefinite Programm effizient berechnet werden kann.

Das dritte Kapitel untersucht robuste Risikomaße, bezüglich aller Verteilungen in einer

Gelbrich-Hülle als Unsicherheitsmenge. Wir beweisen, dass die robuste Version vieler bekann-

ter und verteilungsinvarianter Risikomaße eine geschlossene Darstellung hat. Wir verallge-

meinern dieses Ergebnis, um eine effizient lösbare Formulierung des erwarteten Verlustes im

ungünstigsten Fall und des “Werts-im-Risiko” (Value-at-Risk) eines nichtlinearen Portfolios

herzuleiten.
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Introduction

The beginning is the most important part of the work.

— Plato

Many decision problems in science, engineering and economics are affected by uncertain

parameters ξ with probability distribution P. Usually, the complex decision making process

is mathematically captured as an optimization model whose aim is to find the best decision

which minimizes a certain risk index. The risk index radically depends on the decision chosen

and the distribution P of the random vector ξ. Unfortunately, P is fundamentally unknown

in practice, and we lack an important input parameter for the decision problem. However,

P may be indirectly observable through training samples drawn independently from P. In

addition, some structural properties of Pmay be known. For example, if the random vector

represents a vector of uncertain prices, then Pmust be supported on the nonnegative orthant.

Alternatively, P may be known to display certain symmetry or unimodality properties, or it

may even be known to belong to some parametric distribution family.

If the true distribution P is unknown, it could be replaced with a nominal distribution P̂

estimated from the training samples in the decision problem. Note that unlike P, the nominal

distribution P̂ is accessible as it is constructed from observable quantities. Therefore, the

decision problems under the nominal distribution P̂ are at least in principle solvable. On

the downside, even if the most sophisticated statistical tools are deployed, the nominal dis-

tribution P̂ will invariably differ from the unknown true distribution P that generated the

training samples. Moreover, if P̂ is used instead of P, the solutions of the decision problem

1



Introduction

under the nominal distribution P̂ are likely to inherit any estimation errors in P̂. In the context

of financial portfolio theory it has even been observed that estimation errors in the input

parameters of an optimization problem are often amplified by the optimization [27, 116]. To

make things worse, one can generally show that even if the distributional input parameters of

a decision problem are unbiased, the optimization results tend to be optimistically biased.

Thus, implementing the optimal decisions leads to disappointment in out-of-sample tests. In

decision analysis this phenomenon is sometimes termed the optimizer’s curse [157], and in

stochastic optimization it is referred to as the optimization bias [37, 153].

Ideally, to mitigate this issue, one should construct an estimator P̂ that is close to the un-

known true distribution Pwith high confidence. Unfortunately, the accuracy of the nominal

distribution P̂ cannot be increased beyond some fundamental limit by tuning the estima-

tor. The only remaining option to reduce the estimation error is to increase the sample size,

which may be expensive or impossible. Indeed, additional training samples may only become

available in the future. Thus, the optimizer’s curse is fundamental and cannot be eliminated.

However, once the potential to improve the estimator P̂ is exhausted, it may still be possible

to alleviate the optimizer’s curse by altering the decision problems directly. Specifically, we

propose here to robustify these problems against the uncertainty about the true distribu-

tion P. Distributional uncertainty is often referred to as ambiguity or Knightian uncertainty

and is conveniently captured by an ambiguity set, that is, an uncertainty set in the space of

probability distributions.

This thesis consider the distributionally robust decision problem that seeks decisions having

minimum risk under the most adverse distributions in the ambiguity set. Intuitively, the

distributionally robust decision problem can thus be viewed as a zero-sum game, where

the decision-maker first selects a decision with the goal to minimize the risk, in response to

which some fictitious adversary or ‘nature’ selects a distribution from within the ambiguity

set with the goal to maximize the risk. The hope is that by minimizing the worst-case risk,

we actually push down the risk under all distributions in the ambiguity set—in particular

under the unknown true distribution P, which is contained in the ambiguity set if the radius

is large enough. Thus, there is reason to hope that the solutions of distributionally robust

optimization problems with carefully calibrated ambiguity sets display low out-of-sample risk.

Recently, the Wasserstein distance emerges as an appealing option to construct the ambiguity

set [100]. The distributionally robust optimization problems in general and distributionally

robust optimization problems with Wasserstein ambiguity sets in particular are attractive for

a multitude of diverse reasons.

• Fidelity: Distributionally robust models are more ‘honest’ than their nominal counterparts

as they acknowledge the presence of distributional uncertainty. They also benefit from

information about the type and magnitude of the estimation errors, which is conveniently

encoded in the geometry and size of the ambiguity set.

• Managing expectations: Due to the optimizer’s curse, the solutions of nominal decision

2



Introduction

problems equipped with noisy estimators P̂ display an optimistic in-sample risk, which

cannot be realized out of sample. In contrast, the solutions of distributionally robust

decision problems are guaranteed to display an out-of-sample risk that falls below the

worst-case optimal risk whenever the ambiguity set contains the unknown true distribution.

Thus, nominal decision problems over-promise and under-deliver, while distributionally

robust decision problems under-promise and over-deliver.

• Computational tractability: The distributionally robust problem can often be reformu-

lated as (or tightly approximated by) finite convex programs that are solvable in polynomial

time using off-the-shelf numerical solvers.

• Performance guarantees: For judiciously calibrated ambiguity sets, it can be proven that

the worst-case optimal risk for any fixed sample size provides an upper confidence bound

on the out-of-sample risk attained by the optimizers of the distributionally robust decision

problem (finite sample guarantee) and that the optimizers of the distributionally robust

decision problem converge almost surely to an optimizer with perfect knowledge of P as

the number of training samples tends to infinity (asymptotic guarantee).

• Regularization by robustification: The optimizer’s curse is reminiscent of overfitting phe-

nomena that plague most statistical learning models. One can show that distributionally

robust learning models equipped with a Wasserstein ambiguity set are often equivalent

to regularized learning models that minimize the sum of a nominal objective and a norm

term that penalizes hypothesis complexity. Similarly, one can show that some distribu-

tionally robust maximum likelihood estimation models produce shrinkage estimators.

Thus, Wasserstein distributional robustness offers new probabilistic interpretations for

popular regularization techniques. The empirical success of regularization methods in

statistics fuels hope that Wasserstein distributionally robust models can effectively combat

the optimizer’s curse across many application areas.

• Anticipating black swans: If uncertainty is modeled by the empirical distribution, then

the nominal decision problem evaluates the admissible loss functions only at the training

samples. However, possible future uncertainty realizations that differ from all training

samples but could have devastating consequences (‘black swans’) are ignored. If the

empirical distribution may be perturbed within a Wasserstein ball with a positive radius, on

the other hand, then (possibly small amounts of) probability mass can be moved anywhere

in the support set of the random vector. Thus, the Wasserstein distributionally robust

decision problem faithfully anticipates the possibility of black swans. We emphasize that

all distributions in a Kullback-Leibler divergence ball must be absolutely continuous with

respect to the nominal distribution, which implies that the corresponding distributionally

robust decision problems ignore the possibility of black swans.

• Axiomatic justification: Adopting a distributionally robust approach when facing un-

certainty can be justified axiomatically. Under mild technical conditions, the decisions

must be ranked by their corresponding worst-case risk over the ambiguity set of P [38,

Theorem 12].
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• Optimality principle: Data-driven optimization aims to use the training data directly

to construct an estimator for the risk index under the unknown true distribution P (a

predictor) and a decision that minimizes this predictor (a prescriptor) without the detour

of constructing an estimator for P. It has been shown that optimal predictors and the

corresponding prescriptors can be constructed by solving a meta-optimization model

that minimizes the in-sample risk of the predictor-prescriptor pairs subject to constraints

guaranteeing that the in-sample risk is actually attainable out of sample. It has been

shown that this meta-optimization problem admits a unique solution: the best predictor-

prescriptor pair is obtained by solving a distributionally robust optimization problem over

all distributions in some neighborhood of the empirical distribution [132, Theorem 7].

Thus, if one aims to transform training data to decisions, it is in some precise sense optimal

to do this by solving a data-driven distributionally robust optimization problem.

Distributionally robust optimization models with Wasserstein ambiguity sets were introduced

in [137]. Reformulations of these models as nonconvex optimization problems as well as initial

attempts to solve these problems via algorithms from global optimization are reported in [175]

and [136, § 7.1]. Convex reformulations and approximations were discovered in [118, 178] and

significantly generalized in [16, 68].

Ideas from distributionally robust optimization also permeate several other areas of statistics

and machine learning, ranging from hypothesis testing [69], inverse optimization [119] to

classification and regression [151, 150]. At the technical level, distributionally robust optimiza-

tion is the backbone of various adversarial learning techniques such as generative adversarial

networks [5, 76] and auto-encoders [164].

Contributions and Structure of the Thesis

The main contributions of this thesis are divided into three self-contained chapters organized

in the chronological order of discovery.

In Chapter 1 we revisit the problem of estimating the inverse covariance matrix of a random

vector from i.i.d. sampled data from the lens of distributionally robust optimization. Using a

coherent robustification of the maximum likelihood estimation problem for Gaussian random

vector using the Wasserstein type-2 ambiguity set, we will show that the optimal robust esti-

mator is a nonlinear shrinkage estimator. We also develop a Newton-type numerical method

to solve the robust maximum likelihood estimation problem when there are conditional inde-

pendence constraints in the estimation process. The content of this chapter is condensed in

the following paper.

(i) V.A. Nguyen, D. Kuhn, and P. Mohajerin Esfahani. Distributionally Robust Inverse Co-

variance Estimation: The Wasserstein Shrinkage Estimator. Minor revision at Operations

Research - Resubmitted.
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In Chapter 2 we revisit the fundamental problem of minimum mean square error estimation.

We show that if the nominal distribution is a Gaussian distribution, the optimal estimator is

an affine function of the observations. Moreover, we prove that the optimal estimator can be

recovered from the optimal solution of a linear semidefinite program. The result can be further

extended to the case of elliptical nominal distribution. For large scale estimation problem we

develop a first-order Frank-Wolfe method which enjoys linear convergence guarantees. The

content of this chapter is presented in the following paper.

(ii) V.A. Nguyen, S. Shafieezadeh-Abadeh, D. Kuhn, and P. Mohajerin Esfahani. Bridging

Bayesian and Minimax Mean Square Error Estimation via Wasserstein Distributionally

Robust Optimization. Working paper.

In Chapter 3 we introduce the Gelbrich hull that exploits only the information about the first

two moments of the nominal distribution and it is provably the superset of the Wasserstein
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The enchanting charms of this sublime science reveal themselves in all their beauty only to

those who have the courage to go deeply into it.

— Carl Friedrich Gauss





1 Distributionally Robust Inverse Co-
variance Estimation: The Wasserstein
Shrinkage Estimator

It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic

elements as simple and as few as possible without having to surrender the adequate

representation of a single datum of experience.

— Albert Einstein

We introduce a distributionally robust maximum likelihood estimation model with a Wasser-

stein ambiguity set to infer the inverse covariance matrix of a p-dimensional Gaussian random

vector from n independent samples. The proposed model minimizes the worst case (maxi-

mum) of Stein’s loss across all normal reference distributions within a prescribed Wasserstein

distance from the normal distribution characterized by the sample mean and the sample

covariance matrix. We prove that this estimation problem is equivalent to a semidefinite

program that is tractable in theory but beyond the reach of general purpose solvers for prac-

tically relevant problem dimensions p. In the absence of any prior structural information,

the estimation problem has an analytical solution that is naturally interpreted as a nonlinear

shrinkage estimator. Besides being invertible and well-conditioned even for p > n, the new

shrinkage estimator is rotation-equivariant and preserves the order of the eigenvalues of the

sample covariance matrix. These desirable properties are not imposed ad hoc but emerge

naturally from the underlying distributionally robust optimization model. Finally, we develop

a sequential quadratic approximation algorithm for efficiently solving the general estimation

problem subject to conditional independence constraints typically encountered in Gaussian

graphical models.
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Wasserstein Shrinkage Estimator

1.1 Introduction

The covariance matrix Σ,EP[(ξ−EP[ξ])(ξ−EP[ξ])>] of a random vector ξ ∈Rp governed by

a distribution P collects basic information about the spreads of all individual components

and the linear dependencies among all pairs of components of ξ. The inverse Σ−1 of the

covariance matrix is called the precision matrix. This terminology captures the intuition that

a large spread reflects a low precision and vice versa. While the covariance matrix appears

in the formulations of many problems in engineering, science and economics, it is often the

precision matrix that emerges in their solutions. For example, the optimal classification rule

in linear discriminant analysis [60], the optimal investment portfolio in Markowitz’ celebrated

mean-variance model [115] or the optimal array vector of the beamforming problem in sig-

nal processing [48] all depend on the precision matrix. Moreover, the optimal fingerprint

method used to detect a multivariate climate change signal blurred by weather noise requires

knowledge of the climate vector’s precision matrix [142].

1.1.1 Background on Precision Matrix Estimation

If the distribution P of ξ is known, then the covariance matrix Σ and the precision matrix Σ−1

can at least principally be calculated in closed form. In practice, however,P is never known and

only indirectly observable through n independent training samples ξ̂1, . . . , ξ̂n from P. In this

setting,Σ andΣ−1 need to be estimated from the training data. Arguably the simplest estimator

for Σ is the sample covariance matrix Σ̂, 1
n

∑n
i=1(ξ̂i − µ̂)(ξ̂i − µ̂)>, where µ̂, 1

n

∑n
i=1 ξ̂i stands

for the sample mean. Note that µ̂ and Σ̂ simply represent the actual mean and covariance

matrix of the uniform distribution on the training samples. For later convenience, Σ̂ is defined

here without Bessel’s correction and thus constitutes a biased estimator.1 Moreover, as a sum

of n rank-1 matrices, Σ̂ is rank deficient in the big data regime (p > n). In this case, Σ̂ cannot be

inverted to obtain a precision matrix estimator, which is often the actual quantity of interest.

If ξ follows a normal distribution with unknown mean µ and precision matrix X Â 0, which we

will assume throughout the rest of the paper, then the log-likelihood function of the training

data can be expressed as

L̂ (µ, X ),−np

2
log(2π)+ n

2
logdet X − 1

2

n∑
i=1

(ξ̂i −µ)>X (ξ̂i −µ)

=−np

2
log(2π)+ n

2
logdet X − n

2
Tr

[
Σ̂X

]− n

2
(µ̂−µ)>X (µ̂−µ). (1.1)

Note that L̂ (µ, X ) is strictly concave in µ and X [18, Chapter 7] and depends on the training

samples only through the sample mean and the sample covariance matrix. It is clear from the

last expression that L̂ (µ, X ) is maximized by µ? = µ̂ for any fixed X . The maximum likelihood

estimator X? for the precision matrix is thus obtained by maximizing L̂ (µ̂, X ) over all X Â 0,

1An elementary calculation shows thatEPn [Σ̂] = n−1
n Σ.
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1.1. Introduction

which is tantamount to solving the convex program

inf
XÂ0

− logdet X +Tr
[
Σ̂X

]
. (1.2)

If Σ̂ is rank deficient, which necessarily happens for p > n, then problem (1.2) is unbounded.

Indeed, expressing the sample covariance matrix as Σ̂= RΛR> with R orthogonal andΛº 0

diagonal, we may set Xk = RΛk R> for any k ∈ N, where Λk Â 0 is the diagonal matrix with

(Λk )i i = 1 if λi > 0 and (Λk )i i = k if λi = 0. By construction, the objective value of Xk in (1.2)

tends to −∞ as k grows. If Σ̂ is invertible, on the other hand, then the first-order optimality

conditions can be solved analytically, showing that the minimum of problem (1.2) is attained at

X? = Σ̂−1. This implies that maximum likelihood estimation under normality simply recovers

the sample covariance matrix but fails to yield a precision matrix estimator for p > n.

Adding an `1-regularization term to its objective function guarantees that problem (1.2)

has a unique minimizer X? Â 0, which constitutes a proper (invertible) precision matrix

estimator [84]. Moreover, as the `1-norm represents the convex envelope of the cardinality

function on the unit hypercube, the `1-norm regularized maximum likelihood estimation

problem promotes sparse precision matrices that encode interpretable Gaussian graphical

models [6, 65]. Indeed, under the given normality assumption one can show that Xi j = 0 if

and only if the random variables ξi and ξ j are conditionally independent given {ξk }k∉{i , j } [102].

The sparsity pattern of the precision matrix X thus captures the conditional independence

structure of ξ.

In theory, the `1-norm regularized maximum likelihood estimation problem can be solved in

polynomial time via modern interior point algorithms. In practice, however, scalability to high

dimensions remains challenging due to the problem’s semidefinite nature, and larger problem

instances must be addressed with special-purpose methods such as the Newton-type QUIC

algorithm [84].

Instead of penalizing the `1-norm of the precision matrix, one may alternatively penalize its

inverse X −1 with the goal of promoting sparsity in the covariance matrix and thus controlling

the marginal independence structure of ξ [15]. Despite its attractive statistical properties, this

alternative model leads to a hard non-convex and non-smooth optimization problem, which

can only be solved approximately.

By the Fisher-Neyman factorization theorem, Σ̂ is a sufficient statistic for the true covariance

matrix Σ of a normally distributed random vector, that is, Σ̂ contains the same information

about Σ as the entire training dataset. Without any loss of generality, we may thus focus on

estimators that depend on the data only through Σ̂. If neither the covariance matrix Σ nor the

precision matrix Σ−1 are known to be sparse and if there is no prior information about the

orientation of their eigenvectors, it is reasonable to restrict attention to rotation equivariant

estimators. A precision matrix estimator X̂ (Σ̂) is called rotation equivariant if X̂ (RΣ̂R>) =
R X̂ (Σ̂)R> for any rotation matrix R. This definition requires that the estimator for the rotated

data coincides with the rotated estimator for the original data. One can show that rotation
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equivariant estimators have the same eigenvectors as the sample covariance matrix (see, e.g.,

[134, Lemma 5.3] for a simple proof) and are thus uniquely determined by their eigenvalues.

Hence, imposing rotation equivariance reduces the degrees of freedom from p(p +1)/2 to

p. Using an entropy loss function introduced in [90], Stein was the first to demonstrate that

superior covariance estimators in the sense of statistical decision theory can be constructed

by shrinking the eigenvalues of the sample covariance matrix [159, 160]. Unfortunately, his

proposed shrinkage transformation may alter the order of the eigenvalues and even undermine

the positive semidefiniteness of the resulting estimator when p > n, which necessitates an ad

hoc correction step involving an isotonic regression. Various refinements of this approach

are reported in [43, 79, 176] and the references therein, but most of these works focus on the

low-dimensional case when n ≥ p.

Jensen’s inequality suggests that the largest (smallest) eigenvalue of the sample covariance

matrix Σ̂ is biased upwards (downwards), which implies that Σ̂ tends to be ill-conditioned [169].

This effect is most pronounced for Σ≈ I . A promising shrinkage estimator for the covariance

matrix is thus obtained by forming a convex combination of the sample covariance matrix

and the identity matrix scaled by the average of the sample eigenvalues [105]. If its convex

weights are chosen optimally in view of the Frobenius risk, the resulting shrinkage estimator

can be shown to be both well-conditioned and more accurate than Σ̂. Alternative shrinkage

targets include the constant correlation model, which preserves the sample variances but

equalizes all pairwise correlations [104], the single index model, which assumes that each

random variable is explained by one systematic and one idiosyncratic risk factor [103], or the

diagonal matrix of the sample eigenvalues [166] etc.

The linear shrinkage estimators described above are computationally attractive because

evaluating convex combinations is cheap. Computing the corresponding precision matrix

estimators requires a matrix inversion and is therefore more expensive. We emphasize that

linear shrinkage estimators for the precision matrix itself, obtained by forming a cheap convex

combination of the inverse sample covariance matrix and a shrinkage target, are not available

in the big data regime when p > n and Σ̂ fails to be invertible.

More recently, insights from random matrix theory have motivated a new rotation equivariant

shrinkage estimator that applies an individualized shrinkage intensity to every sample eigen-

value [106]. While this nonlinear shrinkage estimator offers significant improvements over

linear shrinkage, its evaluation necessitates the solution of a hard nonconvex optimization

problem, which becomes cumbersome for large values of p. Alternative nonlinear shrinkage

estimators can be obtained by imposing an upper bound on the condition number of the

covariance matrix in the underlying maximum likelihood estimation problem [173].

Alternatively, multi-factor models familiar from the arbitrage pricing theory can be used to

approximate the covariance matrix by a sum of a low-rank and a diagonal component, both of

which have only few free parameters and are thus easier to estimate. Such a dimensionality

reduction leads to stable estimators [28, 58].
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1.1.2 Problem Statement and Contributions

This paper endeavors to develop a principled approach to precision matrix estimation, which

is inspired by recent advances in distributionally robust optimization [39, 73, 172]. For the sake

of argument, assume that the true distribution of ξ is given by P=N (µ0,Σ0), where Σ0 Â 0. If

µ0 and Σ0 were known, the quality of some estimators µ and X for µ0 and Σ−1
0 , respectively,

could conveniently be measured by Stein’s loss [90]

L(X ,µ),− logdet(Σ0X )+Tr
[
Σ0X

]+ (µ0 −µ)>X (µ0 −µ)−p

=− logdet X +EP
[
(ξ−µ)>X (ξ−µ)

]− logdetΣ0 −p, (1.3)

which is reminiscent of the log-likelihood function (1.1). It is easy to verify that Stein’s loss

is nonnegative for all µ ∈ Rp and X ∈Sp
+ and vanishes only at the true mean µ= µ0 and the

true precision matrix X =Σ−1
0 . Of course, we cannot minimize Stein’s loss directly because P is

unknown. As a naïve remedy, one could instead minimize an approximation of Stein’s loss

obtained by removing the (unknown but irrelevant) normalization constant − logdetΣ0 −p

and replacing P in (1.3) with the empirical distribution P̂n =N (µ̂, Σ̂). However, in doing so we

simply recover the standard maximum likelihood estimation problem, which is unbounded

for p > n and outputs the sample mean and the inverse sample covariance matrix for p ≤ n.

This motivates us to robustify the empirical loss minimization problem by exploiting that P̂n

is close to P in Wasserstein distance.

Definition 1.1 (Wasserstein distance). The type-2 Wasserstein distance between two arbitrary

distributions P1 and P2 on Rp with finite second moments is defined as

W(P1,P2), inf
Π

{(∫
Rp×Rp

∥∥ξ1 −ξ2
∥∥2
Π(dξ1,dξ2)

) 1
2

:
Π is a joint distribution of ξ1 and ξ2

with marginals P1 and P2, respectively

}
.

The squared Wasserstein distance between P1 and P2 can be interpreted as the cost of moving

the distribution P1 to the distribution P2, where ‖ξ1 −ξ2‖2 quantifies the cost of moving unit

mass from ξ1 to ξ2.

A central limit type theorem for the Wasserstein distance between empirical normal distribu-

tions implies that n ·W(P̂n ,P)2 converges weakly to a quadratic functional of independent

normal random variables as the number n of training samples tends to infinity [143, The-

orem 2.3]. We may thus conclude that for every η ∈ (0,1) there exists q(η) > 0 such that

Pn[W(P̂n ,P) ≤ q(η)n− 1
2 ] ≥ 1−η for all n large enough. In the following we denote by N p the

family of all normal distributions on Rp and by

Bρ = {Q ∈N p :W(Q, P̂n) ≤ ρ}

the ambiguity set of all normal distributions whose Wasserstein distance to P̂n is at most ρ ≥ 0.

Note that Bρ depends on the unknown true distribution P only through the training data and,

for ρ ≥ q(η)n− 1
2 , contains P with confidence 1−η asymptotically as n tends to infinity. It is
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thus natural to formulate a distributionally robust estimation problem for the precision matrix

that minimizes Stein’s loss—modulo an irrelevant normalization constant—in the worst case

across all reference distributionsQ ∈Bρ .

J (µ̂, Σ̂), inf
µ∈Rp , X∈X

{
− logdet X + sup

Q∈Bρ
EQ

[
(ξ−µ)>X (ξ−µ)

]}
(1.4)

Here, X ⊆Sp
++ denotes the set of admissible precision matrices. In the absence of any prior

structural information, the only requirement is that X be positive semidefinite and invertible,

in which case X =Sp
++. Known conditional independence relationships impose a sparsity

pattern on X , which is easily enforced through linear equality constraints in X . By adopting

a worst-case perspective, we hope that the minimizers of (1.4) will have low Stein’s loss with

respect to all distributions in Bρ including the unknown true distribution P. As Stein’s loss

with respect to the empirical distribution is proportional to the log-likelihood function (1.1),

problem (1.4) can also be interpreted as a robust maximum likelihood estimation problem

that hedges against perturbations in the training samples. As we will show below, this robusti-

fication is tractable and has a regularizing effect.

Recently it has been discovered that distributionally robust optimization models with Wasser-

stein ambiguity sets centered at discrete distributions on Rp (and without any normality

restrictions) are often equivalent to tractable convex programs [118, 178]. Extensions of these

results to general Polish spaces are reported in [16, 68]. The explicit convex reformulations of

Wasserstein distributionally robust models have not only facilitated efficient solution proce-

dures but have also revealed insightful connections between distributional robustness and

regularization in machine learning. Indeed, many classical regularization schemes of super-

vised learning such as the Lasso method can be explained by a Wasserstein distributionally

robust model. This link was first discovered in the context of logistic regression [151] and

later extended to other popular regression and classification models [16, 150] and even to

generative adversarial networks in deep learning [67].

Model (1.4) differs fundamentally from all existing distributionally robust optimization models

in that the ambiguity set contains only normal distributions. As the family of normal distribu-

tions fails to be closed under mixtures, the ambiguity set is thus nonconvex. In the remainder

of the paper we devise efficient solution methods for problem (1.4), and we investigate the

properties of the resulting precision matrix estimator.

The main contributions of this paper can be summarized as follows.

• Leveraging an analytical formula for the Wasserstein distance between two normal distri-

butions derived in [72], we prove that the distributionally robust estimation problem (1.4)

is equivalent to a tractable semidefinite program—despite the nonconvex nature of the

underlying ambiguity set.

• We prove that problem (1.4) and its unique minimizer depend on the training data only
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through Σ̂ (but not through µ̂), which is reassuring because Σ̂ is a sufficient statistic for the

precision matrix.

• In the absence of any structural information, we demonstrate that problem (1.4) has an

analytical solution that is naturally interpreted as a nonlinear shrinkage estimator. Indeed,

the optimal precision matrix estimator shares the eigenvectors of the sample covariance

matrix, and as the radius ρ of the Wasserstein ambiguity set grows, its eigenvalues are

shrunk towards 0 while preserving their order. At the same time, the condition number of

the optimal estimator steadily improves and eventually converges to 1 even for p > n. These

desirable properties are not enforced ex ante but emerge naturally from the underlying

distributionally robust optimization model.

• In the presence of conditional independence constraints, the semidefinite program equiva-

lent to (1.4) is beyond the reach of general purpose solvers for practically relevant problem

dimensions p. We thus devise an efficient sequential quadratic approximation method

reminiscent of the QUIC algorithm [84], which can solve instances of problem (1.4) with

p . 104 on a standard PC.

• We derive an analytical formula for the extremal distribution that attains the supremum

in (1.4).

An important aspect of the distributionally robust estimation problem (1.4) is the choice of

the radius ρ ≥ 0 of the ambiguity set Bρ . Ideally, this hyperparameter should be tuned so as

to minimize the distance between the precision matrix estimator X?(ρ) that solves (1.4) and

the unknown true precision matrix Σ−1. While this paper was under review, Blanchet and

Si managed to prove that if distances in Sp
+ are measured via Stein’s loss function and there

are no conditional independence constraints, then the Wasserstein radius that minimizes

the expected distance between the estimator X?(ρ) and the true precision matrix Σ−1 scales

linearly with the sample size as n−1, where the proportionality constant is a function of the

true covariance matrix that is known in closed form [17, Theorem 1]. This result is surprising

vis-à-vis the central limit type theorem [143, Theorem 2.3], which suggests a canonical square

root scaling of the form n− 1
2 . In practice, ρ should be calibrated in view of the training samples

ξ̂1, . . . , ξ̂n , for example via cross-validation using application-specific performance measures.

Concrete examples of different cross-validation schemes are described in Section 1.6.

The paper is structured as follows. Section 1.2 demonstrates that the distributionally robust

estimation problem (1.4) admits an exact reformulation as a tractable semidefinite program.

Section 1.3 derives an analytical solution of this semidefinite program in the absence of any

structural information, while Section 1.4 develops an efficient sequential quadratic approxi-

mation algorithm for the problem with conditional independence constraints. The extremal

distribution that attains the worst-case expectation in (1.4) is characterized in Section 1.5, and

numerical experiments based on synthetic and real data are reported in Section 1.6.

Notation. For any A ∈Rp×p we use Tr
[

A
]

to denote the trace and ‖A‖ =
√

Tr
[

A>A
]

to denote
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the Frobenius norm of A. By slight abuse of notation, the Euclidean norm of v ∈ Rp is also

denoted by ‖v‖. Moreover, I stands for the identity matrix. Its dimension is usually evident

from the context. For any A,B ∈Rp×p , we use
〈

A,B
〉= Tr

[
A>B

]
to denote the inner product

and A⊗B ∈Rp2×p2
to denote the Kronecker product of A and B . The space of all symmetric

matrices in Rp×p is denoted by Sp . We use Sp
+ (Sp

++) to represent the cone of symmetric

positive semidefinite (positive definite) matrices in Sp . For any A,B ∈Sp , the relation A º B

(A Â B) means that A−B ∈Sp
+ (A−B ∈Sp

++).

1.2 Tractable Reformulation

Throughout this paper we assume that the random vector ξ ∈Rp is normally distributed. This

is in line with the common practice in statistics and in the natural and social sciences, whereby

normal distributions are routinely used to model random vectors whose distributions are

unknown. The normality assumption is often justified by the central limit theorem, which

suggests that random vectors influenced by many small and unrelated disturbances are

approximately normally distributed. Moreover, the normal distribution maximizes entropy

across all distributions with given first- and second-order moments, and as such it constitutes

the least prejudiced distribution compatible with a given mean vector and covariance matrix.

1.2.1 Preliminaries

In order to facilitate rigorous statements, we first provide a formal definition of normal distri-

butions.

Definition 1.2 (Normal distributions). We say that P is a normal distribution on Rp with mean

µ ∈ Rp and covariance matrix Σ ∈ Sp
+, that is, P = N (µ,Σ), if P is supported on supp(P) =

{µ+Ev : v ∈ Rk }, and if the density function of P with respect to the Lebesgue measure on

supp(P) is given by

%P(ξ),
1√

(2π)k det(D)
e−(ξ−µ)>ED−1E>(ξ−µ),

where k = rank(Σ), D ∈ Sk++ is the diagonal matrix of the positive eigenvalues of Σ, and E ∈
Rp×k is the matrix whose columns correspond to the orthonormal eigenvectors of the positive

eigenvalues of Σ. The family of all normal distributions on Rp is denoted by N p , while the

subfamily of all distributions in N p with zero means and arbitrary covariance matrices is

denoted by N
p

0 .

Definition 1.2 explicitly allows for degenerate normal distributions with rank deficient covari-

ance matrices.

The normality assumption also has distinct computational advantages. In fact, while the

Wasserstein distance between two generic distributions is only given implicitly as the solution

of a mass transportation problem, the Wasserstein distance between two normal distributions
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is known in closed form. It can be expressed explicitly as a function of the mean vectors and

covariance matrices of the two distributions.

Proposition 1.3 (Givens and Shortt [72, Proposition 7]). The type-2 Wasserstein distance be-

tween two normal distributions P1 = N (µ1,Σ1) and P2 = N (µ2,Σ2) with µ1,µ2 ∈ Rp and

Σ1,Σ2 ∈Sp
+ amounts to

W(P1,P2) =
√∥∥µ1 −µ2

∥∥2 +Tr
[
Σ1

]+Tr
[
Σ2

]−2Tr
[√√

Σ2Σ1

√
Σ2

]
.

If P1 and P2 share the same mean vector (e.g., if µ1 = µ2 = 0), then the Wasserstein distance

W(P1,P2) reduces to a function of the covariance matrices Σ1 and Σ2 only, thereby inducing a

metric on the cone Sp
+.

Definition 1.4 (Induced metric on Sp
+). LetWS :Sp

+×Sp
+ →R+ be the metric on Sp

+ induced

by the type-2 Wasserstein metric on the family of normal distributions with equal means. Thus,

for all Σ1,Σ2 ∈Sp
+ we set

WS(Σ1,Σ2),

√
Tr

[
Σ1

]+Tr
[
Σ2

]−2Tr
[√√

Σ2Σ1

√
Σ2

]
.

The definition of WS implies via Proposition 1.3 that W(P1,P2) =WS(Σ1,Σ2) for all P1 =
N (µ1,Σ1) and P2 = N (µ2,Σ2) with µ1 = µ2. Thanks to its interpretation as the restriction

of W to the space of normal distributions with a fixed mean, it is easy to verify that WS is

symmetric and positive definite and satisfies the triangle inequality. In other words, WS

inherits the property of being a metric fromW.

Corollary 1.5 (Commuting covariance matrices). If Σ1,Σ2 ∈Sp
+ commute (Σ1Σ2 =Σ2Σ1), then

the induced Wasserstein distanceWS simplifies to the trace norm between the square roots of

Σ1 and Σ2, that is,

WS(Σ1,Σ2) = ∥∥√
Σ1 −

√
Σ2

∥∥.

Proof. The commutativity of Σ1 and Σ2 implies that
p
Σ2Σ1

p
Σ2 =Σ1Σ2, whereby

WS(Σ1,Σ2) =
√

Tr
[
Σ1

]+Tr
[
Σ2

]−2Tr
[√

Σ1Σ2
]=√

Tr
[(√

Σ1 −
√
Σ2

)2 ]= ∥∥√
Σ1 −

√
Σ2

∥∥.

Thus, the claim follows.

Proposition 1.3 reveals that the Wasserstein distance between any two (possibly degenerate)

normal distributions is finite. In contrast, the Kullback-Leibler divergence between degenerate

and non-degenerate normal distributions is infinite.

Remark 1.6 (Kullback-Leibler divergence between normal distributions). A simple calculation
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shows that the Kullback-Leibler divergence from P2 =N (µ2,Σ2) to P1 =N (µ1,Σ1) amounts to

DKL(P1‖P2) = 1

2

[
(µ2 −µ1)>Σ−1

2 (µ2 −µ1)+Tr
[
Σ1Σ

−1
2

]−p − logdetΣ1 + logdetΣ2
]

whenever µ1,µ2 ∈Rp and Σ1,Σ2 ∈Sp
++. If either P1 or P2 is degenerate (that is, if Σ1 is singular

and Σ2 invertible or vice versa), then P1 fails to be absolutely continuous with respect to P2,

which implies that DKL(P1‖P2) =∞. Moreover, from the above formula it is easy to verify that

DKL(P1‖P2) diverges if either Σ1 or Σ2 tends to a singular matrix.

In the big data regime (p > n) the sample covariance matrix Σ̂ is singular even if the samples

are drawn from a non-degenerate normal distribution P=N (µ,Σ) with Σ ∈Sp
++. In this case,

the Kullback-Leibler distance between the empirical distribution P̂=N (µ̂, Σ̂) and P is infinite,

and thus P̂ and P are perceived as maximally dissimilar despite their intimate relation. In

contrast, their Wasserstein distance is finite.

1.2.2 Precision Matrix Estimation when the Mean Vector is Known

Before investigating the general problem (1.4), we first address a simpler problem variant

where the true mean µ0 of ξ is known to vanish. Thus, we temporarily assume that ξ follows

N (0,Σ0). In this setting, it makes sense to focus on the modified ambiguity set B0
ρ , {Q ∈

N
p

0 : W(Q, P̂) ≤ ρ}, which contains all normal distributions with zero mean that have a

Wasserstein distance of at most ρ ≥ 0 from the empirical distribution P̂=N (0, Σ̂). Under these

assumptions, the estimation problem (1.4) thus simplifies to

J (Σ̂), inf
X∈X

{
− logdet X + sup

Q∈B0
ρ

EQ[
〈
ξξ>, X

〉
]

}
. (1.5)

We are now ready to state the first main result of this section.

Theorem 1.7 (Convex reformulation). For any fixed ρ > 0 and Σ̂º 0, the simplified distribu-

tionally robust estimation problem (1.5) is equivalent to

J (Σ̂) =
 inf

X ,γ
− logdet X +γ(

ρ2 −Tr
[
Σ̂

])+γ2
〈

(γI −X )−1, Σ̂
〉

s. t. γI Â X Â 0, X ∈X .
(1.6)

Moreover, the optimal value function J (Σ̂) is continuous in Σ̂ ∈S+.

The proof of Theorem 1.7 relies on several auxiliary results. A main ingredient to derive the

convex program (1.6) is a reformulation of the worst-case expectation function g :S+×S+ →R

defined through

g (Σ̂, X ), sup
Q∈B0

ρ

EQ[
〈
ξξ>, X

〉
] . (1.7)
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In Proposition 1.9 below we will demonstrate that g (Σ̂, X ) is continuous and coincides with

the optimal value of an explicit semidefinite program, a result which depends on the following

preparatory lemma.

Lemma 1.8 (Continuity properties of partial infima). Consider a function ϕ : E ×Γ→R on two

normed spaces E and Γ, and define the partial infimum with respect to γ asΦ(ε), infγ∈Γϕ(ε,γ)

for every ε ∈ E .

(i) If ϕ(ε,γ) is continuous in ε at ε0 ∈ E for every γ ∈ Γ, thenΦ(ε) is upper-semicontinuous at

ε0.

(ii) If ϕ(ε,γ) is calm from below at ε0 ∈ E uniformly in γ ∈ Γ, that is, if there exists a con-

stant L ≥ 0 such that ϕ(ε,γ)−ϕ(ε0,γ) ≥ −L‖ε0 − ε‖ for all γ ∈ Γ, then Φ(ε) is lower-

semicontinuous at ε0.

Proof. As for assertion (i), we have

limsup
ε→ε0

Φ(ε) = inf
δ>0

sup
‖ε−ε0‖≤δ

Φ(ε) = inf
δ>0

sup
‖ε−ε0‖≤δ

inf
γ∈Γ

ϕ(ε,γ)

≤ inf
γ∈Γ

inf
δ>0

sup
‖ε−ε0‖≤δ

ϕ(ε,γ) = inf
γ∈Γ

limsup
ε→ε0

ϕ(ε,γ) = inf
γ∈Γ

ϕ(ε0,γ) =Φ(ε0),

where the inequality follows from interchanging the infimum and supremum operators,

while the penultimate equality in the last line relies on the continuity assumption. As for

assertion (ii), note that

liminf
ε→ε0

Φ(ε) = sup
δ>0

inf
‖ε−ε0‖≤δ

Φ(ε) = sup
δ>0

inf
‖ε−ε0‖≤δ

inf
γ∈Γ

ϕ(ε,γ) = sup
δ>0

inf
γ∈Γ

inf
‖ε−ε0‖≤δ

ϕ(ε,γ)

≥ sup
δ>0

inf
γ∈Γ

inf
‖ε−ε0‖≤δ

(
ϕ(ε0,γ)−L‖ε0 −ε‖

)= sup
δ>0

inf
γ∈Γ

(
ϕ(ε0,γ)−Lδ

)
= inf
γ∈Γ

ϕ(ε0,γ) =Φ(ε0),

where the inequality in the second line holds due to the calmness assumption.

Proposition 1.9 (Worst-case expectation function). For any fixed ρ > 0, Σ̂º 0 and X Â 0, the

worst-case expectation g (Σ̂, X ) defined in (1.7) coincides with the optimal value of the tractable

semidefinite program

inf
γ

γ
(
ρ2 −Tr

[
Σ̂

])+γ2
〈

(γI −X )−1, Σ̂
〉

s. t. γI Â X .
(1.8)

Moreover, the optimal value function g (Σ̂, X ) is continuous in (Σ̂, X ) ∈Sp
+×Sp

++.

Proof. Using the definitions of the worst-case expectation g (Σ̂, X ) and the ambiguity set B0
ρ ,
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we find

g (Σ̂, X ) = sup
Q∈B0

ρ

〈
EQ[ξξ>], X

〉= sup
S∈Sp

+

{〈
S, X

〉
:WS(S, Σ̂) ≤ ρ}

,

where the second equality holds because the metric WS on S
p
+ is induced by the type-2

Wasserstein metricW on N
p

0 , meaning that there is a one-to-one correspondence between

distributions Q ∈ N
p

0 with W(Q, P̂) ≤ ρ and covariance matrices S ∈ Sp
+ with WS(S, Σ̂) ≤ ρ.

The continuity of g (Σ̂, X ) thus follows from Berge’s maximum theorem [11, pp. 115–116],

which applies because
〈

S, X
〉

andWS(S, Σ̂) are continuous in (S, Σ̂, X ) ∈Sp
+×Sp

+×Sp
++, while

{S ∈Sp
+ :WS(S, Σ̂) ≤ ρ} is nonempty and compact for every Σ̂ ∈Sp

+ and ρ > 0.

By the definition of the induced metricWS we then obtain

g (Σ̂, X ) = sup
S∈Sp

+

{〈
S, X

〉
: Tr

[
Σ̂

]+Tr
[
S
]−2Tr

[√
Σ̂

1
2 SΣ̂

1
2
]≤ ρ2

}
. (1.9)

To establish the equivalence between (1.8) and (1.9), we first assume that Σ̂Â 0. The gener-

alization to rank deficient sample covariance matrices will be addressed later. By dualizing

the explicit constraint in (1.9) and introducing the constant matrix M = Σ̂ 1
2 , which inherits

invertibility from Σ̂, we find

g (Σ̂, X ) = sup
S∈Sp

+

inf
γ≥0

〈
S, X −γI

〉+2γ
〈p

MSM , I
〉+γ(

ρ2 −Tr
[
Σ̂

])
= inf
γ≥0

sup
S∈Sp

+

〈
S, X −γI

〉+2γ
〈p

MSM , I
〉+γ(

ρ2 −Tr
[
Σ̂

])
= inf
γ≥0

{
γ

(
ρ2 −Tr

[
Σ̂

])+ sup
B∈Sp

+

{〈
B 2, M−1(X −γI )M−1〉+2γ

〈
B , I

〉}}
. (1.10)

Here, the first equality exploits the identity Tr
[

A
]= 〈A, I 〉 for any A ∈Rp×p , the second equality

follows from strong duality, which holds because Σ̂ constitutes a Slater point for problem (1.9)

when ρ > 0, and the third equality relies on the substitution B ←p
MSM , which implies that

S = M−1B 2M−1. Introducing the shorthand ∆ = M−1(X −γI )M−1 allows us to simplify the

inner maximization problem over B in (1.10) to

sup
B∈Sp

+

{〈
B 2,∆

〉+2γ
〈

B , I
〉}

. (1.11)

If ∆ 6≺ 0, then (1.11) is unbounded. To see this, denote by λ(∆) the largest eigenvalue of ∆

and by v a corresponding eigenvector. If λ(∆) > 0, then the objective value of Bk = k · v v> º 0

in (1.11) grows quadratically with k. If λ(∆) = 0, then γ > 0 for otherwise X ¹ 0 contrary to

our assumption, and thus the objective value of Bk in (1.11) grows linearly with k. In both

cases (1.11) is indeed unbounded.
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If ∆≺ 0, then (1.11) becomes a convex optimization problem that can be solved analytically.

Indeed, the objective function of (1.11) is minimized by B? = −γ∆−1, which satisfies the

first-order optimality condition

B∆+∆B +2γI = 0 (1.12)

and is strictly feasible in (1.11) because ∆≺ 0. Moreover, as (1.12) is naturally interpreted as

a continuous Lyapunov equation, its solution B? can be shown to be unique; see, e.g., [83,

Theorem 12.5]. We may thus conclude that B? is the unique maximizer of (1.11) and that the

maximum of (1.11) amounts to −γ2 Tr
[
∆−1

]
.

Adding the constraint γI Â X to the outer minimization problem in (1.10), thus excluding all

values of γ for which ∆ 6≺ 0 and the inner supremum is infinite, and replacing the optimal

value of the inner maximization problem with −γ2 Tr
[
∆−1

] = γ2
〈

(γI − X )−1, Σ̂
〉

yields (1.8).

This establishes the claim for Σ̂Â 0.

In the second part of the proof, we show that the claim remains valid for rank deficient sample

covariance matrices. To this end, we denote the optimal value of problem (1.8) by g ′(Σ̂, X ).

From the first part of the proof we know that g ′(Σ̂, X ) = g (Σ̂, X ) for all Σ̂, X ∈Sp
++. We also know

that g (Σ̂, X ) is continuous in (Σ̂, X ) ∈Sp
+×Sp

++. It remains to be shown that g ′(Σ̂, X ) = g (Σ̂, X )

for all Σ̂ ∈Sp
+ and X ∈Sp

++.

Fix any Σ̂ ∈Sp
+ and X ∈Sp

++, and note that Σ̂+εI Â 0 for every ε > 0. Defining the intervals

E =R+ and Γ= {γ ∈R : γI Â X } as well as the auxiliary functions

Φ(ε) = g ′(Σ̂+εI , X ) and ϕ(ε,γ) = γ(
ρ2 −Tr

[
Σ̂+εI

])+γ2〈(γI −X )−1, Σ̂+εI
〉

,

it follows from (1.8) that

Φ(ε) = inf
γ∈Γ

ϕ(ε,γ) ∀ε ∈ E .

One can show via Lemma 1.8 that Φ(ε) is continuous at ε = 0. Indeed, ϕ(ε,γ) is linear and

thus continuous in ε for every γ ∈ Γ, which implies via Lemma 1.8(a) that Φ(ε) is upper-

semicontinuous at ε= 0. Moreover, ϕ(ε,γ) is calm from below at ε= 0 with L = 0 uniformly in

γ ∈ Γ because

ϕ(ε,γ)−ϕ(0,γ) = γTr
[
(I −γ−1X )−1 − I

]
ε≥ 0 ∀γ ∈ Γ.

Here, the inequality holds for all γ ∈ Γ due to the conditions I Â γ−1X Â 0, which are equivalent

to 0 ≺ I −γ−1X ≺ I and imply (I −γ−1X )−1 Â I . Lemma 1.8(b) thus ensures that Φ(ε) is lower-

semicontinuous at ε= 0. In summary, we conclude that Φ(ε) is indeed continuous at ε= 0.

Combining the above results, we find

g (Σ̂, X ) = lim
ε→0+ g (Σ̂+εI , X ) = lim

ε→0+ g ′(Σ̂+εI , X ) = lim
ε→0+Φ(ε) =Φ(0) = g ′(Σ̂, X ),

where the five equalities hold due to the continuity of g (Σ̂, X ) in Σ̂, the fact that g (Σ̂, X ) =
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g ′(Σ̂, X ) for all Σ̂Â 0, the definition of Φ(ε), the continuity of Φ(ε) at ε= 0 and once again from

the definition ofΦ(ε), respectively. The claim now follows because Σ̂ ∈Sp
+ and X ∈Sp

++ were

chosen arbitrarily.

We have now collected all necessary ingredients for the proof of Theorem 1.7.

Proof of Theorem 1.7. By Proposition 1.9, the worst-case expectation in (1.5) coincides with

the optimal value of the semidefinite program (1.8). Substituting this semidefinite program

into (1.5) yields (1.6). Note that the condition X Â 0, which ensures that logdet X is well-

defined, is actually redundant because it is implied by the constraint X ∈X . Nevertheless, we

make it explicit in (1.6) for the sake of clarity.

It remains to show that J (Σ̂) is continuous. To this end, we first construct bounds on the

minimizers of (1.6) that vary continuously with Σ̂. Such bounds can be constructed from any

feasible decision (X0,γ0). Assume without loss of generality that γ0 > p/ρ2, and denote by

f0(Σ̂) the objective value of (X0,γ0) in (1.6), which constitutes a linear function of Σ̂. Moreover,

define two continuous auxiliary functions

x(Σ̂),
f0(Σ̂)−p(1− logγ0)

ρ2 −pγ−1
0

and x(Σ̂),
e− f0(Σ̂)

x(Σ̂)p−1
, (1.13)

which are strictly positive because γ0 > p/ρ2. Clearly, the infimum of problem (1.6) is de-

termined only by feasible decisions (X ,γ) with an objective value of at most f0(Σ̂). All such

decisions satisfy

f0(Σ̂) ≥− logdet X +γρ2 +γ〈
(I −γ−1X )−1 − I , Σ̂

〉≥− logdet X +γρ2 (1.14)

≥−p logγ+γρ2 ≥ (ρ2 −γ−1
0 p)γ+p(1− logγ0),

where the second and third inequalites exploit the estimates (I −γ−1X )−1 Â I and det X ≤
det(γI ) = γp , respectively, which are both implied by the constraint γI Â X Â 0, and the last

inequality holds because logγ ≤ logγ0 +γ−1
0 (γ−γ0) for all γ > 0. By rearranging the above

inequality and recalling the definition of x(Σ̂), we thus find γ≤ x(Σ̂), which in turn implies

that X ≺ γI ¹ x(Σ̂)I .

Denoting by {xi }i≤p the eigenvalues of the matrix X and setting xmin = mini≤p xi , we further

find

f0(Σ̂) ≥− logdet X =− log

( p∏
i=1

xi

)
≥− log

(
xmin x(Σ̂)p−1)=− log xmin − (p −1)log x(Σ̂),

where the first inequality follows from (1.14), while the second inequality is based on overesti-

mating all but the smallest eigenvalue of X by x(Σ̂). By rearranging the above inequality and

recalling the definition of x(Σ̂), we thus find xmin ≥ x(Σ̂), which in turn implies that X º x(Σ̂)I .
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The above reasoning shows that the extra constraint x(Σ̂)I ¹ X ¹ x(Σ̂)I has no impact on (1.6),

that is,

J (Σ̂) =
{

inf
X

− logdet X + inf
γ

{
γ

(
ρ2 −Tr

[
Σ̂

])+γ2〈(γI −X )−1, Σ̂
〉

: γI Â X
}

s. t. X ∈X , x(Σ̂)I ¹ X ¹ x(Σ̂)I .

=
{

inf
X

− logdet X + g (Σ̂, X )

s. t. X ∈X , x(Σ̂)I ¹ X ¹ x(Σ̂)I ,

where the second equality follows from Proposition 1.9. The continuity of J (Σ̂) now follows

directly from Berge’s maximum theorem [11, pp. 115–116], which applies due to the continuity

of g (Σ̂, X ) established in Proposition 1.9, the compactness of the feasible set and the continuity

of x(Σ̂) and x(Σ̂).

An immediate consequence of Theorem 1.7 is that the simplified estimation problem (1.5) is

equivalent to an explicit semidefinite program and is therefore in principle computationally

tractable.

Corollary 1.10 (Tractability). For any fixed ρ > 0 and Σ̂ º 0, the simplified distributionally

robust estimation problem (1.5) is equivalent to the tractable semidefinite program

J (Σ̂) =



inf
X ,Y ,γ

− logdet X +γ(
ρ2 −Tr

[
Σ̂

])+Tr
[
Y

]
s. t.

[
Y γΣ̂

1
2

γΣ̂
1
2 γI −X

]
º 0

γI Â X Â 0, Y º 0, X ∈X .

(1.15)

Proof. We know from Theorem 1.7 that the estimation problem (1.5) is equivalent to the

convex program (1.6). As X represents a decision variable instead of a parameter, however,

problem (1.6) fails to be a semidefinite program per se. Indeed, its objective function involves

the nonlinear term h(X ,γ), γ2
〈

(γI − X )−1, Σ̂
〉

, which is interpreted as ∞ outside of its do-

main
{
(X ,γ) ∈S+×R : γI Â X

}
. However, h(X ,γ) constitutes a matrix fractional function as

described in [18, Example 3.4] and thus admits the semidefinite reformulation

h(X ,γ) = inf
t

{
t : γI Â X , γ2〈(γI −X )−1, Σ̂

〉≤ t
}

= inf
Y ,t

{
t : γI Â X , Y º γ2Σ̂

1
2 (γI −X )−1Σ̂

1
2 , Tr

[
Y

]≤ t
}

= inf
Y

{
Tr

[
Y

]
: γI Â X ,

[
Y γΣ̂

1
2

γΣ̂
1
2 γI −X

]
º 0

}
,

where the second equality holds because A º B implies Tr
[

A
]≥ Tr

[
B

]
, while the third equality

follows from a standard Schur complement argument; see, e.g., [18, Appendix A.5.5]. Thus,

h(X ,γ) is representable as the optimal value of a parametric semidefinite program whose

objective and constraint functions are jointly convex in the auxiliary decision variable Y and
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the parameters X and γ. The postulated reformulation (1.15) is then obtained by substituting

the last expression into (1.6).

1.2.3 Joint Estimation of the Mean Vector and the Precision Matrix

Now that we have derived a tractable semidefinite reformulation for the simplified estimation

problem (1.5), we are ready to address the generic estimation problem (1.4), which does not

assume knowledge of the mean and is robustified against all distributions in the ambiguity set

Bρ without mean constraints.

Theorem 1.11 (Sufficiency of Σ̂). For any fixed ρ > 0, µ̂ ∈Rp and Σ̂ ∈Sp
+, the general distribu-

tionally robust estimation problem (1.4) is equivalent to the optimization problem (1.6) and the

tractable semidefinite program (1.15). Moreover, the optimal value function J (µ̂, Σ̂) is constant

in µ̂ and continuous in Σ̂.

Proof. By Proposition 1.3, the optimal value of the estimation problem (1.4) can be expressed

as

J (µ̂, Σ̂) = inf
µ, X∈X

− logdet X +


sup
µ′,Sº0

(µ′−µ)>X (µ′−µ)+〈
S, X

〉
s. t. Tr

[
S
]+Tr

[
Σ̂

]−2Tr
[√

Σ̂
1
2 SΣ̂

1
2
]≤ ρ2 −∥∥µ′− µ̂∥∥2

= inf
µ, X∈X

− logdet X + sup
µ′:‖µ′−µ̂‖≤ρ

(µ′−µ)>X (µ′−µ)

+ inf
γ:γIÂX

γ
(
ρ2 −∥∥µ′− µ̂∥∥2 −Tr

[
Σ̂

])+γ2〈(γI −X )−1, Σ̂
〉

.

Here, the second equality holds because the Wasserstein constraint is infeasible unless ‖µ′−
µ̂‖ ≤ ρ and because the maximization problem over S, which constitutes an instance of (1.9)

with ρ2−‖µ′−µ̂‖2 instead of ρ2, can be reformulated as a minimization problem over γ thanks

to Proposition 1.9. By the minimax theorem [13, Proposition 5.5.4], which applies because µ′

ranges over a compact ball and because X −γI ≺ 0, we may then interchange the maximization

over µ′ with the minimization over γ to obtain

J (µ̂, Σ̂) = inf
µ, X ∈X ,
γ : γI Â X

− logdet X + sup
µ′:‖µ′−µ̂‖≤ρ

(µ′−µ)>X (µ′−µ)

+γ
(
ρ2 −∥∥µ′− µ̂∥∥2 −Tr

[
Σ̂

])+γ2〈(γI −X )−1, Σ̂
〉

.

Using the minimax theorem [13, Proposition 5.5.4] once again to interchange the minimization
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over µ with the maximization over µ′ yields

J (µ̂, Σ̂) = inf
X ∈X ,
γ : γI Â X

− logdet X + sup
µ′:‖µ′−µ̂‖≤ρ

inf
µ

(µ′−µ)>X (µ′−µ)

+γ
(
ρ2 −∥∥µ′− µ̂∥∥2 −Tr

[
Σ̂

])+γ2〈(γI −X )−1, Σ̂
〉

= inf
X ∈X ,
γ : γI Â X

− logdet X +γ(
ρ2 −Tr

[
Σ̂

])+γ2〈(γI −X )−1, Σ̂
〉

,

where the second equality holds because µ′ is the unique optimal solution of the innermost

minimization problem over µ, while µ̂ is the unique optimal solution of the maximization

problem over µ′. Thus, the general estimation problem (1.4) is equivalent to (1.6), and J (µ̂, Σ̂)

is manifestly constant in µ̂. Theorem 1.7 further implies that J (µ̂, Σ̂) is continuous in Σ̂, while

Corollary 1.10 implies that (1.4) is equivalent to the tractable semidefinite program (1.15).

These observations complete the proof.

Theorem 1.11 asserts that the general estimation problem (1.4) is equivalent to the simplified

estimation problem (1.5), which is based on the hypothesis that the mean of ξ is known to

vanish. Theorem 1.11 further reveals that the general estimation problem (1.4) as well as its

(unique) optimal solution depend on the training data only through the sample covariance

matrix Σ̂. This is reassuring because Σ̂ is known to be a sufficient statistic for the precision

matrix. As solving (1.4) is tantamount to solving (1.5), it suffices to devise solution procedures

for the simplified estimation problem (1.5) or its equivalent reformulations (1.6) and (1.15).

We emphasize that the strictly convex log-determinant term in the objective of (1.15) is sup-

ported by state-of-the-art interior point solvers for semidefinite programs such as SDPT3 [168].

In principle, problem (1.15) can therefore be implemented directly in MATLAB using the

YALMIP interface [112], for instance. In spite of its theoretical tractability, however, the

semidefinite program (1.15) quickly becomes excruciatingly large, and direct solution with a

general purpose solver becomes impracticable already for moderate values of p. This moti-

vates us to investigate practically relevant special cases in which the estimation problem (1.5)

can be solved either analytically (Section 1.3) or numerically using a dedicated fast Newton-

type algorithm (Section 1.4).

1.3 Analytical Solution without Sparsity Information

If we have no prior information about the precision matrix, it is natural to set X =Sp
++. In this

case, the distributionally robust estimation problem (1.5) can be solved in quasi-closed form.

Theorem 1.12 (Analytical solution without sparsity information). If ρ > 0, X = S
p
++ and

Σ̂ ∈ Sp
+ admits the spectral decomposition Σ̂ = ∑p

i=1λi vi v>
i with eigenvalues λi and corre-

sponding orthonormal eigenvectors vi , i ≤ p, then the unique minimizer of (1.5) is given by
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X? =∑p
i=1 x?i vi v>

i , where

x?i = γ?
[

1− 1

2

(√
λ2

i (γ?)2 +4λiγ?−λiγ
?
)]

∀i ≤ p (1.16a)

and γ? > 0 is the unique positive solution of the algebraic equation(
ρ2 − 1

2

p∑
i=1

λi

)
γ−p + 1

2

p∑
i=1

√
λ2

i γ
2 +4λiγ= 0. (1.16b)

Proof. We first demonstrate that the algebraic equation (1.16b) admits a unique solution in

R+. For ease of exposition, we define ϕ(γ) as the left-hand side of (1.16b). It is easy to see that

ϕ(0) =−p < 0 and limγ→∞ϕ(γ)/γ= ρ2, which implies that ϕ(γ) grows asymptotically linearly

with γ at slope ρ2 > 0. By the intermediate value theorem, we may thus conclude that the

equation (1.16b) has a solution γ? > 0.

As λiγ+2 >
√
λ2

i γ
2 +4λiγ, the derivative of ϕ(γ) satisfies

d

dγ
ϕ(γ) = ρ2 + 1

2

p∑
i=1

λi

 λiγ+2√
λ2

i γ
2 +4λiγ

−1

> 0,

whereby ϕ(γ) is strictly increasing in γ ∈ R+. Thus, the solution γ? is unique. The positive

slope of ϕ(γ) further implies via the implicit function theorem that γ? changes continuously

with λi ∈R+, i ≤ p.

In analogy to Proposition 1.9, we prove the claim first under the assumption that Σ̂Â 0 and

postpone the generalization to rank deficient sample covariance matrices. Focussing on Σ̂Â 0,

we will show that (X?,γ?) is feasible and optimal in (1.6). By Theorem 1.7, this will imply that

X? is feasible and optimal in (1.5).

As γ? > 0 and Σ̂Â 0, which means that λi > 0 for all i ≤ p, an elementary calculation shows

that

2 >
√
λ2

i (γ?)2 +4λiγ?−λiγ
? > 0 ⇐⇒ 1 > 1− 1

2

(√
λ2

i (γ?)2 +4λiγ?−λiγ
?
)
> 0.

Multiplying the last inequality by γ? proves that γ? > x?i > 0 for all i ≤ p, which in turn implies

that γ?I Â X? Â 0. Thus, (X?,γ?) is feasible in (1.6), and X? is feasible in (1.5).

To prove optimality, we denote by f (X ,γ) the objective function of problem (1.6) and note
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1.3. Analytical Solution without Sparsity Information

that its gradient with respect to X vanishes at (X?,γ?). Indeed, we have

∇X f (X?,γ?) =−(X?)−1 + (γ?)2(γ?I −X?)−1Σ̂(γ?I −X?)−1

=
p∑

i=1

(
(γ?)2(γ?−x?i )−2λi − (x?i )−1)vi v>

i

=
p∑

i=1

(γ?)2x?i λi − (γ?−x?i )2

(γ?−x?i )2xi
vi v>

i = 0,

where the first equality exploits the basic rules of matrix calculus (see, e.g., [12, p. 631]), the

second equality holds because Σ̂ and X share the same eigenvectors vi , i ≤ p, and the last

equation follows from the identity

(γ?)2x?i λi = (γ?−x?i )2 ∀i ≤ p, (1.17)

which is a direct consequence of the definitions of γ? and x?i , i ≤ p, in (1.16). Similarly, the

partial derivative of f (X ,γ) with respect to γ vanishes at (X?,γ?), too. In fact, we have

∂

∂γ
f (X?,γ?) = ρ2 −Tr

[
Σ̂

]+2γ?Tr
[
(γ?I −X?)−1Σ̂

]− (γ?)2 Tr
[
(γ?I −X?)−1Σ̂(γ?I −X?)−1]

= ρ2 −
p∑

i=1
λi

(
1− 2γ?

γ?−x?i
+ (γ?)2

(γ?−x?i )2

)
= ρ2 −

p∑
i=1

(x?i )2

(γ?−x?i )2
λi

= 1

(γ?)2

(
ρ2(γ?)2 −

p∑
i=1

x?i

)
= 0,

where the second equality expresses Σ̂ and X in terms of their respective spectral decomposi-

tions, the fourth equality holds due to (1.17), and the last equality follows from the observation

that ρ2(γ?)2 = ∑p
i=1 x?i . In summary, we have shown that (X?,γ?) satisfies the first-order

optimality conditions of the convex optimization problem (1.6), which ensures that X? is

optimal in (1.5).

Consider now any (possibly singular) sample covariance matrix Σ̂ ∈ Sp
+. As γ? > 0, similar

arguments as in the first part of the proof show that γ? ≥ x?i > 0 for all i ≤ p, which in turn

implies that γ?I º X? Â 0. Moreover, if Σ̂ has at least one zero eigenvalue, it is easy to see that

γ?I 6Â X?, in which case (X?,γ?) fails to be feasible in (1.6). However, X? remains feasible

and optimal in (1.5). To see this, consider the invertible sample covariance matrix Σ̂+εI Â 0

for some ε> 0, and denote by (X?(ε),γ?(ε)) the corresponding minimizer of problem (1.6) as

constructed in (1.16). As the solution of the algebraic equation (1.16b) depends continuously

on the eigenvalues of the sample covariance matrix, we conclude that the auxiliary variable

γ?(ε) and—by virtue of (1.16a)—the estimator X?(ε) are both continuous in ε ∈R+. Thus, we

find

J (Σ̂) = lim
ε→0+ J (Σ̂+εI ) = lim

ε→0+− logdet X?(ε)+ g (Σ̂+εI , X?(ε)) =− logdet X?+ g (Σ̂, X?),
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where the first equality follows from the continuity of J (Σ̂) established in Theorem 1.7, the

second equality holds because X?(ε) is the optimal estimator corresponding to the sample

covariance matrix Σ̂+εI Â 0 in problem (1.5), and the third equality follows from the continuity

of g (Σ̂, X ) established in Proposition 1.9 and the fact that limε→0+ X?(ε) = X? Â 0. Thus, X? is

indeed optimal in (1.5). The strict convexity of − logdet X further implies that X? is unique.

This observation completes the proof.

Remark 1.13 (Properties of X?). The optimal distributionally robust estimator X? identified in

Theorem 1.12 commutes with the sample covariance matrix Σ̂ because both matrices share the

same eigenbasis. Moreover, the eigenvalues of X? are obtained from those of Σ̂ via a nonlinear

transformation that depends on the size ρ of the ambiguity set. We emphasize that all eigenval-

ues of X? are positive for every ρ > 0, which implies that X? is invertible. These insights suggest

that X? constitutes a nonlinear shrinkage estimator, which enjoys the rotation equivariance

property (when all data points are rotated by R ∈Rp×p , then X? changes to R X?R>).

Theorem 1.12 characterizes the optimal solution of problem (1.5) in quasi-closed form up

to the spectral decomposition of Σ̂ and the numerical solution of equation (1.16b). By [131,

Theorem 1.1], the eigenvalues of Σ̂ can be computed to within an absolute error ε in O (p3)

arithmetic operations. Moreover, as its left-hand side is increasing in γ?, equation (1.16b)

can be solved reliably via bisection or by the Newton-Raphson method. The following lemma

provides a priori bounds on γ? that can be used to initialize the bisection interval.

Lemma 1.14 (Bisection interval). For ρ > 0, the unique solution of (1.16b) satisfies γ? ∈
[γmin,γmax], where

γmin =
p2λmax +2pρ2 −p

√
p2λ2

max +4pρ2λmax

2ρ4 > 0, γmax = min

 p

ρ2 ,
1

ρ

√√√√ p∑
i=1

1

λi

 ,

(1.18)

and λmax denotes the maximum eigenvalue of Σ̂.

Proof. By the definitions of γ? and x?i in (1.16) we have λi x?i = (γ?− x?i )2/(γ?)2 < 1, which

implies that x?i ≤ 1
λi

. Using (1.16) one can further show that (γ?)2 = 1
ρ2

∑p
i=1 x?i ≤ 1

ρ2

∑p
i=1

1
λi

,

which is equivalent to γ? ≤ 1
ρ (

∑p
i=1

1
λi

)
1
2 . Note that this upper bound on γ? is finite only if

λi > 0 for all i ≤ p. To derive an upper bound that is universally meaningful, we denote the

left-hand side of (1.16b) by ϕ(γ) and note that ρ2γ− p ≤ ϕ(γ) for all γ ≥ 0. This estimate

implies that γ? ≤ p
ρ2 . Thus, we find γ? ≤ min{ p

ρ2 , 1
ρ (

∑p
i=1

1
λi

)
1
2 } = γmax.

To derive a lower bound on γ?, we set λmax = maxi≤p λi and observe that

ϕ(γ) ≤ ρ2γ−p +
p∑

i=1

√
λiγ≤ ρ2γ−p +p

√
λmaxγ ,

where the first inequality holds because
p

a +b ≤ p
a +p

b for all a,b ≥ 0. As the unique

28



1.3. Analytical Solution without Sparsity Information

positive zero of the right-hand side, γmin provides a nontrivial lower bound on γ?. Thus, the

claim follows.

Lemma 1.14 implies that γ? can be computed via the standard bisection algorithm to within

an absolute error of ε in log2((γmax −γmin)/ε) = O (log2 p) iterations. As evaluating the left-

hand side of (1.16b) requires only O (p) arithmetic operations, the computational effort for

constructing X? is largely dominated by the cost of the spectral decomposition of the sample

covariance matrix.

Remark 1.15 (Numerical stability). If both γ? and λi are large numbers, then formula (1.16a)

for x?i becomes numerically unstable. A mathematically equivalent but numerically more

robust reformulation of (1.16a) is

x?i = γ?
1− 2

1+
√

1+ 4
λiγ?

 .

In the following we investigate the impact of the Wasserstein radius ρ on the optimal Lagrange

multiplier γ? and the corresponding optimal estimator X?.

Proposition 1.16 (Sensitivity analysis). Assume that the eigenvalues of Σ̂ are sorted in ascending

order, that is, λ1 ≤ ·· · ≤λp . If γ?(ρ) denotes the solution of (1.16b), and x?i (ρ), i ≤ p, represent

the eigenvalues of X? defined in (1.16a), which makes the dependence on ρ > 0 explicit, then

the following assertions hold:

(i) γ?(ρ) decreases with ρ, and limρ→∞γ?(ρ) = 0;

(ii) x?i (ρ) decreases with ρ, and limρ→∞ x?i (ρ) = 0 for all i ≤ p;

(iii) the eigenvalues of X? are sorted in descending order, that is, x?1 (ρ) ≥ ·· · ≥ x?p (ρ) for every

ρ > 0;

(vi) the condition number x?1 (ρ)/x?p (ρ) of X? decreases with ρ, and limρ→∞ x?1 (ρ)/x?p (ρ) = 1.

Proof. As the left-hand side of (1.16b) is strictly increasing in ρ, it is clear that γ?(ρ) decreases

with ρ. Moreover, the a priori bounds on γ?(ρ) derived in Lemma 1.14 imply that

0 ≤ lim
ρ→∞γ

?(ρ) ≤ lim
ρ→∞

p

ρ2 = 0.

Thus, assertion (i) follows. Next, by the definition of the eigenvalue x?i in (1.16a), we have

∂x?i
∂γ?

= 1+λiγ
?− 1

2

√
λ2

i (γ?)2 +4λiγ?+
λ2

i (γ?)2 +2λiγ
?√

λ2
i (γ?)2 +4λiγ?

= 1+λiγ
?− λ2

i (γ?)2 +3λiγ
?√

λ2
i (γ?)2 +4λiγ?

.
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Elementary algebra indicates that (1+ z)
p

z2 +4z ≥ z2 +3z for all z ≥ 0, whereby the right-

hand side of the above expression is strictly positive for every λi ≥ 0 and γ? ≥ 0. We conclude

that x?i grows with γ? and, by the monotonicity of γ?(ρ) established in assertion (i), that

x?i (ρ) decreases with ρ. As γ?(ρ) drops to 0 for large ρ and as the continuous function (1.16a)

evaluates to 0 at γ? = 0, we thus find that x?i (ρ) converges to 0 as ρ grows. These observations

establish assertion (ii). As for assertion (iii), use (1.16a) to express the i -th eigenvalue of X? as

x?i = 1− 1
2ψ(λi ), where the auxiliary function ψ(λ) =

√
λ2(γ?)2 +4λγ?−λγ? is defined for all

λ≥ 0. Note that ψ(λ) is monotonically increasing because

d

dλ
ψ(λ) = λ(γ?)2 +2γ?√

λ2(γ?)2 +4λγ?
−γ? = γ?

(
λγ?+2√

λ2(γ?)2 +4λγ?
−1

)
> 0.

As λi+1 ≥λi for all i < p, we thus have ψ(λi+1) ≥ψ(λi ), which in turn implies that x?i+1 ≤ x?i .

Hence, assertion (iii) follows. As for assertion (iv), note that by (1.16a) the condition number

of X? is given by

x?1 (ρ)

x?p (ρ)
=

1− 1
2

(√
λ2

1γ
?(ρ)2 +4λ1γ?(ρ)−λ1γ

?(ρ)
)

1− 1
2

(√
λ2

pγ
?(ρ)2 +4λpγ?(ρ)−λpγ?(ρ)

) .

The last expression converges to 1 as ρ tends to infinity because γ?(ρ) vanishes asymptoti-

cally due to assertion (i). A tedious but straightforward calculation using (1.16a) shows that
∂
∂γ? log(x?1 /x?p ) > 0, which implies via the monotonicity of the logarithm that x?1 /x?p increases

with γ?. As γ?(ρ) decreases with ρ by virtue of assertion (i), we may then conclude that the

condition number x?1 (ρ)/x?p (ρ) decreases with ρ.

Figure 1.1 visualizes the dependence of γ? and X? on the Wasserstein radius ρ in an example

where p = 5 and the eigenvalues of Σ̂ are given by λi = 10i−3 for i ≤ 5. Figure 1.1a displays γ?

as well as its a priori bounds γmin and γmax derived in Lemma 1.14. Note first that γ? drops

monotonically to 0 for large ρ, which is in line with Proposition 1.16(i). As γ? represents the

Lagrange multiplier of the Wasserstein constraint, which limits the size of the ambiguity set

to ρ, this observation indicates that the worst-case expectation (1.7) displays a decreasing

marginal increase in ρ. Figure 1.1b visualizes the eigenvalues x?i , i ≤ 5, as well as the condition

number of X?. Note that all eigenvalues are monotonically shrunk towards 0 and that their

order is preserved as ρ grows, which provides empirical support for Propositions 1.16(ii)

and 1.16(iii), while the condition number decreases monotonically to 1, which corroborates

Proposition 1.16(iv).

In summary, we have shown that X? constitutes a nonlinear shrinkage estimator that is rota-

tion equivariant, positive definite and well-conditioned. Moreover, (X?)−1 preserves the order

of the eigenvalues of Σ̂. We emphasize that neither the interpretation of X? as a shrinkage

estimator nor any of its desirable properties—most notably the improvement of its condition

number with ρ—were dictated ex ante. Instead, these properties arose naturally from an intu-

itively appealing distributionally robust estimation scheme. In contrast, existing estimation
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(a) Lagrange multiplier γ? and its a priori
bounds γmin and γmax from Lemma 1.14.
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(b) Eigenvalues (left axis) and condition number
(round marker - right axis) of X?.

Figure 1.1 – Dependence of the Lagrange multiplier γ? (left panel) as well as the eigenvalues
x?i , i ≤ 5, and the condition number x?5 /x?1 of the optimal estimator X? (right panel) on ρ.

schemes sometimes impose ad hoc constraints on condition numbers; see, e.g., [173]. On

the downside, as X? shares the same eigenbasis as the sample covariance matrix Σ̂, it does

not prompt a new robust principal component analysis. We henceforth refer to X? as the

Wasserstein shrinkage estimator.

1.4 Numerical Solution with Sparsity Information

We now investigate a more general setting where X may be a strict subset of Sp
++, which cap-

tures a prescribed conditional independence structure of ξ. Specifically, we assume that there

exists E ⊆ {1, . . . , p}2 such that the random variables ξi and ξ j are conditionally independent

given ξ−{i , j } for any pair (i , j ) ∈ E , where ξ−{i , j } represents the truncation of the random vector

ξ without the components ξi and ξ j . It is well known that if ξ follows a normal distribution

with covariance matrix S Â 0 and precision matrix X = S−1, then ξi and ξ j are conditionally

independent given ξ−(i , j ) if and only if Xi j = 0. This reasoning forms the basis of the cele-

brated Gaussian graphical models, see, e.g., [102]. Any prescribed conditional independence

structure of ξ can thus conveniently be captured by the feasible set

X = {X ∈Sp
++ : Xi j = 0 ∀(i , j ) ∈ E }.

We may assume without loss of generality that E inherits symmetry from X , that is, (i , j ) ∈
E =⇒ ( j , i ) ∈ E . In Section 1.3 we have seen that the robust maximum likelihood estimation

problem (1.5) admits an analytical solution when E = ;. In the general case, analytical

tractability is lost. Indeed, if E 6= ;, then even the nominal estimation problem obtained

by setting ρ = 0 requires numerical solution [34]. In this section we develop a Newton-type

algorithm to solve (1.5) in the presence of prior conditional independence information. For

the sake of consistency, we will refer to the optimal solution of problem (1.5) as the Wasserstein
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shrinkage estimator even in the presence of sparsity constraints.

Remark 1.17 (Conditional independence information in Bρ). We emphasize that our proposed

estimation model accounts for the prescribed conditional independence structure only in the

feasible set X but not in the ambiguity set Bρ . Otherwise, the ambiguity set would have to be

redefined as

Bρ =
{
Q ∈N

p
0 : W(Q, P̂) ≤ ρ, (EQ[ξξ>]−1)i j = 0 ∀(i , j ) ∈ E

}
.

While conceptually attractive, this new ambiguity set is empty even for some ρ > 0 because

the inverse sample covariance matrix Σ̂−1 violates the prescribed conditional independence

relationships with probability 1.

Recall from Theorem 1.7 that the estimation problem (1.5) is equivalent to the convex pro-

gram (1.6) and that the optimal value of (1.6) depends continuously on Σ̂ ∈Sp
+. In the remain-

der of this section we may thus assume without much loss of generality that Σ̂Â 0. Otherwise,

we can replace Σ̂with Σ̂+εI for some small ε> 0 without significantly changing the estimation

problem’s solution. Inspired by [130, 84], we now develop a sequential quadratic approxima-

tion algorithm for solving problem (1.6) with sparsity information. Note that the set X of

feasible precision matrices typically fixes many entries to zero, thus reducing the effective

problem dimension and making a second-order algorithm attractive even for large instances

of (1.6).

The proposed algorithm starts at X0 = I and at some γ0 > 1, which are trivially feasible in (1.6).

In each iteration the algorithm moves from the current iterate (X t ,γt ) along a feasible descent

direction, which is constructed from a quadratic approximation of the objective function

of problem (1.6). A judiciously chosen step size guarantees that the next iterate (X t+1,γt+1)

remains feasible and has a better (lower) objective value; see Algorithm 1. The construction of

the descent direction relies on the following lemma.

Lemma 1.18 (Fact 7.4.9 in [12]). For any A,B ∈Rp×p and X ∈Sp , we have

Tr
[

AX B X
]= vec(X )>(B ⊗ A>)vec(X ).

Proposition 1.19 (Descent direction). Fix (X ,γ) ∈ Sp
++ ×R++ with γI Â X , and define the

orthogonal projection P :Rp2+1 →Rp2+1 through (P z)k = 0 if k = p( j −1)+ i for some (i , j ) ∈ E ;

= 1
2 zp( j−1)+i + 1

2 zp(i−1)+ j if k = p( j −1)+ i for some i , j ≤ p with (i , j ) ∉ E ; = zk if k = p2 +1.

Moreover, define G , I − X
γ ,

H ,

[
X −1 ⊗X −1 + 2

γG−1Σ̂G−1 ⊗G−1 − 1
γ2 vec(G−1[XG−1Σ̂+ Σ̂G−1X ]G−1)

− 1
γ2 vec(G−1[XG−1Σ̂+ Σ̂G−1X ]G−1)> 2

γ3 Tr[G−1XG−1Σ̂G−1X ]

]
∈Sp2+1
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and

g ,

[
vec(G−1Σ̂G−1 −X −1)

ρ2 +Tr[G−1Σ̂(I − 1
γG−1X )− Σ̂]

]
∈Rp2+1.

Then, the unique solution (∆?X ,∆?γ ) ∈Sp ×R of the linear system

PH
(
(vec(∆?X )>,∆?γ )>+ g

)
= 0 and (∆?X )i j = 0 ∀(i , j ) ∈ E (1.19)

represents a feasible descent direction for the optimization problem (1.6) at (X ,γ).

Proof. We first expand the objective function of problem (1.6) around (X ,γ) ∈Sp
++×R++ with

γI Â X . By the rules of matrix calculus, the second-order Taylor expansion of the negative

log-determinant is given by

− logdet(X +∆X ) =− logdet(X )−Tr
[

X −1∆X
]+ 1

2
Tr

[
X −1∆X X −1∆X

]+O (‖∆X ‖3)

for ∆X ∈ Sp , see also [18, page 644]. Moreover, by using a geometric series expansion, we

obtain

(
I − X +∆X

γ+∆γ

)−1

=
(

I − X +∆X

γ

(
1− ∆γ

γ
+
∆2
γ

γ2 +O (‖∆γ‖3)

))−1

=
(

I − X

γ
+ X∆γ

γ2 −
X∆2

γ

γ3 − ∆X

γ
+ ∆X∆γ

γ2 +O (‖(∆X ,∆γ)‖3)

)−1

for ∆γ ∈R. Expanding the matrix inverse as a Neumann series and setting G = I − X
γ , which is

invertible because γI Â X , the above expression can be reformulated as

G− 1
2

(
I + G− 1

2 XG− 1
2 ∆γ

γ2 − G− 1
2 XG− 1

2 ∆2
γ

γ3 − G− 1
2 ∆X G− 1

2

γ + G− 1
2 ∆X G− 1

2 ∆γ
γ2 +O (‖(∆X ,∆γ)‖3)

)−1

G− 1
2

=G−1 − G−1XG−1∆γ

γ2 +
G−1XG−1∆2

γ

γ3 + G−1∆X G−1

γ
− G−1∆X G−1∆X G−1∆γ

γ2 +
G−1XG−1XG−1∆2

γ

γ4

+ G−1∆X G−1∆X G−1

γ2 − G−1XG−1∆X G−1∆γ

γ3 − G−1∆X G−1XG−1∆γ

γ3 +O (‖(∆X ,∆γ)‖3) .

Thus, the second-order Taylor expansion of the last term in the objective function of (1.6) is
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given by

(γ+∆γ)2 Tr
[(

(γ+∆γ)I − (X +∆X )
)−1

Σ̂
]= (γ+∆γ)Tr

[(
I − X +∆X

γ+∆γ

)−1

Σ̂
]

= γTr
[
G−1Σ̂

]+∆γTr
[
G−1Σ̂(I − 1

γ
G−1X )

]+ ∆2
γ

γ3 Tr
[
G−1XG−1Σ̂G−1X

]
+Tr

[
G−1Σ̂G−1∆X

]− ∆γ

γ2 Tr
[
G−1Σ̂G−1∆X G−1X +G−1Σ̂G−1XG−1∆X

]
+ 1

γ
Tr

[
G−1∆X G−1Σ̂G−1∆X

]+O (‖(∆X ,∆γ)‖3) ,

where the second equality follows from the Taylor expansion of the matrix inverse derived

above. Using Lemma 1.18, the objective function of (1.6) is thus representable as

− logdet(X +∆X )+ (γ+∆γ)
(
ρ2 −Tr

[
Σ̂

])+ (γ+∆γ)2 Tr
[(

(γ+∆γ)I − (X +∆X )
)−1

Σ̂
]

= c + g>(vec(∆X )>,∆γ)>+ 1

2
(vec(∆X )>,∆γ)H(vec(∆X )>,∆γ)>+O (‖(∆X ,∆γ)‖3)

for some c ∈ R, where the gradient g ∈ Rp and the Hessian H ∈ Sp are defined as in the

proposition statement. A feasible descent direction for problem (1.6) is thus obtained by

solving the auxiliary quadratic program

min
∆X ,∆γ

g>(vec(∆X )>,∆γ)>+ 1
2 (vec(∆X )>,∆γ)H(vec(∆X )>,∆γ)>

s. t. ∆X ∈Sp , (∆X )i j = 0 ∀(i , j ) ∈ E
(1.20)

Note that (1.20) has a unique minimizer because H is positive definite. Indeed, we have

4

γ4 vec(G−1XG−1Σ̂G−1)>
(

X −1 ⊗X −1 + 2

γ
G−1Σ̂G−1 ⊗G−1

)−1

vec(G−1XG−1Σ̂G−1)

< 4

γ4 vec(G−1XG−1Σ̂G−1)>
(

2

γ
G−1Σ̂G−1 ⊗G−1

)−1

vec(G−1XG−1Σ̂G−1)

= 2

γ3 vec(G−1XG−1Σ̂G−1)>
(
GΣ̂−1G ⊗G

)
vec(G−1XG−1Σ̂G−1)

= 2

γ3 Tr
[
G−1XG−1Σ̂G−1X

]
,

where the inequality holds because X ⊗X is positive definite and G−1XG−1Σ̂G−1 6= 0, the first

equality follows from [12, Proposition 7.1.7], which asserts that (A⊗B)−1 = A−1 ⊗B−1 for any

A,B ∈Sp
++, and the second equality follows from Lemma 1.18. The above derivation shows

that the Schur complement of the positive definite block X −1 ⊗X −1 + 2
γG−1Σ̂G−1 ⊗G−1 in H

is a positive number, which in turn implies that the Hessian H is positive definite. In the

following, we denote the unique minimizer of (1.20) by (∆?X ,∆?γ ). As ∆X = 0 and ∆γ = 0 is

feasible in (1.20), it is clear that the objective value of (∆?X ,∆?γ ) is nonpositive. In fact, as H Â 0,

the minimum of (1.20) is negative unless g = 0. Thus, (∆?X ,∆?γ ) is a feasible descent direction.
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Note that P defined in the proposition statement represents the orthogonal projection on the

linear space

Z =
{

z = (vec(∆X )>,∆γ)> ∈Rp2+1 :∆X ∈Sp , (∆X )i j = 0 ∀(i , j ) ∈ E
}

.

Indeed, it is easy to verify that P 2 = P = P> because the range and the null space of P corre-

spond to Z and its orthogonal complement, respectively. The quadratic program (1.20) is

thus equivalent to

min
z∈Z

{
g>z + 1

2
z>H z

}
= min

z∈Rp2+1

{
g>z + 1

2
z>H z : P z = z

}
.

The minimizer z? of the last reformulation and the optimal Lagrange multiplier µ? associated

with its equality constraint correspond to the unique solution of the Karush-Kuhn-Tucker

optimality conditions

H z?+ g + (I −P )µ? = 0, (1−P )z? = 0 ⇐⇒ P (H z?+ g ) = 0, (1−P )z? = 0,

which are mainfestly equivalent to (1.19). Thus, the claim follows.

Given a descent direction (∆?X ,∆?γ ) at a feasible point (X ,γ), we use a variant of Armijo’s rule

[126, Section 3.1] to choose a step size α > 0 that preserves feasibility of the next iterate

(X +α∆?X ,γ+α∆?γ ) and ensures a sufficient decrease of the objective function. Specifically, for

a prescribed line search parameter σ ∈ (0, 1
2 ), we set the step size α to the largest number in

{ 1
2m }m∈Z+ satisfying the following two conditions:

(C1) Feasibility: (γ+α∆?γ )I Â X +α∆?X Â 0;

(C2) Sufficient decrease: f (X+α∆?X ,γ+α∆?γ ) ≤ f (X ,γ)+σαδ, whereδ= g>(vec(∆?X )>,∆?γ )> <
0, and g is defined as in Propostion 1.19.

Notice that the sparsity constraints are automatically satisfied at the next iterate thanks to the

construction of the descent direction (∆?X ,∆?γ ) in (1.19). Algorithm 1 repeats the procedure

outlined above until ‖g‖ drops below a given tolerance (10−3) or until the iteration count

exceeds a given threshold (102). Throughout the numerical experiments in Section 1.6 we set

σ= 10−4, which is the value recommended in [126].
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Algorithm 1 Sequential quadratic approximation algorithm

Input: Sample covariance matrix Σ̂Â 0, Wasserstein radius ρ > 0,

line search parameter σ ∈ (0, 1
2 ).

Initialize X0 = I and γ0 > 1, and set t ← 0

while stopping criterion is violated do

Find the descent direction (∆?X ,∆?γ ) at (X ,γ) = (X t ,γt ) by solving (1.19);

Find the largest step size αt ∈ { 1
2m }m∈Z+ satisfying (C1) and (C2);

Set X t+1 = X t +αt∆
?
X , γt+1 = γt +αt∆

?
γ ;

Set t ← t +1;

end while

Output: X t

Remark 1.20 (Steepest descent algorithm). The computation of the descent direction in Propo-

sition 1.19 requires second-order information. It is easy to verify that Proposition 1.19 remains

valid if the Hessian H is replaced with the identity matrix, in which case the sequential quadratic

approximation algorithm reduces to the classical steepest descent algorithm [126, Chapter 3].

The next proposition establishes that Algorithm 1 converges to the unique minimizer of

problem (1.6).

Proposition 1.21 (Convergence). Assume that Σ̂ Â 0, ρ > 0 and σ ∈ (0, 1
2 ). For any initial

feasible solution (X0,γ0), the sequence
{
(X t ,γt )

}
t∈Z+ generated by Algorithm 1 converges to

the unique minimizer (X?,γ?) of problem (1.6). Moreover, the sequence converges locally

quadratically.

Proof. Denote by f (X ,γ) the objective function of problem (1.6), and define

C ,
{
(X ,γ) ∈X ×R+ : f (X ,γ) ≤ f (X0,γ0), 0 ≺ X ≺ γI

}
as the set of all feasible solutions that are at least as good as the initial solution (X0,γ0). The

proof of Theorem 1.7 implies that xI ¹ X ¹ xI and x ≤ γ≤ x for all (X ,γ) ∈C , where the strictly

positive constants x and x are defined as in (1.13). Note that, as Σ̂ is fixed in this proof, the

dependence of x and x on Σ̂ is notationally suppressed to avoid clutter. Thus, C is bounded.

Moreover, as Σ̂Â 0, it is easy to verify f (X ,γ) tends to infinity if the smallest eigenvalue of X

approaches 0 or if the largest eigenvalue of X approaches γ. The continuity of f (X ,γ) then

implies that C is closed. In summary, we conclude that C is compact.

By the definition of f (X ,γ) in (1.6), any (X ,γ) ∈C satisfies

0 ≤ f (X0,γ0)+ logdet(X )−γ(
ρ2 −Tr

[
Σ̂

])−γ〈
(I −γ−1X )−1, Σ̂

〉
≤ f (X0,γ0)+p log(x)+x Tr

[
Σ̂

]−xλmin Tr
[
(I −γ−1X )−1],
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where λmin denotes the smallest eigenvalue of Σ̂, which is positive by assumption. Thus, we

have

Tr
[
(I −γ−1X )−1]≤ 1

xλmin

(
f (X0,γ0)+p log(x)+x Tr

[
Σ̂

])
,

which implies that the eigenvalues of I − X
γ are uniformly bounded away from 0 on C . More

formally, there exists c0 > 0 with I − X
γ Â c0I for all (X ,γ) ∈C . As the objective function f (X ,γ)

is smooth wherever it is defined, its gradient and Hessian constitute continuous functions

on C . Moreover, as f (X ,γ) is strictly convex on the compact set C , the eigenvalues of its

Hessian matrix are uniformly bounded away from 0. This implies that the inverse Hessian

matrix and the descent direction (∆?X ,∆?γ ) constructed in Proposition 1.19 are also continuous

on C . Hence, there exist c1,c2 > 0 such that ∆?X ¹ c1I and |∆?γ | ≤ c2 uniformly on C .

We conclude that any positive step size α< x min
{
c−1

1 , (c1 + c2)−1c0
}

satisfies the feasibility

condition (C1) uniformly on C because X +α∆?X Â (
x −αc1

)
I º 0 and

(γ+α∆?γ )I º X + c0xI +α(
∆?X −∆?X +∆?γ I

)º X + c0xI +α(
∆?X − (c1 + c2)I

)Â X +α∆?X

for all (X ,γ) ∈ C . Moreover, by [167, Lemma 5(b)] there exists α > 0 such that any positive

step size α≤α satisfies the descent condition (C2) for all (X ,γ) ∈C . In summary, there exists

m? ∈Z+ such that

α? = 1

2m? < min
{
α, x min

{
c−1

1 , (c1 + c2)−1c0
}}

satisfies both line search conditions (C1) and (C2) uniformly on C . By induction, the iterates

{(X t ,γt )}t∈N generated by Algorithm 1 have nonincreasing objective values and thus all belong

to C , while the step sizes {αt }t∈N generated by Algorithm 1 are all larger or equal to α?. Hence,

the algorithm’s global convergence is guaranteed by [167, Theorem 1], while the local quadratic

convergence follows from [84, Theorem 16].

Remark 1.22 (Refinements of Algorithm 1). For large values of p, computing and storing the

exact Hessian matrix H from Proposition 1.19 is prohibitive. In this case, H can be approx-

imated by a low-rank matrix as in the limited-memory Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method without sacrificing global convergence [167]. Alternatively, one can resort to a

coordinate descent method akin to the QUIC algorithm [84], in which case both the global and

local convergence guarantees of Proposition 1.21 remain valid.

Remark 1.23 (Learning the sparsity pattern). If the precision matrix is known to be sparse

but has an unknown sparsity pattern, then one may set X = Sd++ and add a weighted `1-

regularization or Lasso term to the objective function of problem (1.6) in order to generate sparse

Wasserstein shrinkage estimators. Different sparsity patterns can be obtained by tuning the

weight of the Lasso term. The regularized nonlinear SDP (1.6) can then be solved with a variant

of the QUIC algorithm [84]. Indeed, the gradient and the Hessian matrix of the smooth part

of the objective function (which coincides with the robust version of Stein’s loss function) can

again be computed efficiently by leveraging Proposition 1.19. Details are omitted for brevity.
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1.5 Extremal Distributions

It is instructive to characterize the extremal distributions that attain the supremum in (1.7) for

a given sample covariance matrix Σ̂ and a fixed candidate estimator X .

Theorem 1.24 (Extremal distributions). For any Σ̂, X ∈Sp
++ and ρ > 0, the supremum in (1.7)

is attained by the normal distributionQ? =N (0,S?) with covariance matrix

S? = (γ?)2(γ?I −X )−1Σ̂(γ?I −X )−1,

where γ? is the unique solution with γ?I Â X of the following algebraic equation

ρ2 −Tr
[
Σ̂

]+2γ?Tr
[
(γ?I −X )−1Σ̂

]− (γ?)2 Tr
[
(γ?I −X )−1Σ̂(γ?I −X )−1]= 0. (1.21)

Proof. From Proposition 1.9 we know that the worst-case expectation problem (1.7) is equiva-

lent to the semidefinite program (1.8). Note that the strictly convex objective function of (1.8)

is bounded below by

γ
(
ρ2 −Tr

[
Σ̂

])+λminγ
2 Tr

[
(γI −X )−1],

where λmin denotes the smallest eigenvalue of Σ̂. As λmin is positive by assumption, the

objective function of (1.8) tends to infinity as γ approaches the largest eigenvalue of X , in

which case γI −X becomes singular. Thus, the unique optimal solution γ? of (1.8) satisfies

γ?I Â X and solves the first-order optimality condition (1.21).

Now we are ready to prove that Q? is both feasible and optimal in (1.7). By the formula for

S? in terms of γ?, Σ̂ and S and by using Definition 1.4 and Proposition 1.3, it is easy to verify

that (1.21) is equivalent to

Tr
[
S?

]+Tr
[
Σ̂

]−2Tr
[√

Σ̂
1
2 S?Σ̂

1
2
]= ρ2 ⇐⇒ WS(S?, Σ̂) =W(Q?, P̂) = ρ,

which confirms thatQ? is feasible in (1.7). Moreover, the objective value ofQ? in (1.7) amounts

to

EQ? [
〈
ξξ>, X

〉
] = 〈

S?, X
〉= (γ?)2〈(γ?I −X )−1Σ̂(γ?I −X )−1, X

〉
= (γ?)2〈(γ?I −X )−1Σ̂(γ?I −X )−1, (X −γ?I )+γ?I

〉
=−(γ?)2 Tr

[
(γ?I −X )−1Σ̂

]+ (γ?)3 Tr
[
(γ?I −X )−1Σ̂(γ?I −X )−1]

= γ?(ρ2 −Tr
[
Σ̂

]
)+ (γ?)2〈(γ?I −X )−1, Σ̂

〉= g (Σ̂, X ),

where the penultimate equality exploits (1.21), while the last equality follows from the opti-

mality of γ? in (1.8) and from Proposition 1.9. Thus,Q? is optimal in (1.7).

In the absence of sparsity information (that is, if X = S
p
++), the unique minimizer X? of

problem (1.5) is available in closed form thanks to Theorem 1.12. In this case, the extremal
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distribution attaining the supremum in (1.7) at X = X? can also be computed in closed form

even if Σ̂ is rank deficient.

Corollary 1.25 (Extremal distribution for optimal estimator). Assume that ρ > 0, X =Sp
++ and

Σ̂ ∈Sp
+ admits the spectral decomposition Σ̂=∑p

i=1λi vi v>
i with eigenvalues λi and correspond-

ing orthonormal eigenvectors vi , i ≤ p. If (X?,γ?) represents the unique solution of (1.6) given

in Theorem 1.12, then the supremum in (1.7) at X = X? is attained by the normal distribution

Q? =N (0,S?) with covariance matrix

S? =
p∑

i=1
s?i vi v>

i , where s?i =
(γ?)2λi (γ?−x?i )−2 if λi > 0,

(γ?)−1 if λi = 0.

Proof. If Σ̂Â 0, the claim follows immediately by substituting the formula for X? from The-

orem 1.12 into the formula for S? from Theorem 1.24. If Σ̂º 0 is rank deficient, we consider

the invertible sample covariance matrix Σ̂+εI Â 0 for some ε > 0, denote by (X?(ε),γ?(ε))

the corresponding minimizer of problem (1.6) as constructed in (1.16) and let S?(ε) be the

covariance matrix of the extremal distribution of problem (1.7) at X = X?(ε). Using the same

reasoning as in the proof of Theorem 1.12, one can show that (X?(ε),γ?(ε)) is continuous in

ε ∈R+ and converges to (X?,γ?) as ε tends to 0. Similarly, S?(ε) is continuous in ε ∈R+ and

converges to S? as ε tends to 0. To see this, note that the eigenvalues s?i (ε), i ≤ p, of S?(ε)

satisfy

lim
ε→0+ s?i (ε) = lim

ε→0+
γ?(ε)2(λi +ε)

(γ?(ε)−x?i (ε))2

= lim
ε→0+

4(λi +ε)(√
(λi +ε)2γ?(ε)2 +4(λi +ε)γ?(ε)− (λi +ε)γ?(ε)

)2 = s?i ∀i ≤ p ,

where the first equality follows from the first part of the proof, the second equality ex-

ploits (1.16a) and the third equality holds due to the definition of s?i .

We are now armed to prove that Q? is both feasible and optimal in (1.7). Indeed, using the

continuity of S?(ε) andWS(S1,S2) in their respective arguments, we find

W(Q?, P̂) =WS(S?, Σ̂) = lim
ε→0+WS(S?(ε), Σ̂+εI ) = ρ ,

where the last equality follows from the construction of S?(ε) in the proof of Theorem 1.24.

Thus,Q? is feasible in (1.7). Similarly, using the continuity of S?(ε) and X?(ε) in ε, we have

EQ?[
〈
ξξ>, X?

〉
] = 〈

S?, X?
〉= lim

ε→0+

〈
S?(ε), X?(ε)

〉= lim
ε→0+ g (Σ̂+εI ,S?(ε)) = g (Σ̂,S?) ,

where the last two equalities follow from the construction of S?(ε) in the proof of Theorem 1.24

and the continuity of g (Σ̂, X ) established in Proposition 1.9, respectively. Thus,Q? is optimal

in (1.7).
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1.6 Numerical Experiments

To assess the statistical and computational properties of the proposed Wasserstein shrinkage

estimator, we compare it against two state-of-the-art precision matrix estimators from the

literature.

Definition 1.26 (Linear shrinkage estimator). Denote by diag(Σ̂) the diagonal matrix of all

sample variances. Then, the linear shrinkage estimator with mixing parameter α ∈ [0,1] is

defined as

X? = [
(1−α)Σ̂+αdiag(Σ̂)

]−1
.

The linear shrinkage estimator uses the diagonal matrix of sample variances as the shrinkage

target. Thus, the sample covariances are shrunk to zero, while the sample variances are

preserved. We emphasize that the most prevalent shrinkage target is a scaled identity matrix

[105]. The benefits of using diag(Σ̂) instead are discussed in [148, § 2.4]. This particular linear

shrinkage estimator can also be interpreted as the maximum a posteriori estimator based on

an inverse Wishart prior [120, § 4.2.6]. Note that while Σ̂ is never invertible for n < p, diag(Σ̂)

is almost surely invertible whenever the true covariance matrix is invertible and n > 1. Thus,

the linear shrinkage estimator is almost surely well-defined for all α> 0. Moreover, it can be

efficiently computed in O (p3) arithmetic operations.

Definition 1.27 (`1-Regularized maximum likelihood estimator). The `1-regularized maxi-

mum likelihood estimator with penalty parameter β≥ 0 is defined as

X? = argmin
Xº0

{
− logdet X +〈

Σ̂, X
〉+β p∑

i , j=1
|Xi j |

}
.

Adding an `1-regularization term to the standard maximum likelihood estimation problem

gives rise to sparse—and thus interpretable—estimators [6, 65]. The resulting semidefinite

program can be solved with general-purpose interior point solvers such as SDPT3 or with

structure-exploiting methods such as the QUIC algorithm, which enjoys a quadratic conver-

gence rate and requires O (p3) arithmetic operations per iteration [84]. In the remainder of

this section we test the Wasserstein shrinkage, linear shrinkage and `1-regularized maximum

likelihood estimators on synthetic and real datasets. All experiments are implemented in

MATLAB, and the corresponding codes are included in the Wasserstein Inverse Covariance

Shrinkage Estimator (WISE) package available at https://www.github.com/nvietanh/wise.

Remark 1.28 (Bessel’s correction). So far we used N (µ̂, Σ̂) as the nominal distribution, where

the sample covariance matrix Σ̂was identified with the (biased) maximum likelihood estimator.

In practice, it is sometimes useful to use Σ̂/κ as the nominal covariance matrix, where κ ∈ (0,1)

is a Bessel correction that removes the bias; see, e.g., Sections 1.6.2 and 1.6.2 below. Under the

premise that X is a cone, it is easy to see that if (X?,γ?) is optimal in (1.15) for a prescribed

Wasserstein radius ρ and a scaled sample covariance matrix Σ̂/κ, then (κX?,κγ?) is optimal
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in (1.15) for a scaled Wasserstein radius
p
κρ and the original sample covariance matrix Σ̂.

Thus, up to scaling, using a Bessel correction is tantamount to shrinking ρ.

1.6.1 Experiments with Synthetic Data

Consider a (p = 20)-variate Gaussian random vector ξ with zero mean. The (unknown) true

covariance matrix Σ0 of ξ is constructed as follows. We first choose a density parameter

d ∈ {12.5%,50%,100%}. Using the legacy MATLAB 5.0 uniform generator initialized with

seed 0, we then generate a matrix C ∈Rp×p with bd ×p2c randomly selected nonzero elements,

all of which represent independent Bernoulli random variables taking the values +1 or −1

with equal probabilities. Finally, we set Σ0 = (C>C +10−3I )−1 Â 0.

As usual, the quality of an estimator X? for the precision matrix Σ−1
0 is evaluated using Stein’s

loss function

L(X?,Σ0) =− logdet(X?Σ0)+〈
X?,Σ0

〉−p,

which vanishes if X? =Σ−1
0 and is strictly positive otherwise [90].

All simulation experiments involve 100 independent trials. In each trial, we first draw n ∈
{10,20,40,60} independent samples from N (0,Σ0), which are used to compute the sample

covariance matrix Σ̂ and the corresponding precision matrix estimators. Figure 1.2 shows

Stein’s loss of the Wasserstein shrinkage estimator without structure information for ρ ∈
[10−2,101], the linear shrinkage estimator for α ∈ [10−5,100] and the `1-regularized maximum

likelihood estimator for β ∈ [5× 10−5,100]. Lines represent averages, while shaded areas

capture the tubes between the empirical 20% and 80% quantiles across all 100 trials. Note that

all three estimators approach Σ̂−1 when their respective tuning parameters tend to zero. As Σ̂

is rank deficient for n < p = 20, Stein’s loss thus diverges for small tuning parameters when

n = 10.

The best Wasserstein shrinkage estimator in a given trial is defined as the one that minimizes

Stein’s loss over all ρ ≥ 0. The best linear shrinkage and `1-regularized maximum likelihood

estimators are defined analogously. Figure 1.2 reveals that the best Wasserstein shrinkage

estimators dominate the best linear shrinkage and—to a lesser extent—the best `1-regularized

maximum likelihood estimators in terms of Stein’s loss for all considered parameter settings.

The dominance is more pronounced for small sample sizes. We emphasize that Stein’s loss

depends explicitly on the unknown true covariance matrix Σ0. Thus, Figure 1.2 is not available

in practice, and the optimal tuning parameters ρ?, α? and β? cannot be computed exactly.

The performance of different precision matrix estimators with estimated tuning parameters

will be studied in Section 1.6.2.

For d = 12.5% and d = 50%, the true precision matrixΣ−1
0 has many zeros, and prior knowledge

of their positions could be used to improve estimator accuracy. To investigate this effect, we

henceforth assume that the feasible set X correctly reflects a randomly selected portion of

50%, 75% or 100% of all zeros of Σ−1
0 , while X contains no (neither correct nor incorrect)
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(a) Wasserstein shrinkage (b) Linear shrinkage (c) `1-regularized ML

(d) Wasserstein shrinkage (e) Linear shrinkage (f) `1-regularized ML

(g) Wasserstein shrinkage (h) Linear shrinkage (i) `1-regularized ML

Figure 1.2 – Stein’s loss of the Wasserstein shrinkage, linear shrinkage and `1-regularized
maximum likelihood estimators as a function of their respective tuning parameters for d =
100% (panels 1.2a–1.2c), d = 50% (panels 1.2d–1.2f) and d = 12.5% (panels 1.2g–1.2i).

information about the remaining zeros. In this setting, we construct the Wasserstein shrinkage

estimator by solving problem (1.5) numerically.

Figure 1.3 shows Stein’s loss of the Wasserstein shrinkage estimator with prior information

for ρ ∈ [10−2,101]. Lines represent averages, while shaded areas capture the tubes between

the empirical 20% and 80% quantiles across 100 trials. As expected, correct prior sparsity

information improves estimator quality, and the more zeros are known, the better. Note that

Σ−1
0 contains 21.5% zeros for d = 12.5% and 68% zeros for d = 50%.

In the last experiment, we investigate the Wasserstein radius ρ? of the best Wasserstein

shrinkage estimator without sparsity information. Figure 1.4 visualizes the average of ρ?

across 100 independent trials as a function of the sample size n. A standard regression analysis

based on the data of Figure 1.4 reveals that ρ? converges to zero approximately as n−κ with
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(a) 50% sparsity information (b) 75% sparsity information (c) 100% sparsity information

(d) 50% sparsity information (e) 75% sparsity information (f) 100% sparsity information

Figure 1.3 – Stein’s loss of the Wasserstein shrinkage estimator with 50%, 75% or 100% sparsity
information as a function of the Wasserstein radius ρ for d = 50% (panels 1.3a–1.3c) and
d = 12.5% (panels 1.3d–1.3f).

κ≈ 61% for d = 12.5%, κ≈ 66% for d = 50% and κ≈ 68% for d = 100%.

1.6.2 Experiments with Real Data

We now study the properties of the Wasserstein shrinkage estimator in the context of linear

discriminant analysis, portfolio selection and the inference of solar irradiation patterns.

101 102 103 104 105 106

10-4

10-2

100

Figure 1.4 – Dependence of the the best Wasserstein radius ρ? on the sample size n.
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Linear Discriminant Analysis

Linear discriminant analysis aims to predict the class y ∈ Y , |Y | < ∞, of a feature vector

z ∈Rp under the assumption that the conditional distribution of z given y is normal with a

class-dependent mean µy ∈Rp and class-independent covariance matrix Σ0 ∈Sp
++ [82]. If all

µy and Σ0 are known, the maximum likelihood classifier C :Rp →Y assigns z to a class that

maximizes the likelihood of observing y , that is,

C (z) ∈ argmin
y∈Y

(z −µy )>Σ−1
0 (z −µy ). (1.22)

In practice, however, the conditional moments are typically unknown and must be inferred

from finitely many training samples (ẑi , ŷi ), i ≤ n. If we estimate µy by the sample average

µ̂y = 1

|Iy |
∑

i∈Iy

x̂i ,

where Iy = {i ∈ {1, . . . ,n} : ŷi = y} records all samples in class y , then it is natural to de-

fine the residual feature vectors as ξ̂i = ẑi − µ̂ŷi , i ≤ n. Accounting for Bessel’s correction,

the conditional distribution of ξ̂i given ŷi is normal with mean 0 and covariance matrix

(|Iŷi |−1) |Iŷi |−1Σ0. The marginal distribution of ξ̂i thus constitutes a mixture of |Y | normal

distributions with mean 0, all of which share the same covariance matrix up to a scaling

factor close to unity. As such, the residuals fail to be normally distributed. Moreover, due to

their dependence on the sample means, the residuals are correlated. However, if each class

accommodates many training samples, then the residuals can approximately be regarded as

independent samples from N (0,Σ0).

Irrespective of these complications, the sample covariance matrix

Σ̂= 1

n −|Y |
n∑

i=1
ξ̂i ξ̂

>
i

provides an unbiased estimator for Σ0. Indeed, by the law of total expectation we have

EP[Σ̂] = 1

n −|Y |EP
[

n∑
i=1
EP

[
ξ̂i ξ̂

>
i

∣∣ ŷi
]]

= 1

n −|Y |
∑

y∈Y

EP

[ ∑
i∈Iy

|Iŷi |−1

|Iŷi |
Σ

]
= 1

n −|Y |
∑

y∈Y

(|Iy |−1)Σ0 = Σ0 ,

where P stands for the unknown true joint distribution of the residuals and class labels. In a

data-driven setting, the ideal maximum likelihood classifier (1.22) is replaced with

Ĉ (ξ) = argmin
y∈Y

(ξ− µ̂y )>X?(ξ− µ̂y ) , (1.23)

which depends on the raw data through the sample averages µ̂y , y ∈Y , and some precision
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matrix estimator X?. The possible choices for X? include the Wasserstein shrinkage estimator

without prior information, the linear shrinkage estimator and the `1-regularized maximum

likelihood estimator, all of which depend on the data merely through Σ̂. Note that the naïve

precision matrix estimator Σ̂−1 exists only for n > p and is therefore disregarded. All estimators

depend on a scalar parameter (the Wasserstein radius ρ, the mixing parameterα or the penalty

parameter β) that can be used to tune the performance of the classifier (1.23).

We test the classifier (1.23) equipped with different estimators X? on two preprocessed

datasets from [42]:

1. The “colon cancer” dataset contains 62 gene expression profiles, each of which in-

volves 2,000 features and is classified either as normal tissue (NT) or tumor-affected

tissue (TT). The data is split into a training dataset of 29 observations (9 in class NT and

20 in class TT) and a test dataset of 33 observations (13 in class NT and 20 in class TT).

2. The “leukemia” dataset contains 72 gene expression profiles, each of which involves

3,571 features and is classified either as acute lymphocytic leukemia (ALL) or acute

myeloid leukemia (AML). The data is split into a training dataset of 38 observations (27

in class ALL and 11 in class AML) and a test dataset of 34 observations (20 in class ALL

and 14 in class AML).

Classification is based solely on the first p ∈ {20,40,80,100} features of each gene expression

profile. We use leave-one-out cross validation on the training data to tune the precision matrix

estimator X? with the goal to maximize the correct classification rate of the classifier (1.23).

To keep the computational overhead manageable, we optimize the tuning parameters over

the finite search grids

ρ ∈ {10
j

20−1 : j = 0, . . . ,60}, α ∈ {10
j

20−3 : j = 0, . . . ,60} and β ∈ {10
j

20−3 : j = 0, . . . ,60}.

We highlight that, in case of the `1-regularized maximum likelihood estimator, cross validation

becomes computationally prohibitive for p > 80 even if the state-of-the-art QUIC routine is

used [84] to solve the underlying semidefinite programs. In contrast, the Wasserstein and linear

shrinkage estimators can be computed and tuned quickly even for p À 100. Once the optimal

tuning parameters are found, we fix them and recalculate X? on the basis of the entire training

dataset. Finally, we substitute the resulting precision matrix estimator into the classifier (1.23)

and evaluate its correct classification rate on the test dataset. The test results are reported

in Table 1.1. We observe that the Wasserstein shrinkage estimator frequently outperforms

the linear shrinkage and `1-regularized maximum likelihood estimators, especially for higher

values of p.
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Table 1.1 – Correct classification rate of the classifier (1.23) instantiated with different precision
matrix estimators. The best result in each experiment is highlighted in bold.

Colon cancer dataset Leukemia dataset

Estimator p = 20 p = 40 p = 80 p = 100 p = 20 p = 40 p = 80 p = 100

Wasserstein 72.73 75.76 78.79 75.76 73.53 67.65 91.18 91.18

Linear 57.58 72.73 72.73 72.73 70.59 70.59 82.35 82.35

`1-regularized 72.73 78.79 78.79 72.73 70.59 64.71 82.35 82.35

Minimum Variance Portfolio Selection

Consider the minimum variance portfolio selection problem without short sale constraints

[87]
min
w∈Rp

w>Σ0w

s. t. 1
>w = 1,

where the portfolio vector w ∈Rp captures the percentage weights of initial capital allocated

to p different assets with random returns, 1 ∈Rp stands for the vector of ones, and Σ0 ∈Sp
++

denotes the covariance matrix of the asset returns. The objective represents the variance of

the portfolio return, which is strictly convex in w thanks to the positive definiteness of Σ0. The

unique optimal solution of this portfolio selection problem is given by w? =Σ−1
0 1/1>Σ−1

0 1.

In practice, the unknown true precision matrix Σ−1
0 must be replaced with an estimator X?,

which gives rise to the estimated minimum variance portfolio ŵ? = X?
1/1>X?

1.

A vast body of literature in finance focuses on finding accurate precision matrix estimators

for portfolio construction, see, e.g., [161, 40, 104, 75, 165]. In the following we compare the

minimum variance portfolios based on the Wasserstein shrinkage estimator without structural

information, the linear shrinkage estimator and `1-regularized maximum likelihood estimator

on two preprocessed datasets from the Fama-French online data library:2 the “48 industry

portfolios” dataset (FF48) and the “100 portfolios formed on size and book-to-market” dataset

(FF100). Recall that the estimators depend on the data only through the sample covariance

matrix Σ̂, which is computed from the residual returns relative to the sample means and thus

needs to account for Bessel’s correction. The datasets both consist of monthly returns for the

period from January 1996 to December 2016. The first 120 observations from January 1996 to

December 2005 serve as the training dataset. The optimal tuning parameters that minimize

the portfolio variance are estimated via leave-one-out cross validation on the training dataset

using the finite search grids

ρ ∈ {10
j

100−2 : j = 0, . . . ,200}, α ∈ {10
j

100−2 : j = 0, . . . ,200} and β ∈ {10
j

50−4 : j = 0, . . . ,200}.

2See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html (accessed January 2018)
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The out-of-sample performance of the minimum variance portfolio corresponding to a partic-

ular precision matrix estimator is then evaluated using the rolling horizon method over the

period from January 2006 to December 2016, where the sample covariance matrix needed

as an input for the precision matrix is re-estimated every three months based on the most

recent 120 observations (10 years), while the tuning parameter is kept fixed. The resulting

out-of-sample mean, standard deviation and Sharpe ratio of the portfolio return are reported

in Table 1.2. While the `1-regularized maximum likelihood estimator yields the portfolio with

the lowest standard deviation for both datasets, the Wasserstein shrinkage estimator always

generates the highest mean and, maybe surprisingly, the highest Sharpe ratio.

Table 1.2 – Standard deviation, mean and Sharpe ratio of the minimum variance portfolio
based on different estimators. The best result in each experiment is highlighted in bold.

FF48 dataset FF100 dataset

Estimator std mean Sharpe std mean Sharpe

Wasserstein shrinkage 3.146 0.701 0.223 3.518 1.079 0.307

Linear shrinkage 3.152 0.688 0.218 3.484 0.965 0.277

`1-regularized ML 3.077 0.668 0.217 3.423 1.010 0.295

Inference of Solar Irradiation Patterns

In the last experiment we aim to estimate the spatial distribution of solar irradiation in Switzer-

land using the “surface incoming shortwave radiation” (SIS) data provided by MeteoSwiss.3

The SIS data captures the horizontal solar irradiation intensities in W/m2 for pixels of size

1.6km by 2.3km based on the effective cloud albedo, which is derived from satellite imagery.

The dataset spans 13 years from 2004 to 2016, with a total number of 4,749 daily observations.

We deseasonalize the time series of each pixel as follows. First, we divide the original time

series by a shifted sinusoid with a yearly period, whose baseline level, phase and amplitude

are estimated via ordinary least squares regression. Next, we subtract unity. The resulting

deseasonalized time series is viewed as the sample path of a zero mean Gaussian noise pro-

cess. This approach relies on the assumption that the mean and the standard deviation of

the original time series share the same seasonality pattern. It remains to estimate the joint

distribution of the pixel-wise Gaussian white noise processes, which is fully determined by

the precision matrix of the deseasonalized data. We estimate the precision matrix using the

Wasserstein shrinkage, linear shrinkage and `1-regularized maximum likelihood estimators.

As each pixel represents a geographical location and as the solar irradiation intensities at two

distant pixels are likely to be conditionally independent given the intensities at all other pixels,

it is reasonable to assume that the precision matrix is sparse; see also [36, 171]. Specifically, we

assume here that the solar irradiation intensities at two pixels indexed by (i , j ) and (i ′, j ′) are

3See http://www.meteoschweiz.admin.ch/data/products/2014/raeumliche-daten-globalstrahlung.html (ac-
cessed January 2018)

47

http://www.meteoschweiz.admin.ch/data/products/2014/raeumliche-daten-globalstrahlung.html


Wasserstein Shrinkage Estimator

7.3 7.4 7.5 7.6

46.3

46.4

46.5

46.6

140

145

150

155

160

165

170

175

180

Figure 1.5 – Average solar irradiation intensities (W/m2) for the Diablerets region in Switzer-
land.

conditionally independent and that the corresponding entry of the precision matrix vanishes

whenever |i − i ′| + | j − j ′| > 3. This sparsity information can be used to enhance the basic

Wasserstein shrinkage estimator.

Consider now the Diablerets region of Switzerland, which is described by a spatial matrix of

20×20 pixels. Thus, the corresponding precision matrix has dimension 400×400. The average

daily solar irradiation intensities within the region of interest are visualized in Figure 1.5. We

note that the sunshine exposure is highly variable due to the heterogeneous geographical

terrain characterized by a high mountain range in the south intertwined with deep valleys in

the north. In order to assess the quality of a specific precision matrix estimator, we use K -fold

cross validation with K = 13. The k-th fold comprises all observations of year k and is used to

construct the estimator X?
k . The data of the remaining 12 years, without year k, are used to

compute the empirical covariance matrix Σ̂−k . The estimation error of X?
k is then measured

via Stein’s loss

L(X?
k , Σ̂−k ) =− logdet(X?

k Σ̂−k )+〈
X?

k , Σ̂−k
〉−p.

We emphasize that here, in contrast to the experiment with synthetic data, Σ̂−k is used as a

proxy for the unknown true covariance matrix Σ. Figure 1.6 shows Stein’s loss of the Wasser-

stein shrinkage estimator with and without structure information for ρ ∈ [10−2,100], the linear

shrinkage estimator for α ∈ [10−3,2×10−2] and the `1-regularized maximum likelihood es-

timator for β ∈ [10−5,10−3]. Lines represent averages, while shaded areas capture the tubes

between the best- and worst-case loss realizations across all K folds.

The Wasserstein shrinkage estimator with structure information reduces the minimum average

loss by 13.5% relative to the state-of-the-art `1-regularized maximum likelihood estimator.

Moreover, the average runtimes for computing the different estimators amount to 51.84s

for the Wasserstein shrinkage estimator with structural information (Algorithm 1), 0.08s for

the Wasserstein shrinkage estimator without structural information (analytical formula and
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(a) Wasserstein shrinkage (b) Linear shrinkage (c) `1-regularized ML

Figure 1.6 – Stein’s loss of the Wasserstein shrinkage, linear shrinkage and `1-regularized
maximum likelihood estimators as a function of their respective tuning parameters.

bisection algorithm), 0.01s for the linear shrinkage estimator (analytical formula) and 1493.61s

for the `1-regularized maximum likelihood estimator (QUIC algorithm [84]).
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2 Bridging Bayesian and Minimax Mean
Square Error Estimation
via Wasserstein Distributionally
Robust Optimization

This duality can be pursued further and is related to a duality between past and future and the

notions of control and knowledge. Thus we may have knowledge of the past but cannot

control it; we may control the future but have no knowledge of it.

— Claude Shannon

We introduce a distributionally robust minimium mean square error estimation model with

a Wasserstein ambiguity set to infer an unknown signal from a noisy measurement. The

proposed model minimizes the worst-case (maximum) of the mean square expected loss

across all reference distributions within a prescribed Wasserstein distance from a nominal

distribution. We show that the proposed model can be conservatively approximated by the

optimal value of a finite convex optimization problem. If the nominal distribution is elliptical,

we prove that the optimal estimator is affine and can be recovered from the optimal solution

of the related dual estimation problem whose reformulation is equivalent to a tractable

semidefinite program. Finally, we develop a Frank-Wolfe algorithm for efficiently solving the

robustified estimation problem in high dimensional settings, such as for image denoising

using wavelet shrinkage.
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2.1 Introduction

Consider the problem of estimating an unknown parameter x ∈Rn based on a linear measure-

ment y ∈Rm corrupted by additive noise w ∈Rm . This setup is formalized through the linear

measurement model

y = H x +w, (2.1)

where the observation matrix H ∈ Rm×n is assumed to be known. We further assume that

the distribution Pw of w has finite second moments and is independent of x. Thus, the

conditional distribution Py |x of y given x is obtained by shifting Pw by H x. Note that the

linear measurement model is fundamental for numerous applications in engineering (e.g.,

linear systems theory [74, 127]), econometrics (e.g., linear regression [162, 174], time series

analysis [25, 80]), machine learning and signal processing (e.g., Kalman filtering [97, 120, 129])

or information theory (e.g., multiple-input multiple-output systems [32, 113]) etc.

An estimator of x given y is a measurable function ψ : Rm → Rn that grows at most linearly.

Thus, there exists C > 0 such that |ψ(y)| ≤C (1+‖y‖) for all y ∈Rm . The function value ψ(y)

is the prediction of x based on the measurement y under the estimator ψ. In the following

we denote the family of all estimators by F . The quality of an estimator is measured by a risk

function R : F ×Rn → R, which quantifies the mismatch between the parameter x and its

prediction ψ(y). A popular risk function is the mean square error (MSE)

R(ψ, x),EPy |x
[‖x −ψ(y)‖2] ,

which defines the estimation error as the expected squared Euclidean distance between ψ(y)

and x. If x was known, then R(ψ, x) could be minimized directly, and the constant estimator

ψ?(y) ≡ x would be optimal. In practice, however, x is unobservable. Otherwise there would be

no need to solve an estimation problem in the first place. With x unknown, it is impossible to

minimize the MSE directly. The statistics literature proposes two complementary workarounds

for this problem: the Bayesian approach and the minimax approach.

The Bayesian statistician treats x as a random vector governed by a prior distribution Px

that captures her beliefs about x before seeing y [114, § 1.2.4] and solves the minimum MSE

(MMSE) estimation problem

minimize
ψ∈F

EPx

[
R(ψ, x)

]
. (2.2)

If the distribution Px of x has finite second moments, then (2.2) is solvable. In this case,

the optimal estimator, which is usually termed the Bayesian MMSE estimator, is of the form

ψ?
B

(y) =EPx|y [x], where the conditional distribution Px|y of x given y is obtained from Px and

Py |x via Bayes’ theorem. However, the Bayesian MMSE estimator suffers from two conceptual

shortcomings. First, ψ?
B

is highly sensitive to the prior distribution Px , which is troubling if

the statistician has little confidence in her beliefs. Second, computing ψ?
B

requires precise

knowledge of the noise distribution Pw , which is typically unobservable and thus uncertain
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at least to some extent. Moreover, ψ?
B

may generically have a complicated functional form,

and evaluating ψ?
B

(y) to high precision for a particular measurement y (e.g., via Monte Carlo

simulation) may be computationally challenging if the dimension of x is high.

These shortcomings are mitigated if we restrict the space F of all measurable estimators

in (2.2) to the space

A ,
{
ψ ∈F : ∃A ∈Rn×m , b ∈Rn with ψ(y) = Ay +b ∀y ∈Rm}

(2.3)

of all affine estimators. In this case the distributions Px and Pw need not be fully known.

Instead, in order to evaluate the optimal affine estimator ψ?
A

(y) = A?y +b?, it is sufficient

to know the mean vectors µx and µw as well as the covariance matrices Σx and Σw of the

distributions Px and Pw , respectively. If HΣx H> +Σw Â 0, which is the case if the noise

covariance matrix has full rank, then the coefficients of the best affine estimator can be

computed in closed form. Using (2.1) together with the independence of x and w one can

show that

A? =Σx H>(HΣx H>+Σw )−1 and b? =µx − A?(Hµx +µw ). (2.4)

If the random vector (x, y) follows a normal distribution, then the best affine estimator is

also optimal among all measurable estimators. In general, however, we do not know how

much optimality is sacrificed by restricting attention to affine estimators. Moreover, the

uncertainty about Px and Pw transpires through to their first- and second-order moments. As

the coefficients (2.4) tend to be highly sensitive to these moments, their uncertainty remains

worrying.

The minimax approach models the statistician’s prior knowledge concerning x via a convex

closed uncertainty set X ⊆Rn as commonly used in robust optimization. The minimax MSE

estimation problem is then formulated as a zero-sum game between the statistician, who

selects the estimator ψ ∈F with the goal to minimize the MSE, and nature, who chooses the

parameter value x ∈X with the goal to maximize the MSE.

minimize
ψ∈F

max
x∈X

R(ψ, x) (2.5a)

By construction, any minimizer ψ?
M

of (2.5a) incurs the smallest possible estimation error

under the worst parameter realization within the uncertainty set X . For this reason ψ?
M

is

called a minimax estimator. Note that the MSE R(ψ, x) generically displays a complicated

non-concave dependence on x for any fixedψ, which implies that nature’s inner maximization

problem in (2.5a) is usually non-convex. Thus, we should not expect the zero-sum game (2.5a)

between the statistician and nature to admit a Nash equilibrium. However, the inner maxi-

mization problem can be convexified by allowing nature to play mixed (randomized) strategies,
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that is, by reformulating (2.5a) as the (equivalent) convex-concave saddle point problem

minimize
ψ∈F

max
Qx∈M (X )

EQx

[
R(ψ, x)

]
, (2.5b)

where M (X ) stands for the family of all distributions supported on X with finite second-order

moments. AsEQx [R(ψ, x)] is convex in ψ for any fixedQx and concave (linear) inQx for any

fixed ψ, while F and M (X ) are both convex sets, the zero-sum game (2.5b) admits a Nash

equilibrium (ψ?
M

,Q?x ) under mild technical conditions. Note that ψ?
M

is again a minimax

estimator. Moreover, ψ?
M

is the statistician’s best response to nature’s choice Q?x and vice

versa. Using the terminology introduced above, this means that ψ?
M

is the Bayesian MMSE

estimator corresponding to the prior Q?x . For this reason, Q?x is usually referred to as the

least favorable prior. Even though the minimax approach exonerates the statistician from

narrowing down her beliefs to a single prior distributionQx , it still requires precise information

about Pw , which may not be available in practice. On the other hand, as it robustifies the

estimator against any distribution on X , the minimax approach is often regarded as overly

pessimistic. Moreover, as in the case of the Bayesian MMSE estimation problem, ψ?
M

may

generically have a complicated functional form, and evaluating ψ?
M

(y) to high precision may

be computationally challenging if the dimension of x is high. A simple remedy to mitigate

these computational challenges would be to restrict F to the family A of affine estimators.

The loss of optimality incurred by this approximation for different choices of X is discussed

in [95, § 4] and the references therein.

In this paper we bridge the Bayesian and the minimax approaches by leveraging tools from

distributionally robust optimization. Specifically, we study distributionally robust estimation

problems of the form

minimize
ψ∈F

max
Qx∈Qx

EQx

[
R(ψ, x)

]
, (2.6)

where Qx ⊆M (Rn) is an ambiguity set of multiple (possibly infinitely many) plausible prior

distributions of x. Note that if the ambiguity set collapses to the singleton Qx = {Px } for

some Px ∈M (Rn), then the distributionally robust estimation problem (2.6) reduces to the

Bayesian MMSE estimation problem (2.2). Similarly, under the ambiguity set Qx = M (X )

for some convex closed uncertainty set X ⊆Rn , problem (2.6) reduces to the minimax mean

square error estimation problem (2.5b). By providing considerable freedom in tailoring the

ambiguity set Qx , the distributionally robust approach thus allows the statistician to reconcile

the specificity of the Bayesian approach with the conservativeness of the minimax approach.

The estimation model (2.6) still relies on the premise that the noise distribution Pw is precisely

known, and this assumption is not tenable in practice. However, nothing prevents us from

further robustifying (2.6) against uncertainty in Pw . To this end, we define M (Rn+m) as the

family of all joint distributions of x and w with finite second-order moments. Moreover, we
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define the average risk R : F ×M (Rn+m) →R through

R(ψ,P),EP[‖x −ψ(H x +w)‖2].

If P=Px ×Pw for some marginal distributions Px ∈M (Rn) and Pw ∈M (Rm), which implies

that x and w are independent under P, and if Py |x is defined as Pw shifted by H x, then

R(ψ,P) =EPx [R(ψ, x)]. Thus, the average risk R(ψ,P) corresponds indeed to the risk R(ψ, x)

averaged under the marginal distribution Px . In the remainder of this paper we will study

generalized distributionally robust estimation problems of the form

minimize
ψ∈F

sup
Q∈B(P̂)

R(ψ,Q), (2.7)

where the ambiguity set B(P̂) ⊆M (Rn+m) captures distributional uncertainty in both Px and

Pw . Specifically, we will model B(P̂) as a set of factorizable distributions Q=Qx ×Qw close

to a nominal distribution P̂= P̂x × P̂w in the sense thatQx andQw are close to P̂x and P̂w in

Wasserstein distance, respectively.

Definition 2.1 (Wasserstein distance). For any d ∈N, the type-2 Wasserstein distance between

two distributionsQ1,Q2 ∈M (Rd ) is defined as

W(Q1,Q2), inf
π∈Π(Q1,Q2)

(∫
Rd×Rd

∥∥ξ1 −ξ2
∥∥2
π(dξ1,dξ2)

) 1
2

,

where Π(Q1,Q2) denotes the set of all joint distributions or couplings π ∈ M (Rd ×Rd ) of the

random vectors ξ1 ∈Rd and ξ2 ∈Rd with marginal distributionsQ1 andQ2, respectively.

The dependence of the Wasserstein distance on d is notationally suppressed to avoid clutter.

Note thatW(Q1,Q2)2 is naturally interpreted as the optimal value of a transportation problem

that determines the minimum cost of moving the distribution Q1 to Q2, where the cost of

moving a unit probability mass from ξ1 to ξ2 is given by the squared Euclidean distance ‖ξ1 −
ξ2‖2. For this reason, the optimization variable π is sometimes referred to as a transportation

plan and the Wasserstein distance as the earth mover’s distance.

Formally, we define the Wasserstein ambiguity set as

B(P̂),

Qx ×Qw :
Qx ∈M (Rn), W(Qx , P̂x ) ≤ ρx

Qw ∈M (Rm), W(Qw , P̂w ) ≤ ρw

 , (2.8)

where P̂x and P̂w represent prescribed nominal distributions that could be constructed via sta-

tistical analysis or expert judgement, while the Wasserstein radii ρx ≥ 0 and ρw ≥ 0 constitute

hyperparameters that quantify the statistician’s uncertainty about the nominal distributions

of x and w . We emphasize that the distributionally robust estimation model (2.7) generalizes

all preceding models. Indeed, if ρw = 0, then (2.7) reduces to the first distributionally robust

model (2.6), which in turn encompasses both the MMSE estimation problem (2.2) (for ρx = 0)
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and the minimax estimation problem (2.5b) (for ρx =∞) as special cases.

The distributionally robust estimation model (2.7) is conceptually attractive because the

hyperparameters ρx and ρw allow the statistician to specify her level of trust in the nominal

prior distribution P̂x and the nominal noise distribution P̂w . In the remainder of the paper

we will show that (2.7) is also computationally attractive. This is maybe surprising because

mixtures of factorizable distributions are generally not factorizable, which implies that the

Wasserstein ambiguity set B(P̂) is non-convex.

We remark that one could also work with an alternative ambiguity set of the form

B′(P̂),
{
Qx ×Qw :Qx ∈M (Rn), Qw ∈M (Rm), W(Qx ×Qw , P̂x × P̂w ) ≤ ρ}

, (2.9)

which involves only a single hyperparameter ρ ≥ 0 and is therefore less expressive but maybe

easier to calibrate than B(P̂). The following lemma is instrumental to understanding the

relation between B(P̂) and B′(P̂).

Lemma 2.2 (Pythagoras’ theorem for Wasserstein distances). For any Q1
x ,Q2

x ∈ M (Rn) and

Q1
w ,Q2

w ∈M (Rm) we have

W(Q1
x ×Q1

w ,Q2
x ×Q2

w )2 =W(Q1
x ,Q2

x )2 +W(Q1
w ,Q2

w )2.

Proof. By the definition of the Wasserstein distance and by the standard Pythagorean theorem

we have

W(Q1
x ×Q1

w ,Q2
x ×Q2

w )2

= inf
π∈Π(Q1

x×Q1
w ,Q2

x×Q2
w )

∫
Rn+m×Rn+m

∥∥x1 −x2
∥∥2 +∥∥w1 −w2

∥∥2
π(dx1,dw1,dx2,dw2)

≤ inf
πx∈Π(Q1

x ,Q2
x )

∫
Rn×Rn

∥∥x1 −x2
∥∥2
πx (dx1,dx2)+ inf

πw∈Π(Q1
w ,Q2

w )

∫
Rm×Rm

∥∥w1 −w2
∥∥2
πw (dw1,dw2)

= W(Q1
x ,Q2

x )2 +W(Q1
w ,Q2

w )2,

where the inequality follows from the restriction to factorizable transportation plans of the

form π = πx ×πw for some πx ∈ Π(Q1
x ,Q2

x ) and πw ∈ Π(Q1
w ,Q2

w ). To prove the converse in-

equality, we define Πx (Q1
x ,Q2

x ) as the set of all joint distributions π ∈ M (Rn+m ×Rn+m) of

(x1, w1) ∈ Rn+m and (x2, w2) ∈ Rn+m under which x1 and x2 have marginal distributions Q1
x

and Q2
x , respectively. Similarly, we define Πw (Q1

w ,Q2
w ) as the set of all joint distributions

π ∈ M (Rn+m ×Rn+m) of (x1, w1) ∈ Rn+m and (x2, w2) ∈ Rn+m under which w1 and w2 have
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marginal distributionsQ1
w andQ2

w , respectively. Using this notation, we find

W(Q1
x ×Q1

w ,Q2
x ×Q2

w )2 ≥ inf
π∈Π(Q1

x×Q1
w ,Q2

x×Q2
w )

∫
Rn+m×Rn+m

∥∥x1 −x2
∥∥2
π(dx1,dw1,dx2,dw2)

+ inf
π∈Π(Q1

x×Q1
w ,Q2

x×Q2
w )

∫
Rn+m×Rn+m

∥∥w1 −w2
∥∥2
π(dx1,dw1,dx2,dw2)

≥ inf
π∈Πx (Q1

x ,Q2
x )

∫
Rn+m×Rn+m

∥∥x1 −x2
∥∥2
π(dx1,dw1,dx2,dw2)

+ inf
π∈Πw (Q1

w ,Q2
w )

∫
Rn+m×Rn+m

∥∥w1 −w2
∥∥2
π(dx1,dw1,dx2,dw2)

=W(Q1
x ,Q2

x )2 +W(Q1
w ,Q2

w )2,

where the first inequality exploits the superadditivity of the infimum operator, while the second

inequality holds becauseΠ(Q1
x ×Q1

w ,Q2
x ×Q2

w ) contains bothΠx (Q1
x ,Q2

x ) andΠw (Q1
w ,Q2

w ) as

subsets. The equality in the last line follows from the observation that for any π ∈Πx (Q1
x ,Q2

x )

the marginal distribution πx of (x1, x2) is an element of Π(Q1
x ,Q2

x ), and for any π ∈Πw (Q1
x ,Q2

x )

the marginal distribution πw of (w1, w2) is an element of Π(Q1
w ,Q2

w ). Thus, the claim follows.

If we denote the ambiguity sets (2.8) and (2.9) temporarily by Bρx ,ρw (P̂) and B′
ρ(P̂) in order to

make their dependence on the hyperparameters explicit, then Lemma 2.2 implies that

B′
ρ(P̂) = ⋃

ρ2
x+ρ2

w≤ρ2

Bρx ,ρw (P̂).

This relation suggests that B′
ρ(P̂) could be substantially larger than Bρx ,ρw (P̂) for any fixed

ρ,ρx ,ρw ≥ 0 with ρ2
x +ρ2

w = ρ2 and thus lead to substantially more conservative estimators.

The key contributions of this paper can be summarized as follows.

• Using the subset of affine estimators and a superset of distributions prescribed by the

Gelbrich distance, we propose a safe approximation for the generalized distributionally

robust minimum mean square error estimation problem (2.7). We prove that this safe

approximation is equivalent to a finite convex optimization problem, whose optimal

solution is used to form the optimal affine estimator.

• If the nominal measure P̂ is a Gaussian distribution, we propose in Section 2.2 a conser-

vative approximation for the dual estimation problem (2.22) by confining the ambiguity

set to Gaussian distributions. We prove that this conservative approximation is equiva-

lent to a finite convex optimization problem, whose optimal solution is used to form the

least favorable prior.

• If the nominal measure P̂ is a Gaussian distribution, we consider in Section 2.3 the dual

MMSE estimation problem. We show that this dual problem is equivalent to a finite
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convex optimization problem. We then prove in Section 2.4 that the optimal Wasserstein

MMSE estimator that solves (2.7) is an affine estimator, and more interestingly, this

optimal estimator is the Bayesian MMSE estimator corresponding to the least favorable

prior, and can be recovered from the least favorable prior.

• In Section 2.5 we discuss the extension to the case when P̂ is an elliptical distribution.

Interestingly, with a slight modification of the required assumption, the results in Sec-

tion 2.4 still hold and we can show that the optimality of the affine estimator is also

retained.

• We further develop in Section 2.6 a decomposable Frank-Wolfe algorithm to solve the

resulting nonlinear SDP programs with a linear convergence rate. We illustrate in Sec-

tion 2.7 the performance of our proposed estimator on an image denoising application,

and show the superior quality of the Wasserstein affine estimator.

The minimax MSE estimation problem (2.5a) also known as Chebyshev center [4] was first

studied with ellipsoidal uncertainty set in [55, 56] and then extended to the case for which

the matrix H has circulant pattern in [9]. Exact reformulation was presented in [8] when the

uncertainty set X is the intersection of two ellipsoids. A semidefinite programming relaxation

was later introduced in [54] to handle the case when X is the intersection of several ellipsoids.

In this setting, the near-optimality of the affine estimators is proved in [96]. Distributionally

robust MSE estimator have been studied in [57, 7, 53, 125] using uncertainty sets for the signal

and noise covariance matrices and in [108, 109, 181, 182] using ambiguity sets defined via

information divergences. In particular, restring to affine estimator, a minimax theorem using

the uncertainty set over the covariance matrix space is established in [125]. Furthermore, the

optimality of affine estimators is proved in [108, 109, 181, 182] for ambiguity sets constructed

by information divergences.

The paper is structured as follows. Sections 2.2 and 2.3 develop conservative approximations

for the primal and dual Wasserstein MMSE estimation problems, respectively, both of which

are equivalent to tractable convex programs. Section 2.4 shows that if the nominal distribution

is normal, then both approximations are exact and can be used to find a Nash equilibrium

for the zero-sum game between the statistician and nature. Extensions to elliptical nominal

distributions are discussed in Section 2.5. Section 2.6 develops an efficient Frank-Wolfe

algorithm for the dual MMSE estimation problem, and Section 2.7.2 reports on numerical

results.

Notation. For any A ∈Rd×d we use Tr
[

A
]

to denote the trace and ‖A‖ =
√

Tr
[

A>A
]

to denote

the Frobenius norm of A. By slight abuse of notation, the Euclidean norm of v ∈ Rd is also

denoted by ‖v‖. Moreover, Id stands for the identity matrix in Rd×d . For any A,B ∈Rd×d , we

use
〈

A,B
〉= Tr

[
A>B

]
to denote the trace inner product. The space of all symmetric matrices

in Rd×d is denoted by Sd . We use Sd+ (Sd++) to represent the cone of symmetric positive

semidefinite (positive definite) matrices in Sd . For any A,B ∈Sd , the relation A º B (A Â B)

means that A−B ∈Sd+ (A−B ∈Sd++). The unique positive semidefinite square root of a matrix
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A ∈ Sd+ is denoted by A
1
2 . For any A ∈ Sd , λmin(A) and λmax(A) denote the minimum and

maximum eigenvalues of A, respectively.

2.2 The Gelbrich MMSE Estimation Problem

The distributionally robust estimation problem (2.7) poses two fundamental challenges. First,

checking feasibility of the inner maximization problem in (2.7) requires computing the Wasser-

stein distances W(P̂x ,Qx ) and W(P̂w ,Qw ), which is #P-hard even if P̂x and P̂w are simple

two-point distributions, while Qx and Qw are uniform distributions on hypercubes [163].

Efficient algorithms for computing Wasserstein distances are available only if both involved

distributions are discrete [33, 135, 158], and analytical formulas are only known in exceptional

cases (e.g., if both distributions are Gaussian [72] or belong to the same family of elliptical

distributions [71]). The second challenge is that the outer minimization problem in (2.7)

constitutes an infinite-dimensional functional optimization problem. In order to bypass these

computational challenges, we first seek a conservative approximation for (2.7) by relaxing

the ambiguity set B(P̂) and restricting the feasible set F . We begin by constructing an outer

approximation for the ambiguity set. To this end, we introduce a new distance measure on the

space of mean vectors and covariance matrices.

Definition 2.3 (Gelbrich distance). For any d ∈N, the Gelbrich distance between two tuples of

mean vectors and covariance matrices (µ1,Σ1), (µ2,Σ2) ∈Rd ×Sd+ is defined as

G
(
(µ1,Σ1), (µ2,Σ2)

)
,

√∥∥µ1 −µ2
∥∥2 +Tr

[
Σ1 +Σ2 −2

(
Σ

1
2
2Σ1Σ

1
2
2

) 1
2 ]

.

The dependence of the Gelbrich distance on d is notationally suppressed in order to avoid

clutter. One can show thatG constitutes a metric on Rd ×Sd+, that is,G is symmetric, non-

negative, vanishes if and only if (µ1,Σ1) = (µ2,Σ2) and satisfies the triangle inequality [72,

pp. 239].

Proposition 2.4 (Commuting covariance matrices [72, p. 239]). If µ1,µ2 ∈Rd are identical and

Σ1,Σ2 ∈Sd+ commute (Σ1Σ2 =Σ2Σ1), then the Gelbrich distance simplifies toG
(
(µ1,Σ1), (µ2,Σ2)

)=∥∥pΣ1 −
p
Σ2

∥∥.

WhileG itself is non-convex, we will see below thatG2 is convex. Our interest in the Gelbrich

distance stems mainly from the next proposition, which lower bounds the Wasserstein distance

between two distributions in terms of their first- and second-order moments. We will later

see that this bound becomes tight whenQ1 andQ2 are normal or—more generally—elliptical

distributions of the same type.

Proposition 2.5 (Moment bound on the Wasserstein distance [71, Theorem 2.1]). For any

distributions Q1,Q2 ∈M (Rd ) with mean vectors µ1,µ2 ∈Rd and covariance matrices Σ1,Σ2 ∈
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Sd+, respectively, we have

W(Q1,Q2) ≥G(
(µ1,Σ1), (µ2,Σ2)

)
.

Proposition 2.5 prompts us to construct an outer approximation for the Wasserstein ambiguity

set B(P̂) by using the Gelbrich distance. Specifically, we define the Gelbrich ambiguity set

centered at P̂= P̂x × P̂w as

G(P̂),

Qx ×Qw :

Qx ∈M (Rn), µx =EQx [x], Σx =EQx [xx>]−µxµ
>
x

Qw ∈M (Rm), µw =EQw [w],Σw =EQw [w w>]−µwµ
>
w

G((µx ,Σx ), (µ̂x , Σ̂x )) ≤ ρx , G((µw ,Σw ), (µ̂w , Σ̂w )) ≤ ρw

 ,

where µ̂x and µ̂w denote the mean vectors and Σ̂x and Σ̂w the covariance matrices of P̂x and

P̂w , respectively.

Corollary 2.6 (Relation between Gelbrich and Wasserstein ambiguity sets). For any P̂= P̂x ×
P̂w with P̂x ∈M (Rn) and P̂w ∈M (Rm) we have B(P̂) ⊆G(P̂).

Proof. Select anyQ=Qx ×Qw ∈B(P̂) and define µx and µw as the mean vectors and Σx and

Σw as the covariance matrices ofQx andQw , respectively. By Proposition 2.5 we then have

G((µx ,Σx ), (µ̂x , Σ̂x )) ≤W(Qx , P̂x ) ≤ ρx and G((µw ,Σw ), (µ̂w , Σ̂w )) ≤W(Qw , P̂w ) ≤ ρw ,

which in turn implies thatQ ∈G(P̂). We may thus conclude that B(P̂) ⊆G(P̂).

By restricting F to the set A of all affine estimators while relaxing B(P̂) to the Gelbrich

ambiguity set G(P̂), we obtain the following conservative approximation of the distributionally

robust estimation problem (2.7).

minimize
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) (2.10)

From now on we will call (2.7) and (2.10) the Wasserstein and Gelbrich MMSE estimation

problems, and we will refer to their minimizers as Wasserstein and Gelbrich MMSE estimators,

respectively. As the average risk R(ψ,Q) of a fixed affine estimator ψ ∈ A is convex and

quadratic in the mean vector µ and affine in the covariance matrix Σ of the distribution Q,

the inner maximization problem in (2.10) is non-convex. Thus, one might suspect that the

Gelbrich MMSE estimation problem is intractable. Below we will show, however, that (2.10) is

equivalent to a finite convex program that can be solved in polynomial time. To this end, we

first show that, under mild conditions, problem (2.10) is stable with respect to changes of its

input parameters.

Proposition 2.7 (Regularity of the Gelbrich MMSE estimation problem). The Gelbrich MMSE

estimation problem (2.10) enjoys the following regularity properties.
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(i) Conservativeness: Problem (2.10) upper bounds the Wasserstein MMSE estimation prob-

lem (2.7).

(ii) Solvability: The minimum of (2.10) is attained if Σ̂w Â 0 or ρw > 0.

(iii) Stability: The minimum of (2.10) is continuous in (ρx ,ρw , µ̂x , µ̂w , Σ̂x , Σ̂w ) if Σ̂w Â 0 or

ρw > 0.

Proof. The Gelbrich MMSE estimation problem (2.10) upper bounds the Wasserstein MMSE

estimation problem (2.7) because A ⊆F andG(P̂) ⊇B(P̂); see Corollary 2.6. Thus, assertion (i)

follows. Recall now that any ψ ∈A can be represented as ψ(y) = Ay +b for some A ∈ Rn×m

and b ∈Rn . Moreover, for any distributionQ=Qx ×Qw ∈G(P̂), denote by µx and µw the mean

vectors and by Σx and Σw the covariance matrices of Qx and Qw , respectively. Hence, the

objective function and the constraints of (2.10) depend on ψ andQ only through A, b, µx , µw ,

Σx and Σw . Indeed, the average risk of ψ underQ satisfies

R(ψ,Q) =EQ
[‖x − A(H x +w)−b‖2]=EQ [‖(In − AH)x − Aw −b‖2]

= 〈
(In − AH)>(In − AH),Σx +µxµ

>
x

〉+〈
A>A,Σw +µwµ

>
w

〉+b>b

−2µ>
x (In − AH)>Aµw −2b>((In − AH)µx − Aµw ), f (A,b,µx ,µw ,Σx ,Σw ).

Similarly, the constraints ψ ∈A andQ ∈G(P̂) can be reformulated in terms of A, b, µx , µw , Σx

and Σw . Thus, the Gelbrich MMSE estimation problem (2.10) is equivalent to

inf
A,b

sup
µx ,µw
Σx ,Σwº0

f (A,b,µx ,µw ,Σx ,Σw )

s. t. G((µx ,Σx ), (µ̂x , Σ̂x ))2 ≤ ρ2
x

G((µw ,Σw ), (µ̂w , Σ̂w ))2 ≤ ρ2
w .

(2.11)

Note that both sides of the two Gelbrich distance constraints have been squared without loss

of generality. In the remainder we will use the shorthand θ, (ρx ,ρw , µ̂x , µ̂w , Σ̂x , Σ̂w ) to denote

the vector of the problem’s input parameters, which ranges over the set Θ, R+×R+×Rn ×
Rm ×Sn+×Sm+ . As f is continuous, while the feasible set of the inner maximization problem is

compact and depends continuously on θ, the optimal value of the minimax problem (2.11) is

locally bounded in θ. Next, we introduce the continuous functions

µx (θ), µ̂x , µw (θ), µ̂w , Σx (θ) = Σ̂x and Σw (θ),
(
Σ̂

1
2
w + ρwp

m
Im

)2

.

Trivially, we haveG((µx (θ),Σx (θ)), (µ̂x , Σ̂x )) = 0 for all θ ∈Θ. Moreover, it is easy to see that Σ̂w

and Σw (θ) commute. Proposition 2.4 thus implies that

G((µw (θ),Σw (θ)), (µ̂w , Σ̂w )) = ∥∥Σ 1
2
w (θ)− Σ̂

1
2
w

∥∥= ρw

for all θ ∈ Θ. This allows us to conclude that µx (θ), µw (θ), Σx (θ) and Σw (θ) are feasible in
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the inner maximization problem in (2.11). Assume now that Σ̂w Â 0 or ρw > 0, which implies

that Σw (θ) Â 0. In this case f is strongly convex in the decision variables A and b of the outer

minimization problem in (2.11), and{
(A,b) ∈Rn×m ×Rn : f (A,b,µx (θ),µw (θ),Σx (θ),Σw (θ)) ≤ f̄

}
is compact for every f̄ ∈ R. Thus, the minimax problem (2.11) satisfies all conditions of

Lemma 2.32 in Appendix 2.8.1, which implies that both (2.11) and the equivalent Gelbrich

MMSE estimation problem (2.10) are solvable and that their optimal value changes continu-

ously with θ whenever Σ̂w Â 0 or ρw > 0.

We are now ready to prove the main result of this section.

Theorem 2.8 (Gelbrich MMSE estimation problem). The Gelbrich MMSE estimation prob-

lem (2.10) is equivalent to the finite convex optimization problem

inf γx
(
ρ2

x −Tr[Σ̂x ]
)+γ2

x

〈
[γx In − (In − AH)>(In − AH)]−1, Σ̂x

〉
+γw

(
ρ2

w −Tr[Σ̂w ]
)+γ2

w

〈
(γw Im − A>A)−1, Σ̂w

〉
s. t. A ∈Rn×m , γx ,γw ∈R+

γx In − (In − AH)>(In − AH) Â 0, γw Im − A>A Â 0.

(2.12)

Moreover, if Σ̂w Â 0 or ρw > 0, then (2.12) admits an optimal solution1 A?, and the infimum

of (2.10) is attained by the affine estimator ψ?(y) = A?y +b?, where b? = µ̂x − A?(H µ̂x + µ̂w ).

Proof. Throughout this proof we denote by ψA,b ∈ A the affine estimator ψA,b(y) = Ay +b

corresponding to the sensitivity matrix A ∈Rn×m and the vector b ∈Rn of intercepts. In the

following we fix some A ∈Rn×m and define K = In − AH in order to simplify the notation. By

the definitions of the average risk R(ψ,Q) and the Gelbrich ball G(P̂), we then have

inf
b

sup
Q∈G(P̂)

R(ψA,b ,Q) =



inf
b

sup
µx ,µw
Σx ,Σwº0

〈
K >K ,Σx +µxµ

>
x

〉+〈
A>A,Σw +µwµ

>
w

〉+b>b

−2µ>
x K >Aµw −2b>(Kµx − Aµw )

s. t. G((µx ,Σx ), (µ̂x , Σ̂x ))2 ≤ ρ2
x

G((µw ,Σw ), (µ̂w , Σ̂w ))2 ≤ ρ2
w .

(2.13)

The outer minimization problem in (2.13) is convex because the objective function of the min-

imax problem is convex in b for any fixed (µx ,µw ,Σx ,Σw ) and because convexity is preserved

under maximization. Moreover, the inner maximization problem in (2.13) is non-convex

because its objective function is convex in (µx ,µw ). This observation prompts us to maximize

1We say that A? solves (2.12) if adding the constraint A = A? does not change the infimum of (2.12). Note that
the infimum of the resulting problem over (γx ,γw ) may not be attained, i.e., the existence of a solution A? does
not imply that (2.12) is solvable.
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over (µx ,µw ) and (Σx ,Σw ) sequentially and to reformulate (2.13) as

inf
b

sup
µx ,µw

‖µx−µ̂x‖≤ρx
‖µw−µ̂w‖≤ρw

sup
Σx ,Σwº0

〈
K >K ,Σx +µxµ

>
x

〉+〈
A>A,Σw +µwµ

>
w

〉+b>b

−2µ>
x K >Aµw −2b>(Kµx − Aµw )

s. t. G((µx ,Σx ), (µ̂x , Σ̂x ))2 ≤ ρ2
x

G((µw ,Σw ), (µ̂w , Σ̂w ))2 ≤ ρ2
w .

(2.14)

As ‖µx − µ̂x‖ ≤G((µx ,Σx ), (µ̂x , Σ̂x )) and as this inequality is tight for Σx = Σ̂x , the extra con-

straint ‖µx−µ̂x‖ ≤ ρx is actually redundant and merely ensures that the maximization problem

over Σx remains feasible for any admissible choice of µx . An analogous statement holds for

µw and Σw . By the definition of the Gelbrich distance, the innermost maximization problem

over (Σx ,Σw ) in (2.14) admits the Lagrangian dual

inf
γx ,γw≥0

sup
Σx ,Σwº0

〈
K >K ,Σx +µxµ

>
x

〉+〈
A>A,Σw +µwµ

>
w

〉+b>b −2µ>
x K >Aµw −2b>(Kµx − Aµw )

+γx

(
ρ2

x −‖µx − µ̂x‖2 −Tr
[
Σx + Σ̂x −2

(
Σ̂

1
2
xΣx Σ̂

1
2
x

) 1
2 ])

+γw

(
ρ2

w −‖µw − µ̂w‖2 −Tr
[
Σw + Σ̂w −2

(
Σ̂

1
2
wΣw Σ̂

1
2
w

) 1
2 ])

.

(2.15)

Strong duality holds by [13, Proposition 5.5.4], which applies because the primal problem has

a non-empty compact feasible set. Next, we observe that the inner maximization problem

in (2.15) can be solved analytically by using Proposition 2.33 in the appendix, and thus the

dual problem (2.15) is equivalent to

inf
γx ,γw

γx InÂK >K
γw ImÂA>A

〈
K >K ,µxµ

>
x

〉+〈
A>A,µwµ

>
w

〉+b>b −2µ>
x K >Aµw −2b>(Kµx − Aµw )

+γx
(
ρ2

x −‖µx − µ̂x‖2 −Tr
[
Σ̂x

]+γx
〈

(γx In −K >K )−1, Σ̂x
〉)

+γw
(
ρ2

w −‖µw − µ̂w‖2 −Tr
[
Σ̂w

]+γw
〈

(γw Im − A>A)−1, Σ̂w
〉)

.

(2.16)

Substituting (2.16) back into (2.14) then allows us to reformulate the Gelbrich MMSE estima-

tion problem (2.7) as

inf
b

sup
µx ,µw

‖µx−µ̂x‖≤ρx
‖µw−µ̂w‖≤ρw

inf
γx ,γw

γx InÂK >K
γw ImÂA>A

〈
K >K ,µxµ

>
x

〉+〈
A>A,µwµ

>
w

〉+b>b −2µ>
x K >Aµw −2b>(Kµx − Aµw )

+γx
(
ρ2

x −‖µx − µ̂x‖2 −Tr
[
Σ̂x

]+γx
〈

(γx In −K >K )−1, Σ̂x
〉)

+γw
(
ρ2

w −‖µw − µ̂w‖2 −Tr
[
Σ̂w

]+γw
〈

(γw Im − A>A)−1, Σ̂w
〉)

.

(2.17)

The infimum of the inner minimization problem over (γx ,γw ) in (2.17) is convex quadratic

in b. Moreover, it is concave in (µx ,µw ) because K >K −γx In ≺ 0 and A>A−γw Im ≺ 0 for any

feasible choice of (γx ,γw ) and because concavity is preserved under minimization. Finally, the

feasible set for (µx ,µw ) is convex and compact. By Sion’s classical minimax theorem, we may

therefore interchange the infimum over b with the supremum over (µx ,µw ). The minimization
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problem over b thus reduces to an unconstrained (strictly) convex quadratic program that has

the unique optimal solution b = Kµx − Aµw . Substituting this expression back into (2.17) then

yields

sup
µx ,µw

‖µx−µ̂x‖≤ρx
‖µw−µ̂w‖≤ρw

inf
γx ,γw

γx InÂK >K
γw ImÂA>A

γx
(
ρ2

x −‖µx − µ̂x‖2 −Tr
[
Σ̂x

])+γ2
x

〈
(γx In −K >K )−1, Σ̂x

〉
+γw

(
ρ2

w −‖µw − µ̂w‖2 −Tr
[
Σ̂w

])+γ2
w

〈
(γw Im − A>A)−1, Σ̂w

〉
.

(2.18)

It is easy to verify that the resulting maximization problem over (µx ,µw ) is solved by µx = µ̂x

and µw = µ̂w . Substituting the corresponding optimal value into (2.13) finally yields

inf
b

sup
Q∈G(P̂)

R(ψA,b ,Q) =
 inf

γx ,γw

γx InÂK >K
γw ImÂA>A

γx
(
ρ2

x −Tr
[
Σ̂x

])+γ2
x

〈
(γx In −K >K )−1, Σ̂x

〉
+γw

(
ρ2

w −Tr
[
Σ̂w

])+γ2
w

〈
(γw Im − A>A)−1, Σ̂w

〉
.

From the above equation and the definition of K it is evident that the Gelbrich MMSE estima-

tion problem

inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) = inf
A,b

sup
Q∈G(P̂)

R(ψA,b ,Q) (2.19)

is indeed equivalent to the finite convex optimization problem (2.12).

Assume now that Σ̂w Â 0 or ρw > 0. In this case we know from Proposition 2.7 (ii) that

the Gelbrich MMSE estimation problem (2.19) admits an optimal affine estimator ψ?(y) =
A?y +b? for some A? ∈Rn×m and b? ∈Rm . The reasoning in the first part of the proof then

implies that A? solves (2.12). Moreover, it implies that b? is optimal in (2.13) when we fix

A = A?. As (2.13) is equivalent to (2.17) and as the unique optimal solution of (2.17) for A = A?

is given by b = µ̂x − A?(H µ̂x + µ̂w ), we may finally conclude that

b? = µ̂x − A?(H µ̂x + µ̂w ).

By reversing these arguments, one can further show that if A? solves (2.12) and b? is defined

as above, then the affine estimator ψ?(y) = A?y +b? is optimal in (2.19). This observation

completes the proof.

The strict semidefinite inequalities in (2.12) ensure that the inverse matrices in the objective

function are well-defined. Using Schur complement arguments, the convex program (2.12)

can be further simplified to a standard semidefinite program (SDP), which can be addressed

with off-the-shelf solvers.

Corollary 2.9 (SDP reformulation). The Gelbrich MMSE estimation problem (2.10) is equiva-
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lent to the SDP

inf γx
(
ρ2

x −Tr[Σ̂x ]
)+Tr[Ux ]+γw

(
ρ2

w −Tr[Σ̂w ]
)+Tr[Uw ]

s. t. A ∈Rn×m , γx ,γw ∈R+
Ux ∈Sn+, Vx ∈Sn+, Uw ∈Sm+ , Vw ∈Sm+ Ux γx Σ̂

1
2
x

γx Σ̂
1
2
x Vx

º 0,

[
γx In −Vx In −H>A>

In − AH In

]
º 0 Uw γw Σ̂

1
2
w

γw Σ̂
1
2
w Vw

º 0,

[
γw Im −Vw A>

A In

]
º 0.

(2.20)

Proof. Define the extended real-valued function hw :Rn×m ×R+ → (−∞,∞] through

hw (A,γw ),

{
γ2

w

〈
(γw Im − A>A)−1, Σ̂w

〉
if γw Im − A>A Â 0,

∞ otherwise.

If γw Im − A>A Â 0, then, we have

hw (A,γw ) = inf
Uwº0

{
Tr

[
Uw

]
: Uw º γ2

w Σ̂
1
2
w (γw Im − A>A)−1Σ̂

1
2
w

}
= inf

Uwº0,VwÂ0

{
Tr

[
Uw

]
: Uw º γ2

w Σ̂
1
2
w V −1

w Σ̂
1
2
w , γw Im − A>A ºVw

}

= inf
Uwº0,VwÂ0

Tr
[
Uw

]
:

[
γw Im −Vw A>

A In

]
º 0,

 Uw γx Σ̂
1
2
w

γw Σ̂
1
2
w Vw

º 0

 , (2.21)

where the first equality holds due to the cyclicity of the trace operator and because Uw º Ūw

implies Tr
[
Uw

] ≥ Tr
[
Ūw

]
for all Uw ,Ūw º 0, the second equality holds because Vw º V̄w is

equivalent to V −1
w ¹ V̄ −1

w for all Vw ,V̄w Â 0, and the last equality follows from standard Schur

complement arguments; see, e.g., [18, § A.5.5]. If γw Im − A>A � 0, on the other hand, then the

first matrix inequality in (2.21) implies that Vw must have at least one non-positive eigenvalue,

which contradicts the constraint Vw Â 0. The SDP (2.21) is therefore infeasible, and its infimum

evaluates to ∞. Thus, hw (A,γw ) coincides with the optimal value of the SDP (2.21) for all

A ∈Rn×m and γw ∈R+.

A similar SDP reformulation can be derived for the function hx :Rn×m×R+ → (−∞,∞] defined

through

hx (A,γx ),

{
γ2

x

〈
[γx In − (In − AH)>(In − AH)]−1, Σ̂x

〉
if γx In − (In − AH)>(In − AH) Â 0,

∞ otherwise.

The claim now follows by substituting the SDP reformulations for hw (A,γw ) and hx (A,γx )

into (2.12). In doing so, we may relax the strict semidefinite inequalities Vw Â 0 and Vx Â 0 to

weak inequalities Vw º 0 and Vx º 0, which amounts to taking the closure of the (non-empty)

feasible set and does not change the infimum of problem (2.12). This observation completes
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the proof.

Remark 2.10 (Numerical stability). The SDP (2.20) requires the square roots of the nominal

covariance matrices as inputs. Unfortunately, iterative methods for computing matrix square

roots often suffer from numerical instability in high dimensions. As a remedy, one may replace

those matrix inequalities in (2.20) that involve Σ̂
1
2
x and Σ̂

1
2
w with[

Ux γxΛ
>
x

γxΛx Vx

]
º 0 and

[
Uw γwΛ

>
w

γwΛw Vw

]
º 0,

where Λx and Λw represent the lower triangular Cholesky factors of Σ̂x and Σ̂w , respectively.

Thus, we have Σ̂x =ΛxΛ
>
x and Σ̂w =ΛwΛ

>
w . We emphasize thatΛx andΛw can be computed

reliably in high dimensions.

2.3 The Dual Wasserstein MMSE Estimation Problem over Normal

Priors

We now examine the dual Wasserstein MMSE estimation problem

maximize
Q∈B(P̂)

inf
ψ∈F

R(ψ,Q), (2.22)

which is obtained from (2.7) by interchanging the order of minimization and maximization.

Any maximizer Q? of this dual estimation problem, if it exists, will henceforth be called a

least favorable prior. Unfortunately, problem (2.22) is generically intractable. Below we will

demonstrate, however, that (2.22) becomes tractable if the nominal distribution P̂ is normal.

Definition 2.11 (Normal distributions). We say that P is a normal distribution on Rd with

mean µ ∈Rd and covariance matrix Σ ∈Sd+, that is, P=N (µ,Σ), if P is supported on supp(P) =
{µ+Ev : v ∈Rk }, and if the density function ofPwith respect to the Lebesgue measure on supp(P)

is given by

%P(ξ),
1√

(2π)k det(D)
e−(ξ−µ)>ED−1E>(ξ−µ),

where k = rank(Σ), D ∈ Sk++ is the diagonal matrix of the positive eigenvalues of Σ, and E ∈
Rd×k is the matrix whose columns correspond to the orthonormal eigenvectors of the positive

eigenvalues of Σ.

Definition 2.11 also accounts for degenerate normal distributions with singular covariance

matrices. We now recall some basic properties of normal distributions that are crucial for the

results of this paper.

Proposition 2.12 (Affine transformations [59, Theorem 2.16]). If ξ ∈Rd follows the normal dis-

tribution N (µ,Σ), while A ∈Rk×d and b ∈Rk , then Aξ+b ∈Rk follows the normal distribution

N (Aµ+b, AΣA>).
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Proposition 2.13 (Affine conditional expectations [22, Corollary 5]). Assume that ξ ∈Rd fol-

lows the normal distribution P=N (µ,Σ) and that

ξ=
[
ξ1

ξ2

]
, µ=

[
µ1

µ2

]
and Σ=

[
Σ11 Σ12

Σ21 Σ22

]
,

where ξ1,µ1 ∈ Rd1 , ξ2,µ2 ∈ Rd2 , Σ11 ∈ Rd1×d1 , Σ22 ∈ Rd2×d2 and Σ12 = Σ>
21 ∈ Rd1×d2 for some

d1,d2 ∈Nwith d1+d2 = d. Then, there exist A ∈Rd1×d2 and b ∈Rd1 such thatEP[ξ1|ξ2] = Aξ2+b

P-almost surely.

Another useful but lesser known property of normal distributions is that their Wasserstein

distances can be expressed analytically in terms of the distributions’ first- and second-order

moments.

Proposition 2.14 (Wasserstein distance between normal distributions [72, Proposition 7]).

The Wasserstein distance between two normal distributionsQ1 =N (µ1,Σ1) andQ2 =N (µ2,Σ2)

equals the Gelbrich distance between their mean vectors and covariance matrices, that is,

W(Q1,Q2) =G((µ1,Σ1), (µ2,Σ2)).

Assume now that the nominal distributions of the parameter x ∈Rn and the noise w ∈Rm are

normal, that is, assume that P̂x =N (µ̂x , Σ̂x ) and P̂w =N (µ̂w , Σ̂w ). Thus, the joint nominal

distribution P̂= P̂x × P̂w is also normal, that is,

P̂=N (µ̂, Σ̂) where µ̂=
[
µ̂x

µ̂w

]
and Σ̂=

[
Σ̂x 0

0 Σ̂w

]
. (2.23)

We highlight that normal distributions are natural candidates for P̂. One reason for this is

that the normal distribution has maximum entropy among all distributions with prescribed

first- and second-order moments [32, § 12]. Therefore, it has appeal as the least prejudiced

baseline model. Similarly, if the parameter x in (2.1) is normally distributed, then a normal

distribution minimizes the mutual information between x and the observation y among all

noise distributions with bounded variance [44, Lemma II.2]. In this sense, normally distributed

noise renders the observations least informative. Conversely, if the noise in (2.1) is normally

distributed, then a normal distribution maximizes the MMSE across all distributions of x

with bounded variance [77, Proposition 15]. In this sense, normally distributed parameters

are the hardest to estimate. Using normal nominal distributions thus amounts to adopting a

worst-case perspective.

Armed with the fundamental results on normal distributions summarized above, we are

now ready to address the dual Wasserstein MMSE estimation problem (2.22) with a normal

nominal distribution. In analogy to Section 2.2, where we proposed the Gelbrich MMSE

estimation problem as an easier conservative approximation for the original primal estimation

problem (2.7), we will now construct an easier conservative approximation for the original
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dual estimation problem (2.22). To this end, we define the restricted ambiguity set

BN (P̂),

Qx ×Qw ∈M (Rn)×M (Rm) :

∃Σx ∈Sn+, Σw ∈Sm++ with

Qx =N (µ̂x ,Σx ), Qw =N (µ̂w ,Σw ),

W(Qx , P̂x ) ≤ ρx , W(Qw , P̂w ) ≤ ρw

 .

By construction, BN (P̂) contains all normal distributionsQ=Qx ×Qw from within the original

Wasserstein ambiguity set B(P̂) that have the same mean vector (µ̂x , µ̂w ) as the nominal

distribution P̂= P̂x × P̂w , and where the covariance matrix ofQw is strictly positive definite.

Thus, we have BN (P̂) ⊆B(P̂). Note also that BN (P̂) is non-convex because mixtures of normal

distributions usually fail to be normal.

By restricting the original Wasserstein ambiguity setB(P̂) to its subsetBN (P̂), we obtain the fol-

lowing conservative approximation for the dual Wasserstein MMSE estimation problem (2.22).

maximize
Q∈BN (P̂)

inf
ψ∈F

R(ψ,Q) (2.24)

We will henceforth refer to (2.24) as the dual Wasserstein MMSE estimation problem over

normal priors. The following main theorem shows that (2.24) is equivalent to a finite convex

optimization problem.

Theorem 2.15 (Dual Wasserstein MMSE estimation problem over normal priors). Assume that

the Wasserstein ambiguity set BN (P̂) is centered at a normal distribution P̂ of the form (2.23).

Then, the dual Wasserstein MMSE estimation problem over normal priors (2.24) is equivalent

to the finite convex optimization problem

sup Tr
[
Σx −Σx H> (

HΣx H>+Σw
)−1

HΣx
]

s. t. Σx ∈Sn+, Σw ∈Sm++

Tr
[
Σx + Σ̂x −2

(
Σ̂

1
2
xΣx Σ̂

1
2
x

) 1
2 ]≤ ρ2

x

Tr
[
Σw + Σ̂w −2

(
Σ̂

1
2
wΣw Σ̂

1
2
w

) 1
2 ]≤ ρ2

w .

(2.25)

If Σ̂w Â 0, then (2.25) is solvable, and the maximizer denoted by (Σ?x ,Σ?w ) satisfiesΣ?x ºλmin(Σ̂x )In

andΣ?w ºλmin(Σ̂w )Im . Moreover, the supremum of (2.24) is attained by the normal distribution

Q? =Q?x ×Q?w defined throughQ?x =N (µ̂x ,Σ?x ) andQ?w =N (µ̂w ,Σ?w ).

Proof. If (x, w) is governed by a normal distributionQ ∈BN (P̂), then the linear transformation

(x, y) = (x, H x +w) is also normally distributed by virtue of Proposition 2.12, and the average

risk R(ψ,Q) is minimized by the Bayesian MMSE estimator ψ?
B

(y) =EPx|y [x], which is affine

due to Proposition 2.13. Thus, in the dual Wasserstein MMSE estimation problem with normal

priors, the set F of all estimators may be restricted to the set A of all affine estimators without
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sacrificing optimality, that is,

sup
Q∈BN (P̂)

inf
ψ∈F

R(ψ,Q) = sup
Q∈BN (P̂)

inf
ψ∈A

R(ψ,Q). (2.26)

As the average risk R(ψ,Q) of an affine estimator ψ ∈A simply evaluates the expectation of

a quadratic function in (x, w), it depends on Q only through its first and second moments.

Moreover, asQ and P̂ are normal distributions, their Wasserstein distance coincides with the

Gelbrich distance between their mean vectors and covariance matrices; see Proposition 2.14.

Thus, the maximization problem over Q on the right hand side of (2.26) can be recast as an

equivalent maximization problem over the first and second moments ofQ. Specifically, by the

definitions of R(ψ,Q) and Bφ(P̂) we find

sup
Q∈BN (P̂)

inf
ψ∈A

R(ψ,Q) =



sup
Σx ,Σw

inf
A,K

K=In−AH

inf
b

〈
K >K ,Σx + µ̂x µ̂

>
x

〉+〈
A>A,Σw + µ̂w µ̂

>
w

〉+b>b

−2µ̂>
x K >Aµ̂w −2b>(K µ̂x − Aµ̂w )

s. t. G
(
(µ̂x ,Σx ), (µ̂x , Σ̂x )

)≤ ρx , G
(
(µ̂w ,Σw ), (µ̂w , Σ̂w )

)≤ ρw

Σx º 0, Σw Â 0,

where the auxiliary decision variable K = In−AH has been introduced to simplify the objective

function. The innermost minimization problem over b constitutes an unconstrained (strictly)

convex quadratic program that has the unique optimal solution b = K µ̂x − Aµ̂w . Substitut-

ing this minimizer back into the objective function of the above problem and recalling the

definition of the Gelbrich distance then yields

sup
Q∈BN (P̂)

inf
ψ∈A

R(ψ,Q) =



sup
Σx ,Σw

inf
A,K

K=In−AH

〈
K >K ,Σx

〉+〈
A>A,Σw

〉
s. t. Tr

[
Σx + Σ̂x −2

(
Σ̂

1
2
xΣx Σ̂

1
2
x

) 1
2 ]≤ ρ2

x

Tr
[
Σw + Σ̂w −2

(
Σ̂

1
2
wΣw Σ̂

1
2
w

) 1
2 ]≤ ρ2

w

Σx º 0, Σw Â 0.

(2.27)

By using the equality K = In − AH to eliminate K , the inner minimization problem in (2.27)

can be reformulated as an unconstrained quadratic program in A. As Σw Â 0, this quadratic

program is strictly convex, and an elementary calculation reveals that its unique optimal

solution is given by

A? =Σx H> (
HΣx H>+Σw

)−1
.

Substituting A? as well as the corresponding auxiliary decision variable K? = In − A?H into

the objective function of (2.27) finally yields the postulated convex program (2.25).

Assume now that Σ̂w Â 0, and define

Sx ,
{
Σx ∈Sn

+ :G
(
(µ̂x ,Σx ), (µ̂x , Σ̂x )

)≤ ρx
}
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and

Sw ,
{
Σw ∈Sm

+ :G
(
(µ̂w ,Σw ), (µ̂w , Σ̂w )

)≤ ρw
}

.

Equations (2.26) and (2.27) imply that

sup
Q∈BN (P̂)

inf
ψ∈F

R(ψ,Q) ≤ sup
Σx∈Sx

sup
Σw∈Sw

inf
A,K

K=In−AH

〈
K >K ,Σx

〉+〈
A>A,Σw

〉
= sup

Σx∈Sx

Σxºλmin(Σ̂x )In

sup
Σw∈Sw

Σwºλmin(Σ̂w )Im

inf
A,K

K=In−AH

〈
K >K ,Σx

〉+〈
A>A,Σw

〉
, (2.28)

where the inequality holds because we relax the requirement that Σw be strictly positive

definite, and the equality follows from applying Lemma 2.35 consecutively to each of the two

maximization problems. If Σ̂w Â 0, then problem (2.28) constitutes a restriction of (2.27) and

therefore provides also a lower bound on the dual Wasserstein MMSE estimation problem. In

summary, we thus have

sup
Q∈BN (P̂)

inf
ψ∈F

R(ψ,Q) =



sup
Σx ,Σw

inf
A,K

K=In−AH

〈
K >K ,Σx

〉+〈
A>A,Σw

〉
s. t. Tr

[
Σx + Σ̂x −2

(
Σ̂

1
2
xΣx Σ̂

1
2
x

) 1
2 ]≤ ρ2

x

Tr
[
Σw + Σ̂w −2

(
Σ̂

1
2
wΣw Σ̂

1
2
w

) 1
2 ]≤ ρ2

w

Σx ºλmin(Σ̂x )In , Σw ºλmin(Σ̂w )Im .

(2.29)

This reasoning implies that if Σ̂w Â 0, then the constraintsΣx ºλmin(Σ̂x )In andΣw ºλmin(Σ̂w )Im

can be appended to problem (2.27) and, consequently, to problem (2.25) without altering

their common optimal value. Problem (2.25) with the additional constraints Σx ºλmin(Σ̂x )In

and Σw º λmin(Σ̂w )Im has a continuous objective function over a compact feasible set and

is thus solvable. Any of its optimal solutions is also optimal in problem (2.25), which has no

redundant constraints. Thus, problem (2.25) is solvable.

It remains to show thatQ? as constructed in the theorem statement is optimal in (2.24). The

feasibility of (Σ?x ,Σ?w ) in (2.25) implies that Q? ∈ BN (P̂), and thus Q? is feasible in (2.24).

Moreover, we have

sup
Q∈BN (P̂)

inf
ψ∈F

R(ψ,Q) ≥ inf
ψ∈F

R(ψ,Q?) = Tr
[
Σ?x −Σ?x H> (

HΣ?x H>+Σ?w
)−1

HΣ?x
]
, (2.30)

where the equality follows from elementary algebra, recalling that the affine estimator ψ(y) =
A?y +b? with

A? =Σ?x H> (
HΣ?x H>+Σ?w

)−1
and b? =µx − A?(H µ̂x + µ̂w )

is the Bayesian MMSE estimator for the normal distribution Q?. As the right hand side

of (2.30) coincides with the maximum of (2.25) and as problem (2.25) is equivalent to the dual
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Wasserstein MMSE estimation problem (2.24) over normal priors, we may thus conclude that

the inequality in (2.30) is tight. Thus, we find

sup
Q∈BN (P̂)

inf
ψ∈F

R(ψ,Q) = inf
ψ∈F

R(ψ,Q?),

which in turn implies thatQ? is optimal in (2.24). This observation completes the proof.

Remark 2.16 (Singular covariance matrices). A nonlinear SDP akin to (2.25) has been derived

in [152] under the stronger assumption that the covariance matrix of the nominal distribution

P̂ is non-degenerate, which implies that Σ̂x Â 0 and Σ̂w Â 0. However, the weaker condition

Σ̂w Â 0 is sufficient to ensure that the matrix inversion in the objective function of problem (2.25)

is well-defined. Therefore, Theorem 2.15 remains valid if the nominal covariance matrix Σ̂x is

singular, which occurs in many applications; see Section 2.7.2 for an example. On the other

hand, it is common to require that Σ̂w =σ2Im for some σ> 0, see, e.g., [23].

Corollary 2.17 below asserts that the convex program (2.25) admits a canonical linear SDP

reformulation. The proof is omitted as it relies on standard Schur complement arguments

familiar from the proof of Corollary 2.9.

Corollary 2.17 (SDP reformulation). Assume that the Wasserstein ambiguity set BN (P̂) is

centered at a normal distribution P̂ of the form (2.23) with noise covariance matrix Σ̂w Â 0.

Then, the dual Wasserstein MMSE estimation problem (2.24) over normal priors is equivalent

to the SDP

max Tr
[
Σx

]−Tr
[
U

]
s. t. Σx ∈Sn+, Σw ∈Sm+ , Vx ∈Sn+, Vw ∈Sm+ , U ∈Sn+[

Σ̂
1
2
xΣx Σ̂

1
2
x Vx

Vx In

]
º 0,

[
Σ̂

1
2
wΣw Σ̂

1
2
w Vw

Vw Im

]
º 0

Tr
[
Σx + Σ̂x −2Vx

]≤ ρ2
x , Tr

[
Σw + Σ̂w −2Vw

]≤ ρ2
w[

U Σx H>

HΣx HΣx H>+Σw

]
º 0, Σx ºλmin(Σ̂x )In , Σw ºλmin(Σ̂w )Im .

(2.31)

We emphasize that the lower bounds on Σx and Σw are redundant but have been made explicit

in (2.31).

2.4 Nash Equilibrium and Optimality of Affine Estimators

If P̂ is a normal distribution of the form (2.23), then we have

inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) ≥ inf
ψ∈F

sup
Q∈B(P̂)

R(ψ,Q) ≥ sup
Q∈B(P̂)

inf
ψ∈F

R(ψ,Q) ≥ sup
Q∈BN (P̂)

inf
ψ∈F

R(ψ,Q), (2.32)
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where the first inequality follows from the inclusions A ⊆F and B(P̂) ⊆G(P̂), the second in-

equality exploits weak duality, and the last inequality holds due to the inclusion BN (P̂) ⊆B(P̂).

Note that the left-most minimax problem is the Gelbrich MMSE estimation problem (2.10)

studied in Section 2.2, and the right-most maximin problem is the dual Wasserstein MMSE

estimation problem (2.24) over normal priors studied in Section 2.3. We also highlight that

these restricted primal and dual estimation problems sandwich the original Wasserstein esti-

mation problems (2.7) and (2.22), which coincide with the second and third problems in (2.32),

respectively. The following theorem asserts that all inequalities in (2.32) actually collapse to

equalities.

Theorem 2.18 (Sandwich theorem). If P̂ is a normal distribution of the form (2.23), then the

optimal values of the restricted primal and dual estimation problems (2.10) and (2.24) coincide,

i.e.,

inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) = sup
Q∈BN (P̂)

inf
ψ∈F

R(ψ,Q).

Proof. By Theorem 2.8, the Gelbrich MMSE estimation problem (2.10) can be expressed as

inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) =
{

inf
A,K

K=In−AH

inf
γx ,γw

γx InÂK >K
γw ImÂA>A

γx
(
ρ2

x −Tr
[
Σ̂x

])+γ2
x

〈
(γx In −K >K )−1, Σ̂x

〉
+γw

(
ρ2

w −Tr
[
Σ̂w

])+γ2
w

〈
(γw Im − A>A)−1, Σ̂w

〉
,

where the auxiliary variable K = In − AH has been introduced to highlight the problem’s

symmetries. Next, we introduce the feasible sets

Sx ,

{
Σx ∈Sn

+ : Tr
[
Σx + Σ̂x −2

(
Σ̂

1
2
xΣx Σ̂

1
2
x

) 1
2 ]≤ ρ2

x

}

and

Sw ,

{
Σw ∈Sm

+ : Tr
[
Σw + Σ̂w −2

(
Σ̂

1
2
wΣw Σ̂

1
2
w

) 1
2 ]≤ ρ2

w

}
,

both of which are convex and compact by virtue of Lemma 2.36. Using Proposition 2.34 (i ) to

reformulate the inner minimization problem over γx and γw , we then obtain

inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) = inf
A,K

K=In−AH

sup
Σx∈Sx
Σw∈Sw

〈
K >K ,Σx

〉+〈
A>A,Σw

〉
= sup
Σx∈Sx

sup
Σw∈Sw

inf
A,K

K=In−AH

〈
K >K ,Σx

〉+〈
A>A,Σw

〉
= sup

Σx∈Sx

Σxºλmin(Σ̂x )In

sup
Σw∈Sw

Σwºλmin(Σ̂w )Im

inf
A,K

K=In−AH

〈
K >K ,Σx

〉+〈
A>A,Σw

〉
= sup
Q∈BN (P̂)

inf
ψ∈F

R(ψ,Q),

where the second equality holds due to Sion’s minimax theorem [156], and the third equality

follows from Lemma 2.35 applied twice separately to Σx and Σw . The last equality has already
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been derived in the proof of Theorem 2.15; see Equation (2.29). Thus, the claim follows.

Theorem 2.18 suggests that solving any of the restricted estimation problems is tantamount to

solving both original primal and dual estimation problems. This intuition is formalized in the

following corollary.

Corollary 2.19 (Nash equilibrium). If P̂ is a normal distribution of the form (2.23) with Σ̂w Â 0,

then the affine estimator ψ? that solves (2.10) is optimal in the primal Wasserstein MMSE

estimation problem (2.7), while the normal distribution Q? that solves (2.24) is optimal in

the dual Wasserstein MMSE estimation problem (2.22). Moreover, ψ? and Q? form a Nash

equilibrium for the game between the statistician and nature, that is,

R(ψ?,Q) ≤R(ψ?,Q?) ≤R(ψ,Q?) ∀ψ ∈F , Q ∈B(P̂) . (2.33)

Proof. As Σ̂w Â 0, the Gelbrich MMSE estimation problem (2.10) is solved by the affine estima-

tor ψ? defined in Theorem 2.8, and the dual Wasserstein MMSE estimation problem (2.22)

over normal priors is solved by the normal distributionQ? defined in Theorem 2.15. Thus, we

have

R(ψ?,Q?) ≥ inf
ψ∈F

R(ψ,Q?) = max
Q∈BN (P̂)

inf
ψ∈F

R(ψ,Q)

= min
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) = sup
Q∈G(P̂)

R(ψ?,Q) ≥R(ψ?,Q?),

where the three equalities follow from the definition ofQ?, Theorem 2.18 and the definition of

ψ?, respectively. As the left and the right hand sides of the above expression coincide, we may

then conclude that

R(ψ?,Q?) =R(ψ?,Q) ≤R(ψ?,Q?) ≤R(ψ,Q?) ∀ψ ∈F , Q ∈G(P̂).

Moreover, as B(P̂) ⊆G(P̂), the above relation implies (2.33).

It remains to be shown thatψ? andQ? solve the primal and dual Wasserstein MMSE estimation

problems (2.7) and (2.22), respectively. As for ψ?, we have

sup
Q∈B(P̂)

R(ψ?,Q) ≤ sup
Q∈G(P̂)

R(ψ?,Q) = inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) = inf
ψ∈F

sup
Q∈B(P̂)

R(ψ,Q),

where the first equality follows from the definition of ψ?, while the second equality exploits

Theorem 2.18, which implies that all inequalities in (2.32) are in fact equalities. This reasoning

shows thatψ? is optimal in (2.7). The optimality ofQ? in (2.22) can be proved similarly. Details

are omitted for brevity.

Corollary 2.19 implies that ψ? can be viewed as a Bayesian estimator for the least favor-

able priorQ? and thatQ? represents a worst-case distribution for the optimal estimator ψ?.
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Next, we will argue that ψ? can not only be constructed from the solution of the convex

program (2.12), which is equivalent to the Gelbrich MMSE estimation problem (2.10), but

also from the solution of the convex program (2.25), which is equivalent to the dual MMSE

estimation problem (2.24) over normal priors. This alternative construction is useful because

problem (2.25) is amenable to highly efficient first-order methods to be derived in Section 2.6.

Corollary 2.20 (Dual construction of the optimal estimator). If P̂ is a normal distribution of

the form (2.23) with Σ̂w Â 0, and (Σ?x ,Σ?w ) is a maximizer of (2.24), then the affine estimator

ψ?(y) = A?y +b? with

A? =Σ?x H> (
HΣ?x H>+Σ?w

)−1
and b? = µ̂x − A?(H µ̂x + µ̂w ) (2.34)

solves the Wasserstein MMSE estimation problem (2.7).

Proof. Define ψ? as the affine estimator that solves (2.10) andQ? as the normal distribution

that solves (2.24). By Corollary 2.19, the second inequality in (2.33) holds for all admissible es-

timators ψ ∈F , which implies that ψ? ∈ argminψ∈F R(ψ,Q?), that is, ψ? solves the Bayesian

MMSE estimation problem corresponding toQ?. As any Bayesian MMSE estimator satisfies

ψ?(y) =EQ?x|y [x] forQ?-almost all y and as Σ?w Â 0, we may use the known formulas for condi-

tional normal distributions to conclude that the unique affine Bayesian MMSE estimator for

Q? is of the form ψ?(y) = A?y +b? with parameters defined as in (2.34).

Remark 2.21 (Non-normal nominal distributions). The results of this section imply that the

optimal values of the finite convex programs (2.12) and (2.25) typically coincide even if the

nominal distribution fails to be normal. To see this, assume that P̂= P̂x × P̂w , where P̂x and P̂w

are arbitrary signal and noise distributions with finite mean vectors µ̂x and µ̂w and covariance

matrices Σ̂x and Σ̂w , respectively, and denote by P̂′ = P̂′
x × P̂′

w the normal distribution with the

same first and second moments as P̂. If Σ̂w Â 0, then the optimal values of (2.12) and (2.25) are

equal by virtue of the Theorems 2.8, 2.15 and 2.18 applied to P̂′. As (2.12) and (2.25) depend only

on the first and second moments of P̂′, their optimal values do not change if P̂′ is replaced with

P̂. Therefore, the optimal values of (2.12) and (2.25) coincide for any nominal distribution P̂

with finite first and second moments provided that Σ̂w Â 0. In this case, however, the minimum

of the Gelbrich MMSE estimation problem (2.10) may strictly exceed the maximum of the dual

Wasserstein MMSE estimation problem (2.24) over normal priors. Note that in this case the

ambiguity set BN (P̂) may even be empty. Moreover, while typically suboptimal for the original

Wasserstein MMSE estimation problem (2.7), the affine estimator constructed in Corollary 2.20

remains optimal for the Gelbrich MMSE estimation problem (2.10) even if P̂ fails to be normal.

2.5 Elliptical Nominal Distributions

We will now show that the results of Sections 2.2–2.4 remain valid if P̂ is an arbitrary elliptical

(but maybe non-normal) distribution. To this end, we first review some basic results on

elliptical distributions.
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Definition 2.22 (Elliptical distributions). The distribution P of ξ ∈Rd is called elliptical if the

characteristic function ΦP(t),EP[exp(i t>ξ)] of P is given by ΦP(t) = exp(i t>µ)φ(t>St) for

some location parameter µ ∈Rd , dispersion matrix S ∈Sd+ and characteristic generatorφ :R+ →
R. In this case we write P= E d

φ (µ,S). The class of all d-dimensional elliptical distributions with

characteristic generator φ is denoted by E d
φ .

The class of elliptical distributions was introduced in [98] with the aim to generalize the family

of normal distributions, which are obtained by setting the characteristic generator to φ(u) =
e−u/2. We emphasize that, unlike the moment-generating function MP(t ),EP[exp(t>ξ)], the

characteristic functionΦP(t ) is always finite for all t ∈Rd even if some moments of P do not

exist. Thus, Definition 2.22 is general enough to cover also heavy-tailed distributions with

non-zero tail dependence coefficients [85]. Examples of elliptical distributions include the

Laplace, logistic and t-distribution etc. Useful theoretical properties of elliptical distributions

are discussed in [22, 59]. We also highlight that elliptical distributions are central to a wide

spectrum of diverse applications ranging from genomics [141] and medical imaging [147] to

finance [92, § 6.2.1], to name a few.

If the dispersion matrix S ∈Sd+ has rank k, then there exists Λ ∈Rd×k with S =ΛΛ>, and there

exists a generalized inverse Λ−1 ∈ Rk×d with Λ−1Λ= Ik =Λ>(Λ−1)>. One easily verifies that

if ξ ∈ Rd follows an elliptical distribution P = E d
φ (µ,S), then ξ̃, Λ−1(ξ−µ) ∈ Rk follows the

spherically symmetric distribution P̃= E d
φ (0, Ik ) with characteristic function ΦP̃(t ) =φ(‖t‖2).

Thus, the choice of the characteristic generator φ is constrained by the implicit condition

that φ(‖t‖2) must be an admissible characteristic function. For instance, the normalization

of probability distributions necessitates that φ(0) = 1, while the dominated convergence

theorem implies that φ must be continuous etc. As any distribution is uniquely determined

by its characteristic function, and as φ(‖t‖2) depends only on the norm of t , the spherical

distribution P̃ is indeed invariant under rotations. This implies that EP̃[ξ̃] = 0 and, via the

linearity of the expectation, thatEP[ξ] =µ provided that ξ̃ and ξ are integrable, respectively.

Thus, the location parameter µ of an elliptical distribution coincides with its mean vector

whenever the mean exists. By the definition of the characteristic function, the covariance

matrix of P̃, if it exists, can be expressed as

Σ̃=− ∇2
tΦP̃(t )

∣∣
t=0 =− ∇2

tφ(‖t‖2)
∣∣

t=0 =−2φ′(0)Ik ,

where φ′(0) denotes the right derivative of φ(u) at u = 0. Hence, Σ̃ exists if and only if φ′(0)

exists and is finite. Similarly, the covariance matrix of P is given by Σ=−2φ′(0)S, if it exists [22,

Theorem 4]. Below we will focus on elliptical distributions with finite first- and second-order

moments (i.e., we will only consider characteristic generators with |φ′(0)| <∞), and we will

assume that φ′(0) = −1
2 , which ensures that the dispersion matrix S equals the covariance

matrixΣ. The latter assumption does not restrict generality. In fact, changing the characteristic

generator to φ( −u
2φ′(0) ) and the dispersion matrix to −2φ′(0)S has no impact on the elliptical

distribution P but matches the dispersion matrix S with the covariance matrix Σ.
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The elliptical distributions inherit many desirable properties from the normal distributions but

are substantially more expressive as they include also heavy- and light-tailed distributions. For

example, any class of elliptical distributions with a common characteristic generator is closed

under affine transformations and affine conditional expectations. Moreover, the Wasserstein

distance between two elliptical distributions with the same characteristic generator equals

the Gelbrich distance between their mean vectors and covariance matrices [71, Theorem 2.4].

Thus, the Propositions 2.12, 2.13 and 2.14 readily extend from the class of normal distributions

to any class of elliptical distributions that share the same characteristic generator.

The above discussion suggests that the results of Sections 2.2–2.4 carry over almost verbatim

to MMSE estimation problems involving elliptical nominal distributions. In the following we

will therefore assume that

P̂= E n+m
φ (µ̂, Σ̂) with µ̂=

[
µ̂x

µ̂w

]
and Σ̂=

[
Σ̂x 0

0 Σ̂w

]
, (2.35)

where φ denotes a prescribed characteristic generator. As the class of all elliptical distribu-

tions with characteristic generator φ is closed under affine transformations, the marginal

distributions P̂x and P̂w of x and w under P̂ are also elliptical distributions with the same

characteristic generator φ.

Note that while the signal x and the noise w are uncorrelated under P̂ irrespective of φ,

they fail to be independent unless P̂ is a normal distribution. When working with generic

elliptical nominal distributions, we must therefore abandon any independence assumptions.

Otherwise, the ambiguity set would be empty for small radii ρx and ρw . This insight prompts

us to redefine the Wasserstein ambiguity set as

B(P̂),
{
Q ∈M (Rn+m) :EQ[xw>] =EQ[x] ·EQ[w]>, W(Qx , P̂x ) ≤ ρx , W(Qw , P̂w ) ≤ ρw

}
,

(2.36)

which relaxes the independence condition in (2.8) and merely requires x and w to be uncorre-

lated. When using the new ambiguity set (2.36) to model the distributional uncertainty, we can

again compute a Nash equilibrium between the statistician and nature by solving a tractable

convex optimization problem.

Theorem 2.23 (Elliptical distributions). Assume that P̂ is an elliptical distribution of the

form (2.35) with characterisic generator φ and noise covariance matrix Σ̂w Â 0, and define

the ambiguity set B(P̂) as in (2.36). If (Σ?x ,Σ?w ) solves the finite convex program (2.24), then the

affine estimator ψ?(y) = A?y +b? with

A? =Σ?x H> (
HΣ?x H>+Σ?w

)−1
and b? = µ̂x − A?(H µ̂x + µ̂w )

solves the Wasserstein MMSE estimation problem (2.7), while the elliptical distribution

Q? = E n+m
φ (µ̂,Σ?) with Σ? =

[
Σ?x 0

0 Σw?

]
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solves the dual Wasserstein MMSE estimation problem (2.22). Moreover, ψ? and Q? form a

Nash equilibrium for the game between the statistician and nature, that is,

R(ψ?,Q) ≤R(ψ?,Q?) ≤R(ψ,Q?) ∀ψ ∈F , Q ∈B(P̂) .

Proof. The proof replicates the arguments used to establish Theorems 2.8, 2.15 and 2.18 as

well as Corollary 2.19 with obvious minor modifications. Details are omitted for brevity.

Theorem 2.23 asserts that the optimal estimator depends only on the first and second moments

of the nominal distribution P̂ but not on its characteristic generator. Whether P̂ displays

heavier or lighter tails than a normal distribution has therefore no impact on the prediction of

the signal. Note, however, that the characteristic generator of P̂ determines the shape of the

least favorable prior.

2.6 Numerical Solution of Wasserstein MMSE Estimation Problems

In this section, we first briefly review the basic setting of the Frank-Wolfe algorithm follow-

ing with three different stepsize rules proposed in the literature. We then show that under

additional regularity assumptions the proposed rule indeed enjoys a linear convergence rate.

We further show that the dual Wasserstein estimation reformulation in (2.25) meets these

requirements.

2.6.1 Frank-Wolfe Algorithm for Generic Convex Optimization Problems

Consider a generic convex minimization problem of the form

f ?,min
s∈S

f (s) (2.37)

with a convex compact feasible set S ⊆ Rd and a convex differentiable objective function

f : S → R. We assume that for each precision δ ∈ [0,1] we have access to an inexact oracle

F : S →S that maps any s ∈S to a δ-approximate solution of an auxiliary problem linearized

around s. More precisely, we assume that

(F (s)− s)>∇ f (s) ≤ δmin
z∈S

(z − s)>∇ f (s). (2.38)

Note that the minimum on the right hand side of (2.38) vanishes if and only if s solves the

original problem (2.37). Otherwise, the minimum is strictly negative. If δ= 1, then the oracle

returns an exact mininizer of the linearized problem. If δ = 0, on the other hand, then the

oracle returns any solution that is weakly preferred to s in the linearized problem. Given

an oracle satisfying (2.38), one can design a Frank-Wolfe algorithm whose iterates obey the
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recursion

sk+1 = sk +ηk (F (sk )− sk ) ∀k ∈N∪ {0}, (2.39)

where s0 ∈S is an arbitrary initial feasible solution, δ is a prescribed precision, and ηk ∈ [0,1]

is a stepsize that may depend on the current iterate sk . The Frank-Wolfe algorithm was origi-

nally developed for quadratic programs [63] and later extended to general convex programs

with differentiable objective functions and compact convex feasible sets [107, 41, 51, 49, 50].

Convergence guarantees for the Frank-Wolfe algorithm typically rely on the assumption that

the gradient of f is Lipschitz continuous [107, 49, 50, 70, 64], that f has a bounded curvature

constant [29, 89], or that the gradient of f is Hölder continuous [122].

Our convergence analysis will rely on the following regularity conditions.

Assumption 2.24 (Regularity conditions).

(i) The objective function f is β-smooth for some β> 0, i.e.,

‖∇ f (s1)−∇ f (s2)‖ ≤β‖s1 − s2‖ ∀s1, s2 ∈S .

(ii) The feasible set S is α-strongly convex for some α> 0, i.e.,

θs1 + (1−θ)s2 −θ(1−θ)
α

2
‖s1 − s2‖2 ∇ f (s1)

‖∇ f (s1)‖ ∈S ∀s1, s2 ∈S , θ ∈ [0,1].

(iii) The objective function f is ε-steep for some ε> 0, i.e.,

‖∇ f (s)‖ ≥ ε ∀s ∈S .

Assumption 2.24 (ii) relaxes the standard strong convexity condition prevailing in the liter-

ature, which requires that the condition used here remains valid if the normalized gradi-

ent ∇ f (s1)/‖∇ f (s1)‖ is replaced with any other vector in the Euclidean unit ball, see, e.g., [94,

Equation (25)]. We emphasize that our weaker condition does not invalidate the standard

convergence proofs for the Frank-Wolfe algorithm but is necessary for our purposes because

the feasible set of (2.25) fails to be strongly convex in the traditional sense.

In the following we will distinguish three variants of the Frank-Wolfe algorithm with different

stepsize rules. The vanilla Frank-Wolfe algorithm employs the harmonically decaying static

stepsize

ηk = 2

2+k
,

which results in a sublinear O (1/k) convergence whenever Assumption 2.24 (i) holds [63, 51].
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The adaptive Frank-Wolfe algorithm uses the stepsize

ηk = min

{
1,

(sk −F (sk ))>∇ f (sk )

β‖sk −F (sk )‖2

}
, (2.40)

which adapts to the iterate sk . If all of the Assumptions 2.24 (i)–(iii) hold, then the adaptive

Frank-Wolfe algorithm enjoys a linear O (θk ) convergence guarantee, where θ ∈ (0,1) is an

explicit function of the oracle precision δ, the strong convexity parameter α, the smoothness

parameter β and the steepness parameter ε [107]. Note that the stepsize (2.40) is constructed

as the unique solution of the univariate quadratic program

min
η∈[0,1]

f (sk )−η(sk −F (sk ))>∇ f (sk )+ 1

2
βη2 ‖sk −F (sk )‖2 ,

which minimizes a quadratic majorant of the objective function f along the line segment from

sk to F (sk ).

The adaptive stepsize rule (2.40) has undergone further scrutiny in [70], where it was dis-

covered that one may improve the algorithm’s convergence behavior by replacing the global

smoothness parameter β in (2.40) with an adaptive smoothness parameter βk that captures

the smoothness of f along the line segment from sk to F (sk ). This extra flexibility is useful

because βk can be chosen smaller than the unnecessarily conservative global smoothness

parameter β and because βk is easier to estimate than β, which may not even be accessible.

Following [133], we will henceforth only require that βk > 0 satisfies the inequality

f
(
sk −ηk (βk )

(
sk −F (sk )

))≤ f (sk )−ηk (βk )
(
sk −F (sk )

)>∇ f (sk )+ 1

2
βkηk (βk )2

∥∥sk −F (sk )
∥∥2,

(2.41)

where ηk (βk ) is defined as the adaptive stepsize (2.40) with β replaced by βk . As it adapts

both to sk and βk , we will from now on refer to ηk = ηk (βk ) as the fully adaptive stepsize.

The above discussion implies that (2.41) is always satisfiable if Assumption 2.24 (i) holds,

in which case one may simply set βk to the global smoothness parameter β. In practice,

however, the inequality (2.41) is often satisfiable for much smaller values βk ¿ β that may

not even be related to the smoothness properties of the objective function. A close upper

bound on the smallest βk > 0 that satisfies (2.41) can be found efficiently via backtracking line

search. Specifically, the fully adaptive Frank-Wolfe algorithm sets βk to the smallest element

of the discrete search space βk−1

ζ · {1,τ,τ2,τ3, . . .} that satisfies (2.41), where τ> 1 and ζ> 1 are

prescribed line search parameters. A detailed description of the fully adaptive Frank-Wolfe

algorithm in pseudocode is provided in Algorithm 2.

It has been shown in [133] that Algorithm 2 enjoys the same sublinear O (1/k) convergence

guarantee as the vanilla Frank-Wolfe algorithm when Assumption 2.24 (i) holds. Below we will

leverage techniques from [107, 70] to show that Algorithm 2 offers a linear convergence rate if

all of the Assumptions 2.24 (i)–(iii) hold.
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Algorithm 2 Fully adaptive Frank-Wolfe algorithm

Input: initial feasible point s0 ∈S , initial smoothness parameter
β−1 > 0

line search parameters τ> 1, ζ> 1, initial iteration counter
k = 0

while stopping criterion is not met do

solve the oracle subproblem to find s̃k = F (sk )
set dk ← s̃k − sk and gk ←−d>

k ∇ f (sk )

set βk ←βk−1/ζ and η← min{1, gk /(βk‖dk‖2)}

while f (sk +ηdk ) > f (sk )−ηgk +
η2βk

2
‖dk‖2 do

βk ← τβk and η← min{1, gk /(βk‖dk‖2)}
end while
set ηk ← η and sk+1 ← sk +ηk dk

set k ← k +1
end while

Output: sk

Theorem 2.25 (Linear convergence of the fully adaptive Frank-Wolfe algorithm). If Assump-

tion 2.24 holds and β,max{τβ,β−1}, then Algorithm 2 enjoys the linear convergence guarantee

f (sk )− f ? ≤ max

{
1− δ

2
,1− (1−p

1−δ)αε

4β

}k

( f (s0)− f ?) ∀k ∈N.

The proof of Theorem 2.25 relies on the following preparatory lemma.

Lemma 2.26 (Bounds on the surrogate duality gap). The surrogate duality gap gk ,−d>
k ∇ f (sk )

corresponding to the search direction dk , F (sk )− sk admits the following lower bounds.

(i) If the objective function f is convex, then gk ≥ δ( f (sk )− f ?).

(ii) If the feasible set S is α-strongly convex in the sense of Assumption 2.24 (ii), then

gk ≥ (1−p
1−δ)α

2δ
‖dk‖2‖∇ f (sk )‖.

Proof. By the definition of gk we have

gk = (
sk −F (sk )

)>∇ f (sk ) ≥ δ(
sk − s

)>∇ f (sk ) ∀s ∈S , (2.42)

where the inequality follows from the defining property (2.38) of the inexact oracle with

precision δ. Setting s in (2.42) to a global minimizer s? of (2.37) then implies via the first-order
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convexity condition for f that

gk ≥ δ(
sk − s?

)>∇ f (sk ) ≥ δ(
f (sk )− f ?

)
.

This observation establishes assertion (i). To prove assertion (ii), we set

s(θ) = θF (sk )+ (1−θ)sk −
α

2
θ(1−θ)‖F (sk )− sk‖2 ∇ f (sk )

‖∇ f (sk )‖ ,

where α is the strong convexity parameter of the feasible set S , and θ ∈ [0,1] is an arbitrary

convex weight. By assumption 2.24 (ii) we have s ∈ S . Moreover, setting s in (2.42) to s(θ)

implies that

gk ≥ δ
(
θ
(
sk −F (sk )

)+ α

2
θ(1−θ)‖F (sk )− sk‖2 ∇ f (sk )

‖∇ f (sk )‖
)>∇ f (sk )

= δ(
θgk +

α

2
θ(1−θ)‖F (sk )− sk‖‖∇ f (sk )‖) ∀θ ∈ [0,1].

Reordering the above inequality to bring gk to the left hand side yields

gk ≥ α

2
‖F (sk )− sk‖2‖∇ f (sk )‖δθ(1−θ)

1−δθ ∀θ ∈ [0,1]. (2.43)

A tedious but straightforward calculation shows that the lower bound on the right hand side

of (2.43) is maximized by θ? = (1−p
1−δ)/δ. Assertion (ii) then follows by substituting θ?

into (2.43).

Proof of Theorem 2.25. By Assumption 2.24 (i) the function f is β-smooth, and thus one can

show that

f (sk +ηdk ) ≤ f (sk )−ηgk +
η2β

2
‖dk‖2 ∀η ∈ [0,1] , (2.44)

where the surrogate duality gap gk ≥ 0 and the search direction dk ∈ Rd are defined as in

Lemma 2.26. We emphasize that (2.44) holds in fact for all η ∈ R. However, the next iterate

sk+1 = sk +ηdk may be infeasible unless η ∈ [0,1]. The inequality (2.44) implies that any βk ≥β
satisfies the condition of the inner while loop of Algorithm 2, and thus the loop must terminate

at the latest after dlog(ζβ/β−1)/ log(τ)e iterations, outputting a smoothness parameter βk and

a stepsize ηk that satisfy the inequality (2.41).

We henceforth denote by hk = f (sk )− f ? the suboptimality of the k-th iterate and note that

hk+1 = f (sk +ηk dk )− f (sk )+hk ≤−gk +
1

2
βkη

2
k‖dk‖2 +hk , (2.45)

where the inequality exploits (2.41) and the definitions of gk and dk . In order to show that hk

decays geometrically, we distinguish the cases (i) gk /(βk‖dk‖2) ≥ 1 and (ii) gk /(βk‖dk‖2) < 1.

In case (i), the stepsize ηk defined in (2.41) satisfies ηk = min{1, gk /(βk‖dk‖2)} = 1, and thus
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we have

hk+1 ≤
(
βk‖dk‖2

2gk
−1

)
gk +hk ≤−gk

2
+hk ≤

(
1− δ

2

)
hk , (2.46)

where the first inequality follows from (2.45), while the third inequality holds due to Lemma 2.26 (i).

In case (ii), the step size satisfies ηk = gk /βk‖dk‖2 < 1, and thus we find

hk+1 ≤−gk +
g 2

k

2βk‖dk‖2 +hk ≤− g 2
k

2βk‖dk‖2 +hk ≤
(
1− δgk

2βk‖dk‖2

)
hk

≤
(

1− (1−p
1−δ)α

4βk
‖∇ f (sk )‖

)
hk ≤

(
1− (1−p

1−δ)αε

4β

)
hk , (2.47)

where the first and the second inequalities follow from (2.45) and from multiplying −gk

with ηk < 1, respectively, while the third and the fourth inequalities exploit Lemmas 2.26 (i)

and 2.26 (ii), respectively. The last inequality in (2.47) holds because of Assumption 2.24 (iii)

and because βk ≤β for all k ∈N; see [133, Proposition 2]. By the estimates (2.46) and (2.47),

the suboptimality of the current iterate decays at least by

max

{
1− δ

2
,1− (1−p

1−δ)αε

4β

}
< 1

in each iteration of the algorithm. This observation completes the proof.

2.6.2 Frank-Wolfe Algorithm for Wasserstein MMSE Estimation Problems

We now use the fully adaptive Frank-Wolfe algorithm of Section 2.6.1 to solve the nonlinear

SDP (2.25), which is equivalent to the dual Wasserstein MMSE estimation problem over normal

priors. Recall from Corollary 2.20 that any solution of (2.25) can be used to construct both

a least favorable prior and an optimal estimator that form a Nash equilibrium. Unlike the

generic convex program (2.37), the specific nonlinear SDP (2.25) is a convex maximization

problem, and thus Algorithm 2 is applicable only after some obvious minor modifications.

Throughout this section we assume that Σ̂w Â 0, which implies via Theorem 2.15 that the

nonlinear SDP (2.25) is solvable and and can be reformulated more concisely as

max
Σx∈Sx ,Σw∈Sw

f (Σx ,Σw ) ,

where the objective function f : Sx ×Sw →R is defined through

f (Σx ,Σw ),Tr
[
Σx −Σx H> (

HΣx H>+Σw
)−1

HΣx
]

,
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and where the separate feasible sets for Σx and Σw are given by

Sx ,

{
Σx ∈Sn

+ : Tr
[
Σx + Σ̂x −2

(
Σ̂

1
2
xΣx Σ̂

1
2
x

) 1
2 ]≤ ρ2

x , Σx ºλmin(Σ̂x )In

}

and

Sw ,

{
Σw ∈Sm

+ : Tr
[
Σw + Σ̂w −2

(
Σ̂

1
2
wΣw Σ̂

1
2
w

) 1
2 ]≤ ρ2

w , Σw ºλmin(Σ̂w )Im

}
,

respectively. One readily verifies that f is convex and differentiable. Moreover, Lemma 2.36

implies that both Sx and Sw are convex and compact. The oracle problem that linearizes the

objective function of the nonlinear SDP around a fixed feasible solution Σx ∈Sx and Σw ∈Sw

can thus be expressed concisely as

max
Lx∈Sx ,Lw∈Sw

〈
Lx −Σx ,Dx

〉+〈
Lw −Σw ,Dw

〉
,

where Dx ,∇Σx f
(
Σx ,Σw

)
and Dw ,∇Σw f

(
Σx ,Σw

)
.

Dx = (In −Σx H>G−1H)>(In −Σx H>G−1H)

and

Dw =G−1HΣ2
x H>G−1 ,

respectively, and where G ,HΣx H>+Σw . Details on the calculation of the derivatives can be

found in Appendix 2.8.2.

The oracle problem is separable in (Lx ,Lw ) and its approximate solution can be found inde-

pendently as the optimal solutions of two separate sub-programs of similar structure. In fact,

we are interested in finding a feasible point L̃i satisfying〈
L̃i −Σi ,Di

〉≥ δ max
Li∈Sd+

〈
Li −Σi ,Di

〉
s. t. Tr

[
Li + Σ̂i −2

(
Σ̂

1
2
i Li Σ̂

1
2
i

) 1
2
]≤ ρ2

i , Li ºλmin(Σ̂i )Id

(2.48)

for i ∈ {x, w}. In the earlier version of this paper, we construct an approximate additive oracle

for the above maximization problem whose correctness was guaranteed by [152, Theorem 3.2].

Algorithm 3, however, constructs an approximate multiplicative oracle to ensure the linear

convergence of the fully adaptive Frank-Wolfe Algorithm 2.

Theorem 2.27 (Direction-finding subproblem). For any fixed input (Σi ,Di , Σ̂i ,ρi ,δ) with i ∈
{x, w}, Algorithm 3 returns a feasible point satisfying (2.48).

Proof. Denote the feasible set of the optimization program in (2.48) by Si . Note that the

objective function f is jointly concave in Σx and Σw . Therefore, by concavity of f , for any
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Algorithm 3 Bisection algorithm to solve (2.48)

Input: covariance matrix Σ ∈Sd++ and its gradient matrix D ∈Sd+,
Wasserstein center Σ̂ ∈Sd++ and radius ρ > 0,
oracle parameter δ ∈ (0,1)

Denote the largest eigenvalue of D by λ1, let v1 be an eigenvec-
tor of λ1

Set LB ←λ1(1+ (v>
1 Σ̂v1)

1
2 /ρ), U B ←λ1(1+Tr

[
Σ̂

] 1
2 /ρ)

repeat
Set γ← (U B +LB)/2, L̃ ← γ2(γId −D)−1Σ̂(γId −D)−1

if ρ2 −〈
Σ̂,

(
Id −γ(γId −D)−1

)2〉< 0 then
Set LB ← γ

else
Set U B ← γ

end if
Set∆← 〈

L−Σ,D
〉

/
(
γ(ρ2−Tr

[
Σ̂

]
)+γ2

〈
(γId−D)−1, Σ̂

〉−〈
Σ,D

〉)
until ρ2 −〈

Σ̂,
(
Id −γ(γId −D)−1

)2〉> 0 and ∆≥ δ
Output: L̃

(Σx ,Σw ) ∈Sx ×Sw we have

max
Li∈Si

〈
Li −Σi ,Di

〉≥ f ?i − f (Σx ,Σw ) ≥ 0

for i ∈ {x, w}, where f ?x = maxSx∈Sx f (Sx ,Σw ) and f ?w = maxSw∈Sw f (Σx ,Sw ); see for example

[88, Section 2.2] for a proof. By Proposition 2.34 (i ) and (i i i ), the above maximization admits

the dual

inf
γi>λmax(Di )

γi

(
ρ2

i +
〈
γi (γi I −Di )−1 − I , Σ̂i

〉)−〈
Σi ,Di

〉≥ 0 (2.49)

and its optimal solution follows the form

L?i = (γ?i )2(γ?i I −Di )−1Σ̂i (γ?i I −Di )−1,

where γ?i is the unique optimizer of the above minimization problem satisfying

ρ2
i −

〈
Σ̂i ,

(
I −γ?i (γ?i I −Di )−1)2〉= 0.

It is proved in [152, Theorem 3.2] that the condition ρ2
i −

〈
Σ̂i ,

(
I −γi (γi I −Di )−1

)2〉> 0 ensures

the feasibility of the output; thus, we only focus on proving that the output is a δ-approximate

solution, that is, it satisfies (2.48). Notice that any γ in Algorithm 3 is feasible in (2.49) by

construction, and thus, we have

γ(ρ2 −Tr
[
Σ̂

]
)+γ2〈(γId −D)−1, Σ̂

〉−〈
Σ,D

〉≥ max
Li∈Si

〈
Li −Σi ,Di

〉≥ 0.
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Therefore, the condition ∆≥ δ implies that L satisfies (2.48), that is,

∆≥ δ =⇒
〈

L̃−Σi ,Di
〉

maxSi∈Si

〈
Si −Σi ,Di

〉 ≥ δ.

Note that both numerator and denominator of∆ are Lipschitz continuous in γ for the bisection

interval, and therefore, the bisection Algorithm 2 will terminate in finite time.

If Σ̂ is singular, one simple idea is to add κId with κ> 0 to the nominal matrix in (2.48) and

obtain an approximate solution to the direction finding subproblem using Algorithm 3. The

next proposition asserts that the dual estimation problem (2.25) satisfies the conditions of

Assumption 2.24.

Proposition 2.28 (Properties of the dual estimation problem (2.25)). The dual estimation

problem (2.25) satisfies the following properties:

(i ) Its objective function is β-smooth over its feasible set, with the smoothness constant β

satisfying

β= 2λ−1
min(Σ̂w )

(
C +C λ2

max(H>H)+λmax(H>H)
)

, (2.50)

where C = min
{
λ−1

min(H>H),λmax(H>H) ·λ−2
min(Σ̂w ) ·

(
ρx +Tr

[
Σ̂x

] 1
2
)4

}
.

(i i ) Its feasible set is α-strongly convex with parameter

α= min

 λ
5
4
min(Σ̂x )

2ρx
(
ρx +Tr

[
Σ̂x

] 1
2
) 7

2

,
λ

5
4
min(Σ̂w )

2ρw
(
ρw +Tr

[
Σ̂w

] 1
2
) 7

2

 .

(i i i ) Its objective function satisfies the lower-bounded gradient condition over its feasible set.

More specifically, we have

min{‖Dx‖F ,‖Dw‖F } ≥ ε,

where ε= min{εx , εw } with

εx =
 λmin(Σ̂w )(
ρw +Tr

[
Σ̂w

] 1
2
)2 + (

ρx +Tr
[
Σ̂x

] 1
2
)2
λmax(H>H)

2

,

εw =λmax(H>H)

 λmin(Σ̂x )(
ρw +Tr

[
Σ̂w

] 1
2
)2 +λmin(Σ̂x )λmax(H>H)

2

.

(i v) Its feasible set has diameter upper bounded by

DS = (
ρx +Tr

[
Σ̂x

] 1
2
)2 + (

ρw +Tr
[
Σ̂w

] 1
2
)2.

Proof. To establish the smoothness property of f in claim (i), it suffices to provide a uniform
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upper bound for the largest eigenvalue of the negative Hessian matrix H defined in Sec-

tion 2.8.2 over the feasible set of problem (2.25). The maximum eigenvalue of H can be upper

bounded by

λmax(H ) ≤λmax(Hxx )+λmax(Hw w ) = 2
(
λmax (Dx ) ·λmax

(
H>G−1H

)+λmax (Dw ) ·λmax
(
G−1)) ,

where the inequality follows from [12, Fact 5.12.20] and the equality follows from [12, Proposi-

tion 7.1.10]. In the sequel, we provide the upper bound for each individual term in the above

expression.

Because G = HΣx H>+Σw , we have G ºλmin(Σw )Im ºλmin(Σ̂w )Im and thus

λmax(G−1) =σmax(G−1) ≤λ−1
min(Σ̂w ),

and furthermore,

λmax(H>G−1H) ≤σmax(G−1) ·σ2
max(H) =λ−1

min(Σ̂w ) ·λmax(H>H).

Because Dw =G−1HΣ2
x H>G−1, we find

λmax(Dw ) ≤λ2
max(Σx ) ·λ2

max(G−1) ·λmax(H>H) ≤ (
ρx +Tr

[
Σ̂x

] 1
2
)4 ·λ−2

min(Σ̂w ) ·λmax(H>H),

where the last inequality follows from the bound in Lemma 2.36. Finally, we bound λmax(Dx )

by

λmax(Dx ) ≤λmax(In)+λmax(H>G−1HΣ2
x H>G−1H)

= 1+σ2
max(H>G−1HΣx )

≤ 1+λ2
max(Σx ) ·λ2

max(G−1) ·λ2
max(H>H)

≤ 1+ (
ρx +Tr

[
Σ̂x

] 1
2
)4 ·λ−2

min(Σ̂w ) ·λ2
max(H>H).

The upper bound on λmax(Dx ) and λmax(Dw ) can be strengthened whenever H is of full

column rank by exploiting the relationship G2 Â (
HΣx H>)2 ºλmin(H>H) · HΣ2

x H>, which in

turn implies that

λmax(Dw ) =λmax(G−1HΣ2
x H>G−1) ≤λmin(H>H)−1,

λmax(Dx ) ≤λmax(In +H>G−1HΣ2
x H>G−1H) ≤ 1+λmax(H>H)λmin(H>H)−1.

Combining all the inequalities, we conclude that

λmax(H ) ≤ 2λ−1
min(Σ̂w )

(
C +C λ2

max(H>H)+λmax(H>H)
)

,

where the constant C admits the value

C = min
{
λ−1

min(H>H),λmax(H>H) ·λ−2
min(Σ̂w ) ·

(
ρx +Tr

[
Σ̂x

] 1
2
)4

}
.
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The claim about the smoothness of f thus follows.

To prove claim (ii), it is sufficient to show strong convexity for θ = 0.5. We denote by Sx and

Sw the feasible sets of the variables Σx and Σw in problem (2.25), that is,

Sx ,
{
Σx ∈Sn

+ :Σx ºλmin(Σ̂x )In , Tr
[
Σx + Σ̂x −2

(
Σ̂

1
2
xΣx Σ̂

1
2
x
) 1

2
]≤ ρ2

x

}
(2.51a)

and

Sw ,
{
Σw ∈Sm

++ :Σw ºλmin(Σ̂w )Im , Tr
[
Σw + Σ̂w −2

(
Σ̂

1
2
wΣw Σ̂

1
2
w

) 1
2
]≤ ρ2

w

}
, (2.51b)

where the redundant constraints Σx º λmin(Σ̂x )In and Σw º λmin(Σ̂w )Im has been made

explicit in Sx and Sw , respectively. Fix any Σx ∈ Sx , Lx ∈ Sx , Σw ∈ Sw and Lw ∈ Sw . Let

Ex = 1
2 (Σx+Lx ) and Ew = 1

2 (Σw +Lw ) be the corresponding midpoint, while Dx and Dw denote

the components of the derivative of the objective function at (Σx ,Σw ). Let Zx = Dx /‖Dx‖F º 0

and Zw = Dw /‖Dw‖F º 0, where the positive semidefiniteness of Zx and Zw follows from the

positive semidefiniteness of Dx and Dw , respectively. Consider now the point

(L̃x , L̃w ) =
(
Ex + α

8
‖Σx −Lx‖2

F Zx ,Ew + α

8
‖Σw −Lw‖2

F Zw

)
.

Because Σx , Lx and Zw are positive semidefinite, L̃w is also positive semidefinite by con-

struction. Because λmin(Σ̂w )Im ¹ Σ̂w ¹ (ρw +Tr
[
Σ̂w

] 1
2 )2Im , [14, Theorem 1] implies that the

non-negative function Σw 7→ Tr
[
Σw + Σ̂w − 2(Σ̂

1
2
wΣw Σ̂

1
2
w )

1
2
]

is λ
1
2
min(Σ̂w )/[2(ρw +Tr

[
Σ̂w

] 1
2 )3]-

strongly convex and (ρw +Tr
[
Σ̂w

] 1
2 )/[2λ

3
2
min(Σ̂w )]-smooth. One can now use the reasoning in

the proof of [94, Theorem 12] to show that

Tr
[
L̃w + Σ̂w −2

(
Σ̂

1
2
w L̃w Σ̂

1
2
w

) 1
2
]≤ ρ2

w .

Through an analogous argument, we have L̃x º 0 and

Tr
[
L̃x + Σ̂x −2

(
Σ̂

1
2
x L̃x Σ̂

1
2
x
) 1

2
]≤ ρ2

x .

These results imply that (L̃x , L̃w ) is feasible for problem (2.25), and thus claim (ii) holds.

Finally we proceed to prove the lower-bounded gradient condition of f in claim (iii). Denote

by spec(T ) the spectrum, or the set of eigenvalues, of any square matrix T . Recall that we set

G = HΣx H>+Σw . Let T1 = In −Σx H>G−1H and T2 = HΣx H>G−1 = Im −ΣwG−1. Then the

largest eigenvalue of Dx = T >
1 T1 satisfies

λmax(Dx ) =σ2
max(T1) ≥ max

λ∈spec(T1)
|λ|2 = max

λ∈spec(T2)
|1−λ|2 =λ2

max(ΣwG−1), (2.52)

where | · | is the absolute value of a (possibly complex) number. The first inequality follows

from Browne’s theorem [12, Fact 5.11.21], the second equality holds because the nonzero
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spectrum of Σx H>G−1H is identical to the ones of HΣx H>G−1 [12, Proposition 4.4.10], and

the last equality follows from the fact that

spec(T2) = spec((G −Σw )G−1) = 1− spec(ΣwG−1).

Notice that all eigenvalues of ΣwG−1 are real because the nonzero spectrum of ΣwG−1 and

G− 1
2ΣwG− 1

2 are identical, and G− 1
2ΣwG− 1

2 is a symmetric matrix with real eigenvalues.

To achieve a uniform lower bound on the largest eigenvalue of Dx , we are interested in the

following optimization problem and its lower bounds

inf
Σx∈Sx
Σw∈Sw

λmax(ΣwG−1) ≥ inf
Σx∈Sx
Σw∈Sw

λmax
(
Σw (Σw +λmax(Σx )λmax(H>H) Im)−1)

≥ inf
Σw∈Sw

λmin(Σw )

λmax(Σw )+ (
ρx +Tr

[
Σ̂x

] 1
2
)2
λmax(H>H)

≥ λmin(Σ̂w )(
ρw +Tr

[
Σ̂w

] 1
2
)2 + (

ρx +Tr
[
Σ̂x

] 1
2
)2
λmax(H>H)

. (2.53)

Combining (2.52) and (2.53), we find ‖Dx‖F ≥λmax(Dx ) ≥ δx , where δx is defined in the lemma

statement.

Using an analogous reasoning, a uniform lower bound on the largest eigenvalue of Dw can be

obtained by

λmax(Dw ) ·λmax(H>H) ≥λmax(H>Dw H) =σ2
max(H>G−1HΣx )

≥λ2
max(HΣx H>G−1) = (

1−λmin(ΣwG−1)
)2

=
(
1− 1

1+λmax(HΣx H>Σ−1
w )

)2

.

A uniform lower bound for λmax(HΣx H>Σ−1
w ) can be obtained by

inf
Σx∈Sx
Σw∈Sw

λmax(HΣx H>Σ−1
w ) ≥ inf

Σx∈Sx
Σw∈Sw

λmin(Σx )

λmax(Σw )
·λmax(H>H) ≥ λmin(Σ̂x )(

ρw +Tr
[
Σ̂w

] 1
2
)2

·λmax(H>H),

where the last inequality follows from the fact that Σw ¹ (ρw +Tr
[
Σ̂w

] 1
2 )2Im for any Σw ∈Sw

(see Lemma 2.36) and Σx º λmin(Σ̂x )In for any Σx ∈ Sx . If we define δw as in the Lemma

statement, then ‖Dw‖F ≥λmax(Dw ) ≥ δw .

Lemma 2.36 implies that both sets Sx and Sw defined in (2.51) are bounded, thus the diameter

of the joint feasible set S =Sx ×Sw with respect to the Frobenius norm can be bounded by

diam‖ ·‖F (S ) ≤ sup
Σx∈Sx

Tr
[
Σx

]+ sup
Σw∈Sw

Tr
[
Σw

]≤ (
ρx +Tr

[
Σ̂x

] 1
2
)2 + (

ρw +Tr
[
Σ̂w

] 1
2
)2,
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where the first inequality holds due to [12, Equation (9.2.16)] and the second inequality follows

from the proof of Lemma 2.36. This completes the proof.

2.7 Numerical Experiments

All experiments are run on an Intel XEON CPU with 3.40GHz clock speed and 16GB of RAM.

All SDPs are solved with MOSEK 8 using the YALMIP interface [112]. In order to ensure the

reproducibility of our experiments, we make all source codes available at https://github.com/

sorooshafiee/WAE.

2.7.1 Convergence Behavior on Synthetic Problems

In the first experiment we aim to study the convergence behavior of the Frank-Wolfe algorithm

and make a comparison to a commercial SDP solver. The experiment comprises 10 simulation

runs. In each run we randomly generate two covariance matrices Σ̂x and Σ̂w as follows. First,

we draw two matrices Qx and Qw from the standard normal distribution on Rd×d , and we

denote by Rx and Rw the orthogonal matrices whose columns correspond to the orthonormal

eigenvectors of Qx +Q>
x and Qw +Q>

w , respectively. Then, we define Σ̂x = R?Λ?(R?)> and

Σ̂w = RΛR>, where Λ? and Λ are diagonal matrices whose main diagonals are sampled

uniformly from [1,10]d and [1,2]d , respectively. The distributionally robust MMSE estimator

is obtained by solving (2.25) for ρx = ρw =p
d via the Frank-Wolfe algorithm from Section 2.6.

Figure 2.1a and Figure 2.1b compare the execution time and the number of required iterations

to obtain the duality gap below 10−3 for different dimension d and solution approaches. In

particular, we compare the solution time and iteration numbers when we solve the linear

SDP (2.31) with MOSEK and the nonlinear SDP (2.25) with different variants of the Frank-Wolfe

algorithm. Unfortunately, we fail to solve the linear SDP (2.31) using MOSEK with an out of

memory error when the dimension d is larger than 100. Figure 2.1c compares the empirical

rate of convergence for different variants of the Frank-Wolfe algorithm. As we observe, the

fully adaptive version convergence to a very accurate solution after 20 iterations.

2.7.2 Image Denoising via Wasserstein Wavelet Shrinkage

In this section, we consider a wavelet shrinkage settings which has gained ubiquitous ap-

plications in image processing [46]. Suppose that our raw data Y ∈ R2N
consists of noisy

observations at 2N regularly spaced points

Yi = Xi +Wi , i = 1, . . . ,2N ,

of an unknown signal X ∈R2N
and Wi are i.i.d. noise following a normal distribution N (0,σ2

w ).

The wavelet-based approach is centered around the assumption that the signal X is, or can be

approximated by, a function with a small number of non-zeros wavelet coefficients. Under this
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Figure 2.1 – Convergence behavior of the Frank-Wolfe algorithm (shown are the average (solid
line) and the range (shaded area) of the respective performance measures across 10 simulation
runs)

assumption, the observation Y , the signal X and the noise W can be encoded onto the wavelet

space using a periodic Discrete Wavelet Transform (DWT) represented by an operator W .

Under the operator W , the linear observation system can be written in the wavelet coefficient

space as

y = x +w, (2.54)

where y =W Y ∈R2N
are the wavelet coefficients of the noisy observation Y , x =W X ∈R2N

are

the wavelet coefficients of the true signal X and w =W W ∈R2N
are the wavelet coefficients

of the additive white noise. Because the periodic DWT W is an orthogonal operator, the

DWT transforms a white noise into another white noise, thus the components of w are also

i.i.d. random variables following a normal distribution N (0,σ2
w ).

Because of the orthogonality of the wavelet basis W , the inverse DWT is its adjoint W >. Thus,

if x̂ is an estimate of the true wavelet coefficient of the signal x, there exists an estimate X̂

of the true signal X constructed from x̂ using the inverse DWT as X̂ = W >x̂. Furthermore,

the Parseval’s relation [114, Theorem 2.3] implies the isometric property ‖x̂ −x‖2 = ‖X̂ −X ‖L2 .

As a consequence, the MMSE estimator in the wavelet coefficient space leads to the MMSE

estimator in the true signal space through the inverse wavelet transformation W >. The readers

are encouraged to refer to [114] for a comprehensive introduction on wavelet transform and

its applications in signal processing.

Based on these properties, a wide class of signal, and especially image, denoising algorithms

is based on the combination of the DWT and a wavelet coefficient shrinkage method. De-

noising additive Gaussian white noise via thresholding wavelet coefficients was pioneered

by [47], where the coefficients are compared to a given a threshold. Other examples include

VisuShrink [47], RiskShrink [47], and SureShrink [45], where the thresholding operator is either

hard or soft thresholding functions. Nevertheless, thresholding methods suffer from several

drawbacks: (i) the threshold is usually selected in an ad hoc manner, (ii) soft thresholding

provides a biased image, and (iii) hard thresholding yields an image with less bias but a higher
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variance. Shrinking the wavelet coefficients using a Bayes estimator can provide a better

performance, and has been exploited in [23, 24, 117, 149]. The basic approach in Bayesian

methods assumes that the local distribution of the wavelet coefficients are Gaussian with spa-

tially varying variance. For example, the wavelet coefficients within subbands is assumed to

follows an independent Gaussian distribution in [23, 149]. BayesShrink exploits this stochastic

representation to introduce a data driven scheme for adaptive soft thresholding in different

subbands [23].

Our Wasserstein denoising filter consists of the following three components:

1. A DWT to transform noisy data into wavelet coefficients and an inverse DWT to recon-

struct the signal.

2. A local estimator of the covariance matrix for the signal and noise similar to [47, 45, 117].

3. A Wasserstein estimator, constructed using the Frank-Wolfe algorithm with an efficient

implementation to exploit the structure of the denoising problem that can scale up for

high resolution data.

Given a specific image Ŷ = (Ŷi )i=1,...,2N , one can apply the DWT to get the wavelet coefficients

ŷ =W Ŷ and set the nominal noise distribution to P̂w ∼N (0, Σ̂w ) with Σ̂w = σ̂2
w I2N , where the

noise variance is estimated from the components ŷi contained in the subband HH1 using a

robust median estimator [47, 45] of the form

σ̂w = Median({|ŷi |}i∈HH1 )

0.6745
> 0.

Furthermore, an estimation of the moments information of the wavelet coefficients of the

true signal x is proposed in [117] where the true image wavelet coefficients are modelled as

realizations of a doubly stochastic process. In more details, x are assumed to be independent

zero-mean Gaussian random variables with varying variances. These variances can be locally

estimated as

(Σ̂x )i i = max

(
0,

1

|Mi |
∑

j∈Mi

ŷ2
j − σ̂2

w

)

for the i -th wavelet coefficient, where Mi is a set containing the indices of coefficients in the

neighborhood of the i -th coefficient, and |Mi | is its cardinality. The reference distribution of

the true image distribution is P̂x ∼N
(
0, Σ̂x

)
. Given the nominal distribution P̂= P̂x × P̂w , the

classical MMSE estimator Â ∈R2N×2N
has the form

Âi i = (Σ̂x )i i

(Σ̂x )i i + σ̂2
w

i = 1, . . .2N , and Âi j = 0 i = 1, . . . ,2N , j = 1, . . .2N , i 6= j ,

and the wavelet coefficient estimate of the true image are x̂i = Âi i × ŷi for any i = 1, . . .2N .

We would like to emphasize that Âi i < 1 because σ̂w > 0, thus the classical MMSE estimator
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already provides the shrinking effect for the wavelet coefficient estimation problem.

Alternatively, one may construct a denoising filter ψ?ŷ by resorting to the distributionally

robust MMSE estimator, which is equivalent to solving the following estimation problem

inf
ψ∈F

sup
Q∈B(P̂ŷ )

R(ψ,Q). (2.55)

The wavelet coefficients of the true image will be estimated by ψ?ŷ (ŷ) and the denoised image

is W >ψ?ŷ (ŷ). There are two imporant points that are worth to notice in this framework. First,

the nominal distribution P̂ŷ in (2.55) is a Gaussian distribution distributions. Second, the

estimator is dependent on the observed data ŷ through the construction of the ambiguity

set Bφ(P̂ŷ ), and then applied to the same data ŷ to obtain the denoised coefficients. This is

in stark constrast with the models studied in the previous sections where the ambiguity set,

and thus the estimator, is independent of the data which will be used for testing. Indeed,

the construction of the ambiguity set involves prior information which often come in the

form of observations similar to the possible unrevealed test data. Nevertheless, for the image

processing applications, any images can be unique which prohibits the initialization of a

sensible reference distribution and the construction of a one-size-fits-all MMSE estimator for

the denoising purpose. As a result, it is more plausible to look for an ad hoc estimator for each

observed image, and the observed images should be used for both the construction and the

application of the estimator. Using observed data to construct the reference distribution for

the signal and noise has been widely applied in image processing and signal processing [57].

Through a similar argument, in a small sample setting, all of the data should be used for

training and the error is also estimated on the same data [35, Section 1].

Because Σ̂w Â 0 by construction, Theorem 2.15 applies and the estimator can be found by

solving program (2.25). There are two main difficulties that hinder the applications of the

Frank-Wolfe algorithm introduced in Section 2.6. First, the reference covariance matrix Σ̂x

of the signal may be low-rank, and thus the Frank-Wolfe algorithm is only guaranteed to

converge sublinearly. Second, the high image resolution can slow down the convergence

speed of the algorithm due to the exponential up-scaling of the dimension. Fortunately, the

image denoising setup entails some advantages which can be thoroughly exploited to provide

speedup to the numerical method: first, the matrix H in (2.54) is the identity matrix In , and

second, the covariance matrices Σ̂x and Σ̂w are both diagonal by construction. In the rest of

this section, we present an efficient implementation of the Frank-Wolfe algorithm that exploits

the structure of the denoising setting to solve (2.25) in a high dimensional setting.

Lemma 2.29. If D and Σ̂ share the same eigenbasis, then the optimal solution L? of pro-

gram (2.48) also admits the same eigenbasis for any ρ ≥ 0.

Proof. For any δ≥ 0, let Σ̂δ, Σ̂+δId Â 0, thus Σ̂= Σ̂0 and Σ̂δ shares the same eigenbasis with
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Σ̂ for any δ≥ 0. Let L?(δ) be the optimal solution of the perturbed program

L?(δ),


arg min

L∈Sd+

〈
D,L

〉
s. t. Tr

[
L+ Σ̂δ−2

(
Σ̂

1
2

δ
LΣ̂

1
2

δ

) 1
2 ]≤ ρ2.

By Berge’s maximum theorem [11, pp. 115-116], L?(δ) is an upper hemicontinuous correspon-

dence, and thus is closed [11, Theorem 6, pp. 112]. This implies that as δ tends to 0, the limit

point of L?(δ) belongs to the set of optimal solutions of input Σ̂0 [11, Theorem 4, pp. 111].

Because for any δ> 0, L?(δ) shares the same eigenbasis with D and Σ̂δ, see [123, Theorem 5.1],

the limit point of L?(δ) also shares the same eigenbasis because the feasible set is closed

thanks to Lemma 2.36. This implies that there exists an optimal solution of program (2.48) for

input (Σ̂,D) which shares the same eigenbasis with Σ̂ and D . The claim thus follows.

Proposition 2.30. If Σ̂x , Σ̂w are diagonal matrices and H = In , then the optimal solution

(Σ?x ,Σ?w ) of program (2.25) are also diagonal matrices.

Proof. Suppose that the Frank-Wolfe algorithm developed in Section 2.6 is used to solve

program (2.25). Because the algorithm is initialized at Σ̂x and Σ̂w which are diagonal, it is

straightforward to see that (Dx ,Dw ) are diagonal matrices from the definition. By applying

Lemma 2.29, we conclude that Σ(k)
x and Σ(k)

w are also diagonal matrices at any iteration k ∈N.

Because the Frank-Wolfe algorithm produces an approximate solution of problem (2.25) at

any accuracy level, we thus can employ a continuity argument to conclude that there exists,

in the limit as the accuracy level goes to zero, an optimal solution of program (2.25) which is

diagonal.

As a result of Lemma 2.30, the Frank-Wolfe algorithm can be modified to keep track of only

the diagonal elements of the matrices, and thus, all matrix multiplications can be reduced to

vector multiplications. The algorithm used for the wavelet coefficient shrinkage is hence more

efficient in both memory usage and computational complexity. It has been widely observed

that the wavelet coefficients are usually sparse, thus we are interested in constructing an

estimator which has more prominent shrinking effect than the classical MMSE estimator. One

such situation is highlighted in the following lemma.

Proposition 2.31. If ρx = 0 and ρw > 0, then the Wasserstein MMSE estimator is equivalent to

a shrinkage estimator of the wavelet coefficients, i.e., A?i i ≤ Âi i ∀i = 1, . . . ,2N .

Proof. Because the nominal distribution P̂ is a Gaussian distribution of the form (2.23), Corol-

lary 2.20 affirms that the optimal MMSE estimator can be recovered from the optimal solution

(Σ?x ,Σ?w ) of program (2.25). Because ρx = 0, we have Σ?x = Σ̂x . Because (Σ?w )i i > (Σ̂w )i i for all i ,

we conclude that A?i i ≤ Âi i ∀i = 1, . . . ,2N .
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Table 2.1 – Average PSNR over 10 independent trials

Noise Variance Noisy RiskShrink SureShrink BayesShrink MMSE DRO

normal

σ= 10 27.78 31.04 32.19 32.88 33.58 33.66

σ= 15 24.26 29.26 29.97 30.94 31.15 31.32

σ= 20 21.76 28.00 28.46 29.64 29.36 29.58

σ= 25 19.82 27.03 27.31 28.69 27.95 28.20

σ= 30 18.24 26.30 26.39 27.93 26.70 27.08

logistic

σ= 10 27.78 31.07 32.16 32.87 33.40 33.53

σ= 15 24.27 29.25 29.90 30.94 30.86 31.10

σ= 20 21.77 27.96 28.35 29.66 29.04 29.32

σ= 25 19.83 26.96 27.16 28.69 27.55 27.93

σ= 30 18.24 26.18 26.19 27.96 26.29 26.80

laplace

σ= 10 27.78 31.05 32.05 32.79 33.14 33.34

σ= 15 24.26 29.17 29.70 30.83 30.50 30.81

σ= 20 21.77 27.82 28.03 29.50 28.52 28.95

σ= 25 19.82 26.75 26.71 28.49 26.92 27.51

σ= 30 18.23 25.90 25.71 27.73 25.62 26.33

t

σ= 10 27.77 30.77 31.82 32.49 32.68 32.98

σ= 15 24.23 28.66 29.32 30.32 29.87 30.28

σ= 20 21.77 27.21 27.66 28.92 27.89 28.54

σ= 25 19.82 25.97 26.26 27.77 26.23 27.03

σ= 30 18.23 24.91 25.12 26.79 24.83 25.73

pink

σ= 10 27.78 30.30 30.83 30.41 30.94 31.40

σ= 15 24.27 27.83 27.90 27.56 27.79 28.59

σ= 20 21.77 25.99 25.73 25.48 25.51 26.47

σ= 25 19.82 24.82 24.13 23.84 23.72 24.77

σ= 30 18.24 23.92 22.72 22.45 22.23 23.33

brown

σ= 10 27.78 27.94 28.30 28.05 28.22 28.43

σ= 15 24.26 24.99 24.86 24.65 24.77 25.11

σ= 20 21.77 22.85 22.41 22.23 22.32 22.71

σ= 25 19.83 21.06 20.49 20.32 20.38 20.78

σ= 30 18.25 19.72 18.96 18.80 18.85 19.29

We emphasize that our Wasserstein affine estimator is not an independent coefficient shrink-

age method. Indeed, the optimal estimator will have the form

A?i i =
(Σ̂x )i i

(Σ̂x )i i + (Σ?w )i i
∀i = 1, . . . ,2N ,

where in general we have (Σ?w )i i 6= (Σ?w ) j j for i 6= j . In addition, (Σ?w )i i and (Σ?w ) j j are depen-

dent because they are extracted from the optimal solution Σ?w , which in turns depends on all
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diagonal elements of Σ̂w and Σ̂x .

To showcase the capability of our proposed model we consider several different cases where

the noise does not follow Gaussian distributions. In specific, we consider the Laplace, Logistic,

and t distributions to generate the random independent noise. We also consider the colored

noise for the dependent noise. The color of a noise refers to its power spectrum with different

colors of noise have significantly different properties: for example, as audio signals they will

sound different to human ears, and as images they will have a visibly different texture. Many of

these noises assume a signal with components at all frequencies, with a power spectral density

per unit of bandwidth proportional to 1/ f β and hence they are examples of power-law noise.

For instance, the spectral density of white noise is flat (β= 0), while pink noise has β= 1, and

Brownian noise has β= 2. The denoising result of the corrupted Lena image is presented in

Table 2.1.

2.8 Appendix

2.8.1 Auxiliary Results

In order to prove Proposition 2.7 in the main text, we establish here general conditions for the

solvability and stability of parametric minimax problems.

Lemma 2.32 (Parametric minimax problems). Consider the parametric minimax problem

J (θ), inf
u∈U (θ)

sup
v∈V (θ)

f (u, v,θ),

where U, V and Θ are metric spaces, f :U×V×Θ→ R is a continuous function, U :Θ⇒U is

a continuous multifunction and V : Θ⇒ V is a compact-valued continuous multifunction.

If there exist ε,δ, J̄ > 0 and a continuous function v : Θ∩Bδ(θ0) → V such that v(θ) ∈ V (θ),

|J (θ)| ≤ J̄ and Uε(θ), {u ∈U (θ) : f (u, v(θ),θ) ≤ J̄ +ε} is compact for every θ ∈Θ∩Bδ(θ0), then

the minimax problem is solvable for θ = θ0, and J (θ) is continuous at θ = θ0.

Proof. As J (θ) is finite and ε> 0, the outer minimization problem admits an ε-optimal solution

uε(θ) for every parameter θ ∈Θ∩Bδ(θ0). Thus, we have

f (uε(θ), v(θ),θ) ≤ sup
v∈V (θ)

f (uε(θ), v,θ) ≤ inf
u∈U (θ)

sup
v∈V (θ)

f (u, v,θ)+ε≤ J̄ +ε,

which implies that uε(θ) ∈Uε(θ) for every θ ∈Θ∩Bδ(θ0). Without loss of generality, we can

thus restrict the feasible set U (θ) to Uε(θ), that is, for any θ ∈Θ∩Bδ(θ0) we may reformulate

the minimax problem as

J (θ) = inf
u∈Uε(θ)

sup
v∈V (θ)

f (u, v,θ).

Note that the optimal value function F (u,θ), supv∈V (θ) f (u, v,θ) of the inner maximization

problem is continuous onU×(Θ∩Bδ(θ0)) by virtue of Berge’s theorem [11, pp. 115–116], which
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applies because f is jointly continuous in all of its arguments, while V is a compact-valued

continuous multifunction. For θ = θ0, the reformulated minimax problem thus minimizes the

continuous function F (u,θ0) over all u in the compact set Uε(θ0) and is thus solvable.

The compact-valued multifunction Uε is continuous on Θ∩Bδ(θ0) by the continuity of

f (u, v(θ),θ). Applying Berge’s theorem once again thus guarantees that J (θ) = minu∈Uε(θ) F (u,θ)

is continuous at θ = θ0.

In order to derive a tractable reformulation for the Gelbrich MMSE estimation problem studied

in Section 2.2, we need to be able to solve nonlinear SDPs of the form

J?, sup
Σº0

〈
D,Σ

〉−γTr
[
Σ−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]

(2.56)

parameterized by D ∈Sd , Σ̂ ∈Sd+ and γ ∈R+. It is known that, under certain regularity condi-

tions, problem (2.56) admits a unique optimal solution that is available in closed form [123]. In

the following we review the construction of this optimal solution under slightly more general

conditions.

Proposition 2.33 (Closed form solution of (2.56)). For any D ∈ Sd , Σ̂ ∈ Sd+ and γ ∈ R+ the

optimal value of the nonlinear SDP (2.56) is given by

J? =


γ2

〈
(γId −D)−1, Σ̂

〉
if γ>λmax(D),

liminf
γ̄↓γ

γ̄2〈(γ̄Id −D)−1, Σ̂
〉

if γ=λmax(D),

+∞ if γ<λmax(D).

Moreover, problem (2.56) is solved by Σ? = γ2(γId −D)−1Σ̂(γId −D)−1 whenever γ>λmax(D).

This solution is unique if Σ̂Â 0.

Proof. Assume first that γ>λmax(D). Moreover, in order to simplify the proof, assume tem-

porarily that Σ̂Â 0. By applying the nonlinear variable transformation B ← (Σ̂
1
2 ΣΣ̂

1
2 )

1
2 , which

implies that Σ= Σ̂− 1
2 B 2 Σ̂− 1

2 , we can reformulate problem (2.56) as

J? =sup
Bº0

〈
D, Σ̂− 1

2 B 2 Σ̂− 1
2
〉−γTr

[
Σ̂− 1

2 B 2 Σ̂− 1
2 −2B

]
=sup

Bº0

〈
B 2, Σ̂− 1

2 (D −γId ) Σ̂− 1
2
〉+2γ

〈
B , Id

〉
,

where the second equality exploits the cyclicity of the trace operator. Introducing the auxiliary

parameter ∆, Σ̂− 1
2 (D −γId )Σ̂− 1

2 , we can then rewrite the last maximization problem over B

more concisely as

J? = sup
Bº0

〈
B 2,∆

〉+2γ
〈

B , Id
〉

. (2.57)
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Note that (2.57) represents a convex maximization problem because γ>λmax(D) and Σ̂Â 0,

which imply that ∆ ≺ 0. Ignoring the positive semidefiniteness constraint on B , the ob-

jective function of (2.57) is uniquely minimized by the solution B? = −γ∆−1 of the first-

order optimality condition B∆+∆B +2γId = 0. Uniqueness follows from [83, Theorem 12.5].

As it is strictly positive definite, B? thus uniquely solves (2.57), which in turn implies that

Σ? = Σ̂− 1
2 (B?)2Σ̂− 1

2 = γ2(γId −D)−1Σ̂(γId −D)−1 uniquely solves (2.56). Substituting Σ? back

into the objective function of (2.56) further shows that J? = γ2
〈

(γId −D)−1, Σ̂
〉

.

Next, we will argue that the analytical formula for J? in the regime γ>λmax(D) remains valid

even when Σ̂ is rank-deficient. To see this, define

J?(Σ̂), γ2〈(γId −D)−1, Σ̂
〉

and Σ?(Σ̂), γ2(γId −D)−1Σ̂(γId −D)−1

as explicit continuous functions of the parameter Σ̂ ∈Sd+. Similarly, define the function

F (Σ, Σ̂),
〈

D,Σ
〉−γTr

[
Σ−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]
,

which is jointly continuous in Σ ∈Sd+ and Σ̂ ∈Sd+. We then have

J?(Σ̂) = liminf
ε↓0

J?(Σ̂+εId ) = liminf
ε↓0

sup
Σº0

F (Σ, Σ̂+εId ) ≥ sup
Σº0

F (Σ, Σ̂) ≥ F (Σ?(Σ̂), Σ̂) = J?(Σ̂),

where the first equality follows from the continuity of J?(Σ̂), while the second equality holds

because Σ̂+ εId Â 0 for every ε > 0 and because J?(Σ̂′) = supΣÂ0 F (Σ, Σ̂′) for every Σ̂′ Â 0,

which was established in the first part of the proof. The first inequality exploits the fact that

a pointwise supremum of continuous functions is is lower semicontinuous, and the second

inequality holds because Σ?(Σ̂+εId ) Â 0 for every ε> 0. Finally, the last equality follows from

elementary algebra. The above arguments imply that J?(Σ̂) and Σ?(Σ̂) represent the optimal

value and an optimal solution of (2.56), respectively, even if Σ̂ ∈Sd+ is rank-deficient.

Assume next that γ < λmax(D), and denote by v ∈ Rd a normalized eigenvector of D corre-

sponding to the eigenvalue λmax(D). By optimizing only over matrices of the form Σ= t v v>

for some t ≥ 0, we find

J? ≥ sup
t≥0

t
〈

D −γId , v v>〉+2
p

t γTr
[(
Σ̂

1
2 v v>Σ̂

1
2
) 1

2
]

= sup
t≥0

t (λmax(D)−γ)+2
p

t γTr
[(
Σ̂

1
2 v v>Σ̂

1
2
) 1

2
]=∞.

Assume finally that γ = λmax(D). To investigate this limiting case, note that the objective

function of (2.56) is linear in γ, which implies that the optimal value of (2.56) is convex

and lower semicontinuous in γ. Given the results for γ 6= λmax(D), it is thus clear that for

γ = λmax(D) the optimal value of (2.56) must be given by J? = liminfγ̄↓γ γ̄2
〈

(γ̄Id −D)−1, Σ̂
〉

.

This observation completes the proof.
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In order to derive search directions for the Frank-Wolfe algorithm developed in Section 2.6,

we need to be able to solve constrained nonlinear SDPs of the form

sup
Σº0

〈
D,Σ

〉
s. t. Tr

[
Σ+ Σ̂−2

(
Σ̂

1
2ΣcΣ̂

1
2

) 1
2 ]≤ ρ2

(2.58)

parameterized by D ∈ Sd , Σ̂ ∈ Sd+ and ρ ∈ R+. It is known that problem (2.58) admits a

unique optimal solution that is available in quasi-closed form [123]. Below we review the

construction of this optimal solution under more general conditions and uncover several

previously unknown properties of this solution.

Proposition 2.34 (Quasi-closed form solution of (2.58)). The following statements hold.

(i ) If D ∈Sd , Σ̂ ∈Sd+ and ρ ∈R+, then problem (2.58) is solvable, and its maximum matches

that of the univariate convex minimization problem

inf
γ≥0

γ>λmax(D)

γ
(
ρ2 +〈

γ(γId −D)−1 − Id , Σ̂
〉)

. (2.59)

(i i ) If D 6= 0, Σ̂Â 0 and ρ > 0, then problem (2.59) has a unique minimizer γ? ∈ (λmax(D),∞),

and problem (2.58) is solved by Σ? = γ?2(γ?Id −D)−1Σ̂(γ?Id −D)−1.

(i i i ) If D º 0, D 6= 0, Σ̂Â 0 and ρ > 0, then γ? is the unique solution of the algebraic equation

ρ2 −〈
Σ̂,

(
Id −γ?(γ?Id −D)−1)2〉= 0, (2.60)

and Σ? is the unique maximizer of (2.58). Moreover, the Gelbrich distance constraint

in (2.58) is binding at Σ?, and we have Σ? Âλmin(Σ̂)Id .

Proof. As for assertion (i ), note that the Lagrangian dual of (2.58) can be represented as

inf
γ≥0

sup
Σº0

〈
D,Σ

〉−γTr
[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]+γρ2. (2.61)

Strong duality as well as primal solvability follow from [13, Proposition 5.5.4], which applies

because the primal problem (2.58) has a continuous objective function and—by virtue of

Lemma 2.36 below—a nonempty, compact and convex feasible set. The postulated reformula-

tion (2.59) then follows immediately from replacing the supremum of the inner maximization

problem in (2.61) with the analytical formula derived in Proposition 2.33. We emphasize that

for γ=λmax(D), depending on the problem data, the inner supremum in (2.61) may evaluate

to any nonnegative real number or to +∞. In order to avoid cumbersome case distinctions,

we thus exclude the point γ = λmax(D) from the feasible set of (2.59) without affecting the

problem’s infimum.
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As for assertion (i i ), note that Σ= Σ̂ represents a Slater point for the primal problem (2.58)

because ρ > 0. Thus, the dual problem (2.61) is solvable by [13, Proposition 5.3.1]. To prove

that (2.59) is also solvable, it remains to be shown that (2.61) does not attain its maximum

at the boundary point γ= λmax(D), which has been excluded from the feasible set of (2.59).

This is the case, however, because of the assumption that Σ̂Â 0 and D 6= 0, which ensures that

the objective function value of γ=λmax(D) in (2.61) amounts to +∞. We may thus conclude

that (2.59) admits a minimizer γ? ∈ (λmax(D),∞). This mimnimizer is unique because the

objective function of (2.59) is strictly convex when Σ̂Â 0. Finally, the Karush-Kuhn-Tucker op-

timality conditions [13, Proposition 5.3.2] imply that any solution of the primal problem (2.58)

also solves the inner maximization problem in (2.61) at γ= γ?. The formula forΣ? thus follows

from Proposition 2.33.

To prove assertion (i i i ), note that the assumptions D º 0 and D 6= 0 imply that γ? >λmax(D) >
0. Therefore, none of the constraints in (2.59) are binding at optimality. As the objective

function of (2.59) is smooth and strictly convex, γ? is thus uniquely determined by the first-

order optimality condition (2.60), which forces the gradient of the objective function to vanish.

The uniqueness of Σ? follows from the uniqueness of γ? and the uniqueness of the inner

maximizer in (2.61); see Proposition 2.33. Moreover, as γ? > 0, the Gelbrich distance constraint

in (2.59) is binding at Σ?ρ due to complementary slackness. Finally, we have

1

λmin(Σ?)
=λmax

(
(Σ?)−1)=λmax

((
γ?

2
(γ?In −D)−1Σ̂(γ?Id −D)−1

)−1
)

=λmax

((
Id −D/γ?)Σ̂−1(Id −D/γ?)

)
≤λmax(Id −D/γ?)2 λmax(Σ̂−1) <λmax(Σ̂−1) = 1

λmin(Σ̂)
,

where the strict inequality holds because γ? >λmax(D) > 0. We may thus conclude that the

smallest eigenvalue of Σ? exceeds the smallest eigenvalue of Σ̂. This observation concludes

the proof.

In Sections 2.3 and 2.4 we repeatedly encounter nonlinear SDPs of the form

sup
Σº0

inf
L∈C

〈
L>L,Σ

〉+ f (L)

s. t. Tr
[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2

) 1
2 ]≤ ρ2

(2.62)

parameterized by Σ̂ ∈Sd+ and ρ ∈R+, where C ⊆R`×d is a convex set and f : C →R a convex

continuous function. Problem (2.62) is reminiscent of (2.58) but accommodates a nonlinear

convex objective function. We do not attempt to characterize the maximizers of (2.62) for arbi-

trary choices of C and f , but we can prove that there is at least one well-behaved maximizer

that is bounded away from 0.

Lemma 2.35 (Structural properties of the maximizers of (2.62)). Assume that Σ̂ ∈ Sd+ and

ρ ∈ R+. If C ⊆ R`×d is a nonempty convex set and f : C → R is a convex continuous function,
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then the nonlinear SDP (2.62) admits a maximizer Σ? ºλmin(Σ̂)Id .

Proof. Note that if ρ = 0 or λmin(Σ̂) = 0, then the claim holds trivially. Thus, we may henceforth

assume without loss of generality that ρ > 0 and Σ̂Â 0. Denoting the feasible set of (2.62) by

S ,
{
Σ ∈Sd

+ : Tr
[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]≤ ρ2

}
,

we then find

sup
Σ∈S

inf
L∈C

〈
L>L,Σ

〉+ f (L) = inf
L∈C

sup
Σ∈S

〈
L>L,Σ

〉+ f (L)

= inf
L∈C

sup
Σ∈S

Σºλmin(Σ̂)Id

〈
L>L,Σ

〉+ f (L) = sup
Σ∈S

Σºλmin(Σ̂)Id

inf
L∈C

〈
L>L,Σ

〉+ f (L) ,

where the first and the third equality follow from Sion’s minimax theorem [156], which ap-

plies because
〈

L>L,Σ
〉

is convex and continuous in L for every fixed Σ º 0 and because S

is convex and compact by virtue of Lemma 2.36. The second equality follows readily from

Proposition 2.34 (i i i ). The last maximization problem in the above expression has a solu-

tion Σ? º λmin(Σ̂)Id because its feasible set is compact and its objective function is upper

semicontinuous. Clearly, Σ? also solves (2.62), and thus the claim follows.

The proofs of Proposition 2.58 and Lemma 2.35 rely on the following auxiliary result.

Lemma 2.36 (Compactness of the feasible set [152, Lemma A.6]). For any Σ̂ ∈Sd+ and ρ ∈R+,

the set

S ,
{
Σ ∈Sd

+ : Tr
[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]≤ ρ2

}
is convex and compact. Moreover, for any Σ ∈ S we have Tr

[
Σ

] ≤ σ̄ and Σ ¹ σ̄Id , where

σ̄, (ρ+Tr[Σ̂]
1
2 )2.

2.8.2 Taylor Expansion of the Objective Function

In this section, we provide the detailed steps leading to the Taylor expansion of the objective

function f of the semidefinite program (2.25). We use ⊗ to denote the Kronecker product of

two matrices [12, Definition 7.1.2]. We remind that

f (Σx ,Σw ) = Tr
[
Σx −Σx H> (

HΣx H>+Σw
)−1

HΣx
]

for any Σx ∈Sn+, Σw ∈Sm+ . The following lemma serves as a useful tool to shorten the notations.

Lemma 2.37 ([12, Fact 7.4.9]). For any matrices A,B ,C ,D of appropriate dimensions, we have

Tr
[

ABC D
]= vec(A)>(B ⊗D>)vec(C>).
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At any feasible solution (Σx ,Σw ) with Σw Â 0, let∆x ∈Sn ,∆w ∈Sm be two symmetric perturba-

tion matrices and let G ,HΣx H>+Σw ∈Sm+ , the matrix inverse term of the objective function

f can be approximated to the second order by(
H(Σx +∆x )H>+Σw +∆w

)−1

=
(
G

1
2 (Im +G− 1

2 (H∆x H>+∆w )G− 1
2 )G

1
2

)−1

=G− 1
2 (Im +G− 1

2 (H∆x H>+∆w )G− 1
2 )−1G− 1

2

=G− 1
2

(
Im −G− 1

2 (H∆x H>+∆w )G− 1
2 +G− 1

2 (H∆x H>+∆w )G−1(H∆x H>+∆w )G− 1
2 +O (‖∆‖3)

)
G− 1

2

=G−1 −G−1(H∆x H>+∆w )G−1 +G−1(H∆x H>+∆w )G−1(H∆x H>+∆w )G−1 +O (‖∆‖3),

where the third equality is the result of the second order approximation of matrix inversion [12,

Proposition 9.4.13]. Hence, the second order approximation of the objective function f can be

written as

f (Σx +∆x ,Σw +∆w )

=Tr
[
Σx +∆x − (Σx +∆x )H> (

H(Σx +∆x )H>+Σw +∆w
)−1

H(Σx +∆x )
]

= f (Σx ,Σw )+〈
Dx ,∆x

〉+〈
Dw ,∆w

〉− 1

2

(
vec(∆x )

vec(∆w )

)>
H

(
vec(∆x )

vec(∆w )

)
+O (‖∆‖3),

where (Dx ,Dw ) is defined as

Dx = (In −Σx H>G−1H)>(In −Σx H>G−1H),

Dw =G−1HΣ2
x H>G−1 ,

and the negative Hessian matrix H is defined as

H =
[

Hxx Hxw

H >
xw Hw w

]

with

Hxx = 2Dx ⊗H>G−1H

Hxw = H>G−1 ⊗ (H>Dw −Σx H>G−1)+ (H>Dw −Σx H>G−1)⊗H>G−1

Hw w = 2Dw ⊗G−1

thanks to Lemma 2.37.
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3 Distributionally Robust Risk Measure
with Structured Ambiguity Sets

Truth is much too complicated to allow anything but approximations.

— John von Neumann

We formally introduce the Gelbrich hull, which is an outer approximation of the Wasserstein

type-2 ambiguity set, and the corresponding Gelbrich risk, which is a conservative approxi-

mation of the Wasserstein risk. We provide theoretical insights about the Gelbrich hull and

a decomposition of the Gelbrich risk as a two-layer optimization problem, which leads to

a systematic approach to reformulate the Gelbrich risk. For a linear loss function, we show

that the Gelbrich risk admits a closed-form expression for any family of consistent positive

homogeneous and translation invariant risk measures. We provide the reformulation for the

Gelbrich expected loss as a finite convex optimization problem for loss functions that can

be expressed as the pointwise maximum of possibly non-convex quadratic functions. We

further provide several extensions including the incorporation of support information and the

generalization to the worst-case Value at Risk of nonlinear portfolios.
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3.1 Introduction

Portfolio managers face the continuing challenges of optimally distributing their funds over

a collection of possible assets to maximize the future return. Arguably, the seminal work

of Markowitz [115] is one of the earliest mathematical models for portfolio optimization,

in which the portfolio manager aims to maximize the expected return while at the same

time minimizing the risk of a portfolio. While the risk of an investment in the Markowitz

model is measured using its variance, it is well known that the stochastic return of an asset is

rarely symmetric in practice, which renders the variance unsuitable to be used for portfolio

allocation.

Numerous propositions for a more appropriate risk assessment have made research on down-

side risk measures a vibrant field spanning from economics to finance, with emerging applica-

tions in engineering, physics and operations research. The Value-at-Risk (VaR) of a portfolio,

defined using the extremal quantile of its return distribution, has been serving as the industry

standard to measure risk [93] and its used has been imposed by popular financial standards.

Nevertheless, VaR suffers from a major theoretical pitfall which leads to heavy criticisms amid

the 2008 financial crisis. VaR does not satisfy the subadditivity condition and thus it is not a

convex risk measure. As a consequence, using VaR as a measure of risk may not necessarily

promote portfolio diversification. In addition, portfolio allocation using VaR is notoriously

challenging because VaR is not convex, and the resulting optimization problem that minimizes

VaR is computationally intractable.

The Conditional Value-at-Risk (CVaR), which computes the average loss that exceeds the

extremal quantile, has arisen as a favorable replacement of VaR. Contrary to VaR, CVaR is a

convex risk measure and thus minimizing CVaR can be formulated as a convex optimization

problem. Being a coherent risk measure, CVaR satisfies many desirable properties from the

theoretical perspective. Moreover, CVaR is also a spectral risk measure and it can be expressed

as the weighted average of returns and exhibits strong connection with risk aversion via its

representation as an expectation of a piecewise linear utility function.

The expectation of a portfolio loss is also a spectral risk measure, despite the fact that it

totally disregards the dispersion of the distribution. One can further convolve the expectation

operator with a utility function to form the expected utility of the portfolio loss that better

matches the risk attitude of portfolio managers.

The common problem with employing the distribution-based risk measures to assess the

riskiness of an investment is that in reality precise knowledge of the underlying joint probability

distribution of the asset returns are rarely available. In the best case, the portfolio managers

have to leverage on historical data to estimate the distribution, which expose themselves to

statistical risk. This problem has triggered the development of worst-case risk measures which

are more robust to noise and misspecification of the asset returns’ distribution. Instead of

assessing the risk of a position with respect to a single distribution, the worst-case risk measure

determines the worst possible risk over a set of candidate distributions that represents the
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portfolio managers’ ambiguity with respect to the uncertain asset returns.

Worst-case risk measures where the ambiguity set is prescribed by the first two moments

was originally proposed for VaR [52], CVaR [121, 26] and later on extended for spectral risk

measure and coherent risk measure [110]. Worst-case expected loss for moment ambiguity set

has also been widely studied in different contexts [39, 172]. Though intuitively appealing and

admits closed form expression in many cases, estimating the first- and second-moments of

the underlying random vector is difficult, or even impossible, when the available data is scarce.

Alternatively, worst-case risk measures with (semi-)distance based ambiguity set was studied

for Kullback-Leibler divergence [20] and phi-divergence [78]. The worst-case risk measures

with Wasserstein ambiguity set was first studied in [138, 175] and was further extended to

worst-case expected loss in [118, 16, 68, 178].

Motivated by these recent development, the starting point of this paper relies on the Wasser-

stein type-2 worst-case risk measures. While limited analytical solution exists for specific

risk measure using the dual representation approach [175], this method will typically not

generalize to a broader setting. For worst-case expected loss with the Wasserstein ambiguity

set centered at an empirical distribution, tractable convex reformulations using duality tech-

niques are available [179], nevertheless, these reformulations often result in an optimization

problem that incurs a large number of auxiliary variables and constraints which prohibits its

applications either in high-dimensional problems or in the big-data setting.

While calculating the Wasserstein type-2 distance between any two given distributions involves

solving an optimization problem, there exists a generalized lower bound based on only the

information about the first- and second-order moment of the two probability measures of

interest [71]. Using this lower bound, which we term the Gelbrich distance, we construct a

Gelbrich hull as a superset of the Wasserstein type-2 ambiguity set. As a consequence, instead

of directly resolving the Wasserstein type-2 worst-case risk measures, this paper introduces the

Gelbrich risk, a systematic conservative approximation of the Wasserstein risk. Throughout

this paper, we demonstrate that the Gelbrich risk exhibits many nice properties, notably that

its reformulation is more tractable than the reformulation for the original Wasserstein risk.

Interestingly, we show that under certain conditions, the Gelbrich risk measure is a tight

approximation of the Wasserstein risk measure.

The main contributions of this paper can be summarized as follows.

1. We introduce the Gelbrich hull, an outer approximation of the Wasserstein type-2 ambi-

guity set defined using the Gelbrich distance that takes into account only the information

about the first two moments of the probability measures. We show that the Gelbrich hull

is convex and closely related to the Chebyshev ambiguity set that is commonly used in

the literature.

2. Using the Gelbrich approximation of the Wasserstein type-2 distance, we propose the

Gelbrich risk which conservatively approximates the worst-case risk under the Wasser-
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stein ambiguity set. We demonstrate structural properties of the Gelbrich risk, notably

the decomposition of the Gelbrich risk as a two-layer optimization problem which fa-

cilitates a systematic reformulation of the Gelbrich risk as a finite dimensional convex

optimization problem.

3. For a consistent family of law-invariant, positive homogeneous and translation invariant

risk measures, we show that the corresponding Gelbrich risk of a linear loss admits a

closed-form expression. This result paves the way for the generalization of the Gelbrich

risk to any spectral risk measure and coherent risk measure.

4. We derive the semi-definite program reformulation for the Gelbrich expected loss for a

wide range of loss functions that satisfy the quadratic growth condition. The reformula-

tion of the Gelbrich expected loss typically involves a lower number of auxiliary variables

and constraints, thus is supposed to be easier to solve than the Wasserstein expected loss.

5. We provide several extensions to generalize the Gelbrich risk by incorporating the support

information, as well as deriving the Gelbrich Value-at-Risk for nonlinear portfolios.

The paper is structured as follows. Section 3.2 provides necessary background material for the

construction of the Wasserstein risk. Section 3.3 proposes a principled approach to construct

the Gelbrich hull that outer approximates the Wasserstein ambiguity set, and the related

Gelbrich risk that safely approximates the Wasserstein risk. Section 3.4 studies the Gelbrich

risk for linear (portfolio) loss, and Section 3.5 examines the Gelbrich expected loss for nonlinear

loss function. Section 3.6 and 3.7 further expands the Gelbrich risk to different applications

and to take into consideration the support information, and Section 3.8 concludes with a

numerical application for the robust portfolio index tracking problem.

Notations. Throughout this paper, ‖ ·‖ denotes the 2-norm on the vector space. The space

of all n-dimensional symmetric matrices is denoted by Sn and Sn+ (Sn++) denotes the space

of symmetric positive semidefinite (definite, respectively) matrices. For any square matrix

A ∈ Rm×m , the trace operator is defined as Tr
[

A
] = ∑n

i=1 Ai i , and for any A ∈ Sn , λmin(A)

and λmax(A) denote the minimum and maximum eigenvalue of A. For N ∈N, we set [N ] =
{1, . . . , N }.

3.2 Problem Statement

We provide in this section the preliminary elements that form the foundation for the theoretical

development of the paper. We are equipped with a measurable space (Rn ,B(Rn)), where

B(Rn) denotes the Borel algebra of Rn , and a random vector ξ with values on Rn . The set of

all probability measures supported on Rn is denoted by P . For a given probability measure

Q ∈P , the distribution of ξ underQ is uniquely determined by the cumulative distribution

valueQ(ξ≤ τ) =Q(ξi ≤ τi ∀i = 1, . . . ,n) for any τ ∈Rn . The first two moments of ξ underQ can
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be defined using the expectation operator as

EQ[ξ] =
∫
Rn
ξQ(dξ), and EQ[ξξ>] =

∫
Rn
ξξ> Q(dξ).

We first review some common definitions of the distribution of ξ.

Definition 3.1 (Finite second moment distribution). The random vector ξ has finite second

moment underQ if its expectationEQ[ξ] and its second moment matrixEQ[ξξ>] are both finite.

Definition 3.2 (Symmetric distribution). The random vector ξ is (centrally) symmetric about

µ ∈Rn underQ if for all vectors τ ∈Rn , we haveQ(ξ≥µ+τ) =Q(ξ≤µ−τ).

Definition 3.3 (Linear unimodal distribution). The random vector ξ is linearly unimodal about

0 under Q if for all vectors w ∈ Rn , the cumulative distribution function of w>ξ under Q is

convex on (−∞,0] and concave on [0,+∞)

Definition 3.4 (Elliptical distribution). The random vector ξ is (symmetric) elliptically dis-

tributed underQ if its characteristic function is given by

EQ[exp(
p−1τ>ξ)] = exp(

p−1τ>µ)g (τ>Στ)

for some location parameter µ ∈ Rn , dispersion matrix Σ ∈ Sn+ and characteristic generator

g :R+ →R.

The class of elliptical distributions generalizes common distributions such as the Gaussian

distribution, the logistic distribution and the t-distribution [22, 59]. Through an appropriate

normalization of the characteristic generator function φ, we assume without loss of generality

that the covariance matrix of an elliptical distribution coincides with its dispersion matrix.

Furthermore, because the characteristic function uniquely determines the distribution func-

tion, the tuple (φ,µ,Σ) uniquely identifies an elliptical distribution with generator function φ,

mean vector µ and covariance matrix Σ, and this distribution is denoted byQ=Pφ(µ,Σ). We

denote by Φ the set of all possible characteristic generators of finite second-moment ellipti-

cal distributions. If φ ∈Φ is a characteristic generator of a unimodal (multimodal) elliptical

distribution, then we say φ is a unimodal (multimodal, respectively) characteristic generator.

Examples of unimodal elliptical distributions include Gaussian, t- and logistic distributions,

while examples of multimodal elliptical distributions include a subclass of Kotz type and the

multivariate Bessel type distributions.

Despite the fact that the true distribution of ξ is unknown, it is reasonable to assume that

the decision maker possesses a certain belief about the true distribution of ξ. To this end, we

consider the following hierarchy of ambiguity sets with structural information that captures

the beliefs of the decision maker.

Definition 3.5 (Structural ambiguity sets). The hierarchy of structural ambiguity sets includes:
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1. The ambiguity set P2 contains all probability measures supported on Rn with finite second

moment.

2. The ambiguity set PS contains all probability measures in P2 under which ξ is symmetric

about its mean.

3. The ambiguity set PSU contains all probability measures in P2 under which ξ is symmetric

and linearly unimodal about its mean.

4. The ambiguity set Pφ contains all probability measures under which ξ is elliptically dis-

tributed with characteristic generator function φ.

Throughout this paper, we utilize σ as an index for the ambiguity set Pσ, and σ may admit a

value in S = {2,S,SU}∪Φ. By construction, one can readily verify that Pφ1 ∩Pφ2 =; for any

elliptical characteristic generators φ1 6=φ2. Furthermore, it holds that Pφ ⊂PSU ⊂PS ⊂P2

for any unimodal characteristic generator φ ∈ Φ, and Pφ ⊂ PS ⊂ P2 for any multimodal

characteristic generatorφ ∈Φ. We note that only P2 is a convex set, while Pσ forσ ∈ {S,SU}∪Φ
are non-convex. Indeed, a mixture of two symmetric distributions is in general non-symmetric.

After choosing an information structure σ ∈S , it is natural for the decision maker to establish

a nominal distribution P̂ ∈Pσ, which can be constructed from training samples in the data-

driven setting, or from experts’ belief in the Bayesian approach. Instead of making decision

solely based on the nominal distribution P̂, we assume that the decision maker will take into

account an ambiguity set that contains probability measures in the neighborhood of P̂. An

attractive approach to construct the ambiguity set is to use the type-1 Wasserstein distance

as a measure of dissimilarity between two distributions [118, 16, 68]. Recently, an emerging

alternative is to use the type-2 Wasserstein distance in the ambiguity set which has revealed

many interesting properties of the corresponding optimal solution [123, 152, 124].

Definition 3.6 (Type-2 Wasserstein distance). The type-2 Wasserstein distance between two

probability measuresQ andQ′ on (Rn ,B(Rn)) is defined as

W(Q,Q′) = (
inf E

[‖X −X ′‖2]) 1
2 , (3.1)

where ‖ ·‖ is the Euclidean norm on Rn and the infimum is taken over all joint distributions of

n-dimensional random vectors X and X ′ with marginal distributionsQ andQ′, respectively.

We define the structured Wasserstein ambiguity set

Bρ,σ(P̂) = {
Q ∈Pσ :W(Q, P̂) ≤ ρ}

as the ball of radius ρ ≥ 0 in Pσ centered at the nominal distribution P̂with respect to the type-

2 Wasserstein distance. Because P̂ ∈Pσ, the ball Bρ,σ(P̂) is non-empty. We emphasize that

Bρ,σ(P̂) contains only probability measures that satisfy the information structure σ prescribed

by the decision maker’s beliefs about the distribution of ξ.
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In this paper, we consider a loss function ` that maps any realization of the random vector

ξ ∈Rn to a real value `(ξ). We denote by L the set of measurable loss functions from (Rn ,B(Rn))

to (R,B(R)). For every Q ∈ P2, we define a risk measure RQ : L→ R∪ {+∞} that associates

any loss function ` ∈ Lwith a risk index RQ(`). Moreover, we assume that the family of risk

measures {RQ}Q∈P2 is consistent in the following sense.

Definition 3.7 (Consistent family of risk measures). The family of risk measures {RQ}Q∈P2

is consistent if for anyQ1,Q2 ∈P2, RQ1 (`1) =RQ2 (`2) whenever the marginal distribution of

`1(ξ) underQ1 and the marginal distribution of `2(ξ) underQ2 are equal.

By definition, the consistency property implies that RQ is a law-invariant risk measure for any

Q ∈P2. We note that the consistent property has been defined on P2, the most general set

among all ambiguity sets in Definition 3.5, which in turns guarantees that the family of risk

measures is consistent under any restriction Pσ for σ ∈S . Furthermore, many worst-case

risk measures studied in the literature implicitly assumes that the family of risk measures is

consistent, they include the worst-case Value-at-Risk [52, 121], worst-case Conditional Value-

at-Risk [180], worst-case law-invariant coherent risk measure [110], the worst-case expected

loss [39, 118], etc. We emphasize that there exists a systematic way to construct a consistent

family of risk measures
{
RQ

}
Q∈P2

as highlighted in the following remark.

Remark 3.8 (Construction of a consistent family of risk measures). There is a systematic way

of constructing the family of risk measures {RQ}Q∈P2 so that it satisfies the consistency property

stated in Definition 3.7. First, fix a non-atomic probability measure P and a law-invariant

risk measure RP. For every probability space (Rn ,B(Rn),Q) for Q ∈P2, define a measurable

function XQ : Rn → Rn such that Q = P ◦ X −1
Q

. The existence of XQ is guaranteed because

(Rn ,B(Rn),P) is atomless, in this case,Q is the pushforward measure of P under XQ. The risk

measure RQ is constructed as follows for any ` ∈ L:

RQ(`) =RP(`(XQ)).

Using the structured Wasserstein ambiguity set, we define the Wasserstein risk of a loss function

` ∈ L as the highest risk over all probability measures contained in Bρ,σ(P̂), that is,

Rρ,σ(P̂,`) = sup
Q∈Bρ,σ(P̂)

RQ(`). (3.2)

Furthermore, given a subset of loss functions L ⊆ L, the Wasserstein optimal risk over L is

defined as

Rρ,σ(P̂,L ) = inf
`∈L

Rρ,σ(P̂,`), (3.3)

which is a decision problem that searches for the loss function that minimizes the Wasserstein

risk.

While being appealing at first glance, evaluating the Wasserstein risk in (3.2) is a challenging

task because computing the type-2 Wassertein distance between two distributions is in general
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#P-hard [163]. If the nominal distribution P̂ is a discrete distribution supported on a finite

number of points, problem (3.2) can be potentially reformulated as a finite dimensional

optimization problem [179]. Unfortunately, these reformulations usually add a large number

of auxiliary dual variables which prohibits the scalability of the reformulation approach as the

number of atoms in the nominal distribution increases. In the remainder of this paper, we will

explore a systematic approach to construct a conservative approximation of the Wasserstein

risk, as well as the tractable reformulations of these approximation problems under specific

settings.

3.3 Conservative Approximation of the Wasserstein Risk

3.3.1 Gelbrich Risk Approximation

A fundamental element of the Wasserstein risk evaluation problem (3.2) is the Wasserstein

ball Bρ,σ(P̂). In this section, we form an outer approximation of Bρ,σ(P̂) using the moment

information of the nominal distribution P̂. Given a finite second-moment nominal measure

P̂ ∈P2, we denote by µ̂ ∈Rn the mean vector and by Σ̂ ∈Sn+ the covariance matrix of ξ under

P̂. We consider the Gelbrich distance defined on the mean vector-covariance matrix space.

Definition 3.9 (Gelbrich distance). The Gelbrich distance between two tuples (µ,Σ) ∈Rn ×Sn+
and (µ̂, Σ̂) ∈Rn ×Sn+ amounts to

G
(
(µ,Σ), (µ̂, Σ̂)

)
,

√
‖µ− µ̂‖2

2 +Tr
[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]
.

One can readily show that G is non-negative, symmetric, vanishes if and only if (µ,Σ) =
(µ̂, Σ̂) and satisfies the triangle inequality, and thus G is a metric on Rn ×Sn+ [72, pp. 239].

The Gelbrich distance provides a lower bound on the Wasserstein type-2 distance between

probability distributions in terms of their mean vectors and covariance matrices as highlighted

in the following theorem.

Theorem 3.10 (Gelbrich bound [71, Theorems 2.1 and 2.4]). If the distributionsQ andQ′ have

mean vectors µ,µ′ ∈Rn and covariance matrices Σ,Σ′ ∈Sn+, respectively, then

W(Q,Q′) ≥G(
(µ,Σ), (µ′,Σ′)

)
. (3.4)

The bound is exact ifQ andQ′ are elliptical distributions with the same characteristic generator.

Using the Gelbrich distance as a measure of dissimilarity, we define the uncertainty set in the

space of mean vectors and covariance matrices as

Uρ(µ̂, Σ̂) = {
(µ,Σ) ∈Rn ×Sn

+ :G
(
(µ,Σ), (µ̂, Σ̂)

)≤ ρ}
.

Intuitively, Uρ(µ̂, Σ̂) contains all tuples of mean vectors and covariance matrix of a Gelbrich
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distance less than or equal to ρ from the center (µ̂, Σ̂). The uncertainty set Uρ(µ̂, Σ̂) is of

interest because it covers the projection of the type-2 Wasserstein ball Bρ,σ(P̂) onto the space

of mean vectors and covariance matrices. Moreover, ifφ is a unimodal characteristic generator

and P̂=Pφ(µ̂, Σ̂), then the uncertainty set Uρ(µ̂, Σ̂) actually coincides the projection ofBρ,σ(P̂)

for any σ ∈ {2,S,SU,φ}.

Proposition 3.11 (Projection of Bρ,σ(P̂) onto the mean-covariance space). If the nominal

distribution P̂ has mean vector µ̂ ∈Rn and covariance matrix Σ̂ ∈Sn+, then for any σ ∈S ,{(
EQ[ξ],EQ[(ξ−EQ[ξ])(ξ−EQ[ξ])>]

)
:Q ∈Bρ,σ(P̂)

}⊆Uρ(µ̂, Σ̂).

The inclusion becomes an equality if P̂=Pφ(µ̂, Σ̂) is an elliptical distribution.

Proposition 3.11 follows immediately from Theorem 3.10. Furthermore, if P̂=Pφ(µ̂, Σ̂) then

any elliptical distribution Q = Pφ(µ,Σ) with the same characteristic generator φ and with

W(Q, P̂) ≤ ρ belongs to Bρ,2(P̂).

A useful ambiguity set in the space of probability distributions is the Gelbrich hull, which is

constructed as the pre-image of Uρ(µ̂, Σ̂) under the mean-covariance projection.

Definition 3.12 (Gelbrich hull). For any σ ∈S , the Gelbrich hull is given by

Gρ,σ(µ̂, Σ̂) = {
Q ∈Pσ :

(
EQ[ξ],EQ[(ξ−EQ[ξ])(ξ−EQ[ξ])>]

) ∈Uρ(µ̂, Σ̂)
}

.

By definition, Gρ,σ(µ̂, Σ̂) contains all distributions supported on Rn satisfying the information

structure σ whose mean vectors and covariance matrices fall into the uncertainty set Uρ(µ̂, Σ̂).

If we define Pσ(µ,Σ) as the structural Chebyshev ambiguity set that contains all distributions

on Rn satisfying the information structure σ with fixed mean vector µ ∈ Rn and covariance

matrix Σ ∈Sn+, then the Gelbrich hull can also be expressed as

Gρ,σ(µ̂, Σ̂) = ⋃
(µ,Σ)∈Uρ(µ̂,Σ̂)

Pσ(µ,Σ). (3.5)

From this representation it is evident that if Gρ,σ(µ̂, Σ̂) contains a distribution Q, then it

contains all distributions on Rn that satisfy the information structure σ and have the same

mean vector and covariance matrix as Q. It is easy to verify that the Gelbrich hull Gρ,σ(µ̂, Σ̂)

provides an outer approximation for any Wasserstein ball Bρ,σ(P̂). Indeed, if Bρ,σ(P̂) contains

a distributionQwith mean vector µ and covariance matrix Σ, then (µ,Σ) ∈Uρ(µ̂, Σ̂) by virtue

of Proposition 3.11, which implies via (3.5) thatQ ∈Gρ,σ(µ̂, Σ̂). These insights culminate in the

following theorem.

Theorem 3.13 (Gelbrich hull). If the nominal distribution P̂ has mean vector µ̂ ∈ Rn and

covariance matrix Σ̂ ∈ Sn+, then we have Bρ,σ(P̂) ⊆ Gρ,σ(µ̂, Σ̂) for any σ ∈ S . If σ = φ and

P̂=Pφ(µ̂, Σ̂), then Bρ,φ(P̂) =Gρ,φ(µ̂, Σ̂).
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Proof. Pick anyQ ∈Bρ,σ(P̂) and define µ ∈Rn as the mean vector and Σ ∈Sn+ as the covariance

matrix of ξ underQ. By Theorem 3.10, we find

G
(
(µ,Σ), (µ̂, Σ̂)

)≤W(Q, P̂) ≤ ρ,

which implies that Q ∈ Gρ,σ(µ̂, Σ̂). We may thus conclude that Bρ,σ(P̂) ⊆ Gρ,σ(µ̂, Σ̂) for any

σ ∈S .

When σ = φ, pick any Q ∈ Gρ,φ(P̂) and define µ ∈ Rn as the mean vector and Σ ∈ Sn+ as the

covariance matrix of ξ underQ. By Theorem 3.10, we find

W(Q, P̂) =G(
(µ,Σ), (µ̂, Σ̂)

)≤ ρ,

where the equality holds because both P̂ andQ share the same characteristic generatorφ. This

implies thatQ ∈Bρ,φ(P̂), and hence Bρ,φ(P̂) =Gρ,φ(µ̂, Σ̂). This completes the proof.

Theorem 3.13 shows that the Gelbrich hull provides an outer approximation for all Wasserstein

balls Bρ,σ(P̂) solely on the basis of mean and covariance information. Discarding all informa-

tion about P̂ beyond its first- and second-order moments can be seen as a compression of

available information. This amounts to sacrificing higher-order moment information and may

improve the tractability of the risk evaluation problem (3.2) and the distributionally robust

decision problem (3.3). To show this, we define the Gelbrich risk as

Rρ,σ(µ̂, Σ̂,`) = sup
Q∈Gρ,σ(µ̂,Σ̂)

RQ(`) (3.6)

and the optimal Gelbrich risk as

Rρ,σ(µ̂, Σ̂,L ) = inf
`∈L

Rρ,σ(µ̂, Σ̂,`). (3.7)

Theorem 3.13 immediately implies that the (optimal) Gelbrich risk provides an upper bound

on the (optimal) Wasserstein risk.

Corollary 3.14 (Gelbrich risk). If the nominal distribution P̂ has mean vector µ̂ ∈ Rn and

covariance matrix Σ̂ ∈Sn+, then for any σ ∈S , we have

Rρ,σ(P̂,`) ≤Rρ,σ(µ̂, Σ̂,`) ∀` ∈L and Rρ,σ(P̂,L ) ≤Rρ,σ(µ̂, Σ̂,L ).

If σ=φ and P̂=Pφ(µ̂, Σ̂), we have

Rρ,φ(P̂,`) =Rρ,φ(µ̂, Σ̂,`) ∀` ∈L and Rρ,φ(P̂,L ) =Rρ,φ(µ̂, Σ̂,L ).

Unlike the mean vector µ=EQ[ξ] and the second-order moment matrix M =EQ[ξξ>], both

of which constitute linear functions of the underlying distributionQ, the covariance matrix

Σ= M −µµ> is nonlinear inQ. The condition (µ,Σ) ∈Uρ(µ̂, Σ̂) thus appears to be nonconvex
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inQ. To gain a clearer understanding, it is instructive to introduce the uncertainty set Vρ(µ̂, Σ̂)

for (µ, M) induced by the uncertainty set Uρ(µ̂, Σ̂) for (µ,Σ), that is,

Vρ(µ̂, Σ̂) = {
(µ, M) ∈Rn ×Sn

+ : (µ, M −µµ>) ∈Uρ(µ̂, Σ̂)
}

.

Maybe surprisingly, even though it is defined as the pre-image of a convex set under a nonlinear

transformation, one can prove that Vρ(µ̂, Σ̂) is convex, see Proposition 3.17.

The representation (3.5) of the Gelbrich hull as a union of Chebyshev ambiguity sets suggests

that the Gelbrich risk of any fixed loss function `(ξ) can be expressed as the optimal value of

the following two-layer optimization problem

Rρ,σ(µ̂, Σ̂,`) = sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
Q∈Pσ(µ,Σ)

RQ(`) (3.8a)

= sup
(µ,M)∈Vρ(µ̂,Σ̂)

sup
Q∈Pσ(µ,M−µµ>)

RQ(`) (3.8b)

Note that (3.8b) follows immediately from the definition of the uncertainty set Vρ(µ̂, Σ̂) and the

formula for the covariance matrix in terms of the mean vector and the second-order moment

matrix. The inner problems in (3.8a) and (3.8b) both represent the same distributionally robust

optimization problem over a Chebyshev ambiguity set but with different parameterizations.

This problem can be viewed as an infinite-dimensional linear program over all probability

distributions Q that satisfy the linear equality constraints EQ[ξ] = µ and EQ[ξξ>] = M . The

outer problem in (3.8a) hedges against ambiguity in the mean vector and the covariance matrix,

while the one in (3.8b) hedges against ambiguity in the first- and second-order moments. The

formulation (3.8a) is conceptually appealing because of its connection to the Wasserstein

distance and because it is more natural to characterize a distribution in terms of its mean

vector and covariance matrix. The formulation (3.8b), on the other hand, is computationally

attractive because it expresses the inner problem with linear constraints while the feasible set

of the outer problem remains convex.

Remark 3.15 (Second layer of robustness). Distributionally robust optimization problems

akin to (3.8a) and (3.8b) that accommodate a second layer of robustness to account for moment

ambiguity have been investigated in [39, 52, 81, 121, 145, 184], among others. As the optimal

value of the inner maximization problem is always concave in (µ, M) but typically nonconcave

in (µ,Σ), moment ambiguity has mostly been modeled through convex uncertainty sets for (µ, M),

thereby ensuring convexity of the outer maximization problem. For example, uncertainty sets

that force µ to lie in an ellipsoid and M in the intersection of two positive semi-definite cones

were studied in [39], while box-type uncertainty sets for (µ, M) were proposed in [121] and refined

in [81, 184]. Convex uncertainty sets for (µ,Σ) were shown to render the outer maximization

problems convex only in special cases, e.g., when evaluating a worst-case value-at-risk of a

linear or quadratic loss function [52, 145]. The convex uncertainty set Uρ(µ̂, Σ̂) for (µ,Σ) is

remarkable because it leads to a second-layer maximization problem in (3.8a) that potentially

admits a convex reformulation. �
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3.3.2 Convexity of the Gelbrich Hull

We now establish the convexity of the Gelbrich hull Gρ,σ(P̂). To this end, we first prove a

structural result certifying that the uncertainty set Uρ(µ̂, Σ̂), a finite dimensional subset on the

space of mean vector and covariance matrix, is compact and convex.

Proposition 3.16 (Convexity of Uρ(µ̂, Σ̂)). For any µ̂ ∈ Rn , Σ̂ ∈ Sn+ and ρ ∈ R+, Uρ(µ̂, Σ̂) is

compact and convex.

Proof. Notice that Uρ(µ̂, Σ̂) can be expressed as

Uρ(µ̂, Σ̂) =
{

(µ,Σ) ∈Rn ×Sn
+ :G

(
(µ,Σ), (µ̂, Σ̂)

)2 ≤ ρ2
}

,

where the squared Gelbrich distance G
(
(µ,Σ), (µ̂, Σ̂)

)2 is a continuous, convex function of

(µ,Σ) ∈Rn ×Sn+. Hence, Uρ(µ̂, Σ̂) is convex and closed. Furthermore, for any (µ,Σ) ∈Uρ(µ̂, Σ̂),

we have ‖µ− µ̂‖ ≤ ρ, which implies that µ is bounded. Moreover, [152, Lemma A.6] implies

that for any (µ,Σ) ∈ Uρ(µ̂, Σ̂), we find 0 ¹ Σ ¹ (
ρ+Tr

[
Σ̂

] 1
2
)2I . We conclude that Uρ(µ̂, Σ̂) is

compact.

Proposition 3.17 (Convexity of Vρ(µ̂, Σ̂)). For any µ̂ ∈Rn , Σ̂ ∈Sn+ andρ ∈R+, Vρ(µ̂, Σ̂) is compact

and convex.

The proof of Proposition 3.17 requires the following preparatory lemma that establishes the

equivalent formulation of the squared Gelbrich distance as the optimal value of a maximiza-

tion problem.

Lemma 3.18. For any µ, µ̂ ∈Rn and Σ, Σ̂ ∈Sn+, we have

G
(
(µ,Σ), (µ̂, Σ̂)

)2 =


sup Tr

[
(Σ+µµ>)(I − A11)+ (Σ̂+ µ̂µ̂>)(I − A22)

]+µ>A11µ+ µ̂>A22µ̂−2µ̂>µ

s. t. A11 ∈Sn
+, A22 ∈Sn

+,

[
A11 −I

−I A22

]
º 0.

Proof. We first define the functionG′ for any µ, µ̂ ∈Rn and M , M̂ ∈Sn+ as

G′((µ, M), (µ̂, M̂)
)2,


sup Tr

[
M(I − A11)+ M̂(I − A22)

]+µ>A11µ+ µ̂>A22µ̂−2µ̂>µ

s. t. A11 ∈Sn
+, A22 ∈Sn

+,

[
A11 −I

−I A22

]
º 0.

(3.9)

From the proof of [72, Proposition 7], we can re-express the Gelbrich distanceG as the optimal
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value of a minimization problem

G
(
(µ,Σ), (µ̂, Σ̂)

)2 =


min ‖µ− µ̂‖2

2 +Tr
[
Σ+ Σ̂−2C

]
s. t. C ∈Rn×n ,

[
Σ C

C> Σ̂

]
º 0

=


min Tr

[
µµ>+ µ̂µ̂>]+Tr

[
Σ+ Σ̂]−2Tr

[
C +µµ̂>]

s. t. C ∈Rn×n ,

[
Σ C

C> Σ̂

]
º 0

=


min Tr

[
(Σ+µµ>)+ (Σ̂+ µ̂µ̂>)

]−2Tr
[
K

]
s. t. K ∈Rn×n ,

[
Σ+µµ> K

K > Σ̂+ µ̂µ̂>

]
º

[
µ

µ̂

][
µ

µ̂

]>
,

where the last equality follows from the change of variable K ←C +µµ̂>. Using a weak duality

argument, we have

G
(
(µ,Σ), (µ̂, Σ̂)

)2 ≥


sup Tr

[
(Σ+µµ>)(I − A11)+ (Σ̂+ µ̂µ̂>)(I − A22)

]+µ>A11µ+ µ̂>A22µ̂−2µ̂>µ

s. t. A11 ∈Sn
+, A22 ∈Sn

+,

[
A11 −I

−I A22

]
º 0

=G′((µ,Σ+µµ>), (µ̂, Σ̂+ µ̂µ̂>)
)2,

where the equality follows from the definition ofG′ in (3.9). Thus,G
(
(µ,Σ), (µ̂, Σ̂)

)2 constitutes

an upper bound onG′((µ,Σ+µµ>), (µ̂, Σ̂+µ̂µ̂>)
)2. We now proceed to prove that the inequality

above holds as an equality. Denote momentarily fΣ(Σ̂) as the optimal value of the problem

fΣ(Σ̂) =


inf Tr

[
ΣA11

]+Tr
[
Σ̂A22

]
s. t. A11 ∈Sn+, A22 ∈Sn+,

[
A11 −I

−I A22

]
º 0

(3.10)

parametrized by Σ̂. By construction, for any µ, µ̂ ∈Rn and Σ, Σ̂ ∈Sn+, we have

G′((µ,Σ+µµ>), (µ̂, Σ̂+ µ̂µ̂>)
)2 =


sup −Tr

[
ΣA11

]−Tr
[
Σ̂A22

]+Tr
[
Σ+ Σ̂]+‖µ− µ̂‖2

2

s. t. A11 ∈Sn
+, A22 ∈Sn

+,

[
A11 −I

−I A22

]
º 0

=− fΣ(Σ̂)+Tr
[
Σ+ Σ̂]+‖µ− µ̂‖2

2,

where the first equality follows from the definition of M and M̂ while the second equality holds

due to the definition of fΣ(Σ̂). By imposing the constraint A11 = A†
22, where A†

22 denotes the

(Moore-Penrose) pseudoinverse of A22 into the infimum problem (3.10), we have the trivial
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upper bound on fΣ(Σ̂) as

fΣ(Σ̂) ≤


inf Tr

[
ΣA†

22

]+Tr
[
Σ̂A22

]
s. t. A22 ∈Sn

+,

[
A†

22 −I

−I A22

]
º 0.

If Σ̂Â 0, the above infimum problem over A22 admits the optimal value Tr
[
2

√
Σ̂

1
2ΣΣ̂

1
2
]

[128,

Theorem 4]. As a consequence, for any Σ̂Â 0, we have

G′((µ,Σ+µµ>), (µ̂, Σ̂+ µ̂µ̂>)
)2 ≥ ‖µ− µ̂‖2

2 +Tr
[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]=G(

(µ,Σ), (µ̂, Σ̂)
)2,

where the last equality is from the analytical expression ofG in Definition 3.9. Combining

with the upper bound established previously, we conclude that for any Σ̂Â 0

G
(
(µ,Σ), (µ̂, Σ̂)

)2 =G′((µ,Σ+µµ>), (µ̂, Σ̂+ µ̂µ̂>)
)2.

To complete the proof, we now extend the equality above to the case when Σ̂ is singular. To

this end, we first show that fΣ(Σ̂) defined in (3.10) is continuous on Sn+. Fix Σ̂ ∈Sn+, it is clear

that Σ̂+εI Â 0 for any ε> 0. Define the interval E =R+ and the feasible set

A =
{

A11 ∈Sn
+, A22 ∈Sn

+ :

[
A11 −I

−I A22

]
º 0

}
.

In addition, define the auxiliary functions ψ(ε, A) , Tr
[
ΣA11

]+Tr
[
Σ̂A22

]+ εTr
[

A22
]

with

A = (A11, A22), and Ψ(ε), fΣ(Σ̂+εI ). It follows from the definition of fΣ(Σ̂) in (3.10) that

Ψ(ε) = inf
A∈A

ψ(Σ̂+εI , A) ∀ε ∈ E .

We now show thatΨ(ε) is continuous at ε= 0. Because ψ is linear and thus continuous in ε for

any A ∈A , it implies that Ψ is upper-semicontinuous at ε= 0 [123, Lemma 2.7(a)]. Moreover,

ψ is calm from below at ε= 0 uniformly over A ∈A with the calmness constant 0 because

ψ(ε, A)−ψ(0, A) = εTr
[

A22
]≥ 0 ∀A ∈A .

We can assert that Ψ is lower-semicontinuous at ε= 0 [123, Lemma 2.7(b)]. This implies that

Ψ is continuous at ε= 0, and as a consequence, fΣ(Σ̂) is continuous over Sn+. Thus, for any
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singular covariance matrix Σ̂ ∈Sn+, we have

G
(
(µ,Σ), (µ̂, Σ̂)

)2 = lim
ε↓0
G

(
(µ,Σ), (µ̂, Σ̂+εI )

)2

= lim
ε↓0
G′((µ,Σ+µµ>), (µ̂, Σ̂+εI + µ̂µ̂>)

)2

= lim
ε↓0

− fΣ(Σ̂+εI )+Tr
[
Σ+ Σ̂]+‖µ− µ̂‖2

= lim
ε↓0

−Ψ(ε)+Tr
[
Σ+ Σ̂]+‖µ− µ̂‖2

=−Ψ(0)+Tr
[
Σ+ Σ̂]+‖µ− µ̂‖2

=− fΣ(Σ̂)+Tr
[
Σ+ Σ̂]+‖µ− µ̂‖2

=G′((µ,Σ+µµ>), (µ̂, Σ̂+ µ̂µ̂>)
)2,

where the equalities come from the continuity ofG, the equivalence betweenG andG′ when

Σ̂ Â 0, the definition of fΣ(Σ̂) in (3.10), the definition of Ψ, the continuity of Ψ at ε = 0, the

definition ofΨ again and finally the definition ofG′, respectively. We now can finally conclude

that for any µ, µ̂ ∈Rn and Σ, Σ̂ ∈Sn+

G
(
(µ,Σ), (µ̂, Σ̂)

)2 =G′((µ,Σ+µµ>), (µ̂, Σ̂+ µ̂µ̂>)
)2.

This completes the proof.

Proof of Proposition 3.17. LetG′ be defined as in (3.9). Thanks to the equivalence betweenG

andG′ established in Lemma 3.18, we find

Vρ(µ̂, Σ̂) =
{

(µ, M) ∈Rn ×Sn
+ : M −µµ> º 0, G′((µ, M), (µ̂, Σ̂+ µ̂µ̂>)

)2 ≤ ρ2
}

.

For a fixed µ̂ ∈Rn and Σ̂ ∈Sn+, the squared-G′ function is jointly convex over (µ, M) because it

is the pointwise supremum of convex quadratic functions. Hence, Vρ(µ̂, Σ̂) is a convex set. The

compactness of Vρ(µ̂, Σ̂) is a direct consequence of the compactness of Uρ(µ̂, Σ̂) established in

Proposition 3.16.

We emphasize that Gρ,σ(µ̂, Σ̂) is in general non-convex for σ ∈ {S,SU}∪Φ due to the non-

convexity of the structural ambiguity set Pσ. Moreover, the convexity of Gρ,2(µ̂, Σ̂) is not

apparent from Definition 3.12, which introduces the Gelbrich hull as the pre-image of a

convex set under a nonlinear transformation. Fortunately, by the definition of the induced

uncertainty set Vρ(µ̂, Σ̂), the set Gρ,2(µ̂, Σ̂) can be equivalently expressed as

Gρ,2(µ̂, Σ̂) = {
Q ∈P2 :

(
EQ[ξ],EQ[ξξ>]

) ∈ Vρ(µ̂, Σ̂)
}

.

Thus, the Gelbrich hull Gρ,2(µ̂, Σ̂) can be expressed as the pre-image of the convex set Vρ(µ̂, Σ̂)

under a linear transformation, which shows that it is actually convex. This fact is summarized

in the following corollary whose proof is omitted.
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Corollary 3.19 (Convexity of the Gelbrich hull). For any µ̂ ∈Rn , Σ̂ ∈Sn+ and ρ ∈R+, the Gelbrich

hull Gρ,2(µ̂, Σ̂) is convex.

3.3.3 Support functions of Uρ(µ̂, Σ̂) and Vρ(µ̂, Σ̂)

The uncertainty set Uρ(µ̂, Σ̂) can conveniently be used in classical robust optimization. Indeed,

a robust constraint that requires a concave function h(µ,Σ) to be nonpositive for all (µ,Σ) ∈
Uρ(µ̂, Σ̂) can be reformulated as a convex constraint that involves the concave conjugate h?
of h and the support function of the uncertainty set Uρ(µ̂, Σ̂) [10, Theorem 2], that is,

h(µ,Σ) ≤ 0 ∀(µ,Σ) ∈Uρ(µ̂, Σ̂) ⇐⇒ ∃ q ∈Rn ,Q ∈Sn such that δ?
Uρ(µ̂,Σ̂)

(q,Q)−h?(q,Q) ≤ 0,

This constraint is computationally tractable for many commonly used constraint functions

because the support function of Uρ(µ̂, Σ̂) is conic representable.

Lemma 3.20 (Support function of Uρ(µ̂, Σ̂)). The support function of Uρ(µ̂, Σ̂) coincides with

the optimal value of a tractable SDP, that is, for any ρ ∈R+, q ∈Rn and Q ∈Sn , we have

δ?
Uρ(µ̂,Σ̂)

(q,Q) = inf µ̂>q +τ+γ(
ρ2 −Tr

[
Σ̂

])+Tr
[

Z
]

s. t. γ ∈R+, τ ∈R+, Z ∈Sn+[
γI −Q γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

∥∥∥∥∥
(
‖q‖
τ−γ

)∥∥∥∥∥≤ τ+γ.

Proof. Evaluating the support function of Uρ(µ̂, Σ̂) at (q,Q) ∈Rn ×Sn amounts to solving the

finite convex program

δ?
Uρ(µ̂,Σ̂)

(q,Q) =
 sup

µ,Σº0
q>µ+Tr

[
QΣ

]
s. t. ‖µ− µ̂‖2 +Tr

[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]≤ ρ2.

(3.11)

Suppose that ρ > 0. Using duality arguments, we find

δ?
Uρ(µ̂,Σ̂)

(q,Q)

= sup
µ,Σº0

inf
γ≥0

q>µ+Tr
[
QΣ

]+γ[
ρ2 −‖µ− µ̂‖2 −Tr

[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]]

= inf
γ≥0

sup
µ,Σº0

q>µ+Tr
[
QΣ

]+γ[
ρ2 −‖µ− µ̂‖2 −Tr

[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]]

= inf
γ≥0

{
γ
(
ρ2 −Tr

[
Σ̂

])+ sup
µ

{
q>µ−γ‖µ− µ̂‖2}+ sup

Σº0

{
Tr

[
(Q −γI )Σ

]+2γTr
[(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]}}

,

(3.12)

where the second equality follows from strong duality, which holds because ρ > 0 and (µ̂, Σ̂)

constitutes a Slater point for the primal problem. The subproblem in µ is a concave maximiza-
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tion problem, thus we can reformulate its optimal value by the epigraph formulation

sup
µ

{
q>µ−γ‖µ− µ̂‖2}≤ η ⇐⇒

[
γI γµ̂+ q

2

(γµ̂+ q
2 )> γ‖µ̂‖2 +η

]
º 0.

Due to its arrow-shaped structure, the above SDP constraint can be simplified to a second-

order cone constraint, and thus we have

sup
µ

{
q>µ−γ‖µ− µ̂‖2}≤ η ⇐⇒ η≥ µ̂>q +τ,

∥∥∥∥∥
(
‖q‖
τ−γ

)∥∥∥∥∥≤ τ+γ, τ ∈R+.

The maximization subproblem over Σ can be solved analytically by using Proposition 3.54,

and thus problem (3.12) is equivalent to

inf
γ≥0,τ≥0

µ̂>q +τ+γ(
ρ2 −Tr

[
Σ̂

])+γ2 Tr
[
(γI −Q)−1Σ̂

]
s. t. γI ÂQ,

∥∥∥∥∥
(
‖q‖
τ−γ

)∥∥∥∥∥≤ τ+γ.
(3.13)

Notice that the reformulation (3.13) is valid for ρ ≥ 0 because δ?
Uρ(µ̂,Σ̂)

(q,Q) defined in (3.11) is

continuous over ρ ∈R+, and the optimal value of the infimum problem (3.13) is also continu-

ous over ρ ∈R+.

To complete the proof, we provide the semidefinite program reformulation for the nonlinear

term in the objective function of (3.13). Define momentarily the extended real-valued function

f (γ) , γ2 Tr
[
(γI −Q)−1Σ̂

]
over the domain {γ ∈ R+ : γI Â Q}, and f (γ) is interpreted as ∞

outside this domain. For any γ such that γI ÂQ, we can write

f (γ) = min
Zº0

{
Tr

[
Z

]
: Z º γ2Σ̂

1
2 (γI −Q)−1Σ̂

1
2

}
= min

Zº0

{
Tr

[
Z

]
:

[
γI −Q γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0

}
,

where the first equality is from the cyclicity property of the trace operator and the fact that

A º B implies that Tr
[

A
] ≥ Tr

[
B

]
, and the second equality is from the Schur complement

argument [18, §A.5.5]. Thus, we find

δ?
Uρ(µ̂,Σ̂)

(q,Q) =


inf µ̂>q +τ+γ(

ρ2 −Tr
[
Σ̂

])+Tr
[

Z
]

s. t. γ ∈R+, τ ∈R+, Z ∈Sn+[
γI −Q γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

∥∥∥∥∥
(
‖q‖
τ−γ

)∥∥∥∥∥≤ τ+γ, γI ÂQ.

Because the objective function of the above program is continuous, we can replace the con-

straint γI Â Q by γI º Q. Moreover, the constraint γI º Q can be omitted because the first

semidefinite constraint already implies that γI ºQ. The proof is completed.

The next lemma establishes the optimal mean vector and the covariance matrix that solves
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the optimization problem involved in the evaluation of the support function of Uρ(µ̂, Σ̂).

Lemma 3.21 (Extremal mean vectors and covariance matrices). Suppose that Σ̂Â 0 and either

• q 6= 0, or

• λmax(Q) > 0, or

• Q =−LL> 6= 0 for some L ∈Rn×k and ρ2 ≤ Tr
[
Σ̂L(L>L)−1L>]

.

Then there exists γ? ≥ 0 with γ?I ÂQ that solves the nonlinear algebraic equation

‖q‖2

4γ2 +Tr
[
Σ̂

(
I −γ(γI −Q)−1)2 ]= ρ2, (3.14a)

and the value δ?
Uρ(µ̂,Σ̂)

(q,Q) is attained by (µ?,Σ?) ∈Rn ×Sn++ satisfying

µ? = µ̂+ q

2γ?
, Σ? =

(
I − Q

γ?

)−1

Σ̂

(
I − Q

γ?

)−1

. (3.14b)

Moreoever, if Q º 0 then we have Σ? ºλmin(Σ̂)I .

Proof. It suffices to show that (µ?,Σ?) solves the maximization problem (3.11). If ρ = 0, the

asymptotic value γ? =+∞ solves (3.14a), thus we have µ? = µ̂, Σ? = Σ̂ and (µ?,Σ?) is trivially

optimal for problem (3.11) when ρ = 0. It remains to show for the case ρ > 0.

First, consider the case where q 6= 0. From the proof of Lemma 3.20, evaluating the support

function of Uρ(µ̂, Σ̂) is tantamount to solving problem (3.13) which can be expressed in the

equivalent form

δ?
Uρ(µ̂,Σ̂)

(q,Q) =
 inf µ̂>q + ‖q‖2

4γ +γ(
ρ2 −Tr

[
Σ̂

])+γ2 Tr
[
(γI −Q)−1Σ̂

]
s. t. γ ∈R++, γI ÂQ

(3.15)

because ‖q‖ 6= 0. Denote momentarily the objective function of problem (3.15) as f (γ). Be-

cause Σ̂Â 0, the objective value of (3.15) evaluated at any feasible solution γ is lower bounded

by

f (γ) ≥ q>µ̂+ ‖q‖2

4γ
+γ(

ρ2 −Tr
[
Σ̂

])+λmin(Σ̂)γ2 Tr
[
(γI −Q)−1]

and thus as γ approaches max{0,λmax(Q)}, the objective value of (3.15) tends to ∞. Thus, the

constraints γ> 0 and γI ÂQ in (3.15) becomes redundant. Moreover, the gradient of f can be

written as

∇γ f =−‖q‖2

4γ2 +ρ2 −Tr
[
Σ̂

]+2γTr
[
(γI −Q)−1Σ̂

]−γ2 Tr
[
(γI −Q)−2Σ̂

]
= ρ2 − ‖q‖2

4γ2 −Tr
[
Σ̂

(
I −γ(γI −Q)−1)2].
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This implies that if γ? > max{0,λmax(Q)} solves the nonlinear algebraic equation (3.14a), then

γ? is also the solution of the first-order optimality condition of problem (3.15), and thus

γ? is the optimal solution of (3.15). Furthermore, one can constate that as γ approaches

max{0,λmax(Q)}, ∇γ f tends to −∞, and as γ tends to infinity, ∇γ f tends to ρ2 > 0. This asserts

that there exists a finite value γ? that solves (3.14a).

In the sequel, we verify that (µ?,Σ?) defined in (3.14b) is the optimal solution of problem (3.11).

Notice that

G
(
(µ?,Σ?), (µ̂, Σ̂)

)2 = ‖q‖2

4(γ?)2 +Tr
[
Σ̂(I −γ?(γ?I −Q)−1)2]= ρ2,

where the first equality follows from the definition of (µ?,Σ?) in (3.14b), and the second

equality holds because γ? solves (3.14a). As such, (µ?,Σ?) is feasible for the optimization

problem (3.11). Furthermore, the objective value of (µ?,Σ?) in (3.11) amounts to

q>µ?+Tr
[
QΣ?

]= q>µ̂+ ‖q‖2

2γ?
+ (γ?)2 Tr

[
Q(γ?I −Q)−1Σ̂(γ?I −Q)−1]

= q>µ̂+ ‖q‖2

2γ?
+ (γ?)2 Tr

[
(Q −γ?I +γ?I )(γ?I −Q)−1Σ̂(γ?I −Q)−1]

= q>µ̂+ ‖q‖2

2γ?
− (γ?)2 Tr

[
Σ̂(γ?I −Q)−1]+ (γ?)3 Tr

[
Σ̂(γI −Q)−2]

= q>µ̂+ ‖q‖2

2γ?
+γ?

(
ρ2 − ‖q‖2

4(γ?)2 −Tr
[
Σ̂

])+ (γ?)2 Tr
[
(γ?I −Q)−1Σ̂

]
= q>µ̂+ ‖q‖2

4γ?
+γ?(

ρ2 −Tr
[
Σ̂

])+ (γ?)2 Tr
[
(γ?I −Q)−1Σ̂

]= δ?
Uρ(µ̂,Σ̂)

(q,Q),

where the fourth equality is from the fact that γ? > 0 solves (3.14a) and thus the relationship

−(γ?)2 Tr
[
Σ̂(γ?I−Q)−1]+(γ?)3 Tr

[
Σ̂(γI−Q)−2]= γ? (

ρ2 − ‖q‖2

4(γ?)2 −Tr
[
Σ̂

])+(γ?)2 Tr
[
(γ?I−Q)−1Σ̂

]
holds. Finally, the last equality follows from the optimality of γ? in (3.15). Thus, (µ?,Σ?) is

optimal in (3.11).

In the second case, consider when q = 0 and λmax(Q) > 0. In this case, we can follow the steps

as in the case of q 6= 0 almost verbatim to arrive at the same conclusion, the only difference is

that now ‖q‖ = 0 and the related fractional term can be dropped from the calculation.

In the last case, consider when q = 0, λmax(Q) ≤ 0 and ρ2 ≤ Tr
[
Σ̂L(L>L)−1L>]

. If we use Ik to

denote the k-by-k identity matrix, then we have

Tr
[
Σ̂(I − (I −γ−1Q)−1)2]= Tr

[
Σ̂(I − (I +γ−1LL>)−1)2]= Tr

[
Σ̂(I − (I −L(γIk +L>L)−1L>))2]

= Tr
[
Σ̂(L(γIk +L>L)−1L>)2],
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where the second equality utilizes the Woodbury matrix inversion formula [12, Corollary 2.8.8].

One can now verify that as γ approaches 0, ∇γ f tends to ρ2−Tr
[
Σ̂L(L>L)−1L>]≤ 0, thus there

exists γ? ∈R++ that solves the algebraic equation (3.14a).

To complete the proof, we notice that when Q º 0 then (I − (γ?)−1Q)−1 º I because γ?I ÂQ,

and thus it is easy to verify that Σ? defined in (3.14b) satisfies Σ? ºλmin(Σ̂)I .

Thanks to its convexity established in Proposition 3.17, the uncertainty set Vρ(µ̂, Σ̂) can again

conveniently be used in classical robust optimization. Indeed, a robust constraint that requires

a concave function h(µ, M) to be nonpositive for all (µ, M) ∈ Vρ(µ̂, Σ̂) can be reformulated as a

simple convex constraint involving the concave conjugate of h(µ, M) and the support function

of Vρ(µ̂, Σ̂). This constraint is computationally tractable for many commonly used constraint

functions because the support function of Vρ(µ̂, Σ̂) is SDP-representable.

Lemma 3.22 (Support function of Vρ(µ̂, Σ̂)). The support function of Vρ(µ̂, Σ̂) coincides with

the optimal value of a tractable SDP, that is, for any ρ ∈R+, q ∈Rn and Q ∈Sn , we have

δ?
Vρ(µ̂,Σ̂)

(q,Q) = inf γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. γ ∈R+, z ∈R+, Z ∈Sn+[
γI −Q γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Q γµ̂+ q

2

(γµ̂+ q
2 )> z

]
º 0.

(3.16)

Proof. Evaluating the support function of Vρ(µ̂, Σ̂) at (q,Q) ∈ Rn ×Sn amounts to solving a

maximization problem

δ?
Vρ(µ̂,Σ̂)

(q,Q) =


sup µ>q +Tr

[
(Σ+µµ>)Q

]
s. t. µ ∈Rn , Σ ∈Sn+

‖µ− µ̂‖2 +Tr
[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]≤ ρ2

(3.17)

whose objective function is convex when Q º 0. Consider now the optimization problem

J (ε),


sup µ>q +Tr

[
(Σ+µµ>)Q

]
s. t. µ ∈Rn , Σ ∈Sn+

‖µ− µ̂‖2 +Tr
[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]≤ ρ2 +ε

‖µ− µ̂‖2 ≤ ρ2,

parametrized by ε≥ 0, where we have made the dependence of J on µ̂, Σ̂ and ρ implicit to

avoid clutter. By construction, we have δ?
Vρ(µ̂,Σ̂)

(q,Q) ≤J (ε) for any ε≥ 0 and δ?
Vρ(µ̂,Σ̂)

(q,Q) =
J (0).
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If ρ > 0 and ε> 0, we have

J (ε) =


sup
µ:‖µ−µ̂‖≤ρ2

sup
Σº0

µ>q +Tr
[
(Σ+µµ>)Q

]
s. t. Tr

[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]≤ ρ2 +ε−‖µ− µ̂‖2

= sup
µ:‖µ−µ̂‖≤ρ2

sup
Σº0

inf
ν≥0

µ>q +Tr
[
(Σ+µµ>)Q

]+ν(
ρ2 +ε−‖µ− µ̂‖2 −Tr

[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
])

= sup
µ:‖µ−µ̂‖≤ρ2

inf
ν≥0

sup
Σº0

µ>q +Tr
[
(Σ+µµ>)Q

]+ν(
ρ2 +ε−‖µ− µ̂‖2 −Tr

[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
])

=
sup

µ:‖µ−µ̂‖≤ρ2
inf
ν≥0

{
µ>q +µ>Qµ+ν(

ρ2 +ε−‖µ− µ̂‖2 −Tr
[
Σ̂

])
+sup
Σº0

{
Tr

[
(Q −νI )Σ

]+2νTr
[(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]}}

where the third equality follows from strong duality which holds because ε> 0 and Σ̂ consti-

tutes a Slater point for the primal problem. We can apply Proposition 3.54 to solve analytically

the inner-most supremum problem over Σ

J (ε) = sup
µ:‖µ−µ̂‖≤ρ2

inf
ν≥0
νIÂQ

µ>q +µ>Qµ+ν(
ρ2 +ε−‖µ− µ̂‖2 −Tr

[
Σ̂

])+ν2 Tr
[
(νI −Q)−1Σ̂

]
= inf

ν≥0
νIÂQ

sup
µ:‖µ−µ̂‖≤ρ2

µ>q +µ>Qµ+ν(
ρ2 +ε−‖µ− µ̂‖2 −Tr

[
Σ̂

])+ν2 Tr
[
(νI −Q)−1Σ̂

]
,

where the second equality exploits Sion’s minimax theorem [156, Corollary 3.3]. As the ob-

jective function of the resulting minimax problem is concave in µ for any fixed ν satisfying

νI Â Q and as ρ > 0, the inner maximization problem constitutes a strictly feasible convex

optimization problem. By strong duality, we have

J (ε) = inf
ν≥0,λ≥0
νIÂQ

{
(ν+λ)ρ2 +ν(ε−Tr

[
Σ̂

]
)+ν2 Tr

[
(νI −Q)−1Σ̂

]
+ sup

µ

{
µ>q +µ>Qµ− (ν+λ)‖µ− µ̂‖2}}

.

By introducing an epigraphical variable τ for the supremum overµ and by definingγ= ν+λ≥ 0,

we can rewrite J (ε) as

J (ε) =


inf γρ2 +ν(ε−Tr

[
Σ̂

]
)+ν2 Tr

[
(νI −Q)−1Σ̂

]+τ
s. t. ν ∈R+, τ ∈R+, γ ∈R+[

γI −Q γµ̂+ q
2

(γµ̂+ q
2 )> γ‖µ̂‖2 +τ

]
º 0, γ≥ ν, νI ÂQ.

(3.19)

Let J̄ (ε) be the optimal value of the infimum program on the right hand side of (3.19). So far,

we have shown that J (ε) = J̄ (ε) for any ε> 0. We now establish the equality when ε= 0. By

Berge’s maximum principle [11, pp. 115–116], J (ε) is continuous over R+. Applying a similar

argument as in the proof of [123, Theorem 2.8], we can show that J̄ (ε) is continuous over R+.
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As such, we can conclude that

J (0) = lim
ε↓0

J (ε) = lim
ε↓0

J̄ (ε) = J̄ (0),

where the equalities are from the continuity of J , the fact that J (ε) = J̄ (ε) for any ε> 0, and

the continuity of J̄ . Because δ?
Vρ(µ̂,Σ̂)

(q,Q) =J (0), we find for Σ̂Â 0 and ρ > 0

δ?
Vρ(µ̂,Σ̂)

(q,Q) =


inf γρ2 −νTr

[
Σ̂

]+ν2 Tr
[
(νI −Q)−1Σ̂

]+τ
s. t. ν ∈R+, τ ∈R+, γ ∈R+[

γI −Q γµ̂+ q
2

(γµ̂+ q
2 )> γ‖µ̂‖2 +τ

]
º 0, γ≥ ν, νI ÂQ.

(3.20)

In the next step, we proceed to eliminate the variable ν from the above optimization problem.

Problem (3.20) can be re-express in the following equivalent form

inf γρ2 +τ+ f (γ)

s. t. τ ∈R+, γ ∈R+[
γI −Q γµ̂+ q

2

(γµ̂+ q
2 )> γ‖µ̂‖2 +τ

]
º 0, γI ÂQ,

(3.21)

where the function f :R+ →R is momentarily defined as

f (γ) = inf
{−νTr

[
Σ̂

]+ν2 Tr
[
(νI −Q)−1Σ̂

]
: 0 ≤ ν≤ γ, νI ÂQ

}
.

Suppose that Q 6= 0 and thus Q can be written using its eigenvalue decomposition Q = LDL>

for some diagonal matrix D ∈Rk×k with non-zero diagonal elements, and L ∈Rn×k satisfying

L>L = Ik , where we denote by Ik the k-by-k identity matrix. Suppose further that γ> 0. For

any 0 < ν≤ γ, we have

ν(νI −Q)−1 = (
I −ν−1LDL>)−1 = I +L(νD−1 − Ik )−1L>,

where the second equality follows from the Woodbury matrix inversion formula [12, Corol-

lary 2.8.8]. Thus, for any 0 < ν≤ γ, we have

−νTr
[
Σ̂

]+ν2 Tr
[
(νI −Q)−1Σ̂

]= νTr
[
(νD−1 − Ik )−1L>Σ̂L

]
.

Notice that the above formula is also valid when ν= 0, in which case both sides of the above

equation evaluate to 0 and the evaluation of the left hand side is understood in the limit as ν

tends to 0. This implies that whenever γ> 0, we have

f (γ) = inf
{
νTr

[
(νD−1 − Ik )−1L>Σ̂L

]
: 0 ≤ ν≤ γ, νIk Â D

}
.

Denote momentarily by g (ν) the objective function of the above program. It is easy to verify
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that g (ν) is continuous over [0,γ], and for any ν> max{0,λmax(D)}, the gradient of g satisfies

g ′(ν) =−Tr
[
(νD−1 − Ik )−1L>Σ̂L(νD−1 − Ik )−1]< 0

which implies that given any γ which is feasible in problem (3.21), the optimal value f (γ) is

attained by the optimal solution ν?(γ) = γ. Evaluating the objective function g at this optimal

solution gives

f (γ) =−γTr
[
Σ̂

]+γ2 Tr
[
(γI −Q)−1Σ̂

]
.

Notice that when γ= 0, the feasible set of ν becomes a singleton and the above expression for

f (γ) holds trivially. Hence, we conclude that when Q 6= 0, problem (3.20) is equivalent to

δ?
Vρ(µ̂,Σ̂)

(q,Q) =


inf γ

(
ρ2 −Tr

[
Σ̂

])+γ2 Tr
[
(γI −Q)−1Σ̂

]+τ
s. t. τ ∈R+, γ ∈R+[

γI −Q γµ̂+ q
2

(γµ̂+ q
2 )> γ‖µ̂‖2 +τ

]
º 0, γI ÂQ.

(3.22)

One can readily verify that the reformulation (3.22) is also valid when Q = 0. Indeed, when

Q = 0, problem (3.22) collapses into

δ?
Vρ(µ̂,Σ̂)

(q,0) =


inf γρ2 +τ
s. t. τ ∈R+, γ ∈R+[

γI γµ̂+ q
2

(γµ̂+ q
2 )> γ‖µ̂‖2 +τ

]
º 0, γ> 0.

The optimal solution of this minimization problem can be shown to be γ? = ‖q‖/(2ρ) and

τ? = µ̂>q +ρ‖q‖/2, with optimal value µ̂>q +ρ‖q‖. This optimal value coincides with the

value of the support function at (q,0) evaluated using the definition of the support function

δ?
Vρ(µ̂,Σ̂)

(q,0) = sup
{
µ>q : µ ∈Rn , ‖µ− µ̂‖2 ≤ ρ2}= µ̂>q +ρ‖q‖,

where the last equality follows from the property of the dual norm.

The extension of the reformulation (3.22) to the situation where ρ ≥ 0 can be achieved by

employing a similar continuity argument as in the proof of Lemma 3.20. The last step involves

applying the Schur complement to reformulate the nonlinear term in the objective function

of (3.22) as a linear semidefinite program constraint, and performing a variable substitution

z = τ+γ‖µ̂‖2. We thus find

δ?
Vρ(µ̂,Σ̂)

(q,Q) =


inf γ

(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. τ ∈R+, γ ∈R+, z ∈R+, Z ∈Sn+[
γI −Q γµ̂+ q

2

(γµ̂+ q
2 )> z

]
º 0,

[
γI −Q γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0, γI ÂQ.

(3.23)

The last constraint γI ÂQ can be altered to γI ºQ because problem (3.23) has a continuous
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objective function, and this constraint γI ºQ can be dropped because the other semidefinite

constraints of (3.23) necessarily imply that γI ºQ. This completes the proof.

As a parallel counterpart to Lemma 3.21, the next lemma establishes the result regarding the

optimal mean vector and covariance matrix that solves the optimization problem involved in

the evaluation of the support function of Vρ(µ̂, Σ̂).

Lemma 3.23 (Extremal mean vectors and covariance matrices). Suppose that Σ̂Â 0 and either

• λmax(Q) > 0, or

• λmax(Q) < 0 and ρ2 ≤ Tr
[
Σ̂

]+‖µ̂+Q−1q/2‖2, or

• Q =−LL> 6= 0 for some L ∈Rn×k and ρ2 ≤ Tr
[
Σ̂L(L>L)−1L>]

.

Then there exists γ? ≥ 0 with γ?I ÂQ that solves the nonlinear algebraic equation

‖µ̂− (γI −Q)−1(q/2+γµ̂)‖2 +Tr
[
Σ̂

(
I −γ(γI −Q)−1)2 ]= ρ2, (3.24a)

and the value δ?
Vρ(µ̂,Σ̂)

(q,Q) is attained by (µ?,Σ?) ∈Rn ×Sn+ satisfying

µ? = (γ?I −Q)−1
(
γ?µ̂+ q

2

)
, Σ? =

(
I − Q

γ?

)−1

Σ̂

(
I − Q

γ?

)−1

. (3.24b)

Moreover, if Q º 0 then we have Σ? ºλmin(Σ̂)I .

Proof. It suffices to show that (µ?,Σ?) defined in (3.24b) is the maximizer of problem (3.17). If

ρ = 0, the asymptotic value γ? =+∞ solves (3.24a), thus we have µ? = µ̂, Σ? = Σ̂ and (µ?,Σ?)

is trivially optimal for problem (3.17) when ρ = 0. It remains to prove for the case ρ > 0.

The proof of Lemma 3.22 implies that evaluating the support function of Vρ(µ̂, Σ̂) is equivalent

to solving problem (3.23). Because Σ̂Â 0, we can re-express the SDP (3.23) using the Schur

complement reformulation of the SDP constraints as

δ?
Vρ(µ̂,Σ̂)

(q,Q) =
{

inf γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+γ2 Tr
[
(γI −Q)−1Σ̂

]+ (γµ̂+ q
2 )>[γI −Q]−1(γµ̂+ q

2 )

s. t. γ ∈R+, γI ÂQ.
(3.25)

Denote momentarily the objective function of (3.25) as f (γ). The gradient of f for any feasible

solution γ satisfies

∇γ f = ρ2 −Tr
[
Σ̂

(
I −γ(γI −Q)−1)2 ]−∥∥∥µ̂− (γI −Q)−1

(
γµ̂+ q

2

)∥∥∥2
.

Thus if γ? solves the nonlinear algebraic equation (3.24a), then γ? also solves the first-order

optimality condition of problem (3.25). This in turn implies that γ? is the minimizer of

problem (3.25).
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First, consider the case where λmax(Q) > 0. One can verify that as γ approaches λmax(Q), ∇γ f

tends to −∞, and as γ tends to infinity, ∇γ f tends to ρ2 > 0. This asserts that there exists

a finite value γ? that solves (3.24a). We are now ready to show that (µ?,Σ?) is feasible and

optimal in problem (3.17). Notice that

G
(
(µ?,Σ?), (µ̂, Σ̂)

)2 =
∥∥∥(γ?I −Q)−1

(
γ?µ̂+ q

2

)
− µ̂

∥∥∥2 +Tr
[
Σ̂

(
I −γ?(γ?I −Q)−1)2 ]= ρ2,

where the first equality follows from substituting the value of µ? and Σ? from (3.24b) into the

definition of the Gelbrich distanceG, and the second equality is because γ? solves (3.24a).

This implies that (µ?,Σ?) ∈ Uρ(µ̂, Σ̂). Finally, we show that (µ?,Σ?) will attain the value

δ?
Vρ(µ̂,Σ̂)

(q,Q). We find

Tr
[
QΣ?

]=Tr
[
Q(γ?)2(γ?I −Q)−1Σ̂(γ?I −Q)−1] (3.26a)

=Tr
[
(Q −γ?I +γ?I )(γ?)2(γ?I −Q)−1Σ̂(γ?I −Q)−1]

=− (γ?)2 Tr
[
(γ?I −Q)−1Σ̂

]+ (γ?)3 Tr
[
(γ?I −Q)−1Σ̂(γ?I −Q)−1]

=γ?(
ρ2 −‖µ̂− (γ?I −Q)−1(γ?µ̂+q/2)‖2 −Tr

[
Σ̂

]+γ?Tr
[
(γ?I −Q)−1Σ̂

])
(3.26b)

=γ?(
ρ2 −‖µ̂−µ?‖2 −Tr

[
Σ̂

]+γ?Tr
[
(γ?I −Q)−1Σ̂

])
(3.26c)

=γ?(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ (γ?)2 Tr
[
(γ?I −Q)−1Σ̂

]+2γ?µ̂>µ?−γ?‖µ?‖2,

where equality (3.26a) is from the definition of Σ? in (3.24b), equality (3.26b) follows from the

fact that γ? solves (3.24a) and thus we can write

−γ?Tr
[
(γ?I −Q)−1Σ̂

]+ (γ?)2 Tr
[
(γ?I −Q)−1Σ̂(γ?I −Q)−1]

= ρ2 −‖µ̂− (γ?I −Q)−1(q/2+γ?µ̂)‖2 −Tr
[
Σ̂

]+γ?Tr
[
(γ?I −Q)−1Σ̂

]
.

Finally, equality (3.26c) is from the definition of µ? in (3.24b). We thus find

q>µ?+Tr
[
Q(Σ?+µ?(µ?)>)

]
=γ?(

ρ2 −‖µ̂‖2 −Tr
[
Σ̂

])+ (γ?)2 Tr
[
(γ?I −Q)−1Σ̂

]+2(γ?µ̂+q/2)>µ?+ (µ?)>(Q −γ?I )µ?

=γ?(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ (γ?)2 Tr
[
(γ?I −Q)−1Σ̂

]+ (γ?µ̂+q/2)>(γ?I −Q)−1(γ?µ̂+q/2)

which equals the optimal value of the dual program (3.25) because γ? is also the minimizer

of problem (3.25). This implies that (µ?,Σ?) is optimal for the support function evaluation

problem of Vρ(µ̂, Σ̂).

Consider the case where λmax(Q) < 0 and ρ2 ≤ Tr
[
Σ̂

]+‖µ̂+Q−1q/2‖2. One can verify that as

γ approaches 0, ∇γ f tends to ρ2 −Tr
[
Σ̂

]−‖µ̂+Q−1q/2‖2 ≤ 0, and as γ tends to infinity, ∇γ f

tends to ρ2 > 0. This asserts that there exists a finite value γ? that solves (3.24a). Showing that

(µ?,Σ?) is feasible and optimal in (3.17) follows verbatim from the first part of the proof.

In the last case, consider the case where Q =−LL> 6= 0 for some L ∈Rn×k and ρ2 ≤ Tr
[
Σ̂

]
. The
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gradient of f can be re-expressed as

∇γ f = ρ2 −Tr
[
Σ̂

(
I −γ(γI +LL>)−1)2 ]−∥∥∥µ̂− (γI +LL>)−1

(
γµ̂+ q

2

)∥∥∥2

≤ ρ2 −Tr
[
Σ̂

(
I −γ(γI +LL>)−1)2 ]

.

Using the same calculation as in the proof of Lemma 3.21, we can show that as γ tends to 0, ∇γ f

tends to a non-positive value. This justifies the existence of γ? that solves equation (3.24a).

To show that Σ? º λmin(Σ̂)I whenever Q º 0, we can employ an analogous reasoning to the

last part of the proof of Lemma 3.21. This completes the proof.

To give an intuition for Lemma 3.23, note that the SDP (3.16) can be converted to an equivalent

nonlinear program (NLP) in the single decision variable γ by using Schur complements to

show that

z = (q +γµ̂)>(γI −Q)−1(q +γµ̂) and Z = γ2 Σ̂
1
2 (γI −Q)−1Σ̂

1
2

at optimality. The resulting NLP minimizes a strictly convex objective function that explodes

as γ drops to λmax(Q) or as γ tends to infinity. Equation (3.24a) represents its first-order

optimality condition, whose unique solution γ? can be computed efficiently to any precision

via bisection or the Newton-Raphson method.

Remark 3.24 (On the existence of the solution of (3.24a)). Consider the following one dimen-

sional example with Σ̂ = 1, µ̂ = 0.5, q = 1 and Q = −1. Evaluating the support function of

Vρ(µ̂, Σ̂) is equivalent to solving

sup
{
µ−‖µ‖2 −Tr

[
Σ

]
: µ ∈R, Σ ∈R+, ‖µ−0.5‖2 +Tr

[
1+Σ−2Σ

1
2
]≤ ρ2

}
.

If ρ > 1, we can easily verify that the optimal solution is µ? = 0.5, Σ? = 0. In this case, the

optimal solution (µ?,Σ?) lies strictly inside the feasible set prescribed by the Gelbrich distance

constraint, and thus there is no solution to the first-order optimality condition. Indeed, (3.24a)

becomes
1

(γ+1)2 = ρ2,

which admits a solution only if ρ2 ≤ 1. This example also shows that the condition q 6= 0 is not

sufficient to ensure the existence of γ? that solves (3.24a).

3.4 Risk Measures of Linear Portfolios

We study in this section the family of consistent risk measures which enjoys widespread

applications in risk management and finance [62]. We briefly review some basic properties of

a risk measure RQ.

Definition 3.25 (Properties of risk measures). A risk measure RQ : L→R∪ {+∞} satisfies the

condition of
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• translation invariance if RQ(`+λ) =RQ(`)+λ for any ` ∈ L, λ ∈R.

• positive homogeneity if RQ(λ`) =λRQ(`) for any λ≥ 0 and ` ∈ L.

• monotonicty if RQ(`1) ≤RQ(`2) for any `1,`2 ∈ L and `1 ≤ `2 Q-almost surely.

• convexity if RQ(λ`1 + (1−λ)`2) ≤λRQ(`1)+ (1−λ)RQ(`2) for any `1,`2 ∈ L,λ ∈ [0,1].

A risk measure RQ is monetary if it satisfies translation invariance and monotonicity. A

monetary risk measure is convex if it additionally satisfies the convexity condition. A convex

risk measure is coherent if it is also positive homogeneous.

We focus on a subset of loss functions that can be written as a linear function of the asset

returns ξ of the form `(ξ) = −w>ξ for some w ∈ Rn . To facilitate a rigorous exposition, we

define D as the (convex) set of cumulative distribution functions F on R. More specifically, D

contains all functions F :R→ [0,1], F is non-decreasing and right-continuous, limt↓−∞ F (t ) =
0, limt↑+∞ F (t ) = 1. For any information structure σ ∈S , we can in a straightforward manner

define Dσ ⊂D as the space of structural distribution functions that satisfy the finite second

moment (for σ= 2), symmetric (for σ= S), symmetric and linearly unimodal (for σ= SU), and

the elliptical distribution with generator function φ (for σ=φ) conditions correspondingly.

Using similar notation, Dσ(m, s2) will restrict Dσ to distribution functions whose underlying

random variable has fixed mean m ∈R and variance s2 ∈R+.

Under the assumption that the family of risk measures {RQ}Q∈Pσ
is consistent, there exists

a distributional risk measure % : Dσ → R defined over the space of cumulative distribution

functions such that

RQ1 (`1) = %(FQ1

`1
) = %(FQ2

`2
) =RQ2 (`2) ∀Q1,Q2 ∈Pσ, ∀`1,`2 ∈L such that FQ1

`1
= FQ2

`2
.

In this case, we say that % is translation invariant (monotone or positive homogeneous, respec-

tively) if RQ is translation invariant (monotone or positive homogeneous, respectively) for

any Q ∈Pσ. We first establish an auxiliary projection result, pioneered by [140, 177], which

binds the family of risk measures {RQ}Q∈Pσ
with its corresponding distribution function risk

measure %.

Proposition 3.26 (Univariate projection). For any µ ∈Rn and Σ ∈Sn+, if `(ξ) =−w>ξ for some

w ∈Rn , then for any σ ∈S , we have

sup
Q∈Pσ(µ,Σ)

RQ

(−w>ξ
)= sup

F∈Dσ(−w>µ,w>Σw)
%(F ).

Proof. To simplify the notations, we use the shorthands m =−w>µ and s2 = w>Σw ≥ 0. When

s = 0, the distribution of −w>ξ under any Q ∈ Pσ(µ,Σ) coincides with the distribution of a

random variables with value −w>µ almost surely, and the claim holds trivially. It suffices thus

to prove for the case when s2 > 0.
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In the first step, we prove the inclusion Dσ(m, s2) ⊆ {FQ−w>ξ : Q ∈ Pσ(µ,Σ)}. To this end, fix

any F ∈ Dσ(m, s2), we show that there exists a measure Q ∈ Pσ(µ,Σ) such that F ≡ FQ−w>ξ.

We prove this claim by construction. First, construct a probability space (Rn ,B(Rn),ν1) and

a univariate random variable η : Rn → R such that ν1(η ≤ t) = F (t), ∀t ∈ R. Using the one-

dimensional version of the mapping in the proof of [177, Theorem 1], we construct the auxiliary

n-dimensional random vector ζ :Rn →Rn such that

ξ=−s−2Σwη+ (I − s−2Σw w>)ζ. (3.27)

Construct another probability space (Rn ,B(Rn),νn) such that under νn , the random vector

ζ satisfies the information structure σ with mean vector µ and covariance matrix Σ. On the

product probability space (Rn ×Rn ,B(Rn)⊗B(Rn)), we define the product measure ν1 ×νn ,

the existence of which is guaranteed by the result of the Hahn-Kolmogorov theorem. On

(Rn ,B(Rn)), we can then deduce a probability measureQ from the product measure ν1 ×νn

under which ξ satisfies the information structure σ with mean vector µ and covariance matrix

Σ. The measureQ can be constructed using [30, Theorem 5.1.4] as

Q(ξ≤ τ) =
∫
R
νn

(
(I − s−2Σw w>)ζ≤ τ+ s−2Σw t

)
dν1(η≤ t )

=
∫
R
νn

(
(I − s−2Σw w>)ζ≤ τ+ s−2Σw t

)
dF (t )

for any τ ∈ Rn . By construction in (3.27), −w>ξ = η, and as a result, the distribution of

−w>ξ underQ is equivalent to F . From (3.27), it is easy to verify that underQ, ξ satisfies the

information structure σ with mean vector µ and covariance matrix Σ, soQ ∈Pσ(µ,Σ). Thus

for any distribution function F ∈ Dσ(m, s2), there exists a measure Q ∈ Pσ(µ,Σ) such that

F ≡ FQ−w>ξ.

Next, we prove the inverse inclusion, i.e., we will show that {FQ−w>ξ :Q ∈Pσ(µ,Σ)} ⊆Dσ(m, s2).

Fix any measureQ ∈Pσ(µ,Σ) and construct the cumulative distribution function F such that

F (t) = Q(−w>ξ ≤ t) for any t ∈ R. Because the information structure σ is preserved under

linear combination, we find F ∈ Dσ. Furthermore, by construction, F is the distribution

function of a random variable with mean m and variance s2. Thus, there exists F ∈Dσ(µ, s2)

such that F ≡ FQ−w>ξ, so {FQ−w>ξ :Q ∈Pσ(µ,Σ)} ⊆Dσ(m, s2) holds.

We have

sup
Q∈Pσ(µ,Σ)

RQ

(−w>ξ
)= sup

Q∈Pσ(µ,Σ)
%(FQ−w>ξ) = sup

F∈Dσ(−w>µ,w>Σw)
%(F ),

where the first equality follows from the consistency property of the family of risk measures,

and the second equality is from the equivalence Dσ(−w>µ, w>Σw) = {FQ−w>ξ :Q ∈Pσ(µ,Σ)}

established previously. Noticing that the proof is valid for any arbitrary σ and as such the

claim is proven whenever s > 0. This completes the proof.
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For a risk measure % defined over distribution function space and an information structure σ,

we define the standard risk coefficient α ∈R as the minimum uniform bound of the risk over

all standard distribution functions in Dσ with mean 0 and variance 1

α, sup
F∈Dσ(0,1)

%(F ). (3.28)

By construction, α depends only on the information structure σ and the risk measure %.

Moreover, the next result shows that under mild assumptions about %, the worst-case risk over

all distribution functions of arbitrary fixed mean m ∈R and standard deviation s ∈R+ can be

re-expressed as a linear function of the standard risk coefficient α as the result of the following

proposition.

Proposition 3.27 (Mean-Standard deviation reformulation). Suppose that the distributional

risk measure % is translation invariant and positive homogeneous. For any information struc-

ture σ ∈ S , if the standard risk coefficient α defined in (3.28) is non-negative, then for any

(m, s) ∈R×R+, we have

sup
F∈Dσ(m,s2)

%(F ) = m +αs.

Proof. To simplify the notation, define the worst-case risk function hσ :R×R+ →R as

hσ(m, s), sup
F∈Dσ(m,s2)

%(F ),

and thus the standard risk coefficient α defined in (3.28) satisfies α= hσ(0,1). For any F ∈D

and m ∈R, we define the m-shifted function F+m as F+m(t ), F (t −m) ∀t ∈R. For any F ∈D

and λ ∈ R++, we define the λ-scaled function Fλ as Fλ(t) , F (t/λ) ∀t ∈ R. For λ = 0, F0

coincides with the Heaviside function, which is the cumulative distribution function of a

random variable which equals 0 almost surely.

We first prove that hσ inherits a form of translation invariance and positive homogeneity from

%. We have

hσ(m, s) = sup
F∈Dσ(m,s2)

%(F ) = sup
F∈Dσ(m,s2)

{
%(F−m)+m

}= sup
F̃∈Dσ(0,s2)

%(F̃ )+m = hσ(0, s)+m,

where the first and last equality come from the definition of hσ, the second equality comes

from translation invariance of the risk measure %. For the third equality, notice that each F̃ ∈
Dσ(0, s2) is equivalent to a shifted distribution F−m of some F ∈Dσ(m, s2), and if F ∈Dσ(m, s2)

then F−m ∈Dσ(0, s2). Furthermore, for any λ> 0 we have

hσ(λm,λs) = sup
F∈Dσ(λm,λ2s2)

%(F ) = sup
F̃∈Dσ(m,s2)

%(F̃λ) =λ sup
F̃∈Dσ(m,s2)

%(F̃ ) =λhσ(m, s),

where the first and last equality come from the definition of hσ and the third equality comes

from positive homogeneity of the risk measure %. For the second equality, notice that for
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any F̃ ∈Dσ(m, s2), its scaled distribution F̃λ is equivalent to some F ∈Dσ(λm,λ2s2), and any

F ∈Dσ(λm,λ2s2) is equivalent to the scaled distribution F̃λ of some F̃ ∈Dσ(m, s2). For λ= 0,

the above relationship holds trivially because % is positive homogeneous and thus %(F0) = 0 by

normalization.

In the second part of the proof, for any λ> 0 we find

λ (hσ(0, s)+m) =λhσ(m, s) = hσ(λm,λs) = hσ(0,λs)+λm =⇒ hσ(0,λs) =λhσ(0, s).

Substituting s = 1 into the above equation gives hσ(0,λ) =λhσ(0,1) =αλ which then implies

hσ(0, s) = αs. The proof is now completed by noticing that when λ = 1, we have hσ(m, s) =
hσ(0, s)+m =αs +m.

We are now ready to present the main theorem of this section which provides the tractable

reformulation of the Gelbrich risk under some conditions of the risk measure family {RQ}Q∈Pσ
.

Theorem 3.28 (Gelbrich risk of linear portfolios). Given any information structure σ ∈ S ,

suppose that {RQ}Q∈Pσ
is a consistent family of translation invariant and positive homogeneous

risk measures with the corresponding distributional risk measure %, and that the standard risk

coefficient α defined in (3.28) satisfies 0 ≤α<+∞. Then the Gelbrich risk of the linear portfolio

loss `(ξ) =−w>ξ admits the following closed-form expression

sup
Q∈Gρ,σ(µ̂,Σ̂)

RQ

(−w>ξ
)=−µ̂>w +α

√
w>Σ̂w +ρ

√
1+α2‖w‖. (3.29)

If σ=φ and P̂=Pφ(µ̂, Σ̂), then the Wasserstein risk of a linear portfolio is equal to the Gelbrich

risk.

Proof. We can write the Gelbrich risk for a linear portfolio loss as

sup
Q∈Gρ,σ(µ̂,Σ̂)

RQ(−w>ξ) = sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
Q∈Pσ(µ,Σ)

RQ(−w>ξ) (3.30a)

= sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
Q∈Pσ(µ,Σ)

%
(
FQ−w>ξ

)
(3.30b)

= sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
F∈Dσ(−µ>w,w>Σw)

%(F ) (3.30c)

= sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

−µ>w +α
√

w>Σw (3.30d)

=
 sup

µ,Σº0
−µ>w +α

p
w>Σw

s. t. ‖µ− µ̂‖2 +Tr
[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]≤ ρ2,

where equality (3.30a) is the result of the decomposition (3.8a), equality (3.30b) utilizes the

consistency property of the family of risk measures, equality (3.30c) and (3.30c) are the results
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of Proposition 3.26 and Proposition 3.27 respectively. The last equality follows from the

definition of the uncertainty set Uρ(µ̂, Σ̂).

Consider the case when ρ > 0 and α > 0. Using a duality argument, the Gelbrich risk is

equivalent to

sup
µ,Σº0

inf
γ≥0

−µ>w +α
√

w>Σw +γ
[
ρ2 −‖µ− µ̂‖2 −Tr

[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]]

= inf
γ≥0

sup
µ,Σº0

−µ>w +α
√

w>Σw +γ
[
ρ2 −‖µ− µ̂‖2 −Tr

[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]]

(3.31a)

= inf
γ≥0

{
γ
(
ρ2 −Tr

[
Σ̂

])+ sup
µ,Σº0

{
−µ>w −γ‖µ− µ̂‖2 +α

√
w>Σw +γTr

[−Σ+2
(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]}}

= inf
γ≥0

{
γ
(
ρ2 −Tr

[
Σ̂

])+ sup
µ

{−µ>w −γ‖µ− µ̂‖2}+ sup
Σº0

{
α

√
w>Σw +γTr

[−Σ+2
(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]}}

where equality (3.31a) is from strong duality which holds because (µ̂, Σ̂) constitutes a Slater

point for the convex primal problem (3.30). For the supremum subproblem over µ, we can

employ an epigraphical formulation to show that for any γ≥ 0

sup
µ

{−µ>w −γ‖µ− µ̂‖2}=−µ̂>w + ‖w‖2

4γ
,

where for γ= 0, the expression on the right hand side is understood in the limit sense as γ

tends to 0. The supremum subproblem over Σ is equivalent to a convex optimization problem

sup
t ,Σ

αt +γTr
[−Σ+2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]

s. t. t ≥ 0, Σº 0, t 2 −w>Σw ≤ 0.

This optimization problem satisfies the Slater’s condition. Suppose momentarily that Σ̂Â 0.

Using a duality argument, the above optimization problem is equivalent to

sup
t≥0,Σº0

inf
λ≥0

αt +γTr
[−Σ+2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]+λ(w>Σw − t 2)

= inf
λ≥0

sup
t≥0,Σº0

αt −λt 2 +Tr
[
Σ(λw w>−γI )

]+2γTr
[(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]

(3.32a)

= inf
λ≥0

sup
t≥0,Bº0

{
αt −λt 2 +2γTr

[
B

]+Tr
[
B 2∆

]}
, (3.32b)

where equality (3.32a) follows from strong duality. In (3.32b), we have used the following

change of variable B 2 ← Σ̂
1
2ΣΣ̂

1
2 and thus we can rewrite Σ= Σ̂− 1

2 B 2Σ̂− 1
2 which is valid thanks

to the invertibility of Σ̂ and define∆, Σ̂− 1
2 (λw w>−γI )Σ̂− 1

2 . The inner maximization problem

is separable in t and B , and the joint first order condition is{
α−2λt? = 0

B?∆+∆B?+2γI = 0.
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The first condition requires that λ > 0, and in this case it implies that t? = α/(2λ) > 0. A

necessary condition for the optimal value of B is that 0 Â ∆, which in turns requires γI −
λw w> Â 0, or equivalently λ< γ‖w‖2. Under that condition, the optimal value of B is B? =
−γ∆−1, which further can be shown to be unique [83, Theorem 12.5]. Problem (3.32b) can be

reformulated as

inf
0<λ<γ‖w‖−2

{
α2

4λ
+γ2 Tr

[
Σ̂

1
2 (γI −λw w>)−1Σ̂

1
2
]} = inf

0<λ<γ‖w‖−2

{
α2

4λ
+γTr

[
Σ̂

]+ w>Σ̂w
1
λ − 1

γ‖w‖2

}

= γTr
[
Σ̂

]+ α2

4

‖w‖2

γ
+α

√
w>Σ̂w ,

where the first equality is by applying the Sherman-Morrison formula [12, Corollary 2.8.8] to

rewrite the matrix inversion. The optimal solution λ? of the infimum problem satisfies

1

λ?
= ‖w‖2

γ
+ 2

α

√
w>Σ̂w

which leads us to the second equality. As a consequence, Gelbrich risk admits an equivalent

reformulation

sup
Q∈Gρ,σ(µ̂,Σ̂)

RQ(−w>ξ) = inf
γ>0

{
−µ̂>w +α

√
w>Σ̂w +γρ2 + 1+α2

4

‖w‖2

γ

}
(3.33a)

=−µ̂>w +α
√

w>Σ̂w +ρ
√

1+α2‖w‖, (3.33b)

where the optimal solution for γ in the infimum problem (3.33a) is γ? = (2ρ)−1
p

1+α2‖w‖,

and replacing γ? into (3.33a) gives the expression (3.33b) when Σ̂Â 0, α> 0 and ρ > 0. One

can readily verify that the reformulation (3.33b) is also valid under a more general condition

where α≥ 0 and ρ ≥ 0.

We complete the proof by extending the reformulation (3.33b) to the case when Σ̂º 0. Denote

by J (Σ̂) the Gelbrich risk parametrized by Σ̂, that is,

J (Σ̂),

 sup
µ,Σº0

−µ>w +α
p

w>Σw

s. t. ‖µ− µ̂‖2 +Tr
[
Σ+ Σ̂−2

(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]≤ ρ2.

By Berge’s maximum theorem [11, pp. 115-116], J is continuous over the domain Sn+. Let

J̄ (Σ̂) =−µ̂>w+α
√

w>Σ̂w+ρ
p

1+α2‖w‖, which is a continuous function overSn+. Previously,

we have shown that J (Σ̂) = J̄ (Σ̂) for any Σ̂Â 0, and as such we can conclude that J (Σ̂) = J̄ (Σ̂)

for any Σ̂ ∈Sn+ because both J and J̄ are continuous over Sn+.

We note that when σ=φ, the Wasserstein risk equals to the Gelbrich risk, which is a direct

consequence of Corollary 3.14. This completes the proof.

When α< 0, the reformulation of the Gelbrich risk measure involves solving a non-convex
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optimization problem, thus in this case the reformulation is not available. We can show that

the standard risk coefficient α defined in (3.28) is non-negative whenever % is a coherent risk

measure.

Lemma 3.29 (Non-negative standard risk coefficient). If % is a coherent distributionally risk

measure, then the standard risk coefficient α defined in (3.28) is non-negative for any σ ∈S .

Proof. Fix a distribution F ∈Dσ(0,1) such that F is the distribution of w>ξ under a symmetric

probability measureQ ∈Pσ. Denote by F− the distribution of −w>ξ underQ. By construction,

we have F− ∈Dσ(0,1), and becauseQ is a symmetric measure, we have F ≡ F−. Let RQ be the

risk measure constructed from % (cf. Remark 3.8). We find

0 =RQ(0) =RQ(0.5w>ξ−0.5w>ξ) ≤ 0.5RQ(w>ξ)+0.5RQ(−w>ξ) = 0.5%(F )+0.5%(F−) = %(F ),

where the first equality follows from the normalization of the coherent risk measure, the

inequality is due to the convexity of the risk measure, and the last equality follows from the

fact that F ≡ F−. The claim thus follows.

Using Theorem 3.28, given that the portfolio manager’s (ambiguous) risk attitude can be

represented using a family of consistent risk measures which are translation invariant and

positive homogeneous with standard risk coefficient α≥ 0, the problem of finding a portfolio

weight that minimizes the Gelbrich risk can be written as

min
w∈W

sup
Q∈Gρ,σ(P̂)

RQ(−w>ξ) = min
w∈W

{
−µ̂>w +α

√
w>Σ̂w +ρ

√
1+α2‖w‖

}
. (3.34)

From Corollary 3.14, the optimal value of the above optimization problem provides a con-

servative approximation for the optimal Wasserstein risk of the best portfolio in W . For any

ρ > 0, the objective function of the optimization problem on the right hand side of (3.34)

is convex in w , and thus problem (3.34) can be efficiently solved using off-the-shelf conic

programming solvers provided that the set of feasible portfolio allocations W is representable

using semidefinite constraints.

For a specific feasible set W , the optimizer of the portfolio optimization problem that min-

imizes the Gelbrich risk (3.34) can be shown to converge to a 1/n-uniform portfolio as the

degree of ambiguity increases. This phenomenon was first formally proven in [138] for a

specific class of convex risk measures under the Wasserstein ambiguity set.

Corollary 3.30. Suppose that W = {w ∈Rn+ : e>w = 1}, where e is a vector of ones. As the level of

ambiguity ρ tends to ∞, the optimal portfolio that minimizes the Gelbrich risk in problem (3.34)

converges to the 1/n-uniform portfolio.

Proof. As ρ approaches ∞, the term ρ
p

1+α2‖w‖ dominates the other terms in the objective

function of (3.34). Thus, the minimizer of problem (3.34) converges to the minimizer of the
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following problem

min {‖w‖ : w ∈Rn
+, e>w = 1},

which can be shown to be the uniform portfolio. This completes the proof.

We now provide some examples of the Gelbrich risk corresponding to popular risk measures

in the literature, along with its reformulation. For a probability measureQ, the Value-at-Risk

(VaR) at the risk level β ∈ (0,1) of a portfolio loss `(ξ) is defined as

Q-VaRβ(`(ξ)), inf
{
τ ∈R :Q(τ≤ `(ξ)) ≤β}

.

Even though VaR is neither a coherent nor a convex risk measure because it does not satisfy the

sub-additivity condition, VaR is still considered as an industry standard measure of risk [31].

Because VaR satisfies translation invariance and positive homogeneity, the Gelbrich risk for

the family of VaR risk measures {RQ}Q∈Pσ
, where RQ is Q-VaRβ for each Q ∈ Pσ can be

conveniently constructed using the results established previously in this section.

Lemma 3.31 (Gelbrich Value-at-Risk). For any β ∈ (0,1) and σ ∈S , the Gelbrich VaR of a loss

`(ξ) is

sup
Q∈Gρ,σ(µ̂,Σ̂)

Q-VaRβ(`(ξ)) = inf

{
τ ∈R : sup

Q∈Gρ,σ(µ̂,Σ̂)

Q(τ≤ `(ξ)) ≤β
}

. (3.35)

Moreover, the Gelbrich VaR for a linear portfolio loss `(ξ) =−w>ξ admits the following expres-

sions:

(i) Suppose that σ= 2. If β ∈ (0,1), then α=√
(1−β)/β and

sup
Q∈Gρ,2(µ̂,Σ̂)

Q-VaRβ(−w>ξ) =−µ̂>w +
√

1−β
β

√
w>Σ̂w + ρ√

β
‖w‖.

(ii) Suppose that σ= S. If β ∈ (0, 1
2 ), then α=√

1/(2β) and

sup
Q∈Gρ,S(µ̂,Σ̂)

Q-VaRβ(−w>ξ) =−µ̂>w +
√

1

2β

√
w>Σ̂w +ρ

√
1+ 1

2β
‖w‖.

If β ∈ [ 1
2 ,1), then α= 0 and

sup
Q∈Gρ,S(µ̂,Σ̂)

Q-VaRβ(−w>ξ) =−µ̂>w +ρ‖w‖.

(iii) Suppose that σ= SU. If β ∈ (0, 1
2 ), then α= 2/(3

√
2β) and

sup
Q∈Gρ,SU(µ̂,Σ̂)

Q-VaRβ(−w>ξ) =−µ̂>w + 2

3

√
1

2β

√
w>Σ̂w +ρ

√
1+ 2

9β
‖w‖.
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If β ∈ [ 1
2 ,1), then α= 0 and

sup
Q∈Gρ,SU(µ̂,Σ̂)

Q-VaRβ(−w>ξ) =−µ̂>w +ρ‖w‖.

(iv) Suppose that σ=φ. If β ∈ (0, 1
2 ], then α= F−1

φ (1−β) and

sup
Q∈Gρ,φ(µ̂,Σ̂)

Q-VaRβ(−w>ξ) =−µ̂>w +F−1
φ (1−β)

√
w>Σ̂w +ρ

√
1+ (F−1

φ
(1−β))2‖w‖.

where Fφ is the cumulative distribution function of a univariate standard elliptical

distribution with mean 0, variance 1 and characteristic generator φ.

Proof. For each information structure σ ∈ {2,S,SU}, the corresponding value of the standard

risk coefficient α can be found in [177, Proposition 1]. The analytical expression for each case

is a direct application of Theorem 3.28.

For σ=φ, the standard elliptical distribution with characteristic generator φ of mean 0 and

variance 1 admits a well-defined cumulative density function Fφ, and α is defined using the

1−β quantile value α= F−1
φ (1−β). This completes the proof.

Contrary to VaR, the Conditional Value-at-Risk (CVaR) is a coherent risk measure [144]. For a

probability measureQ, the CVaR at the risk level β ∈ (0,1) for a portfolio loss `(ξ) is defined as

Q-CVaRβ(`(ξ)), inf
τ∈R

{
τ+ 1

β
EQ

[
(`(ξ)−τ)+

]}
,

where (`(ξ)−τ)+ = max{0,`(ξ)−τ}. The next lemma establishes the analytical expressions for

the Gelbrich CVaR for different information structures.

Lemma 3.32 (Gelbrich Conditional Value-at-Risk). For any β ∈ (0,1) and σ ∈S , the Gelbrich

CVaR of a loss `(ξ) is

sup
Q∈Gρ,σ(µ̂,Σ̂)

Q-CVaRβ(`(ξ)) = inf
τ∈R

{
τ+ 1

β
sup

Q∈Gρ,σ(µ̂,Σ̂)

EQ
[
(`(ξ)−τ)+

]}
.

Moreover, the Gelbrich CVaR for a linear portfolio loss `(ξ) = −w>ξ admits the following

expressions:

(i) Suppose that σ= 2. If β ∈ (0,1), then α=√
(1−β)/β and

sup
Q∈Gρ,2(µ̂,Σ̂)

Q-CVaRβ(−w>ξ) =−µ̂>w +
√

1−β
β

√
w>Σ̂w + ρ√

β
‖w‖.
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(ii) Suppose that σ= S. If β ∈ (0, 1
2 ], then α=√

1/(2β) and

sup
Q∈Gρ,S(µ̂,Σ̂)

Q-CVaRβ(−w>ξ) =−µ̂>w +
√

1

2β

√
w>Σ̂w +ρ

√
1+ 1

2β
‖w‖.

If β ∈ [ 1
2 ,1) then α=√

1−β/(
p

2β) and

sup
Q∈Gρ,S(µ̂,Σ̂)

Q-CVaRβ(−w>ξ) =−µ̂>w +
√

1−β
2β2

√
w>Σ̂w +ρ

√
1+ 1−β

2β2 ‖w‖.

(iii) Suppose that σ= SU. If β ∈ (0, 1
3 ], then α= 2/(3

√
β) and

sup
Q∈Gρ,SU(µ̂,Σ̂)

Q-CVaRβ(−w>ξ) =−µ̂>w + 2

3
√
β

√
w>Σ̂w +ρ

√
1+ 4

9β
‖w‖.

If β ∈ [ 1
3 , 2

3 ], then α=p
3(1−β) and

sup
Q∈Gρ,SU(µ̂,Σ̂)

Q-CVaRβ(−w>ξ) =−µ̂>w +p
3(1−β)

√
w>Σ̂w +ρ

√
1+3(1−β)2‖w‖.

If β ∈ [ 2
3 ,1) then α= 2

√
1−β/(3β) and

sup
Q∈Gρ,SU(µ̂,Σ̂)

Q-CVaRβ(−w>ξ) =−µ̂>w + 2
√

1−β
3β

√
w>Σ̂w +ρ

√
1+ 4(1−β)

9β2 ‖w‖.

(iv) Suppose that σ = φ, where φ(u) = exp(−u/2) represents the characteristic generator of

Gaussian distribution. If β ∈ (0, 1
2 ), then α= (β

p
2π)−1 exp(−z2

β
/2), where zβ is the upper

β-percentile of the standard Gaussian distribution.

sup
Q∈Gρ,φ(µ̂,Σ̂)

Q-CVaRβ(−w>ξ) =−µ̂>w +
exp(−z2

β
/2)

p
2πβ

√
w>Σ̂w +ρ

√√√√
1+

exp(−z2
β

)

2πβ2 ‖w‖.

Proof. For each information structure σ ∈ S , the corresponding value of the standard risk

coefficient α can be found in [177, Proposition 2]. The analytical expression for each case is a

direct application of Theorem 3.28.

The closed-form expression for the Gelbrich CVaR for other family of elliptical distributions

also exists but it is case dependent. Next, we consider the family of spectral risk measure

proposed by [1].

Definition 3.33 (Spectral risk measure [1]). A distributional risk measure %ψ is called a spectral
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risk measure with spectrum ψ ∈A if

%ψ(F ) =
∫ 1

0
ψ(β)F−1(β)dβ,

where F−1(β) = inf{q : F (q) ≥β} and A is the set of all possible spectra

A ,
{
ψ : [0,1) →R+

∣∣∣∫ 1

0
ψ(β)dβ= 1,ψ: right continuous, monotonically nondecreasing

}
.

Lemma 3.34 (Gelbrich spectral risk). Suppose that σ= 2 and that the family of risk measures

{RQ}Q∈P2 admits a spectral distributional risk measure %ψ with spectrum ψ. If ψ is square

integrable, then the Gelbrich spectral risk of a linear portfolio loss `(ξ) =−w>ξ is

sup
Q∈Gρ,2(µ̂,Σ̂)

RQ

(−w>ξ
)=−µ̂>w +α

√
w>Σ̂w +ρ

√
1+α2‖w‖, (3.36)

where α=
√∫ 1

0 ψ(β)2dβ−1 ≥ 0.

Proof. Because a spectral risk measure is coherent [1], it is therefore translation invariant and

positive homogeneous. Hence, we can apply a similar decomposition as (3.30) to have

sup
Q∈Gρ,2(µ̂,Σ̂)

RQ

(−w>ξ
)= sup

(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
F∈D2(−µ>w,w>Σw)

%ψ (F )

= sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

{
−µ>w +α

√
w>Σw

}
,

where the last equality is a direct application of [110, Theorem 2] withα=
√∫ 1

0 ψ(β)2dβ−1 ≥ 0.

The reformulation of the last supremum problem follows the same procedure as the proof of

Theorem 3.28. This completes the proof.

The CVaR risk measure at the risk level β ∈ (0,1) is also a spectral risk measure with spectrum

ψ(β) = β−1
1[1−β,1)(β), and thus

∫ 1
0 ψ(β)2dβ= β−1. One can easily verify that the expression

for the Gelbrich CVaR with σ= 2 in Lemma 3.32 coincides with that for the Gelbrich CVaR

using the spectral risk property in Lemma 3.34.

Interestingly, there is a tight connection between a coherent risk measure and the family

of spectral risk measures. More specifically, the Kusuoka representation dictates that any

coherent risk measure can be expressed as a supremum risk of a subset of admissible spectral

risk measures.

Definition 3.35 (Kusuoka representation [101, 154]). Any distributional coherent risk measure

% admits the following representation

%(F ) = sup
ψ∈Ψ

%ψ(F ) ∀F ∈D2,
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where Ψ⊆A is a set of admissible spectra.

Using the Kusuoka representation, the Gelbrich risk can be generalized to any consistent

family of coherent risk measures by the result of the following lemma.

Lemma 3.36 (Gelbrich coherent risk). Suppose that σ= 2 and that the family of risk measures

{RQ}Q∈P2 admits a coherent distributional risk measure % with a Kusuoka representation using

admissible spectra Ψ. If ψ is square integrable for all ψ ∈Ψ, then the Gelbrich coherent risk of a

linear porfolio loss `(ξ) =−w>ξ is

sup
Q∈Gρ,2(µ̂,Σ̂)

RQ

(−w>ξ
)=−µ̂>w +α

√
w>Σ̂w +ρ

√
1+α2‖w‖, (3.37)

where α=
√

supψ∈Ψ
∫ 1

0 ψ(β)2dβ−1 ≥ 0.

Proof. Because % is translation invariant and positive homogeneous, we can apply a similar

decomposition as (3.30) to have

sup
Q∈Gρ,2(µ̂,Σ̂)

RQ

(−w>ξ
)= sup

(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
F∈D2(−µ>w,w>Σw)

%ψ (F )

= sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

{
−µ>w +α

√
w>Σw

}
,

where the last equality is a direct application of [110, Theorem 3] with

α=
√√√√sup

ψ∈Ψ

∫ 1

0
ψ(β)2dβ−1 ≥ 0.

Reformulating the last supremum problem as in the proof of Theorem 3.28 completes the

proof.

It is often instructive to construct the extremal probability measure that attains the optimal

value of the Gelbrich risk measure. Given a portfolio allocation w ∈ Rn , let Q? ∈ Pσ be the

extremal probability measure associated with the linear portfolio loss `(ξ) =−w>ξ, that is,

Q?, arg max
Q∈Gρ,σ(µ̂,Σ̂)

RQ(`).

The next proposition characterizesQ? up to its first- and second-moment information.

Proposition 3.37 (Extremal mean vector and covariance matrix). Suppose that the conditions

of Theorem 3.28 hold. The extremal distribution Q? that attains the Gelbrich risk has mean

vector µ? ∈Rn and covariance matrix Σ? ∈Sn+, where

µ? = µ̂− ρp
1+α2‖w‖

w, andΣ? =
(

I + ραw w>
p

1+α2‖w‖
√

w>Σ̂w

)
Σ̂

(
I + ραw w>

p
1+α2‖w‖

√
w>Σ̂w

)
.
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Furthermore, if σ=φ and P̂=Pφ(µ̂, Σ̂), then Q? =Pφ

(
µ?,Σ?

)
attains both the Gelbrich risk

and the Wasserstein risk.

Proof. From the proof of Theorem 3.28, we find

sup
Q∈Gρ,σ(µ̂,Σ̂)

RQ

(−w>ξ
)= sup

(µ,Σ)∈Uρ(µ̂,Σ̂)

−µ>w+α
√

w>Σw =−µ̂>w+α
√

w>Σ̂w+ρ
√

1+α2‖w‖,

thus it suffices to show that (µ?,Σ?) is the optimal solution of the optimization problem

max
(µ,Σ)∈Uρ(µ̂,Σ̂)

{
−µ>w +α

√
w>Σw

}
.

Indeed, by using the definition of the Gelbrich distanceG in Definition 3.9, we have

G
(
(µ?,Σ?), (µ̂, Σ̂)

)2 = ‖µ?− µ̂‖2 +Tr
[
Σ̂+Σ?−2

(
Σ̂

1
2Σ?Σ̂

1
2
) 1

2
]

= ρ2

1+α2 +Tr

[
Σ̂

ρ2α2w w>w w>

(1+α2)‖w‖2w>Σ̂w

]
= ρ2

1+α2 + ρ2α2

1+α2 = ρ2,

where the second equality utilizes the definition of µ? and Σ? in the statement of the proposi-

tion. This implies that (µ?,Σ?) ∈Uρ(µ̂, Σ̂). Furthermore, we find

−(µ?)>w +α
√

w>Σ?w =−µ̂>w + ρ‖w‖p
1+α2

+α
√(√

w>Σ̂w + ραp
1+α2

‖w‖
)2

=−µ̂>w +α
√

w>Σ̂w +ρ
√

1+α2‖w‖,

which coincides with the value of the Gelbrich risk.

Ifσ=φ, thenQ? =Pφ(µ?,Σ?) belongs to the Gelbrich hullGρ,φ(µ̂, Σ̂) and thus it is an extremal

distribution for the Gelbrich risk. The claim for the Wasserstein risk holds trivially because

Gρ,φ(µ̂, Σ̂) =Bρ,φ(P̂).

Proposition 3.37 only characterizes the first two moments of the extremal distribution Q?.

Since the projection constructed in the proof of Proposition 3.26 is potentially many-to-one,

there may exist multiple extremal distributions in the Gelbrich hull Gρ,σ(µ̂, Σ̂) that share the

same extremal mean vector and covariance matrix (µ?,Σ?) specified by Proposition 3.37. Once

the information structure is elliptical σ=φ, we can uniquely identify the extremal probability

measure. We conclude this section with two remarks regarding the reformulation of the worst-

case linear single chance constraint and the connection between the Gelbrich risk and robust

optimization.

Remark 3.38 (Distributionally robust linear chance constraint). The Gelbrich VaR provides a

straightforward reformulation for the worst-case linear chance constraint over the Gelbrich hull
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Gρ,σ(µ̂, Σ̂) as follows{
w ∈Rn : inf

Q∈Gρ,σ(µ̂,Σ̂)
Q(−w>ξ≤ b) ≥ 1−β

}
=

{
w ∈Rn : sup

Q∈Gρ,σ(µ̂,Σ̂)

Q-VaRβ(−w>ξ) ≤ b

}

for any β ∈ (0,1). Replacing the reformulation of the Gelbrich VaR in Lemma 3.31 corresponding

to the information structure σ provides the reformulation of the Gelbrich chance constrained

feasible set.

Remark 3.39 (Connection with robust optimization). The reformulation of the Gelbrich risk of

a linear portfolio loss (3.29) is equivalent to the robust counterpart of

sup
u∈U

u>w,

where the uncertainty set U is defined as

U=
{

u ∈Rn : ∃u1 ∈Rn ,u2 ∈Rn such that ‖u1‖ ≤α,‖u2‖ ≤ ρ
√

1+α2,u = Σ̂ 1
2 u1 +u2 + µ̂

}
.

Remark 3.40 (Factor model). For practical purposes, it is common to assume that the return of

k stocks η ∈Rk can be decomposed using a factor model with n ¿ k components as η= Aξ for

some A ∈Rk×n . If the Wasserstein ball Bρ,σ(P̂) and the Gelbrich hull Gρ,σ(µ̂, Σ̂) are constructed

over the factor ξ, the result of Theorem 3.28 can be applied in a straightforward manner to

provide the reformulation for the Gelbrich risk of the linear portfolio `(ξ) =−w>Aξ for some

portfolio allocation w ∈Rk as

sup
Q∈Gρ,σ(µ̂,Σ̂)

RQ

(−w>Aξ
)=−µ̂>A>w +α

√
w>AΣ̂A>w +ρ

√
1+α2‖A>w‖.

The portfolio optimization problem that searches for the optimal allocation w ∈Rk remains

convex provided that the feasible portfolio allocation set is convex, and it is tractably solvable if

the feasible portfolio allocation set is SDP representable.

3.5 Reformulations of Worst-case Expected Loss Risks

In Section 3.4, we have studied thoroughly the Gelbrich risk of a linear loss function with

different structural information σ. Throughout this section, we attempt to evaluate the risk of

a nonlinear loss function. Towards this end, we restrict the setting to σ= 2 and consider the

family of risk measures {RQ}Q∈P2 where RQ is defined as the expect loss, that is,

RQ(`) =EQ[`(ξ)] ∀Q ∈P2.

By construction, this family of expectation risk measures satisfies the consistency property in

Definition 3.7. Following the results of Corollary 3.14, given the nominal distribution P̂with
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mean µ̂ ∈Rn and covariance matrix Σ̂ ∈Sn+, the Wasserstein expected loss

sup
Q∈Bρ,2(P̂)

EQ[`(ξ)]

is upper bounded by the Gelbrich expected loss

sup
Q∈Gρ,2(µ̂,Σ̂)

EQ[`(ξ)]. (3.38)

Consequently, this section will focus on the Gelbrich expected loss as a tractable conservative

approximation of the Wasserstein expected loss. We can employ (3.8) to decompose the

worst-case expected loss under the Gelbrich hull Gρ,2(µ̂, Σ̂) into two consecutive maximization

problems

sup
Q∈Gρ,2(µ̂,Σ̂)

EQ[`(ξ)] = sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
Q∈P2(µ,Σ)

EQ[`(ξ)],

which offers a systematic approach to derive convex reformulations. A tractable SDP reformu-

lation is available, for example, when the loss function `(ξ) is a pointwise maximum of finitely

many (possibly indefinite) quadratic functions.

Theorem 3.41 (Piecewise quadratic loss I). Assume that `(ξ) = max j∈[J ]{ξ>Q jξ+2q>
j ξ+q0

j }

with Q j ∈Sn , q j ∈Rn , and q0
j ∈R for any j ∈ [J ] is a piecewise quadratic loss function. If σ= 2,

µ̂ ∈Rn and Σ̂ ∈Sn+, then for any ρ ∈R++, the Gelbrich expected loss is equal to the optimal value

of a tractable semidefinite program, that is,

sup
Q∈Gρ,2(µ̂,Σ̂)

EQ[`(ξ)] =



inf y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. γ ∈R+, y0 ∈R, y ∈Rn , Y ∈Sn , z ∈R+, Z ∈Sn+[
γI −Y γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0[

Y −Q j y −q j

y>−q>
j y0 −q0

j

]
º 0 ∀ j ∈ [J ].

(3.39)

Proof. By applying the decomposition (3.8a), we find

sup
Q∈Gρ,2(µ̂,Σ̂)

EQ[`(ξ)] = sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
Q∈P2(µ,Σ)

EQ[`(ξ)].

We can appply [183, Lemma A.1] to construct the dual of the inner supremum problem as

sup
Q∈P2(µ,Σ)

EQ [`(ξ)] ≤


inf y0 +2y>µ+Tr

[
Y (Σ+µµ>)

]
s. t. y0 ∈R, y ∈Rn , Y ∈Sn

y0 +2y>ξ+ξ>Y ξ≥ `(ξ) ∀ξ ∈Rn ,

(3.40)

where the inequality is tight whenever ΣÂ 0 thanks to the strong duality result [86]. Let Y be
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the convex feasible set defined by

Y = {
y0 ∈R, y ∈Rn , Y ∈Sn : y0 +2y>ξ+ξ>Y ξ≥ `(ξ) ∀ξ ∈Rn}

=
{

y0 ∈R, y ∈Rn , Y ∈Sn :

[
Y −Q j y −q j

y>−q>
j y0 −q0

j

]
º 0 ∀ j ∈ [J ]

}
,

where the equality is obtained by simply substituting the expression of the loss function and

formulating the quadratic constraints using semidefinite constraints. We now have

sup
Q∈Gρ,2(µ̂,Σ̂)

EQ [`(ξ)] = sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
Q∈P2(µ,Σ)

EQ [`(ξ)] (3.41a)

≤ sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

inf
(y0,y,Y )∈Y

y0 +2y>µ+Tr
[
Y (Σ+µµ>)

]
(3.41b)

= sup
(µ,M)∈Vρ(µ̂,Σ̂)

inf
(y0,y,Y )∈Y

y0 +2y>µ+Tr
[
Y M

]
(3.41c)

= inf
(y0,y,Y )∈Y

sup
(µ,M)∈Vρ(µ̂,Σ̂)

y0 +2y>µ+Tr
[
Y M

]
(3.41d)

= inf
(y0,y,Y )∈Y

{
y0 + sup

(µ,M)∈Vρ(µ̂,Σ̂)

2y>µ+Tr
[
Y M

]}
= inf

(y0,y,Y )∈Y

{
y0 +δ?Vρ(µ̂,Σ̂)

(2y,Y )
}

,

where the inequality (3.41b) is from the weak duality result of the inner supremum problem

established in (3.40), and the equality (3.41c) follows from the equivalence of the uncertainty

set Uρ(µ̂, Σ̂) and Vρ(µ̂, M̂) with M̂ = Σ̂+ µ̂µ̂>. Finally, equality (3.41d) is due to Sion’s minimax

theorem [156, Corollary 3.3]. By replacing the reformulation of the support function for

Vρ(µ̂, Σ̂) evaluated at (2y,Y ) using Lemma 3.22, we have established that the infimum problem

in (3.39) is the upper bound of the worst-case expected loss.

In the second part of the proof, we show that the bound is actually tight, which means the

inequality in (3.41b) holds with equality. Denote momentarily by f the optimal value of the

inner infimum in (3.41c), that is,

f (µ, M), inf
(y0,y,Y )∈Y

y0 +2y>µ+Tr
[
Y M

]
.

By definition, f is the pointwise infimum of upper semicontinuous functions, thus f is upper

semicontinuous [3, Lemma 2.41]. Furthermore, by virtue of Proposition 3.17, Vρ(µ̂, Σ̂) is a

compact set. Thus the set of optimizers of the supremum problem (3.41c) is non-empty [3,

Theorem 2.43] and (3.41c) can be written with the maximum operator as

max
(µ,M)∈Vρ(µ̂,Σ̂)

f (µ, M). (3.42)

Denote by (µ?, M?) the optimal solution of (3.42). If M? −µ?(µ?)> Â 0, then (µ?, M? −
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µ?(µ?)>) is feasible for problem (3.41a) and thus (3.41b) holds trivially as an equality. It now

suffices to show the equality when M?−µ?(µ?)> 6Â 0. For any ρ > 0, it is easy to show that

there exists (µ̄, Σ̄) ∈ Uρ(µ̂, Σ̂) such that Σ̄ Â 0. Denote M̄ = Σ̄+ µ̄µ̄>. Consider the sequence

{µk , Mk }k∈N defined as

µk = 1

k
µ̄+ k −1

k
µ?, Mk = 1

k
M̄ + k −1

k
M?.

Notice that the covariance matrix Σk associated with (µk , Mk ) is positive definite for any k ∈N
because

Σk = Mk −µkµ
>
k = 1

k
(Σ̄+ µ̄µ̄>)+ k −1

k
(Σ?+µ?(µ?)>)−

(
1

k
µ̄+ k −1

k
µ?

)(
1

k
µ̄+ k −1

k
µ?

)>
= 1

k
Σ̄+ k −1

k
Σ?+ k −1

k2 (µ̄−µ?)(µ̄−µ?)> Â 0.

Because f is the pointwise infimum of linear, thus concave, functions, f is also concave. Thus

we find

f (µk , Mk ) ≥ 1

k
f (µ̄, M̄)+ k −1

k
f (µ?, M?).

As a result, we have

f (µ?, M?) = lim
k→∞

1

k
f (µ̄, M̄)+ k −1

k
f (µ?, M?) ≤ lim

k→∞
f (µk , Mk )

= lim
k→∞

sup
Q∈P2(µk ,Mk−µkµ

>
k )
EQ[`(ξ)]

≤ sup
(µ,M)∈Vρ(µ̂,Σ̂)

sup
Q∈P2(µ,M−µµ>)

EQ[`(ξ)],

where the first equality is from the concavity of f , the second equality is from the strong

duality because Σk Â 0 [86], and the last inequality is from the definition of the supremum.

This renders (3.41b) an equality and thus completes the proof.

In order to construct an extremal distribution for the Gelbrich risk evaluation problem (3.6), it

is expedient to derive the dual of the SDP (3.39).

Theorem 3.42 (Piecewise quadratic loss II). If all conditions of Theorem 3.41 hold, then we

have

sup
Q∈Gρ,2(µ̂,Σ̂)

EQ[`(ξ)] =



max
∑

j∈[J ]
Tr

[
Q jΘ j

]+2q>
j θ j +q0

jα j

s. t. µ ∈Rn , Σ ∈Sn
+, α j ∈R+, θ j ∈Rn , Θ j ∈Sn

+ ∀ j ∈ [J ]Θ j θ j

θ>j α j

º 0 ∀ j ∈ [J ]∑
j∈[J ]

α j = 1,
∑

j∈[J ]
θ j =µ,

∑
j∈[J ]

Θ j =Σ+µµ>, (µ,Σ) ∈Uρ(µ̂, Σ̂).

(3.43)
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Proof. Following the results of Theorem 3.41, we have the equivalence

sup
Q∈Gρ,2(µ̂,Σ̂)

EQ[`(ξ)] =



sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

inf y0 +2y>µ+Tr
[
Y (Σ+µµ>)

]
s. t. y0 ∈R, y ∈Rn ,Y ∈Sn[

Y −Q j y −q j

y>−q>
j y0 −q0

j

]
º 0 ∀ j ∈ [J ].

Consider the inner infimum subproblem. Notice that the Slater’s condition holds for this

infimum problem, and thus we can derive its SDP dual form as

sup
∑

j∈[J ]
Tr

[
Θ j Q j

]+2q>
j θ j +q0

jα j

s. t. µ ∈Rn , Σ ∈Sn+, Θ j ∈Sn+, θ j ∈Rn , α j ∈R ∀ j ∈ [J ]∑
j∈[J ]

α j = 1,
∑

j∈[J ]
θ j =µ,

∑
j∈[J ]

Θ j =µµ>+Σ[
Θ j θ j

θ>j α j

]
º 0 ∀ j ∈ [J ].

Rejoining the two supremum operators completes the proof.

Note that problem (3.43) has a continuous objective function as well as a compact feasible set

and is therefore solvable. Any optimal solution (µ?,Σ?, {α?j ,θ?j ,Θ?j } j ) can principally be used

to construct an extremal distributionQ? that attains the supremum in the Gelbrich expected

loss problem (3.38). Specifically, for any j ∈ [J ] letQ?j be any distribution supported on

Ξ j =
{
ξ ∈Rn : ξ>Q jξ+2q>

j ξ+q0
j ≥ ξ>Q j ′ξ+2q>

j ′ξ+q0
j ′ ∀ j ′ 6= j

}
.

If α?j > 0, we impose the additional requirement thatQ?j has mean value θ?j /α?j and second-

order moment matrix Θ?j /α?j . Such a distribution is indeed guaranteed to exist. One can then

show that the mixture distribution Q? = ∑
j∈[J ]α

?
j ·Q?j is optimal in (3.38). By construction,

this distribution Q? has mean vector µ? and covariance matrix Σ?. We emphasize that

problem (3.43) can be reformulated as a tractable SDP because the uncertainty set Uρ(µ̂, Σ̂)

is SDP-representable. Thus, problem (3.43) can be solved in polynomial time. Even though

the mixture components Q?j , j ∈ [J ], are guaranteed to exist, however, one can prove that

it is NP-hard to construct them. In other words, even though it is easy to solve (3.43) and

even though any solution of (3.43) gives rise to a solution Q? of the Gelbrich expected loss

evaluation problem (3.38), constructingQ? remains hard.

While exactly computable in polynomial time, the Gelbrich expected loss of a piecewise

quadratic loss function may only provide a loose upper bound on the Wasserstein expected

loss, which is often the actual quantity of interest. One can prove, however, that the Gel-

brich expected loss (3.38) coincides with the worst-case expected loss with respect to a type-2

Wasserstein ball Bρ,2(P̂) if the loss function is quadratic and the nominal distribution is ellipti-
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cal.

Theorem 3.43 (Indefinite quadratic loss I). Assume that `(ξ) = ξ>Qξ+2q>ξ with Q ∈Sn and

q ∈Rn is a quadratic loss function. If σ= 2, µ̂ ∈Rn and Σ̂ ∈Sn+, then for any ρ ∈R+, the Gelbrich

expected loss is equal to the optimal value of a tractable semidefinite program, that is,

sup
Q∈Gρ,2(µ̂,Σ̂)

EQ[`(ξ)] =


inf γ

(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. γ ∈R+, z ∈R+, Z ∈Sn+[
γI −Q γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Q γµ̂+q

(γµ̂+q)> z

]
º 0.

(3.44)

Moreover, if P̂=Pφ(µ̂, Σ̂) is an elliptical distribution with mean vector µ̂ and covariance matrix

Σ̂, then

sup
Q∈Bρ,2(µ̂,Σ̂)

EQ[`(ξ)] = sup
Q∈Gρ,2(µ̂,Σ̂)

EQ[`(ξ)].

Proof. By applying the decomposition of the Gelbrich ambiguity set (3.8b), we have

sup
Q∈Gρ,2(µ̂,Σ̂)

EQ [`(ξ)] = sup
(µ,M)∈Vρ(µ̂,Σ̂)

sup
Q∈P2(µ,M−µµ>)

EQ [`(ξ)]

= sup
(µ,M)∈Vρ(µ̂,Σ̂)

2q>µ+Tr
[
QM

]= δ?
Vρ(µ̂,Σ̂)

(2q,Q).

Applying the reformulation of the support function of Vρ(µ̂, Σ̂) using Lemma 3.22 completes

the reformulation (3.44).

If P̂=Pφ(µ̂, Σ̂), we can bound the worst-case expected loss over the Wasserstein ball Bρ,2(P̂)

by restricting to the subspace of all elliptical distributions sharing the same generator function

φ with P̂ as

sup
Q∈Bρ,2(P̂)

EQ[`(ξ)] ≥ sup
Q∈Bρ,φ(P̂)

EQ[`(ξ)].

The decomposition of the worst-case expected loss over the ambiguity set Bρ,φ(P̂) can be

written as

sup
Q∈Bρ,φ(P̂)

EQ[`(ξ)] = sup
(µ,M)∈Vρ(µ̂,Σ̂)

sup
Q∈Pφ(µ,M−µµ>)

EQ[`(ξ)]

= sup
(µ,M)∈Vρ(µ̂,Σ̂)

2q>µ+Tr
[
QM

]= δ?
Vρ(µ̂,Σ̂)

(2q,Q) = sup
Q∈Gρ,2(µ̂,Σ̂)

EQ [`(ξ)] ,

where the equalities are from the decomposition (3.8b), the fact that the expectation of a

quadratic function depends only on the first and second moment of the distribution, the

definition of the support function of Vρ(µ̂, Σ̂) and the reformulation established in the first

part of the proof. From Corollary 3.14, we have

sup
Q∈Bρ,2(P̂)

EQ[`(ξ)] ≤ sup
Q∈Gρ,2(µ̂,Σ̂)

EQ[`(ξ)],
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This shows that

sup
Q∈Bρ,2(P̂)

EQ[`(ξ)] = sup
Q∈Gρ,2(µ̂,Σ̂)

EQ[`(ξ)] = δ?
Vρ(µ̂,Σ̂)

(2q,Q),

and all of them are equal to the optimal value of (3.44). The proof is completed.

The SDP (3.44) is easily obtained from (3.39) by setting J = 1 and noting that Y =Q, y = q and

y0 = 0 at optimality. As usual, a discrete extremal distribution Q? for the Gelbrich expected

loss evaluation problem (3.38) can be derived from the dual of the SDP (3.44). In the following

we denote the mean vector and the covariance matrix of Q? by µ? and Σ?, respectively. As

Q? ∈Gρ,2(µ̂, Σ̂), and as the Gelbrich hull is constructed solely on the basis of first- and second-

order moment information, any distribution with mean vector µ? and covariance matrix Σ?

belongs to Gρ,2(µ̂, Σ̂), too. Moreover, as `(ξ) is quadratic, the risk RQ?(`) depends onQ? only

through its first- and second-order moments. This implies that any distribution with mean

vector µ? and covariance matrix Σ? is optimal in the Wasserstein expected loss evaluation

problem.

Consider now the problem of evaluating the worst-case expected loss of the quadratic loss

function `(ξ) over a Wasserstein ball Bρ,2(P̂) centered at an elliptial nominal distribution

P̂=Pφ(µ̂, Σ̂). Theorem 3.10 ensures that all elliptical distributions in the Gelbrich hull with

the same characteristic generator as P̂ belong to the Wasserstein ball Bρ,2(P̂). This implies that

the special elliptical distributionQ? =Pφ(µ?,Σ?) is feasible in the Wasserstein expected loss

evaluation problem. Moreover, we have

sup
Q∈Gρ,2(µ̂,Σ̂)

RQ(`) =RQ?(`) ≤ sup
Q∈Bρ,2(P̂)

RQ(`) ≤ sup
Q∈Gρ,2(µ̂,Σ̂)

RQ(`),

where the equality holds because Q? is optimal in the Gelbrich expected loss evaluation

problem (3.38), while the two inequalities follow from the feasibility ofQ? in the worst-case

risk evaluation problem under the Wasserstein ball Bρ,2(P̂) and Corollary 3.14, respectively.

Thus, all inequalities in the above expression are exact, which implies that Q? is actually

optimal in the Wasserstein expected loss evaluation problem.

We highlight that the SDP (3.44) derived in Theorem 3.43 for elliptical nominal distributions

accommodates only two linear matrix inequalities. If we take a non-parametric approach

with empirical nominal distributions, the reformulation of the worst-case expected loss for

quadratic loss function entails the same number of linear matrix inequalities as the number of

atoms of the nominal distribution, and may thus be considerably harder to solve [179]. Next,

we show howQ? can be constructed from the optimality conditions of the SDP (3.44).

Corollary 3.44 (Indefinite quadratic loss II). 0 Suppose that all conditions of Theorem 3.43

hold. If Σ̂Â 0 and either

• λmax(Q) > 0, or
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• λmax(Q) < 0 and ρ2 ≤ Tr
[
Σ̂

]+‖µ̂+Q−1q‖2

• Q =−LL> 6= 0 for some L ∈Rn×k and ρ2 ≤ Tr
[
Σ̂L(L>L)−1L>]

.

Then there exists γ? ≥ 0 with γ?I ÂQ that solves the nonlinear algebraic equation

‖µ̂− (γI −Q)−1(γµ̂+q)‖2 +Tr
[
Σ̂

(
I −γ(γI −Q)−1)2 ]= ρ2, (3.46a)

and the Gelbrich expected loss is attained by any probability measure with mean vector µ? ∈Rn

and covariance matrix Σ? ∈Sn+ satisfying

µ? = (γ?I −Q)−1 (
γ?µ̂+q

)
, Σ? =

(
I − Q

γ?

)−1

Σ̂

(
I − Q

γ?

)−1

. (3.46b)

If P̂=Pφ(µ̂, Σ̂), then the elliptical distributionQ? =Pφ(µ?,Σ?) attains the worst-case expected

loss under both the Wasserstein and Gelbrich ambiguity set.

Proof. The proof of Theorem 3.43 implies that

sup
Q∈Gρ,2(µ̂,Σ̂)

EQ [`(ξ)] = δ?
Vρ(µ̂,Σ̂)

(2q,Q).

Applying Lemma 3.23, one can show that (µ?,Σ?) defined in (3.46b) belongs to Vρ(µ̂, Σ̂) and

attains the value δ?
Vρ(µ̂,Σ̂)

(2q,Q). This implies that any distribution with mean vector µ? and

covariance matrix Σ? will attain the value of the Gelbrich expected loss.

If P̂=Pφ(µ̂, Σ̂), we can easily verify thatQ? =Pφ(µ?,Σ?) belongs to Bρ,2(P̂), and henceQ? is

the extremal distribution for the Wasserstein expected loss.

We end this section by providing the reformulation of the Gelbrich expected loss when the

loss function can be expressed as the infimum convolution of two quadratic functions. The

infimum convolution representation of the loss function can be used to model a more complex

penalization when facing outliers, see Corollary 3.53 for an application in robust regression.

Theorem 3.45 (Infimum convolution loss functions). Suppose that `(ξ) is the inf-convolution

of two quadratic functions parametrized by θ ∈Rk as

`(ξ) = inf
ϑ∈Rk

`1(ϑ,ξ)+`2(θ−ϑ,ξ),

where ` j (θ,ξ) = ξ>Q j (θ)ξ+2q j (θ)>ξ+q0
j (θ) for some Q j (θ) ∈Sn , q j (θ) ∈Rn and q0

j (θ) ∈R for

any j ∈ {1,2}. If σ = 2, µ̂ ∈ Rn , and Σ̂ ∈ Sn+, then for any ρ ∈ R++ the Gelbrich expected loss is
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equal to the optimal value of a finite dimensional optimization problem, that is,

sup
Q∈Gρ,2(µ̂,Σ̂)

EQ[`(ξ)] =



inf y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. γ ∈R+, y0 ∈R, y ∈Rn , Y ∈Sn , z ∈R+, Z ∈Sn+, ϑ ∈Rk[
γI −Y γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0[

Y −Q1(ϑ)−Q2(θ−ϑ) y −q1(ϑ)−q2(θ−ϑ)

(y −q1(ϑ)−q2(θ−ϑ))> y0 −q0
1 (ϑ)−q0

2 (θ−ϑ)

]
º 0.

(3.47)

If Q j (θ) and q j (θ) are linear functions of θ, and q0
j (θ) are convex quadratic functions of θ for

j ∈ {1,2}, then problem (3.47) can be further reformulated as a semi-definite program.

Proof. Let Y be the convex feasible set defined by

Y = {
y0 ∈R, y ∈Rn , Y ∈Sn : y0 +2y>ξ+ξ>Y ξ≥ `(ξ) ∀ξ ∈Rn}

=
{

y0 ∈R, y ∈Rn , Y ∈Sn : ∃ϑ ∈Rk s. t.

[
Y −Q1(ϑ)−Q2(θ−ϑ) y −q1(ϑ)−q2(θ−ϑ)

(y −q1(ϑ)−q2(θ−ϑ))> y0 −q0
1 (ϑ)−q0

2 (θ−ϑ)

]
º 0

}
,

where the last equality is obtained by simply substituting the expression of the loss func-

tion `(ξ) and formulating the quadratic constraints as semidefinite constraints using S-

lemma [139]. Following the similar steps as in the proof of Theorem 3.41, we have

sup
Q∈Gρ,2(µ̂,Σ̂)

EQ[`(ξ)] = sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
Q∈P2(µ,Σ)

EQ[`(ξ)]

≤ inf
(y0,y,Y )∈Y

{
y0 +δ?Vρ(µ̂,Σ̂)

(2y,Y )
}

,

where the inequality can be further shown to hold as an equality using the same techniques

as in the second part of the proof of Theorem 3.41. Substituting the formula for the support

function of Vρ(µ̂, Σ̂) in Lemma 3.22 and the definition of Y into the above infimum problem

gives the reformulation (3.47).

When q j (θ) are linear functions of θ, and Q j (θ), q0
j (θ) are convex quadratic functions of θ for

j ∈ {1,2}, the last constraint of (3.47) can be reformulated as semidefinite constraints using

standard techniques [170, Section 2]. This finishes the proof.

3.6 Extensions

We present in this section several extensions of the worst-case risk under the Gelbrich hull
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3.6.1 Robust Mean-Variance Portfolios

In this section, we consider the situation where the consistent family of risk measures {RQ}Q∈Pσ

is related to the popular class of mean-variance risk measures. Given the mean vector µ ∈Rn

and the covariance matrix Σ ∈Sn+ of the asset returns, the risk RQ(`) of a linear portfolio loss

`(ξ) =−w>ξ can be written as a weighted combination of the mean and variance as

RQ(−w>ξ) =EQ[−w>ξ]+αVarQ(−w>ξ),

whereVarQ(−w>ξ) denotes the variance of the loss −w>ξ under the probabilityQ. The mean-

variance risk measure is the building block of modern portfolio theory introduced in [115],

and it also arises in many other settings including but not limited to the entropic risk measure

for Gaussian returns [61] and the log-optimal portfolio problem [99].

Because the mean-variance risk measure is not positive homogeneous, the results in Sec-

tion 3.4 are not applicable to calculate the Gelbrich mean-variance risk. Nevertheless, for a

linear portfolio loss `=−w>ξ, the Gelbrich mean-variance risk can be expressed using the

two-layer decomposition (3.8a) as

sup
Q∈Gρ,σ(µ̂,Σ̂)

RQ (`) = sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
Q∈Pσ(µ,Σ)

RQ(−w>ξ)

= sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

{−w>µ+αw>Σw
}= δ?

Uρ(µ̂,Σ̂)
(−w,αw w>).

At this point, the reformulation of the support function of Uρ(µ̂, Σ̂) in Lemma 3.20 can be

readily applied to reformulate the Gelbrich mean-variance risk as the optimal value of a

semidefinite program. The next theorem asserts that under additional assumptions on α and

Σ̂, the resulting optimization can be further reduced to a second-order cone program.

Theorem 3.46 (Gelbrich mean-variance risk). Suppose that {RQ}Q∈Pσ
is a family of mean-

variance risk measure with α> 0. If Σ̂Â 0, the Gelbrich mean-variance risk of a linear portfolio

loss `(ξ) =−w>ξ is equal to the optimal value of the following second order cone program

inf γρ2 − µ̂>w + 1
4 y +αz

s. t. γ ∈R+, y ∈R+, z ∈R+∥∥∥∥∥
(

2Σ̂
1
2 w

z +αy −1

)∥∥∥∥∥≤ z −αy +1,

∥∥∥∥∥
(

2w

y −γ

)∥∥∥∥∥≤ y +γ, αy ≤ 1.

(3.48)
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Proof. By applying Lemma 3.20, we can rewrite the Gelbrich mean-variance risk measure as

sup
Q∈Gρ,σ(µ̂,Σ̂)

RQ(−w>ξ) = δ?
Uρ(µ̂,Σ̂)

(−w,αw w>)

=



inf −µ̂>w +τ+γ(
ρ2 −Tr

[
Σ̂

])+Tr
[

Z
]

s. t. γ ∈R+, τ ∈R+, Z ∈Sn+[
γI −αw w> γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

∥∥∥∥∥
(
‖w‖
τ−γ

)∥∥∥∥∥≤ τ+γ.

When α > 0 and Σ̂ Â 0, we can show using a limit argument that the objective value of the

above optimization problem tends to infinity as γ tends to α‖w‖2 ≥ 0. Thus, we can rewrite

the above semidefinite program using the Schur complement as

sup
Q∈Gρ,σ(µ̂,Σ̂)

RQ

(−w>ξ
)=

 inf −µ̂>w + ‖w‖2

4γ +γ(
ρ2 −Tr

[
Σ̂

])+γ2 Tr
[
(γI −αw w>)−1Σ̂

]
s. t. γ ∈R+, γ>α‖w‖2.

Applying the Sherman-Morrison formula [12, Corollary 2.8.8] to re-express the matrix inversion

term, we find for any γ> max{0,α‖w‖2}

γ2 Tr
[
(γI −αw w>)−1Σ̂

]= γTr
[
Σ̂

]+ αw>Σ̂w

1− α
γ ‖w‖2 .

Substituting this expression into the reformulation of the Gelbrich risk gives

sup
Q∈Gρ,σ(µ̂,Σ̂)

RQ(−w>ξ) = inf
γ>α‖w‖2

γρ2 − µ̂>w + ‖w‖2

4γ +α(1−αγ−1‖w‖2)−1w>Σ̂w.

By adding an auxiliary variable y ≥ 0 coupled with the constraint ‖w‖2/γ≤ y ≤α−1, we have

sup
Q∈Gρ,σ(µ̂,Σ̂)

RQ

(−w>ξ
)={

inf γρ2 − µ̂>w + y
4 +α(1−αy)−1w>Σ̂w

s. t. ‖w‖2/γ≤ y ≤α−1, γ> 0.

The last part of the proof involves rewriting the quadratic-over-linear term using the second

order cone reformulation [111, Equation (8)] with the epigraphical variable z as

w>Σ̂w

1−αy
≤ z ⇐⇒

∥∥∥∥∥
(

2Σ̂
1
2 w

z +αy −1

)∥∥∥∥∥≤ z −αy +1.

This completes the proof.

To construct the extremal distribution for the Gelbrich mean-variance risk, we can directly use

the result of Lemma 3.21 to characterize the first two moments of the extremal distribution. In

addition, we can also conclude that when σ=φ, the extremal distribution is unique because

an elliptical distribution with generator function φ is uniquely defined by its mean vector and
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covariance matrix. These results are omitted.

3.6.2 Gelbrich Polyhedral Value-at-Risk

We now consider the problem of evaluating the Gelbrich VaR of a portfolio that consists of

both stocks and their derivatives. A naïve approach is to treat the derivatives as usual stocks

and proceed with the evaluation of the Gelbrich VaR of a linear portfolio loss as introduced in

Section 3.4. However, because the Gelbrich risk depends only on the first- and second-moment

of the joint stock-derivative return distribution, this approach fails to capture the inherent

nonlinear dependency of the derivative returns on the stock returns. Thus, we consider an

explicit portfolio model that consists of an allocation w ∈W ⊆Rn over n stocks and a derivative

allocation x ∈X ⊆Rk+ over k derivatives. For simplicity, we consider only vanilla derivatives of

the stocks, and in this case, the return of the derivatives can be written as a piecewise linear

function of the stock return ξ. Given a mixed portfolio (w, x) ∈W ×X , the portfolio loss can

be written as a polyhedral function of ξ for some matrices A,B ∈Rk×n and vectors a,b ∈Rk as

`(ξ) =−w>ξ−x> max{Aξ+a,Bξ+b},

where the max operator is understood as the element-wise maximum of two vectors. We

emphasize that the short selling of derivatives is prohibited in this model.

The Gelbrich VaR defined in (3.35) can be employed to evaluate the worst-case VaR of a

polyhedral loss function over all possible probability measures contained in the Gelbrich hull

Gρ,2(µ̂, Σ̂). The next theorem demonstrates that the Gelbrich polyhedral VaR can be computed

efficiently by solving a semidefinite program.

Theorem 3.47 (Gelbrich polyhedral VaR). Suppose that `(ξ) = w>ξ+ x> max{Aξ+a,Bξ+b}

for some matrices A,B ∈Rk×n and vectors a,b ∈Rk . For any ρ ∈R++ and β ∈ (0,1), the Gelbrich

polyhedral Value-at-Risk is equivalent to the optimal value of a semidefinite program, that is,

sup
Q∈Gρ,2(µ̂,Σ̂)

Q-VaRβ(`(ξ)) =



inf τ

s. t. y0 ∈R, y ∈Rn , Y ∈Sn+, γ ∈R+, z ∈R+, Z ∈Sn+
τ ∈R, η ∈R+, t ∈Rk+, v ∈Rk

y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]≤ ηβ[

γI −Y γΣ̂
1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0,

[
Y y

y> y0

]
º 0

t ≤ x, v = w + (A−B)>t +B>x[
Y y

y> y0

]
+

[
0 v

v> −η+2(τ+ (a −b)>t +b>x)

]
º 0.

(3.49)

Proof. For any τ ∈R, define the following set

Sτ =
{
ξ ∈Rn : τ+w>ξ+x> max{Aξ+a,Bξ+b} ≤ 0

}
.
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By applying Lemma 3.55, we have

sup
Q∈Gρ,2(µ̂,Σ̂)

Q
(
τ≤−w>ξ−x> max{Aξ+a,Bξ+b}

)= sup
Q∈Gρ,2(µ̂,Σ̂)

Q(ξ ∈Sτ)

=



inf y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. γ ∈R+, y0 ∈R, y ∈Rn , Y ∈Sn , z ∈R+, Z ∈Sn+[
γI −Y γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0,

[
Y y

y> y0

]
º 0

y0 +2y>ξ+ξ>Y ξ≥ 1 ∀ξ ∈Sτ.

(3.50)

By applying the same argument in the proof of [184, Theorem 4.1], problem (3.50) is equivalent

to the following semidefinite program

inf y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. γ ∈R+, y0 ∈R, y ∈Rn , Y ∈Sn , z ∈R+, Z ∈Sn+
η ∈R+, t ∈Rk+, v ∈Rk[
γI −Y γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0,

[
Y y

y> y0

]
º 0,

t ≤ x, v = w + (A−B)>t +B>x[
Y y

y> y0

]
+

[
0 ηv

ηv> −1+2η(τ+ (a −b)>t +b>x)

]
º 0

for all but one value of τ. Because the Gelbrich polyhedral VaR can be rewritten as

sup
Q∈Gρ,2(µ̂,Σ̂)

Q-VaRβ(`(ξ)) = inf

{
τ ∈R : sup

Q∈Gρ,2(µ̂,Σ̂)

Q(τ≤ `(ξ)) ≤β
}

,

we can re-express the Gelbrich polyhedral VaR as the optimal value of the following optimiza-

tion problem

inf τ

s. t. γ ∈R+, y0 ∈R, y ∈Rn , Y ∈Sn , z ∈R+, Z ∈Sn+
τ ∈R, η ∈R+, t ∈Rk+, v ∈Rk

y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]≤β[

γI −Y γΣ̂
1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0,

[
Y y

y> y0

]
º 0,

t ≤ x, v = w + (A−B)>t +B>x[
Y y

y> y0

]
+

[
0 ηv

ηv> −1+2η(τ+ (a −b)>t +b>x)

]
º 0.

(3.51)

Problem (3.51) is non-convex because of the bilinear terms in the last constraint. It can be
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shown that any feasible solution of (3.51) with vanishing η-component will satisfy

y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]≥ 1,

which is in conflict with the constraint

y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]≤β

forβ ∈ (0,1). This implies that any feasible solution of (3.51) will haveη> 0. Thus, we can divide

all constraints of problem (3.51) by η. Subsequently, we substitute η by 1/η and substitute

(γ, y0, y,Y , z, Z ) in (3.51) by (γ/η, y0/η, y/η,Y /η, z/η, Z /η). This completes the proof.

The constraints in the semidefinite program reformulation (3.49) are linear in terms of (w, x),

and thus the portfolio optimization problem that minimizes the Gelbrich polyhedral VaR

can be formulated as a finite convex optimization problem provided that W and X are both

convex, conic representable sets. While in this section we have assumed that there is no

coupling constraint between the stock allocation feasible set W and the derivative allocation

feasible set X , incorporating this interaction is straightforward provided that the coupling

constraints can be written using conic constraints.

3.6.3 Gelbrich Quadratic Value-at-Risk

The results of Section 3.6.2 rely fundamentally on the restriction that the stochastic returns

of the derivatives can be modelled using a piecewise linear function of the stock returns ξ.

In practice, an exotic derivative may exhibit strongly nonlinear dependence on the stock

returns ξ, hence the polyhedral model in Section 3.6.2 is inadequate for assessing the risk of

a complex portfolio position. We consider in this section an approximation of the portfolio

return using a second-order Taylor expansion which is commonly known as the delta-gamma

approximation [91]. Given a portfolio allocation w ∈Rn over both stocks and derivatives, the

loss of a portfolio is approximated using a quadratic function of ξ as

`(ξ) =−θ(w)−∆(w)>ξ− 1

2
ξ>Γ(w)ξ,

where θ(w) ∈R, ∆(w) ∈Rn and Γ(w) ∈Sn are parameters derived from the current portfolio

position w . We emphasize that ` is possibly a non-convex function of ξ and that we do not

prohibit the short selling of derivative in this section.

Theorem 3.48 (Gelbrich quadratic VaR). Suppose that `(ξ) =−θ(w)−∆(w)>ξ− 1
2 w>Γ(w)ξ for

some θ(w) ∈R, ∆(w) ∈Rn and Γ(w) ∈Sn . For any ρ ∈R++ and β ∈ (0,1), the Gelbrich quadratic

VaR of the quadratic loss function `(ξ) is equivalent to the optimal value of a semidefinite
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program, that is,

sup
Q∈Gρ,2(µ̂,Σ̂)

Q-VaRβ(`(ξ)) =



inf τ

s. t. y0 ∈R, y ∈Rn , Y ∈Sn+, γ ∈R+, z ∈R+, Z ∈Sn+, τ ∈R, η ∈R+
y0 +γ

(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]≤ ηβ[

γI −Y γΣ̂
1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0,

[
Y y

y> y0

]
º 0[

Y y

y> y0

]
+

[
Γ(w) ∆(w)

∆(w)> −η+2(τ+θ(w))

]
º 0.

(3.52)

Proof. For any τ ∈R, define the following set

Sτ =
{
ξ ∈Rn : τ+θ(w)+∆(w)>ξ+ 1

2
ξ>Γ(w)ξ≤ 0

}
.

By applying Lemma 3.55, we have for any τ ∈R

sup
Q∈Gρ,2(µ̂,Σ̂)

Q

(
τ≤−θ(w)−∆(w)>ξ− 1

2
ξ>Γ(w)ξ

)
= sup
Q∈Gρ,2(µ̂,Σ̂)

Q(ξ ∈Sτ)

=



inf y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. γ ∈R+, y0 ∈R, y ∈Rn , Y ∈Sn , z ∈R+, Z ∈Sn+[
γI −Y γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0,

[
Y y

y> y0

]
º 0

y0 +2y>ξ+ξ>Y ξ≥ 1 ∀ξ ∈Sτ.

(3.53)

By applying the S-lemma [139] to reformulate the semi-infinite constraint into an equivalent

semidefinite constraint, problem (3.53) is equivalent to

inf y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. γ ∈R+, y0 ∈R, y ∈Rn , Y ∈Sn , z ∈R+, Z ∈Sn+, η ∈R+[
γI −Y γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0,

[
Y y

y> y0

]
º 0[

Y y

y> y0

]
+

[
ηΓ(w) η∆(w)

η∆(w)> −1+2η(τ+θ(w))

]
º 0.
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The Gelbrich quadratic VaR is thus equivalent to the optimal value of the problem

inf τ

s. t. γ ∈R+, y0 ∈R, y ∈Rn , Y ∈Sn , z ∈R+, Z ∈Sn+, τ ∈R, η ∈R+

y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]≤β[

γI −Y γΣ̂
1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0,

[
Y y

y> y0

]
º 0[

Y y

y> y0

]
+

[
ηΓ(w) η∆(w)

η∆(w)> −1+2η(τ+θ(w))

]
º 0.

(3.54)

One can verify using an analogous reasoning as in the proof of Theorem 3.47 that no feasible

solution of (3.54) has a vanishing η component. Dividing the constraints of (3.54) by η> 0 and

perform an analogous variables substitution as in Theorem 3.47 completes the proof.

For a delta-gamma approximation, θ(w),∆(w) and Γ(w) are all linear functions of the portfolio

position w , as a consequence, the problem of finding the optimal portfolio that minimizes

the Gelbrich quadratic VaR is a finite convex optimization problem provided that the feasible

portfolio allocation set W is conic representable.

3.6.4 Product of Lognormal Random Variables

The product of random variables that arises in many applications related to statistics, physics

and various branches of sciences [66] and it governs many multiplicative process that explains

the evolution of economic indices and biological measurements [2]. In finance, product of

random variables is widely used to model the discrete-time wealth level subject to stochastic

returns. In this section we are interested in evaluating the tail probability of a product of

non-negative but ambiguous random variables, which are heavily used to calculate the risk of

bankruptcy or to stress test the financial system. Instead of modelling ambiguity using the

Chebyshev ambiguity set that directly imposes the first- and second-moment information

regarding the distribution of the random variables [146], we assume that the random variables

follow an ambiguous log-normal distribution. As a consequence, to model the primitive

random variables we restrict ourselves to the family of Gaussian distributions, which is a

special instance of elliptical distribution with characteristic generator φ(u) = exp(−u/2). For a

given measureQ ∈Pφ(µ,Σ), ξ is normally distributed with mean vector µ ∈Rn and covariance

matrix Σ ∈ Sn+, and we denote by exp(ξ) the n-dimensional lognormal distribution with its

i -th element defined by exp(ξ)i = exp(ξi ) ∀i = 1, . . . ,n. The problem of evaluating the tail

probability of the product of random variables is equivalent to verifying sequentially whether

Q

( ∏
i∈[n]

exp(ξi ) ≤ T

)
≤β
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is true for some threshold T ∈ R++ and some uncertainty level β ∈ (0, 1
2 ). When the true

probability measure is unknown, we instead resort to evaluating the worst-case tail probability

under the Gelbrich hull centered around the nominal distribution P̂ which is a Gaussian

distribution with mean µ̂ ∈ Rn and covariance matrix Σ̂ ∈ Sn+. As a consequence, we are

interested in verifying whether

sup
Q∈Gρ,φ(µ̂,Σ̂)

Q

( ∏
i∈[n]

exp(ξi ) ≤ T

)
≤β (3.55)

is true for different levels of T and β. The next proposition shows that verifying the above

relationship is equivalent to verifying a simple inequality.

Proposition 3.49. Suppose that φ is the characteristic generator of Gaussian distributions. For

any T ∈R++ and β ∈ (0, 1
2 ), the relation (3.55) is true if and only if

−µ̂>e +F−1
φ (1−β)

√
e>Σ̂e +ρ

√
n(1+ (F−1

φ
(1−β))2) ≤− logT,

where e is a vector of ones and F−1
φ is the inverse cumulative distribution function of a standard

Gaussian distribution.

Proof. Using the definition of the Gelbrich Value-at-Risk in Lemma 3.31, for any threshold

T ∈R++ we find

sup
Q∈Gρ,φ(µ̂,Σ̂)

Q

( ∏
i∈[n]

exp(ξi ) ≤ T

)
≤β ⇐⇒ sup

Q∈Gρ,φ(µ̂,Σ̂)

Q

(
1

T
≤ ∏

i∈[n]
exp(−ξi )

)
≤β

⇐⇒ sup
Q∈Gρ,φ(µ̂,Σ̂)

Q
(− logT ≤−e>ξ

)≤β
⇐⇒ sup

Q∈Gρ,φ(µ̂,Σ̂)

Q-VaRβ(−e>ξ) ≤− logT,

where e is a vector of ones. Because φ is the characteristic generator of Gaussian distribution

and β ∈ (0, 1
2 ), Lemma 3.31 part (iv) can be utilized to reformulate the last constraint as

−µ̂>e +F−1
φ (1−β)

√
e>Σ̂e +ρ

√
n(1+ (F−1

φ
(1−β))2) ≤− logT,

which completes the proof.

3.7 Injecting Support Information

In many cases, the decision maker possesses additional information that ξ is supported on

a strict subset Ξ⊂Rn . This information can be used to alleviate the conservativeness of the

distributionally robust solution. We denote by P (Ξ) the collection of all probability measures

on (Rn ,B(Rn)) with support Ξ. In an analogous counterpart of Definition 3.5 for measures

158



3.7. Injecting Support Information

with support information, for σ ∈ {2,S,SU} we define

Pσ(Ξ),Pσ∩P (Ξ)

as the set of probability measures supported on Ξ that satisfy the information structure σ. We

emphasize that the structural information σ=φ typically requires that Ξ=Rn , thus the case

σ=φ will be omitted in this section.

Given a nominal measure P̂ whose support is contained in Ξ, we define the Wasserstein

ambiguity set with support information as the ball of radius ρ ≥ 0 in Pσ(Ξ) centered at P̂with

respect to the type-2 Wasserstein distance

Bρ,σ(Ξ, P̂),
{
Q ∈Pσ(Ξ) :W(Q, P̂) ≤ ρ}

.

The Gelbrich hull with support information Gρ,σ(Ξ, µ̂, Σ̂) associated with a mean vector µ̂ ∈Rn

and a covariance matrix Σ̂ ∈Sn+ can be defined in an analogous way as in Definition 3.12 as

Gρ,σ(Ξ, µ̂, Σ̂),
{
Q ∈Pσ(Ξ) :

(
EQ[ξ],EQ[(ξ−EQ[ξ])(ξ−EQ[ξ])>]

) ∈Uρ(µ̂, Σ̂)
}

for σ ∈ {2,S,SU}. One can readily verify that Gρ,σ(Ξ, µ̂, Σ̂) is a superset of Bρ,σ(Ξ, P̂) whenever

the mean vector and the covariance matrix of the nominal measure P̂ are µ̂ and Σ̂ respec-

tively. This result is exhibited in the below lemma, whose proof is omitted because it is a

straightforward extension of Theorem 3.13 to take into account the support information Ξ.

Lemma 3.50 (Gelbrich hull with support). If the nominal distribution P̂ has mean vector µ̂ ∈Rn

and covariance matrix Σ̂ ∈Sn+, then we have Bρ,σ(Ξ, P̂) ⊆Gρ,σ(Ξ, µ̂, Σ̂) for any σ ∈ {2,S,SU}.

Furthermore, if we define the Chebyshev ambiguity set with support information that includes

all probability measures supported on Ξ with mean vector µ ∈ Rn and covariance matrix

Σ ∈Sn+ as

Pσ(Ξ,µ,Σ),Pσ(Ξ)∩Pσ(µ,Σ),

then we can re-express the Gelbrich hull with support information Gρ,σ(Ξ, µ̂, Σ̂) as the union

of Chebyshev ambiguity sets with support information via

Gρ,σ(Ξ, µ̂, Σ̂) = ⋃
(µ,Σ)∈Uρ(µ̂,Σ̂)

Pσ(Ξ,µ,Σ).

Consequentially, the decomposition (3.8) remains valid with the additional support informa-

tion, that is,

sup
Q∈Gρ,σ(Ξ,µ̂,Σ̂)

RQ(`) = sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
Q∈Pσ(Ξ,µ,Σ)

RQ(`) (3.56a)

= sup
(µ,M)∈Vρ(µ̂,Σ̂)

sup
Q∈Pσ(Ξ,µ,M−µµ>)

RQ(`). (3.56b)
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The above decomposition is a fundamental building block for the reformulation of various

Gelbrich risks under the Gelbrich hull with support informationGρ,σ(Ξ, µ̂, Σ̂). In the remainder

of this section, we will focus on the case σ = 2 and provide the reformulation and/or the

approximation of the Gelbrich expected loss, as well as an extension to the approximation of

joint linear chance constraints.

3.7.1 Gelbrich Expected Loss with Support Information

We provide in this section the reformulation of the Gelbrich expected loss with support

information. For simplicity, we focus on the case where the support can be described as an

intersection of (possibly non-convex) ellipsoids. The next proposition shows that the Gelbrich

expected loss of a piecewise quadratic loss function can be conservatively approximated by

the optimal value of a semidefinite optimization problem, and this approximation is exact

when the support is an ellipsoid.

Proposition 3.51 (Approximation of Gelbrich expected loss). Suppose that the conditions

of Theorem 3.41 hold, and assume furthermore that the support Ξ can be represented as the

intersection of I ≥ 1 quadratic constraints of the form

Ξ= {
ξ ∈Rn : ξ>Aiξ+2a>

i ξ+a0
i ≤ 0, Ai ∈Sn ∀i ∈ [I ]

}
,

and Ξ has a non-empty interior. If σ= 2, µ̂ ∈Rn and Σ̂ ∈Sn+, then for any ρ ∈R++, the Gelbrich

expected loss of a piecewise quadratic loss function admits the conservative approximation

sup
Q∈Gρ,2(Ξ,µ̂,Σ̂)

EQ[`(ξ)] ≤



inf y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. γ ∈R+, η ∈RI×J
+ , y0 ∈R, y ∈Rn , Y ∈Sn , z ∈R+, Z ∈Sn+[

γI −Y γΣ̂
1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0[

Y −Q j y −q j

y>−q>
j y0 −q0

j

]
+ ∑

i∈[I ]
ηi j

[
Ai ai

a>
i a0

i

]
º 0 ∀ j ∈ [J ].

Furthermore, for I = 1, the above inequality becomes an equality.

Proof. By applying the decomposition (3.56a), we find

sup
Q∈Gρ,2(Ξ,µ̂,Σ̂)

EQ[`(ξ)] = sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
Q∈P2(Ξ,µ,Σ)

EQ[`(ξ)].

We can appply [183, Lemma A.1] to construct the dual of the inner supremum problem as

sup
Q∈P2(Ξ,µ,Σ)

EQ [`(ξ)] ≤


inf y0 +2y>µ+Tr

[
Y (Σ+µµ>)

]
s. t. y0 ∈R, y ∈Rn , Y ∈Sn

y0 +2y>ξ+ξ>Y ξ≥ `(ξ) ∀ξ ∈Ξ,
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where the inequality is tight whenever ΣÂ 0 thanks to the strong duality result [86]. Let Y be

the convex feasible set defined by

Y = {
y0 ∈R, y ∈Rn , Y ∈Sn : y0 +2y>ξ+ξ>Y ξ≥ `(ξ) ∀ξ ∈Ξ}

.

Because ρ > 0, we can follow closely the proof of Theorem 3.41 to show that

sup
Q∈Gρ,2(Ξ,µ̂,Σ̂)

EQ[`(ξ)] = sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
Q∈P2(Ξ,µ,Σ)

EQ[`(ξ)]

= inf
(y0,y,Y )∈Y

{
y0 +δ?Vρ(µ̂,Σ̂)

(2y,Y )
}

=



inf y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. γ ∈R+, y0 ∈R, y ∈Rn , Y ∈Sn , z ∈R+, Z ∈Sn+[
γI −Y γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0

(y0, y,Y ) ∈Y .

The last part of the proof involves the reformulation of the feasible set Y . Indeed, we can

rewrite Y as

Y =
{

y0 ∈R, y ∈Rn ,Y ∈Sn : y0 +2y>ξ+ξ>Y ξ≥ q0
j +q>

j ξ+ξ>Q jξ ∀ξ ∈Ξ, ∀ j ∈ [J ]
}

.

The set Y can be outer approximated using the S-lemma [139] as

Y ⊆
{

y0 ∈R, y ∈Rn ,Y ∈Sn : ∃η ∈RI×J
+ s. t.

[
Y −Q j y −q j

y>−q>
j y0 −q0

j

]
+ ∑

i∈[I ]
ηi j

[
Ai ai

a>
i a0

i

]
º 0 ∀ j ∈ [J ]

}
.

The above approximation is tight if I = 1. This completes the proof.

We remark that the support information can be injected into the reformulation of the Gelbrich

expected loss for a quadratic loss function in Theorem 3.43 using an analogous reasoning,

thus the details are omitted.

3.7.2 Conservative Approximation of Joint Chance Constraints

Suppose that we are interested in verifying whether the below joint chance constraint

inf
Q∈Gρ,2(Ξ,µ̂,Σ̂)

Q
(
q0

j +q>
j ξ≤ 0 ∀ j ∈ [J ]

)
≥ 1−β (3.57)

is valid for some q0
j ∈ R and q j ∈ Rn ∀ j ∈ [J ] at a risk level β ∈ (0,1). For a decision problem,

q0
j and q j are dependent on the decision variables. If J = 1 and Ξ=Rn , we recover the single

chance constraint problem without support information and the analytical expression of the

Gelbrich VaR in Lemma 3.31 can be utilized to verify this chance constraint using Remark 3.38.
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In this section, we consider the case when Ξ is a compact subset of Rn and J ≥ 2.

Applying the same approach as in [183], we associate a scaling factor α j ∈ R++ to the j -

th constraint in the joint chance constraint (3.57), and thus given a strictly positive vector

α ∈RJ
++, the joint chance constraint (3.57) is equivalent to an individual but nonlinear chance

constraint

inf
Q∈Gρ,2(Ξ,µ̂,Σ̂)

Q

(
max
j∈[J ]

{
α j

(
q0

j +q>
j ξ

)}
≤ 0

)
≥ 1−β.

We resort to the CVaR conservative approximation of the above individual chance constraint

that holds in the following sense: if

sup
Q∈Gρ,2(Ξ,µ̂,Σ̂)

Q-CVaRβ

(
max

1≤ j≤J

{
α j

(
q0

j +q>
j ξ

)})
≤ 0 (3.58)

is valid, then (3.57) hold. The CVaR approximation approach requires evaluating the CVaR

of a polyhedral loss function over the Gelbrich hull with support information Gρ,2(Ξ, µ̂, Σ̂).

Under minor additional assumptions on Ξ, the next proposition shows that this quantity can

be safely approximated by the optimal value of a convex program.

Proposition 3.52. Suppose that the compact support Ξ has non-empty interior and that Ξ can

be represented as the intersection of I ≥ 1 quadratic constraints of the form

Ξ= {
ξ ∈Rn : ξ>Aiξ+2a>

i ξ+a0
i ≤ 0, Ai ∈Sn ∀i ∈ [I ]

}
.

If σ= 2, µ̂ ∈Rn and Σ̂ ∈Sn+, then for any ρ ∈R++ and α ∈RJ
++, we have

sup
Q∈Gρ,2(Ξ,µ̂,Σ̂)

Q-CVaRβ

(
max
j∈[J ]

{
α j

(
q0

j +q>
j ξ

)})

≤



inf τ+β−1
(
y0 +γ

(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
])

s. t. τ ∈R, γ ∈R+, η ∈RI×(J+1)
+ , y0 ∈R, y ∈Rn , Y ∈Sn+, z ∈R+, Z ∈Sn+[

γI −Y γΣ̂
1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0[

Y y − 1
2α j q j

(y − 1
2α j q j )> y0 −α j q0

j +τ

]
+ ∑

i∈[I ]
ηi j

[
Ai ai

a>
i a0

i

]
º 0 ∀ j ∈ [J ][

Y y

y> y0

]
+ ∑

i∈[I ]
ηi 0

[
Ai ai

a>
i a0

i

]
º 0.

Furthermore, if I = 1 then the above reformulation is tight.
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Proof. For any α ∈RJ
++, we find

sup
Q∈Gρ,2(Ξ,µ̂,Σ̂)

Q-CVaRβ

(
max
j∈[J ]

{
α j

(
q0

j +q>
j ξ

)})

= sup
Q∈Gρ,2(Ξ,µ̂,Σ̂)

inf
τ∈R

{
τ+ 1

β
EQ

([
max
j∈[J ]

{
α j

(
q0

j +q>
j ξ

)}
−τ

]+)}
(3.59a)

= inf
τ∈R

{
τ+ 1

β
sup

Q∈Gρ,2(Ξ,µ̂,Σ̂)

EQ

([
max
j∈[J ]

{
α j

(
q0

j +q>
j ξ

)}
−τ

]+)}
, (3.59b)

where equality (3.59a) utilizes the definition of the CVaR in [144]. Because Ξ is compact,

Gρ,2(Ξ, µ̂, Σ̂) is weakly compact, and the interchange of the sup-inf operators in equality (3.59b)

is justified by a version of the stochastic saddle point result [155, Proposition 3.1]. Let `(ξ) be a

loss function inside the expectation operator in (3.59b). More specifically, we have

`(ξ) =
[

max
j∈[J ]

{
α j

(
q0

j +q>
j ξ

)}
−τ

]+
= max

{
max
j∈[J ]

{α j (q0
j +q>

j ξ)−τ},0

}
,

which is equivalent to a pointwise maximum of J +1 quadratic loss functions of the form

`0(ξ) = 0, ` j (ξ) =α j q0
j −τ+α j q>

j ξ ∀ j ∈ [J ].

The Gelbrich expected loss in (3.59b) can be approximated using Proposition 3.51 as

sup
Q∈Gρ,2(Ξ,µ̂,Σ̂)

EQ

([
max
j∈[J ]

{
α j

(
q0

j +q>
j ξ

)}
−τ

]+)

≤



inf y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. γ ∈R+, η ∈RI×J
+ , y0 ∈R, y ∈Rn , Y ∈Sn , z ∈R+, Z ∈Sn+[

γI −Y γΣ̂
1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0[

Y y − 1
2α j q j

(y − 1
2α j q j )> y0 −α j q0

j +τ

]
+ ∑

i∈[I ]
ηi j

[
Ai ai

a>
i a0

i

]
º 0 ∀ j ∈ [J ][

Y y

y> y0

]
+ ∑

i∈[I ]
ηi 0

[
Ai ai

a>
i a0

i

]
º 0,

and the above approximation is tight if I = 1. The proof is completed by replacing the above

approximation into (3.59b).

Proposition (3.52) derives the CVaR approximation of the joint chance constraint for a given

scaling vectorα ∈RJ
++. When the joint chance constraint is utilized as an elementary constraint

of a decision problem, the parameters q0
j and q j are dependent on the decision variables. In

this case, one can further tighten the CVaR approximation using a sequential optimization

procedure similar to [183, Algorithm 3.1] that optimizes sequentially over the scaling factor
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α ∈RJ
++ and the primitive decision variables.

3.8 Numerical Experiment: Index Tracking Portfolio Optimization

We consider the passive portfolio allocation strategy where the goal is to construct a portfolio

of n −1 stocks that tracks the return of a pre-specified market index. Let r ∈Rn−1 be a random

vector representing the stochastic return of n −1 stocks and rmarket ∈R is the random return

of the market index that the portfolio manager aims to track. Define the random vector

ξ= [r>,rmarket]
>, the nominal index tracking portfolio allocation problem can be formulated

as
inf

w∈W
EP̂

[
`(w>ξ)

]
,

where the expectation is taken over the nominal joint probability measure P̂ of ξ, and ` :R→
R+ is a loss function that penalizes the mismatch between the portfolio return and the market

index. The feasible set W is confined to

W =
{

w ∈Rn :
∑

i∈[n−1]
wi = 1, wn =−1, wi ≥ 0 ∀i = 1, . . . ,n −1

}
,

where wi is the i -th element of the vector w . For simplicity, we assume that the support of the

random vector ξ is Ξ=Rn , and we emphasize that the injection of the support information is

straightforward from the results of Section 3.7.

If we denote by µ̂ the mean vector and by Σ̂ the covariance matrix of ξ under P̂, the correspond-

ing distributionally robust index tracking portfolio allocation problem under the Gelbrich hull

Gρ,2(µ̂, Σ̂) can be formulated as

inf
w∈W

sup
Q∈Gρ,2(µ̂,Σ̂)

EQ
[
`(ξ>w)

]
. (3.60)

Interestingly, index tracking problem (3.60) can be considered as a special instance of a broader

class of distributionally robust regression problems where ` represents a (convex) regression

loss function.

Corollary 3.53 (Gelbrich regression problems). Suppose that ` is a convex loss function. The

optimal value of the distributionally robust regression problem (3.60) equals the optimal value

of the following optimization problem

inf y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. w ∈W , γ ∈R+, y0 ∈R, y ∈Rn , Y ∈Sn , z ∈R+, Z ∈Sn+[
γI −Y γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0

(y0, y,Y ) ∈Y (w),

(3.61)
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where Y (w) is a parametrized feasible set

Y (w) = {
y0 ∈R, y ∈Rn ,Y ∈Sn : y0 +2ξ>y +ξ>Y ξ≥ `(w>ξ) ∀ξ ∈Rn}

.

For common regression loss functions listed below, Y (w) is representable as semidefinite con-

straints, and problem (3.61) is a semidefinite program.

(i) Robust regression. If ` is the Huber loss function with target value α ∈R and robustness

parameter β> 0, that is,

`(w>ξ) =
1

2

(
w>ξ−α)2

if |w>ξ−α| ≤β,

β
(|w>ξ−α|− 1

2β
)

otherwise,

then the feasible set Y (w) can be expressed as

Y (w) =


y0 ∈R, y ∈Rn ,Y ∈Sn

+ :

∃θ1 ∈R, θ2 ∈R+,[
Y y − β

2 w

y>− β
2 w> y0 −θ2 +β(α+θ1)

]
º 0,

[
θ2 θ1

θ1 2

]
º 0[

Y y + β
2 w

y>+ β
2 w> y0 −θ2 −β(α+θ1)

]
º 0


.

(ii) Support vector regression. If ` is the ε-insensitive loss function with target α ∈R, that is,

`(w>ξ) = max
{
0, |w>ξ−α|−ε} , then the feasible set Y (w) can be expressed as

Y (w) =
{

y0 ∈R, y ∈Rn ,Y ∈Sn
+ :

[
Y y − 1

2 w

y>− 1
2 w> y0 +α+ε

]
º 0,

[
Y y + 1

2 w

y>+ 1
2 w> y0 −α+ε

]
º 0

}
.

(iii) Quantile regression. If ` is the pinball loss function with target α ∈R and parameter β ∈
[0,1], that is, `(w>ξ) = max

{−β(w>ξ−α), (1−β)(w>ξ−α)
}

, then the feasible set Y (w)

can be expressed as

Y (w) =
{

y0 ∈R, y ∈Rn ,Y ∈Sn
+ :

[
Y y − β

2 w

y>− β
2 w> y0 −βα

]
º 0,

[
Y y + (1−β)

2 w

y>+ (1−β)
2 w> y0 + (1−β)α

]
º 0

}
.

(iv) ‖ ·‖1 loss. If ` is a 1-norm loss function with target α ∈ R, that is, `(w>ξ) = ‖w>ξ−α‖1,

then the feasible set Y (w) can be expressed as

Y (w) =
{

y0 ∈R, y ∈Rn ,Y ∈Sn
+ :

[
Y y − 1

2 w

y>− 1
2 w> y0 +α

]
º 0,

[
Y y + 1

2 w

y>+ 1
2 w> y0 −α

]
º 0

}
.

(v) ‖ ·‖2
2 loss. If ` is a squared 2-norm loss function with target α ∈ R, that is, `(w>ξ) =
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‖w>ξ−α‖2
2, then the feasible set Yx can be expressed as

Y (w) =
{

y0 ∈R, y ∈Rn ,Y ∈Sn
+ : ∃M ∈Sn

+,

[
M y +αw

y>+αw> y0 −α2

]
º 0,

[
Y −M w

w> 1

]
º 0

}
.

Proof. The reformulation (3.61) follows directly from the proof of Theorem 3.41 by noting

that because ` is convex, Y (w) is also a convex feasible set. We now proceed to provide the

reformulation of Y (w) for different loss functions.

Consider when ` is a Huber loss function. In this case, we can write ` using the inf-convolution

formulation as

`(w>ξ) = inf
θ1∈R

1

2
θ2

1 +β|w>ξ−α−θ1|

= inf
θ1∈R

max

{
1

2
θ2

1 +β(w>ξ−α−θ1),
1

2
θ2

1 +β(−w>ξ+α+θ1)

}
.

The semi-infinite constraint defining the feasible set Y (w) can be reformulated as

∃θ1 ∈R :

{
y0 − 1

2θ
2
1 +β(α+θ1)+ (2y −βx)>ξ+ξ>Y ξ≥ 0 ∀ξ ∈Rn

y0 − 1
2θ

2
1 −β(α+θ1)+ (2y +βx)>ξ+ξ>Y ξ≥ 0 ∀ξ ∈Rn ,

and hence Y (w) admits a conic representation

Y (w) =


y0 ∈R, y ∈Rn ,Y ∈Sn

+ :

∃θ1 ∈R,[
Y y − β

2 w

y>− β
2 w> y0 − 1

2θ
2
1 +β(α+θ1)

]
º 0,[

Y y + β
2 w

y>+ β
2 w> y0 − 1

2θ
2
1 −β(α+θ1)

]
º 0,


.

which is nonlinear because of the quadratic terms in θ1. In the last step, we replace the term
1
2θ

2
1 by an auxiliary variable θ2 ∈R+ with an additional constraint θ2 ≥ 1

2θ
2
1 . Formulating this

additional constraint as a semidefinite constraint completes the proof for the Huber loss.

The other loss functions can be trivially re-expressed as a pointwise maximium of quadratic

functions, and the reformulation of Y (w) follows an analogous reasoning. The detailed proof

is thus omitted.

Because the portfolio manager wants to match the portfolio return as close as possible to

the market return, the target parameter can be set to α = 0. Furthermore, we will focus

on the `1 and `2 loss to avoid the extra hyper-parameter of the loss function to be tuned.

We use the standard dataset for index-tracking portfolio balancing [19] which includes the

weekly returns for DowJones, NASDAQ100, FTSE100, the summary data about the dataset

is shown in Table 3.1. We use a similar rolling horizon approach for portfolio balancing as

in [19]: we use 52 weeks of return to estimate the sample average joint mean vector and
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Figure 3.1 – Tracking error using `1 loss (panels 3.1a–3.1b) and `2 loss (panels 3.1d–3.1e)

covariance matrix of the assets and index returns. These estimates are used to construct the

nominal distribution P̂ for each level of ambiguity ρ ∈ {0.1× t , t = 0, . . . ,250} for the DowJones

dataset and ρ ∈ {0.1× t , t = 0, . . . ,100} for the NASDAQ100 and FTSE100 dataset to find the

optimal portfolio allocation that minimizes the worst-case index tracking expected error. The

portfolio allocation is kept constant for 12 weeks to compute the weekly portfolio return and

the corresponding mismatch between the portfolio return and the specified index.

Table 3.1 – Datasets for the experiments

Dataset Name # of assets (n) # of weeks (T ) Time interval # of rebalancing
DowJones 28 1363 Feb 1990-Apr 2016 110
NASDAQ100 82 596 Nov 2004-Apr 2016 46
FTSE100 83 717 Jul 2002-Apr 2016 56

All experiments are run on an Intel XEON CPU with 3.40GHz clock speed and 16GB of RAM. All

semidefinite programs are solved with MOSEK 8.1 using the YALMIP interface [112]. In

order to ensure that our experiments are reproducible, the underlying source codes are

accessible at https://github.com/nvietanh/GelbrichRM. Figure 3.1 shows the additional

benefit of embracing the distributionally robust index tracking model (3.60) with the Gelbrich

hull ambiguity set. For both the `1 and `2 loss function and throughout all three datasets, the

optimal radius that minimizes the worst-case expectation of the misalignment between the

portfolio return and the index target are all strictly positive.
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3.9 Appendix

To derive certain results in this paper, we need to solve the nonlinear semidefinite program of

the form

sup
Σº0

Tr
[
(Q −γI )Σ

]+2γTr
[(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]
.

The following result asserts that this optimization problem can be solved in quasi-closed form.

Proposition 3.54 ([124, Proposition A.2]). For any Q ∈Sn , Σ̂ ∈Sn+ and γ ∈R+ we have

sup
Σº0

{
Tr

[
(Q −γI )Σ

]+2γTr
[(
Σ̂

1
2ΣΣ̂

1
2
) 1

2
]}=


γ2 Tr

[
(γI −Q)−1Σ̂

]
if γ>λmax(Q),

liminf
γ̄↓γ

γ̄2 Tr
[
(γ̄I −Q)−1Σ̂

]
if γ=λmax(Q),

+∞ if γ<λmax(Q).

Moreover, the maximization problem is solved by Σ? = γ2(γI −Q)−1Σ̂(γI −Q)−1 whenever

γ>λmax(Q). This solution is unique if Σ̂Â 0.

Proving the results in Sections 3.6.2 and 3.6.3 requires the following lemma which is an

extension of [21, Lemma 1].

Lemma 3.55. Let S ⊆Rn be a measurable set (not necessarily convex). For any µ̂ ∈Rn , Σ̂ ∈Sn+
and ρ ∈R++, let Gρ,2(µ̂, Σ̂) be the Gelbrich hull defined as in Definition 3.12. We have

sup
Q∈Gρ,2(µ̂,Σ̂)

Q(ξ ∈S ) =



inf y0 +γ
(
ρ2 −‖µ̂‖2 −Tr

[
Σ̂

])+ z +Tr
[

Z
]

s. t. γ ∈R+, y0 ∈R, y ∈Rn , Y ∈Sn , z ∈R+, Z ∈Sn+[
γI −Y γΣ̂

1
2

γΣ̂
1
2 Z

]
º 0,

[
γI −Y γµ̂+ y

(γµ̂+ y)> z

]
º 0[

Y y

y> y0

]
º 0, y0 +2y>ξ+ξ>Y ξ≥ 1 ∀ξ ∈S .

Proof. Let 1S (ξ) be the indicator function of the set S , that is,

1S (ξ) =
1 if ξ ∈S ,

0 otherwise.

Given a set S , define momentarily the feasible set Y by

Y = {
y0 ∈R, y ∈Rn , Y ∈Sn : y0 +2y>ξ+ξ>Y ξ≥1S (ξ) ∀ξ ∈Rn}

=
{

y0 ∈R, y ∈Rn , Y ∈Sn :

[
Y y

y> y0

]
º 0, y0 +2y>ξ+ξ>Y ξ≥ 1 ∀ξ ∈S

}
.
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3.9. Appendix

Notice that Y is a closed and convex set. We have

sup
Q∈Gρ,2(µ̂,Σ̂)

Q(ξ ∈S ) = sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
Q∈P2(µ,Σ)

EQ[1S (ξ)] (3.62a)

≤ sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

inf
(y0,y,Y )∈Y

y0 +2µ>y +Tr
[
(Σ+µµ>)Y

]
(3.62b)

= sup
(µ,M)∈Vρ(µ̂,Σ̂)

inf
(y0,y,Y )∈Y

y0 +2µ>y +Tr
[
MY

]
= inf

(y0,y,Y )∈Y
sup

(µ,M)∈Vρ(µ̂,Σ̂)

y0 +2µ>y +Tr
[
MY

]
(3.62c)

= inf
(y0,y,Y )∈Y

y0 +δ?Vρ(µ̂,Σ̂)
(2y,Y ),

where equality (3.62a) is from the two layer decomposition (3.8a) of the Gelbrich hull, and

inequality (3.62b) is from the Isii’s duality result [86]. Equality (3.62c) follows from the Sion’s

minimax theorem [156] which holds because Vρ(µ̂, Σ̂) is compact by virtue of Proposition 3.17.

The semidefinite program reformulation in the statement of the Lemma is obtained by uti-

lizing the reformulation of the support function of Vρ(µ̂, Σ̂) in Lemma 3.22. In the last step,

inequality (3.62b) can be proven to hold as an equality using an analogous argument as in the

second part of the proof of Theorem 3.41. This completes the proof.
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We can only see a short distance ahead, but we can see plenty there that needs to be done.

— Alan Turing

This thesis contains three independent chapters which lay the foundations for distributionally

robust optimization using Wasserstein type-2 ambiguity set along with various applications in

statistical optimization, machine learning and risk assessment.

Chapter 1 studies the robustified maximum likelihood estimator for the inverse covariance

matrix of a Gaussian random vectors. Using an ambiguity set that contains only Gaussian

distributions, we show that the optimal estimator exists in closed-form and it belongs to the

wider class of nonlinear shrinkage estimators. We demonstrate that the Wasserstein shrinkage

estimator possesses many nice properties, all of which are not imposed adhoc but arise

naturally from the framework of distributionally robust optimization. We develop a quadratic

approximation numerical algorithm to solve the robustified estimation problem if additional

constraints regarding the conditional independency among the components of the random

vector are involved.

Chapter 2 studies the robustified estimator which aims to recover the true signal from noisy

measurements with minimum mean square error. If only the center of the Wasserstein ambi-

guity set is supposed to be elliptical, we show that the optimal Wasserstein MMSE estimator

is an affine function of the noisy measurements, and it can be recovered from the optimal

solution of a semidefinite program if the nominal distribution of the noise is non-degenerate.

We further develop a decomposable first-order Frank-Wolfe algorithm that converges linearly

to the optimal solution of the semidefinite program.
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Chapter 3 studies the Gelbrich hull, a superset of the Wasserstein ambiguity set, and the

Gelbrich risk, a safe approximation of the Wasserstein risk. We show that the Gelbrich risk

admits a two-layer decomposition that facilitates the reformulation of the Gelbrich risk. We

prove that for a linear loss function, the Gelbrich risk of a family of consistent, positive

homogeneous and translation invariance risk measures can be expressed in closed form. We

also show that evaluating the Gelbrich expected loss is, under some regularity conditions,

equivalent to solving a finite convex optimization problem.

The promising horizons for future research are highlighted below.

Wasserstein Statistical Estimation

This thesis examines the distributionaly robustification of two fundamental estimation prob-

lems in statistics, namely the maximum likelihood estimation problem and the minimum

mean square error estimation problem. There is an abundance of other statistical estima-

tion/inference problem where a coherent robustification can be applied in the same spirit of

Chapter 1 and 2.

Parametric Family of Distributions

The backbone of this thesis is built upon the Gaussian distribution and its generalization to

the family of elliptical distributions. A natural extension is to study other family of parametric

distributions, a potential candidate is the family of exponential distributions of which the

normal distribution is also an element. Family of discrete distributions, whose applications

are ubiquitous, is another interesting subject for distributional robustification.

Approximation Schemes for Type-p Wasserstein Ambiguity Set

This thesis concentrates on Wasserstein type-2 distance and exploits its lower approximation

using the Gelbrich distance. It is left unanswered whether a similar approximation can be

obtained for the Wasserstein type-1 distance, and whether there can be a tight approximation

for type-p Wasserstein distance with p > 2. The discovery of any lower bound of this type

will lead to novel approximations of the Wasserstein risk and potentially enjoy widespread

applications.

Applications in Various Problems

Apart from theoretical studies, the applications of the technical results in this thesis in oper-

ations management, healthcare and power systems is a large unexplored field. At the same

time, there are a plethora of important adversarial learning tasks where the Wasserstein type-2

ambiguity set is left untouched. Developing application-tailored model using the results

presented in this thesis, especially in Chapter 3, is an exciting future work.
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