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Abstract
The brain is the substrate of a complex dynamic system providing a remarkably varied range

of functionalities, going from simple perception to higher-level cognition. Disturbances

in its complex dynamics can cause an equally vast variety of mental disorders. One such

brain disorder is schizophrenia, a neurodevelopmental disease characterized by abnormal

perception of reality that manifests in symptoms like hallucinations or delusions. Even though

the brain is known to be affected in schizophrenia, the exact pathophysiology underlying its

developmental course is still mostly unknown. In this thesis, we develop and apply methods

to look into ongoing brain function measured through magnetic resonance imaging (MRI)

and evaluate the potential of these approaches for improving our understanding of psychosis

vulnerability and schizophrenia. We focus on patients with chromosome 22q11.2 deletion

syndrome (22q11DS), a genetic disorder that comes with a 30fold increased risk for developing

schizophrenia, thus enabling the study of developmental alterations and risk factors that

precede the onset of full-blown psychosis.

We first examine temporal variability of the blood oxygenation level dependent (BOLD)

signal, a voxelwise measure of dynamic fluctuations. As static functional connectivity (sFC)

is scaled for variance, we also compare BOLD signal variability with altered sFC. The broad

pattern of altered BOLD signal variability in 22q11DS partly, but not entirely, overlaps with

altered sFC, suggesting a complex non-linear relationship between the two measures. Further,

testing for altered BOLD signal variability in patients with higher psychotic symptoms, we find

reduced values in the dorsal anterior cingulate cortex (dACC), a central node of the salience

network (SN).

Going beyond a voxel-wise measure of brain dynamics, we next look into aberrant dy-

namics of large-scale functional brain networks. We use innovation-driven co-activation

patterns (iCAPs), an approach that stands out by its ability to recover spatial and temporal

overlap of functional brain networks. As in the original iCAPs framework such spatial overlap

can introduce spurious temporal activations, we propose a novel spatio-temporal regression

framework that relies on transient-based constraints to overcome this limitation. With this

improved scheme, we probe into clinical risk factors of psychosis in 22q11DS and find aberrant

activation and coupling of functional brain networks, again implicating the SN, as well as the

amygdala and hippocampus.

Finally, we explore the implications of structural network topology on functional dynamics,

by combining iCAPs with network control theory, an approach that relies on a dynamic model

to predict the energy required for controlling the brain’s state given its structural connectivity.
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Abstract

We find that the brain operates in an energetically optimal way, spending less time in brain

states that require higher control energy. In patients with 22q11DS, this relationship is less

pronounced, suggesting less efficient functional brain dynamics in these patients.

In summary, our results confirm that the dynamic nature of brain function contains

essential information and warrants further attention for the development of clinically relevant

imaging markers for psychosis vulnerability. Moreover, we provide initial evidence for aberrant

relationship between brain function and structure in patients with 22q11DS that merits further

exploration.

Keywords: brain imaging, functional MRI, diffusion weighted MRI, schizophrenia, 22q11.2

deletion syndrome, BOLD signal variability, large-scale brain network dynamics, network

control theory, salience network
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Résumé
Le cerveau est un système dynamique complexe qui génère une palette de fonctionnalités

remarquablement variées, passant de la simple perception, à des processus cognitifs de plus

haut niveau. Des perturbations de ces dynamiques complexes peuvent mener à une multi-

tude de maladies psychiatriques tout aussi variées. La schizophrénie, par exemple, est une

maladie neurodéveloppementale qui s’accompagne d’une perception anormale de la réalité

s’exprimant par des symptômes comme des hallucinations ou des délires. Bien qu’on sache

que le cerveau est affecté dans la schizophrénie, la pathophysiologie exacte de sa trajectoire

développementale n’est pas encore bien comprise. Dans cette thèse, nous développons et ap-

pliquons des méthodes d’analyse de la fonction cérébrale dynamique mesurée par l’imagerie

par résonance magnétique (IRM) et évaluons leur potentiel pour améliorer notre connais-

sance de la schizophrénie. Nous investiguons des patients avec une microdélétion 22q11.2

(MD22q11), une maladie génétique associée à un risque de schizophrénie 30 fois plus élevé,

nous permettant d’étudier des altérations développementales et des facteurs de risque qui

précèdent la psychose.

D’abord nous examinons la variabilité du signal BOLD (de l’anglais « blood oxygenation

level dependent »), une mesure de fluctuations dynamiques par voxel. La comparaison entre

cette variabilité et la connectivité fonctionnelle statique (CFs) nous montre que les multiples

altérations de ces deux mesures sont partiellement, mais pas entièrement superposées, ce qui

suggère une relation non-linéaire complexe. De plus, chez les patients avec plus de symptômes

psychotiques nous trouvons des réductions de variabilité dans le cortex cingulaire antérieur

dorsal, un nœud central du réseau de saillance (RS).

Par la suite, nous étudions des dynamiques des réseaux cérébraux fonctionnels. Nous

utilisons la méthode d’iCAPs (de l’anglais « innovation-driven co-activation patterns ») qui

permet d’extraire des réseaux qui peuvent se superposer spatialement et temporellement.

Avec la méthode originale, une telle superposition spatiale peut introduire de fausses acti-

vations. Nous proposons donc une nouvelle approche de régression spatio-temporelle qui

surmonte cette limitation. Avec cette méthode améliorée, nous analysons des facteurs de

risque cliniques de psychose chez les patients avec MD22q11 et trouvons des altérations

d’activité et d’interaction de réseaux cérébraux, dont à nouveau le RS, mais aussi l’amygdale

et l’hippocampe.

Enfin, nous explorons l’implication de la topologie de réseaux structurels sur la fonction

dynamique en combinant les iCAPs et la théorie de contrôle de réseaux, une approche qui

se base sur un modèle dynamique pour prédire l’énergie nécessaire pour contrôler l’état du
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Résumé

cerveau sachant sa connectivité structurelle. Nous trouvons que le cerveau fonctionne de

façon optimale en passant moins de temps dans des états qui demandent plus d’énergie de

contrôle. Chez les patients avec MD22q11 cette relation est moins prononcée ce qui suggère

une fonctionnalité cérébrale moins efficace.

En somme, nos résultats confirment que la nature dynamique de la fonction cérébrale

contient des informations essentielles qui sont importantes à considérer dans la recherche

de marqueurs de vulnérabilité pour la psychose. De plus, nous présentons la preuve d’une

relation aberrante entre structure et fonction du cerveau chez les patients avec MD22q11 qui

mérite d’être explorée plus profondément.

Mots clés : imagerie du cerveau, IRM fonctionelle, IRM pondérée en diffusion, schizo-

phrénie, microdélétion 22q11.2, variabilité du signal BOLD, dynamique de réseaux cérébraux,

théorie de control de réseaux, réseau de saillance
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Every mountain top is within reach,

if you just keep climbing.

— Barry Finlay

Für Ruth und Peter.
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1 Introduction

1.1 Motivation
Schizophrenia is a common mental disorder that is strongly debilitating for affected indi-

viduals and poses a heavy burden for society (Owen et al., 2016). It is characterized by an

aberrant perception of reality, which manifests in positive psychotic symptoms like hallu-

cinations and delusions, negative symptoms like social withdrawl and lack of motivation,

thought disorders like disorganized speech and thinking, as well as cognitive impairments.

Even though the brain is known to be affected, the exact pathophysiology that underlies

schizophrenia remains mostly unknown (Insel, 2010) and thus, the clinical management is

nowadays entirely based on clinical observation of symptoms. Magnetic resonance imaging

(MRI) is a unique and powerful tool to non-invasively provide images of brain structure and

function and is thus ideal to investigate the substrate of mental disorders such as schizophre-

nia. Indeed, imaging markers are promising tools to to delineate aberrant brain mechanisms

in the progression towards psychosis and schizophrenia (Kapur et al., 2012). A more precise

biomarker-informed staging of patients at high clinical risk for psychosis, that is, of patients

with clinical symptoms that precede the onset of full-blown schizophrenia, could complement

existing clinical diagnostic tools and allow more targeted and consequently more successful

treatment strategies (Insel, 2010; Kapur et al., 2012; Millan et al., 2016). Chromosome 22q11.2

deletion syndrome (22q11DS) is a neurodevelopmental disorder coming with a 30 % to 40 %

prevalence of schizophrenia (Schneider et al., 2014). As patients with 22q11DS are usually

already diagnosed during childhood, this genetic disorder provides the unique opportunity to

study markers related to the development of psychosis even before the onset of full-blown

schizophrenia (Insel, 2010).

Importantly, thanks to resting-state functional MRI (rs-fMRI) it has become evident in

recent years that even during rest the brain activates in a highly organized way (Damoiseaux

et al., 2006). Specifically, it dynamically fluctuates between multiple large-scale brain states

characterized by coherent activation of distributed sets of brain regions (Chang and Glover,

2010). Furthermore, the brain can be modeled as a complex dynamic system whose intrinsic

structural architecture – measured using diffusion weighted magnetic resonance imaging

(dMRI) – determines its functional organization; i.e., its ability to move between different,

but well defined functional states (Gu et al., 2015; Honey et al., 2009). Delineating how this

1



Chapter 1. Introduction

dynamic activity is altered in individuals at high risk for psychosis is a promising step towards

the goal of imaging markers that could improve clinical management of schizophrenia.

Although approaches to study brain dynamics through functional magnetic resonance

imaging (fMRI) are still in their infancy, they have already given promising insights in aberrant

brain function in patients with schizophrenia (Van Den Heuvel and Fornito, 2014; Damaraju

et al., 2014). Studies in 22q11DS, however, have mainly focused on brain morphology and

static properties of brain function. In this dissertation, I am bridging this gap by developing

and applying methods to look into features of dynamic brain function in 22q11DS. First, I use

multivariate pattern analysis techniques to analyze alterations and age-relationship of blood

oxygenation level dependent (BOLD) signal variability – a summary measure of voxel-wise

dynamism. Second, I move towards dynamics of large-scale functional brain states, where

I propose a methodological contribution to improve the robust recovery of temporally and

spatially overlapping large-scale functional brain states1 coactivating during rest. Then I use

this improved method to investigate temporal activation of functional brain states in patients

with 22q11DS. Finally, I use concepts of network control theory (Gu et al., 2015) to investigate

how the brain’s structural backbone may support the observed dynamic brain function.

1.2 Organization and contributions
This thesis is organized as a compilation of four published articles and one manuscript in

preparation for submission. Chapter 2 provides the background for the studies included in

this thesis. It gives an introduction and overview on techniques and processing approaches for

brain mapping with MRI, followed by a presentation of the clinical picture of schizophrenia

and 22q11DS, and ending with an overview on current knowledge on brain dynamics in

schizophrenia and 22q11DS. Four published articles are reproduced in chapters 3 and 4, and

chapter 5 contains an unpublished manuscript in preparation. Finally, chapter 6 summarizes

the results and provides propositions for future research directions.

The following paragraphs will summarize main objectives and contributions of each

article, briefly summarized also in figure 1.1. In all included articles, I contributed to the initial

idea, performed data processing, methods’ development and statistical analyses, wrote the

manuscript and performed revisions. As all of the articles were obviously collaborative work

of all authors, I will use the personal form “we" throughout the following summary.

1 A note on terminology: In the field of brain image analysis, there is an ambiguity in the utilization of the
term ‘network’. In the mathematical sense, a network is defined by a number of nodes (brain regions) that are
connected by a number of edges (connectivity). In structural connectivity analyses this is the predominant view.
In the context of fMRI analysis on the other hand, the term ‘network’ is often used to describe sets of coherently
activating brain regions, such as for example the default mode network or salience network. This term was initially
chosen because activity in regions of such a brain state is highly correlated, which allows to construct a ‘functional
network’ in which edges are defined by values of functional connectivity between regions. In this thesis, however, I
use the term ‘brain state’ in the context of functional activation patterns and the term ‘brain network’ to describe
networks in the mathematical sense (nodes and edges). For brain states that have widely accepted names that
incorporate the term ‘network’ (e.g. the ‘default mode network’), these standard names will be used to ensure
coherence with existing literature.
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1.2. Organization and contributions

Schizophrenia:		
๏ neurodevelopmental	mental	disorder	
๏ pathophysiology	mostly	unknown

22q11.2	deletion	syndrome:		
๏ 30-40%	prevalence	of	schizophrenia	
๏ model	to	investigate	developmental	
risk	factors

time

Measuring	brain	dynamics	
๏ noninvasive	brain	imaging	through	
magnetic	resonance	imaging	

๏ functional	MRI	&	diffusion	weighted	
MRI

Chapter	3:	BOLD	signal	variability

Chapter	4:	Large-scale	network	dynamics

Chapter	5:	Network	control	theory

Zöller	et	al.,	NeuroImage	2017:	
๏ Partial	Least	Squares	Correlation	(PLSC)	for	multivariate	pattern	analysis.	
๏ Broad	alterations	in	22q11DS,	partly	but	not	entirely	overlapping	with	static	functional	
connectivity	changes.	

Zöller	et	al.,	Schizophrenia	Research	2018:	
๏ Reductions	in	dACC	in	patients	at	higher	risk	for	psychosis.

Zöller	et	al.,	IEEE	TMI	2019:	
๏ Spatio-temporal	transient-informed	regression	for	improved	time	course	recovery.	
Zöller	et	al.,	BP:CNNI,	in	press:	
๏ Aberrant	activation	and	coupling	of	salience	network	and	amygdala&hippocampus	in	
patients	at	higher	risk	for	psychosis.

Zöller	et	al.,	in	preparation:	
๏ The	brain	operates	inherently	optimal:	shorter	activation	duration	of	states	with	higher	
control	energy.	

๏ Patients	with	22q11DS	spend	more	time	in	energetically	demanding	states	
→	inefficient	structure-function	relationship.
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Figure 1.1 – Overview of this thesis on brain dynamics in 22q11.2 deletion syndrome.
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Chapter 1. Introduction

Chapter 3: Mapping brain dynamics through BOLD signal variability

To the best of our knowledge, no-one so far has looked into dynamic brain function in 22q11DS.

In this chapter, we therefore investigate functional brain dynamics in terms of the voxel-wise

measure of BOLD signal variability and evaluate its potential to give insights into psychosis

vulnerability in the syndrome.

Section 3.2: Disentangling BOLD signal variability and static functional connectivity

How is BOLD signal variability altered in 22q11DS?

How do alterations of BOLD signal variability relate to static functional connectivity?

Moment-to-moment BOLD signal variability; e.g., estimated by calculating the standard

deviation of voxel-wise BOLD signals, provides a summary measure of ‘dynamism’ over the

entire fMRI scanning duration. Higher BOLD variability may be beneficial for higher flexibility

of brain function (Deco et al., 2011) and has been found to change with age (Grady and Garrett,

2014). It may thus present a potentially valuable measure of dynamic brain function in health

and disease. BOLD signal variability is necessarily related to static functional connectivity

(sFC), the probably still most commonly used approach for resting-state fMRI analysis, as

variance appears in the denominator of Pearson correlation.

In this first study, we present a multivariate partial least squares correlation (PLSC)-based

approach to investigate alterations and age-relationship of BOLD signal variability in 22q11DS.

Further, we study how alterations of BOLD signal variability relate to alterations of sFC in

the default mode network (DMN). We find that BOLD signal variability is broadly altered in

patients with 22q11DS and replicate findings on aberrant DMN functional connectivity. Alter-

ations of BOLD signal variability and sFC are overlapping in part, but not entirely, suggesting a

complex non-linear relationship that relies on different functional mechanisms.

Section 3.2: Altered BOLD signal variability in psychosis vulnerability

Is altered BOLD signal variability a potential imaging marker for psychosis vulnerability?

Building on the promising findings on broadly altered BOLD signal variability in patients

with 22q11DS, we further explore its potential in tracking aberrant brain function related

to increased psychosis vulnerability. To this aim, we investigate BOLD signal variability in

patients who have high prodromal positive psychotic symptoms and are thus at clinically

elevated risk for developing schizophrenia. Indeed, reports on aberrant BOLD signal variability

in schizophrenia underline its potential to detect clinically meaningful alterations of dynamic

brain function (Xu et al., 2015).

Using again the multivariate PLSC based approach from the previous study, we discover

reduced BOLD signal variability in the dorsal anterior cingulate cortex (dACC) that is caused

by altered development in patients with higher positive psychotic symptoms. This finding

supports previously reported alterations of the dACC in increased psychotic symptoms in

22q11DS (Padula et al., 2018). Indeed, the dACC is a central node of the salience network (SN),

which is intriguing as disrupted salience processing has been suggested as a mechanism for

the emergence of positive psychotic symptoms (Kapur, 2003).
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1.2. Organization and contributions

Chapter 4: Mapping brain dynamics through large-scale brain state activation

To go beyond a voxel-wise measure of dynamic brain function, we continue by investigating

dynamics of large-scale functional brain states.

Section 4.1: Recovering temporal overlap of spatially dependent brain states

How can we recover unadulterated temporal overlap of spatially overlapping brain states?

Among the multiple approaches to retrieve and analyze large-scale functional brain states

and their temporal dynamic properties, the innovation-driven co-activation patterns (iCAPs)

framework (Karahanoglu et al., 2015) stands out as it allows for spatial and temporal overlap

of brain states. In other words, one brain region can be part of multiple brain states and many

brain states can be active at the same time.

In this first part of chapter 4, we show that in the original framework, spatial overlap of

brain states can introduce spurious temporal activation. We then present a novel approach

for the recovery of brain state time courses that overcomes this limitation and allows the

robust recovery of temporal overlap unhindered by spatial overlap. This new method incorpo-

rates spatio-temporal constraints that use temporal information on timing of transitioning

activity, as well as information on the brain states’ spatial distribution. We demonstrate the

performance of our technique both on simulated and experimental data.

Section 4.2: Altered large-scale brain state activation in psychosis vulnerability

How is large-scale brain state activation altered in 22q11DS?

Is altered brain state activation a potential imaging marker for psychosis vulnerability?

The methodological improvement of the iCAPs framework now allows to recover reliable

information on large-scale brain states and their temporal properties, which are potentially

valuable to improve our understanding of psychosis vulnerability. Indeed, dynamic activation

of functional brain states has been reported to be altered in patients with schizophrenia and

at clinical high risk for psychosis and points towards alterations of the SN and DMN (Pelletier-

Baldelli et al., 2018; Du et al., 2018). In 22q11DS, functional dynamics of large-scale brain

networks have not been studied so far.

We use the improved iCAPs framework to recover large-scale brain networks in 22q11DS

and probe into alterations related to clinical risk factors for psychosis, namely prodromal posi-

tive psychotic symptoms and elevated levels of anxiety. We again observe aberrant activation

of the cingulo-prefrontal SN (which includes dACC) in patients with higher levels of prodromal

positive psychotic symptoms, as well as an implication of activation of the amygdala and

hippocampus for higher levels of anxiety. Further, the iCAPs framework allows to look into

network interactions. Looking into coupling of the amygdala and hippocampus, we uncover

differential roles of more dorsal and more ventral frontal brain regions, with higher levels of

anxiety in patients with stronger coupling to dorsal frontal regions and lower levels of anxiety

in patients with stronger coupling to ventral frontal regions. This first study using iCAPs in a

clinical population underlines the framework’s potential to detect complex functional brain

dynamics that are relevant to better understand brain disorders such as psychosis.
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Chapter 1. Introduction

Chapter 5: Mapping dynamic structure-function relation through network control
theory

Notably, dynamic brain function such as observed so far, takes place on the anatomical

substrate of structural connections in the brain. However, how alterations in these anatomical

connections constrain or facilitate dynamic function remains an open question.

Section 5.1: Control energy of functional brain states in psychosis vulnerability

How does altered structural connectivity translate into aberrant energy consumption?

How does altered control energy relate to functional activation?

Structural network architecture measured through dMRI is known to be altered in schizophre-

nia and 22q11DS. How these alterations relate to aberrant functional activation remains an

open question that comes with important methodological challenges. Network control theory

is an approach that relies on a dynamic model of brain function to explore the implications of

structural network topology on the energy required to control the brain’s state.

In this final study, we combine iCAPs analysis with network control theory to investigate

how the underlying structural connectivity of functional brain states influences their control-

lability properties. We uncover that the brain functions in an inherently optimal way, spending

less activation time (measured with fMRI) in brain states that are energetically more demand-

ing (based on their structural connectivity measured with dMRI). In patients with 22q11DS

this relationship is less pronounced, suggesting inefficient functional brain dynamics. In

summary, we provide initial evidence for aberrant relationship of brain function and structure

in patients with 22q11DS that deserves further investigation.
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2 Background

NONINVASIVE brain imaging through magnetic resonance imaging (MRI) has been a young

but rapidely growing field, which has had also considerable influence on research in

schizophrenia as it allowed for the first time to noninvasively test hypotheses on the underlying

mechanisms of the disease. In the following, I will give a brief overview on the background of

this thesis, presenting principles and processing techniques for functional and structural MRI,

followed by an introduction on the clinical characteristics of schizophrenia and chromosome

22q11.2 deletion syndrome (22q11DS), and ending with a summary on current brain imaging

findings in schizophrenia. As the main goal of this thesis was the evaluation of dynamic

features of brain function and structure, there will be a specific focus on dynamic methods

and findings in all parts.

2.1 Mapping of brain dynamics through MRI
MRI is a relatively young imaging modality, but has become one of the most commonly used

medical imaging techniques since its introduction in 1973 (Lauterbur, 1973) and the first

images of the human body in 1977 (Damadian et al., 1977). The tomographic technique is

unique in its ability to provide high-resolution volumetric images of tissue in a non-invasive

way and without the necessity for the injection of contrast agents or exposition to X-ray

radiation. Nowadays, a multiplicity of MRI sequences exist, allowing to map brain morphol-

ogy throught structural imaging, white matter connectivity trough diffusion imaging, blood

perfusion through arterial spin labeling, and brain function through the indirect measure

of blood-oxygenation levels that change with neural activity (Viallon et al., 2015; Huettel

et al., 2014). Along with the discovery and development of MRI recording methods came new

challenges for the analysis of these images (Soares et al., 2016). While initial studies mostly

investigated anatomical and static properties of the brain, recent findings and developments

during the last decade have lead to an increasing focus on dynamic properties of the brain

(Preti et al., 2017). In the following subsections, the principles of the two modalities used

in this thesis – resting-state functional magnetic resonance imaging (fMRI) and diffusion

weighted magnetic resonance imaging (dMRI) – will be outlined in more detail, including an

overview on developments in the analysis of dynamic features for each of them.
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Chapter 2. Background

Figure 2.1 – Neurovascular coupling. The electric activity of synapses requires energy, which is
provided through increased blood flow and higher supply of oxygenated hemoglobin in the
surrounding blood vessels. Reproduced from Toga and Mazziotta (2002).

2.1.1 Resting-state functional MRI

FMRI was first introduced in the late 1980s, when Ogawa and colleagues discovered that

cerebral activity can be estimated through blood oxygenation level dependent (BOLD) signals

(Ogawa et al., 1990). Briefly, neural activity in the gray matter leads to an increase in blood

flow and a higher concentration of oxygenated hemoglobin in the blood in order to sustain

the metabolism in the microvascular bed that is surrounding the neurons (see figure 2.1).

As it is, the magnetic properties of hemoglobin change with its level of oxygenation: while

oxygenated hemoglobin is diamagnetic, deoxygenated hemoglobin is paramagnetic and

therefore has a higher magnetic susceptibility. When inserted into a magnetic field, higher

magnetic susceptibility caused by lower levels of oxygenation leads to a reduction of transverse

magnetization, which can be measured with a T2*-weighted MRI contrast (Huettel et al., 2014).

Of note, changes in oxygenation level that are measureable with fMRI are much slower than

neural activity itself and follow a typical response function, the hemodynamic response

function (HRF), starting with a lag of 1 s to 2 s, peaking after 4 s to 6 s and slowly decreasing

afterwards. FMRI scans are typically characterized by a spatial resolution of 1×1×1 mm3 to

3×3×3 mm3. Temporal resolution usually lays between 1 s to 3 s, but has been pushed below

1 s in more recent multiband acquisitions (e.g., in the publicly available data of the Human

Connectome Project at a temporal resolution of 0.72 s; humanconnectome.org).

After its introduction, studies using fMRI first relied on task-based paradigms, during

which subjects were asked to execute a specific task during certain periods (or “blocks")
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2.1. Mapping of brain dynamics through MRI

followed by control blocks. Then, the statistical comparison between the BOLD activity during

task and control conditions, identifies brain regions that activate or de-activate in response to

the task (Friston and Frith, 1995). Years of research using such paradigms have given us an

extensive map of the brain’s localized functionality, which nowadays can be explored through

online meta-analytic tools such as brainmap.org (Fox and Lancaster, 2002) or neurosynth.org

(Yarkoni et al., 2011). In 1995, Biswal and colleagues showed in a seminal work that even during

rest, brain activity in the motor cortex is highly structured and correlated across hemispheres,

even in absence of any motor task (Biswal et al., 1995), see figure 2.2. Further research has

led to the consensus that brain activity during rest can be described in terms of activation

and fluctuation of distinct brain states; i.e., sets of brain regions that are coherently activating

(Fox et al., 2005; Damoiseaux et al., 2006), see figure 2.2. For clinical neuroscience, the resting

condition has the great advantage that it does not require the capacity to conduct a specific

task. Therefore, it is particularly well suited for children and adolescents or populations with

cognitive disabilities, such as patients with 22q11DS. Further, it allows the comparison and

pooling of data recorded across multiple sites without the consideration of variability in the

task design.

Static analysis of resting state fMRI In the resting state, there is no prior information on the

timing of spontaneous changes in brain activity, and thus different methods than in task-

based fMRI are required for its analysis. Classically, resting-state fMRI has been analyzed

in terms of static functional connectivity (sFC), that is, the temporal correlation over the

entire scanning duration either between the activity of a seed and the rest of the brain, or

between region of interests (ROIs) defined by a brain atlas (Biswal et al., 1995; Lee et al., 2013).

Such approaches have led to the discovery of several resting-state brain states, including, e.g.,

visual and auditory states, as well as the famous default mode network (DMN) (Hart et al.,

2017), see figure 2.2. Alternatively to seed- or ROI-based sFC approaches, another widely-used

method for the extraction of brain states and their static connectivity has been independent

component analysis (ICA) (McKeown et al., 1998; Calhoun et al., 2001). By assuming spatial

or temporal independence, the resting-state fMRI data is decomposed into a set of spatial

patterns and their temporal activation. Then, these independent components (or brain states)

can be investigated in terms of within- and between-state correlations. In fact, the resting-

state brain states extracted with ICA correspond well to the states that were discovered already

previously using seed-based approaches, but with the advantage that no specific seed needs

to be specified.

Dynamic analysis of resting state fMRI While these static approaches are still most com-

monly used for resting-state analysis, it has been shown that functional connectivity (FC) is

indeed variable over time (Chang and Glover, 2010) and that dynamic properties of resting-

state activity contain potentially valuable information (Hutchison et al., 2013a; Christoff et al.,

2016).

A relatively simple measure of brain dynamics is BOLD variability, which is most com-

monly computed as the temporal standard deviation of the BOLD signal at each voxel (McIn-

tosh et al., 2010). Variability exists on all scales from the cellular level up to the whole-body and

9

brainmap.org
neurosynth.org


Chapter 2. Background

Figure 2.2 – Even during rest, the correlation map of a single voxel in the left motor cortex
(A) resembles task-induced activity during bilateral finger movement (B), reproduced with
permission from Biswal et al. (1995). Seed correlation analysis has lead to the discovery of
several resting-state brain states that were previously known from task-based fMRI studies.
Reproduced with permission from Hart et al. (2017).

higher levels of variability may be beneficial for systems stability and dynamic range (Faisal

et al., 2008; Deco et al., 2011). Even though the exact mechanisms and implications of BOLD

variability are not known yet, recent research has confirmed its relevance for development and

cognitive performance, as well as its potential for clinical applications (reviewed in Garrett

et al., 2013b). Chapter 3 of this thesis is dedicated to an investigation of BOLD variability in

terms of its relationship to sFC (section 3.1), as well as its potential as marker for psychosis

vulnerability in 22q11DS (section 3.2).

While BOLD variability measures dynamics of activity, other increasingly popular ap-

proaches focus on brain state dynamics, or in other words on dynamics of connectivity. The

initial discovery that FC varies when computed inside a short temporal window that is slid over

the scanning time (Chang and Glover, 2010; Sakoglu et al., 2010) has motivated a multiplicity

of methodological developments to retrieve and analyze dynamic properties of brain states

(reviewed in Preti et al., 2017 and Hutchison et al., 2013b). Such sliding window approaches

have been used in combination with seed-based analysis (Kang et al., 2011) and applied

on time-courses of independent components retrieved with ICA (Sakoglu et al., 2010; Allen

et al., 2014). For the further analysis of the derived time-dependent connectivity matrices,

many approaches have been proposed. Connectivity dynamics can be assessed in terms of

simple measures of variation, such as e.g. the standard deviation (Kucyi et al., 2013). Further,

several approaches have been proposed to further decompose dynamic functional connec-

tivity (dFC) timecourses into dynamic meta-states; e.g. using principal component analysis
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2.1. Mapping of brain dynamics through MRI

(PCA) (Leonardi et al., 2013), k-means clustering (Allen et al., 2014) or hidden Markov models

(Vidaurre et al., 2016).

Window-based dFC methods are however limited by the selection of the size of the window

as too short widows can introduce spurious fluctuations (Leonardi and Van De Ville, 2015;

Zalesky and Breakspear, 2015), but too long windows miss faster changes in connectivity. In a

parallel development, Tagliazucchi et al. (2012) switched the attention from windows to the

analysis of single frames, and discovered that only a fraction of the time-frames, selected by

thresholding the time course of a seed region, was sufficient to reproduce seed-based sFC

patterns. Their so-called point process analysis (PPA) approach was then further extended by

Liu and Duyn (2013) who applied temporal clustering on selected frames to obtain multiple

co-activation patterns (CAPs). Chapter 4 of this thesis covers yet another approach, which

is motivated by these CAPs, but instead of temporally clustering on activation, we apply

clustering on activation changes, allowing for the exploration of brain dynamics without the

employment of sliding windows. The so deducted innovation-driven co-activation patterns

(iCAPs) represent brain states that are simultaneously changing, which allows the recovery of

spatial and temporal overlap at the same time (Karahanoglu et al., 2015). In section 4.1 we

introduce a novel method for the robust recovery of temporal overlap of these brain states and

in section 4.2 we use iCAPs to investigate aberrant brain state dynamics in patients at risk for

psychosis.

2.1.2 Diffusion weighted MRI

DMRI for the brain was developed based on the discovery that water diffusion in the human

body can be measured by adding magnetic pulse gradients to the MRI sequence (Le Bihan and

Johansen-Berg, 2012; Le Bihan and Iima, 2015). Such field gradient pulses encode the move-

ment of water molecules along one direction, where higher diffusion results in an attenuated

MR signal. The white matter of the brain is composed of millions of axons that interconnect

different areas of the brain. In order to minimize electrical transmission energy, these axons

are wrapped in a layer of myelin, which constrains the main water diffusion direction. In such

anisotropic tissue, the main diffusion direction can be reconstructed from diffusion weighted

images by measuring diffusivity in multiple different gradient directions. In diffusion tensor

imaging (DTI), which was first introduced by Basser et al. (1994), a tensor encoding the main

direction is reconstructed for every voxel from the multiple directions. Nowadays, diffusion-

weighted images typically have a spatial resolution in the order of millimeters (Le Bihan and

Iima, 2015). Since its first introduction in the 1990s, multiple methodological developments for

the analysis of diffusion weighted images. A widely-used approach is the direct investigation of

voxel-wise diffusivity measures such as axial diffusivity, which measures the diffusivity along

the fibres, or radial diffusivity reflecting perpendicular diffusivity through the cell membranes.

Finally, fractional anisotropy is a summary measure of anisotropy in each voxel (Armitage and

Bastin, 2000).

Alternatively to voxel-wise anisotropy measures, fibre tracking (or tractography) algo-

rithms reconstruct white matter tracts by propagating streamlines into the main diffusion

directions (Catani et al., 2002; Jbabdi et al., 2015). From the reconstructed streamlines it is

11



Chapter 2. Background

A B

Figure 2.3 – A) Structural networks can be reconstructed from DTI connctivity data by counting
streamlines that are connecting brain regions of an anatomical atlas. Network node corre-
sponds to a brain regions, and network edges correspond to the connectivity strength between
regions. Adapted with permission from van den Heuvel and Sporns (2011). B) Structural
brain networks can be analyzed using graph theory measures such as clustering, shortest path
length, and modularity structure. Reproduced with permission from Medaglia et al. (2015).

then possible to represent the brain’s structural connectivity as a network, in which each brain

region is a node and their connectivity in terms of streamline counts (or other measures of

structural connectivity) are edges that interconnect the nodes (Bullmore and Bassett, 2011)

(see figure 2.3). Modeling the brain in this way then allows to use tools from network sci-

ence and graph theory to derive local and global measures of topology and wiring properties

(Bullmore and Sporns, 2009; Bassett and Sporns, 2017). In particular, the human brain is char-

acterized by high levels of ‘small-worldness’, that is the combination of high clustering and low

path lengths (Bassett and Bullmore, 2017). Further, brain networks are highly modular and the

different modules are interconnected by highly connected nodes, the so-called ‘network hubs’

(van den Heuvel and Sporns, 2013). These hubs are in turn highly interconnected between

themselves, forming a ‘rich club’ (van den Heuvel and Sporns, 2011).

Dynamic analysis of structural brain networks While most commonly, structural brain net-

works are still analyzed in terms of their (static) topology, there have been increasing efforts

dedicated to the investigation of their dynamic properties (Bassett and Sporns, 2017). Briefly,

it can be distinguished between dynamics of networks and dynamics on networks (Bassett

and Sporns, 2017), see figure 2.4. In the context of structural brain networks, dynamics of

networks have mainly been investigated in terms of changing network configuration over

brain development (Betzel et al., 2014; DiMartino et al., 2014), e.g. using multilayer graphs
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2.2. Schizophrenia and 22q11.2 deletion syndrome

(Bassett and Sporns, 2017). In the analysis of dynamics on networks on the other hand, de-

velopments in the field of networks science provide an ideal framework to investigate how

brain function is related to its underlying structure (Bassett and Sporns, 2017). First attempts

to address this question have demonstrated that functional connectivity can be in part, but

not entirely predicted by the underlying structural connectivity (Honey et al., 2009; Goñi et al.,

2014). Since these initial investigations, several methodological developments have been

suggested to further probe into this structure-function relationship. A promising idea has

been to use mechanistic models of brain dynamics to probe into the effect of the brain’s par-

ticular structure on these dynamics (Braun et al., 2018). In particular, it has been proposed to

use principles from network control theory to understand how functional brain states evolve

over time on a structural brain graph (Gu et al., 2015, 2017; Betzel et al., 2016). By modeling

the brain as a system characterized by a structural brain graph and a model of the system’s

dynamic behavior, control theory allows to investigate how and where the brain’s structure

constrains or facilitates the transition between different functional brain states. Since its initial

introduction into neuroscience in an application to cognitive contol (Gu et al., 2015), network

control has provided promising insights into brain development from childhood to adulthood

(Tang et al., 2017a), gender differences in executive functions (Cornblath et al., 2019), mild

traumatic brain injury (Gu et al., 2017), and bipolar dispoder (Jeganathan et al., 2018).

In chapter 5 of this thesis, we use network control theory to characterize the brain’s

structural architecture that underlies brain states retrieved from fMRI data and to probe into

alterations in psychosis vulnerability.

2.2 Schizophrenia and 22q11.2 deletion syndrome
In this thesis, I investigated dynamic brain properties in patients with 22q11DS in order to

probe into alterations related to the development of psychosis. The following sections first

introduce the current view on schizophrenia as a neurodevelopmental disorder, followed by a

description of 22q11DS and its relevance for the study of psychosis risk factors.

2.2.1 Schizophrenia

Schizophrenia is a common mental disorder that is strongly debilitating for affected individ-

uals and poses a heavy burden for society due to high unemployment rates and high costs

for treatment and care (Owen et al., 2016; Insel, 2010). It is characterized by a multiplicity of

symptoms that can be divided into positive symptoms (hallucinations and delusions), negative

symptoms (social withdrawl and lack of motivation), thought disorders (disorganized speech

and thinking) and cognitive impairments. Despite great efforts to research the neuroscientific

and genetic bases of schizophrenia, its pathophysiology still remains largely unknown (Insel,

2010). Therefore, the current clinical management of the disease is based entirely on clinical

observation of symptoms. Diagnoses and treatment choices are made purely based on ob-

servations by trained physicians and criteria described in the diagnostic statistical manual

(DSM-V) (American Psychiatric Association, 2013).

The increasingly recognized neurodevelopmental hypothesis of schizophrenia suggests
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Chapter 2. Background

Figure 2.4 – The different views on structural brain networks dynamics include a) dynamics of
brain states on a structural brain networks, or b) the dynamics of the structural network struc-
ture itself. c) There have been efforts to integrate both phenomena. d) Multilayer networks
provide a framework to look into dynamics of brain networks. Reproduced with permission
from Bassett and Sporns (2017).

that psychosis is only the final stage of a developmental course that starts already many years

before the onset of full-blown schizophrenia, which appears usually in early adulthood (Insel,

2010; Fusar-Poli et al., 2013; Rapoport et al., 2012). Further, evidence points towards the

existence of sensitive periods during development in which interventions can have long-term

consequences (Marín, 2016). In the negative sense, such sensitive periods are moments of

higher vulnerability and larger risk for a deterioration that may only appear at a later time.

But also in the positive sense, there are periods in which prevention and treatments may be

more promising than later on (Marín, 2016). The neurodevelopmental model of schizophrenia

has lead to the formulation of a prodromal state, elaborated in the clinical high-risk (CHR)

criteria (Fusar-Poli et al., 2013). Figure 2.5 outlines the different phases and criteria of this

prodromal period. Individuals diagnosed with CHR state have a strong risk of 30 % to 40 % for

transition to psychosis after 4 years of follow-up (Fusar-Poli et al., 2012; Schultze-Lutter et al.,

2015), which underlines the potential of such criteria in predicting the development towards

psychosis.

However, even though the CHR criteria perform well in the assessment of clinical risk for

psychosis in help-seeking populations (Fusar-Poli, 2017b), they are still purely defined based

on clinical criteria and are highly heterogeneous (Fusar-Poli, 2017a). Also clinical manifesta-

tions of schizophrenia itself are extremely heterogeneous and treatment response is highly

variable from one individual to another. The identification of biologically-defined markers for

different developmental stages and patients subgroups bares an immense potential to unravel
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2.2. Schizophrenia and 22q11.2 deletion syndrome

Figure 2.5 – Developmental stages in the course of early psychosis. Reproduced with permis-
sion from Schultze-Lutter et al. (2015).

this heterogeneity (Kapur et al., 2012). Studies investigating the neuroscientific bases underly-

ing the aberrant trajectories towards psychosis and schizophrenia will help to obtain a better

understanding of the disease. Such a better understanding of the disease is crucial to improve

prevention and allow the development of more targeted and effective therapies, which will

ultimately lead to better clinical outcomes and improved patients’ well-being (Kapur et al.,

2012).

In the general population, the investigation of the trajectory toward schizophrenia has the

intrinsic limitation that patients are usually only identified after onset of psychotic symptoms

(Insel, 2010). At the same time, a growing body of literature suggests that developmental alter-

ations in the brain manifest already much earlier before the appearance of clinical symptoms

themselves (Insel, 2010). A unique opportunity to look into developmental alterations before

the onset of psychosis is the study of 22q11DS. This genetic disease is caused by a microdele-

tion on the 22nd chromosome and comes with an extremely elevated risk for schizophrenia

(Schneider et al., 2014). In fact, by adulthood 30 % to 40 % of patients with 22q11DS develop

a form of schizophrenia that is identical to idiopathic schizophrenia (Schneider et al., 2014;

Bassett and Chow, 1999). Due to somatic manifestations, individuals with 22q11DS are usually

diagnosed at very early age. Longitudinal studies of individuals with the disorder therefore

allow to compare the trajectories of patients who develop schizophrenia with those who don’t.

In the following section 2.2.2, this genetic model for schizophrenia will be reviewed in more

detail.
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2.2.2 22q11.2 deletion syndrome

Chromosome 22q11.2 deletion syndrome (22q11DS) – formerly also known as velocardiofacial

syndrome, Di George syndrome, or conotruncal anomaly face syndrome – affects approxi-

mately 1 per 3000-6000 live births (McDonald-McGinn et al., 2015). In affected individuals, the

microdeletions on the 22nd chromosome leads to a variety of clinical manifestations including

somatic, cognitive and psychiatric impairments.

Somatic manifestations

Somatic alterations in 22q11DS are varied and can affect a multiplicity of organs and functions

(reviewed in McDonald-McGinn et al., 2015). Congenital heart defects are present in approxi-

mately 75 % of patients and, as they already manifest in the prenatal or neonatal period, are

among the most common indicators that lead to initial diagnosis of 22q11DS at very early age

(Van et al., 2017; McDonald-McGinn and Sullivan, 2011). Further common somatic anomalies

include palatal abnormalities (∼75 % of patients), deficiencies of the immune system (∼75 %

of patients), hypocalcæmia (∼50 % of patients), gastrointestinal problems (∼30 % of patients)

and genitourinary anomalies (∼30 % of patients).

Cognitive manifestations

Right after congenital heart disease, developmental delays are the second most common

indicator that leads to initial diagnosis of 22q11DS during childhood (Van et al., 2017). The

average intelligence quotient (IQ) in patients lays at 70 with approximately 66 % of individuals

having an IQ in the range between 55 and 85. In a large multi-site study that included longitu-

dinal assessments from 411 individuals with 22q11DS, patients who developed a psychotic

disorder at a later time had significantly lower IQ at baseline (Gothelf et al., 2013; Vorstman

et al., 2015). Further, IQ in children was found to significantly decline over age, particularly

affecting verbal competences. This decline in verbal IQ was significantly steeper in individuals

who later developed psychosis (Gothelf et al., 2013; Vorstman et al., 2015). Thus, lower IQ and

a decline in verbal IQ are considered risk factors for psychosis in 22q11DS.

Psychiatric manifestations

In patients with 22q11DS there is an elevated prevalence of several psychiatric disorders

(Schneider et al., 2014; McDonald-McGinn et al., 2015), see figure 2.6. During childhood and

adulthood especially rates of autism spectrum disorder and attention deficit hyperactivity

disorder (ADHD) are elevated. Mood disorders such as bipolar disorder and major depressive

disorders are present with increasing prevalence at higher age, but with comparable rates to

the general population (Schneider et al., 2014; Fung et al., 2010; Kessler et al., 2005).

The prevalence of schizophrenia is at least 25-fold increased compared to the general

population were the expected prevalence is 1 in 100 (Bassett et al., 2017; Butcher et al., 2018).

In 22q11DS prevalence values of up to 40 % have been reported (Schneider et al., 2014), but

as they were mostly conducted in psychiatric setting these values might be inflated (Fung

et al., 2010). Therefore, more conservative estimates taken from subjects ascertained in non-
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2.2. Schizophrenia and 22q11.2 deletion syndrome

Figure 2.6 – Approximate risk estimates of neuropsychiatric disorders with significantly differ-
ent prevalence in 22q11DS compared to the general population. Reproduced with permission
from Bassett et al. (2017).

psychiatric settings presume a prevalence of approximately 25 % (Fung et al., 2015; Butcher

et al., 2018). Patients with 22q11DS and schizophrenia account for 0.5 % to 1 % of individuals

with schizophrenia in the entire population and thus, 22q11DS represents the strongest known

molecular risk factor for schizophrenia (McDonald-McGinn et al., 2015). The phenotype of

schizophrenia in 22q11DS is identical to idiopathic schizophrenia except for the overall lower

IQ (Tang et al., 2017b; McDonald-McGinn et al., 2015; Butcher et al., 2018), which makes

the disorder a good model to study the neurodevelopmental aspects of schizophrenia in

general (Bassett and Chow, 1999; Insel, 2010), see also subsection 2.2.1. In particular, a recent

study investigating the CHR criteria found a predictive value of 27.3 % that is comparable

to previously reported values in clinical samples (Schneider et al., 2016; Fusar-Poli et al.,

2012; Fusar-Poli, 2017b), which points toward a common clinical trajectory with idiopathic

schizophrenia.

Finally, also anxiety disorders are more prevalent throughout all ages, but especially during

childhood and adolescence (Schneider et al., 2014) and the presence of a anxiety has found to

be a strong predictor for developing a psychotic disorder at a later time (Gothelf et al., 2007,

2013; Kates et al., 2015b). A possible factor in this relationship between higher anxiety and

the development of psychosis may be the recently discovered elevated stress intolerance of

patients with 22q11DS (Tang et al., 2017b; Armando et al., 2018). Armando et al. (2018) found

an association of higher stress load with the development of psychosis that was mediated

by dysfunctional strategies to cope with stress (Armando et al., 2018). Of note, a similar role
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of dysfunctional coping strategies as mediator for the development of psychosis has been

reported in the general population (Laloyaux et al., 2016; Ered et al., 2017), which once again

suggests a common trajectory towards psychosis in 22q11DS and the general population.

2.3 Brain dynamics in psychosis vulnerability
Conceptualizations of schizophrenia as a disease of broad whole-brain disconnectivity date

back to the late 19th century and have been confirmed through neuroimaging after the

development of noninvasive MRI techniques (Collin et al., 2016; Friston, 1994). Since the

1990s, large efforts have been made to map alterations in brain anatomy and function in

individuals with schizophrenia (Collin et al., 2016). Main findings nowadays include reduced

overall gray matter and white matter volume, as well as reduced overall structural connectivity.

(for extensive reviews see Van Den Heuvel and Fornito, 2014; Ellison-Wright and Bullmore,

2009). Findings on functional connectivity are more heterogeneous, but point towards mostly

reduced connectivity within functional systems, and both reduced and increased connectivity

between different functional systems (Dong et al., 2018b). Importantly, a disruption of the

structural connectivity affects the dynamic functional organization of the brain and static

functional connectivity approaches are limited in capturing such alterations (see section 2.1

for an overview on methodological motivations). Thus, very recently there has been increasing

interest in mapping functional dynamics and dynamic implications of structural alterations

in schizophrenia to link observed anatomical abnormalities to functional dynamics relevant

for the emergence of psychotic symptoms (Preti et al., 2017). The following sections will give

an overview on studies that looked into dynamic features of brain function an structure in

schizophrenia with a particular focus on populations at high risk for psychosis. In 22q11DS,

dynamic brain function and structure has not been studied yet. Therefore, the last subsection

will give a brief overview on general findings in MRI studies on the syndrome.

2.3.1 Brain dynamics in schizophrenia and individuals at clinical high risk

Functional MRI Schizophrenia is probably the most studied disease in terms of dynamic

brain function. Most relevant dFC studies in schizophrenia have relied on sliding-window

dFC, either ROI-based or in a combination with ICA (e.g., Damaraju et al., 2014; Du et al., 2016;

Dong et al., 2018a; Mennigen et al., 2018; Pelletier-Baldelli et al., 2018). These studies report

mostly the existence of patient-specific, more weakly connected dynamic connectivity states

(Damaraju et al., 2014; Du et al., 2016, 2018; Sun et al., 2018; Lottman et al., 2017; Sanfratello

et al., 2019) and a reduced overall dynamism (Miller et al., 2016), but both increased and

decreased variability of functional connectivity in different functional systems, with higher

dFC variability in sensory systems (Dong et al., 2018a; Bhinge et al., 2019; Deng et al., 2018),

precuneus (Guo et al., 2018) and amygdala (Yue et al., 2018) and lower dFC variability in

higher-order functional systems such as DMN and fronto-parietal network (FPN) (Dong et al.,

2018a; Bhinge et al., 2019). It is of note that there are discrepancies in the direction of reported

results, which may be due to the high variety of applied methods (whole-brain, seed-based,

ICA-based and others).
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Figure 1: Brain regions with significant differences in ALFF/fALFF
in meta-analysis between schizophrenia and healthy controls (! <0.05, uncorrected, cluster size >540mm3).The hot color represents
the higher ALFF/fALFF in schizophrenia patients. The cold color
represents the higher ALFF/fALFF in healthy controls. The over-
lapping area is marked in the pink color. Here, it represents the
contradictory results between studies.The (−log10 (P)) value means
the negative ten-logarithm transformation of P value. A larger value
of (−log10 (P))represents a smaller P value.

in the bilateral OC, PPC, and SMC and right STG and
increasedALFF in bilateral striatum,MTL,MPFC, and lateral
orbitofrontal cortex (LOFC) (! < 0.05, FDR corrected)
(Figure 3).

3.2.2. fALFF. In the voxel-based analysis, compared to
healthy controls, schizophrenia patients showed decreased
fALFFmainly in bilateral OC and right postcentral gyrus and
increased fALFF in bilateral striatum and MTL (! < 0.05,
FDR corrected) (Figure 4).

3.2.3. ReHo. In the voxel-based analysis, compared to healthy
controls, schizophrenia patients showed decreased ReHo
in bilateral OC, SMC, thalamus, frontal pole, and right
STG. Schizophrenia patients also showed increased ReHo in
bilateral striatum, MTL, LOFC, MPFC, and SMA (! < 0.05,
FDR corrected) (Figure 5).

3.2.4. ROI-Based Validation. The results of ROI-based inter-
group comparisons in ALFF/fALFF/ReHo are shown in
Tables S1 and S2. We found that more than a half of ROIs with
significant intergroup differences in ALFF/fALFF/ReHo in
the meta-analysis also had significant intergroup differences
in our sample (! < 0.05, uncorrected).
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Figure 2: Brain regions with significant differences in ReHo in
meta-analysis between schizophrenia and healthy controls (! <0.05, uncorrected, cluster size >540mm3).The hot color represents
the higher ReHo in schizophrenia patients.The cold color represents
the higher ReHo in healthy controls. The (−log10 (P)) value means
the negative ten-logarithm transformation of P value. A larger value
of (−log10 (P)) represents a smaller P value.

Table 3: Demographic and clinical data of participants in the large-
sample study.

Variables Patients(# = 86)
Controls
(# = 89) !

Age (years) 33.4 ± 7.8 33.5 ± 10.6 0.957
Gender (males/females) 46/40 40/49 0.258
Illness duration (months) 16.3 ± 41.1 — —
PANSS total 70.5 ± 23.4 — —
PANSS positive 16.6 ± 8.1 — —
PANSS negative 20.2 ± 8.9 — —
Among the 86 schizophrenia patients, 6 patients were first-episode and 80
patients were chronic.

4. Discussion

After the first reports of ALFF [14] and ReHo [19] abnor-
malities in schizophrenia, several studies were conducted
to investigate the altered ALFF and ReHo in this disorder,
but the results were inconsistent. The reasons for these
inconsistent results were complicated, and it was necessary
to reconcile these conflicting results.Therefore, we combined
a meta-analysis and a large-sample study to clarify the
regional alterations of ALFF and ReHo in schizophrenia.
We demonstrated that both ALFF/fALFF and ReHo were
decreased in the bilateral OC, SMC, and PPC and increased

Figure 2.7 – Results from a meta-analysis of BOLD variability in schizophrenia show increased
variability levels in frontal and reduced levels in posterior parietal and occipital regions.
Reproduced with permission from Xu et al. (2015).

In populations at clinical high risk for schizophrenia, there are only few studies yet looking

into dynamic brain function. In a seed-based approach, Pelletier-Baldelli et al. (2018) found

decreased variability of dFC between regions in the salience network (SN) and DMN with

regions involved in sensory, motor and attention processes in individuals at CHR. Du et al.

(2018); Mennigen et al. (2018, 2019) compared patients with early-illness schizophrenia, in-

dividuals at CHR and healthy controls and found reduced dynamics in CHR individuals at

an intermediate level between healthy control (HC) profiles and reductions in schizophrenic

patients, which points towards a shared trajectory towards psychosis.

Schizophrenia has also been studied in terms of dynamic activity (as opposed to dynamic

connectivity), using approaches like the amplitude of low-frequency fluctuations (ALFF) to

estimate BOLD signal variability. These studies on BOLD variability point towards globally

increased BOLD variability in schizophrenia (Yang et al., 2014), which is most pronounced

in higher-order functional systems such as the DMN and FPN (Yang et al., 2014, 2015). Xie

et al. (2018) further found increased variability in temporal, fusiform and medial prefrontal

cortex (PFC) and lower variability in precuneus, posterior cingulate cortex (PCC), lingual and

calcarine regions. BOLD variability measured through ALFF is also consistently reported to be

increased in medial prefrontal, temporal and basal ganglia, but decreased in posterior parietal

and occipital areas (Turner et al., 2013; Xu et al., 2015; Wang et al., 2019b; Alonso-Solís et al.,

2017; Salvador et al., 2017; Tang et al., 2019), see figure 2.7.
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Connectomics in psychiatric disorders

length of a network is inversely proportional to the efficiency 
of parallel information transfer. Alternatively, the ability to 
integrate distributed information can be scaled based on the 
existence of network hubs which exhibit high centralities 
(eg, degree/the number of connections for a node). Impor-
tantly, these high-degree or high-central hubs have a strong 
tendency to be densely interconnected and to form a rich-club 
structure in the brain organization (Figure 1A), generating a 
central backbone for global brain communication.22,23 Finally, 
the attractive architecture of small-world organization, which 
represents the combination of high clustering and short char-
acteristic path length, could support both high segregated/
specialized and highly distributed/integrated information 
processing.7,24

Connectomics in psychiatric 

disorders

In this section, we summarize the recently reported abnor-
malities of both the structural and functional whole-brain 
connectomes in schizophrenia, ADHD, and ASD. These 
three disorders constitute a large proportion of the cur-
rent connectomics literature and are all hypothesized to be 
developmental disorders.1,14 In addition to the specific altera-
tions in the connectomes of each disorder, the shared and 
distinct disturbances between these disorders are discussed. 
Studies focused on the connectome of other psychiatric 
disorders, such as major depression, can be found in other 
reviews.13,25

Abnormalities of the connectomes in 
schizophrenia
Historical hypotheses that schizophrenia is a dysconnec-
tivity disorder have recently been validated by abundant 
connectomic studies.26 First, reduced whole-brain structural 
and functional connectivity has been broadly reported.27–29 
Regarding the topological abnormalities observed in schizo-
phrenia, as summarized in recent reviews,30–32 the structural 
connectome in patients tends to follow an overall pattern 
of network organization that is more segregated, character-
ized by increased clustering coefficient and modularity, and 
less integrated, characterized by reduced global efficiency. 
Additionally, a recent study using diffusion spectral imaging 
identified a distributed set of brain nodes associated with the 
disease processes as the affected core of schizophrenia, and 
the altered function of these nodes may drive the global effi-
ciency loss observed in patients.33 In contrast, the functional 
topological organization of the brain in schizophrenia showed 
a randomized tendency, ie, increased global integration but 
decreased local segregation. Network analysis revealed that 
the functional networks in schizophrenia patients exhibited 
less clustered and equally or more distributed communica-
tion organization, as demonstrated by reduced clustering and 
modularity and increased global efficiency compared with 
healthy controls.27,34,35 Moreover, it has been reported that the 
changes in the topological properties of the functional net-
works in schizophrenia patients were associated with a propor-
tional increase in anatomical length (Euclidean distance).36,37  
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Figure 1 Disturbed rich-club organization in schizophrenia.
Notes: (A) The rich-club members in both the healthy and psychiatric populations included the bilateral precuneus, the superior frontal cortex, the superior parietal cortex, 
and the insula. (B) The edges in individual brain networks (both controls and patients) were divided into three distinct classes: rich-club connections linking rich-club members 
(red), feeder connections linking rich-club members to non-rich-club members (orange), and local connections connecting non-rich-club members (yellow). The figure on 
the right shows a significant reduction in the density of rich-club connections, but not feeder or local connections, in psychiatric patients. Adapted from: van den Heuvel MP, 
Sporns O, Collin G, et al. Abnormal rich-club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry. 2013;70(8):783–792. Copyright © 2013 American 
Medical Association. All rights reserved.28

Abbreviation: ROI, region of interest.
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Figure 2.8 – Structural connectivity networks in schizophrenia are characterized by reduced
connectivity in the brain’s rich club. Reproduced with permission from Cao et al. (2015).

Studies on dynamic activity in terms of BOLD variability in individuals at high risk are

again more sparse. Similarly to studies on dynamic connectivity, a study on individuals at

clinical high risk reported similar alterations to those observed in schizophrenia, but less

pronounced at an intermediate level between HCs and patients with schizophrenia (Fryer

et al., 2016). Another recent study on individuals at genetic high risk (with a parent with

schizophrenia) found that individuals at genetic high risk were indistinguable from HCs in

terms of ALFF except for increased variability in subcortical areas.

Structural MRI The dynamic implications of structural connectivity alterations in schizophre-

nia have not yet been investigated. Studies on the general structural network architecture

point towards a more segregated structural network organization characterized by elevated

clustering, modularity and average path length and lower global efficiency (Van Den Heuvel

and Fornito, 2014). Further, the brain’s rich-club has found to be less connected in schizophre-

nia (Van Den Heuvel et al., 2013), see figure 2.8. Structural network investigations in CHR

individuals suggest that the disruption of rich-club organization is already present before

the onset of schizophrenia (Schmidt et al., 2017). The implication of this aberrant network

organization on dynamic brain function have yet to be explored (Bassett et al., 2018).

2.3.2 Brain mapping in 22q11DS

In 22q11DS, neither functional, nor structural network dynamics have been studied so far.

Thus, the following summary will give an overview on existing findings on functional and

structural connectivity organization aside from dynamic properties.

Functional MRI One of the most replicated finding in resting-state functional magnetic reso-

nance imaging (rs-fMRI) studies in 22q11DS is functional dysconnectivity of the DMN (Padula

et al., 2015; Mattiaccio et al., 2016, 2018; Debbané et al., 2012; Schreiner et al., 2014, 2017) and

visuospatial network (VSN) (Debbané et al., 2012) Investigations of whole-brain connectivity

report mostly alterations of frontal functional connectivity, including dorso-lateral prefrontal
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2.3. Brain dynamics in psychosis vulnerability

cortex (dlPFC) and anterior cingulate cortex (ACC) (Scariati et al., 2014, 2016b). Also in task-

based fMRI studies, patients with 22q11DS show mostly reduced activity, principally in frontal

brain areas, across a multiplicity of tasks (Larsen et al., 2018).

Finally, a recent study investigated thalamic and hippocampal seed connectivity and found

increased thalamic and decreased hippocampal connectivity with the sensorimotor network

and an opposite pattern (lower thalamic connectivity and higher hippocampal connectivity)

with the FPN (Schleifer et al., 2018).

Structural MRI White matter architecture and connectivity structure has been extensively

studied in 22q11DS. Most studies so far have focused on measures of diffusivity, initially on

the whole-brain level (reviewed in Scariati et al. (2016a)) with a recent shift of interest towards

tract-based analyses (e.g., Kikinis et al., 2016; Tylee et al., 2017; Olszewski et al., 2017; Roalf et al.,

2017). While reported alterations in 22q11DS are not always consistent, affected white-matter

bundles seem to mainly include long-range connections of frontal regions such as inferior and

superior longitudinal fasciculus, inferior fronto-occipital fasciculus and uncinate fasciculus,

as well as the cingulum bundle (Scariati et al., 2016a). Fewer studies have so far relied on

region-to-region connectivity and the characterization of whole-brain network properties

(Ottet et al., 2013b; Kikinis et al., 2013; Ottet et al., 2013a; Padula et al., 2017a; Váša et al.,

2016; Zhan et al., 2018). In line with tract- and voxel-based studies, main ROI-based findings

report fronto-temporal, fronto-parietal (Ottet et al., 2013b,a; Zhan et al., 2018) and limbic

dysconnectivity (Ottet et al., 2013a; Padula et al., 2015), and altered anterior and posterior

midline connectivity in the presence of psychotic symptoms (Scariati et al., 2016a; Padula

et al., 2017a). Two studies focused on structural connectivity only between selected brain

states and found principally reduced connectivity within and between DMN, FPN, and SN

(Padula et al., 2015, 2017b). Váša et al. (2016) used a whole-brain graph theoretical approach

and identified an affected core that included frontal, parietal and subcortical regions. Further,

the authors uncovered a ‘de-centralization’ in 22q11DS with a rerouting of shortest network

paths to circumvent the affected core. Finally, two studies have investigated whole-brain

networks in 22q11DS based on structural covariance (Schmitt et al., 2016; Sandini et al., 2017)

and reported less robust geographic organization with a particular implication of parietal and

occipital lobes (Schmitt et al., 2016), and higher average covariance strength in patients with

22q11DS (Sandini et al., 2017).
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3 BOLD signal variability to analyze
dynamic brain function

AMONG the measures of brain dynamics, moment-to-moment BOLD signal variability is

a relatively simple, but powerful measure. It is nevertheless rarely investigated in clinical

MRI studies. Even though its exact underlying mechanisms are not yet entirely understood,

we know nowadays that variability (or ‘noise’) exists on all levels of the nervous system, from

the cellular to the behavioral level (Faisal et al., 2008). Currently, multiple theories exist on the

mechanisms and significance of BOLD variability in the brain (Garrett et al., 2013b). Variability

at the right level (not too high and not too low) may be beneficial to allow the detection of

weak signals and in this way lead to higher neuronal synchrony (Garrett et al., 2013b; Faisal

et al., 2008). It may also reflect a greater dynamic range and complexity, and following higher

flexibility in the brain’s function (Deco et al., 2011; McIntosh et al., 2010). In schizophrenia,

BOLD variability has been found to be altered in multiple studies (see Xu et al., 2015 for a

meta-analysis). It thus represents a potentially valuable measure for abnormal brain dynamics

in psychosis vulnerability.

This chapter is dedicated to the analysis of brain dynamics through BOLD signal variability

in patients with 22q11DS. In the first article in section 3.1, we compare BOLD signal variability

in patients to healthy controls and test how functional connectivity in the default mode

network is related to BOLD signal variability. In the second article in section 3.2, we use the

approach developed in the first article to test for alterations in BOLD signal variability in

patients with prodromal positive psychotic symptoms and evaluate its potential as marker for

psychosis vulnerability. In the last section 3.3 follows a summary on findings and conclusions

of these two articles and a motivation for our following analyses.
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Chapter 3. BOLD signal variability to analyze dynamic brain function

3.1 Journal Article: Disentangling BOLD variability and PCC func-

tional connectivity

Postprint version of the article published in: NeuroImage 2017, 149:85–97, https://doi.org/10.

1016/j.neuroimage.2017.01.064

Disentangling resting-state BOLD variability and PCC func-

tional connectivity in 22q11.2 deletion syndrome.

Daniela Zöller1,2,3, Marie Schaer3, Elisa Scariati3, Maria Carmela Padula3, Stephan Eliez3,

Dimitri Van De Ville1,2

1Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale

de Lausanne (EPFL), Lausanne, Switzerland; 2Department of Radiology and Medical Informatics,

University of Geneva, Geneva, Switzerland; 3Developmental Imaging and Psychopathology Laboratory,

Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Geneva, Switzerland

Although often ignored in functional magnetic resonance imaging (fMRI) studies,

moment-to-moment variability of blood oxygenation level dependent (BOLD) signals re-

veals important information about brain function. Indeed, higher brain signal variability

has been associated with better cognitive performance in young adults compared to chil-

dren and elderly adults. Functional connectivity, a very common approach in resting-state

fMRI analysis, is scaled for variance. Thus, alterations might be confounded or driven by

BOLD signal variance alterations. Chromosome 22q11.2 deletion syndrome (22q11DS) is

a neurodevelopmental disorder that is associated with a vast cognitive and clinical phe-

notype. To date, several resting-state fMRI studies reported altered functional connectiv-

ity in 22q11DS, however BOLD signal variance has not yet been analyzed. Here, we em-

ployed partial least squares (PLS) correlation analysis to reveal multivariate patterns of

diagnosis-related alterations and age-relationship throughout the cortex of 50 patients be-

tween 9 and 25 years old and 50 healthy controls in the same age range. To address how

functional connectivity in the default mode network is influenced by BOLD signal fluctua-

tions, we conducted the same analysis on seed-to-voxel connectivity of the posterior cingu-

late cortex (PCC) and compared resulting brain patterns. BOLD signal variance was lower

mainly in regions of the default mode network and in the dorsolateral prefrontal cortex,

but higher in large parts of the temporal lobes. In those regions, BOLD signal variance was

correlated with age in healthy controls, but not in patients, suggesting deviant develop-

mental trajectories from child- to adulthood. Positive connectivity of the PCC within the

default mode network as well as negative connectivity towards the frontoparietal network

were weaker in patients with 22q11DS. We furthermore showed that lower functional con-

nectivity of the PCC was not driven by higher BOLD signal variability. Our results confirm

the strong implication of BOLD variance in aging and give an initial insight in its relation-

ship with functional connectivity in the default mode network (DMN).
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3.1.1 Introduction

Inter- and intra-subject variability of resting-state functional magnetic resonance imaging

(rs-fMRI), such as between-trial variability (Poldrack et al., 2015; Laumann et al., 2015; Davis

et al., 2014), spatial variability between voxels (Davis et al., 2014; Gopal et al., 2016) and

moment-to-moment variability of blood oxygenation level dependent (BOLD) signals within

every voxel (McIntosh et al., 2010; Deco et al., 2011; Allen et al., 2014) have gained interest

in recent literature. Such variability measures are rarely taken into account in conventional

rs-fMRI analysis, but their consideration might give a deeper insight into underlying brain

processes and their connection to disease-related alterations (McIntosh et al., 2010; Gopal

et al., 2016). Even though the exact implications of the latter, moment-to-moment BOLD

signal variability, are not clear yet, theoretical work has suggested that spontaneous signal

fluctuations are crucial for neural system functions and reflect larger network complexity

and dynamic range (Deco et al., 2011; McIntosh et al., 2010). Several studies focusing on the

implications of BOLD signal variability on aging and cognitive performance in adults have

demonstrated that moment-to-moment variability is not just noise as previously assumed,

but is higher in better performing, younger adults compared to lower performing, elderly

subjects (Garrett et al., 2013a, 2014; Grady and Garrett, 2014). Findings in other modalities

such as electroencephalography (EEG) (McIntosh et al., 2008; Lippé et al., 2009) and mag-

netoencephalography (MEG) (Misić et al., 2010) support those findings, suggesting lower

brain variability in children compared to young adults. Moment-to-moment BOLD signal

fluctuations have been shown to be altered in multiple neuropsychiatric disorders such as

autism (Di Martino et al., 2014; Lai et al., 2010), Alzheimer’s disease (Zhao et al., 2014; Liu et al.,

2014; Han et al., 2011; Xi et al., 2012) and attention deficit hyperactivity disorder (Zang et al.,

2007), as well as schizophrenia (Yu et al., 2014; Yang et al., 2014; Liu et al., 2016). The strong re-

lationship of BOLD signal variability with age and cognitive performance make this approach

especially promising to obtain further insight in the mechanisms driving the development of

cognitive and psychiatric disorders.

Rs-fMRI has been widely used in recent years to analyze altered brain function in numer-

ous psychiatric diseases. It is especially advantageous when studying populations with limited

abilities to respond to task, such as young children or individuals with impaired cognitive func-

tions and attention deficits. Most rs-fMRI studies focus on stationary functional connectivity,

assessed by computing the temporal correlation between the BOLD signals of different brain

regions computed over the whole resting-state session. However, conventional functional

connectivity is normalized for BOLD signal variance. In other words, the Pearson correlation

coefficient is scaled with respect to individual signal standard deviation and BOLD signal

variability might even confound results of functional connectivity (Garrett et al., 2013b). For

instance, lower functional connectivity might result from higher variance, or oppositely, lower

variance might have weakened the effect of functional connectivity reduction.

Chromosome 22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental disorder

caused by a microdeletion in chromosome 22. It occurs in approximately 1 out of 4000 live

births and comes with a vast phenotype that includes somatic, cognitive and psychiatric

features (Oskarsdóttir et al., 2004). Amongst others, patients with 22q11DS suffer from a
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wide range of cognitive impairments, including mild mental delay and impaired executive

functions (Maeder et al., 2016; Antshel et al., 2008; Niklasson and Gillberg, 2010; Swillen et al.,

1997). Furthermore, 22q11DS comes with a very high risk of developing schizophrenia, which

occurs in 30 % to 40 % of patients (Lewandowski et al., 2007; Murphy et al., 1999; Schneider

et al., 2014). The developmental characteristics of the disease and the high risk of psychotic

symptoms makes 22q11DS a unique model for the study of behavioral, clinical and neural

markers in schizophrenia in order to improve treatments and prevention (Bassett and Chow,

1999).

In 22q11DS, to date, several studies have analyzed functional connectivity during rest

(Debbané et al., 2012; Padula et al., 2015; Scariati et al., 2014; Schreiner et al., 2014; Mattiaccio

et al., 2016). They have revealed altered connectivity in multiple resting-state networks (RSNs)

such as the visuospatial, sensory-motor and default mode networks. Two of the studies (Padula

et al., 2015; Schreiner et al., 2014) specifically focused on connectivity of the default mode

network (DMN), a RSN that has been associated with self-referential, autobiographical mental

processes and social cognition (Greicius et al., 2003; Fair et al., 2008; Qin and Northoff, 2011).

They revealed decreased connectivity in 22q11DS, especially between anterior-posterior re-

gions (Schreiner et al., 2014; Padula et al., 2015). Alterations within the DMN have furthermore

been associated with dysfunctional social behavior (Schreiner et al., 2014) as well as psychotic

symptoms (Debbané et al., 2012; Mattiaccio et al., 2016).

To our best knowledge, no studies to date have investigated BOLD signal variability in

22q11DS. Given its link to development and cognition, we hypothesize that BOLD signal

variability is broadly altered in 22q11DS and that it is increasing during development from

child- to adulthood. We used the BOLD signal standard deviation (SDBOLD) to measure brain

variability. We then employed multivariate partial least squares (PLS) correlation (Krishnan

et al., 2011; McIntosh et al., 2004) in order to identify multivariate brain variability alterations

and developmental characteristics in our 22q11DS cohort compared to controls. PLS corre-

lation is better suited for voxelwise brain analysis than mass-univariate approaches, as they

assume independence between all voxels (a hypothesis which is obviously wrong in the brain)

and are thus very limited by the problem of multiple comparisons. PLS correlation measures

multivariate relationship between two sets of variables (here: voxelwise SDBOLD on one side

and a combination of subject-specific design variables, i.e. diagnosis, age and age by diagnosis

interaction, on the other side). Its second advantage in addition to multivariability of the

brain pattern is thus the possibility to investigate the relationship of brain data with multiple

external variables at the same time. We secondly hypothesize that conventional functional

connectivity analysis might be influenced by BOLD variation, as Pearson correlation is nor-

malized for standard deviation. To obtain an insight on possible links between functional

connectivity and brain variability, we selected a seed inside the posterior cingulate cortex

(PCC) and analyzed brain-wide seed-to-voxel connectivity. The PCC was selected as it is a

central hub inside the DMN, one of the best studied RSN (Greicius et al., 2003; Fair et al., 2008;

Menon and Uddin, 2010). It additionally appeared as a region of strongly decreased SDBOLD

variability during the first analysis. We used the same PLS approach as before to identify

multivariate alterations and age-relationship of PCC functional connectivity. In a last step we
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identified regions where both functional connectivity and BOLD signal variance were altered

in our cohort. In those regions, SDBOLD might confound or even drive functional connectivity

alterations. Thus, we compared the direction of alteration of both measures in those regions,

in order to obtain a first insight in the relationship between BOLD variability and functional

connectivity.

3.1.2 Methods

Participants

Fifty patients with 22q11DS aged between 9 and 25 (M/F = 21/29, mean age = 16.53±4.25

years) were included in the study (see table 3.1). The control group comprised fifty healthy

subjects in the same age range (M/F = 22/28, mean age = 16.44±4.20 years). Healthy controls

(HCs) were recruited amongst siblings of our patients and through the Geneva state school

system.

From our initial sample of 110 patients and 75 HCs between 9 and 25 years old, a total

of 85 participants had to be excluded to ensure the good quality of the data. Five subjects

(only patients) were excluded because they reported having fallen asleep during the scanning

session. Another 34 subjects (5 HCs) had to be excluded due to excessive motion of more

than 3 mm in translation or 3° in rotation and the data of 35 more subjects (19 HCs) were not

used because parts of the cortex were not captured. From the remaining dataset, 11 more

participants (1 HCs) were excluded after motion scrubbing (Power et al. 2012, see paragraph

Preprocessing) as less than 100 rs-fMRI scans, corresponding to 4 min of scanning time, had a

framewise displacement below the threshold of 0.5 mm. Table 3.2 shows a summary of motion

data within the two groups.

Written informed consent was received from participants and their parents (for subjects

younger than 18 years old). The research protocols were approved by the Institutional Review

Board of Geneva University School of Medicine. The cohort is partly overlapping with our

previous rs-fMRI studies: 33 subjects (15 HCs) have been also included in Debbané et al.

(2012), 52 subjects (27 HCs) in Scariati et al. (2014), and 57 subjects (32 HCs) in Padula et al.

(2015).

Image acquisition

Structural and functional MRI data were acquired at the Centre d’Imagerie BioMédicale (CIBM)

in Geneva on a Siemens Trio (N = 78) and a Siemens Prisma (N = 22) 3 Tesla scanner. Anatom-

ical images were acquired with a T1-weighted sequence of 0.86×0.86×1.1 mm3 volumetric

resolution (192 slices, TR = 2500 ms, TE = 3 ms, acquisition matrix = 224×256, field of view

= 22 cm2, flip angle = 8°), and functional images with a T2-weighted sequence of 8 minutes

(voxel size = 1.84×1.84×3.2 mm, 38 slices, TR = 2400 ms, TE = 30 ms, flip angle = 85°). For the

rs-fMRI session, participants were asked to fix a cross projected on a screen, let their minds

wander while not thinking of anything in particular and not to fall asleep.

27



Jo
u

rn
al

A
rt

ic
le

Chapter 3. BOLD signal variability to analyze dynamic brain function

Table 3.1 – Demographic information.

HCs 22q11DS p value

Number of subjects (M/F) 50 (22/28) 50 (21/29) 0.910

Age mean±SD 16.44±4.20 16.53±4.25 0.840

(range) (9.5-24.9) (9.0-24.8)

Right handed* 71.43 % 80.95%̇

IQ** 109.68±12.99 68.20±12.21 <0.001

N. subjects meeting criteria N/A 27 (54 %)

for psychiatric diagnosis

Anxiety disorder N/A 8

Attention deficit N/A 2

hyperactivity disorder

Mood disorder N/A 4

Schizophrenia N/A 1

More than one N/A 12

psychiatric disorder

N. subjects medicated 0 14

Methylphenidate 0 8

Antipsychotics 0 2

Anticonvulsants 0 1

More than one 0 3

class of medication

* Handedness was measured using the Edinburgh laterality quotient, right handedness was
defined by a score of more than 50. ** IQ was measured using the Wechsler Intelligence Scale

for Children–III (Wechsler, 1991) for children and the Wechsler Adult Intelligence Scale–III
(Wechsler, 1997) for adults.

Preprocessing

Figure 3.1 shows a graphical overview on our complete analysis, including rs-fMRI preprocess-

ing steps. The rs-fMRI scans were preprocessed using statistical parametric mapping (SPM12)

(Wellcome Trust Centre for Neuroimaging, London, UK: http://www.fil.ion.ucl.ac.uk/spm/).

We adapted the pipeline of our previous studies (Richiardi et al., 2012; Scariati et al., 2014) and

utilized functions of the data processing assistant for resting-state fMRI (DPARSF) (Yan Chao-

gan, 2010) and individual brain atlases using statistical parametric mapping (IBASPM)

(Aleman-Gomez et al., 2006) toolboxes. Functional images were realigned and spatially

smoothed with an isotropic Gaussian kernel of 6 mm full width half maximum (FWHM).

Structural scans were coregistered to the functional mean and segmented with the SPM12

Segmentation algorithm (Ashburner and Friston, 2005). A study-specific template was gener-

ated using diffeomorphic anatomical registration (DARTEL) (Ashburner, 2007). After initial

preprocessing, the voxelwise time series were extracted in individual subject space, excluding
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Table 3.2 – fMRI – functional magnetic resonance imaging motion parameters. FD – framewise
displacement.

HCs 22q11DS p value correlation with

age (p value)

Mean translation x 0.13±0.13 0.12±0.14 0.7411 0.04 (0.6851)

(mm) y 0.19±0.14 0.18±0.18 0.8446 0.03 (0.7994)

z 0.31±0.29 0.39±0.34 0.1670 -0.10 (0.3222)

Mean rotation rx 0.34±0.27 0.39±0.30 0.3149 -0.04 (0.7260)

(degree) ry 0.20±0.17 0.18±0.14 0.6221 -0.14 (0.1661)

rz 0.17±0.17 0.19±0.19 0.5786 -0.05 (0.6430)

Mean FD (mm), 0.16±0.10 0.22±0.11 <0.001 -0.20 (0.046)

before scrubbing

Mean FD (mm), 0.14±0.05 0.17±0.06 0.002 -0.14 (0.1560)

after scrubbing

the first five time points, and the voxelwise time series were filtered with a bandwidth of

0.01 Hz to 0.1 Hz. Then, we applied motion scrubbing (Power et al., 2012) to correct for motion

artifacts. Frames with high motion were marked according to the framewise displacement,

which was calculated as the sum of the absolute values of the six realignment parameters

(Power et al., 2012). Scans with a framewise displacement of more than 0.5 mm, as well as one

scan before and two scans after, were excluded from the analysis.

BOLD signal variability

Voxelwise signal variability was determined by calculating the standard deviation (SDBOLD) of

preprocessed time series in subject space. According to Parseval’s theorem, this approach is

equivalent to the frequency-domain computation of the amplitude of low-frequency fluctua-

tions (ALFF) at 0.01 Hz to 0.1 Hz.

Voxelwise BOLD variability maps were z-scored and warped to the study-specific DARTEL

template by means of the nonlinear flow fields that were previously generated by the algorithm.

We made the choice to apply spatial normalization on the variability maps, rather than the

rs-fMRI data beforehand, as in this way voxel-wise measures such as ALFF are less affected by

the spatial distortions (Wu et al., 2011).

Seed-based DMN functional connectivity

For DMN connectivity analysis, a seed region of 7×7×11 mm3 was placed in the PCC at

MNI coordinates [0, -56, 26] (Karahanoglu et al., 2015) and spatially transformed into the

common space the study-specific DARTEL template. The seed region was then mapped into

individual subject space and seed functional connectivity maps were calculated by computing
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Figure 3.1 – Processing pipeline including preprocessing, computation of SDBOLD and PCC
connectivity, spatial normalization to a study-specific template created with DARTEL and PLS
correlation analysis.

the Pearson correlation coefficient of every voxel time course with the average time course

inside the seed region. Voxelwise seed functional connectivity maps were z-scored for every

subject and warped to the study-specific DARTEL template.

PLS correlation analysis

We applied PLS correlation (Krishnan et al., 2011; McIntosh and Lobaugh, 2004) to reveal

alterations related to diagnosis and the relationship between brain measures and age. In the

following, we are going to refer to subject-specific design variables (see also figure 3.1, yellow

box).

For the current study, we included a variable corresponding to diagnosis (1 for HCs, -1

for 22q11DS), age and age by diagnosis interaction as design variables in the PLS correlation

analysis. As there were no significant effects of gender and its interaction with diagnosis when

included in the analysis, here we only show the results for age and diagnosis. Only voxels with

a probability higher than 0.5 of laying inside the gray matter of the study-specific DARTEL

template were considered as brain data input. Prior to the application of PLS correlation,

subject-specific design variables and voxelwise brain data were z-scored across all subjects, as

group information was already included in the first design variable.
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The first step of PLS correlation is the computation of the correlation matrix R = XTY

between a matrix of voxel data per subject X and a number of subject-specific design variables

Y. Here, we included the three design variables diagnosis, age and their interaction. Then, the

singular value decomposition (SVD) of R = USVT produced three latent variables (LVs). Every

LV is associated with 1) a singular value (diagonal elements of S) indicating the correlation

explained by that LV, 2) a vector of three left singular values U, also called design saliences,

and 3) a vector of right singular values V, also called brain saliences or voxel saliences. The

design saliences U indicate how strong each one of the three design variables contributes to

the brain-design correlation explained by this LV. Similarly, the brain saliences V express how

strong every voxel contributes to the brain-design correlation explained by this LV. Then, the

projection of every subject’s original brain data (in X) onto the multivariate brain salience

pattern (in V) produces so-called "brain scores" LX = XV. Those brain scores give a measure on

the similarity of a subject’s individual brain data with the salient brain pattern. Similarly, so-

called "design scores" can be computed by LY = YU, which are a projection of every subject’s

design variables onto the respective design saliences.

In order to determine whether the explained correlation of every LV was significant, we

applied permutation testing using 1000 permutations to determine the null distribution of

the singular values. We applied Bonferroni correction for multiple comparisons when testing

for significance of the three LVs. A LV was considered significant if the singular value was

higher than 98.3 % of its null distribution (p=0.017). If a LV was significant, we furthermore

evaluated the robustness of brain and design saliences using a bootstrapping procedure with

500 random samples with replacement. Brain and design saliences were re-calculated for

every bootstrap sample, resulting in a typical bootstrap distributing of the salience values.

The division of the mean of this distribution by its standard deviation gives bootstrap scores

for every voxel respectively design variable. Those bootstrap scores indicate the robustness

of a voxel’s response; i.e., its contribution to the voxelwise brain-behavior correlation and

can be interpreted similarly to z-scores (Krishnan et al., 2011). In the results, we show the

brain patterns of bootstrap scores thresholded at absolute values greater than 3.00, which

corresponds to a robustness at a confidence level of approximately 99 %(Garrett et al., 2013a).

As there are only three design saliences per LV, a more detailed visualization than for the brain

saliences is possible and we show the design salience bootstrap means as bar plots with error

bars according to the bootstrap standard deviations.

Group-wise correlation of brain scores with age

In order to provide an alternative visualization of the results captured in the design saliences,

we computed the correlation between brain scores and age in every group separately. In the

results section, we plot the group-wise brain scores and their age-relationship in addition

to the design saliences to facilitate the interpretation of those. P-values of the group-wise

correlations were determined within the permutation loop during PLS correlation analysis.
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Comparing brain salience patterns

In order to reveal similarities and differences in the patterns of voxel salience bootstrap scores

in SDBOLD and PCC connectivity, we computed a joint map according to the magnitude and

sign of the two brain maps. All voxels where the root mean square of bootstrap scores in both

maps exceeded 3 were included into the joint map. Remaining voxels were colored according

to the angle between SDBOLD bootstrap scores and PCC connectivity bootstrap scores. This

allowed us to combine the following cases in one single map: 1) Areas where either only

SDBOLD or only PCC connectivity are altered, color-coded according to the direction of that

alteration (four cases: only SDBOLD higher/lower, only PCC connectivity higher/lower). 2)

Areas where both SDBOLD and functional connectivity are altered, color-coded according to

the direction of that alteration (four cases: both higher, both lower, SDBOLD higher and PCC

connectivity lower, SDBOLD lower and PCC connectivity higher).

3.1.3 Results

PLS correlation analysis of voxelwise SDBOLD resulted in two significant LVs. The first signifi-

cant LV (p<0.001) captured mainly effects of diagnosis of the SDBOLD-design correlation, the

corresponding brain saliences can thus be interpreted similarly to a multivariate contrast be-

tween patients and controls. The second significant LV (p=0.001) captured mainly age-effects

in the SDBOLD-design relationship and almost no effect of diagnosis. The corresponding brain

saliences thus represents voxels which are strongly correlated with age in both groups.

PLS correlation analysis of seed-to-voxel PCC connectivity resulted in only one significant

LV (p<0.001) which captured both a strong effect of diagnosis and age. The corresponding

brain salience pattern shows thus voxels which are different in patients compared to controls,

but where PCC connectivity is also correlated with age in both groups.

In the following section, we show the PLS correlation results for SDBOLD and PCC connec-

tivity in more detail. The first subsection describes results obtained in SDBOLD, the second

subsection describes results obtained in PCC connectivity and in the third subsection, we

provide a comparison of the two previous results by showing an overview on the similarities

and differences between the brain salience patterns of the first (mainly diagnosis-related) LV

of SDBOLD and the first (both diagnosis- and age-related) LV of PCC connectivity.

SDBOLD

In this subsection, we first show the average SDBOLD maps in our cohort, then describe the

first (mainly diagnosis-related) significant LV that results from the PLS correlation analysis of

SDBOLD, and conclude with a description of the second (mainly age-related) significant LV.

SDBOLD: average across all subjects Figure 3.2 shows the average SDBOLD across all subjects.

SDBOLD is very strong in medial regions of the DMN, such as the PCC, precuneus and the

medial prefrontal cortex. There was no significant group difference in the within-subject

average SDBOLD which was subtracted during z-scoring (two sample t-test, p=0.195).

SDBOLD: LV1 reflects a main effect of diagnosis Figures 3.3a to 3.3c show brain and design

saliences corresponding to the first significant LV (p<0.001) for PLS correlation analysis of
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(a) (b)

Figure 3.2 – Average SDBOLD in gray matter, (a) original values (b) within-subject z-scores.
mPFC - medial prefrontal cortex; PCC – posterior cingulate cortex.

SDBOLD. There is a very strong effect of diagnosis (design salience 0.96±0.04) a small negative

effect of age (design salience -0.16±0.08), as well as a negative effect of age by diagnosis

interaction (design salience -0.23±0.07).

Correlation plots of brain scores with age are shown on figure 3.3b. In HCs, brain scores

are significantly negatively correlated with age (ρ=-0.58, p=0.001), whereas in the patients

group there is no significant correlation (ρ=0.09, p=0.626). This means that in brain areas with

positive resp. negative bootstrap scores (red resp. blue), SDBOLD is negatively resp. positively

correlated with age in controls but not in patients.

Due to the high diagnosis salience, the corresponding pattern of brain salience bootstrap

scores (see figure 3.3c) can be interpreted as a multivariate contrast showing areas of higher

(red) and lower (blue) SDBOLD in 22q11DS. Reduced SDBOLD can be found in regions of the

DMN such as PCC, lateral parietal and medial prefrontal cortices, as well as in the dorsal

anterior cingulate and the dorso-lateral prefrontal cortices. SDBOLD is bilaterally elevated in

the inferior temporal cortex including parahippocampus, in the superior temporal gyrus and

in caudate.

SDBOLD: LV2 reflects a main effect of age Brain and design saliences of the second significant

LV (p=0.001) are shown on figures 3.3d to 3.3f. There are a strong age effect (design salience

0.99±0.07) and a small effect of diagnosis (design salience 0.16±0.09). However, no significant

effect of age by diagnosis interaction appeared (design salience -0.01±0.14).
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Group-wise correlation analysis between brain scores and age (see figure 3.3e) shows

strong correlation values in both groups, as was expected based on the high age salience with-

out interaction salience. Overall brain scores are slightly higher in patients (small diagnosis

salience).

Due to the high age salience, the corresponding pattern of brain salience bootstrap scores

(see figure 3.3f) contains the voxels where SDBOLD is strongly correlated with age in both

patients and controls. SDBOLD increases over age in the dorsal anterior cingulate cortex,

superior frontal cortex, as well as parts of thalamus. Small clusters with decreasing SDBOLD

are located in the anterior cingulate and orbitofrontal cortices.

PCC functional connectivity

This subsection begins with the average PCC connectivity maps, followed by a description

of the only significant (both diagnosis- and age-related) significant LV resulting from PLS

correlation analysis of PCC connectivity.

PCC connectivity: average across all subjects Figure 3.4 shows the average PCC connectivity

across all subjects. As expected regions of the DMN are strongly positively correlated with the

PCC, while there is a weaker, negative correlation with regions of the frontoparietal network,

consisting of lateral frontal and parietal regions. There was no significant group difference in

the within-subject average connectivity which was subtracted z-scoring (two sample t-test,

p=0.959).

PCC connectivity: LV1 reflects effects of both diagnosis and age The brain bootstrap scores

as well as the corresponding design saliences for the first significant LV (p<0.001) are shown

on figures 3.5a to 3.5c. There is a very high effect of diagnosis (design salience 0.91±0.06)

meaning that corresponding brain voxel saliences can be interpreted as a multivariate pattern

of altered DMN connectivity in 22q11DS. Additionally, there is a moderate negative effect of

age (design salience -0.38±0.08) and a small interaction between age and diagnosis (design

salience 0.16±0.08).

As already indicated by the design saliences, group-wise correlation of brain scores with

age (see figure 3.5b) shows that brain scores are significantly negatively correlated with age in

both groups, but the negative correlation is stronger in patients (small interaction effect).

Due to the high diagnosis salience value, the corresponding pattern of brain salience

bootstrap scores (see figure 3.5c) can be interpreted as a multivariate contrast showing areas

of higher (red) and lower (blue) PCC connectivity in 22q11DS. The negative age salience

indicates that PCC connectivity in the brain salience pattern is furthermore negatively (red)

and positively (blue) correlated with age.

Regions of elevated PCC connectivity in patients include the middle frontal and inferior

parietal cortices, regions of the frontoparietal or central executive network which is in fact

negatively correlated with the DMN. Thus, we can derive that the anti-correlation between

the PCC and the frontoparietal network is weaker in 22q11DS.

Reduced PCC connectivity can be observed in the medial prefrontal cortex, confirming
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SDBOLD - Latent variable 1: SDBOLD - Latent variable 2:
Mainly diagnosis-related Mainly age-related

(a) Design saliences (b) Brain scores per group
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Figure 3.3 – SDBOLD: PLS correlation analysis results in two significant LVs. Left column: (a) The design
saliences of the first LV reveal a strong effect of diagnosis, almost no age effect and a negative age by
diagnosis effect. (b) Separate correlation of brain scores with age in every group gives an alternative
view of those results: Brain scores are higher in 22q11DS (diagnosis-effect) and are negatively correlated
with age in HCs but not in 22q11DS (negative age- and interaction-effects). (c) The first pattern of
brain saliences can thus be interpreted as multivariate contrast. Areas with robustly lower SDBOLD in
22q11DS (blue) are mainly part of the DMN (PCC, IPC, mPFC), and also include medial (dACC) and
lateral prefrontal (dlPFC) regions. Clusters with robustly higher SDBOLD (red) are located in the inferior
temporal lobes including PHIP, as well as in the STG and CAU. Right column: (d) The design saliences
of the second LV reveal a strong age-effect across all subject, as well as a small effect of diagnosis, but
no interaction. (e) Separate correlation between brain scores and age in every group shows again the
strong relationship with age in both controls and patients. Brain scores are slightly higher in patients,
as already indicated by the small positive diagnosis design salience. (f) The second pattern of brain
saliences shows thus voxels which are robustly correlated with age in both groups. Regions with positive
age-relationship (red) are located in THA, dACC and the sFC, while in a small cluster in the ACC (blue),
SDBOLD is negatively correlated with age. ACC - anterior cingulate cortex; CAU - caudate; dACC - dorsal
ACC; dlPFC - dorso-lateral prefrontal cortex; IPC - inferior parietal cortex; mPFC - medial prefrontal
cortex; PCC - posterior cingulate cortex; PHIP - parahippocampus; sFC - superior frontal cortex; STG -
superior temporal gyrus; THA - thalamus.
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(a) (b)

Figure 3.4 – Average PCC connectivity, (a) original values (b) within-subject z-scores. IPC -
inferior parietal cortex; mPFC - medial prefrontal cortex; PCC - posterior cingulate cortex;
seed - region of interest in the posterior cingulate cortex.

previous observations on long-range anterior-posterior DMN dysconnectivity (Schreiner et al.,

2014; Padula et al., 2015). PCC functional connectivity towards the anterior cingulate cortex

and posterior insula, areas of the salience network, is also lower in 22q11DS.

Comparison of SDBOLD and PCC connectivity alterations

The first LV has a strong diagnosis salience in both SDBOLD and PCC connectivity. In order

to compare the two patterns of alterations in 22q11DS, we computed the joint map between

the brain salience bootstrap score maps of the two measures (see figure 3.6). In some regions

either only SDBOLD or only PCC connectivity are altered. Most areas in the inferior temporal

lobe have only higher SDBOLD while PCC connectivity is not altered (red), while in the gyrus

rectus only PCC connectivity is altered. In medial regions of the DMN (precuneus and medial

prefrontal cortex) and in the middle temporal gyrus, both measures are reduced. Interestingly

there are no areas where both measures are significantly elevated in 22q11DS. In the fron-

toparietal network, SDBOLD is lower and PCC connectivity higher in 22q11DS (bluish green).

As stated in the previous paragraph, PCC connectivity in those areas has negative values;

higher connectivity thus indicates a weaker correlation. Interestingly, in most regions where

both measures are altered, SDBOLD is reduced. Elevated SDBOLD seemingly has not driven any

reductions in PCC functional connectivity.
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PCC connectivity - Latent variable 1:
Diagnosis- and age-related

(a) Design saliences (b) Brain scores per group

-0.5

0

0.5

1

D
es

ig
n 

sa
lie

nc
e

diagnosis
(22q11DS>HC)

age age*diagnosis 10 15 20 25
Age

-150

-100

-50

0

50

100

150

200

Br
ai

n 
sc

or
es

1

HC: rho = -0.28, p = 0.034
22q11DS: rho = -0.56, p = 0.000

(c) Brain saliences (bootstrap scores > 3)

Figure 3.5 – PCC connectivity: PLS correlation analysis results in one significant LV. (a) The
design saliences of the LV reveal a strong positive effect of diagnosis, as well as a moderate
negative age-effect and a small positive effect of interaction. (b) Separate correlation of brain
scores with age in every group gives an alternative view on those results: Brain scores are higher
in 22q11DS (diagnosis-effect) and are negatively correlated with age (negative age-effect) in
both groups. The correlation is stronger in patients than in controls (interaction-effect) (c)
The pattern of brain saliences can thus be interpreted as areas of higher (red) and lower (blue)
PCC connectivity in 22q11DS, where PCC connectivity is also negatively (red) and positively
(blue) correlated with age. PCC connectivity in 22q11DS is higher (red) in the frontoparietal
network (IPC and MFC). PCC connectivity in 22q11DS is lower (blue) in the posterior insula
and the ACC, as well as in the TPO and REC. ACC - anterior cingulate cortex; dACC - dorsal
ACC; IN - insula; IPC - inferior parietal cortex; MFC - middle frontal cortex; REC - gyrus rectus;
TPO - temporal poles.
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Figure 3.6 – Joint map between SDBOLD LV1 bootstrap scores (see figure 3.3c) and PCC connec-
tivity LV1 bootstrap scores (see figure 3.5c). Color codes indicated whether only one measure
is altered in 22q11DS or both and in which direction. In the frontoparietal network, SDBOLD is
lower and PCC connectivity higher in 22q11DS (bluish green). In medial regions of the DMN
(mPFC, precuneus) both are reduced. Interestingly, in areas with elevated SDBOLD (inferior
temporal lobe), PCC connectivity is mostly not altered. IPC - inferior parietal cortex; dACC -
dorsal anterior cingulate cortex; dlPFC - dorso-lateral prefrontal cortex; MFC - middle frontal
cortex; mPFC - medial prefrontal cortex; MTG - middle temporal gyrus; TPO - temporal poles;
FC – functional connectivity; SDBOLD – BOLD signal standard deviation.

3.1.4 Discussion

In the present study we employed multivariate PLS correlation to reveal altered brain function

and age-relationship in 22q11DS. We used two different approaches to analyze resting-state

BOLD signals: BOLD signal fluctuations assessed by the standard deviation of every voxel’s

temporal signal and seed-based functional connectivity between the PCC and the other brain

voxels. With both approaches we were able to reveal multivariate patterns of altered brain

function in 22q11DS. In both measures, the first significant LV was representing areas of altered

brain function related to 22q11DS. In SDBOLD, there was also an effect of age by diagnosis

interaction in the first LV, suggesting an altered developmental trajectory of SDBOLD in those

areas. In SDBOLD there was a second age-related brain pattern, which revealed the brain

regions with the strongest age-relationship in both groups. The corresponding pattern was not

overlapping with the pattern of the first LV and patients had the same developmental curve as

controls in those areas. In PCC connectivity, the pattern of alterations corresponding to LV1
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was also correlated with age, but PLS correlation revealed no separate age-related component

as in SDBOLD.

In the following, the two significant LVs for SDBOLD and the only significant LV for PCC

connectivity will be discussed one after another. Finally, the relationship between SDBOLD and

functional connectivity will be examined on the basis of the comparison between the patterns

of altered brain function.

SDBOLD alterations in 22q11DS

To our best knowledge, this is the first study to date analyzing moment-to-moment BOLD

signal variability in 22q11DS. During our first analysis we showed that z-scored SDBOLD

is altered in a broad pattern, showing both elevated and reduced SDBOLD in patients with

22q11DS (LV1, see figure 3.3c). SDBOLD is lower in large parts of the DMN including the medial

prefrontal cortex, PCC, and lateral parietal cortex. A previous study on BOLD variability

during task in healthy adults found decreased variability in an elderly, low performing group

compared to young adults in a very similar set of brain regions (Garrett et al., 2011). Alterations

in lateral parietal regions might be implicated in visuospatial processing difficulties of patients

with 22q11DS (Gothelf et al., 2008), while the PCC and precuneus have been identified as

structural and functional network hubs, associated with self-referential processes and theory

of mind (Van Den Heuvel et al., 2013; Spreng et al., 2008). Another cluster of reduced SDBOLD

is located in the dorso-lateral prefrontal cortex, a region which is known to be structurally

and functionally affected in schizophrenia (Jung et al., 2010; Sun et al., 2009; Karlsgodt et al.,

2014). In 22q11DS, structural MRI studies have shown relative reductions of cortical volume

and thickness in the parietal cortex, the dorso-lateral prefrontal cortex and along midline

structures (Schmitt et al., 2015; Gothelf et al., 2008; Jalbrzikowski et al., 2013). The similarity

to the here observed pattern of BOLD variability reductions suggests a link between altered

cortical volume and BOLD signal variability alterations.

Additionally, we observed a significant relationship with age in regions with altered SDBOLD

in HCs, but not in the 22q11DS group (see figures 3.3a and 3.3b). More specifically, brain

scores decrease over age in controls whereas in patients, they are not correlated with age.

This observation suggests that elevated and reduced SDBOLD might be caused by altered

developmental trajectories in patients with 22q11DS. Developmental alterations in 22q11DS

have already been observed in several other modalities (Schaer et al., 2009; Padula et al., 2015;

Gothelf et al., 2008; Shashi et al., 2012; Jalbrzikowski et al., 2013), including deviant maturation

curves of cortical thickness (Schaer et al., 2009) and structural connectivity (Padula et al.,

2015).

SDBOLD development

We furthermore showed that, in a different set of brain regions, SDBOLD is strongly correlated

with age, both in 22q11DS and HCs (LV2, see figure 3.3f). More specifically, BOLD variability

increases with age in most of the regions showing a robust age-effect, namely thalamus, dorsal

anterior cingulate and superior frontal cortex. In those regions, older subjects of our cohort
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had higher SDBOLD than children. In one cluster of the anterior cingulate cortex and bilaterally

in the orbitofrontal cortex, SDBOLD was robustly decreasing over age. Garrett et al. (2013b)

suggested that brain signal variability follows an inverted U-shaped curve over life-span,

increasing from child- to young adulthood and decreasing again with higher age. In the present

study, we observed mainly increasing SDBOLD from child- to young adulthood, a result which

is in line with the previously stated hypothesis. However, Garrett et al. based their hypothesis

within the age range from child- to adulthood only on task-based EEG (McIntosh et al., 2008;

Lippé et al., 2009) and MEG studies (Misić et al., 2010). Here we provide additional information

to those results in our cohort using rs-fMRI. Increasing variability suggests the transition

towards a system of higher dynamic complexity that has greater adaptability, efficiency and

dynamic range leading to enhanced cognitive function (Misić et al., 2010; Deco et al., 2011;

Ghosh et al., 2008; Garrett et al., 2013b). Interestingly, the areas showing robust relationship

with age are not overlapping with the pattern of SDBOLD alterations. Patients have normally

developing BOLD signal variability in those areas.

PCC connectivity alterations in 22q11DS

In order to compare the effects of BOLD signal variability with conventional functional con-

nectivity, we studied seed-based connectivity within the DMN. The DMN is one of the most

studied RSNs and two studies to date explicitly studied DMN functional connectivity in

22q11DS using different seed-based approaches (Schreiner et al., 2014; Padula et al., 2015).

Padula et al. (2015) found reduced connectivity between anterior-posterior nodes of the DMN,

as well as between right and left parietal lobes. Schreiner et al. (2014) used a very similar

approach to ours in an independent sample, analyzing voxelwise connectivity of a seed placed

in the PCC. They found globally lower within-DMN connectivity and higher connectivity

between the PCC and the right inferior frontal gyrus.

In the present study we were able to confirm the lower anterior-posterior connectivity

within the DMN between PCC and the medial prefrontal and left superior frontal cortices

(LV1, see figure 3.5c). However, thanks to our multivariate approach, we obtained a much

broader pattern of altered PCC connectivity. In particular, we found lower connectivity with

the temporal poles, an effect that has also been observed in schizophrenia with a relationship

to self-disturbance and hallucinations (Pankow et al., 2015).

Furthermore we observed weaker anti-correlation between the PCC and the frontoparietal

network, a network playing a central role in working memory and attention. It has been

proposed that switching between the DMN, the frontoparietal network and the saliency

network is crucial for normal brain functioning and that dysconnectivity between those

networks plays a central role in multiple psychopathologies (Menon, 2011; Menon and Uddin,

2010) and schizophrenia in particular (Hasenkamp et al., 2011).

Our observation on broad dysconnectivity between the DMN and frontoparietal network in

our cohort of 22q11DS patients, supports the hypothesis of a strong implication in psychiatric

disorders.

To date, only one study has analyzed the development of DMN connectivity over age
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in 22q11DS (Schreiner et al., 2014), reporting increased long-range connectivity within the

DMN in controls and abnormally increasing PCC connectivity with regions outside the DMN

in patients. Our approach in the present study is complementary, as our PLS approach

optimizes for a maximum age correlation in all subjects, independently of the diagnosis.

The age-relationship of the mainly diagnosis-related LV1 supports increasing within-DMN

connectivity. However, we did not observe any effect of interaction between age and diagnosis.

PCC connectivity development

In PCC connectivity, there was no significant second LV as in the analysis of SDBOLD, indicating

that all developmental effects of DMN connectivity were already explained by the first LV. In

the first LV, PCC connectivity was correlated with age in both groups, but stronger in patients

(see figures 3.5a and 3.5b). As most studies focus only on maturation effects within the DMN

without taking into account the whole brain (for instance Sherman et al., 2014 and Supekar

et al., 2010) those results are difficult to confirm and further analysis will be necessary to get

more insight in the underlying effects.

Relationship of SDBOLD and functional connectivity

Overall, we showed that alterations in SDBOLD might be explained by altered developmental

trajectories in 22q11DS, while in PCC connectivity both groups show a strong relationship

with age. Furthermore, the second significant LV in SDBOLD, which represents strong age-

relationship in all subjects, is absent in PCC connectivity, suggesting that SDBOLD is stronger

implicated in development. These findings confirm existing literature emphasizing BOLD

signal variability as a promising tool for the analysis of brain development and its alterations

in neurodevelopmental disorders (Garrett et al., 2013b; McIntosh et al., 2010), which is com-

plementary to functional connectivity analysis.

Furthermore, there is a close relationship between SDBOLD and functional connectivity,

as the standard deviation appears in the denominator of the Pearson correlation coefficient

(Garrett et al., 2013b; Zalesky et al., 2012):

ρx y =
∑

(x − x̄)(y − ȳ)

SDx SDy
(3.1)

Thus, alterations of functional connectivity might actually be driven by alterations of covari-

ance in the numerator or by variance in the denominator. In the present study we addressed

this question based on the analysis of the DMN as one exemplary RSN. We showed that lower

functional connectivity of the PCC is not driven by higher SDBOLD, but that in the areas where

both are altered, SDBOLD is also lower and thus covariance has to be lower to an even stronger

extent than the correlation. Future analysis including more RSNs and whole brain functional

connectivity may give further insight into this question.
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3.1.5 Methodological considerations

PLS correlation analysis

We employed multivariate PLS correlation analysis to investigate diagnosis-related alterations

and the age-relationship of SDBOLD and functional connectivity of the DMN. We chose this

approach because conventional general linear model (GLM) analysis, and also other multi-

variate approaches such as multivoxel pattern analysis (MVPA) (De Martino et al., 2008) or

multivariate distance matrix regression (MDMR) (Zapala and Schork, 2006) have the limitation

that we obtain only one brain map per included regressor, which indicates how strong that

regressor is related to the response variable (here SDBOLD). PLS correlation instead searches

to explain the most variance as possible between distributed patterns of brain data and a

combination of regressors. Its great advantage compared to other multivariate approaches is

thus the possibility to investigate the relationship of brain data with multiple external variables

at the same time. Here, this approach allowed us to investigate alterations related to 22q11DS

and developmental characteristics at the same time. However, the multivariability of both

brain and design saliences also introduces challenges the interpretability of the results.

SDBOLD and motion

In the analysis of functional connectivity, but even more in SDBOLD, motion is a known issue,

as high changes in the BOLD signal might be caused by sudden motion (Power et al., 2012,

2014). Clinical populations, such as our cohort of patients with 22q11DS who present both

mental and psychiatric disorders, move more than healthy subjects. This makes it is especially

difficult to disentangle effects which are solely driven by motion. Here, we addressed this

issue by excluding extreme motion outliers during preprocessing. After motion scrubbing, the

framewise displacement was significantly higher in patients compared to controls, while the

mean translation and rotation parameters did not differ between the groups. As this difference

in motion is inherent to the clinical population under study, it is very difficult to obtain a

perfect match between patients and controls without selecting a subpopulation of patients.

Even though we applied strict motion correction, this effect presents still a limitation to our

study. A more detailed analysis of the association between SDBOLD and motion can be found

in the Supplementary Material (Appendix A.1).

3.1.6 Conclusions and outlook

In this study we showed that BOLD signal variability is broadly altered in 22q11DS, strongest

in regions of the DMN. We moreover observed that SDBOLD is strongly related to age in a

set of mainly subcortical brain regions. The locations and comparison to studies on BOLD

variability during task suggest an implication of higher BOLD signal variability for better

cognitive performance. However, further targeted studies including behavioral variables

and task-based fMRI will be necessary to obtain a better understanding on the relationship

on BOLD signal variability and behavior. Furthermore, we note that areas showing altered

BOLD signal variability are reported to be also structurally affected in 22q11DS. The direct link

between BOLD variance and brain anatomy should thus be subject to further analysis.
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In an attempt to study the relationship between SDBOLD and functional connectivity, we

analyzed functional connectivity within the DMN and identified locations where functional

connectivity might be confounded by brain variability. However, as we only studied connec-

tivity of one seed region located in the PCC, the conclusions that can be driven are limited

to this particular network. Further analysis should also include other RSNs or whole-brain

connectivity approaches.
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3.2 Journal Article: BOLD variability in patients with 22q11DS with

psychotic symptoms

Postprint version of the article published in: Schizophrenia Research 2018, 193:319–328, https:

//doi.org/10.1016/j.schres.2017.08.003

Psychotic symptoms influence the development of ante-

rior cingulate BOLD variability in 22q11.2 deletion syn-

drome.

Daniela Zöller1,2,3, Maria Carmela Padula3, Corrado Sandini3, Maude Schneider3, Elisa

Scariati3, Dimitri Van De Ville1,2, Marie Schaer3, Stephan Eliez3

1Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale

de Lausanne (EPFL), Lausanne, Switzerland; 2Department of Radiology and Medical Informatics,

University of Geneva, Geneva, Switzerland; 3Developmental Imaging and Psychopathology Laboratory,

Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Geneva, Switzerland

Chromosome 22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental disorder as-

sociated with a broad phenotype of clinical, cognitive and psychiatric features. Due to

the very high prevalence of schizophrenia (30-40 %), the investigation of psychotic symp-

toms in the syndrome is promising to reveal biomarkers for the development of psychosis,

also in the general population. Since schizophrenia is seen as a disorder of the dynamic

interactions between brain networks, we here investigated brain dynamics, assessed by

the variability of blood oxygenation level dependent (BOLD) signals, in patients with psy-

chotic symptoms. We included 28 patients with 22q11DS presenting higher positive psy-

chotic symptoms, 29 patients with lower positive psychotic symptoms and 69 healthy con-

trols between 10 and 30 years old. To overcome limitations of mass-univariate approaches,

we employed multivariate analysis, namely partial least squares correlation, combined

with proper statistical testing, to analyze resting-state BOLD signal variability and its age-

relationship in patients with positive psychotic symptoms. Our results revealed a missing

positive age-relationship in the dorsal anterior cingulate cortex (dACC) in patients with

higher positive psychotic symptoms, leading to globally lower variability in the dACC in

those patients. Patients without positive psychotic symptoms and healthy controls had

the same developmental trajectory in this region. Alterations of brain structure and func-

tion in the anterior cingulate cortex (ACC) have been previously reported in 22q11DS and

linked to psychotic symptoms. The present results support the implication of this region

in the development of psychotic symptoms and suggest aberrant BOLD signal variability

development as a potential biomarker for psychosis.
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3.2.1 Introduction

Chromosome 22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental disorder that

comes with a vast cognitive and clinical phenotype (Oskarsdóttir et al., 2004; Maeder et al.,

2016; Karayiorgou et al., 2010; McDonald-McGinn et al., 2015). The prevalence of schizophre-

nia in adult patients with the disorder is estimated at 30 % to 40 % (Murphy et al., 1999;

Lewandowski et al., 2007; Schneider et al., 2014), which makes the deletion syndrome a model

for the study of neurodevelopmental markers of psychosis and schizophrenia (Bassett and

Chow, 1999).

Even though the exact neural mechanisms that may underlay the pathophysiology of

psychosis and schizophrenia remain uncertain, schizophrenia is commonly seen as a disorder

of functional network dysconnectivity rather than regionally specific pathophysiology (Friston

et al., 1996; Friston, 1998). The recently proposed triple network model (Menon, 2011) sees

mental disorders as a disruption of the interaction between three large scale brain networks in

particular, namely the default mode network (DMN), the central executive network (CEN) and

the salience network (SN). Findings in schizophrenia confirm and emphasize this hypothesis

as a model for the disorder (Nekovarova et al., 2014). More precisely, structural and functional

findings in the anterior cingulate cortex and the insula, two main regions of the SN (Nekovarova

et al., 2014), suggest that disruptions in the SN mediate the altered relationship between DMN

and CEN.

Since alterations in schizophrenia are obviously complex and more and more research

confirms the impairment of brain dynamics in the disorder (Van Den Heuvel and Fornito,

2014), the investigation of brain dynamics in psychosis seems a promising approach when

searching for neural correlates of its development. One simple approach to probe into dynamic

brain function is moment-to-moment blood oxygenation level dependent (BOLD) signal

variability (Garrett et al., 2013b). Even though it is not commonly considered in resting-

state functional magnetic resonance imaging (fMRI) studies, its implication in development

and cognitive performance suggests its importance for healthy brain function (Grady and

Garrett, 2014). Indeed, higher temporal signal variability reflects a higher dynamic range

and network complexity, which is crucial for the function of neural systems (Deco et al.,

2009, 2011; Garrett et al., 2013b; McIntosh et al., 2010). Findings in electroencephalography

(EEG), magnetoencephalography (MEG) and fMRI suggest that brain variability increases from

child- to adulthood (McIntosh et al., 2008; Lippé et al., 2009; Misić et al., 2010; Miskovic et al.,

2016; Zöller et al., 2017) and is reduced under anesthesia (Huang et al., 2016). Furthermore

higher variability has been linked to better cognitive performance (Garrett et al., 2013a, 2014),

cognitive flexibility (Armbruster-Genc et al., 2016) and better pain coping (Rogachov et al.,

2016).

While there are several studies relating psychosis in 22q11DS to altered brain morphology

and structural connectivity (Scariati et al., 2016a), only few investigated brain function in

relationship to psychosis (Debbané et al., 2012; Mattiaccio et al., 2016; Scariati et al., 2014;

Padula et al., 2017b; Tomescu et al., 2014). Two resting-state fMRI studies on whole brain

functional connectivity linked increased DMN activity in 22q11DS to psychotic symptoms
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(Debbané et al., 2012; Mattiaccio et al., 2016). Padula et al. (2017b) investigated functional con-

nectivity within and between DMN, CEN and SN in 22q11DS, but did not find any significant

relationship with psychotic symptoms. Using a multivariate approach, another resting-state

fMRI study revealed a connectivity pattern that discriminated patients presenting prodromal

positive symptoms (Scariati et al., 2014). The pattern included the anterior cingulate, right

inferior frontal and left superior temporal cortices. Furthermore, an EEG study in patients

with 22q11DS has linked altered SN function (i.e. the over-representation of EEG microstate

C) to the presence of hallucinations (Tomescu et al., 2014; Britz et al., 2010).

While we already investigated BOLD signal variability alterations and development in

22q11DS (Zöller et al., 2017), to date no study has revealed its relationship to psychotic

symptoms in 22q11DS. Here, we employed partial least squares correlation (PLSC) (Krishnan

et al., 2011) as a powerful multivariate approach to reveal alterations and age-relationship

of BOLD variability related to psychotic symptoms in 22q11DS. We furthermore compared

BOLD variability in patients with and without psychotic symptoms to healthy controls (HCs)

to evaluate alterations intrinsic to the presence of psychotic symptoms.

3.2.2 Methods

Participants

In the present study, we included 57 patients with 22q11DS aged between 10 and 30 years

and 69 HCs in the same age range. HCs were recruited amongst siblings of the patients and

through the Geneva state school system. Within the group of patients with the microdeletion,

psychotic symptoms were assessed using the structured interview of prodromal symptoms

(SIPS) (Miller et al., 2003). Patients with a score of >= 3 in at least one of the positive SIPS

sub-scales (i.e. Unusual Thought Content, Suspiciousness, Grandiosity, Hallucinations, and

Disorganised Communication) were considered as having attenuated positive symptoms

aside the criteria of frequency and duration (Fusar-Poli et al., 2013). Amongst the patients with

22q11DS, 28 patients were diagnosed with at least attenuated positive symptoms (PS+), while

the remaining 29 had low positive symptoms scores (<= 2) and were included in the PS- group.

In the PS+ group, five patients were diagnosed with a psychotic disorder according to DSM-

IV-TR criteria (see Supplementary Table A.3). For more detailed demographic information,

see table 3.3. Written informed consent was received from participants and their parents (for

subjects younger than 18 years old). The research protocols were approved by the Institutional

Review Board of Geneva University School of Medicine. For a summary on criteria for the

exclusion of subjects from our initial cohort and information on subjects included in our

previous fMRI studies refer to Supplementary Materials (appendix A.2).

Image acquisition

All MRI brain scans were acquired at the Centre d’Imagerie BioMédicale (CIBM) in Geneva

on a Siemens Trio (N = 86: 53 HCs, 18 PS+, 15 PS-) and a Siemens Prisma (N = 40: 16 HCs, 10

PS+, 14 PS-) 3 Tesla scanner. Structural images were obtained with a T1-weighted sequence of

0.86×0.86×1.1 mm3 volumetric resolution (192 slices, TR = 2500 ms, TE = 3 ms, acquisition
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Table 3.3 – Demographic information.

PS+ PS- HCs p-value p-value p-value

PS+ vs. PS- PS+ vs. HCs PS- vs. HCs

Number of subjects (M/F) 28 (12/16) 29 (14/15) 69 (30/39) 0.6813 0.9554 0.6629

Age mean±SD 17.93±4.50 17.44±4.54 17.60±5.22 0.6846 0.7651 0.8918

(range) (10.3-27.9) (11.1-28.4) (10.0-29.6)

Right handed* 60.71 % 96.55%̇ 78.79 % <0.001 0.0697 0.0288

IQ** 67.25±9.82 70.21±13.71 108.86±13.47 0.3563 <0.001 <0.001

N. subjects meeting criteria 20 14 N/A

for psychiatric diagnosis***

Anxiety disorder 5 4 N/A

Attention deficit 1 1 N/A

hyperactivity disorder

Mood disorder 2 3 N/A

Schizophrenia spectrum 2 0 N/A

disorder

More than one 10 6 N/A

psychiatric disorder

N. subjects medicated

Methylphenidate 1 7 0

Antipsychotics 3 0 0

Anticonvulsants 1 0 0

Antidepressants 3 1 0

More than one 2 0 0

class of medication
* Handedness was measured using the Edinburgh laterality quotient, right handedness was defined by a score of

more than 50. ** IQ was measured using the Wechsler Intelligence Scale for Children–III (Wechsler, 1991) for
children and the Wechsler Adult Intelligence Scale–III (Wechsler, 1997) for adults. *** The presence of psychiatric
disorders was evalutated during a clinical interview with the patients using the Diagnostic Interview for Children
and Adolescents Revised (DICA-R) (Reich, 2000), the psychosis supplement from the Kiddie-Schedule for Affective
Disorders and Schizophrenia Present and Lifetime version (K-SADS-PL) (Kaufman et al., 1997) and the Structured

Clinical Interview for DSM-IV Axis I Disorders (SCID-I) (First et al., 1996).

matrix = 224 × 256, field of view = 22 cm2, flip angle = 8°). Resting-state fMRI data were

recorded with a T2-weighted sequence of 8 minutes (voxel size = 1.84×1.84×3.2 mm, 38 slices,

TR = 2400 ms, TE = 30 ms, flip angle = 85°). During the resting-state session, participants were

instructed to let their minds wander and not to think of anything in particular, while fixing a

cross on the screen, and not to fall asleep.

Preprocessing

In the present study, data were processed similarly as in our previous paper on BOLD

variability in 22q11DS (Zöller et al., 2017). MRI preprocessing was done using statisti-

cal parametric mapping (SPM12) (Wellcome Trust Centre for Neuroimaging, London, UK:

http://www.fil.ion.ucl.ac.uk/spm/) and functions of the data processing assistant for resting-

state fMRI (DPARSF) (Yan Chaogan, 2010) and individual brain atlases using statistical para-

metric mapping (IBASPM) (Aleman-Gomez et al., 2006) toolboxes. After realignment of
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functional scans, we applied spatial smoothing with an isotropic Gaussian kernel of 6 mm

full width half maximum (FWHM) and coregistered structural scans to the functional mean.

Structural images were segmented with the SPM12 Segmentation algorithm (Ashburner and

Friston, 2005) and a study-specific template was generated using diffeomorphic anatomical

registration (DARTEL) (Ashburner, 2007). Then, the first five functional scans were excluded

from the analysis, mean white matter (WM) and cerebrospinal fluid (CSF) signals were re-

gressed from the BOLD time series, which were then filtered with a bandwidth of 0.01 Hz

to 0.1 Hz. For a more extended correction of motion artifacts, we further applied motion

scrubbing (Power et al., 2012), excluding frames with a framewise displacement of more than

0.5 mm, as well as one frame before and two frames after. Refer to Supplementary Table A.4

for a summary on motion characteristics of the groups before and after motion scrubbing.

BOLD signal variability

At every voxel, BOLD signal variability was defined as the BOLD signal standard deviation

(SDBOLD) of preprocessed time series in subject space. Afterwards, every subject’s SDBOLD

map was spatially normalized to the study-specific DARTEL template. Spatial normalization

was applied after SDBOLD computation, as in this way voxel-wise variability measures such

as amplitude of low-frequency fluctuations (ALFF) are less affected by spatial distortions

(Wu et al., 2011). Then, SDBOLD maps were thresholded in order to keep only voxels with a

probability higher than 0.2 of laying inside the gray matter and spatially z-scored for every

subject.

Partial least squares correlation

We employed PLSC (Krishnan et al., 2011; McIntosh and Lobaugh, 2004) to investigate multi-

variate alterations and age-relationship of SDBOLD related to the diagnosis. Figure 3.7 shows a

schematic representation of the steps for PLSC.

By extracting principal components of covariance between brain data and a set of subject-

specific design variables (here: diagnosis, age and their interaction), PLSC uncovers brain

patterns with the strongest multivariate correlation to the design variables. We first computed

the partial correlation matrix across subjects R between SDBOLD data X and design variables Y.

Brain and design data were z-scored across subjects before applying PLSC, and motion (i.e.

average framewise displacement), scanner type (Trio or Prisma) and full-scale intelligence

quotient (IQ) were included as nuisance regressors. Then, so called latent variables were

extracted by singular value decomposition (SVD) of R = USVT. In this work, we refer to the

latent variables as “correlation components”. Each of the components is associated with a

singular value (diagonal elements of S) indicating how much of the correlation is explained by

this component. Design saliences in U contain the design loadings for every component that

indicate how strong each of the design variables contributes to the brain-design correlation

explained by this component. Brain saliences in V contain a brain pattern for every component,

representing how strong every voxel contributes to the brain-design correlation explained by

this component. Furthermore, so-called “brain-scores" were obtained for every subject by

48



Jo
u

rn
alA

rticle

3.2. Journal Article: BOLD variability in patients with 22q11DS with psychotic symptoms

Figure 3.7 – Schematic representation of PLSC.

projecting the subject’s SDBOLD map (in X) on the brain salience pattern (in V) of the correlation

components: LX = XV. So-called “design scores" were computed similarly: LY = YU.

In order to evaluate how many components explain a significant amount of the correlation,

we employed permutation testing. By shuffling the elements of Y 1000 times while keeping

the order of X unchanged, we determined the null distribution of explained correlation. A

component was considered significant (p=0.05) if its singular value was higher than 95 % of its

null distribution. For the significant components, we furthermore evaluated the robustness of

brain and design saliences using a bootstrapping procedure with 500 random samples with

replacement. For every bootstrap sample, we recalculated design and brain saliences (U and

V) and so obtained a typical bootstrap distribution of the salience values. Brain bootstrap

ratios, calculated by dividing brain salience values by their standard deviations, indicate for

every voxel its contribution to the brain-design correlation and can be interpreted similarly to

z-scores (Krishnan et al., 2011).
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Figure 3.8 – First significant correlation component (p=0.002) resulting from PLSC comparing
PS+ patients to PS- patients. Subfigures show design saliences with bootstrap error bars (A),
brain scores as a function of age (B), and brain salience bootstrap ratios (C). The component
reveals that PS- patients have increasing SDBOLD in the dACC, while in PS+ patients this
age-relationship is absent. dACC - dorsal anterior cingulate cortex; ** p<0.01; *** p<0.001.

3.2.3 Results

Different age-relationship in PS+ and PS- patients

Our main goal was to investigate alterations and age-relationship of SDBOLD related to the

presence of psychotic symptoms in patients with 22q11DS. We used PLSC with the design

variables diagnosis (1 for PS+ patients, -1 for PS- patients), age and their interaction. Motion,

scanner type and full-scale IQ were included as nuisance regressors. PLSC resulted in two

significant correlation components.

Figure 3.8 shows the design and brain saliences for the first significant correlation compo-

nent (p=0.002) resulting from PLSC comparing the PS+ and PS- groups. This first component

represents a brain pattern where SDBOLD is strongly correlated with age in PS- patients. This

age-relationship, however, is not evident in the PS+ group and the average SDBOLD in the

pattern is lower in the PS+ group. The largest cluster of the corresponding pattern (see also

Supplementary Table A.5) is located in the dorsal anterior cingulate cortex (dACC). Positive

brain salience values indicate that SDBOLD in PS- patients is increasing over age in this area

and is globally higher in PS- patients than in PS+ patients.

Figure 3.9 shows design and brain salience of the second significant correlation compo-

nent (p=0.014) of the comparison of PS+ and PS- patients. This component represents a brain

pattern where SDBOLD is correlated with age in the PS+ group, whereas PS- patients show

an opposed relationship with age. The corresponding pattern (see also Supplementary Ta-
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Figure 3.9 – Second significant correlation component (p=0.014) resulting from PLSC com-
paring PS+ patients to PS- patients. Subfigures show design saliences with bootstrap error
bars (A), brain scores as a function of age (B), and brain salience bootstrap ratios (C). The
component uncovers that in PS+ patients, SDBOLD decreases over age in the PFC/OFC and
increases over age in V2. In PS- patients, SDBOLD in this pattern has an opposed relationship
with age: increasing in the PFC/OFC and decreasing in V2. OFC - orbitofrontal cortex; PFC -
prefrontal cortex; V2 - secondary visual cortex; *** p<0.001.

ble A.6) contains bilateral negative clusters spanning the prefrontal and orbitofrontal cortices,

indicating that there, SDBOLD decreases with age in PS+ patients and increases with age in

PS- patients. It furthermore includes positive clusters in occipital, secondary visual regions,

indicating an increase over age of SDBOLD in PS+ patients, while SDBOLD in PS- patients is

decreasing.

Comparison of PS+ patients, PS- patients and HCs

In order to compare SDBOLD in the two 22q11DS subgroups against HCs, we employed a

second PLSC, this time with five design variables: the diagnosis of 22q11DS (diagnosis 1: 1

for PS+ and PS- patients, -1 for HCs); the presence of psychotic symptoms (diagnosis 2: 1

for PS+ patients, -1 for PS- patients, and 0 for HCs); age; the interaction between age and

diagnosis 1, and the interaction between age and diagnosis 2. Motion and scanner type were

included as nuisance regressors. IQ was not included to avoid the insensitivity to SDBOLD

group differences introduced by systematic group differences in full-scale IQ. Again, PLSC

resulted in two significant correlation components.

Figure 3.10 shows design and brain saliences for the first significant correlation component

(p<0.0001) resulting from the comparison of patients with 22q11DS (PS+ and PS-) to HCs. The

corresponding pattern shows areas where SDBOLD in patients with 22q11DS is different from
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Figure 3.10 – First significant correlation component (p<0.0001) resulting from PLSC com-
paring patients with 22q11DS to HCs. Subfigures show design saliences with bootstrap error
bars (A), brain scores as a function of age (B), and brain salience bootstrap ratios (C). The
component contains a pattern where SDBOLD is higher (red) or lower (blue) in HCs compared
to 22q11DS, with identical age-relationship in the three groups. The blue circle indicates
the area in the dACC, where PS+ patients showed altered age-relationship compared to PS-
patients (see section 3.2.3 and figure 3.8). This cluster is not different in 22q11DS compared to
HCs. * p<0.05; ** p<0.01; *** p<0.001.

HCs, but where patients within the 22q11DS group do not show significant differences. The

corresponding brain salience pattern (see also Supplementary Table A.7) includes numerous

areas distributed over the whole brain. SDBOLD in cortical regions, including the CEN and parts

of the DMN, is mainly reduced in 22q11DS, whereas in subcortical regions such as caudate

and thalamus, SDBOLD is higher in 22q11DS. Interestingly, dACC is not part of this pattern,

which suggests that alterations in dACC (see section 3.2.3), specifically differentiate patients

with 22q11DS with higher symptoms.

Figure 3.11 shows design and brain saliences for the second significant correlation compo-

nent (p=0.001). This component contains a pattern where SDBOLD is correlated with age in

HCs and in patients without psychotic symptoms (PS-). Patients with psychotic symptoms

(PS+), however, do not show any correlation with age inside this pattern. Besides the superior

motor area, caudate and amygdala, the brain pattern also includes the dACC (see also Supple-

mentary Table A.8). An increase of SDBOLD over age in these regions is thus common to PS-

patients and HCs, but absent in PS+ patients.
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Figure 3.11 – Second significant correlation component (p=0.001) resulting from PLSC com-
paring patients with 22q11DS to HCs. Subfigures show design saliences with bootstrap error
bars (A), brain scores as a function of age (B), and brain salience bootstrap scores (C). The
component contains a pattern where SDBOLD is increasing (red) or decreasing (blue) in PS-
patients and HCs, but where in PS+ patients do not show any significant relationship with age.
Amongst other areas, the pattern includes the dACC. AMY - amygdala; CAU - caudate; dACC -
dorsal anterior cingulate cortex; SMA - superior motor area; * p<0.05; *** p<0.001.

Stability of the results

Exclusion of the five patients diagnosed with a psychotic disorder (see section 3.2.2 and

Supplementary Table A.3) did not alter the present results besides slightly higher p-values,

caused by the lower statistical power. Due to this increase, component 2 in the first analysis

(see figure 3.9) was not significant anymore (p>0.05), but all other results remained significant

with similar brain and design saliences.

Inclusion or exclusion of scanner type as covariate did not significantly alter the results.

Motion is a major concern in the analysis of BOLD variability. Supplementary Section A.2.3

outlines the correlations of the resulting brain scores with motion. There were no significant

motion effects in the first analysis, and only low motion effects in brain scores of healthy

controls in the second analysis.

3.2.4 Discussion

The central finding of the present study was that SDBOLD in the dACC is lower in patients with

higher positive psychotic symptoms than in patients with lower symptoms (section 3.2.3). We

found evidence that BOLD variability in the dACC does not change over age in PS+ patients, but

increases with age in PS- patients and HCs (sections 3.2.3 and 3.2.3). Furthermore, dACC was

not part of a pattern where BOLD variability was altered in patients with 22q11DS compared
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to HCs, independent of the presence of psychotic symptoms (section 3.2.3), indicating that

alterations in dACC are intrinsic to the presence of higher psychotic symptoms in 22q11DS.

Additionally, we found evidence for a pattern where only patients with psychotic symptoms

show a significant relationship of BOLD variability with age (section 3.2.3).

In the following, we will discuss the relevance of alterations found in the dACC related to

psychotic symptoms in 22q11DS and in the general population. We furthermore will comment

on the age-relationship of BOLD variability that was evident only in PS+ patients, as well as on

the BOLD variability alterations in both 22q11DS subgroups.

Our observation of altered BOLD variability in the dACC is in line with several previous

findings in 22q11DS and schizophrenia. In fact, alterations in the ACC have been reported in

22q11DS (Scariati et al., 2016a; Schneider et al., 2012; Rihs et al., 2013; Schaer et al., 2010) and

linked to the presence of psychotic symptoms within the syndrome using diverse modalities

(Dufour et al., 2008; Scariati et al., 2014; Kates et al., 2015a; Ottet et al., 2013a; Tomescu et al.,

2014). Structural MRI studies have reported gray matter volume reductions in 22q11DS which

are most pronounced in the ACC (Schaer et al., 2010) and linked to the presence of psychotic

symptoms in 22q11DS (Dufour et al., 2008). Furthermore, white matter dysconnectivity in

cortical midline structures including the ACC has been related to psychotic symptoms in

patients with the microdeletion (Kates et al., 2015a; Ottet et al., 2013a; reviewed in Scariati

et al., 2016a). In a recent study conducted by our group, also structural connectivity measured

by structural covariance, was found to be altered in the ACC and medial prefrontal cortex of

patients with 22q11DS with psychotic symptoms (Sandini et al., 2017). Functional MRI studies

in 22q11DS reported reduced resting-state functional connectivity in the ACC of patients with

prodromal symptoms (Scariati et al., 2014), as well as functional hypo-activation in ACC during

a self-referential task, which was correlated with the severity of positive symptoms (Schneider

et al., 2012). Finally, recent EEG studies revealed a microstate C over-representation that was

correlated with the presence of hallucinations in 22q11DS (Tomescu et al., 2014, 2015). This

EEG microstate C has been related to fMRI activity in the ACC (Britz et al., 2010).

Also in the general population, changes of brain structure and function is the ACC have

repeatedly been reported in subjects at ultra high risk for psychosis and in schizophrenia

(Fornito et al., 2008, 2009; Reid et al., 2010; Jung et al., 2010; Pettersson-Yeo et al., 2011; Lord

et al., 2011; Allen et al., 2010; Nekovarova et al., 2014). Alterations in the ACC have been linked

to self-monitoring deficits (Allen et al., 2008) and auditory-verbal hallucinations (Allen et al.,

2007).

The dACC is an area implicated in goal-directed behavior, self-related processing, and

cognitive control (Shenhav et al., 2013; Sridharan et al., 2008; Uddin, 2015). It is a central

hub of the SN (Menon and Uddin, 2010). Our observation of increasing BOLD variability

in the SN of PS- patients and healthy controls is in line with a recent study, also showing

linearly increasing resting-state BOLD variability in SN nodes(Nomi et al., 2017). Lower

BOLD variability in the PS+ group may reflect a dysfunction in the attribution of salience.

Such aberrant salience attribution has been suggested as mechanism for the development

of psychosis and schizophrenia (Kapur, 2003). Higher BOLD variability has been suggested
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to reflect optimal shifting between integrative and segregative brain states (Nomi et al., 2017;

Tognoli and Kelso, 2014). Speculatively, lower BOLD variability in the dACC may thus disrupt

the shifting ability of the SN, leading to a disability to correctly treat salience of external and

internal stimuli.

Beyond the BOLD variability reduction in the dACC, we found that patients with psychotic

symptoms have a pattern of aberrant age-relationship with increasing BOLD variability in

visual regions and decreasing BOLD variability in the prefrontal and orbitofrontal coritces.

Structural and functional alterations in frontal regions have been reported in psychosis and

schizophrenia, including volume reductions (Jung et al., 2010), structural and functional

dysconnectivity (Pettersson-Yeo et al., 2011), and increased brain signal variability (Hoptman

et al., 2010; Takahashi et al., 2010). Also structural and functional alterations in the visual

cortex have been observed in schizophrenia (Narr et al., 2005; Yu et al., 2014; Butler et al.,

2007), and may be related to deficits in visual processing (Butler et al., 2005). Together with the

altered age-relationship in the dACC, these results suggest aberrant developmental trajectories

related to psychotic symptoms and point towards aberrant BOLD variability development as a

potential predictor for psychosis. As these results are limited by the cross-sectional nature of

the analysis, this hypothesis should be confirmed in further studies including longitudinal

data.

In our previous paper (Zöller et al., 2017), we compared BOLD variability in patients with

22q11DS to HCs without differentiating patients according to psychotic symptoms. Interest-

ingly, we here observed a weaker correlation with age in 22q11DS than in HCs. In view of the

present results, this difference can be explained by the absent age-relationship in patients with

psychotic symptoms, while age-relationship of BOLD variability in patients without positive

symptoms is as strong as in HCs.

3.2.5 Conclusions and limitations

To our best knowledge, this is the first study investigating BOLD signal variability alterations

related to psychosis in patients with 22q11DS. Firstly, we revealed reduced BOLD variability

related to psychotic symptoms in the dACC, a region which is central for cognitive control and

salience attribution and where alterations have been previously linked to psychotic symptoms

in 22q11DS and the general population. In this region, patients without psychotic symptoms

and HCs had similar levels of BOLD variability, suggesting that the reductions are intrinsic to

the presence of psychotic symptoms. We furthermore retrieved a pattern of age-relationship

specific to patients with psychotic symptoms, including frontal and occipital regions.

A main limitation of this study is the limited sample size over a relatively large age range.

Furthermore, the cross-sectional nature of our data limits the interpretations to effects across

subjects. Our results will need to be replicated in a larger sample and including longitudinal

data to allow to conclude on true developmental effects.

Another confound might have been the heterogeneity in terms of symptoms severity and

outcome of PS+ and PS- patients. Even though patients with positive psychotic symptoms

are at higher risk to transition into psychosis, they may as well remain stable or even recover
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(Schneider et al., 2016; Schultze-Lutter et al., 2015; Fusar-Poli et al., 2012). In our sample,

all those patients were included in the PS+ group. Also, since there was no follow-up yet

for most of the younger subjects included in the PS- group, we cannot exclude that some of

those subjects might, indeed, develop symptoms at an older age. In our results, the decrease

in BOLD variability in patients with psychotic symptoms only becomes evident at an age

above 15, while younger individuals with and without psychotic symptoms have similar values.

This effect might be driven by the aforementioned limitation in the group assignment of

young subjects. Other confounds that might have driven these results are the duration of the

presence of symptoms, or effects of medication.

A possible confound regarding the analysis of SDBOLD may have been differences in gray

matter volume between the groups. Indeed, gray matter volume is known to be globally

reduced in 22q11DS (Tan et al., 2009; Gothelf et al., 2008). However, as gray matter volume in

the entire cortex decreases over development (Giedd et al., 1999; Gogtay et al., 2004), including

it as a confounding variable would lead to insensitivity in detecting age-dependence specific

to SDBOLD. Since additionally, gray matter volume and SDBOLD development do not seem to

be directly linked (Bray, 2017), we did not to include gray matter volume as nuisance regressor.
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3.3 Summary and outlook
In this chapter, we explored fMRI dynamics in terms of BOLD signal variability. In the first

study, we found broad alterations in patients with 22q11DS, with lower variability in posterior

occipital and parietal regions and higher variability in inferior temporal and subcortical

regions, a pattern that broadly overlaps with BOLD signal variability alterations in patients

with schizophrenia (Xu et al., 2015), see figure 2.7. Further, using seed-based static functional

connectivity (sFC) we confirmed anterior-posterior disconnectivity of the DMN, which has

been observed in several previous studies (Schreiner et al., 2014; Padula et al., 2015, 2017b).

Finally, we observed that the alteration patterns of BOLD variability and DMN connectivity

are not identical, which suggests that the relationship between BOLD variability and sFC is

more complex and not linear. On the contrary, in overlapping alterations both measures were

reduced, which may be counterintuitive as the standard deviation appears in the denominator

of Pearson correlation. Importantly, while we here observed BOLD signal variability at rest, the

relationship between variance and functional connectivity may vary in different task-based

paradigms. In a recent article that was published after our study, Duff et al. made the intriguing

observation that most correlation differences between a resting and a task condition could

be explained by “Additive Signal Changes", that is a change in variance of either one or both

correlated sources (Duff et al., 2018). These and our results suggest that an interpretation of

shifts in functional connectivity as differences in neural coupling may be too simplistic, and

multiple scenarios of changed signal variance and covariance may take place at the same time.

The consideration of variance in addition to correlation may help to disentangle these effects.

In the second study, we then analyzed BOLD signal variability in patients with psychotic

symptoms and found reduced variability in the dACC that was due to aberrant development

in these patients. Alterations in the dACC have been suggested as a candidate biomarker for

positive psychotic symptoms in 22q11DS, because they have been reported in multiple studies

using a diversity of measures of brain function and anatomy (Padula et al., 2018).

Together, these results suggest that BOLD variability contains meaningful information

on brain function and may provide a valuable marker for psychosis vulnerability in 22q11DS.

However, one disadvantage of the measure is that it is a global measure of brain dynamics

in which the entire resting-state scanning duration is summarized in one score per voxel.

Critically, the exact implications of BOLD signal variability are not well understood yet and

still subject to ongoing research. A recent study found that BOLD signal variability may result

from higher common synchronized input from multiple other brain regions (Garrett et al.,

2018). In this sense, reduced BOLD variability in dACC in patients with psychosis may be

a result from a dis-synchronized interaction of dACC with other brain regions, or in other

words a disrupted structure of functional brain states. It is known, that dACC is acting together

with a multiplicity of brain regions, such as insula and dorso-lateral prefrontal cortex (dlPFC)

for salience processing (Uddin, 2015), and the amygdala for emotion regulation and upraisal

(Etkin et al., 2011). In the following chapter, we therefore used dynamic analysis of large-

scale functional brain states, in order to investigate dynamics of distinct functional brain
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Chapter 3. BOLD signal variability to analyze dynamic brain function

systems rather than single voxels and probe into brain activity at specific moments, rather

than summarizing over the entire scanning duration.
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TO go beyond a simple voxel-wise measure of brain dynamics, we next look into dynamics

on the level of large-scale functional brain systems. Indeed, the brain during rest is

known to fluctuate between multiple coherent functional brain states that are characterized

by the consistent activation of sets of brain regions (Damoiseaux et al., 2006). Alterations in

BOLD signal variability observed in the previous studies are likely closely linked to the altered

integration with other regions of the brain (Garrett et al., 2018), which can be represented as

activity of such large-scale brain states. Among the multiple approaches to decompose the

fMRI signal into distinct functional components and their temporal activation (see chapter 2.1),

the innovation-driven co-activation patterns (iCAPs) framework stands out as it relies on very

few assumptions about the nature of the resulting components (Karahanoglu et al., 2015).

Independent component analysis (ICA) for example (Calhoun et al., 2001) maximizes statistical

independence in either time or space, and in the co-activation patterns (CAPs) methods (Liu

and Duyn, 2013) only one brain state can be active at a time. However, functional brain states

seem to be overlapping both in space (a region can be part of multiple brain states) and in

time (multiple brain states can be active at one timepoint) (Karahanoglu and Van De Ville,

2017). The iCAPs approach retrieves brain states that are simultaneously transitioning, and in

this way allows to recover brain states that are both temporally and spatially overlapping at

the same time.

We found out, however, that the spatial dependence of brain states can introduce spurious

activation in their reconstructed temporal activity. In the first article in section 4.1, we present

a quantification of this problem, as well as a methodological development that we included

into the iCAPs framework, which relies on transient-based constraints to avoid such spurious

activations. In the second article in section 4.2, we use this improved iCAPs approach to

look into altered brain function in patients with 22q11DS and into the dynamic implication

of clinical risk factors for psychosis in the syndrome. Finally, the last section 4.3 will again

summarize the findings of these two articles in perspective of this thesis and motivate further

directions.
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Chapter 4. Large-scale brain network dynamics

4.1 Journal Article: Robust recovery of temporal overlap between

network activity.

Postprint version of the article published in: IEEE Transactions on Medical Imaging 2019,

38:291-302, https://doi.org/10.1109/TMI.2018.2863944

Robust recovery of temporal overlap between network ac-

tivity using transient-informed spatio-temporal regression

Daniela Zöller1,2,3, Thomas A.W. Bolton1,2, Fikret Işık Karahanoğlu4,5, Stephan Eliez3, Marie

Schaer3, Dimitri Van De Ville1,2

1Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale

de Lausanne (EPFL), Lausanne, Switzerland; 2Department of Radiology and Medical Informatics,

University of Geneva, Geneva, Switzerland; 3Developmental Imaging and Psychopathology Laboratory,

Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Geneva, Switzerland;
4Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; 5Department

of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

Functional magnetic resonance imaging (fMRI) is a non-invasive tomographic imaging

modality that has provided insights into systems-level brain function. New analysis meth-

ods are emerging to study the dynamic behavior of brain activity. The innovation-driven

co-activation patterns (iCAPs) approach is one such approach that relies on the detection

of timepoints with significant transient activity to subsequently retrieve spatially and tem-

porally overlapping large-scale brain networks. To recover temporal profiles of the iCAPs

for further time-resolved analysis, spatial patterns are fitted back to the activity-inducing

signals. In this crucial step, spatial dependencies can hinder the recovery of temporal over-

lapping activity. To overcome this effect, we propose a novel back-projection method that

optimally fits activity-inducing signals given a set of transient timepoints and spatial maps

of iCAPs, thus taking into account both spatial and temporal constraints. Validation on

simulated data shows that transient-based constraints improve the quality of fitted time

courses. Further evaluation on experimental data demonstrates that over- and underfit-

ting are prevented by the use of optimized spatio-temporal constraints. Spatial and tem-

poral properties of resulting iCAPs support that brain activity is characterized by the recur-

rent co-activation and co-deactivation of spatially overlapping large-scale brain networks.

This new approach opens new avenues to explore the brain’s dynamic core.

4.1.1 Introduction

During the past two decades, investigations using resting-state functional magnetic resonance

imaging (fMRI) found evidence that normal brain function is characterized by fluctuations in

the activity of large-scale brain networks, that is, of distributed sets of brain regions that are
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4.1. Journal Article: Robust recovery of temporal overlap between network activity.

coherently fluctuating (Damoiseaux et al., 2006; Fox et al., 2005). Functional connectivity (FC)

measures statistical interdependency between two time courses, conventionally by pairwise

correlation. Another widely used methodology to study networked brain activity is indepen-

dent component analysis (ICA) that relies on a surrogate measure for statistical independence

(McKeown et al., 1998; Calhoun et al., 2001). While FC and ICA most commonly assume

stationarity over the whole resting-state run, recent findings suggest that it is meaningfully

variable over time (Chang and Glover, 2010), and that the consideration of dynamic features

is promising when studying brain function and its alterations in mental disorders (Christoff

et al., 2016; Preti et al., 2017).

Multiple approaches exist for the retrieval and analysis of dynamic functional connectivity

(dFC) networks; for extensive reviews see (Preti et al., 2017; Karahanoglu and Van De Ville, 2017;

Hutchison et al., 2013a). Sliding-window approaches track dynamic changes by restraining

the computation of second-order correlation to a temporal interval which is gradually shifted

over time (Chang and Glover, 2010; Sakoglu et al., 2010; Leonardi et al., 2013; Allen et al.,

2014). However, this approach is limited to the detection of FC changes at much slower

rate than the sampling rate, whereas actual FC changes might take place at a faster rate.

Several novel approaches have been proposed to go beyond sliding-window correlations

and detect rapid changes in FC. Window-less ICA-based approaches propose to analyze the

dynamics of independent components (ICs) using for example dictionary learning (Yaesoubi

et al., 2018) or hidden Markov models (Vidaurre et al., 2017). In parallel, so-called first-order

techniques were developed, which identify fMRI frames that reflect key activity patterns in

a point process analysis (PPA); e.g., by the detection of significantly strong activity in a seed

region (Tagliazucchi et al., 2012). An extension of this approach applies temporal clustering on

the selected frames to establish whole brain co-activation patterns (CAPs) occurring during

those moments defined by a single seed’s time series (Liu and Duyn, 2013). This seed-driven

approach has further been extended for the whole-brain by including multiple seeds (Liu et al.,

2013; Tagliazucchi et al., 2016).

Yet another approach has been to incorporate a change point detector to retrieve time-

points of significant transient activity; e.g., by identifying moments of maximal brain-state

changes (Cribben et al., 2012) or using derivatives (Shine et al., 2015, 2016b,a). Combining this

idea with principles from CAP analysis, temporal clustering on significant transient timepoints

yields innovation-driven CAPs (iCAPs) (Karahanoglu et al., 2015), which are illustrated in

Fig. 4.1. These spatial patterns reminiscent for known functional networks are simultaneously

transitioning rather than simultaneously activating, which provides unique advantages over

other commonly used methods. ICA, for instance, imposes statistical independence either in

space or in time and CAPs are per definition temporally segregated, with only one active CAP

at a time. This flexibility in spatial and temporal representation makes iCAPs thus especially

well suited for the investigation of the resting state where there is no prior information on

timing of brain-state transitions and strong temporal overlap of functional components is

likely given the hemodynamic nature of fMRI signals (Christoff et al., 2016).

To precisely detect timepoints with transient activity, fMRI signals must be deconvolved

from the hemodynamic response function (HRF). For this the total activation (TA) framework
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Chapter 4. Large-scale brain network dynamics

has been developed (Karahanoglu et al., 2013) (Fig. 4.1, green box), resulting into the activity-

inducing signals. The derivative of activity-inducing signals, so-called innovation signals, are

then temporally clustered into representative spatial patterns (Fig. 4.1, blue box). To obtain

the activation time courses of the iCAPs, these spatial patterns are then fitted back to the

activity-inducing signals.

Even though the possibility of spatial overlap is one of the key advantages of iCAPs, spatial

dependence may hinder the recovery of temporal overlap in the regression procedure. Here,

we address this issue and propose a new back-projection method to optimally fit activity-

inducing signals given a set of transient timepoints and spatial maps of iCAPs. This approach

takes into account both spatial and temporal constraints to retrieve iCAPs’ temporal profiles,

which gives access to their dynamics for further analysis.

In the following, we first briefly describe the TA and iCAPs pipeline. Then, we introduce

our novel transient-informed spatio-temporal regression approach and validate the proposed

method on simulated data. Finally, we evaluate it on experimental data to demonstrate the

benefits of our approach.

4.1.2 Methods

Methods implementation

An open repository containing the full code for the application of processing

steps including TA, iCAPs retrieval and spatio-temporal regression is available at

https://c4science.ch/source/iCAPs.git.

Total activation and innovation-driven co-activation patterns

Total activation The TA framework uses spatio-temporal regularization to deconvolve the

fMRI signal from the HRF (see Fig. 4.1, green box). The signal model explains the measured

fMRI signal y(v, t ) as a convolution of an underlying neural signal a(v, t ), assumed to be block-

type at the timescale of fMRI (that is seconds), with the HRF h(t ), and is corrupted by additive

white Gaussian noise ε(v, t ):

y(v, t ) = (h?a)(v, t )+ε(v, t ).

Here and throughout, the index v ∈N indicates the voxel with 1 ≤ v ≤ Nv , Nv being the total

number of gray matter voxels, and index t ∈ N indicates the timepoint with 1 ≤ t ≤ Nt , Nt

being the total number of timepoints. Using vector notation y(v, ·) = [y(v,1), ..., y(v, Nt )], we

write

y(v, ·) = (h?a)(v, ·)+ε(v, ·),

where ε is distributed as N (0,INtσ
2
v ), where INt is an Nt ×Nt identity matrix. We designate

x = h?a the activity-related signal at voxel v , and a its activity-inducing signal. The complete

data matrix of activity-related signals is denoted as X ∈ RNv×Nt and the fMRI signal matrix

Y ∈RNv×Nt , see Table 4.1 for an overview of the notations.

Then, as illustrated in Fig. 4.1 (green box), the spatio-temporal regularization problem can
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<latexit sha1_base64="++5dCbHebfYazU7AY1xnJqUEAGo=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnZsNTwIvHCGaByRB6Oj1Jk56F7hohDPkMLx4U8erXePNv7CyCij4oeLxXRVU9P5FCAyEfVm5tfWNzK79d2Nnd2z8oHh51dJwqxtsslrHq+VRzKSLeBgGS9xLFaehL3vUn13O/e8+VFnF0B9OEeyEdRSIQjIKR3L7PgQ6yycXlbFAsEZvUK1WHYGKXnWqtUTOkUisbDTs2WaCEVmgNiu/9YczSkEfAJNXadUgCXkYVCCb5rNBPNU8om9ARdw2NaMi1ly1OnuEzowxxECtTEeCF+n0io6HW09A3nSGFsf7tzcW/PDeFoOFlIkpS4BFbLgpSiSHG8//xUCjOQE4NoUwJcytmY6ooA5NSwYTw9Sn+n3TKtkNs57ZSal6t4sijE3SKzpGD6qiJblALtRFDMXpAT+jZAuvRerFel605azVzjH7AevsEU/uRQg==</latexit><latexit sha1_base64="++5dCbHebfYazU7AY1xnJqUEAGo=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnZsNTwIvHCGaByRB6Oj1Jk56F7hohDPkMLx4U8erXePNv7CyCij4oeLxXRVU9P5FCAyEfVm5tfWNzK79d2Nnd2z8oHh51dJwqxtsslrHq+VRzKSLeBgGS9xLFaehL3vUn13O/e8+VFnF0B9OEeyEdRSIQjIKR3L7PgQ6yycXlbFAsEZvUK1WHYGKXnWqtUTOkUisbDTs2WaCEVmgNiu/9YczSkEfAJNXadUgCXkYVCCb5rNBPNU8om9ARdw2NaMi1ly1OnuEzowxxECtTEeCF+n0io6HW09A3nSGFsf7tzcW/PDeFoOFlIkpS4BFbLgpSiSHG8//xUCjOQE4NoUwJcytmY6ooA5NSwYTw9Sn+n3TKtkNs57ZSal6t4sijE3SKzpGD6qiJblALtRFDMXpAT+jZAuvRerFel605azVzjH7AevsEU/uRQg==</latexit><latexit sha1_base64="++5dCbHebfYazU7AY1xnJqUEAGo=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnZsNTwIvHCGaByRB6Oj1Jk56F7hohDPkMLx4U8erXePNv7CyCij4oeLxXRVU9P5FCAyEfVm5tfWNzK79d2Nnd2z8oHh51dJwqxtsslrHq+VRzKSLeBgGS9xLFaehL3vUn13O/e8+VFnF0B9OEeyEdRSIQjIKR3L7PgQ6yycXlbFAsEZvUK1WHYGKXnWqtUTOkUisbDTs2WaCEVmgNiu/9YczSkEfAJNXadUgCXkYVCCb5rNBPNU8om9ARdw2NaMi1ly1OnuEzowxxECtTEeCF+n0io6HW09A3nSGFsf7tzcW/PDeFoOFlIkpS4BFbLgpSiSHG8//xUCjOQE4NoUwJcytmY6ooA5NSwYTw9Sn+n3TKtkNs57ZSal6t4sijE3SKzpGD6qiJblALtRFDMXpAT+jZAuvRerFel605azVzjH7AevsEU/uRQg==</latexit><latexit sha1_base64="++5dCbHebfYazU7AY1xnJqUEAGo=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnZsNTwIvHCGaByRB6Oj1Jk56F7hohDPkMLx4U8erXePNv7CyCij4oeLxXRVU9P5FCAyEfVm5tfWNzK79d2Nnd2z8oHh51dJwqxtsslrHq+VRzKSLeBgGS9xLFaehL3vUn13O/e8+VFnF0B9OEeyEdRSIQjIKR3L7PgQ6yycXlbFAsEZvUK1WHYGKXnWqtUTOkUisbDTs2WaCEVmgNiu/9YczSkEfAJNXadUgCXkYVCCb5rNBPNU8om9ARdw2NaMi1ly1OnuEzowxxECtTEeCF+n0io6HW09A3nSGFsf7tzcW/PDeFoOFlIkpS4BFbLgpSiSHG8//xUCjOQE4NoUwJcytmY6ooA5NSwYTw9Sn+n3TKtkNs57ZSal6t4sijE3SKzpGD6qiJblALtRFDMXpAT+jZAuvRerFel605azVzjH7AevsEU/uRQg==</latexit>
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<latexit sha1_base64="ML6GqlqFYdFV6LbWnPIV9lw1n5s=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnTBY8Bbx4jGBMYDKEnk5P0qRnobtGCEM+w4sHRbz6Nd78GzuLoKIPCh7vVVFVL0il0EDIh1VYW9/Y3Cpul3Z29/YPyodHdzrJFOMdlshE9QKquRQx74AAyXup4jQKJO8Gk6u5373nSoskvoVpyv2IjmIRCkbBSF4/4EAH+eTCnQ3KFWKThltzCCZ21anVm3VD3HrVaNixyQIVtEJ7UH7vDxOWRTwGJqnWnkNS8HOqQDDJZ6V+pnlK2YSOuGdoTCOu/Xxx8gyfGWWIw0SZigEv1O8TOY20nkaB6YwojPVvby7+5XkZhE0/F3GaAY/ZclGYSQwJnv+Ph0JxBnJqCGVKmFsxG1NFGZiUSiaEr0/x/+SuajvEdm7cSutyFUcRnaBTdI4c1EAtdI3aqIMYStADekLPFliP1ov1umwtWKuZY/QD1tsnVYCRQw==</latexit><latexit sha1_base64="ML6GqlqFYdFV6LbWnPIV9lw1n5s=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnTBY8Bbx4jGBMYDKEnk5P0qRnobtGCEM+w4sHRbz6Nd78GzuLoKIPCh7vVVFVL0il0EDIh1VYW9/Y3Cpul3Z29/YPyodHdzrJFOMdlshE9QKquRQx74AAyXup4jQKJO8Gk6u5373nSoskvoVpyv2IjmIRCkbBSF4/4EAH+eTCnQ3KFWKThltzCCZ21anVm3VD3HrVaNixyQIVtEJ7UH7vDxOWRTwGJqnWnkNS8HOqQDDJZ6V+pnlK2YSOuGdoTCOu/Xxx8gyfGWWIw0SZigEv1O8TOY20nkaB6YwojPVvby7+5XkZhE0/F3GaAY/ZclGYSQwJnv+Ph0JxBnJqCGVKmFsxG1NFGZiUSiaEr0/x/+SuajvEdm7cSutyFUcRnaBTdI4c1EAtdI3aqIMYStADekLPFliP1ov1umwtWKuZY/QD1tsnVYCRQw==</latexit><latexit sha1_base64="ML6GqlqFYdFV6LbWnPIV9lw1n5s=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnTBY8Bbx4jGBMYDKEnk5P0qRnobtGCEM+w4sHRbz6Nd78GzuLoKIPCh7vVVFVL0il0EDIh1VYW9/Y3Cpul3Z29/YPyodHdzrJFOMdlshE9QKquRQx74AAyXup4jQKJO8Gk6u5373nSoskvoVpyv2IjmIRCkbBSF4/4EAH+eTCnQ3KFWKThltzCCZ21anVm3VD3HrVaNixyQIVtEJ7UH7vDxOWRTwGJqnWnkNS8HOqQDDJZ6V+pnlK2YSOuGdoTCOu/Xxx8gyfGWWIw0SZigEv1O8TOY20nkaB6YwojPVvby7+5XkZhE0/F3GaAY/ZclGYSQwJnv+Ph0JxBnJqCGVKmFsxG1NFGZiUSiaEr0/x/+SuajvEdm7cSutyFUcRnaBTdI4c1EAtdI3aqIMYStADekLPFliP1ov1umwtWKuZY/QD1tsnVYCRQw==</latexit><latexit sha1_base64="ML6GqlqFYdFV6LbWnPIV9lw1n5s=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnTBY8Bbx4jGBMYDKEnk5P0qRnobtGCEM+w4sHRbz6Nd78GzuLoKIPCh7vVVFVL0il0EDIh1VYW9/Y3Cpul3Z29/YPyodHdzrJFOMdlshE9QKquRQx74AAyXup4jQKJO8Gk6u5373nSoskvoVpyv2IjmIRCkbBSF4/4EAH+eTCnQ3KFWKThltzCCZ21anVm3VD3HrVaNixyQIVtEJ7UH7vDxOWRTwGJqnWnkNS8HOqQDDJZ6V+pnlK2YSOuGdoTCOu/Xxx8gyfGWWIw0SZigEv1O8TOY20nkaB6YwojPVvby7+5XkZhE0/F3GaAY/ZclGYSQwJnv+Ph0JxBnJqCGVKmFsxG1NFGZiUSiaEr0/x/+SuajvEdm7cSutyFUcRnaBTdI4c1EAtdI3aqIMYStADekLPFliP1ov1umwtWKuZY/QD1tsnVYCRQw==</latexit>
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<latexit sha1_base64="K2CX+m9nKYqIKfZfXFrtbaugj74=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkBeeAl48RjAmsFnC7GSSDJmdXWZ6hbDkM7x4UMSrX+PNv3HyEFS0oKGo6qa7K0ykMEDIh5NbW9/Y3MpvF3Z29/YPiodHdyZONeNtFstYd0NquBSKt0GA5N1EcxqFknfCydXc79xzbUSsbmGa8CCiIyWGglGwkt8LOdB+NrmozvrFEnFJvVL1CCZu2avWGjVLKrWy1bDnkgVKaIVWv/jeG8QsjbgCJqkxvkcSCDKqQTDJZ4VeanhC2YSOuG+pohE3QbY4eYbPrDLAw1jbUoAX6veJjEbGTKPQdkYUxua3Nxf/8vwUho0gEypJgSu2XDRMJYYYz//HA6E5Azm1hDIt7K2YjammDGxKBRvC16f4f3JXdj3iejeVUvNyFUcenaBTdI48VEdNdI1aqI0YitEDekLPDjiPzovzumzNOauZY/QDztsnVwWRRA==</latexit><latexit sha1_base64="K2CX+m9nKYqIKfZfXFrtbaugj74=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkBeeAl48RjAmsFnC7GSSDJmdXWZ6hbDkM7x4UMSrX+PNv3HyEFS0oKGo6qa7K0ykMEDIh5NbW9/Y3MpvF3Z29/YPiodHdyZONeNtFstYd0NquBSKt0GA5N1EcxqFknfCydXc79xzbUSsbmGa8CCiIyWGglGwkt8LOdB+NrmozvrFEnFJvVL1CCZu2avWGjVLKrWy1bDnkgVKaIVWv/jeG8QsjbgCJqkxvkcSCDKqQTDJZ4VeanhC2YSOuG+pohE3QbY4eYbPrDLAw1jbUoAX6veJjEbGTKPQdkYUxua3Nxf/8vwUho0gEypJgSu2XDRMJYYYz//HA6E5Azm1hDIt7K2YjammDGxKBRvC16f4f3JXdj3iejeVUvNyFUcenaBTdI48VEdNdI1aqI0YitEDekLPDjiPzovzumzNOauZY/QDztsnVwWRRA==</latexit><latexit sha1_base64="K2CX+m9nKYqIKfZfXFrtbaugj74=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkBeeAl48RjAmsFnC7GSSDJmdXWZ6hbDkM7x4UMSrX+PNv3HyEFS0oKGo6qa7K0ykMEDIh5NbW9/Y3MpvF3Z29/YPiodHdyZONeNtFstYd0NquBSKt0GA5N1EcxqFknfCydXc79xzbUSsbmGa8CCiIyWGglGwkt8LOdB+NrmozvrFEnFJvVL1CCZu2avWGjVLKrWy1bDnkgVKaIVWv/jeG8QsjbgCJqkxvkcSCDKqQTDJZ4VeanhC2YSOuG+pohE3QbY4eYbPrDLAw1jbUoAX6veJjEbGTKPQdkYUxua3Nxf/8vwUho0gEypJgSu2XDRMJYYYz//HA6E5Azm1hDIt7K2YjammDGxKBRvC16f4f3JXdj3iejeVUvNyFUcenaBTdI48VEdNdI1aqI0YitEDekLPDjiPzovzumzNOauZY/QDztsnVwWRRA==</latexit><latexit sha1_base64="K2CX+m9nKYqIKfZfXFrtbaugj74=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkBeeAl48RjAmsFnC7GSSDJmdXWZ6hbDkM7x4UMSrX+PNv3HyEFS0oKGo6qa7K0ykMEDIh5NbW9/Y3MpvF3Z29/YPiodHdyZONeNtFstYd0NquBSKt0GA5N1EcxqFknfCydXc79xzbUSsbmGa8CCiIyWGglGwkt8LOdB+NrmozvrFEnFJvVL1CCZu2avWGjVLKrWy1bDnkgVKaIVWv/jeG8QsjbgCJqkxvkcSCDKqQTDJZ4VeanhC2YSOuG+pohE3QbY4eYbPrDLAw1jbUoAX6veJjEbGTKPQdkYUxua3Nxf/8vwUho0gEypJgSu2XDRMJYYYz//HA6E5Azm1hDIt7K2YjammDGxKBRvC16f4f3JXdj3iejeVUvNyFUcenaBTdI48VEdNdI1aqI0YitEDekLPDjiPzovzumzNOauZY/QDztsnVwWRRA==</latexit>
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<latexit sha1_base64="1k+J03+B6xSaW+2jl+KhF0jv/3k=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkGyCp4AXjxGMCWyWMDuZTYbMPpjpFcKSz/DiQRGvfo03/8bJQ1DRgoaiqpvuriCVQgMhH1ZhbX1jc6u4XdrZ3ds/KB8e3ekkU4x3WCIT1Quo5lLEvAMCJO+litMokLwbTK7mfveeKy2S+BamKfcjOopFKBgFI3n9gAMd5JMLdzYoV4hNGrW6QzCxq07dbbqG1Nyq0bBjkwUqaIX2oPzeHyYsi3gMTFKtPYek4OdUgWCSz0r9TPOUsgkdcc/QmEZc+/ni5Bk+M8oQh4kyFQNeqN8nchppPY0C0xlRGOvf3lz8y/MyCJt+LuI0Ax6z5aIwkxgSPP8fD4XiDOTUEMqUMLdiNqaKMjAplUwIX5/i/8ld1XaI7dzUKq3LVRxFdIJO0TlyUAO10DVqow5iKEEP6Ak9W2A9Wi/W67K1YK1mjtEPWG+fWIqRRQ==</latexit><latexit sha1_base64="1k+J03+B6xSaW+2jl+KhF0jv/3k=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkGyCp4AXjxGMCWyWMDuZTYbMPpjpFcKSz/DiQRGvfo03/8bJQ1DRgoaiqpvuriCVQgMhH1ZhbX1jc6u4XdrZ3ds/KB8e3ekkU4x3WCIT1Quo5lLEvAMCJO+litMokLwbTK7mfveeKy2S+BamKfcjOopFKBgFI3n9gAMd5JMLdzYoV4hNGrW6QzCxq07dbbqG1Nyq0bBjkwUqaIX2oPzeHyYsi3gMTFKtPYek4OdUgWCSz0r9TPOUsgkdcc/QmEZc+/ni5Bk+M8oQh4kyFQNeqN8nchppPY0C0xlRGOvf3lz8y/MyCJt+LuI0Ax6z5aIwkxgSPP8fD4XiDOTUEMqUMLdiNqaKMjAplUwIX5/i/8ld1XaI7dzUKq3LVRxFdIJO0TlyUAO10DVqow5iKEEP6Ak9W2A9Wi/W67K1YK1mjtEPWG+fWIqRRQ==</latexit><latexit sha1_base64="1k+J03+B6xSaW+2jl+KhF0jv/3k=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkGyCp4AXjxGMCWyWMDuZTYbMPpjpFcKSz/DiQRGvfo03/8bJQ1DRgoaiqpvuriCVQgMhH1ZhbX1jc6u4XdrZ3ds/KB8e3ekkU4x3WCIT1Quo5lLEvAMCJO+litMokLwbTK7mfveeKy2S+BamKfcjOopFKBgFI3n9gAMd5JMLdzYoV4hNGrW6QzCxq07dbbqG1Nyq0bBjkwUqaIX2oPzeHyYsi3gMTFKtPYek4OdUgWCSz0r9TPOUsgkdcc/QmEZc+/ni5Bk+M8oQh4kyFQNeqN8nchppPY0C0xlRGOvf3lz8y/MyCJt+LuI0Ax6z5aIwkxgSPP8fD4XiDOTUEMqUMLdiNqaKMjAplUwIX5/i/8ld1XaI7dzUKq3LVRxFdIJO0TlyUAO10DVqow5iKEEP6Ak9W2A9Wi/W67K1YK1mjtEPWG+fWIqRRQ==</latexit><latexit sha1_base64="1k+J03+B6xSaW+2jl+KhF0jv/3k=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkGyCp4AXjxGMCWyWMDuZTYbMPpjpFcKSz/DiQRGvfo03/8bJQ1DRgoaiqpvuriCVQgMhH1ZhbX1jc6u4XdrZ3ds/KB8e3ekkU4x3WCIT1Quo5lLEvAMCJO+litMokLwbTK7mfveeKy2S+BamKfcjOopFKBgFI3n9gAMd5JMLdzYoV4hNGrW6QzCxq07dbbqG1Nyq0bBjkwUqaIX2oPzeHyYsi3gMTFKtPYek4OdUgWCSz0r9TPOUsgkdcc/QmEZc+/ni5Bk+M8oQh4kyFQNeqN8nchppPY0C0xlRGOvf3lz8y/MyCJt+LuI0Ax6z5aIwkxgSPP8fD4XiDOTUEMqUMLdiNqaKMjAplUwIX5/i/8ld1XaI7dzUKq3LVRxFdIJO0TlyUAO10DVqow5iKEEP6Ak9W2A9Wi/W67K1YK1mjtEPWG+fWIqRRQ==</latexit>
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<latexit sha1_base64="M0cnI5EtSA5/Uw7QO8r/ZfR/gSA=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkBeeAl48RjAmsFnC7GSSDJmdXWZ6hbDkM7x4UMSrX+PNv3HyEFS0oKGo6qa7K0ykMEDIh5NbW9/Y3MpvF3Z29/YPiodHdyZONeNtFstYd0NquBSKt0GA5N1EcxqFknfCydXc79xzbUSsbmGa8CCiIyWGglGwkt8LOdB+Nrmoz/rFEnFJvVL1CCZu2avWGjVLKrWy1bDnkgVKaIVWv/jeG8QsjbgCJqkxvkcSCDKqQTDJZ4VeanhC2YSOuG+pohE3QbY4eYbPrDLAw1jbUoAX6veJjEbGTKPQdkYUxua3Nxf/8vwUho0gEypJgSu2XDRMJYYYz//HA6E5Azm1hDIt7K2YjammDGxKBRvC16f4f3JXdj3iejeVUvNyFUcenaBTdI48VEdNdI1aqI0YitEDekLPDjiPzovzumzNOauZY/QDztsnWg+RRg==</latexit><latexit sha1_base64="M0cnI5EtSA5/Uw7QO8r/ZfR/gSA=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkBeeAl48RjAmsFnC7GSSDJmdXWZ6hbDkM7x4UMSrX+PNv3HyEFS0oKGo6qa7K0ykMEDIh5NbW9/Y3MpvF3Z29/YPiodHdyZONeNtFstYd0NquBSKt0GA5N1EcxqFknfCydXc79xzbUSsbmGa8CCiIyWGglGwkt8LOdB+Nrmoz/rFEnFJvVL1CCZu2avWGjVLKrWy1bDnkgVKaIVWv/jeG8QsjbgCJqkxvkcSCDKqQTDJZ4VeanhC2YSOuG+pohE3QbY4eYbPrDLAw1jbUoAX6veJjEbGTKPQdkYUxua3Nxf/8vwUho0gEypJgSu2XDRMJYYYz//HA6E5Azm1hDIt7K2YjammDGxKBRvC16f4f3JXdj3iejeVUvNyFUcenaBTdI48VEdNdI1aqI0YitEDekLPDjiPzovzumzNOauZY/QDztsnWg+RRg==</latexit><latexit sha1_base64="M0cnI5EtSA5/Uw7QO8r/ZfR/gSA=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkBeeAl48RjAmsFnC7GSSDJmdXWZ6hbDkM7x4UMSrX+PNv3HyEFS0oKGo6qa7K0ykMEDIh5NbW9/Y3MpvF3Z29/YPiodHdyZONeNtFstYd0NquBSKt0GA5N1EcxqFknfCydXc79xzbUSsbmGa8CCiIyWGglGwkt8LOdB+Nrmoz/rFEnFJvVL1CCZu2avWGjVLKrWy1bDnkgVKaIVWv/jeG8QsjbgCJqkxvkcSCDKqQTDJZ4VeanhC2YSOuG+pohE3QbY4eYbPrDLAw1jbUoAX6veJjEbGTKPQdkYUxua3Nxf/8vwUho0gEypJgSu2XDRMJYYYz//HA6E5Azm1hDIt7K2YjammDGxKBRvC16f4f3JXdj3iejeVUvNyFUcenaBTdI48VEdNdI1aqI0YitEDekLPDjiPzovzumzNOauZY/QDztsnWg+RRg==</latexit><latexit sha1_base64="M0cnI5EtSA5/Uw7QO8r/ZfR/gSA=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkBeeAl48RjAmsFnC7GSSDJmdXWZ6hbDkM7x4UMSrX+PNv3HyEFS0oKGo6qa7K0ykMEDIh5NbW9/Y3MpvF3Z29/YPiodHdyZONeNtFstYd0NquBSKt0GA5N1EcxqFknfCydXc79xzbUSsbmGa8CCiIyWGglGwkt8LOdB+Nrmoz/rFEnFJvVL1CCZu2avWGjVLKrWy1bDnkgVKaIVWv/jeG8QsjbgCJqkxvkcSCDKqQTDJZ4VeanhC2YSOuG+pohE3QbY4eYbPrDLAw1jbUoAX6veJjEbGTKPQdkYUxua3Nxf/8vwUho0gEypJgSu2XDRMJYYYz//HA6E5Azm1hDIt7K2YjammDGxKBRvC16f4f3JXdj3iejeVUvNyFUcenaBTdI48VEdNdI1aqI0YitEDekLPDjiPzovzumzNOauZY/QDztsnWg+RRg==</latexit>
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Chapter 4. Large-scale brain network dynamics

be written as

X∗ = argmin
X

1

2
||Y−X||2F +RT (X)+RS(X),

where

RT (X) =
Nv∑

v=1
λT (v)

Nt∑
t=1

|∆L{x(v, ·)}[t ]|,

RS(X) =λS

Nt∑
t=1

Nv∑
v=1

√ ∑
u∈S (v)

(x(v, t )−x(u, t ))2.

Here, λT (v) is the temporal regularization parameter at voxel v , andλS is the spatial regulariza-

tion parameter, which is the same at every timepoint t . The differential operator ∆L =∆D H−1

combines HRF deconvolution H−1 and derivative ∆D , and S (v) denotes the surrounding

neighbors of voxel v . The temporal regularization term RT (X) imposes sparsity on the innova-

tion signal i(v, ·) =∆L{x(v, ·)}; i.e., on the derivative of the activity-inducing signal, and thereby

favors a piecewise-constant activity-inducing block signal a(v, ·). The spatial regularization

term RS(X) promotes localized activations that are smooth in space (Farouj et al., 2017). The

HRF h(t ) is modeled by first-order Volterra series approximation of the balloon model (Khali-

dov et al., 2011; Buxton et al., 1998) and is assumed to be constant across the whole brain. For

more details on the TA implementation, we refer to (Karahanoglu et al., 2011, 2013; Farouj

et al., 2017).

In this study, TA was applied separately for every subject on preprocessed fMRI data in

subject space.

Innovation-driven co-activation patterns After regularized deconvolution of the BOLD sig-

nal, K-means clustering is applied to innovation frames to retrieve spatial patterns of si-

multaneously transitioning voxels (Karahanoglu et al., 2015). First, positive and negative

innovations are split into two separate frames iP (·, t) and iN (·, t), where the sign of negative

innovation frames is flipped. Then, significant transient frames were determined using a

two-step thresholding approach: in the first step (temporal thresholding), the null distribution

of every subject’s innovation signal was determined by running TA on a phase-randomized sur-

rogate dataset, and a subject-specific threshold at a 5 %-95 % confidence interval was applied.

In the second step (spatial thresholding), an innovation frame was considered significant if

at least 5% of all considered voxels showed a significant innovation. With these thresholding

parameters, 81.8±9.1% of positive and 79.1±10.3% of negative frames were above threshold.

Overall, 99.8±0.4% of the innovation frames showed at least a significant positive or negative

innovation (or both events together). After thresholding, innovation frames were spatially

normalized to Montreal Neurological Institute (MNI) space using diffeomorphic anatomical

registration (DARTEL) (Ashburner, 2007) (see also subsection 4.1.3).

Then, spatially normalized, significant innovation frames of all subjects were concate-

nated and temporal K-means clustering was applied at the group level with cosine dis-

tance as similarity measure (see Fig. 4.1, blue box). The group level spatial maps m̃(·,k) =
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4.1. Journal Article: Robust recovery of temporal overlap between network activity.

Table 4.1 – Overview of notations. Signals obtained following the generation of the iCAPs are
marked with a tilde.

Symbol Description
t ∈N timepoint (frame) index
v ∈N voxel index
k ∈N cluster index
y(v, t ); Y ∈RNv×Nt measured voxelwise BOLD signal
x(v, t ); X ∈RNv×Nt voxelwise activity-related signal
a(v, t ); A ∈RNv×Nt voxelwise activity-inducing signal
AC ∈RNt Nv×1 concatenated activity-inducing signal
i (v, t ); I ∈RNv×Nt voxelwise innovation/transient signal
m̃(v,k); M̃ ∈RNv×K iCAP spatial maps
ã(k, t ); Ã ∈RK×Nt iCAP-wise activity-inducing signal
c̃(k, t ) ∈ {−1,0,1} iCAP-wise cluster assignment

[m̃(1,k), ...,m̃(Nv ,k)]> of each iCAP, k ∈ 1, ...,K , were retrieved by averaging the innovation

frames of every cluster, after normalizing each frame to unit Euclidean length. In what follows,

signals obtained following the generation of the iCAPs are marked with a tilde.

Consensus clustering

In order to determine the best number of clusters, we employed consensus clustering (Monti

et al., 2003), a resampling-based approach which applies K-means clustering on a subsample

of the data and calculates the consensus matrix M . Every element M ( f1, f2) indicates the

fraction of all subsamples for which two frames f1 and f2 are clustered together. The optimum

cluster number can then be obtained by visual observation of the ordered matrix M , as well

as of the cumulative distribution function (CDF) of M and its area under the curve (AUC) for

different values of K . See (Monti et al., 2003) for more details on the methods for clustering

selection. Here, we applied consensus clustering for K ∈ [10,25] using 10 random subsamples

for every K . Each subsample included the significant innovations of 45 (80 %) randomly

selected subjects, and K-means was computed for 10 random initializations. To obtain the

final clustering result, we applied K-means clustering with the optimum K on the entire

dataset and kept the optimal result from 50 random initializations.

Time course recovery

In what follows, subject level iCAPs’ time courses are either identified with the conventional un-

constrained spatial regression approach or with our novel transient-informed spatio-temporal

regression approach. The former treats every timepoint independently and only depends on

spatial information, while the latter incorporates both spatial and temporal information.

Unconstrained spatial regression In the conventional iCAPs framework (Karahanoglu et al.,

2015), time-dependent amplitudes ã(·, t) = [ã(1, t), ..., ã(K , t)]> at timepoint t are retrieved

by back-projection of the K group level spatial maps M̃ ∈ RNv×K = [m̃(·,1), ...,m̃(·,K )] onto

the activity-inducing signal a(·, t ) of each subject. Positive and negative transients are fitted
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Chapter 4. Large-scale brain network dynamics

separately to minimize the effect of spatial linear dependence, and the final time courses are

defined as the sum of positive and negative fitted amplitudes, ãP and ãN :

ã(k, t ) = ãP (k, t )+ ãN (k, t ),

with

ã∗
P (·, t ) = argmin

ãP (·,t )
||a(·, t )−M̃ãP (·, t )||2s.t. ãP (k, t ) ∈ [0,∞[,

and

ã∗
N (·, t ) = argmin

ãN (·,t )
||a(·, t )−M̃ãN (·, t )||2s.t. ãN (k, t ) ∈]−∞,0].

Transient-informed spatio-temporal regression As mentioned before, the unconstrained

spatial regression approach for extracting the time courses of iCAPs can be contaminated by

spatial dependencies of their maps, since the latter can be spatially overlapping. The main

purpose of this paper is to introduce an alternative improved method, in order to overcome

this problem and obtain more plausible time courses.

In principle, the method restricts changes in iCAPs time courses to moments when the

iCAP in question is known to transition significantly. Information on these innovation timings

is taken from the K-means clustering in the iCAPs retrieval step. Then, the design matrix for

the regression problem is constructed with one regressor for each block of constant activation.

In the following, we outline the detailed steps of the design matrix construction for this

spatio-temporal regression method, namely (i) definition of innovation timings based on

K-means information, (ii) construction of an indicator matrix C̃ with innovation timings of

all K iCAPs, (iii) construction of a temporal design matrix Bk with one regressor per activity

block of each iCAP k = 1, ...,K , (iv) construction of the spatio-temporal design matrix S that

also incorporates spatial information of the iCAPs maps to group voxels, and (v) the explicit

formulation of the resulting linear optimization problem. Fig. 4.2 shows the assumed model

for iCAPs time courses and Fig. 4.3 shows a schematic representation of the spatio-temporal

regression design.

i) Innovation timing definition: With hard cluster assignment of transient frames, only two

iCAPs are allowed to transition at the same time (one positively and one negatively). In order

to allow for more than one iCAP to change simultaneously, we determine innovation timings

using a soft cluster assignment according to the cosine distances of each frame to the cluster

center: let d(k, t ) be the cosine distance of innovation frame i(·, t ) to cluster m̃(·,k). Then the

frame i(·, t) (i.e., a significant innovation at timepoint t) will be assigned to all clusters k for

which

d(k, t ) ≤ ξdmi n(t ),

where dmi n(t) is the minimum distance of frame i(·, t) to any cluster and ξ ≥ 1 is a tuning
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ã(k, t) c̃(k, t)
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Figure 4.2 – Schematic representation of an example output iCAP time course ã(k, ·), the
corresponding innovation indicator time course c̃(k, ·), and the estimated amplitude values
βk,i .

parameter. Note that ξ= 1 corresponds to the hard cluster assignment used during K-means

clustering.

ii) Innovation timing indicator matrix: We then define the indicator matrix C̃ ∈ RK×Nt

denoting the timepoints t with significant innovations for each iCAP k:

c̃(k, t ) =


1, if dP (k, t ) ≤ ξdP,mi n(t ),

−1, if dN (k, t ) ≤ ξdN ,mi n(t ),

0, otherwise,

where dP and dN designate distances to positive and negative innovation frames iP (·, t ) and

iN (·, t), respectively. Further, we will denote the number of innovations for iCAP k by NIk =∑Nt
t=1 |c̃(k, t )|, and the total number of innovations across all networks by NI =∑K

k=1 NIk .

iii) Temporal design matrix: Our aim is to retrieve, for each iCAP k, a time course ã(k, ·) that

is piecewise constant between two nonzero values in c̃(k, ·). To do so, we must determine the

optimal set of amplitudes βk,i , k = 1, . . . ,K , i = 1, . . . , NIk +1 between two significant transients

(see Fig. 4.2 for a schematic representation). Note that there are NIk +1 coefficients to compute

for each network.

For each iCAP, we construct the temporal design matrix Bk ∈RNt×NIk
+1 that contains the

activation segments separated by the innovations. If

φ(t ,k) = 1+
t∑

τ=1
|c̃(k,τ)|

expresses the index of the segment at hand at time t , the elements bk (t , i ) of Bk are

bk (t , i ) =
1, if φ(t ,k) = i ,

0, otherwise.

iv) Spatio-temporal design matrix: Based on Bk , we obtain the matrix Sk ∈RNt Nv×(NIk
+1)
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Figure 4.3 – Schematic representation of the transient-informed spatial regression optimiza-
tion problem in the case of four iCAPs with NI1 = 4, NI2 = 3, NI3 = 3 and NI4 = 5 significant
innovations, respectively, and NI = 15 innovations in total. This example represents the
most restrictive case of hard cluster assignment (ξ = 1) with at most two iCAPs changing
simultaneously (one with positive and one with negative amplitude).

that contains the activation segments in the concatenated spatio-temporal space:

Sk = Bk ⊗m̃(·,k),

where ⊗ denotes the Kronecker product. Then, the combination of all spatio-temporal matri-

ces Sk gives the final spatio-temporal design matrix S = [S1|S2| . . . |SK ].

v) Optimization problem: If we then define AC ∈ RNt Nv×1 as the concatenated activity-

inducing frames (see Fig. 4.3), the optimization problem becomes

β∗ = argmin
β

||AC −Sβ||2,

with the optimal amplitudes given byβ ∈RNI+K×1 =
[
β1,1,β1,2, . . . ,β1,NI1+1,β2,1, . . . ,βK ,NIK +1

]>
.

We then have the iCAP time course amplitudes ã(k, t ) =βk,φ(t ,k).
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4.1. Journal Article: Robust recovery of temporal overlap between network activity.

4.1.3 Data description

Simulated data

In order to evaluate our transient-informed regression approach, we applied both uncon-

strained regression and transient-informed regression to a simulated dataset.

To be realistic, we used the iCAPs maps M̃ ∈RNv×K that were retrieved from experimental

data (see next paragraph). Then, to simulate block-like iCAP time courses Ãsi m ∈RK×Nt , we

first defined transient timings by a Poisson process. We simulated data for Poisson constants

of 20, 15, 10 and 5 TR, as well as for Poisson parameters as estimated from experimental data

by fitting a Poisson distribution to estimated innovation timings of each iCAP. In the latter

case, Poisson parameters were ranging from 7.5 for iCAP 1 to 27 for iCAP 18. Simulated time

courses for this setting will be called “realistic" in the following description. The number of

simultaneously transitioning iCAPs was restricted to 3 for realistic simulations and 4, 6, 8,

and 10 for Poisson constants 20, 15, 10 and 5, respectively. Simulated time courses were then

created by setting the segment between two simulated innovations to a random amplitude

drawn from a standard normal distribution.

To obtain simulated data at the voxel level, we take the simulated iCAPs time courses Ãsi m

and generate voxel-wise activity-inducing signals

Asi m = M̃Ãsi m +ε,

with additive white Gaussian noise ε.

Activity-inducing signals were simulated without noise and at noise levels ranging from

SNR=10 dB to SNR=-10 dB. For quantitative evaluation, the root mean squared error (RMSE)

between retrieved and ground truth iCAP time courses was computed, at each noise level, for

10 repetitions of the aforementioned simulation process.

Experimental data

We included resting-state fMRI scans of 56 healthy subjects with no history of neurological

or psychiatric disorders (M/F=23/33, age=16.85±5.69, range: 6-29 years) who were recruited

in the scope of the Geneva 22q11 deletion syndrome cohort. From our initial sample of 80

subjects within the age range, we excluded 24 subjects based on a strict criterion for motion;

i.e., framewise displacement (Power et al., 2012) was computed for all frames and subjects

were excluded if more than 10 % of timepoints exceeded a threshold of 0.5 mm. Written

informed consent was obtained from participants and their parents for subjects younger

than 18 years old. The research protocols were approved by the Institutional Review Board of

Geneva University School of Medicine.

Structural and functional MRI data were acquired at the Centre d’Imagerie BioMédicale

(CIBM) in Geneva on a Siemens Trio (N=42) and a Siemens Prisma (N=14) 3 Tesla scanner.

Anatomical images were acquired with a T1-weighted sequence of 0.86×0.86×1.1mm3 vol-

umetric resolution (192 slices, TR=2500 ms, TE=3 ms, acquisition matrix=224×256, field of

view=22 cm2, flip angle=8°), and functional images with a T2*-weighted sequence of 8 minutes
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Chapter 4. Large-scale brain network dynamics

(voxel size=1.84×1.84×3.2mm3, 38 slices, TR=2400 ms, TE=30 ms, flip angle=85°). For the

resting-state session, participants were asked to fixate a cross projected on a screen, let their

minds wander while not thinking of anything in particular and not to fall asleep.

The fMRI scans were preprocessed using statistical parametric mapping (SPM12) (Well-

come Trust Centre for Neuroimaging, London, UK: http://www.fil.ion.ucl.ac.uk/spm/) and

functions of the data processing assistant for resting-state fMRI (DPARSF) (Yan Chaogan, 2010)

and individual brain atlases using statistical parametric mapping (IBASPM) (Aleman-Gomez

et al., 2006) toolboxes. The first five frames were excluded to ensure magnetization stability.

Preprocessing steps included realignment, spatial smoothing with an isotropic Gaussian ker-

nel of 6 mm full-width half-maximum, co-registration of structural scans to the functional

mean and segmentation with the SPM12 Segmentation algorithm (Ashburner and Friston,

2005). Average signals in the white matter (WM) and cerebrospinal fluid (CSF) where regressed

from the fMRI data. Then, frames with high motion were marked according to their framewise

displacement (Power et al., 2012) and if exceeding a threshold of 0.5 mm, were removed and

filled in by cubic spline interpolation. Interpolation of removed frames is necessary as the im-

plementation of TA deconvolution requires a constant sampling rate; i.e., a uniformly sampled

HRF representation. TA was then applied in subject space, and the activity-inducing signals

were subsequently normalized to MNI space using DARTEL (Ashburner, 2007), followed by

the aforementioned thresholding and clustering steps.

4.1.4 Results

Consensus clustering

We applied consensus clustering on all significant transients for cluster numbers K going from

10 to 25 (see Supplementary Fig. B.1) and evaluated the results as proposed in (Monti et al.,

2003). According to the CDF and the relative increase of AUC curves, the optimum number of

clusters was K = 18. Visual observation of the ordered consensus matrices confirmed this

number, since sub-sampled frames were most stably assigned to the same cluster. In the

following, we will thus investigate results for 18 clusters.

Spatial maps

Spatial maps of iCAPs that were retrieved from 56 healthy subjects are shown on Supplemen-

tary Fig. B.2. To evaluate recovered iCAPs in terms of spatial overlap, we computed the Jaccard

similarity index between thresholded maps at a z-score of 1.5. The Jaccard index is defined as

the intersection of two binary maps k1 and k2 divided by their union:

Jk1,k2 =
∑

v [(m̃(v,k1) > 1.5)∩ (m̃(v,k2) > 1.5)]∑
v [(m̃(v,k1) > 1.5)∪ (m̃(v,k2) > 1.5)]

.

Significant similarity values where determined by 1000 random permutations of iCAPs voxels.

Fig. 4.4 shows the Jaccard similarity between the 18 iCAPs. There is significant spatial overlap

between 40 out of the 153 possible combinations of iCAPs (26.14 %). Highest similarity exists
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4.1. Journal Article: Robust recovery of temporal overlap between network activity.

Figure 4.4 – Jaccard similarity index between spatial maps thresholded at a z-score of 1.5.
Stars indicate significant values (p < 0.01 Bonferroni-corrected) determined with permutation
testing.

between iCAP 4 (primary visual) and iCAP 8 (precuneus / visual) and between iCAP 4 and

iCAP 1 (higher visual).

These results show that there is high spatial overlap between iCAPs. In the following

sections, we demonstrate that this spatial overlap can introduce artifacts in time course

retrieval, which can be corrected with transient-informed regression.

Simulated data: goodness of fit and temporal overlap

In order to compare unconstrained regression to transient-informed regression with known

ground truth transients, we estimated time courses for different levels of noise and transient

activity in the simulated data. Supplementary Table B.1 shows the quality of fit measured by

the RMSE for both regression methods. RMSE values are lowest for a scenario without noise

and increase with higher noise levels.

Across all assessed cases, transient-informed regression performs significantly better in

retrieving block-wise time courses. Without noise, transient-informed regression with ground

truth transients gives a perfect fit with RMSE close to zero. With increasing noise and with

higher numbers of innovations (lower Poisson parameter), the RMSE increases slightly for

transient-informed regression, but remains much lower than in unconstrained regression.

Remarkably, even with very high noise and many innovations, transient-informed regression

still performs more than 10 times better than unconstrained regression. We further evaluated

regression with soft cluster assignment (see Supplementary Fig. B.3, first row). Here, the RMSE

converges towards values between 0.02 and 0.08, which is higher than the RMSE in case of

regression with ground truth innovations, but still significantly smaller than in unconstrained

regression. Even the worst fit for hard cluster assignment (ξ = 1) gives a lower RMSE than

unconstrained regression.

Fig. 4.5 shows the exemplary case of simulated time courses with SNR=0 dB and realistic
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Chapter 4. Large-scale brain network dynamics

Poisson constants, which demonstrates that unconstrained regression estimates are clearly

off.

Temporal overlap between iCAPs was evaluated by thresholding time courses at an abso-

lute z-score of 1 (Karahanoglu et al., 2015). In simulated time courses, there are on average 5 to

6 simultaneously active iCAPs (see Supplementary Table B.2). Temporal overlap is consistently

underestimated in unconstrained regression, while with transient-informed regression the

estimated overlap is very close to the ground truth.

In simulated ground truth time courses, iCAPs appear with the same sign in 52 % to 55 %

of all pairwise co-activations (i.e., either both iCAPs time courses positive or both negative, see

Supplementary Table B.3). In unconstrained regression, same-signed co-activations are highly

over-estimated. In fact, iCAPs appear almost always with the same sign if they are co-active

(98 % to 100 %). In transient-informed regression, estimated percentages of same-signed

iCAPs appearances are again very close to the ground truth.

D. Transient-informed, ! = 1.1C. Transient-informed, ground truthB. Unconstrained regression  A. Simulated time courses

RMSE=0.77 RMSE=0.01 RMSE=0.20

Figure 4.5 – A) Block-like time courses for transients with realistic Poisson constants from
7.5 (iCAP 1) to 27 (iCAP 18). B) to D) Time courses retrieved from activity-inducing signals,
simulated with additive white Gaussian noise at SNR=0 dB B) with unconstrained regression, C)
with transient-informed regression and ground truth transient timings, and D) with transient-
informed regression and soft cluster assignment at ξ= 1.1. Unconstrained regression misses
many activity blocks, while transient-informed regression manages to retrieve the ground
truth time courses almost perfectly.

Experimental data: optimal soft assignment factor

Since in experimental data, the true innovations are not known, we use cluster assignments

resulting from K-means to retrieve innovation timings (see subsection 4.1.2). To determine

the optimum factor ξ for soft cluster assignment of innovation frames, we tested the corre-

spondence between estimated and measured transient amplitudes. Measured amplitudes

were calculated by thresholding normalized iCAPs maps at a z-score of 1.5, and for each

innovation frame i(·, t), computing the average transient amplitude within the regions part

of all iCAPs showing an innovation. The measured overall amplitude was defined as the sum

of average amplitudes of all transitioning iCAPs, weighted by their distance to the respective

cluster centers. We then correlated these measured innovation amplitudes with the estimated

innovation amplitudes, computed from iCAPs time courses ã(·, t) by summing innovation
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Figure 4.6 – Evaluation of soft assignment factors ξ from 1 (hard cluster assignment) to 3 (all
iCAPs allowed to change at timepoints of significant transients).

amplitudes across all transitioning iCAPs, again weighted by the distance to the respective

cluster centers.

Fig. 4.6 shows the correlation for different values of the soft assignment factor ξ. The

correlation first increases with higher ξ, reaches a local maximum of 0.88 at ξ= 1.1 and then

decreases again. For ξ> 1.9 the correlation increases again due to overfitting to noise at these

high innovation numbers. For high ξ, the results approach the unconstrained regression

solution, for which the correlation between measured and estimated innovations was 0.96.

As an alternative, we also used the Bayesian information criterion (BIC) to evaluate different

soft assignment factors. In this case, the optimum factor at the knee point of the curve was

ξ= 1.25.

We also evaluated ξ on simulated data to validate the quality measures we used here (see

Supplementary Fig. B.3). These evaluations on simulated data indicate that both correlation

and BIC are good measures to estimate the optimum soft assignment factor ξ.

Experimental data: qualitative evaluation and temporal overlap

In Fig. 4.7, we show recovered time courses for one exemplary subject. In unconstrained

regression results (Fig. 4.7A), there appear segments where almost all iCAPs are found active

at the same time (e.g., red box). When comparing the estimated activations Ã with transient

timings C̃ξ=1, significant differences (here represented for iCAP 9, red arrow) become evident.

With transient-informed regression at ξ= 1 (Fig. 4.7B), time course changes are restricted to

timepoints at a-priori known transient timepoints, which leads to a better correspondence

between the transitions of Ã and C̃. It is to note that signs of estimated transients of time

courses ã(k, ·) correspond well with the iCAP signs of c̃(k, ·), even though this was not explicitly

imposed by the algorithm. However, for ξ= 1 activation changes are very sparse, suggesting

that hard cluster assignment is a too restrictive constraint in the time course estimation. With

transient-informed regression at optimum ξ= 1.1 (Fig. 4.7C), activations still correspond very

well with transient timings, suppressing activations that are most likely wrong (as in iCAP 9,
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Chapter 4. Large-scale brain network dynamics

red arrow). Yet, retrieved signals are more smooth and multiple iCAPs can change at the same

time. The probably falsely detected activations retrieved during unconstrained regression may

have been introduced by spatial dependence between the iCAPs (Fig. 4.7D).

To investigate differences in the whole group, we computed temporal overlap and total

activity duration in every subject and compared the results for the different regression ap-

proaches. Again, time courses were thresholded at an absolute z-score of 1 to find activity

timepoints. Across subjects, temporal overlap in unconstrained regression and transient-

informed regression at ξ= 1 revealed 3.06±0.36 and 3.02±0.39 co-active iCAPs on average,

respectively. In transient-informed regression at optimal ξ= 1.1, temporal overlap was signifi-

cantly higher with 3.47±0.44 co-active iCAPs on average.

From qualitative observation in single subjects (e.g., Fig. 4.7), we hypothesized that spatial

overlap leads to an over-estimation of co-activations with the same sign in unconstrained

estimates. To test for this quantitatively, we computed the percentage of co-activations with

the same sign for pairwise combinations of iCAPs (Fig. 4.8) and correlated these co-activation

occurrences with spatial Jaccard similarity (subsection 4.1.4). In unconstrained regression,

85.99 % of all pairwise iCAPs co-activations had the same sign, while in transient-informed

regression this was only the case in 45.99 % (ξ = 1) and 47.56 % (ξ = 1.1) of co-activations.

Correlation of the percentage of same-signed co-activations with Jaccard similarity was very

high for unconstrained regression (ρ = 0.54, p < 0.001), almost zero (ρ = 0.09, p = 0.27) for

ξ= 1, and in between the two previous values (ρ = 0.31, p < 0.001) for optimal ξ= 1.1.

As a large confound in fMRI analysis is motion, we conducted an additional analysis

to verify whether the over-representation of same-signed co-activations in unconstrained

regression might be related to motion artifacts. For this, we computed the overall percentage of

same-signed co-activations across all pairwise iCAPs combinations for each subject and then

calculated the correlation across subjects between this measure and the average framewise

displacement. There was a tendency relationship in unconstrained regression (ρ = 0.26, p =
0.05) suggesting that in subjects with higher motion, there is a higher over-representation of

same-signed co-activations. In transient-informed regression this relationship was entirely

corrected, both for ξ= 1 (ρ =−0.01, p = 0.93) and for ξ= 1.1 (ρ = 0.02, p = 0.86).

4.1.5 Discussion

FMRI is one unique tomographic imaging modality to observe the brain at work in a non-

invasive way, however, the rich structure of the data requires advanced analysis methods. The

iCAPs framework combines two main ingredients: first, the TA deconvolution with regulariza-

tion that drives sparse innovation signals; and, second, temporal clustering of fMRI frames

with strong innovations. As temporal clustering allows for spatial overlap of the iCAPs maps,

the recovery of the associated time courses from activity-inducing signals can be impeded

if a timepoint-wise spatial regression is used to which we refer as unconstrained regression.

We observed this effect not only qualitatively in iCAPs’ activity-inducing time courses of sin-

gle subjects (e.g., Fig. 4.7A, red box), but we also confirmed it quantitatively in simulated

and experimental data. In particular, iCAPs appeared significantly more with the same sign
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Chapter 4. Large-scale brain network dynamics

Unconstrained regression

Transient-informed,  ! = 1.1

Figure 4.8 – Percentage of appearances with the same sign for pairwise co-occurrences of
iCAPs in unconstrained regression (below diagonal) and in transient-informed regression with
ξ= 1.1 (above diagonal). In unconstrained regression estimates, iCAPs appear mostly with the
same sign.

(activated vs de-activated) when using the unconstrained regression. The high correlation

between measures of spatial and temporal overlap further corroborates that without the use

of additional constraints, temporal co-activation caused by spatial dependencies cannot be

well differentiated from true underlying co-activation. The contribution of this work is to

exploit the additional information that is available from the TA deconvolution procedure; i.e.,

innovations that encode moments of transient activity—information that can be advanta-

geously incorporated in a spatio-temporal regression procedure for more consistent results.

The recovered activity-inducing signals then play a crucial role in evaluating more general

measures, for instance, iCAPs configurations of temporal overlap (Karahanoglu et al., 2015) or

more advanced temporal models; e.g., hidden Markov models (Bolton et al., 2018).

Applied on simulated data with known timepoints of transient activity, the proposed

approach performed significantly better in recovering block-like time courses than uncon-

strained regression, both in terms of estimation error and estimated temporal overlap between

networks. We demonstrated that temporal overlap between networks is consistently under-

estimated by unconstrained regression, while there is no such systematic bias in transient-

informed estimates. This bias is towards same-signed co-activations in unconstrained esti-

mates. These results show that the new procedure exploits well the additional information

(i.e., transient timepoints) that is available in the simulated setting as ground truth.

For the experimental results, we applied the iCAPs framework on a sample of 56 healthy

subjects. We observed significant spatial overlap between 26 % of retrieved iCAPs maps. Higher

spatial similarity was mainly observed in networks containing posterior regions (posterior

cingulate and visual networks), which confirms observations by (Karahanoglu et al., 2015) of

high spatial overlap mainly in posterior regions. Spatial overlap is clearly a feature of resting-

state networks when allowed for. We then used soft cluster assignment of transient frames

to account for the fact that ground truth transients are not known. The optimal factor for

76



Jo
u

rn
alA

rticle
Jo

u
rn

alA
rticle
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soft cluster assignment was of similar scale if evaluated in terms of correspondence between

measured and estimated transients (ξ= 1.1) and in terms of BIC (ξ= 1.25), which was also

confirmed in simulations (see Supplementary Fig. B.3). For ξ= 1.1, the correlation between

spatial and temporal overlap was still significant, but substantially lower than in unconstrained

regression. However, the estimated percentage of same-signed co-activations was only slightly

higher than for the most restrictive case ξ= 1 and substantially lower than in the unconstrained

case. Together, these results suggest that even though the interaction between spatial and

temporal overlap could not be completely avoided, false temporal co-activations due to spatial

dependence, as indicated by an over-representation of same-sign co-activations, could be

significantly reduced. Furthermore, motion-related effects on the sign of co-activations were

entirely removed in transient-informed regression.

Transient-informed regression can be related to more general nonlinear regression meth-

ods such as segmented regression, spline regression in the case of piecewise polynomial

functions (Wegman and Wright, 1983), and locally weighted regression (Cleveland and Devlin,

1988; Atkeson et al., 1997). In those cases, the input space is decomposed in (usually uniformly

distributed) sub-parts, and independent regressions are applied to each of them. A large body

of literature also exists on the estimation of breakpoints in a segmented regression problem

(e.g., Acharya et al., 2016; Yamamoto and Perron, 2013). Approaches inspired by this principle

have been applied in neuroimaging; e.g., dynamic connectivity regression (DCR) (Cribben

et al., 2012), which detects change points of FC by subsequently sub-dividing the time courses

in windows with variable length. While segmented regression methods either assume equally

spaced change points or estimate the optimum change points from the data, in the present

work, change points are not estimated during regression, but taken from the transients that

are revealed by the deconvolution and derivative in the previous processing steps. Further, it

is to note that most segmented regression approaches apply the same change points to the

whole brain while in the present work, we extract and apply change points that are specific

to each network, which allows for a high flexibility in retrieving independent time courses

for each network. In addition to change points, a second piece of information is taken from

previous processing steps: the spatial information of the iCAPs maps is used to group voxels

and, therefore, both spatial and temporal constraints are included in a single spatio-temporal

regression. Since change points are defined based on transients and no second-order correla-

tions need to be computed, the approach overcomes limitations related to the selection of the

window size for dFC calculation. Furthermore, it allows to recover temporal overlap, which is

not possible in change point detection approaches that are based on temporal subdivision

into windows (Cribben et al., 2012; Xu and Lindquist, 2015) or in point process approaches

that only detect co-activation of brain regions (Tagliazucchi et al., 2012; Liu and Duyn, 2013;

Liu et al., 2013). We also mention the more recent use of temporal ICA (Smith et al., 2012) for

fMRI data. Here, temporal statistical independence is favored, but since there is no derivative

involved, temporal overlap can as well not be accounted for, and thus the method has only

been deployed for fast-TR and long acquisitions.

The iCAPs approach is also closely related to other methodologies that allow networks to be

temporally overlapping. The probably most widely used such methodology to date is ICA that
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Chapter 4. Large-scale brain network dynamics

relies on a surrogate measure for statistical independence (Calhoun et al., 2001). Conventional

ICA for fMRI deploys this criterion in the spatial domain due to the dimensionality of the data

(Nv >> Nt ) and concatenates all subjects’ data in the temporal dimension. Therefore, the

estimated sources at the group level are spatial maps and the recovery of the individuals’ time

courses is required, for which three main approaches have emerged (Erhardt et al., 2011; Du

et al., 2016). First, back-reconstruction (Calhoun et al., 2001) of temporal principal component

analysis (PCA) reduced data recovers time courses by applying the inverse PCA projections.

Second, the dual regression technique (Beckmann et al., 2009) uses the group-level maps as

regressors on the individual complete functional data. The obtained time courses are then

normalized and used on their turn as regressors to obtain individual maps. Third, spatially

constrained ICA (Du et al., 2016) relies on a similar approach for time course recovery, but

estimates individual maps first and then uses them as regressors on the individual blood

oxygenation level dependent (BOLD) signals for each subject separately. In the latter two

approaches, time courses are basically recovered by spatial regression for each timepoint,

which is essentially the same procedure as in the original iCAPs framework (Karahanoglu

et al., 2013) that we called “unconstrained regression" in the current paper. Similar to iCAPs,

these ICA-based approaches allow to recover temporal overlap of brain networks (e.g., (Miller

et al., 2016)). Contrary to ICs, iCAPs can be spatially correlated (see also Supplementary

Figs. B.4 and B.5), which requires the introduction of constraints for the successful recovery

of temporal overlap as proposed in the current paper. When accounted for this artifact, the

iCAPs framework is unique in its ability to give access to spatially and temporally overlapping

brain networks.

It is noteworthy that statistical dependence is not equivalent to spatial overlap; i.e., spatial

ICs being uncorrelated does not necessarily mean that they cannot contain spatial overlap

(Daubechies et al., 2009; Calhoun et al., 2013). However, overlapping areas in ICs mostly

appear with different sign to ensure that the maps are spatially uncorrelated. In practice, ICs

appear thus either spatially segregated or introduce negativity, which impedes interpretability.

Additionally, ICA is based on a source separation model that does not explicitly include a noise

term and consequently, ICs of interest have to be visually inspected and selected, whereas TA

already includes denoising and deconvolution. With the iCAPs framework, we found multiple

networks including the posterior cingulate cortex that do not only include the default mode

network (DMN) (Karahanoglu et al., 2015), an observation that had never been revealed before.

From a neuroscientific perspective, the present results support the view of functional

networks of distributed brain regions that co-activate with substantial temporal overlap. Our

results further improve the iCAPs approach with better and more robust time course recovery.

The fact that iCAPs seem to co-activate and -deactivate in approximately a balanced way

corroborates recent findings using other methodologies. For instance, dominant spatial

patterns of voxel-wise sliding-window dFC are characterized by roughly task-negative versus

-positive networks, however, with notable subsystems of each network that change side (Preti

and Van De Ville, 2017). The organization of the brain in two opposing networks has also

been explained using topographic principles on the cortical surface derived from resting-

state FC (Margulies et al., 2016). Similar dynamic behavior was reported by (Zalesky et al.,
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2014) using graph-based FC and measures of modular network organization. In terms of

potential applications, dynamic analysis of large-scale brain networks is of high interest in the

investigation of brain development with age (as demonstrated, for example, in (Hutchison and

Morton, 2015; Qin et al., 2015; Hutchison and Morton, 2016; Ryali et al., 2016; Viviano et al.,

2017)). In section B.1.3. Supplementary Results, we show that temporal properties of iCAPs

retrieved with the method proposed here are correlated with age, which further supports

the relevance of dynamic network activity for development. Other applications of interest

include the investigation of the relationship between brain function and cognition (Cohen,

2018), or in the search for alterations and biomarkers in clinical populations (e.g., in patients

with schizophrenia (Damaraju et al., 2014), autism (Wee et al., 2016), or Alzheimer’s disease

(Córdova-Palomera et al., 2017)). Finally, the proposed methodology is not restricted to the

analysis of resting-state data since task-based paradigms can also be analyzed, which is of

particular interest when probing into functional brain mechanisms related to cognition and

behavioral performance (Cohen, 2018; Medaglia et al., 2015).

4.1.6 Conclusions and future directions

We have addressed the crucial step in the iCAPs framework of activity-inducing time course

recovery, which is essential to properly quantify temporal overlap of functional brain net-

works. We showed that the conventional unconstrained regression approach is hindered by

spatial dependencies of the iCAPs maps, which cannot be avoided as these maps are spa-

tially overlapping and not orthogonal. We therefore have introduced a transient-informed

spatio-temporal regression scheme, which incorporates knowledge on transients and finds

the activity-inducing signal levels by a global fit. We validated our approach on simulated data

and demonstrated its potential on experimental data.

The iCAPs framework is still a fairly new approach for large-scale network retrieval, and

even though it is unique in its potential to retrieve spatially and temporally overlapping

networks, there are still possible improvements that can be made in the framework. First, in the

TA step, the HRF deconvolution using TA could possibly be improved by the consideration of a

variable HRF model (Rangaprakash et al., 2018). Second, the selection of the number of clusters

for retrieval of iCAPs maps is not unique. Here, we selected K = 18 clusters since consensus

clustering showed high stability, which was not significantly improved by considering more

clusters. However, clustering was also fairly stable for different K . Future work should explicitly

address this question by investigating stability and consistency for different numbers of

clusters.

Finally, physiological noise such as motion or spontaneous breath hold is always a con-

founding factor. Here, we used scrubbing and regression of WM and CSF signals to account

for such artifacts. We further demonstrated that the effect of motion on erroneous time course

estimation could be corrected by using transient-based constraints. However, further research

should investigate whether there is a relationship between all types of physiological noise and

the occurrence or co-occurrence of particular networks.
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Chapter 4. Large-scale brain network dynamics

4.2 Journal Article: Dynamics of large-scale brain networks in

22q11DS.

Postprint version of the article published in: Biological Psychiatry: Cognitive Neuroscience and

Neuroimaging 2019, in press, https://doi.org/10.1016/j.bpsc.2019.04.004

Large-scale brain network dynamics provide a measure of

psychosis and anxiety in 22q11.2 deletion syndrome.

Daniela Zöller1,2,3, Corrado Sandini3, Fikret Işık Karahanoğlu4,5, Maria Carmela Padula3,6,

Marie Schaer3, Stephan Eliez3, Dimitri Van De Ville1,2

1Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale

de Lausanne (EPFL), Lausanne, Switzerland; 2Department of Radiology and Medical Informatics,

University of Geneva, Geneva, Switzerland; 3Developmental Imaging and Psychopathology Laboratory,

Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Geneva, Switzerland;
4Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; 5Department

of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States;
6Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland

Prodromal positive psychotic symptoms and anxiety are two strong risk factors for

schizophrenia in chromosome 22q11.2 deletion syndrome (22q11DS). The analysis of

large-scale brain network dynamics during rest is promising to investigate aberrant brain

function and identify potentially more reliable biomarkers. We retrieved and examined

dynamics of large-scale functional brain networks using innovation-driven co-activation

patterns (iCAPs) and probed into functional signatures of prodromal psychotic symptoms

and anxiety. Patients with 22q11DS had shorter activation in cognitive brain networks

and longer activation in emotion processing networks. Functional signatures of prodro-

mal psychotic symptoms confirmed an implication of cingulo-prefrontal salience network

activation duration and coupling. Functional signatures of anxiety uncovered an implica-

tion of amygdala activation and coupling, indicating differential roles of dorsal and ventral

sub-divisions of anterior cingulate and medial prefrontal cortices. These results confirm

that the dynamic nature of brain network activation contains essential function to develop

clinically relevant imaging markers of psychosis vulnerability.

4.2.1 Introduction

Schizophrenia is a strongly debilitating mental disorder both for affected individuals and

in terms of societal cost (Insel, 2010; Gore et al., 2011). Converging evidence suggests that

schizophrenia is a progressive neurodevelopmental disorder, given that in most cases, sub-

clinical psychiatric and cognitive symptoms of the disorder are present several years prior

to the onset of a full-blown psychotic episode (Insel, 2010; Fusar-Poli et al., 2013; Kremen

et al., 2010; Marín, 2016; Rapoport et al., 2012; Yung et al., 2005). The neurodevelopmental

model critically implies that earlier interventions might prove more effective in preventing
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4.2. Journal Article: Dynamics of large-scale brain networks in 22q11DS.

the progression towards psychosis (Marín, 2016; Millan et al., 2016). Hence extensive research

has been devoted to characterizing the prodromal disease stage, also known as psychosis

High-Risk State (Fusar-Poli et al., 2013). In particular, the presence of attenuated positive

psychotic symptoms, operationalized in the Ultra-High-Risk criteria (Yung et al., 2006), confers

a strongly increased 30-40% risk of developing psychosis (Fusar-Poli et al., 2012). While current

clinical management is based purely on clinical observation (Nelson et al., 2018; Schmidt et al.,

2015), the identification of biomarkers of early psychosis could improve our understanding of

the pathophysiology in its earliest disease stage (Kapur et al., 2012). In this sense, the addition

of imaging markers to the existing clinical diagnostic tools could allow the establishment of

more precise biomarker-informed stages in the evolution of psychosis, which would give way

to more targeted therapeutic strategies and improved clinical outcomes (Insel, 2010; Millan

et al., 2016; Kapur et al., 2012).

Chromosome 22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental disorder

coming with a highly elevated risk for schizophrenia with a 30%-40% prevalence by adulthood

(Schneider et al., 2014). Most patients with 22q11DS are diagnosed already during childhood,

which allows to characterize the earliest stages of schizophrenia’s disease course (Insel, 2010;

Bassett and Chow, 1999). Similarly to the general population the presence of attenuated

psychotic symptoms strongly increases the risk of psychosis in 22q11DS pointing to a common

clinical trajectory with non-syndromic schizophrenia (Schneider et al., 2016). Moreover,

anxiety has emerged as another strong risk factor for psychosis in 22q11DS (Gothelf et al.,

2007, 2013). These clinical findings point to the particular importance of understanding

the pathophysiology and characterizing biomarkers of attenuated psychotic symptoms and

anxiety in 22q11DS.

Among the tools to characterize biomarkers, resting-state functional magnetic resonance

imaging (rs-fMRI) has emerged as promising (Satterthwaite and Baker, 2015). FMRI provides

the unique opportunity to non-invasively observe brain function, and the resting condition is

especially well-suited in clinical populations because it requires minimal compliance from

participants. Most studies on rs-fMRI in psychosis to date have used static functional con-

nectivity (sFC); i.e., the correlation between the activation in different brain regions over the

whole scanning time (Van Den Heuvel and Fornito, 2014). However, a limitation of such static

approaches is that they ignore the inherently dynamic nature of brain activity with potentially

valuable information contained in dynamic changes of activation and connectivity (Chang

and Glover, 2010; Christoff et al., 2016; Preti et al., 2017; Hutchison et al., 2013b; Karahanoglu

and Van De Ville, 2017). In this perspective, dynamic approaches have the potential to identify

more precise and more reliable biomarkers, and are particularly promising in schizophrenia,

given the multiplicity of affected behavioral domains and brain circuits (Calhoun et al., 2014;

Buckholtz and Meyer-Lindenberg, 2012; Fornito et al., 2012; Van Den Heuvel et al., 2013;

Van Den Heuvel and Fornito, 2014). Studies on dynamic brain function in schizophrenia

point towards disrupted dynamic interaction between several brain states, in particular of

subcortico-cortical connectivity (Damaraju et al., 2014) and connections of the default mode

network (DMN) (Du et al., 2016; Miller et al., 2016; Su et al., 2016; Sakoglu et al., 2010). The

few studies to date investigating dynamic FC (dFC) in individuals at clinical high risk found
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Chapter 4. Large-scale brain network dynamics

reduced dFC of salience network (SN) and DMN (Pelletier-Baldelli et al., 2018) and stronger

alterations in early schizophrenia patients than subjects at ultra high risk (Du et al., 2018),

underlining the potential of dynamic brain function to improve our understanding of the

pathophysiology in subjects at risk for schizophrenia.

Despite these promises of dynamic fMRI analysis, functional neuroimaging research in

22q11DS has so far mostly focused on static functional features (Debbané et al., 2012; Scariati

et al., 2014; Mattiaccio et al., 2016; Schreiner et al., 2017; Mattiaccio et al., 2018), often targeting

only specific networks such as the DMN (Padula et al., 2015; Schreiner et al., 2014). The

studies who explicitly investigated psychotic symptoms in 22q11DS showed correlations

of DMN dysconnectivity with prodromal psychotic symptoms (Debbané et al., 2012), as

well as successful discrimination between patients at high vs. low risk based whole-brain

rs-fMRI (Scariati et al., 2014) and hypoconnectivity of DMN, SN, anterior cingulate cortex

(ACC) and fronto-parietal network (FPN) (Schreiner et al., 2017). Further, in the only two

studies to date investigating a dynamic feature of brain function in 22q11DS – the variability

of blood oxygenation level dependent (BOLD) signals – we found widespread reductions in

brain variability in 22q11DS (Zöller et al., 2017), and reduced variability in the dorsal ACC in

patients with higher prodromal psychotic symptoms (Zöller et al., 2018). In general, aberrant

function, but also structure of the ACC has been suggested as a neuroimaging marker for the

development of psychosis in 22q11DS (Padula et al., 2018) and might reflect dysfunctional

self-monitoring and salience processing, possible mechanisms for the emergence of psychosis

(Kapur, 2003).

Among the multiple methods to investigate dynamic fMRI (Preti et al., 2017), many have

already been applied in schizophrenia as outlined above (Calhoun et al., 2014; Du et al., 2018).

Sliding-window dFC tracks changes in FC by computing FC in a temporal window that is

shifted over time (Chang and Glover, 2010; Sakoglu et al., 2010), but are limited by the necessity

to choose the window size, and can only detect relatively slow changes in FC (Leonardi and

Van De Ville, 2015). Alternatively, so-called first-order approaches rely on temporal clustering

of fMRI frames to obtain “co-activation patterns" (CAPs) (Liu et al., 2016). Here, even fast

changes can be traced as no minimum activation duration needs to be specified. However,

only one brain state (or CAP) can be active at a time point. To overcome these limitations,

the recently introduced innovation-driven co-activation patterns (iCAPs) framework detects

moments of significantly changing brain activity to extract large-scale brain networks and

their dynamic properties (Karahanoglu et al., 2015; Karahanoglu and Van De Ville, 2017; Zöller

et al., 2019b). Here, brain networks are retrieved from dynamic activation changes, which

allows to robustly retrieve spatially and temporally overlapping brain networks.

In this study, we complement the existing literature on dFC in schizophrenia by using iCAPs

combined with multivariate pattern analysis to identify potential biomarkers for psychosis

vulnerability in 22q11DS. We detect functional fingerprints of anxiety and positive prodromal

symptoms, two symptoms that have emerged as reliable predictors of psychosis in 22q11DS

(Gothelf et al., 2013; Schneider et al., 2016).
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4.2.2 Methods and materials

Participants

The study included 221 subjects (111 patients with 22q11DS, 110 healthy controls (HCs),

both aged 8–30 years). We excluded 33 patients and 25 HCs to ensure good data quality (see

Supplementary Methods). The final sample included 78 patients with 22q11DS (37 males) and

85 HCs (36 males, see Table 4.2). HCs were recruited among patients’ siblings and through the

Geneva state school system and had no present or past history of neurological or psychiatric

disorders.

Prodromal positive psychotic symptoms in patients with 22q11DS were assessed using

the structured interview of prodromal symptoms (SIPS) (Miller et al., 2003). The SIPS was not

conducted in HCs. Anxiety was assessed both in HCs and patients with 22q11DS by combining

the child behavioral checklist (CBCL) Anxious-Depressed scale (Achenbach, 1991), and the

adult behavioral checklist (ABCL) Anxious scale in adults above 18 years old (Achenbach and

Rescorla, 2003).

Participants and their parents (for minors) gave their written informed consent and the

research protocols were approved by the Institutional Review Board of Geneva University

School of Medicine.

Image acquisition

All MRI brain scans were acquired at the Centre d’Imagerie BioMédicale (CIBM) in Geneva

on a Siemens Trio (12-channel coil; 54 HCs, 42 patients) and a Siemens Prisma (20-channel

coil; 31 HCs, 36 patients) 3 Tesla scanner. Structural images were obtained with a T1-weighted

sequence of 0.86×0.86×1.1 mm3 volumetric resolution (192 coronal slices, TR = 2500 ms, TE =

3 ms, acquisition matrix = 224 × 256, field of view = 22 cm2, flip angle = 8°). Rs-fMRI data were

recorded with a T2*-weighted sequence of 8 minutes (voxel size = 1.84×1.84×3.2 mm, 38 axial

slices, TR = 2400 ms, TE = 30 ms, flip angle = 85°). Subjects were instructed to fixate a cross on

the screen, let their mind wander and not to fall asleep.

Preprocessing

Before applying the iCAPs pipeline, MRI scans were preprocessed using statistical parametric

mapping (SPM12) (http://www.fil.ion.ucl.ac.uk/spm/) and functions of the data processing

assistant for resting-state fMRI (DPARSF) (Yan Chaogan, 2010) and individual brain atlases

using statistical parametric mapping (IBASPM) (Aleman-Gomez et al., 2006) toolboxes. After

realignment of functional scans, we applied spatial smoothing with an isotropic Gaussian ker-

nel of 6 mm full width half maximum and coregistered structural scans to the functional mean.

Structural images were segmented with the SPM12 Segmentation algorithm (Ashburner and

Friston, 2005) and a study-specific template was generated using diffeomorphic anatomical

registration (DARTEL) (Ashburner, 2007). Then, the first five functional scans were excluded

and average white-matter and cerebrospinal fluid (CSF) signals were regressed out from the

BOLD timeseries. We applied motion scrubbing (Power et al., 2012) for correction of motion

artifacts, marking frames with a framewise displacement of more than 0.5 mm. As the filters
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Chapter 4. Large-scale brain network dynamics

Table 4.2 – Participants demographics. N/A = not applicable.

HC 22q11DS p-value
Number of subjects (M/F) 85 (36/49) 78 (37/41) 0.514 (χ2)
Age mean ± SD 16.73 ± 5.85 17.19 ± 5.37 0.603
(range) (8.1-30.0) (8.1-29.7)
Right handed* 80.00% 77.94% 0.715 (χ2)
IQ** 110.12 ± 13.78 70.01 ± 12.41 <0.001

N. subjects meeting criteria for N/A 43 (55%)
psychiatric diagnosis

Anxiety disorder N/A 9
Attention deficit hyperactivity N/A 8

disorder
Mood disorder N/A 5
Schizophrenia or Schizoaffective Disorder N/A 4
More than one psychiatric disorder N/A 17

N. subjects medicated
Methylphenidate 0 9
Antipsychotics 0 3
Anticonvulsants 0 1
Antidepressants 0 1
More than one class of medication 0 3

* Handedness was measured using the Edinburgh laterality quotient, right
handedness was defined by a score of more than 50. ** IQ was measured using the
Wechsler Intelligence Scale for Children–III (Wechsler, 1991) for children and the
Wechsler Adult Intelligence Scale–III (Wechsler, 1997) for adults.

implemented in the iCAPs framework require a constant sampling rate, marked frames were

replaced by the spline interpolation of previous and following frames. Finally, motion frames

were excluded before computation of temporal characteristics (described below).

Total activation and iCAPs

We used openly available Matlab code (https://c4science.ch/source/iCAPs/) to apply iCAPs

(Karahanoglu et al., 2015; Karahanoglu and Van De Ville, 2017; Zöller et al., 2019b). We first

employed Total Activation (Karahanoglu et al., 2011, 2013; Farouj et al., 2017), which applies

hemodynamically-informed deconvolution to the fMRI timeseries through spatio-temporal

regularization. Significant activation changepoints (i.e., transients), derived from deconvolved

timeseries, were concatenated across all subjects and fed into temporal K-means clustering

to obtain simultaneously transitioning brain patterns, the iCAPs. The optimum number of

17 clusters was determined by consensus clustering (Monti et al., 2003, see Supplementary

Figures B.7 and B.8). Finally, time courses were obtained for all iCAPs using spatio-temporal
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transient-informed regression (Zöller et al., 2019b). A detailed description of all steps can be

found in the Supplementary Methods.

Extraction of temporal properties

For computation of temporal properties, iCAPs time courses were z-scored within each subject

and thresholded at a z-score > |1| to determine ‘active’ timepoints (Karahanoglu et al., 2015).

For each iCAP, we then computed the total duration of overall activation as percentage of the

total non-motion scanning time.

Further, coupling and anti-coupling duration of two iCAPs were calculated as timepoints

of same-signed or oppositely-signed co-activation measured as percentage of the total non-

motion scanning time or as Jaccard score; i.e., percent joint activation time of the two respec-

tive iCAPs.

Statistical analysis

Group comparisons of iCAPs activation measures Duration and coupling measures between

groups were compared using two-sample t-tests. P-values were corrected for multiple com-

parisons with the false discovery rate (FDR).

Partial least squares correlation To evaluate multivariate patterns of correlation between

behavioral variables and iCAPs activation measures, we used behavior partial least squares

correlation (PLSC) (Krishnan et al., 2011). Briefly, we first computed a correlation matrix

between behavioral variables and brain variables. Group-specific correlation matrices of

HCs and patients with 22q11DS were concatenated and singular value decomposition of

this matrix then lead to several correlation components (CorrComps). Each CorrComp is

composed of a set of “behavior weights" and “iCAPs duration/coupling weights", which

indicate how strongly each variable contributes to the multivariate brain-behavior correlation.

Significance of CorrComps was determined by permutation testing (1000 permutations).

Stability of brain and behavior weights was obtained using bootstrapping (500 bootstrap

samples). See Supplementary Methods for a detailed outline of PLSC.

Here, we first conducted two PLSC analyses with duration of altered iCAPs as brain vari-

ables and psychotic symptoms, respectively anxiety, as behavioral variables. In four more

PLSC analyses, we then investigated positive couplings and anti-couplings of one selected

iCAP for each behavioral measure. Due to differences in design of each PLSC in terms of

measure type and number of items, we did not correct for multiple comparisons.

Nuisance variable regression Age, gender and motion were included as nuisance regressors

in group comparisons and PLSC analyses. Nuisance regressors were standardized within each

group to avoid linear dependence with the effects of interest.
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4.2.3 Results

Extracted spatial maps correspond to known resting-state networks

We applied the iCAPs framework to rs-fMRI scans of both HCs and patients with 22q11DS.

Identified iCAPs correspond to well-known resting-state networks (see Figure 4.9 and Sup-

plementary Table B.5). The obtained networks included sensory-related networks such as

primary visual 1 (PrimVIS1), primary visual 2 (PrimVIS2), secondary visual (SecVIS), auditory /

sensorimotor (AUD/SM) and sensorimotor (SM) networks. The DMN was decomposed into

anterior DMN (aDMN), posterior DMN (pDMN) and precuneus / ventral DMN (PREC/vDMN).

There were two attention-related iCAPs; i.e., FPN and visuospatial network (VSN). Two iCAPs

included regions commonly considered as the SN: the anterior insula (aIN) and dorsal an-

terior cingulate cortex / dorsolateral prefrontal cortex (dACC/dlPFC). The remaining iCAPs

comprised a language network (LAN), inferior temporal / fusiform (iTEMP/FUS), amygdala /

hippocampus (AMY/HIP), orbitofrontal cortex (OFC) and prefrontal cortex (PFC).

Altered iCAPs’ activation and coupling in 22q11DS

To probe into alterations of the identified networks’ temporal properties in patients with

22q11DS, we first investigated aberrant activation duration followed by the analysis of altered

network interactions; i.e., duration of positive coupling (co-activation with same sign) or

anti-coupling (co-activation with opposite sign) between all pair-wise combinations of iCAPs.

Altered duration of iCAPs’ activation Figure 4.10 shows duration for all 17 iCAPs in percent-

age of total non-motion scanning time. Median total activation time ranged from 34.36 %

for LAN to 1.54 % for PFC. Patients with 22q11DS had significantly shorter activation of

dACC/dlPFC, PrimVIS2, FPN, aDMN and pDMN and significantly longer activation of SM,

iTEMP/FUS, AMY/HIP and OFC.

Alterations in temporal coupling of networks Figure 4.11 shows significant group differences

in iCAPs’ coupling. For several networks the duration of coupling was longer in patients with

22q11DS than in controls. This was true for 6 positive couplings and 13 anti-couplings. Fewer

networks had shorter duration of coupling in patients with 22q11DS (1 positive coupling, 5

anti-couplings). Globally, alterations were more numerous for anti-couplings (25 in total) than

for positive couplings (6 in total).

Functional signature of positive psychotic symptoms

To look into the behavioral relevance of these aberrant activation and coupling, we conducted

behavior PLSC including positive symptoms.

Altered iCAPs’ duration associated with psychotic symptoms A first PLSC analysis including

positive SIPS items in 22q11DS and iCAPs’ activation duration of the nine altered iCAPs (see

figure 4.10) resulted in one significant CorrComp (p=0.05, see figure 4.12A). Duration of

dACC/dlPFC, FPN and iTEMP/FUS was positively correlated with all five positive psychotic

symptoms.

86



Jo
u

rn
alA

rticle
Jo

u
rn

alA
rticle

4.2. Journal Article: Dynamics of large-scale brain networks in 22q11DS.

x=14              y=-60              z=8 
gzi..

x=34              y=-83              z=3 
gzi..

x=40              y=10             z=2   
gzi..

x=-51              y=-42              z=5   
gzi..

x=7              y=32             z=27  gzi.. x=7              y=-10              z=65  
gzi..

x=5              y=-59              z=48  
gzi..

x=6              y=-80              z=8  
gzi..

x=40              y=-55              z=46  
gzi..

x=-4              y=43             z=23  
gzi..

x=-4              y=-45              z=31 
gzi..

x=46              y=8             z=38   
gzi..

x=57              y=-19              z=18  
gzi..

x=58              y=-28              z=-25 
gzi..

x=-24              y=-8              z=-20 
gzi..

x=10              y=36             z=-25     
gzi..

x=15              y=59             z=-11 
gzi..

2.3                                         4.0
z-score

0.72                                                            0.81                                                            0.82

0.84                                                            0.67                                                            0.82

0.62                                                            0.86                                                            0.80

0.56                                                            0.90                                                            0.88

0.79                                                            0.83                                                            0.58

0.83                                                            0.97
cluster consensus

iCAP1 - PrimVIS1 iCAP2 - SecVIS iCAP3 - aIN

iCAP4 - LAN iCAP5 - dACC/dlPFC iCAP6 - SM

iCAP7 - PREC/vDMN iCAP8 - PrimVIS2 iCAP9 - FPN

iCAP10 - aDMN iCAP11 - pDMN iCAP12 - VSN

iCAP13 - AUD/SM iCAP14 - iTEMP/FUS iCAP15 - AMY/HIP

iCAP16 - OFC iCAP17 - PFC

2477                                                           2472                                                           2433

2408                                                           2343                                                           2329

2188                                                           2166                                                           2141

1850                                                           1715                                                           1302

2062                                                           1982                                                           1899

1051                                                           562 number of frames

Figure 4.9 – Spatial patterns of the 17 iCAPs retrieved from all subjects, including both HCs
and patients with 22q11DS. Locations denote displayed slices in MNI coordinates. Blue values
denote the average consensus of each cluster, purple values indicate the total number of inno-
vation frames that were assigned to this cluster. PrimVIS1 - primary visual 1, SecVIS - secondary
visual, aIN - anterior insula, LAN - language network, dACC/dlPFC - dorsal anterior cingulate
cortex/dorsolateral prefrontal cortex, SM - sensorimotor, PREC/vDMN - precuneus/ventral
default mode network, PrimVIS2 - primary visual 2, FPN - fronto-parietal network, aDMN
- anterior default mode network, pDMN - posterior default mode network, VSN - visuospa-
tial network, AUD/SM - auditory/sensorimotor, iTEMP/FUS - inferior temporal/fusiform,
AMY/HIP - amygdala/hippocampus, OFC - orbitofrontal cortex, PFC - prefrontal cortex.
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Chapter 4. Large-scale brain network dynamics

Figure 4.10 – Statistics of total temporal duration for each iCAP. P-values are FDR-corrected
for the 17 multiple comparisons and age, gender and motion were included as covariates.
Significant group differences (p<0.05) were marked with an asterisk. Error bars indicate
bootstrapping 5th to 95th percentiles. Single-subject duration measures were included as
scatterplots. Corresponding test statistics (p-values, effect size) can be found in Supplementary
Table B.6.
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A. Longer coupling duration in 22q11DS B. Shorter coupling duration in 22q11DS

Figure 4.11 – Significant duration differences of positive couplings (red) and anti-couplings
(blue) between patients with 22q11DS and HCs. A) Couplings with significantly longer du-
ration in 22q11DS. B) Couplings with significantly shorter duration in 22q11DS. Couplings
were measured in terms of percentage of total scanning time, or in percentage of the joint
activation time of the two respective iCAPs (Jaccard score). We here show only differences that
were significant in both coupling measures. Underlying group comparison statistics can be
found in Supplementary Figure B.10 and Supplementary Table B.7.
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dACC/dlPFC
(5)

A. Positive symptoms PLSC — iCAPs durations (p=0.05)

B. Positive symptoms PLSC —  dACC/dlPFC anti-couplings (p=0.02)

Figure 4.12 – PLSC results for positive psychotic symptoms (Five SIPS items: Delusions,
Suspiciousness, Grandiosity, Hallucinations and Disorganized Communication) in patients
with 22q11DS. A) Behavior weights and brain weights for PLSC including duration of nine
iCAPs with altered duration in 22q11DS. There is a positive correlation of positive psychotic
symptoms with duration of dACC/dlPFC, FPN and iTEMP/FUS. B) Behavior weights and
brain weights for PLSC including anti-couplings of dACC/dlPFC that were altered in 22q11DS.
Longer anti-coupling of dACC/dlPFC with FPN and iTEMP/FUS is associated with higher
positive symptoms. Error bars indicate bootstrapping 5th to 95th percentiles, robust results
were indicated by yellow background. Exact values of bootstrap mean and 5-95 percentiles are
reported in Supplementary Table B.8. PLSC results for positive couplings were not significant
(p=0.6) and are thus not reported here.

Altered couplings of dACC/dlPFC associated with psychotic symptoms Next, we investi-

gated the relevance of couplings for psychotic symptoms. For this, we selected the dACC/dlPFC

network based on its appearance in the previous analysis (see figure 4.12A), as well as literature

associating ACC alterations with psychosis in 22q11DS (Padula et al., 2018). We included cou-

pling time of dACC/dlPFC with iCAPs that had altered couplings (aIN, AUD/SM, iTEMP/FUS

and AMY/HIP; see figure 4.11) and with iCAPs whose duration was significantly correlated

with psychotic symptoms (FPN and iTEMP/FUS; see figure 4.12A).

A first PLSC analysis for anti-coupling time between dACC/dlPFC and these networks re-

sulted in one significant CorrComp (p=0.02, see figure 4.12B) showing an association between

higher positive symptoms and longer anti-coupling of dACC/dlPFC with FPN and iTEMP/FUS.

A second PLSC analysis for positive coupling time between dACC/dlPFC and these net-

works did not give any significant CorrComp (p=0.58).

Functional signature of anxiety

Finally, we conducted similar analyses to investigate dynamic brain network alterations asso-

ciated with anxiety, another behavioral risk factor for psychosis in 22q11DS.
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Chapter 4. Large-scale brain network dynamics

AMY/HIP 
(15)

A. Anxiety PLSC — iCAPs durations (p=0.03)

B. Anxiety PLSC — AMY/HIP positive couplings (p=0.006)

Figure 4.13 – PLSC results for anxiety scores. A) Behavior weights and brain weights for
PLSC including duration of nine altered iCAPs. There is a positive correlation of anxiety with
duration of iTEMP/FUS and AMY/HIP and a negative correlation with duration of aDMN. B)
Behavior weights and brain weights for PLSC including positive couplings of AMY/HIP. Longer
positive coupling of AMY/HIP with LAN and dACC/dlPFC, and shorter positive coupling with
aDMN are associated with higher anxiety only in patients with 22q11DS. Error bars indicate
bootstrapping 5th to 95th percentiles, robust results were indicated by yellow background.
Exact values of bootstrap mean and 5-95 percentiles are reported in Supplementary Table B.9.
PLSC results for anti-couplings were not significant (p=0.07) and are thus not reported here.

Altered iCAPs’ duration associated with anxiety We performed PLSC analysis between

CBCL/ABCL anxiety scores in 22q11DS and HCs and iCAPs’ duration, again including the nine

iCAPs with altered duration (see figure 4.10). There was one significant CorrComp (p=0.03, see

figure 4.13A). Both in HCs and patients with 22q11DS, longer activation of iTEMP/FUS and

AMY/HIP and shorter activation of aDMN were associated with higher anxiety.

Altered couplings of AMY/HIP are associated with anxiety in patients with 22q11DS To fur-

ther investigate coupling effects related to anxiety, we selected the AMY/HIP network, because

its duration was related to anxiety in the previous analysis (see figure 4.13A) and because of

the well-established involvement of these brain regions in anxiety (Etkin and Wager, 2007). We

included coupling time of AMY/HIP with iCAPs that had altered couplings (LAN, dACC/dlPFC,

PREC/vDMN and FPN; see figure 4.11) and with iCAPs whose duration was significantly

associated with anxiety (aDMN and iTEMP/FUS; see figure 4.13A).

A first PLSC analysis for anti-couplings between AMY/HIP and these networks gave no

significant CorrComp (p=0.07).

A second PLSC analysis including positive couplings between AMY/HIP and these net-

works gave one significant CorrComp (p=0.006, see figure 4.13B). Behavior weights were
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4.2. Journal Article: Dynamics of large-scale brain networks in 22q11DS.

only robust for patients with 22q11DS, indicating that the corresponding pattern of correla-

tion weights was specific for patients. Longer positive coupling of AMY/HIP with LAN and

dACC/dlPFC was positively associated with anxiety, whereas positive coupling with aDMN

was negatively associated with anxiety.

4.2.4 Discussion

In this study, we investigated dynamic features of network brain activity in patients with

22q11DS, with a particular focus on the identification of functional signatures of prodromal

psychotic symptoms and anxiety, two behavioral risk factors for the transition to psychosis.

To the best of our knowledge, this is the first study to investigate dynamics of large-scale

functional brain networks in 22q11DS. We used iCAPs to go beyond static connectivity anal-

ysis and look into precise moments of brain network activation and interaction, which is

particularly promising to provide more sensitive imaging markers in schizophrenia (Calhoun

et al., 2014). We detected alterations of brain networks’ duration and couplings in 22q11DS

and associations between these patterns of alterations with positive psychotic symptoms and

anxiety.

Alterations in 22q11DS: implication of cognitive and emotional brain networks

Individuals with 22q11DS had a varied pattern of longer and shorter network activations,

suggesting that they ‘over-engage’ in certain brain states, while ‘under-engaging’ in others. In

particular, we found shorter activation of FPN, DMN and cingulo-prefrontal SN. According to

the triple-network hypothesis, the dynamic interaction between these three networks, charac-

terized by a shift between internally-oriented DMN and externally-oriented FPN mediated by

salience-attributing SN, is central for higher cognitive functions (Menon, 2011). Conversely

their dysfunction could account for several psychiatric symptoms. Here we observe reduced

activation of all three networks in 22q11DS, possibly suggesting a malfunction of these basic

brain dynamics, which speculatively may underlie broad impairments in higher cognitive

function described both in 22q11DS and psychosis (McDonald-McGinn et al., 2015; Insel,

2010). In turn, there was longer activation in networks comprising limbic regions including

amygdala, medial temporal and orbitofrontal cortices. While the dichotomy between cognitive

and emotional brain is arguably artificial, longer activation in regions highly involved in emo-

tional processing such as amygdala and orbitofrontal cortex could reflect higher emotional

load during scanning in patients with 22q11DS (LeDoux, 2000; Pessoa, 2008).

The pattern of activation was significantly, but oppositely, related with age in both groups

(see Supplementary Results in appendix B.2), suggesting that the atypical activation pattern

observed in 22q11DS emerges with age, in accordance with the neurodevelopmental model of

schizophrenia (Insel, 2010; Rapoport et al., 2012).

Besides duration of activation, the iCAPs approach allowed us to probe the pattern of

aberrant coupling between networks, which was characterized by predominantly longer anti-

couplings in 22q11DS, accounting for more than half (13/25) of the alterations. Longer anti-

coupling is suggestive of increased segregation between brain networks and is in agreement
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Chapter 4. Large-scale brain network dynamics

with evidence of increased segregation and decreased integration of structural and functional

brain networks in both 22q11DS and non-syndromic psychosis (Ottet et al., 2013b; Sandini

et al., 2017, 2018; Scariati et al., 2016b; Van Den Heuvel and Fornito, 2014; Váša et al., 2016).

Network segregation is a central feature of brain function that is important for cognition and

attention (Wig, 2017) and its alterations in 22q11DS may be reflective of cognitive disabilities

on a more global level than the above mentioned alterations in triple network activation that

concentrates on three core networks.

Functional signature of psychosis prodrome: aberrant salience network duration and cou-

pling

The presence of prodromal psychotic symptoms was associated with longer activation of

iTEMP/FUS, dACC/dlPFC and FPN. Increased activation of inferior temporal and fusiform

gyrus has been previously reported in schizophrenia in terms of relative cerebral blood flow

(Kohno et al., 2006; Malaspina et al., 1999) and BOLD variability (Li et al., 2017). Also in

22q11DS, we observed higher BOLD variability in inferior temporal and fusiform regions in

a partially overlapping sample (Zöller et al., 2017), suggesting that increased BOLD variabil-

ity might reflect longer network activation. Further, prodromal psychotic symptoms were

associated with longer activation of dACC/dlPFC. The dACC is considered a key node of the

SN involved in attributing subjective salience to internally and externally generated events

(Menon, 2011; Seeley et al., 2007). Aberrant salience attribution has been proposed as key

mechanism in the emergence of positive psychotic symptoms (Kapur, 2003). Together with

electroencephalography (EEG) studies in psychosis and 22q11DS that consistently reported

longer representation of the EEG topography that corresponds to SN (Britz et al., 2010; Rieger

et al., 2016; Tomescu et al., 2014, 2015), our findings support this hypothesis.

However, whilst duration of both dACC/dlPFC and FPN was positively correlated with psy-

chotic symptoms, it was reduced overall in 22q11DS compared to HCs. Converging evidence

from both structural and functional MRI points towards altered connectivity of the ACC in

individuals with 22q11DS and psychotic symptoms (Dufour et al., 2008; Sandini et al., 2017;

Scariati et al., 2014; Zöller et al., 2018), reviewed in (Padula et al., 2018). Hence we suspected

that the quality of the activations; i.e., the coupling with other networks, might be relevant

for higher psychotic symptoms. Indeed, the analysis of dACC/dlPFC couplings revealed a

significant relationship between higher psychotic symptoms and anti-coupling with FPN

and iTEMP/FUS. Taken together, these results suggest that whilst activations of dACC/dlPFC

and FPN occur less frequently in 22q11DS in general, they are more frequently anti-coupled

with one another and with iTEMP/FUS in patients with higher psychotic symptoms. The

triple-network model proposes that activation of the SN is instrumental in re-orienting atten-

tion by mediating the shifts between DMN and FPN (Menon, 2011). Our findings of longer

anti-coupling between SN and FPN suggest that this functional role of the cingulo-prefrontal

SN is disrupted in individuals with higher psychotic symptoms.

Altogether, the richness of our iCAPs approach permitted to characterize a pattern reflect-

ing SN activations that contribute to the pathophysiology of psychotic symptoms, both in

terms of duration and quality. Our findings support the key role of network dynamics in the
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4.2. Journal Article: Dynamics of large-scale brain networks in 22q11DS.

ACC in higher psychosis vulnerability (Padula et al., 2018) and point towards disrupted triple

network function centered on the SN, which might reflect aberrant salience processing in

patients with psychotic symptoms (Menon, 2011; Kapur, 2003).

Functional signature of anxiety: aberrant amygdala & hippocampus duration and cou-

pling

For both HCs and patients with 22q11DS anxiety was associated with a pattern of longer

activation of AMY/HIP, iTEMP/FUS and shorter activation of aDMN. Evidence in animal

models and humans has revealed a central role of the amygdala in fear exposure, anticipation

and reaction (LeDoux, 2000; Tovote et al., 2015; Davis et al., 2010; Maren and Quirk, 2004; Etkin

and Wager, 2007; Fox and Kalin, 2014). Further, increased metabolic activity in amygdala,

hippocampus and inferior temporal cortex was found in rhesus monkeys with anxious tem-

perament (Fox et al., 2012, 2008) and cerebral blood flow in amygdala and fusiform cortex has

been associated with trait anxiety in humans (Kaczkurkin et al., 2016). The iCAPs approach

allowed us to quantify moments of network activation and confirmed that hyperactivity of

AMY/HIP and iTEMP/FUS at rest could indeed represent trait markers of anxiety in both

HCs and 22q11DS. Hyperactivity of AMY/HIP and iTEMP/FUS observed in 22q11DS could

therefore account for increased prevalence of anxiety disorders in this population.

Importantly, the amygdala does not operate in isolation, but is part of a complex circuit

involved in regulating emotional responses (Etkin et al., 2015). Indeed, in accord with the role

in salience processing mentioned above, dorsal ACC and medial prefrontal cortex (mPFC)

promote amygdala activity and are critical in the appraisal and expression of fear behavior

(Etkin et al., 2015). Oppositely, subgenual-ACC and ventral mPFC largely dampen amygdala

activity and are essential for fear extinction (Etkin et al., 2015). This functional sub-division

of the frontal lobe is further supported by extensive literature on fear circuitry in rodents,

where dorsal pre-limbic and ventral infra-limbic cortices are found to have opposing roles on

amygdala activation, fear expression, respectively fear extinction (Tovote et al., 2015; Etkin

et al., 2015; Milad and Quirk, 2002; Quirk et al., 2003; Vidal-Gonzalez et al., 2006; Corcoran

and Quirk, 2007; Courtin et al., 2014; Burgos-Robles et al., 2009). Given these findings, we

speculated that the modulation of AMY/HIP activity particularly by the dACC/dlPFC and

aDMN network might play a crucial role in the pathophysiology of anxiety. Indeed, we

showed a significant positive association between anxiety and coupling duration between

AMY/HIP and dACC/dlPFC and LAN. Coupling duration between AMY/HIP and aDMN had

an opposite, protective role on anxiety in accordance with the modulating role of mPFC-

amygdala projections on fear expression. Of note, the effects of amygdala coupling on anxiety

appeared specific to individuals with 22q11DS, which could suggest that effects of amygdala

modulation are nonlinear and relate only to more severe anxiety observed in 22q11DS.

In conclusion, we observed a dynamic functional pattern characterized both by longer

AMY/HIP activations and atypical prefrontal AMY/HIP modulation, which might constitute a

trait maker of anxiety and contribute vulnerability to psychosis in 22q11DS.
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Chapter 4. Large-scale brain network dynamics

Methodological aspects

The iCAPs framework The present study is one of the first to apply the iCAPs framework in a

clinical population and, due to the flexibility of the framework, we were able to discover dis-

tinct patterns of functional activation and interaction characteristic for prodromal psychotic

symptoms and anxiety. The framework is unique in its ability to detect spatially and temporally

overlapping networks (Karahanoglu et al., 2015; Zöller et al., 2019b), and the robustness and

richness of the presented results underlines its potential. Of note, extracted spatial patterns

were highly similar to previously observed iCAPs retrieved from HCs (Karahanoglu et al., 2015;

Zöller et al., 2019b), which reassures the framework’s performance in a clinical population.

Furthermore, the sub-division of classical resting-state networks such as DMN and SN into

multiple subnetworks confirms previously observed findings (Karahanoglu et al., 2015) and

suggests that different subnetworks have distinct dynamic properties, which are difficult to

detect by static approaches.

While iCAPs themselves were retrieved from a purely dynamic measure (i.e., the innova-

tions), the measure of coupling between networks is closely linked to sFC (see Supplementary

Results & Discussion in appendix B.2). Activation duration, however, is a measure specific to

each network which cannot be explained in terms of static connectivity.

BOLD signal analysis and motion In any fMRI study non-neural confounds are always a

concern (Power et al., 2014). We have minimized the effects by taking several measures

for motion correction and through additional analysis of motion (discussed in more detail

in Supplementary Results & Discussion in appendix B.2). However, as motion is strongly

correlated with symptoms severity, it remains a limitation of our study.

Conclusion

In summary, we here presented functional signatures of anxiety and positive psychotic symp-

toms in 22q11DS in terms of brain network activation and coupling. Our results confirm

the implication of SN activity and connectivity in the emergence of psychotic symptoms.

We further uncovered differential roles of dorsal and ventral ACC and mPFC coupling with

amygdala that are relevant for anxiety. Together, these findings shed light into the pathophysi-

ology of two clinical risk factors that might represent relevant imaging markers for psychosis

vulnerability.
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4.3 Summary and outlook
This chapter was dedicated to the analysis of brain dynamics in terms of large-scale brain

state activation. In the first study, we presented a methodological development in the iCAPs

framework for an improved estimation of temporal brain state properties. As the states are

obtained from temporal clustering, they can be spatially overlapping. We discovered that this

spatial overlap can lead to spurious activations in recovered time courses. To overcome this

shortcoming of the framework in its previous form, we presented a novel back-projection

method that is based on the introduction of spatio-temporal constraints in the time course

recovery step. In the article, we demonstrated its performance both on simulated and exper-

imental data and establish that both over- and underfitting are prevented, leading to more

robust estimates and more reliable results.

Thanks to this central development, we were subsequently able to use the framework in a

clinical setting. In the second study of this chapter, we have applied the iCAPs framework in

patients with 22q11DS with the aim to find potential dynamic functional imaging markers

for psychosis vulnerability. We looked into aberrant brain dynamics related to positive psy-

chotic symptoms and anxiety, two strong behavioral risk factors for schizophrenia in 22q11DS

(Gothelf et al., 2013; Schneider et al., 2016). Our analysis confirmed an implication of cingulo-

prefrontal SN activation duration and coupling for prodromal psychotic symptoms, which is

in line with our previous results on aberrant BOLD variability in the dACC. Further, we found

aberrant activation and coupling of the amygdala in patients with higher anxiety, indicating

differential roles of dorsal and ventral sub-divisions of ACC and mPFC. Coupling of amygdala

with dorsal ACC and mPFC was promoting anxiety, whereas coupling with ventral ACC and

mPFC had a protective function. Notably, this relationship corroborates the existing literature

on the role of the amygdala in fear expression and regulation (Etkin et al., 2011).

Aside from the alterations in dynamic brain functions that we found so far, it is known

that the brain’s structural architecture is also altered in schizophrenia and 22q11DS (Scariati

et al., 2016a; Váša et al., 2016). An open question remains on how these structural alterations

may relate to altered functional activity such as observed in this and the previous chapter.

Therefore, we next incorporate structural information in the framework and probe for a

relationship between iCAPs activity and the brain’s structural architecture.
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5 Control energy to probe into dynam-
ics of structural brain networks

CRITICALLY, while we hitherto focused on the brain’s functional dynamics and their im-

plications for psychosis vulnerability, the brain’s underlying white matter architecture

likely strongly influences such aberrant functional characteristics. However, only two studies

so far have looked into multimodal functional and structural alterations in 22q11DS at the

same time (Padula et al., 2015, 2017b). Both analyzed structural and functional connectivity

and compared the results, but none of them explicitly investigated the structure-function

relationship in these patients. To go one step further, here we were not only interested in

linking static functional and structural features, but we also wanted to incorporate the brain’s

dynamic nature.

Recently, a myriad of approaches have been proposed in the field of structural brain

network analysis to probe into the implication of structural topology for dynamic function

(Breakspear et al., 2010; Mišić et al., 2015). The idea to use principles from network control the-

ory for the investigation of brain network dynamics has been particularly promising because

it allows to model not only passive, but also active dynamics (Gu et al., 2015; Betzel et al., 2016;

Gu et al., 2017; Kim et al., 2018). It is based on the assumption that the brain can be described

as a network defined by brain regions (the network nodes) and their white matter connectivity

(the network edges). The state of this brain network is defined by the signal at all regions at a

given timepoint; i.e., the spatial pattern of instantaneous activity. Given such a model, the use

of network control theory aims to analyze how the brain’s structural topology influences its

dynamic function assuming that it is controlled from a set of regions that drive the brain from

one state to another.

Essentially, the controllability of a dynamic system indicates the possibility to steer the

system into a particular target state through the input of a control signal at a predefined

set of controller nodes (Kalman, 1960). In the context of complex networks with a high

number of nodes and edges (such as the brain), controllability has recently become a topic of

investigation and is still subject to active methodological and theoretical research, as many

notions from classical control theory cannot be easily applied due the high dimensionality

(e.g.; Liu et al., 2011; Yuan et al., 2013; Pasqualetti et al., 2014; Gao and Liu, 2014). While the

theoretical property of whether a system can be controlled or not is an interesting feature,

it does not give any information on the actual effort that would be required for a specific
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control task (Yan et al., 2012). Indeed, a system may be theoretically controllable, but certain

states will be practically unreachable because the control energy for driving the system into

that state would be (too) high. For the practical use, it is thus important to identify not only

controllability per se, but to predict the optimal control trajectory and the control energy that

is needed for a specific control task (Lindmark and Altafini, 2018).

In the study presented in this chapter, we combine minimum energy control (to quan-

tify control energy of structural brain networks derived from dMRI) with iCAPs (to retrieve

functional activation properties of brain states during rest). The combination of these two

approaches allows us to directly compare the predicted dynamic control properties of a brain

state (given it’s structural connectivity) with the actual temporal activation of the identical

brain state as measured through fMRI. The following section 5.1 contains the unpublished

manuscript presenting our methods and results, and the last section 5.2 again provides a

summary in the context of this thesis.

98



Jo
u

rn
alA

rticle
Jo

u
rn

alA
rticle

Jo
u

rn
alA

rticle

5.1. Journal Article: Control energy of functional brain states

5.1 Journal Article: Control energy of functional brain states

Preprint version of the article in preparation for submission to: Human Brain Mapping

Structural control energy of resting-state functional brain

states reveals inefficient brain dynamics in psychosis vul-

nerability.

Daniela Zöller1,2,3, Corrado Sandini3, Marie Schaer3, Stephan Eliez3, Danielle S. Bassett 4,5,6,7,8

Dimitri Van De Ville1,2

1Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale

de Lausanne (EPFL), Lausanne, Switzerland; 2Department of Radiology and Medical Informatics,

University of Geneva, Geneva, Switzerland; 3Developmental Imaging and Psychopathology Labora-

tory, Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Geneva, Switzer-

land; 4Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
5Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA,

United States 6Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
7Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, United States
8Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States

How the brain’s white-matter anatomy constrains brain activity is an open question

that might give insights into the mechanisms that underlie mental disorders such as

schizophrenia. Chromosome 22q11.2 deletion syndrome (22q11DS) is a neurodevelop-

mental disorder with an extremely high risk for psychosis providing a test case to study

developmental aspects of schizophrenia. In this study, we used principles from network

control theory to probe the implications of aberrant structural connectivity for the brain’s

functional dynamics in 22q11DS. We retrieved brain states from resting-state functional

magnetic resonance images of 78 patients with 22q11DS and 85 healthy controls, and we

compared them in terms of persistence control energy based on individual structural con-

nectivity. Control energy was altered in a broad pattern of brain states including both en-

ergetically more demanding and less demanding brain states in 22q11DS. Further, we dis-

covered that the brain minimizes energy by spending less time in energetically demanding

brain states. In patients with 22q11DS, this behavior was less pronounced, suggesting a

dynamic inefficiency of brain function in the disease. In summary, our results provide ini-

tial insights into the dynamic implications of altered structural connectivity in 22q11DS,

which might improve our understanding of the mechanisms underlying the disease.
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5.1.1 Introduction

The brain is a complex dynamic system and brain function during rest and task can be de-

scribed in terms of the dynamic activation and interaction of different brain states: sets of brain

regions that are coherently activating and deactivating (Preti et al., 2017; Karahanoglu and Van

De Ville, 2017). How the brain’s underlying structural backbone constrains and facilitates this

dynamic behavior is an intensively studied question in the neuroscience community (Bassett

and Sporns, 2017; Honey et al., 2009; Becker et al., 2018). The joint consideration of structural

and functional properties is particularly promising to provide a better mechanistic explanation

of the causes that underlie brain disorders such as schizophrenia (Braun et al., 2018). In recent

years, approaches for the investigation of dynamic properties have proven to be particularly

useful in probing brain function in health and disease (Preti et al., 2017; Karahanoglu and

Van De Ville, 2017; Van Den Heuvel and Fornito, 2014). Schizophrenia, in particular, is – as

an extension of the well-accepted dysconnectivity hypothesis (Stephan, 2010) – increasingly

perceived as a disorder of broad alterations in large-scale brain state dynamics (Fornito et al.,

2012; Du et al., 2016; Braun et al., 2016). A better insight on how alterations in the brain’s

structure may lead to such aberrant dynamic activation would improve our understanding of

this disease to ultimately improve clinical management and patient outcomes (Braun et al.,

2018).

Although initial studies of the relationship between brain structure and function used

cross-modal correlations (Honey et al., 2009), more recent advances aim to describe how

brain structure influences its function at a more mechanistic level (Bassett and Sporns, 2017;

Braun et al., 2018). In particular, by using principles from network control theory, it is possible

analyze how the brain’s structural topology influences its dynamic function (Gu et al., 2015;

Betzel et al., 2016; Gu et al., 2017; Kim et al., 2018). In network control theory approaches, the

brain is modeled as a graph defined by its structural connectivity, which can transition between

different functional states that are given by the activation of each brain region (or network

node). Under the assumption that the brain’s state is controlled by a single or multiple brain

regions, it is then possible to quantify how the underlying structural architecture facilitates or

constrains the system’s dynamic behavior. Importantly, the temporal properties are given by a

(usually linear) dynamic model and are not directly measured. Initially, this framework was

used to examine the controllability of the brain from a single region (Gu et al., 2015), measuring

how the structural connectivity of a single region would enable it to drive the entire brain into

different states that are easier to reach or more difficult to reach. This single-region approach

has provided insights into the role that individual regions play in dynamic brain function.

In particular, single-region controllability measures give characteristic profiles for different

cognitive brain systems (Gu et al., 2015), change with development (Tang et al., 2017a), track

individual differences in impulsivity (Cornblath et al., 2019), and are promising to guide target

selection for neurostimulation (Muldoon et al., 2016; Khambhati et al., 2019). In patients with

bipolar disorder, single-region controllability was found to be altered in subnetworks with

aberrant structural connectivity (Jeganathan et al., 2018).

While it is interesting to study transition to the set of easy-to-reach states, and the set of

difficult-to-reach states, the inferences are limited in the sense that we cannot say anything
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5.1. Journal Article: Control energy of functional brain states

about a particular transition that we might observe in the human brain. This limitation

motivated recent extensions of the framework to estimate the control energy that is required

for specific trajectories between a precisely defined initial state and a precisely defined target

state. A simple intuitive example of such a state transition is the transition from activation of

the default mode network (DMN) to activation of the fronto-parietal network (FPN) (Betzel

et al., 2016; Gu et al., 2017; Kim et al., 2018). Here, we define a set of brain regions that

will act as controllers and we estimate the minimum control energy required to steer the

brain from an initial state to a target state by formalizing the problem as an optimization

problem. Thus far the method has predominantly been used to examine hypothesis-driven

state transitions between cognitive brain states defined by an atlas (Gu et al., 2017; Cui et al.,

2018). However, recent work extends this approach to investigate data-driven brain states

retrieved from functional magnetic resonance imaging (fMRI) (Braun et al., 2019; Cornblath

et al., 2018). In this way, temporal properties of functional brain states (measured using fMRI)

can be directly compared to the control energy that would be needed to engage in this brain

state based on structural connectivity (measured with diffusion weighted MRI (dMRI)).

Further, a disruption in this relationship between functional activity and required con-

trol energy could inform our understanding of altered mechanisms that are relevant to the

pathophysiology of psychiatric disorders. Here, we tested this hypothesis in individuals with

chromosome 22q11.2 deletion syndrome (22q11DS), a neurodevelopmental disorder char-

acterized by a 30-fold increased risk for developing schizophrenia (McDonald-McGinn et al.,

2015). Due to the 30-40 % prevalence of schizophrenia by adulthood (Schneider et al., 2014),

the disorder is considered a model for the investigation of developmental risk factors before

the onset of full-blown schizophrenia (Insel, 2010; Bassett and Chow, 1999). In 22q11DS, the

white matter microstructure and connectivity has been extensively studied, mostly in terms of

whole-brain or tract-based diffusivity properties (reviewed in Scariati et al., 2016a). Affected

white-matter bundles mostly include long-range frontal-frontal, frontal-occipital, and fronto-

parietal connections (Scariati et al., 2016a; Kikinis et al., 2016; Tylee et al., 2017; Olszewski

et al., 2017; Roalf et al., 2017). Only a few studies have thus far examined the characteristics

of structural whole-brain networks (Ottet et al., 2013b; Kikinis et al., 2013; Ottet et al., 2013a;

Padula et al., 2017a; Váša et al., 2016; Zhan et al., 2018), also mostly reporting fronto-temporal,

fronto-parietal (Ottet et al., 2013b,a; Zhan et al., 2018), and limbic dysconnectivity (Ottet et al.,

2013a; Padula et al., 2015). From a topological perspective, Ottet et al. reported longer path

lengths and disconnectivity of the brain’s hub regions, specifically, in the frontal lobes (Ottet

et al., 2013b), and Váša et al. uncovered a ‘de-centralization’ in 22q11DS with a rerouting of

shortest network paths to circumvent an affected core that included frontal, parietal, and

subcortical regions (Váša et al., 2016).

Only two studies to date have investigated structural and functional properties at the same

time (Padula et al., 2015, 2017b) and none so far have attempted to examine the dynamic

implications of an altered structural network architecture. In this study, we bridge this gap

by combining dynamic fMRI analysis with whole-brain tractography and principles from

network control theory to investigate how the brain’s white matter connectivity may influence

its dynamic behavior and how this relationship is affected in patients with 22q11DS. More
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Chapter 5. Control energy to probe into dynamics of structural brain networks

specifically, we extracted brain states from resting-state fMRI scans using innovation-driven

co-activation patterns (iCAPs), a recently proposed approach for dynamic analysis of large-

scale brain states marked by its ability to retrieve spatially and temporally overlapping states

(Karahanoglu et al., 2015; Farouj et al., 2017; Zöller et al., 2019b). Then, we calculated the

control energy that is required – based on the structural connectivity of the same subjects – to

engage in these specific brain states (Braun et al., 2019; Cornblath et al., 2018). In this way, we

were able to explicitly investigate the relationship between the brain’s structural architecture

and its functional activation during rest and how this relationship is altered in patients with

22q11DS.

5.1.2 Materials and methods

Participants

FMRI analyses in this study were conducted on the identical dataset as Zöller et al. (2019a)

(see previous chapter 4.2), which included 78 patients with 22q11DS and 85 healthy controls

(HCs), aged between 8 and 30 years. For structural connectivity analysis, we used dMRI

scans acquired from the same subjects. One patient with 22q11DS and 7 HCs had to be

excluded from dMRI analyses because no dMRI scan was recorded for them. Table 5.1 shows

demographic information of the remaining 77 patients with 22q11DS and 78 HCs for which

both fMRI and dMRI scans were available.

Image acquisition

MRI scans were recorded at the Centre d’Imagerie BioMédicale (CIBM) in Geneva on a Siemens

Trio (12-channel head coil) and a Siemens Prisma (20-channel head coil) 3 Tesla scanner. Sup-

plementary Table C.1 contains the number of scans that were recorded before and after the

update to the Prisma scanner for each image modality, respectively. There was no signifi-

cant scanner-by-group interaction. Anatomical images were acquired using a T1-weighted

sequence with 192 slices (volumetric resolution = 0.86×0.86×1.1 mm3, TR = 2500 ms, TE =

3 ms, flip angle = 8°, acquisition matrix = 256×256, field of view = 23.5 cm). FMRI scans

were recorded with an 8 minute resting-state session at a TR of 2.4 s (volumetric resolution

= 1.84×1.84×3.2 mm3, 200 frames, 38 axial slices, slice thickness 3.2 mm, TE=30 ms, 85° flip

angle, acquisition matrix 94×128, field of view 96×128). Subjects were instructed to fixate on a

cross on the screen, let their minds wander, and not fall asleep. DMRI scans were acquired

in 30 directions (b = 1000 s
mm3 , TR = 8300 ms to 8800 ms, TE = 82 ms, flip angle = 90° to 180°,

acquisition matrix = 128×128, field of view = 25.6 cm, 64 axial slices, slice thickness = 2 mm).

fMRI processing

We preprocessed fMRI scans identically as in Zöller et al. (2019a) using in-house code and

functions of statistical parametric mapping (SPM12) (http://www.fil.ion.ucl.ac.uk/spm/), data

processing assistant for resting-state fMRI (DPARSF) (Yan Chaogan, 2010) and individual brain

atlases using statistical parametric mapping (IBASPM) (Aleman-Gomez et al., 2006). Briefly,

preprocessing steps included functional realignment and spatial smoothing with a Gaussian
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5.1. Journal Article: Control energy of functional brain states

Table 5.1 – Participant demographics. N/A = not applicable.

HC 22q11DS p-value
Number of subjects (M/F) 78 (32/46) 77 (37/40) 0.379 (χ2)
Age mean ± SD 16.39 ± 5.52 17.23 ± 5.39 0.342
(range) (8.1-30.0) (8.1-29.7)
Right handed* 80.00% 77.61% 0.564 (χ2)
IQ** 110.80 ± 13.75 70.32 ± 12.18 <0.001

Number of subjects meeting criteria for N/A 42 (55%)
psychiatric diagnosis

Anxiety disorder N/A 9
Attention deficit hyperactivity N/A 8

disorder
Mood disorder N/A 5
Schizophrenia or schizoaffective disorder N/A 3
More than one psychiatric disorder N/A 17

Number of subjects medicated 0 9
Methylphenidate 0 3
Anitpsychotics 0 1
Anticonvulsants 0 1
More than one class of medication 0 3

* Handedness was measured using the Edinburgh laterality quotient, right
handedness was defined by a score of more than 50. ** IQ was measured using the
Wechsler Intelligence Scale for Children–III (Wechsler, 1991) for youth and the
Wechsler Adult Intelligence Scale–III (Wechsler, 1997) for adults.

kernel of 6 mm full width half maximum, co-registration of the structural T1-weighted image

to the functional mean, segmentation of anatomical scans using the Segmentation algorithm

in SPM12 (Ashburner and Friston, 2005), creation of a study-specific template using diffeomor-

phic anatomical registration (DARTEL) (Ashburner, 2007), exclusion of the first 5 functional

frames, and regression of cerebrospinal fluid (CSF) and white matter (WM) blood oxygenation

level dependent (BOLD) signals. Volumes with a framewise displacement (FD) larger than

0.5 mm were replaced with the spline interpolation of previous and following frames in order

to ensure the constant sampling rate required by the iCAPs implementation. After brain state

extraction, motion frames were excluded for the computation of temporal characteristics (see

below).

Following preprocessing, we extracted iCAPs from resting-state fMRI scans using openly

available MATLAB code (https://c4science.ch/source/iCAPs; Karahanoglu et al., 2015; Zöller

et al., 2019b). Steps included the hemodynamically-informed deconvolution of fMRI time-

series using total activation (TA) (Karahanoglu et al., 2011, 2013; Farouj et al., 2017). Then,

significant transients are determined with a two-step thresholding procedure following Kara-
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Chapter 5. Control energy to probe into dynamics of structural brain networks

hanoglu et al. (2015) and Zöller et al. (2019b) (temporal threshold: 5-95 %; spatial threshold:

5%of gray matter voxels). ICAPs were determined through temporal clustering on concate-

nated transient frames of all subjects. According to consensus clustering (Monti et al., 2003),

the optimum number of clusters was K = 17. Finally, a time course was estimated for each

iCAP using spatio-temporal transient-informed regression with soft assignment factor ξ= 1.3

(Zöller et al., 2019b), and temporal activation duration was computed from thresholded time

courses (z-score > |1|) as a percent of the total non-motion scanning time. For a more detailed

description of the methods, we refer the interested reader to (Zöller et al., 2019a; or section 4.2

of this thesis).

dMRI processing

DMRI scans were processed using functions from the FSL library (Jenkinson et al., 2012) and

from the MRtrix3 toolbox (Tournier et al., 2019). After denoising the dMRI scans (dwidenoise in

MRtrix), eddy current and motion correction was conducted (eddy in FLS). Then, the skull was

stripped from eddy-corrected dMRI scans (bet in FSL) and a white-matter mask, obtained from

segmented anatomical images, was mapped to the resolution of dMRI scans (flirt in FSL) and

dilated by one voxel (maskfilter in MRtrix). Then, we estimated the single-bundle response

function for spherical deconvolution based on the Tournier algorithm (Tournier et al., 2013)

and computed the fibre orientation distribution function for every voxel with a constrained

spherical deconvolution (Tournier et al., 2007). Deterministic fibre tracking (SD_Stream

in MRtrix) was applied to reconstruct 10×106 streamlines longer than 10 mm, which were

subsequently filtered using spherical-deconvolution informed filtering of tractograms (SIFT)

(Smith et al., 2013) to a number of 1×106 streamlines for each subject. The Brainnetome atlas

(http://atlas.brainnetome.org) was warped from MNI to subject-space and down-sampled

to dMRI resolution using SPM12. Finally, a structural connectivity matrix A ∈RNr eg×Nr eg was

reconstructed for every subject by counting the streamlines connecting each of the Nr eg = 234

regions in the Brainnetome atlas.

Minimum control energy

We here used linear control theory for brain network analysis, which uses principles from

control and dynamical systems theory to investigate the impact that the brain’s structural

topology may have on its functional dynamics (Kim and Bassett, 2019; Tang and Bassett, 2018;

Lynn and Bassett, 2019). Under the assumption of a linear model of dynamics (Kim and

Bassett, 2019) and control from all regions of the brain, we estimated the minimum control

energy required to remain in specific functionally defined brain states. For extended reviews

on the control of brain network dynamics, we refer the interested reader to (Tang and Bassett,

2018; Lynn and Bassett, 2019). In the following paragraphs, we describe the linear dynamic

model used here, and outline the mathematical basis for computation of minimum control

energy based on this model, as well as the way in which brain states of interest were defined.

Dynamic model In order to study how the white-matter anatomy of the brain constrains

or facilitates state transitions, we modeled the brain as a continuous linear time-invariant
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5.1. Journal Article: Control energy of functional brain states

dynamic system following Gu et al. (2017) and Betzel et al. (2016)

ẋ(t ) = As x(t )+Bu(t ),

in which x(t ) = [x1(t ), ..., xNreg (t )]> ∈RNreg×1 is the brain’s functional state at timepoint t given

by the activity level xi (t ) in each region i . The dynamic behavior of the brain is constrained

by the stabilized structural white matter connectivity matrix As , which is derived from the

original structural connectivity matrix A, where each element Ai j is the number of streamlines

connecting regions i and j . In order to ensure stability of the dynamic system, all eigenvalues

of As have to be below 0. Therefore, we stabilized the system by dividing the original structural

connectivity matrix A by its largest eigenvalue λmax and subtract the identity matrix I: As =
A

‖λmax‖+1 − I (Betzel et al., 2016). The diagonal matrix B ∈RNreg×Nreg specifies the set of control

nodes. Throughout this study, we assume that all regions of the brain can be controlled and

therefore B = I. Finally, u(t ) = [u1(t ), ...,uNreg (t )]> ∈RNreg×1 contains the control input signals

ui (t) at region i and timepoint t . Notably, there are marked differences in controllability

across graph models, indicating that characteristics of brain controllability are unique and

potentially relevant for cognitive function (Wu-Yan et al., 2018).

Minimum persistence control energy In this study, we wished to investigate the structural

control energy that is necessary to remain in a certain brain state x for a duration T . Through-

out this study, we compute control energy for a control horizon of T = 1 (Betzel et al., 2016).

The optimum control input umi n with minimum control energy can be found by solving

(Antsaklis and Michel, 2005)

u∗ = min
u

Emi n = min
u

∫ T

t=0
u(t )T u(t )d t .

The analytical solution of this minimization problem is given by the minimum energy

Emi n = (
x(T )−eAT x(0)

)>
W−1

r (T )
(
x(T )−eAT x(0)

)
,

with the reachability Gramian

Wr (T ) =
∫ T

t=0
eA(T−t )BB>eA>(T−t )d t .

The optimal control input with this minimum energy can be explicitly computed for each

timepoint t :

u∗(t ) = B>eA>(T−t )W−1
r (T )

(
x(T )−eAT x(0)

)
.

The required control energy at every brain region is given by Ei =
∫ T

0 ||u∗
i (t )||2d t and the total

control input can be computed by summing over all regions E =∑Nreg

i=1 Ei .

Definition of brain states We wished to investigate the energy that is required to remain in

a certain brain state based on the brain’s structural connectivity. To compute the minimum
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Chapter 5. Control energy to probe into dynamics of structural brain networks

control energy as defined above for every functional brain state, state vectors xk (0) = xk (T )

were obtained by computing in each region the average normalized spatial map of every iCAPs

k (see subsection fMRI processing). In order to minimize noise susceptibility, we thresholded

the brain states at a z-score of 1.5; in other words, regions with an average z-score < 1.5 were

set to zero.

Statistical analysis

Statistical group comparison and brain-behavior analysis were conducted with an identical

protocol as in Zöller et al. (2019a), or section 4.2 of this thesis.

Group comparisons of duration and persistence control energy Two-sample t-tests were

used to compare functional and structural measures between patients with 22q11DS and HCs,

and the false discovery rate (FDR) was used to correct for multiple comparisons.

Multivariate relationship between persistence control energy and age We used partial least

squares correlation (PLSC) (Krishnan et al., 2011) to retrieve patterns of age-relationship in

persistence control energy (PE) of all iCAPs. The steps of PLSC include

1. Computation of concatenated group-wise correlation matrices R =
[

RHC

R22q

]
=

[
Y>

HCXHC

Y>
22qX22q

]
between age in Y ∈ 1×Nsub and PE X ∈ K ×Nsub of each brain state k = 1, ...,K and

subject s = 1, ..., Nsub.

2. Singular value decomposition of R = USV> to obtain a number of latent variables (or

‘correlation components’). Singular values on the diagonal of S indicate the explained

correlation by each component, age saliences (or ‘age weights’) in U and brain saliences

(or ‘brain weights’) in V indicate how strongly the corresponding group and brain state

contributes to the multivariate correlation between age and PE.

3. Permutation testing to test for significance of correlation components, where rows of X

were randomly permuted 1000 times, while leaving Y unchanged, in order to estimate

the null distribution of singular values S under assumption of no significant correlation

between Y and X.

4. Bootstrapping with 500 bootstrap samples, obtained through sampling with replace-

ment the observations in Y and X, to evaluate the stability of age- and brain weights in a

significant correlation component.

For a more detailed description of PLSC, we refer the interested reader to (Krishnan et al.,

2011; Zöller et al., 2017, 2018, 2019b) or sections 3.1, 3.2, or 4.2 of this thesis.

Nuisance variable regression Age and sex were included as nuisance regressors in group com-

parisons and only sex was used in age-PLSC analyses. Nuisance regressors were standardized

within each group to avoid linear dependence with the effects of interest.
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+ + + +

+

---

Figure 5.1 – Group differences in PE of the 17 functional brain states in patients with 22q11DS
compared to HCs. P-values are FDR-corrected for the 17 multiple comparisons; age and
sex were included as covariates. Significant group differences (p<0.05) are marked with an
asterisk, and with a + (or –) to indicate that they were higher (or lower) in patients. Error
bars indicate 5th to 95th percentiles of group distributions. Single-subject duration measures
are included as scatterplots. dACC/dlPFC – dorsal anterior cingulate cortex / dorsolateral
prefrontal cortex, LAN – language network, FPN – fronto-parietal network, PREC/vDMN
– precuneus / ventral DMN, VSN – visuospatial network, aDMN – anterior DMN, SecVIS –
secondary visual, PrimVIS1 – primary visual 1, PrimVIS2 – primary visual 2, aIN – anterior
insula, SM – sensorimotor, AUD/SM – auditory / sensorimotor, pDMN – posterior DMN,
OFC – orbitofrontal cortex, iTEMP/FUS – inferior temporal / fusiform, AMY/HIP – amygdala /
hippocampus, PFC – prefrontal cortex.

Relationship between brain state function and structure

In order to assess the relationship between resting-state fMRI activation measures and PE, we

compute Pearson correlations between the two measures. First, we computed correlations

across subjects for each group and each brain state, resulting in K = 17 correlation values per

group. We then compared these 17 values between HCs and patients with 22q11DS using a

paired t-test. Second, we computed correlations across the K = 17 brain states for each subject.

We then compared the correlation values between HCs and patients with 22q11DS using a

two-sample t-test.

5.1.3 Results

Spatial and temporal properties of resting-state functional states.

Using iCAPs, we extracted 17 functional brain states from the resting-state fMRI scans. The

optimal number of states was determined using consensus clustering (Monti et al., 2003). Ex-

tracted networks include well-known resting-state brain states, such as DMN, fronto-parietal

network (FPN), and salience network (SN) states. Supplementary figures C.1 and C.2 show the

extracted states and a group comparison of their average activation duration between HCs

and patients with 22q11DS, respectively. For a detailed discussion of temporal properties and
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Chapter 5. Control energy to probe into dynamics of structural brain networks

B. iCAPs persistence energy weightsA. Age weights

Figure 5.2 – PLSC testing for a relationship between PE and age resulted in one significant
correlation component (p<0.001). A) According to age weights indicating the correlation
strength in each group, the age-relationship is stronger in patients with 22q11DS than in HCs.
B) PE weights show that there is a significant negative relationship with age in 7 out of the 17
brain states. Error bars indicate bootstrapping 95% confidence intervals; robust results were
indicated by yellow background.

their relevance for clinical symptoms in 22q11DS, we refer the interested reader to (Zöller

et al., 2019a), or section 4.2 of this thesis.

Aberrant persistence control energy of functional brain states in 22q11DS.

We computed minimum PE of the 17 states for all participants based on their individual

structural connectivity matrix. Figure 5.1 shows distributions of PE of every brain state in

patients with 22q11DS compared to HCs.

Aberrant structural connectivity in patients with 22q11DS leads to altered PE in 8 out

of the 17 brain states. PE was higher in patients with 22q11DS in brain states that involve

more posterior and dorsal regions – precuneus / ventral DMN (PREC/vDMN), visuospatial

network (VSN), primary visual 2 (PrimVIS2) and auditory / sensorimotor (AUD/SM) – as well

as in amygdala / hippocampus (AMY/HIP). Reductions of PE on the other hand were present

mainly in brain states including more anterior regions – dorsal anterior cingulate cortex /

dorsolateral prefrontal cortex (dACC/dlPFC) and anterior DMN (aDMN) – and also in posterior

DMN (pDMN).

Persistence control energy decreases from childhood to adulthood.

There is one significant correlation component (p<0.001) resulting from PLSC analysis testing

for a relationship between PE and age (see figure 5.2). PE is negatively correlated with age in 7

out of the 17 states. This correlation with age is significant for both groups, but stronger in

patients with 22q11DS than in HCs. Age-related states include anterior and posterior DMN,

anterior insula (aIN), sensory states (primary visual 1 (PrimVIS1) and sensorimotor (SM)),

one emotional state (AMY/HIP) and the language network (LAN). The PE of states that are

commonly associated with goal-directed behavior during tasks do not show any relationship

with age (i.e., PREC/vDMN, which is sometimes called dorsal attention state, FPN, and VSN)

108



Jo
u

rn
alA

rticle
Jo

u
rn

alA
rticle

Jo
u

rn
alA

rticle

5.1. Journal Article: Control energy of functional brain states

*

* *

B. Correlation across statesA. Correlation across subjects

Figure 5.3 – Correlation between structural PE and resting-state activation duration. A) Across
subjects there is no significant correlation, either in patients with 22q11DS or in HCs. Violin
plots show the distribution of correlations for all brain states. B) Across states there is a
negative correlation between the two modalities: the higher the PE, the shorter the resting-
state activation duration. This correlation is significantly stronger in HCs than in patients with
22q11DS. Violin plots show the distribution of correlations for all subjects. Significant group
differences (p<0.05) are marked with an asterisk.

No correlation across subjects between activation duration and persistence control en-

ergy.

In order to test whether there was a relationship between the measures across subjects, we

first considered between group differences. If there was a global linear relationship between

structural PE and activation duration across subjects, all states would be altered in both, and

always in the same or opposing direction. When comparing alterations of temporal activation

and structural PE (see Supplementary Figure C.3), there is, however, no clear pattern of

common alterations. While brain states with reduced PE (dACC/dlPFC, aDMN and pDMN)

have all also reduced activation duration, only AMY/HIP has both increased PE and activation

duration, and PrimVIS2 is even altered in different directions. Further, there are multiple

brain states that are only affected in one single modality. FPN, SM, orbitofrontal cortex (OFC),

inferior temporal / fusiform (iTEMP/FUS) have only aberrant activation duration, while

PREC/vDMN, VSN and AUD/SM are only affected in terms of PE.

To explicitly test for a linear relationship between resting-state activation duration and

structural PE in every state separately, we computed correlations between the two measures

across subjects for each state. As already expected based on the observations on group

differences in both modalities, there was no significant correlation between the two measures

either in patients with 22q11DS or in HCs (see figure 5.3A). In other words, a subject who

spends a long time in one brain state, does not have a systematically higher or lower PE of that

brain state compared to other subjects.
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Figure 5.4 – The negative correlation between PE and activation duration is constant over
age in HCs (c=-0.04, p=0.73), but significantly increasing (i.e., weakening) with higher age in
patients with 22q11DS (c=0.38, p<0.001). PE – persistence control energy.

Negative correlation across states between activation duration and persistence control en-

ergy.

To test whether within each subject there was a relationship between temporal activation and

structural PE, we computed across-states correlations for each subject (see figure 5.3B). There

was indeed a negative correlation between activation duration and PE. In other words, all

subjects tend to spend less time in brain states whose structural wiring leads to higher PE. This

negative correlation was significantly stronger (lower) in HCs than in patients with 22q11DS

(p=0.01).

Finally, we tested for a relationship with age of these negative correlation values (see fig-

ure 5.4). In HCs the energy-activation correlation did not change over age (c=-0.04, p=0.73). In

patients with 22q11DS, however, the correlation became significantly weaker (higher negative

values) with increasing age (c=0.38, p<0.001). In a joint model, the group-by-age interaction

was significant with p=0.002. In other words, while at a younger age, patients showed similar

energy-activation relationship as HCs, older patients have a weaker negative energy-activation

correlation, indicating that the observed weakening in correlation (see previous paragraph) is

emerging over age.

There was no correlation with full-scale intelligence quotient (FSIQ; HCs: c=0.08,p=0.728;

22q11DS: c=-0.01, p=0.0.937), positive psychotic symptoms as measured by the sum of positive

SIPS scores (22q11DS: c=-0.12, p=0.688) and negative psychotic symptoms as measured by the

sum of negative SIPS scores (22q11DS: c=-0.37, p=0.130).

Reported p-values were corrected for the six correlations that were computed using the

false discovery rate.

5.1.4 Discussion

Here we used dynamic models to investigate the relationship between structural brain con-

nectivity and its functional activation in 22q11DS, a population at extremely high risk for
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5.1. Journal Article: Control energy of functional brain states

schizophrenia. Combining fMRI activation analysis with network control energy, we probed

the possible mechanistic implications of aberrant brain structure on altered functional acti-

vation (Braun et al., 2018). Functional brain states were retrieved from dynamic changes of

resting-state functional activity. Then, we used network control theory to analyze how the

white matter anatomy of these brain states may influence their dynamic behavior (Braun et al.,

2019; Cornblath et al., 2018). We found aberrant control energy of several brain states, mainly

involving anterior or posterior medial connections. Further, PE decreased from childhood to

adulthood both in patients with 22q11DS and HCs. Finally, when probing for a relationship

between structural control energy and functional resting-state activation, we found a negative

correlation across brain states consistent with prior work (Cornblath et al., 2018), and which

was less pronounced in patients with 22q11DS. However, we found no direct relationship

between control energy of a brain state and its functional activation across subjects. In the

following exposition, we will first discuss the alterations of PE and structure-function ineffi-

ciency in patients with 22q11DS, and then offer a tentative explanation for the absence of an

across-subject relationship between control energy and functional activation.

Anterior-posterior and medial-lateral gradient of altered connectivity leads to aberrant

brain control energy in 22q11DS

We analyzed persistence control energy of resting-state brain states in 22q11DS and found

that aberrant structural wiring leads to a pattern of altered controllability with some brain

states requiring higher energy and others requiring lower control energy. Persistence energy

is mainly reduced in frontal brain states (aDMN, dACC/dlPFC) and increased in occipital

(PREC/vDMN, PrimVIS2) and lateral parietal (VSN, AUD/SM) brain states. This pattern of

findings confirms prior reports of aberrant anterior-posterior and medial-lateral white-matter

connectivity in patients with 22q11DS (Scariati et al., 2016a; Gothelf et al., 2011; Váša et al.,

2016). Our study expands upon these prior studies by probing the impact of this aberrant

wiring on the dynamic behavior of the brain in terms of the energy that is needed to engage in

these brain states.

In particular, we found reduced persistence control energy in DMN and cingulo-frontal

SN, which are two brain systems that are known to play a central role in higher order cogni-

tion (Menon, 2011). Previous reports provide evidence that their structural and functional

connectivity is altered in patients with 22q11DS (Padula et al., 2015, 2017b; Schreiner et al.,

2014). In particular the dorsal anterior cingulate cortex (dACC), which is a central node of

the SN, has been found to be affected in 22q11DS using different neuroimaging modalities

and has been suggested as a biomarker for psychosis in the disorder (Padula et al., 2018). Of

note, these states were also found to have altered resting-state activation (Zöller et al., 2019a)

and even though we here did not find a linear relationship between resting-state activation

duration and structural control energy, the fact that a majority of brain states is affected in

both measures suggests that there may be a more complex underlying common mechanism.

Moreover, we found that persistence in the amygdala and hippocampus brain state was

energetically more demanding for patients with 22q11DS, but nevertheless those same pa-

tients spent more of the resting-state scan time engaging in this state. We recently found that
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Chapter 5. Control energy to probe into dynamics of structural brain networks

higher activation and aberrant coupling of this amygdala and hippocampus brain state tracks

with higher levels of anxiety (Zöller et al., 2019a) and the present results confirm that it is also

affected on a structural level.

The brain gets energetically more efficient from childhood to adulthood

Aside from alterations in 22q11DS, we found that persistence control energy of many brain

states (7 out of 17) is negatively correlated with age, both in patients with 22q11DS and in

HCs. This finding suggests that with increasing age, the brain gets more efficiently wired to

reduce the control energy required for its functional activation. In line with these findings,

Tang et al. found that both average and modal controllability (which measure the general

ability to steer the brain towards easy-to-reach or difficult-to-reach brain states) increase over

age in a similar age range, which suggests an increasingly efficient wiring that at the same time

allows a higher diversity of brain dynamics (Tang et al., 2017a). Importantly, while there are

small variations in the distributions of controllability across the brain in males and females,

the trend for increasing controllability with age is equally strong in both sexes (Cornblath et al.,

2019). Further, Cui et al. (2018) found that control energy of atlas-based brain states calculated

with a comparable approach to ours, was also decreasing from childhood to adulthood in most

brain states (Cui et al., 2018). This developmental trajectory of structural brain architecture

was preserved in patients, suggesting that while they present with absolute alterations of

controllability properties, their overall development seems to be largely intact.

Dynamic inefficiency in patients with 22q11DS, which becomes increasingly marked with

age

Finally, when investigating the relationship between functional activation and structural

control energy, we found that the brain activates in a highly efficient way, spending less time

in brain states that are energetically more demanding, consistent with prior evidence in a

completely different cohort (Cornblath et al., 2018). In patients with 22q11DS, this relationship

was significantly weaker than in HCs, which suggests that aside from the pure alteration

in structure and function, the relationship between the two is also altered. In particular,

patients use their brains in a less efficient way, spending more time in energetically demanding

states than HCs. Additionally, this dynamic inefficiency in patients with 22q11DS became

increasingly marked with greater age. Possibly, the patients’ inefficient use of their brain may

express in the more severe symptomatology characteristic of older patients. However, we did

not find a significant correlation between our measure of dynamic efficiency and psychotic

symptoms or IQ, and therefore our hypothesis should be verified in future studies with larger

sample sizes.

Control energy and activation of a single state are not correlated across subjects

While we were able to detect a relationship between functional activation and structural

control energy across states (pointing towards the inherent efficiency of the human brain as

discussed above), we did not observe a relationship across subjects. In other words, subjects

with less efficiently wired brain states (higher PE) did not spend more or less time in these
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5.1. Journal Article: Control energy of functional brain states

brain states compared to other subjects. A possible explanation may be that, while here we

were testing for a simple relationship for each state separately, the association is likely more

complex than a one-to-one linear correlation. Importantly, brain states to not act in isolation,

but interact among themselves. For instance, knowing about the interaction between the

DMN and the amygdala and hippocampus that we discovered in the same dataset (Zöller

et al., 2019a), one could imagine that indeed alterations of controllability in the DMN may

lead to increased activity of the amygdala and hippocampus. Testing for such cross-network

relationships may be even more interesting, and our methological approach offers a valuable

framework to explore this complexity in future research.

Methodological considerations and limitations

Variance of structural connectivity across subjects and across regions has different scales

In the present study, structural connectivity was measured in terms of connection density; that

is, with a fixed number of reconstructed streamlines. As a result, the variability of connectivity

across regions is relatively high compared to the variability across subjects. Therefore, this

approach supports a careful investigation into relative changes in connectivity, but it is less

powerful in tracking absolute changes in connectivity. In our results, this effect can be observed

in figure 5.1, where the differences in energy from one state to another are much larger than

the differences in persistence energy across subjects for one single brain state. Significant

differences between subjects do exist, however, they are small with respect to the differences

between brain states. This effect may be a possible reason why we detected correlations with

functional activation across brain states, but not across subjects.

Linear models of brain dynamics For simplicity, we here chose to use a linear model of

dynamics on the structural connectivity graph (Kim and Bassett, 2019; Honey et al., 2009;

Gu et al., 2015) to calculate minimum control energy (Betzel et al., 2016). Even though this

model is the most widely used approach for network control theory in neuroscience, it may

be overly simplistic. Incorporating models of non-linear dynamics could prove useful in

the future as they could potentially improve the estimation of more realistic control energy

(Kim and Bassett, 2019). It is possible that an estimate based on more biologically plausible

dynamic models would allow us to detect more subtle relationships between controllability

and functional activation.

5.1.5 Conclusion

In this study, we investigated the control energy of functional brain states in patients with

22q11DS. This is the first study investigating the impact of aberrant structural connectivity

on brain dynamics using control energy in 22q11DS. We found that altered connectivity

in patients with 22q11DS leads to reduced energy impact for engaging frontal brain states,

whereas more occipital and parietal brain states were energetically more demanding for

patients with 22q11DS than HCs. Further, in a comparison of structural control energy with

resting-state fMRI activation, we found that the brain functions in an efficient way by engaging

less into energetically demanding brain states. In patients with 22q11DS the anticorrelation
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Chapter 5. Control energy to probe into dynamics of structural brain networks

between activation and control energy is weaker than in controls, suggesting a dynamic

inefficiency of brain function in these patients. In summary, we contribute one of the first

studies investigating a direct link between control energy and functional activation during rest

and provide promising insights for a better understanding of brain alterations in 22q11DS.
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5.2 Summary and outlook
In this chapter, we explored how structural connectivity of the brain may influence its dynamic

behavior and whether this link is altered in patients with 22q11DS. We combined resting-state

fMRI analysis for the retrieval of large-scale functional brain states with network control theory

to examine how the brain’s structural architecture may facilitate or impede the engagement

into these functional states. We found that aberrant anterior-posterior structural connectivity

in patients with 22q11DS makes it energetically more demanding to engage in occipital and

parietal brain states, but energetically less demanding to engage in DMN states and the

cingulo-prefrontal SN.

Of note, these alterations again include frontal areas and the ACC, similarly to the alter-

ations we already observed in terms of BOLD signal variability and large-scale brain state

activity (see chapters 3 and 4). Also the amygdala and hippocampus state, whose functional

activation we found to be relevant for anxiety (see section 4.2), was altered in terms of struc-

tural control energy. Together, these results point towards relevant alterations of the amygdala

in terms of structure and function, which could be a valid imaging predictor for anxiety and

psychosis, and should be subject to further investigation.

Further, we found that in all subjects the brain’s structure and function are linked to

minimize persistence control energy, with less time spent in energetically more demanding

brain states. We made the interesting observation that in patients with 22q11DS, this optimal

relationship was less strong; i.e., the aberrant control energy and functional activation duration

in patients lead to a rebalancing with relatively more time spent in energetically demanding

brain states. This inefficiency was worse in adult patients than in children, suggesting a

developmental decay.

When looking into each state separately, there was no linear relationship between control

energy and functional activation, pointing towards a more complex non-linear relationship,

possibly also from one state to another. Future studies should further delineate the nature of

this relationship.

Methodological considerations and future avenues for brain network control theory

It is worth noting that the control theory framework in its form used here has several method-

ological constrains that limit the conclusions that can be drawn from it in the context of brain

network analysis.

One first consideration is system stability. In the approach employed here, the structural

connectivity matrix is normalized by dividing by its largest eigenvalue and subtracting the

identity matrix in order to represent a stable dynamic system (see subsection 5.1.2, and

Betzel et al., 2016). Also of note, due to the symmetry of structural connectivity matrices,

all eigenvalues are real, and thus, only “passive", non-oscillatory eigenmodes are present.

Without external control inputs, a system normalized in such way tends to decay towards a zero

state (limt→∞ x(t ) = limt→∞ eAt x(0) = 0). While mathematically convenient, this assumption

is biologically unlikely. Indeed, it is rather difficult to say what a “zero state" would represent

in the context of the brain. In the field of network control theory and its application to the
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Chapter 5. Control energy to probe into dynamics of structural brain networks

brain, there have been efforts to overcome this limitation by conceiving control schemes

that stabilize the system at a specific oscillatory state, that is, in states of synchronization

between specific brain regions (Menara et al., 2019). Further, theoretical developments in

brain network control theory have so far been mostly validated on simulated functional data

(Menara et al., 2019; Muldoon et al., 2016). The continued refinement of theoretical work,

as well as the empirical validation based on measured functional activation, will be crucial

to one day reach sufficiently accurate models that allow to draw conclusions on biologically

valid brain dynamics. In the field of passive brain dynamics (in absence of an active control

input), great efforts to conceive and validate models of large-scale nonlinear brain dynamics

(reviewed in Breakspear, 2017) have shown that complex nonlinear dynamics play a central

role for cortical brain function. Our study presented here is a first attempt to combine network

control theory with functional activation measures, however, it is based on fairly simplistic

models and that should be expanded to more complex evaluations in the future.

Secondly, as any approach modeling the brain as network of structural connectivity, the

framework used here is bound by the assumptions that come with the network reconstruction

based on diffusion weighted MRI. While the diffusivity that can be measured through MRI is

clearly dependent on the white matter microstructure, it is still subject to ongoing research,

how microstructural properties of the white matter (myelination, axonal density, etc.) translate

into diffusivity (Beaulieu, 2009; Sampaio-Baptista et al., 2019). For example, higher axonal

organization, but also higher myelination, would both lead to increased fractional anisotropy

(Zatorre et al., 2012), but might possibly translate into different dynamic properties. Further,

neither direction, nor nature (excitatory vs. inhibitory connections) of axonal connections can

be reconstructed from dMRI, limiting reconstructed networks to undirected graphs with only

one type of connections. However, microscale brain structure has indeed marked influence on

macroscale dynamic brain function during rest (Wang et al., 2019a), and the incorporation of

such microscale structural information is promising towards better models of brain dynamics.

Taken together, these limitations restrict both model assumptions and possible conclusions

that can be drawn from any approach that adds dynamic models on a structural connectome.

Despite these general limitations of the framework, network control theory remains never-

theless a powerful approach, as it provides an interpretation about the impact of structural

brain network topology on active dynamic functional properties. The limitations mentioned

here should be kept in mind to avoid an “over-interpretation" of controllability results. Fur-

ther advances in the fields of network control theory, structural network reconstruction with

diffusion-weigthed MRI and empirical validation of dynamic models of brain function will

provide continued improvement and validation of model assumptions and interpretations.
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6 Summary and perspectives

This thesis was dedicated to explore dynamic properties of brain function and structure and

evaluate their potential to obtain a better understanding of psychosis vulnerability. In what

follows, I will summarize our main contributions and findings and explore promising future

directions for methodological developments and clinical research.

6.1 Summary
BOLD signal variability We have explored the potential of measuring functional brain dy-

namics through blood oxygenation level dependent (BOLD) signal variability. As whole-brain

BOLD signal variability maps are very high-dimensional, we have developed a partial least

squares correlation (PLSC)-based approach to investigate multivariate patterns of alterations

and age-relationship at the same time. Using this approach, we found that BOLD signal vari-

ability in patients with chromosome 22q11.2 deletion syndrome (22q11DS) is indeed altered

in a broad pattern distributed over the entire brain. The pattern of alterations was very similar

to reported BOLD signal variability alterations in schizophrenia. Further, we compared BOLD

signal variability alterations with static functional connectivity (sFC) alterations of the default

mode network (DMN) to test how changes in sFC may be driven by BOLD signal variabil-

ity. We found that patterns of alterations are only partly overlapping, suggesting a complex

non-linear relationship between sFC and BOLD signal variability. Finally, we used our multi-

variate PLSC-based approach to investigate BOLD variability in patients with 22q11DS with

prodromal psychotic symptoms who are at higher clinical risk for converging to schizophrenia.

Our results point towards developmental reductions of dynamic brain function in the dorsal

anterior cingulate cortex (dACC), a central node of the salience network (SN) that is known

to be implicated in salience processing and self-monitoring. These findings are in line with

previous literature on brain function and structure in the psychosis prodrome in 22q11DS

using non-dynamic measures.

Large-scale functional brain network dynamics In order to verify how alterations in BOLD

signal variance could be explained in terms of altered activation of large-scale functional

brain networks, we employed innovation-driven co-activation patterns (iCAPs). First, we

discovered that in the original form of the iCAPs framework, spatial overlap in brain states

can induce spurious temporal activation and co-activation of brain-states. To overcome this
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limitation, we developed a novel method for the recovery of iCAPs time courses in which we

exploit the information on changing functional activity that is provided by the framework. We

introduced spatio-temporal constraints that integrate knowledge about the spatial distribution

of all brain states, as well as temporal information on the timing of activation changes. We

showed that this approach is more powerful in recovering temporal overlap of brain states than

the original method. Then, we used this improved iCAPs framework to probe into aberrant

temporal activation of large-scale functional brain states in 22q11DS. As previously, we were

interested in patients at clinically increased risk to evolve towards schizophrenia. This time,

we investigated anxiety in addition to prodromal positive psychotic symptoms and found

patterns of functional alterations characteristic for both risk factors. Again, altered activation

of the cingulo-prefrontal SN, which includes the dACC, was observed in patients with higher

prodromal psychotic symptoms, suggesting that reduced BOLD signal variability observed

previously may be explained by reduced activation of the SN. Further, we observed compelling

alterations of coupling of the amygdala and hippocampus with dorsal and ventral subparts

of the prefrontal cortex in patients with higher levels of anxiety. Together, these results prove

the potential of studying brain dynamics in patients with 22q11DS to find clinically relevant

markers for psychosis vulnerability. As this study was the first published study using iCAPs in

a clinical population, it made also an important contribution by demonstrating the clinical

potential of the method in providing easily interpretable measures of aberrant brain function.

Structure-function relationship through control theory Finally, in the last part of this thesis,

we explored how the structural anatomy of the brain might be linked to the dynamic alterations

observed so far. We proposed to combine the analysis of brain dynamics through iCAPs with

principles from network control theory to explore how the brain’s structural connectivity

relates to its functional activation. We used iCAPs to obtain large scale functional brain states

and then applied network control theory to calculate how energetically easy or difficult it

is for an individual to engage in this functional brain state, given his/her structural wiring.

Using this approach, we tested for alterations in patients with 22q11DS and found aberrant

structural control energy in a set of brain states, which was partly overlapping with brain

states that were altered in terms of functional activation. Further, we discovered that the

brain operates in an intrinsically optimized way, spending less time in brain states that are

energetically more demanding. While this relationship existed in patients with 22q11DS, it

was weaker than in healthy subjects. We interpret this observation as a less efficient structure-

function relationship, as it suggests that patients tend to spend more time in energetically

more demanding brain states. This study was one of the first analyses of multimodal MRI data

in patients with 22q11DS and the first probing explicitly into a relationship between structural

and functional properties.

6.2 Future research directions
Linking different types of dynamic measures In chapter 3, we studied BOLD signal variability

and its relationship to seed-based sFC. Our results suggest a complex non-linear relationship

between the two measures that merits closer investigation. As already discussed in more
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detail at the end of chapter 3, a compelling approach to probe into such a relationship is

to explore different mechanistic models of changes in variance (Duff et al., 2018; Cole et al.,

2016). By comparing predicted changes in functional connectivity given different models of

BOLD variability with the actual functional connectivity, one can conclude on underlying

mechanisms based on the model that best predicts reality. Of note, our findings on BOLD

variability reported in chapter 3 partly overlap with alterations in large-scale brain state activa-

tion in chapter 4. An explicit exploration of the link between large-scale brain state activation

and BOLD variability would be an interesting follow-up of our initial study on connectivity-

variability relationship (section 3.1) that could provide further insights into the functional

significance of BOLD variability. Importantly, here we only investigated each measure sepa-

rately in terms of their alterations and correlations with clinical profiles. Nevertheless, also the

relationship between functional activation, functional connectivity and BOLD signal variabil-

ity may contain relevant information on noise levels and characteristic properties on how the

brain engages in functional systems. Such interactions between functional measures might

more reliably be linked to clinical and behavioral variables than each one on its own.

Explore further approaches to link structure and function In chapter 5, we explored the

link between activation and anatomy of large-scale functional brain states by using concepts

from network control theory. The advantage of this approach is that it incorporates a dynamic

model to not only describe structural network topology, but also provide a prediction on the

functional impact of the underlying structural connectivity. In our study we compared this

prediction in terms of control energy with the actual activation during rest and uncovered

that the brain seemingly operates in an inherently efficient way. We observed an alteration in

this functional efficiency in patients with 22q11DS that was increasing with age, which points

towards a developmental relevance that should be studied further.

Additionally, future studies could investigate the effects of different model parameters

of the dynamic model on the relationship between structural connectivity and functional

activation. For example, in a study on attention deficit hyperactivity disorder (ADHD), Hearne

et al. compared different scenarios of regional noise variability in a generative model that

predicts functional connectivity from structural connectivity (Hearne et al., 2019). The authors

found that clinically relevant structure-function alterations are related to regional heterogene-

ity of noise levels, providing a mechanistic explanation of the observed structure-function

breakdown, and proving the potential of uncovering structure-function relations to improve

our understanding of aberrant mechanisms that underlie mental diseases.

Another promising approach comes from the emerging field of graph signal processing

(Atasoy et al., 2016, 2017; Huang et al., 2018; Medaglia et al., 2018). Instead of simply predicting

functional activation from structural connectivity, this framework allows to decompose the

functional signal into harmonic components that represent differential coupling strength be-

tween functional activation and structural architecture. In this way it is possible to go beyond

a pure quantification of structure-function coupling strength, by considering functional com-

ponents that are coupled or decoupled with the structure, as well as the link between coupled

and decoupled components. The recently introduced structural-decoupling index is based on
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such a decomposition and uncovered a decoupling gradient from lower- to higher-level cogni-

tion with strong coupling in sensory regions, but higher decoupling in high-level cognitive

regions (Preti and Van De Ville, 2019). So far, this approach has not been applied in clinical

neuroscience, but the compelling findings in healthy populations underline its potential to

uncover relevant alterations in structure-function integration also in clinical populations.

Neurostimulation In chapter 5, we investigated the assumption of intrinsic control through

naturally changing neural activity. Another implication of control theory for brain research

is the possibility for controlling aberrant brain states from the outside by means of invasive

stimulation through, e.g., deep brain stimulation (Ashkan et al., 2017), or non-invasive stimu-

lation through transcranial magnetic or electric stimulation (Polanía et al., 2018). As targets for

neurostimulation have to be carefully chosen, simulations and dynamic modeling will be very

useful to select brain regions and systems of interest, as well as the best stimulation procedures.

Models from network control theory, such as the ones used in chapter 5 of this thesis, provide

the ideal framework for this goal. In these lines, one seminal study evaluating the effects

of neurostimulation based on control theory used simulations of functional connectivity

to evaluate the system-wide impact of focal stimulation at different targets (Muldoon et al.,

2016), and two further studies went beyond simulations by incorporating electrocorticography

(ECoG) measurements before and after neurostimulation (Stiso et al., 2018; Khambhati et al.,

2019). Notably, while therapy through neurostimulation is subject to active investigation, for

psychiatric disorders so far no therapeutic protocol has been fully established (Temel et al.,

2012; Polanía et al., 2018; Lefaucheur et al., 2017). In schizophrenia, a deeper understanding

of the underlying pathophysiology will be necessary to evaluate potential targets and develop

successful stimulation protocols. Future research on the pathophysiology together with fur-

ther advances in the field of brain network control theory will potentially allow to translate

improved knowledge of schizophrenia into most promising targets and protocols for brain

stimulation.

Going beyond standard diagnostic categories While we here mainly considered symptoms

and risk factors related to psychosis and schizophrenia, an emergent view is that mental disor-

ders represent a continuum rather than discrete diagnostic categories, and that there are com-

mon mechanisms underlying different mental disorders (Buckholtz and Meyer-Lindenberg,

2012; Insel and Cuthbert, 2015). This has been conceptualized by Caspi et al. in the gen-

eral psychopathology factor, or “p factor". Comparing several factor models, the authors

showed that a single factor best explains a range of psychiatric disorders, which points towards

a common underlying mechanism that may explain the high comorbidity among mental

diseases (Caspi et al., 2014). Given this clinical evidence, research on the pathophysiology

of mental diseases should incorporate symptoms, rather than categorical diagnostic labels,

and should include individuals with different diagnoses in order to delineate transdiagnostic

effects of psychopathology and specific characteristics for individual diseases. In the article

in section 4.2 of this thesis, we incorporated this concept by considering continuous symp-

toms scores of clinical risk variables rather than discrete diagnostic groups. Further research

should additionally consider symptoms and clinical variables related to other mental disor-
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6.2. Future research directions

ders such as ADHD, autism and mood disorders, which are also prevalent in patients with

22q11DS, but commonly only studied individually. In the general population, transdiagnostic

symptoms-based studies investigating the common substrate of multiple psychiatric disorders

have already given promising insights into the general pathophysiology of mental diseases

(Goodkind et al., 2015; McTeague et al., 2017; Xia et al., 2018). For example Xia et al. mapped

patterns of functional connectivity onto four cross-diagnostic dimensions of psychopathology

in a large sample of youth, which points towards the existence of biological subgroups that do

not map well onto clinical diagnostic categories (Xia et al., 2018). In future, larger datasets and

data sharing initiatives will allow more such transdiagnostic brain imaging studies to further

delineate biologically defined subtypes of psychopathology.

Integration of multimodal data beyond brain imaging Schizophrenia and mental diseases

in general are complex disorders: underlying brain alterations are manifold, with multiple

causes and factors leading to the final outbreak of the disease and, thus, the heterogeneity

in groups of patients with the same diagnostic label is huge (Insel, 2010; Insel and Cuthbert,

2015). Therefore, an improved understanding and ultimately better diagnostics and treat-

ment will likely only be obtained through the integration of multiple types of data. Here, we

made a first attempt in that direction by considering multimodal structural and functional

MRI data. However, there are important other risk factors that are for example of genetic

and environmental nature and cannot be measured through brain imaging (Buckholtz and

Meyer-Lindenberg, 2012). In order to successfully delineate these complex effects and mecha-

nisms, future research in mental health will have to develop algorithms for the integration of

multimodal data incorporating information on genes, behavior, and environmental factors in

addition to neuroimaging data (Bzdok and Meyer-Lindenberg, 2018). In the Geneva 22q11DS

cohort, future research in this direction should aim to integrate available genome sampling

data, as well as metabolic data such as cortisol levels. Further, an ongoing project is currently

using the “experience sampling method" to record data from subjects in the cohort. The

experience sampling method is a novel smartphone-based method that asks individuals to fill

in structured questionnaires at random moments during a day or week, allowing the assess-

ment of continuous changes in everyday activity (Larson and Csikszentmihalyi, 2014). In this

way, psychopathology and well-being can be assessed more directly in the moment, which

increases ecological validity and specificity of the assessed symptoms compared to classical

retrospective questionnaires or interviews. The integration of these experience sampling data

with brain imaging bares the large potential to detect more reliable and relevant markers of

psychopathology and improve the prediction of clinical outcomes.
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A Supplementary material for chapter 3

A.1 Supplementary material for section 3.1
In order to study the effect of motion on our results, we conducted the same analysis without

using motion scrubbing for motion correction on a dataset including the subjects which where

excluded after scrubbing. Instead of motion scrubbing, we applied regression of the six motion

parameters estimated during realignment.

In the following table, we compare the PLS correlation results before (left column) and

after applying stronger motion correction (right column, results included in the final version

of the present paper) in SDBOLD and PCC connectivity:
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Appendix A. Supplementary material for chapter 3

Table A.1

Without motion scrubbing With motion scrubbing

(61 patients, 59 controls) (50 patients, 50 controls)

SDBOLD

LV1

Latent variable 1: Latent variable 2:
Mainly Diagnosis-related Mainly Age-related

(a) Brain correlations, (b) Brain scores - age
all subjects correlation per group
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(c) Mainly Diagnosis-related voxel pattern (f) Mainly Age-related voxel pattern

Figure 2: Resulting brain score correlations (a,b,d,e) and corresponding voxelwise bootstrap scores (c,f) for the PLS correlation of SDBOLD.
(a) Across all subjects, the first LV shows a strong diagnosis e↵ect with moderate age and age by diagnosis e↵ects. (b) Separate correlation of
brain scores with age in every group gives a more detailed view: Brain scores are strongly increased in HC (diagnosis-e↵ect) and are strongly
correlated with age (age-e↵ect) in HC but not in 22q11.2DS (interaction-e↵ect). (c) The pattern of voxelwise bootstrap-scores (thresholded
at ±3) reveals that regions with decreased SDBOLD (red) are mainly part of the posterior DMN (PCC, PC, IPL), and also include large
medial regions (dACC) and a small cluster in the mPFC. Clusters with increased SDBOLD are mostly located in the temporal lobes, including
PHIP. (d) The second LV shows a strong age-e↵ect across all subject, as well as a negative e↵ect of diagnosis, but no e↵ect of interaction.
(e) Separate group-wise correlation between brain scores and age confirms the strong relationship with age in both controls and patients.
Brain scores are slightly increased in patients, a representation of the negative e↵ect of diagnosis. (f) Regions with positive age-relationship
are mostly located in subcortical areas such as THA and CAU, as well as in the SMA. CAU - caudate; dACC - dorsal anterior cingulate
cortex; IPC - inferior parietal cortex; mPFC - medial prefrontal cortex; OFC - orbitofrontal cortex; PCC - posterior cingulate cortex; PHIP
- parahippocampus; PC - precuneus; STG - superior temporal Gyrus; SMA - supplementary motor area; THA - thalamus.

6

Latent variable 1: Latent variable 2:
Mainly Diagnosis-related Mainly Age-related

(a) Brain correlations, (b) Brain scores - age
all subjects correlation per group
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(c) Mainly Diagnosis-related voxel pattern (f) Mainly Age-related voxel pattern

Figure 3: Resulting brain score correlations (a,b,d,e) and corresponding voxelwise bootstrap scores (c,f) for the PLS correlation of SDBOLD.
(a) Across all subjects, the first LV shows a strong diagnosis e↵ect

:
,
:::::
almost

:::
no age

::::
e↵ect

:
and

:
a
:::::::
negative age by diagnosis

::::
e↵ect. (b) Separate

correlation of brain scores with age in every group gives
:
an

:::::::::
alternative view

::
of

::::
those

:::::
results: Brain scores are

:::::
higher in 22q11.2DS (diagnosis-

e↵ect) and are
:::::::::
significantly correlated with age (age-e↵ect) in 22q11.2DS but not in HC (

::::::
negative

:
interaction-e↵ect). (c) The pattern of

voxelwise bootstrap-scores reveals that regions with
::::
lower

:
SDBOLD (

::::
blue) are mainly part of the posterior DMN (PCC, PC, IPL), and also

include large medial regions (dACC) and a small cluster in the mPFC. Clusters with
::::
higher

:
SDBOLD :::

(red)
:
are mostly located in the temporal

lobes, including PHIP. (d) The second LV shows a strong age-e↵ect across all subject, as well as a negative e↵ect of diagnosis, but no e↵ect
of interaction. (e) Separate group-wise correlation between brain scores and age confirms the strong relationship with age in both controls
and patients. Brain scores are slightly

::::
lower

:
in patients, a representation of the negative e↵ect of diagnosis. (f) Regions with positive age-

relationship are mostly located in subcortical areas such as THA and CAU, as well as in the SMA. CAU - caudate; dACC - dorsal anterior
cingulate cortex; IPC - inferior parietal cortex; mPFC - medial prefrontal cortex; OFC - orbitofrontal cortex; PCC - posterior cingulate cortex;
PHIP - parahippocampus; PC - precuneus; STG - superior temporal Gyrus; SMA - supplementary motor area; THA - thalamus.

7

The group effects in SDBOLD (PLS, LV1) along midline structures mainly

disappeared after stricter motion correction and those in the inferior

temporal lobe were significantly reduced. In return, another set of regions

appeared, including the dorso-lateral prefrontal cortex, the superior

temporal gyrus and caudate.
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A.1. Supplementary material for section 3.1

SDBOLD

LV2

Latent variable 1: Latent variable 2:
Mainly Diagnosis-related Mainly Age-related

(a) Brain correlations, (b) Brain scores - age
all subjects correlation per group
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(c) Mainly Diagnosis-related voxel pattern (f) Mainly Age-related voxel pattern

Figure 2: Resulting brain score correlations (a,b,d,e) and corresponding voxelwise bootstrap scores (c,f) for the PLS correlation of SDBOLD.
(a) Across all subjects, the first LV shows a strong diagnosis e↵ect with moderate age and age by diagnosis e↵ects. (b) Separate correlation of
brain scores with age in every group gives a more detailed view: Brain scores are strongly increased in HC (diagnosis-e↵ect) and are strongly
correlated with age (age-e↵ect) in HC but not in 22q11.2DS (interaction-e↵ect). (c) The pattern of voxelwise bootstrap-scores (thresholded
at ±3) reveals that regions with decreased SDBOLD (red) are mainly part of the posterior DMN (PCC, PC, IPL), and also include large
medial regions (dACC) and a small cluster in the mPFC. Clusters with increased SDBOLD are mostly located in the temporal lobes, including
PHIP. (d) The second LV shows a strong age-e↵ect across all subject, as well as a negative e↵ect of diagnosis, but no e↵ect of interaction.
(e) Separate group-wise correlation between brain scores and age confirms the strong relationship with age in both controls and patients.
Brain scores are slightly increased in patients, a representation of the negative e↵ect of diagnosis. (f) Regions with positive age-relationship
are mostly located in subcortical areas such as THA and CAU, as well as in the SMA. CAU - caudate; dACC - dorsal anterior cingulate
cortex; IPC - inferior parietal cortex; mPFC - medial prefrontal cortex; OFC - orbitofrontal cortex; PCC - posterior cingulate cortex; PHIP
- parahippocampus; PC - precuneus; STG - superior temporal Gyrus; SMA - supplementary motor area; THA - thalamus.

6

Latent variable 1: Latent variable 2:
Mainly Diagnosis-related Mainly Age-related

(a) Brain correlations, (b) Brain scores - age
all subjects correlation per group
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(d) Brain correlations, (e) Brain score - age
all subjects correlation per group
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(c) Mainly Diagnosis-related voxel pattern (f) Mainly Age-related voxel pattern

Figure 3: Resulting brain score correlations (a,b,d,e) and corresponding voxelwise bootstrap scores (c,f) for the PLS correlation of SDBOLD.
(a) Across all subjects, the first LV shows a strong diagnosis e↵ect

:
,
:::::
almost

:::
no age

::::
e↵ect

:
and

:
a
:::::::
negative age by diagnosis

::::
e↵ect. (b) Separate

correlation of brain scores with age in every group gives
:
an

:::::::::
alternative view

::
of

::::
those

:::::
results: Brain scores are

:::::
higher in 22q11.2DS (diagnosis-

e↵ect) and are
:::::::::
significantly correlated with age (age-e↵ect) in 22q11.2DS but not in HC (

::::::
negative

:
interaction-e↵ect). (c) The pattern of

voxelwise bootstrap-scores reveals that regions with
::::
lower

:
SDBOLD (

::::
blue) are mainly part of the posterior DMN (PCC, PC, IPL), and also

include large medial regions (dACC) and a small cluster in the mPFC. Clusters with
::::
higher

:
SDBOLD :::

(red)
:
are mostly located in the temporal

lobes, including PHIP. (d) The second LV shows a strong age-e↵ect across all subject, as well as a negative e↵ect of diagnosis, but no e↵ect
of interaction. (e) Separate group-wise correlation between brain scores and age confirms the strong relationship with age in both controls
and patients. Brain scores are slightly

::::
lower

:
in patients, a representation of the negative e↵ect of diagnosis. (f) Regions with positive age-

relationship are mostly located in subcortical areas such as THA and CAU, as well as in the SMA. CAU - caudate; dACC - dorsal anterior
cingulate cortex; IPC - inferior parietal cortex; mPFC - medial prefrontal cortex; OFC - orbitofrontal cortex; PCC - posterior cingulate cortex;
PHIP - parahippocampus; PC - precuneus; STG - superior temporal Gyrus; SMA - supplementary motor area; THA - thalamus.

7

The age-effects of SDBOLD (PLS, LV2) are not significantly changed, except

for a loss in statistical power and robustness, probably related to the

exclusion of a significant number of participants during motion correction.
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Appendix A. Supplementary material for chapter 3

PCC con-

nectivity

LV1

Latent variable 1: Latent variable 2:
Mainly Diagnosis-related Mainly Age-related

(a) Brain correlations, (b) Brain scores - age
all subjects correlation per group
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(c) Diagnosis-related voxel pattern (f) Age-related voxel pattern

Figure 4: Resulting brain score correlations (a,b,d,e) and corresponding voxelwise bootstrap scores (c,f) for the PLS correlation of functional
connectivity with seed region in the PCC in green. (a) Across all subjects, the first LV shows a strong diagnosis e↵ect with moderate age-,
but no age by diagnosis e↵ect. (b) Separate correlation of brain scores with age in every group gives a more detailed view: Brain scores are
strongly increased in HC (diagnosis-e↵ect) and are strongly correlated with age (age-e↵ect) in both groups (no interaction-e↵ect). (c) The
pattern of voxelwise bootstrap-scores (thresholded at ±3) reveals that seed functional connectivity is increased (blue) in the frontoparietal
network (IPC and MFG). As the frontoparietal network is anti-correlated with the PCC, this indicates actually a weaker negative correlation
with those regions. PCC connectivity is decreased (red) in regions within the DMN, such as the mPFC and PC and in the TPO and REC.
(d) The second LV shows a strong age-e↵ect across all subject, as well as negative e↵ects of diagnosis and age by diagnosis interaction.
(e) Separate group-wise correlation between brain scores and age confirms the strong relationship with age in both groups. Brain scores
are slightly increased in patients (negative diagnosis-e↵ect) and the correlation is stronger in 22q11.2DS (negative e↵ect of interaction). (f)
Regions with positive age-relationship are mostly located in subcortical areas such as THA and CAU, as well as parts of IN. One cluster in
the SMA shows negative age-relationship. CAU - caudate; dACC - dorsal anterior cingulate cortex; IN - insula; IPC - inferior parietal cortex;
mPFC - medial prefrontal cortex; PC - precuneus; PCC - posterior cingulate cortex; REC - gyrus rectus; sFC - superior frontal cortex; SMA
- supplementary motor area; TPO - temporal poles; THA - thalamus; seed - region of interest in the posterior cingulate cortex.

8

(a) (b)

Figure 4: Average PCC connectivity
:
, (a) original values (b) within-

subject z-scores. IPC - inferior parietal cortex; mPFC - medial pre-
frontal cortex; PCC - posterior cingulate cortex; seed - region of
interest in the posterior cingulate cortex.

4. Discussion

In the present study we employed multivariate PLS cor-
relation to reveal altered brain function and development
in 22q11.2DS. We used two di↵erent approaches to an-
alyze resting-state BOLD signals: BOLD signal fluctua-
tions assessed by the standard deviation of every voxel’s
temporal signal and seed-based functional connectivity be-
tween the PCC and the other brain voxels. With both
approaches we were able to reveal multivariate patterns of
altered brain function in 22q11.2DS, as well as areas with
strongly age-related brain function. The first LV in both
measures was representing areas of altered brain function
related to 22q11.2DS. Only in SDBOLD, there was an ef-
fect of age by diagnosis interaction, suggesting an altered
developmental trajectory of SDBOLD in those areas. The
second, less significant LV of both measures revealed the
brain regions with the strongest age-relationship in both
groups. The corresponding patterns were not overlapping
with the patterns of the first LV and patients had the
same developmental curve as controls in those areas. In
the following, the two LVs and their corresponding brain
salience patterns will be discussed separately for SDBOLD

and PCC connectivity. Finally, the relationship between
SDBOLD and functional connectivity will be examined on
the basis of the comparison between the patterns of altered
brain function.

SDBOLD alterations in 22q11.2DS.
To our best knowledge, this is the first study to date
analyzing BOLD signal variability in 22q11.2DS. During
our first analysis we showed that z-scored SDBOLD is al-
tered in a broad pattern, showing both increases and de-
creases in patients with 22q11.2DS (LV1, see figure 3c).
SDBOLD is decreased in large parts of the DMN includ-

Latent variable 1: Mainly Diagnosis-related
(a) Brain correlations (b) Brain score - age

all subjects correlation per group
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(c) Diagnosis-related voxel pattern

Figure 5:
::::
PCC

:
connectivity:

:::::
PLS

:::::::::
correlation

::::::
analysis

::::::
results

:
in

:::
one

::::::::
significant

:::::
latent

::::::
variable. (a)

:::
The

:::::
design

:::::::
saliences

::
of
:

the LV

::::
reveal

:
a strong

::::::
positive

:
e↵ect

::
of diagnosis

:
,
::
as

::::
well

::
as

:
a
::::::::

moderade

::::::
negative

::::::::
age-e↵ect

:::
and

::
a
:::::
small

::::::
positive

:
e↵ect

:
of
:::::::::

interaction. (b)
Separate correlation of brain scores with age in every group gives

::
an

:::::::::
alternative

:
view

::
on

::::
those

::::::
results: Brain scores are

:::::
higher

:
in

22q11.2DS (diagnosis-e↵ect) and are
:::::::
negatively

:
correlated with age

(
::::::
negative age-e↵ect) in both groups.

::::
The

:::::::::
correlation

::
is

::::::
stronger

::
in

::::::
patients

::::
than

::
in

:::::::
controls (

::::
small

::::::
positive

:
interaction-e↵ect) (c) The

pattern of
::::
brain

:::::::
saliences

:::
can

::::
thus

::
be

:::::::::
interpreted

::
as

::::
areas

::
of
:::::
higher

(
::
red)

:::
and

::::
lower

::::::
(blue)

::::
PCC connectivity

:
in
:
22q11.2DS,

:::::
where

:
PCC

:::::::::
connectivity

:
is

:::
also

::::::::
negatively

:
(
:::
red)

::::
and

:::::::
positively

::
(blue)

:::::::
correlated

:::
with

::::
age.

::::
PCC

::::::::::
connectivity in 22q11.2DS

:
is
:::::
higher

:::::
(red)

::
in the fron-

toparietal network (IPC and MFG). As the frontoparietal network is
anti-correlated with the PCC, this indicates actually a weaker nega-
tive correlation with those regions. PCC connectivity

:
in

:
22q11.2DS

is
::::
lower (

:::
blue) in the and in the TPO and REC. CAU - caudate;

dACC - dorsal anterior cingulate cortex; IN - insula; IPC - inferior
parietal cortex; mPFC - medial prefrontal cortex; PC - precuneus;
PCC - posterior cingulate cortex; REC - gyrus rectus; sFC - superior
frontal cortex; SMA - supplementary motor area; TPO - temporal
poles; THA - thalamus; seed - region of interest in the posterior
cingulate cortex.

9

The pattern showing alterations and correlation with age in PCC

connectivity is very similar to the one without motion scrubbing.
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A.1. Supplementary material for section 3.1

PCC con-

nectivity

LV2

Latent variable 1: Latent variable 2:
Mainly Diagnosis-related Mainly Age-related

(a) Brain correlations, (b) Brain scores - age
all subjects correlation per group
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(c) Diagnosis-related voxel pattern (f) Age-related voxel pattern

Figure 4: Resulting brain score correlations (a,b,d,e) and corresponding voxelwise bootstrap scores (c,f) for the PLS correlation of functional
connectivity with seed region in the PCC in green. (a) Across all subjects, the first LV shows a strong diagnosis e↵ect with moderate age-,
but no age by diagnosis e↵ect. (b) Separate correlation of brain scores with age in every group gives a more detailed view: Brain scores are
strongly increased in HC (diagnosis-e↵ect) and are strongly correlated with age (age-e↵ect) in both groups (no interaction-e↵ect). (c) The
pattern of voxelwise bootstrap-scores (thresholded at ±3) reveals that seed functional connectivity is increased (blue) in the frontoparietal
network (IPC and MFG). As the frontoparietal network is anti-correlated with the PCC, this indicates actually a weaker negative correlation
with those regions. PCC connectivity is decreased (red) in regions within the DMN, such as the mPFC and PC and in the TPO and REC.
(d) The second LV shows a strong age-e↵ect across all subject, as well as negative e↵ects of diagnosis and age by diagnosis interaction.
(e) Separate group-wise correlation between brain scores and age confirms the strong relationship with age in both groups. Brain scores
are slightly increased in patients (negative diagnosis-e↵ect) and the correlation is stronger in 22q11.2DS (negative e↵ect of interaction). (f)
Regions with positive age-relationship are mostly located in subcortical areas such as THA and CAU, as well as parts of IN. One cluster in
the SMA shows negative age-relationship. CAU - caudate; dACC - dorsal anterior cingulate cortex; IN - insula; IPC - inferior parietal cortex;
mPFC - medial prefrontal cortex; PC - precuneus; PCC - posterior cingulate cortex; REC - gyrus rectus; sFC - superior frontal cortex; SMA
- supplementary motor area; TPO - temporal poles; THA - thalamus; seed - region of interest in the posterior cingulate cortex.

8

There was only one significant latent

variable in the PLS correlation analy-

sis of PCC connectivity after applying

motion scrubbing and excluding addi-

tional subjects.

Probably due to a loss of statistical power by excluding subjects, only one

latent variable remains significant.
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To further understand the relationship between our results in SDBOLD and motion, we

computed the Spearman correlation coefficient between every subject’s mean framewise

displacement and the brain scores resulting from the PLS correlation analysis of SDBOLD. The

following two plots show that there is indeed a strong association with motion in both latent

variables, but that after motion scrubbing this relationship was significantly reduced.

Table A.2

Without motion scrubbing With motion scrubbing

(61 patients, 59 controls) (50 patients, 50 controls)

SDBOLD

LV1

(Mainly

diagnosis-

related) 0.1 0.2 0.3 0.4 0.5 0.6

mean FD

-200

-150

-100

-50

0

50

100

150

B
ra

in
 s

co
re

s1

HC: rho = 0.56, p = 0.000
22q11DS: rho = 0.70, p = 0.000

0.05 0.1 0.15 0.2 0.25 0.3

mean FD, after scrubbing

-150

-100

-50

0

50

100

150

B
ra

in
 s

co
re

s1

HC: rho = 0.39, p = 0.005
22q11DS: rho = 0.34, p = 0.016

In the mainly diagnosis-related pat-

tern (SDBOLD, LV1), the correlation

with motion is significant in both

groups, but stronger in patients.

In the mainly diagnosis-related pat-

tern (LV1, see figures 3a to 3c), the cor-

relation with motion is still significant

in both groups, but much lower than

before. The correlation strength does

not differ anymore between the two

groups.

SDBOLD

LV2

(Mainly

age-

related) 0.1 0.2 0.3 0.4 0.5 0.6

mean FD

-100

-50

0

50

100

B
ra

in
 s

co
re

s2

HC: rho = -0.42, p = 0.001
22q11DS: rho = -0.19, p = 0.150

0.05 0.1 0.15 0.2 0.25 0.3

mean FD, after scrubbing

-100

-50

0

50

100

B
ra

in
 s

co
re

s2

HC: rho = -0.31, p = 0.030
22q11DS: rho = -0.20, p = 0.176
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In the mainly age-related pattern, only

healthy controls show a significant

negative correlation with motion. This

effect corresponds to the negative cor-

relation between age and motion (see

main text, table 2).

In the mainly age-related pattern (see

main text, figures 3d to 3f) there is still

a significant correlation with motion

only in healthy controls. However, the

correlation magnitude is reduced and

the p-value increased to p=0.03. The

association between age and motion

in healthy controls is thus less strong

than before.

These two results show that we were able to reduce the motion effects in our results by

applying motion scrubbing and excluding further subjects, even though also after scrubbing

we still observe a significant relationship with motion. This correlation however is now

significantly reduced and does not differ between the groups anymore. As motion is an issue,

which is very difficult to address in clinical populations such as ours (see also main text,

section Methodological Considerations), we think that this is the best correction we can obtain

without losing too much statistical power or introducing selection bias in our data.
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A.2 Supplementary material for section 3.2

Table A.3 – Demographic characteristics of the five subjects with a psychotic disorder according
to DSM-IV-TR criteria.

subject diagnosis* age gender FSIQ

S1 psychosis 24.97 female 63

S2 schizoaffective disorder 23.05 male 56

S3 psychosis 18.13 female 67

S4 schizophrenia 14.09 female 46

S5 psychosis 14.28 male 68

* The presence of psychiatric disorders was evalutated during a clinical interview with the
patients using the Diagnostic Interview for Children and Adolescents Revised (DICA-R; Reich,

2000), the psychosis supplement from the Kiddie-Schedule for Affective Disorders and
Schizophrenia Present and Lifetime version (K-SADS-PL; Kaufman et al., 1997) and the

Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I; First et al., 1996)..

A.2.1 Subjects already included in previous studies.

The cohort is partly overlapping with our previous resting-state fMRI studies: 30 subjects (8

PS+, 6 PS-, 16 HC) have been also included in Debbané et al. (2012), 51 subjects (10 PS+, 8 PS-,

33 HC) in Scariati et al. (2014), 56 subjects (10 PS+, 11 PS-, 35 HC) in Padula et al. (2015), 54

subjects (13 PS+, 9 PS-, 32 HC) in Scariati et al. (2016b), 79 subjects (16 PS+, 16 PS-, 47 HC) in

Padula et al. (2017b), 83 subjects (16 PS+, 19 PS-, 48 HC) in Zöller et al. (2017).

A.2.2 Summary on subject exclusion criteria.

From our initial sample of 97 patients and 90 HCs between 10 and 30 years old, a total of

61 participants had to be excluded to ensure the good quality of the data. 4 subjects (3 with

22q11DS, 1 HC) were excluded because they reported having fallen asleep during the scanning

session. Another 31 subjects (24 with 22q11DS, 7 HC) had to be excluded due to excessive

motion of more than 3 mm in translation or 3° in rotation, and the data of 20 more subjects (7

with 22q11DS, 13 HC) were not used because parts of the cortex were not captured. From the

remaining dataset, 6 patients with 22q11DS were excluded after motion scrubbing (Power et al.

2012, see paragraph Preprocessing) as less than 100 rs-fMRI scans, corresponding to 4 min of

scanning time, remained after exclusion of frames with a framewise displacement below the

threshold of 0.5 mm. Supplementary Table A.4 shows a summary of motion data for the three

groups.

A.2.3 Analysis of motion effects.

In fMRI analysis, in particular when investigating the standard deviation of the BOLD signal,

motion is a major concern. To explicitely test for motion effects in our data, we computed
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PS+: rho = 0.27, p = 0.159
PS-: rho = 0.46, p = 0.013
HC: rho = 0.31, p = 0.009
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PS+: rho = 0.16, p = 0.413
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HC: rho = -0.20, p = 0.097
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PS-: rho = -0.01, p = 0.958
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A

B

with scrubbing and regression (final results):

Figure A.1 – Correlation of brain scores with average framewise displacement (FD) for results
comparing PS+ and PS- (A) and results comparing the two sub-groups with 22q11DS to healthy
controls (B).

the correlation between brain scores and motion (i.e. the average framewise displacement).

Figure A.1 shows the correlations for the four correlation components.
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Table A.4 – fMRI motion parameters. FD - framewise displacement.

PS+ PS- HC correlation with

age (p value)

Mean translation x 0.15±0.18 0.17±0.16 0.13±0.14 0.0270 (0.7640)

(mm) y 0.20±0.17 0.17±0.15 0.19±0.16 -0.1123 (0.2106)

z 0.38±0.37 0.34±0.23 0.30±0.29 -0.1607 (0.0723)

Mean rotation rx 0.40±0.32 0.38±0.32 0.39±0.37 -0.0963 (0.2832)

(degree) ry 0.22±0.19 0.18±0.11 0.21±0.19 -0.0873 (0.3308)

rz 0.21±0.22 0.25±0.20 0.17±0.17 -0.1212 (0.1765)

Mean FD (mm), 0.21±0.12 0.25±0.12 0.16±0.09 -0.1711 (0.0555)

before scrubbing

Mean FD (mm), 0.17±0.07 0.19±0.06 0.13±0.05 -0.1396 (0.1190)

after scrubbing
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Table A.5 – PS+ vs. PS- first correlation component: Table of clusters in brain salience pattern
(see figure 3.8C).

Cluster cluster size (voxels) Max AAL Regions (% of Cluster)

1 980 5.5996 Cingulum Mid L (40.00)

Cingulum Mid R (27.24)

2 356 4.8309 Precuneus L (41.57)

Parietal Inf L (27.25)

3 291 4.4196 Postcentral L (51.20)

4 260 4.1516 Postcentral L (61.15)

5 239 -4.7206 Temporal Inf R (61.51)

6 174 -4.9847 Frontal Mid Orb R (72.41)

7 162 4.1728 Insula R (58.64)

8 154 4.1949 Postcentral R (86.36)

9 145 4.5537 Frontal Sup R (46.90)

Supp Motor Area R (32.41)

10 134 -3.8843 Parietal Inf R (46.27)

Angular R (46.27)

11 133 3.7223 Parietal Sup R (66.92)

12 124 4.5115 Insula L (70.97)

13 123 -5.0961 Frontal Inf Oper R (48.78)

Rolandic Oper R (36.59)

14 123 3.3118 Postcentral R (82.93)

15 121 -4.7685 Precentral L (48.76)

Frontal Inf Oper L (33.06)

16 115 3.8668 Temporal Sup L (77.39)

17 105 4.0302 Caudate R (57.14)
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Table A.6 – PS+ vs. PS- second correlation component: Table of clusters in brain salience
pattern (see figure 3.9C).

Cluster cluster size (voxels) Max AAL Regions (% of Cluster)

1 2390 5.6646 Occipital Mid L (24.98)

Occipital Sup R (14.94)

Occipital Mid R (12.89)

2 629 -4.9480 Frontal Mid L (34.02)

Frontal Inf Tri L (17.17)

3 283 -5.4507 Frontal Sup L (37.46)

Supp Motor Area L (31.80)

4 118 3.7825 Parietal Inf L (68.64)

5 114 -4.9117 Supp Motor Area R (57.89)

6 112 -4.3542 Temporal Sup R (100.00)

7 102 -6.3650 Supp Motor Area R (66.67)

8 98 4.2737 Fusiform L (69.39)
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Table A.7 – 22q11DS vs. HC first correlation component: Table of clusters in brain salience
pattern (see figure 3.10C).

Cluster cluster size (voxels) Max AAL Regions (% of Cluster)
1 2944 -8.4020 Temporal Inf L (21.81)

Temporal Mid L (15.05)
Temporal Pole Sup L (11.55)
Insula L (9.78)

2 1855 -10.9609 Temporal Sup R (15.36)
Temporal Pole Sup R (13.42)
Caudate R (12.78)
Insula R (11.70)

3 1616 7.3895 Precuneus R (20.05)
Calcarine L (19.25)
Calcarine R (17.57)

4 1141 5.4858 Frontal Mid R (40.14)
Frontal Mid Orb R (28.66)

5 951 -5.3670 Paracentral Lobule L (22.92)
Precuneus L (19.03)
Supp Motor Area L (15.98)

6 854 6.6592 Parietal Inf R (43.33)
Temporal Mid R (25.29)

7 688 6.5589 Parietal Inf L (69.04)
8 499 -4.5475 Temporal Inf R (45.49)

Hippocampus R (22.85)
9 403 -4.6535 Occipital Mid L (45.66)

Occipital Inf L (30.52)
10 379 5.8835 Frontal Mid Orb L (51.45)
11 304 4.5216 Frontal Sup Medial L (50.99)
12 293 4.5203 Precentral L (54.61)
13 284 -5.4070 Thalamus L (96.83)
14 283 7.7556 Cingulum Mid R (34.28)

Cingulum Post L (22.61)
15 275 -5.7140 Supp Motor Area R (70.18)
16 258 4.9003 Frontal Mid R (46.51)

Frontal Inf Oper R (29.46)
17 250 5.7538 Thalamus R (95.20)
18 235 4.6995 Occipital Mid R (59.15)
19 201 4.6118 Cingulum Ant R (37.81)

Frontal Sup Orb Medial L (26.37)
20 139 -3.8166 Postcentral R (58.27)
21 131 -5.2702 Occipital Sup L (53.44)
22 127 4.8752 Frontal Mid L (54.33)
23 118 4.5912 Temporal Mid L (100.00)
24 111 4.1011 Frontal Mid L (59.46)
25 110 3.6418 Occipital Mid L (69.09)
26 108 -4.1782 Putamen R (100.00)
27 106 -4.7828 Occipital Sup R (66.04)
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Table A.8 – 22q11DS vs. HC second correlation component: Table of clusters in brain salience
pattern (see figure 3.11C).

Cluster cluster size (voxels) Max AAL Regions (% of Cluster)

1 3048 5.9324 Frontal Mid L (18.18)

Supp Motor Area L (13.32)

Supp Motor Area R (11.88)

Frontal Sup L (10.66)

2 408 4.0058 Parietal Inf L (67.16)

3 380 -4.6755 Temporal Inf R (58.95)

4 347 -5.0529 Caudate L (17.58)

Frontal Sup Orb L (15.27)

Rectus L (14.41)

Rectus R (12.39)

5 226 4.3457 Temporal Sup R (61.95)

6 218 -3.8788 Occipital Mid R (54.13)

7 207 -5.3421 Fusiform L (43.48)

ParaHippocampal L (31.88)

8 199 -4.7324 Temporal Inf L (79.40)

9 199 -4.3567 Frontal Inf Oper L (33.17)

Precentral L (29.65)

10 123 -4.9940 Frontal Inf Oper R (35.77)

Rolandic Oper R (33.33)

11 123 -4.7006 Frontal Mid L (93.50)

12 119 -5.0014 Putamen R (70.59)

13 115 -5.0571 Fusiform R (52.17)

14 114 -3.9913 Cuneus L (52.63)

15 102 -3.9348 Occipital Mid L (100.00)

16 101 -3.8270 Amygdala R (53.47)

17 97 3.6622 Postcentral R (64.95)
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B.1 Supplementary material for section 4.1

B.1.1 Supplementary tables

Table B.1 – Across noise levels and simulated transient numbers, RMSE (mean and standard
deviation across 10 repetitions) between z-scored ground truth and fitted time courses with
unconstrained (top values) or transient-informed (bottom values) regression. In each case,
the better estimate is highlighted in bold.

RMSE SNR
no noise 10 dB 5 dB 0 dB -5 dB -10 dB

Poisson
parame-
ter of
simu-
lated
tran-
sients

realistic
0.79±0.03 0.79±0.03 0.79±0.03 0.79±0.03 0.79±0.02 0.79±0.02
0.00±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.04±0.00

20
0.80±0.03 0.80±0.03 0.80±0.03 0.80±0.03 0.80±0.03 0.80±0.03
0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.03±0.00

15
0.79±0.03 0.79±0.03 0.79±0.03 0.79±0.03 0.79±0.03 0.79±0.03
0.00±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.03±0.00

10
0.77±0.04 0.77±0.04 0.77±0.04 0.77±0.04 0.77±0.04 0.77±0.04
0.00±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.04±0.00

5
0.78±0.02 0.78±0.02 0.78±0.02 0.78±0.02 0.78±0.02 0.78±0.02
0.00±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.03±0.00 0.06±0.00
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Table B.2 – Across noise levels and simulated transient numbers, average temporal overlap in
simulated ground truth and estimated time courses (mean and standard deviation across 10
repetitions) with unconstrained (top values) or transient-informed (bottom values) regression.
In each case, the better estimate is highlighted in bold.

average number
of co-active iCAPs

SNR
ground truth no noise 10 dB 5 dB 0 dB -5 dB -10 dB

Poisson
parame-
ter of
simu-
lated
tran-
sients

realistic 5.63±0.39
1.23±0.22 1.24±0.22 1.24±0.22 1.24±0.22 1.24±0.22 1.23±0.21
5.63±0.39 5.60±0.38 5.65±0.38 5.63±0.39 5.65±0.41 5.58±0.43

20 5.87±0.50
1.35±0.23 1.36±0.23 1.36±0.23 1.36±0.24 1.37±0.24 1.37±0.24
5.87±0.50 5.89±0.47 5.88±0.51 5.88±0.49 5.89±0.49 5.93±0.48

15 5.98±0.57
1.41±0.21 1.41±0.21 1.41±0.21 1.41±0.21 1.41±0.22 1.42±0.23
5.98±0.57 5.99±0.56 5.96±0.55 5.98±0.57 5.96±0.57 5.96±0.53

10 5.67±0.41
1.44±0.23 1.44±0.22 1.44±0.23 1.44±0.23 1.43±0.22 1.42±0.22
5.67±0.41 5.67±0.42 5.67±0.42 5.67±0.39 5.67±0.44 5.61±0.32

5 5.72±0.22
1.39±0.16 1.39±0.16 1.40±0.16 1.38±0.16 1.40±0.16 1.39±0.14
5.72±0.22 5.72±0.21 5.70±0.19 5.69±0.20 5.71±0.24 5.79±0.23

Table B.3 – Across noise levels and simulated transient numbers, average percentage of iCAPs
appearances with the same activation sign in simulated ground truth and estimated time
courses (mean and standard deviation across 10 repetitions) with unconstrained (top val-
ues) or transient-informed (bottom values) regression. In each case, the better estimate is
highlighted in bold.

percentage of
co-activations
with same sign

SNR
ground truth no noise 10 dB 5 dB 0 dB -5 dB -10 dB

Poisson
parame-
ter of
simu-
lated
tran-
sients

realistic 52.73±3.62
99.00±1.40 98.99±1.40 99.01±1.40 98.99±1.46 98.89±1.48 99.52±0.87
52.73±3.62 52.66±3.69 53.04±3.53 52.92±3.59 53.08±3.43 52.77±3.68

20 54.99±3.80
99.77±0.57 99.77±0.57 99.77±0.57 99.79±0.51 99.79±0.50 99.71±0.54
54.99±3.80 54.74±4.01 54.94±3.80 55.01±3.43 54.92±3.80 55.34±3.53

15 54.92±2.44
99.47±1.07 99.49±1.00 99.50±0.98 99.40±1.02 99.49±1.03 99.62±0.71
54.92±2.44 54.95±2.33 54.86±2.42 54.72±2.32 54.98±2.55 54.94±2.68

10 53.53±2.84
99.33±1.36 99.33±1.36 99.34±1.35 99.35±1.24 99.25±1.06 99.68±0.68
53.53±2.84 53.48±3.01 53.35±2.70 53.45±2.68 53.31±2.75 53.22±3.11

5 52.96±1.72
99.70±0.47 99.74±0.47 99.70±0.49 99.66±0.47 99.79±0.42 99.71±0.49
52.96±1.72 52.99±1.78 52.67±1.35 52.94±1.86 52.95±1.69 52.69±1.40
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B.1.2 Supplementary figures
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Figure B.1 – Results from consensus clustering for cluster numbers K from 10 to 25. A) Ordered
consensus matrices M . The consensus matrix for K = 18 shows the sharpest separation
between values close to one on the diagonal and values close to zero on the off-diagonal of the
matrix. B) CDF for tested cluster numbers K , AUC of CDF for each K and successive difference
in the AUC with increasing K . The optimum number of clusters, at which the CDF has the
most horizontal shape, was K = 18.

139



Jo
u

rn
al

A
rt

ic
le

Jo
u

rn
al

A
rt

ic
le

Jo
u

rn
al

A
rt

ic
le

Appendix B. Supplementary material for chapter 4

F
ig

u
re

B
.2

–
Sp

at
ia

li
C

A
P

s
m

ap
s

M̃
re

tr
ie

ve
d

fr
o

m
K

-m
ea

n
s

cl
u

st
er

in
g

(K
=

18
).

M
ap

s
ar

e
sh

ow
n

fo
r

z-
sc

o
re

s
>

2.
3,

co
o

rd
in

at
es

in
d

ic
at

e
th

e
cu

rs
o

r
lo

ca
ti

o
n

o
ft

h
e

sh
ow

n
o

rt
h

o
go

n
al

vi
ew

.

140



Jo
u

rn
alA

rticle
Jo

u
rn

alA
rticle

Jo
u

rn
alA

rticle

B.1. Supplementary material for section 4.1
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Figure B.3 – Evaluation of soft assignment factors ξ on simulated time courses with realistic
Poisson constants and a) SNR=5 dB, b) SNR=0 dB and c) SNR=-5 dB. Error bars indicate mean
and standard deviation for 10 repetitions of the simulations. BIC graphs show the BIC for each
repetition in blue color. It can be seen that the RMSE (first line) is converging very fast for all
SNR values, with a knee point at ξ= 1.1 for all SNR. Correlation curves (second line) all show
the same shape as also observed in experimental data (see subsection IV.D and Fig. 6 of the
main text), with a local maximum at around ξ= 1.05. The local minimum before increasing
correlations that indicate strong overfitting depends on the noise level and also varies across
multiple repetitions (large error bars). BIC curves (third line) show high variability between
repetitions, but all have their knee point at the same value of ξ = 1.05. In summary, these
results show that both correlation and BIC are valid criteria that properly estimate the best fit,
which here was evaluated on ground truth by computing the RMSE.
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B. Similarity between ICs C. Similarity between iCAPsA. Similarity iCAPs - ICs

Figure B.4 – In order to demonstrate differences between iCAPs and ICA, the to date proba-
bly most commonly used approach for the analysis of networked brain activity, we applied
repeated ICA (ICASSO) to our dataset and matched the 18 retrieved stable independent com-
ponents (ICs) to the iCAPs with the Hungarian algorithm. A) iCAPs and ICs are very similar. B)
However, since ICA is based on a criterion of independence, ICs are not correlated between
themselves. C) In contrast, many iCAPs are spatially correlated.

A. ICA time courses B. iCAPs, unconstrained C. iCAPs, transient-informed, ! = 1.1

Figure B.5 – Network time courses of ICs shown in Fig. B.4 for one typical subject. A) ICA time
courses are very variable and do not present the clear activation block that can be observed in
iCAPs with unconstrained regression (B) or with transient-informed regression (C).
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B.1.3 Supplementary results

Experimental data: effects of age and gender

In order to test whether properties of iCAPs may be relevant for development, we computed

activation and co-activation of all iCAPs for transient-informed regression with ξ= 1.1 and

tested for effects of age and gender. Motion was included as covariate and reported p-values

were Bonferroni-corrected for the 18 comparisons.

There were no significant gender differences in the total duration of any network. To test

for effects of age, we fitted a linear model including age, gender and their interaction to model

the total activity time of each iCAP. The duration of iCAP 4 (primary visual) increased with age

(p=0.006), while the activation time of iCAP 16 (amygdala/hippocampus/fusiform) was lower

in older subjects (p=0.038). We further tested for age effects in the co-activation of these two

iCAPs with other networks and found a significant positive age relationship of same-signed

co-activation between iCAPs 4 and 5 (language network, p=0.047) and iCAPs 4 and 11 (salience

network, p=0.032). Differently-signed co-activation between iCAPs 4 and 1 (higher visual) also

showed a positive age relationship (p=0.043). There were no age effects in the co-activation

between iCAP 16 and any other network. Supplementary Fig. S6 shows scatter plots of the

above-mentioned significant correlations.

143



Jo
u

rn
al

A
rt

ic
le

Jo
u

rn
al

A
rt

ic
le

Jo
u

rn
al

A
rt

ic
le

Appendix B. Supplementary material for chapter 4

C. Differently-signed co-activations

B. Same-signed co-activations
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Figure B.6 – Age relationship of iCAPs duration and co-activation. A) Activation duration in
percent of total scanning time was significantly correlated with age for iCAP 4 (p=0.006) and
iCAP 16 (p=0.038). B) Same-signed co-activation (in percent of total duration of both iCAPs) of
iCAP 4 with iCAP 5 (p=0.047) and with iCAP 11 (p=0.032) was significantly correlated with age.
C) Differently-signed co-activation of iCAP 4 with iCAP 1 was also positively correlated with
age (p=0.043). Motion, gender and their interaction were included as covariate and reported
p-values were Bonferroni-corrected for the 18 comparisons.
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B.2 Supplementary material for section 4.2

B.2.1 Supplementary methods

Participant exclusion criteria

From the initial sample of 221 subjects between 8 and 30 years old, we had to exclude 33

patients and 25 controls to ensure good data quality. One control and one patient were

excluded from the study because they reported having fallen asleep during the resting-state

scan. Another 4 subjects (3 patients) were excluded due to high motion in the anatomical

T1-weighted scan, 23 subjects (15 patients) were excluded due to excessive motion of more

than 3 mm in translation or 3° in rotation in the resting-state fMRI scans and scans of another

19 subjects (7 patients) were not used because part of the cortex were not captured. Finally, 10

more subjects (7 patients) were excluded from the remaining sample after motion scrubbing

(Power et al., 2012) because less than 5 min of scanning time was remaining after censoring of

frames with a framewise displacement higher than 0.5 mm. Motion data of the two groups is

summarized in Supplementary Table B.4.

Overlapping samples

The cohort is partly overlapping with our previous resting-state fMRI studies: 31 subjects (16

patients) have been also included in Debbané et al. (2012), 57 subjects (24 patients) in Scariati

et al. (2014), 62 subjects (27 patients) in Padula et al. (2015), 59 subjects (26 patients) in Scariati

et al. (2016b), 94 subjects (41 patients) in Padula et al. (2017b), 91 subjects (43 patients) in

Zöller et al. (2017) and 111 subjects (47 patients) in Zöller et al. (2018).

Total activation and iCAPs

The Total Activation (TA) and iCAPs framework is based on the detection of significant change-

points in deconvolved fMRI time series. Matlab code for the application of the whole frame-

work can be found at https://www.c4science.ch/source/iCAPs.

In the first step, TA was used for the regularized deconvolution of fMRI signals from the

hemodynamic response function (HRF) (Karahanoglu et al., 2011, 2013; Farouj et al., 2017).

In TA, the fMRI signal y(v) at voxel v is modeled as a block-like activity-inducing signal a(v)

convolved with the HRF h and additive white Gaussian noise ε(v):

y(v) = (a?h)(v)+ε= x(v)+ε

Then the activity-related signal matrix X can be recovered by spatio-temporal regularization

as follows:

X̃ = argmin
X

1

2
||Y−X||2F +RT (X)+RS(X),

with the temporal regularization term

RT (X) =∑Nv
v=1λT (v)

∑Nt
t=1 |∆L{x(v, ·)}[t ]|,
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and the spatial regularization term

RS(X) =λS
∑Nt

t=1

∑Nv
v=1

√∑
u∈S (v) (x(v, t )−x(u, t ))2.

Here, ||·||2F designates the Frobenius norm, Nv is the number of voxels, Nt is the number of time

points, λT is the temporal regularization parameter, λS is the spatial regularization parameter,

∆L =∆D H−1 is a differential operator combining derivative ∆D and HRF deconvolution H−1

and S (v) is the neighborhood of voxel v .

After this regularized deconvolution from the HRF, innovation signals i were computed

as the temporal derivative of the activity-inducing signals a and significant innovations were

determined by a two-step thresholding procedure (Karahanoglu et al., 2015). First, a surrogate

innovation distribution was computed at every voxel, and innovations larger than 95 % and

lower than 5 % of the surrogate distribution were considered significant. Second, an innovation

frame was considered significant, if there was a significant innovation in at least 5 % of the

gray matter voxels.

Then, K-mean clustering was applied to the significant innovation frames, resulting in K

spatial maps, the iCAPs. We used consensus clustering (Monti et al., 2003) to determine the

optimum number of clusters.

Finally, iCAPs time courses were computed by transient-informed spatio-temporal back-

projection of the spatial maps onto the activity-inducing signals (Zöller et al., 2019b). As spatial

dependence of the iCAPs maps is possible, transient-informed regression is necessary to

robustly recover temporal overlap in the iCAPs time courses. In the back-projection, transients

in each iCAP’s time course are restricted to frames with an innovation pattern that is close to

the iCAP’s spatial pattern (i.e., the cosine distance d(t ) between the innovation frame at time t

and the iCAP’s spatial map has to respect d(t) ≤ ξdmi n(t) with dmi n(t) being the minimum

distance of that innovation frame to any of the K iCAPs). Then the activation segments β

between two iCAP transients can be found for all iCAPs simultaneously by the following linear

regression

β̃= argmin
β

||AC −Sβ||2,

with the spatio-temporally concatenated activity-inducing signals AC , and the design matrix

S = [S1|...|SK ] containing one regressor with the repeated spatial iCAP map per activation

segment β. Based on the Bayesian Information Criterion, in our data the optimum tuning

parameter was ξ= 1.3. For a more detailed discussion of this transient-informed regression

scheme, please refer to (Zöller et al., 2019b).

Partial least squares correlation

Partial Least Squares Correlation (PLSC) is a well-suited method for the investigation of multi-

variate relationships between behavioral measures and brain activation data (Krishnan et al.,

2011; McIntosh and Lobaugh, 2004). Here, we used so-called behavior PLSC to probe into

relationships between demographic or clinical variables (i.e., age or psychotic symptoms/anx-
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iety) and temporal properties of iCAPs (i.e., activation duration and coupling time). In the

following we outline the steps of PLSC analysis. Variable annotations are used according to

(Krishnan et al., 2011). For a more detailed discussion of PLSC analysis, we refer to (Krishnan

et al., 2011; McIntosh and Lobaugh, 2004).

The first step in PLSC is the computation of group-wise correlation matrices RHC =
Y>

HCXHC ∈RNbehav×NiC APs between brain network properties XHC ∈RNHC×NiC APs and behavioral

variables YHC ∈RNHC×Nbehav of HCs and R22q = Y>
22qX22q ∈RNbehav×NiC APs between brain network

properties X22q ∈ RN22q×NiC APs and behavioral variables Y22q ∈ RN22q×Nbehav of patients with

22q11DS. N22q is the number of patients with 22q11DS, NHC is the number of HCs, NiC APs

is the number of included iCAPs measures and Nbehav is the number of included behavioral

variables. X22q, XHC, Y22q and YHC were z-scored across subjects before calculation of R22q

and RHC.

The common correlation matrix R is then computed by concatenating RHC and R22q:

R =
[

RHC

R22q

]
=

[
Y>

HCXHC

Y>
22qX22q

]
∈R2Nbehav×NiC APs .

Finally, R is decomposed into 2Nbehav latent variables, or “correlation components", using

singular value composition R = USV>. Each correlation component has a singular value

(on the diagonal of S) that specifies the explained correlation, as well as 2Nbehav behavior

saliences, or “behavior weights" (columns of U), and NiC APs duration/coupling saliences, or

“duration/coupling weights" (rows of V>). Behavior and brain weights indicate how strongly

each variable contributes to the multivatiate behavior-brain correlation in a certain correla-

tion component. They lie between −1 and 1 and – because we normalized the data before

computation of RHC and R22q – can be interpreted similarly to correlation values. From the

brain weights in V, so called “brain scores" can be computed by projecting every subject’s

brain activation data onto the respective brain weights with LX = XV.

We used permutation testing with 1000 permutations to evaluate if any of the correlation

components was significant and bootstrapping with 500 bootstrap samples to evaluate the

stability of the behavior and brain weights. Significant PLSC results are reported in terms of

bootstrapping mean and standard deviations.

147



Jo
u

rn
al

A
rt

ic
le

Jo
u

rn
al

A
rt

ic
le

Jo
u

rn
al

A
rt

ic
le

Appendix B. Supplementary material for chapter 4

B.2.2 Supplementary results & discussion

Relationship between age and duration of iCAPs’ activation

To assess the association between age and duration of iCAPs’ activation we conducted Partial

Least Squares Correlation (PLSC; Krishnan et al., 2011) – a technique that provides multivariate

association between variables (see Methods and Materials and Supplementary Methods).

We conducted PLSC with age as behavioral variable and duration of the nine altered iCAPs

(Figure 4.10) as brain variables. There was one significant correlation component (p=0.04)

showing an opposite age-effect in HCs and patients with 22q11DS (age-weights: −0.44±0.2 in

HCs, 0.89±0.21 in 22q11DS, see Supplementary Figure B.9). In three networks (dACC/dlPFC -

5, PrimVIS2 - 8, FPN - 9), we found declining duration with age in patients with 22q11DS, but

increasing duration with age in HCs. These three iCAPs had also globally shorter activation in

22q11DS. Contrarily, two networks (iTEMP/FUS - 14, AMY/HIP - 15) had increasing duration

with age in 22q11DS and declining duration with age in HCs. Both of these networks had also

globally longer activation in 22q11DS. Together, these results suggest that the alterations in

these five networks are emerging over age in patients with 22q11DS.

Comparison of iCAPs activation with static functional connectivity

While iCAPs themselves were retrieved from a purely dynamic measure (i.e., the innovations),

the measure of coupling duration between networks is closely linked to static functional

connectivity (sFC).

In order to compare our results on dynamic network activity with a conventional static

approach, we conducted a supplementary sFC analysis. We computed regional averages from

the preprocessed BOLD signals within each iCAP’s spatial map, thresholded at a spatial z-score

of 2.3. We then computed partial correlations between all pairs of iCAPs and compared the

correlations between patients with 22q11DS and HCs. The results are shown in Supplementary

Figure B.12B.

As expected, alterations in couplings are related to aberrant sFC (see Supplementary

Figure B.12). However, while there are indeed similarities, the results are not identical, which is

most likely due to the deconvolution, denoising and reconstruction of block-like time courses

conducted before computing coupling duration. Further, it is of note that with conventional

sFC, it is impossible to detect alterations in both coupling and anti-coupling (such as we

observe for iCAPs 5 and 3), as the correlation per definition only goes in one direction.

No such direct comparison was possible for activation duration, as it is a measure specific

to each network, which cannot be explained in terms of static connectivity.

BOLD signal analysis and motion

As in any fMRI study, we cannot exclude that the measured effects may have been influenced

by non- neural confounds, such as heartbeat, respiration and motion (Power et al., 2014). For

the current study, we addressed this issue by taking typical measures during preprocessing,

such as regression of WM and CSF signals, as well as motion censoring. Further, it is of note

that the regularized deconvolution from the hemodynamic response function (HRF) further
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minimizes such effects, as any non-neural signals, which do not follow the HRF, are filtered

out by the approach. Finally, we included group-centered average framewise displacement as

nuisance regressor in all analyses to further avoid any confounding effects caused by motion in

particular. To explicitly investigate whether observed group differences may have been caused

by motion artifacts, we compared iCAPs activation duration in HCs with high motion versus

low motion (see Supplementary Figure B.11 and Supplementary Table B.10). There were no

significant differences in activation duration between these two groups, which suggests that

motion was indeed not a major confound in our analysis. In patients with 22q11DS scanner

motion is strongly correlated with the severity of symptoms, which makes it impossible to

disentangle the two effects. Therefore, this remains a limitation of our study, despite the

multiple measures we took to account for non-neural confounds.
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B.2.3 Supplementary figures

Figure B.7 – Consensus matrices for cluster numbers K=10 to K=25. The higher a value, the
more often the two corresponding frames were clustered together during re-sampling. For
optimum clustering, the consensus matrix should contain only zeros and ones (Monti et al.,
2003). We selected to use K = 17 based on visual inspection of the consensus matrices and
evaluation of consensus clustering quality measures (see Supplementary Figure B.8).
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Figure B.8 – Consensus clustering quality measures for cluster numbers K=10 to K=25. A) the
cumulative distribution function (CDF) of values in the respective consensus matrices (see
Supplementary Figure B.7). The optimum clustering solution would have a horizontal line
with only values equal to 0 (two frames are never clustered together) or 1 (two frames are
always clustered together). For K=17, the line is flatter than for surrounding clustering values.
B) Area under the CDF curve and C) increase of the area under the curve with increasing K. D)
Distribution of average consensus values per cluster. Median consensus is maximal for K=17.
We selected to use K = 17 based on evaluation of the consensus clustering quality measures
and visual inspection of the consensus matrices.
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C. Brain score correlationB. iCAPs duration weightsA. Age weights
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Figure B.9 – Age PLSC results (p=0.04). A) Age saliences indicating the strength and direction of
age-relationship in HCs and patients with 22q11DS, respectively. B) iCAPs saliences indicating
the strength and direction of each iCAP’s duration-age-relationship. Activation of FPN (9)
is shorter at higher age; activation of iTEMP/FUS (14) and AMY/HIP (15) is longer at higher
age. Error bars indicate standard deviations of bootstrap distributions. C) Correlation of
brain scores with age. As indicated by saliences in A, there is a positive correlation in patients
with 22q11DS, and an opposite effect in HCs. Error bars indicate bootstrapping 5th to 95th
percentiles, robust results were indicated by yellow background.
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Figure B.10 – Duration differences of positive couplings (red triangles) and anti-couplings
(blue triangles) between patients with 22q11DS and HCs. Corresponding test statistics (p-
values, effect size) can be found in Supplementary Table B.7. A) Coupling duration measured
in percentage of total scanning time. B) Coupling duration measured in percentage of the joint
activation time of the two respective iCAPs (Jaccard score). Significant differences (p<0.05)
are marked with an asterisk (*), green boxes indicate coupling differences that are significant
both in A and B. Couplings in green boxes were included in the graphical visualization in
Figure 4.11 of the main manuscript. P-values are FDR-corrected for multiple comparisons and
age, gender and motion were included as covariates.
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Figure B.11 – Group comparison of iCAPs’ activation duration in high motion vs. low motion
healthy subjects (divided by median split). There are no significant group differences between
HCs with higher or lower motion. P-values are FDR-corrected for multiple comparisons and
age, gender were included as covariates.
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Figure B.12 – A) Average static functional connectivity (sFC) measured as partial correlations
between average BOLD signals in each iCAP. The average was computed across all subjects
including both patients with 22q11DS and healthy controls. B) Group differences in sFC
between networks. C) Group differences in iCAPs coupling duration measured as percentage
of total scan time. D) Group differences in iCAPs coupling duration measured as percentage of
joint activation time (Jaccard score). Group differences in partial correlations are partially, but
not entirely the same as group differences in positive couplings (green boxes) or anti-couplings
(magenta boxes). The direction of alteration, if significant, is mostly the same in static FC and
couplings; i.e., lower sFC corresponds to either lower positive coupling duration or higher
anti-coupling (or both; e.g., iCAPs 5 and 3); higher sFC corresponds to either higher positive
coupling of lower anti-coupling.
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Appendix B. Supplementary material for chapter 4

B.2.4 Supplementary tables

Table B.4 – fMRI motion data, FD - framewise displacement

HC 22q11DS p-value
Mean FD (mm), 0.15 ± 0.06 0.22 ± 0.10 <0.001

before scrubbing
Mean FD (mm) 0.13 ± 0.04 0.17 ± 0.06 <0.001

after scrubbing
N. timepoints 188.22 ± 12.87 178.26 ± 19.28 <0.001

after scrubbing
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B.2. Supplementary material for section 4.2

Table B.5 – iCAPs functional networks of Greicius atlas (Shirer et al., 2012) and regions in
the automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). Percentiles
indicate the fraction of voxels of a functional network or region that have a z-score > 2.3. A
network/region is listed if more than 20% of the network/region is included in the iCAP.

iCAP Greicius network (%) AAL Lobe AAL Region (%) z-score voxels
1 Primary_Visual (81.12%) Occipital Calcarine_R (65.97%) 3.76 221

Occipital Lingual_L (65.85%) 3.62 295
Occipital Lingual_R (61.40%) 3.73 272
Occipital Calcarine_L (50.45%) 3.61 224
Occipital Cuneus_R (23.37%) 2.98 61
Occipital Cuneus_L (22.86%) 2.77 56

2 Higher_Visual (75.94%) Occipital Occipital_Inf_L (80.47%) 3.81 136
Occipital Occipital_Inf_R (77.33%) 3.46 116
Occipital Occipital_Mid_R (65.61%) 3.63 248
Occipital Occipital_Mid_L (56.79%) 3.46 318
Occipital Fusiform_R (38.31%) 3.25 218
Occipital Fusiform_L (36.94%) 3.33 208
Occipital Occipital_Sup_R (32.39%) 2.97 57
Occipital Occipital_Sup_L (22.42%) 2.83 37
Temporal Temporal_Inf_R (20.19%) 3.48 166

3 Auditory (60.56%) Temporal Heschl_R (83.33%) 2.88 45
Basal_Ganglia (20.13%) Limbic Insula_R (80.90%) 3.58 288

Central Rolandic_Oper_L (77.55%) 3.00 152
Limbic Insula_L (74.12%) 3.35 335
Central Rolandic_Oper_R (71.79%) 3.05 196
Temporal Heschl_L (71.67%) 2.85 43
Subcortical Putamen_R (54.50%) 2.91 103
Subcortical Putamen_L (50.00%) 2.84 81
Temporal Temporal_Sup_L (38.04%) 2.75 167
Subcortical Pallidum_L (25.00%) 2.52 5
Frontal Frontal_Inf_Oper_L (23.56%) 2.88 41
Frontal Frontal_Inf_Oper_R (21.24%) 3.27 55

4 Language (78.42%) Temporal Temporal_Mid_L (55.49%) 3.33 551
Temporal Temporal_Mid_R (39.96%) 3.13 356
Parietal Angular_L (39.27%) 3.09 97
Temporal Temporal_Sup_R (36.31%) 3.22 199

5 Anterior_Salience (52.64%) Frontal Frontal_Mid_R (46.60%) 3.27 432
Frontal Frontal_Mid_L (40.14%) 3.18 334
Limbic Cingulum_Ant_R (28.25%) 3.13 76
Limbic Cingulum_Ant_L (27.40%) 3.12 77
Limbic Cingulum_Mid_R (21.86%) 3.33 106

6 Sensorimotor (53.69%) Parietal Paracentral_Lobule_L (74.15%) 3.02 109
Parietal Paracentral_Lobule_R (60.19%) 2.72 62
Frontal Supp_Motor_Area_R (59.60%) 3.32 211
Frontal Supp_Motor_Area_L (51.11%) 3.37 161
Limbic Cingulum_Mid_L (35.56%) 3.08 144
Parietal Postcentral_R (35.53%) 2.79 210
Limbic Cingulum_Mid_R (33.81%) 3.06 164
Frontal Precentral_L (33.20%) 3.07 172
Frontal Precentral_R (30.77%) 2.93 156
Parietal Postcentral_L (30.69%) 2.84 174
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iCAP Greicius network (%) AAL Lobe AAL Region (%) mean z-score voxels
7 Precuneus (65.04%) Parietal Precuneus_R (61.35%) 3.32 319

Ventral_DMN (38.00%) Parietal Precuneus_L (51.19%) 3.39 280
Occipital Occipital_Sup_R (44.32%) 3.19 78
Parietal Parietal_Sup_L (43.09%) 3.11 134
Parietel Parietal_Sup_R (41.90%) 3.07 106
Occipital Occipital_Sup_L (40.61%) 3.09 67
Occipital Cuneus_R (33.33%) 2.74 87
Occipital Occipital_Mid_R (28.31%) 3.00 107
Occipital Cuneus_L (25.71%) 2.62 63

8 Primary_Visual (93.71%) Occipital Calcarine_R (70.15%) 4.32 235
Higher_Visual (22.74%) Occipital Calcarine_L (65.32%) 4.00 290

Occipital Cuneus_R (54.79%) 3.33 143
Occipital Cuneus_L (54.29%) 3.47 133
Occipital Lingual_R (51.47%) 3.45 228
Occipital Lingual_L (49.78%) 3.37 223
Occipital Occipital_Sup_R (44.32%) 3.05 78
Occipital Occipital_Sup_L (40.61%) 3.01 67

9 Left_ECN (60.21%) Parietal Angular_L (64.37%) 3.37 159
Right_ECN (47.88%) Parietal Angular_R (59.64%) 3.47 201
Precuneus (21.68%) Parietal Parietal_Inf_R (42.44%) 3.65 115

Parietal Parietal_Inf_L (34.55%) 3.46 171
Frontal Frontal_Mid_L (27.40%) 2.89 228

10 Dorsal_DMN (58.75%) Limbic Cingulum_Ant_R (73.23%) 3.93 197
Frontal Frontal_Sup_Orb_Medial_L (73.11%) 4.17 87
Limbic Cingulum_Ant_L (69.75%) 4.23 196
Frontal Frontal_Sup_Orb_Medial_R (69.48%) 3.87 107
Frontal Frontal_Sup_Medial_L (54.95%) 3.65 211
Frontal Frontal_Sup_Medial_R (46.30%) 3.64 169
Limbic Cingulum_Post_L (35.00%) 2.62 28
Frontal Rectus_L (34.68%) 3.17 60
Frontal Rectus_R (28.47%) 3.23 39
Limbic Cingulum_Post_R (25.00%) 2.51 8

11 Precuneus (34.73%) Limbic Cingulum_Post_L (97.50%) 5.47 78
Dorsal_DMN (24.30%) Limbic Cingulum_Post_R (96.88%) 5.55 31

Parietal Angular_L (61.94%) 2.94 153
Parietal Precuneus_R (45.77%) 4.24 238
Parietal Angular_R (43.92%) 2.95 148
Parietal Precuneus_L (39.31%) 4.47 215

12 Visuospatial (61.54%) Parietal Parietal_Inf_R (60.89%) 3.59 165
Posterior_Salience (26.50%) Parietal Parietal_Inf_L (56.77%) 3.44 281

Frontal Frontal_Inf_Oper_R (43.24%) 3.01 112
Parietal SupraMarginal_R (33.00%) 3.33 133
Parietal Postcentral_R (24.37%) 3.21 144
Parietal SupraMarginal_L (23.36%) 3.20 57
Frontal Frontal_Inf_Oper_L (22.99%) 2.96 40
Frontal Frontal_Inf_Tri_R (20.74%) 2.56 67
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iCAP Greicius network (%) AAL Lobe AAL Region (%) mean z-score voxels
13 Auditory (46.06%) Central Rolandic_Oper_R (76.56%) 3.26 209

Sensorimotor (25.59%) Central Rolandic_Oper_L (63.78%) 2.99 125
Posterior_Salience (20.35%) Parietal Postcentral_L (46.56%) 3.85 264

Parietal Postcentral_R (37.23%) 3.93 220
Temporal Heschl_R (37.04%) 2.59 20
Parietal SupraMarginal_R (36.97%) 3.22 149
Parietal SupraMarginal_L (34.02%) 3.05 83
Frontal Precentral_R (24.46%) 3.55 124

14 Temporal Temporal_Inf_L (55.30%) 3.87 386
Temporal Temporal_Inf_R (46.84%) 3.87 385
Occipital Fusiform_R (22.67%) 4.23 129

15 Limbic Amygdala_L (82.76%) 3.97 48
Limbic Amygdala_R (79.25%) 3.54 42
Temporal Temporal_Pole_Mid_L (74.26%) 3.30 101
Limbic Hippocampus_L (70.29%) 4.56 123
Temporal Temporal_Pole_Mid_R (69.89%) 2.95 130
Limbic ParaHippocampal_L (67.46%) 3.67 114
Limbic ParaHippocampal_R (65.74%) 3.75 142
Limbic Hippocampus_R (60.37%) 4.36 99
Occipital Fusiform_L (30.37%) 3.04 171
Temporal Temporal_Pole_Sup_L (28.07%) 3.06 48
Temporal Temporal_Pole_Sup_R (22.91%) 2.73 41
Occipital Fusiform_R (21.44%) 2.87 122

16 Frontal Rectus_R (90.51%) 4.38 124
Frontal Rectus_L (83.82%) 4.02 145
Frontal Olfactory_R (80.36%) 3.99 45
Frontal Olfactory_L (76.62%) 3.63 59
Frontal Frontal_Sup_Orb_R (53.37%) 4.80 95
Frontal Frontal_Sup_Orb_L (50.00%) 4.92 85
Frontal Frontal_Mid_Orb_L (37.71%) 3.69 66
Frontal Frontal_Mid_Orb_R (30.93%) 3.57 60
Frontal Frontal_Inf_Orb_L (25.96%) 3.68 88
Frontal Frontal_Inf_Orb_R (21.64%) 3.76 74

17 Frontal Frontal_Mid_Orb_R (63.40%) 5.61 123
Frontal Frontal_Mid_Orb_L (57.14%) 5.21 100
Frontal Frontal_Sup_Orb_R (50.00%) 6.55 89
Frontal Frontal_Sup_Orb_L (48.82%) 7.10 83
Frontal Frontal_Sup_Orb_Medial_L (43.70%) 4.89 52
Frontal Frontal_Sup_Orb_Medial_R (35.06%) 5.91 54
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Table B.6 – Test statistics corresponding to Figure 4.10 of the main manuscript: Results from
two-sample t-tests comparing each iCAP’s activation duration between healthy controls and
patients with 22q11DS. Age, gender and scanner motion (framewise displacement) were
included as nuisance regressors. P-values were corrected for multiple comparisons using false
discovery rate.

iCAP t-statistic p-value effect size (Cohen’s d)
PrimVIS1 (1) -0.16 0.875 0.02

SecVIS (2) 0.80 0.480 -0.13
aIN (3) 1.24 0.285 -0.19

LAN (4) -2.17 0.053 0.34
dACC/dlPFC (5) -3.88 0.001 0.61

SM (6) 2.60 0.019 -0.41
PREC/vDMN (7) -1.50 0.209 0.24

PrimVis2 (8) -3.49 0.002 0.55
FPN (9) -3.25 0.004 0.51

aDMN (10) -4.78 0.000 0.75
pDMN (11) -3.03 0.006 0.48

VSN (12) -0.64 0.556 0.10
AUD/SM (13) -1.04 0.364 0.16

iTEMP/FUS (14) 4.98 0.000 -0.78
AMY/HIP (15) 3.71 0.001 -0.58

OFC (16) 3.20 0.004 -0.50
PFC (17) 1.24 0.285 -0.19
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Table B.7 – Test statistics corresponding to Figure 4.11 and Supplementary Figure B.10: Results
from two-sample t-tests comparing positive coupling time and anti-coupling time of pairwise
iCAP combinations between healthy controls and patients with 22q11DS. Age, gender and
scanner motion (framewise displacement) were included as nuisance regressors. P-values
were corrected for multiple comparisons using false discovery rate.

Percentage of scan time Jaccard score
effect size effect size

iCAP t-statistic p-value (Cohen’s d) t-statistic p-value (Cohen’s d)
positive
coupling

2 - 1 3.79 0.005 -0.59 4.18 0.002 -0.65
3 - 1 0.52 0.715 -0.08 0.12 0.942 -0.02
4 - 1 -0.64 0.661 0.10 -0.01 0.997 0.00
5 - 1 0.69 0.641 -0.11 1.71 0.278 -0.27
6 - 1 0.39 0.788 -0.06 0.10 0.944 -0.02
7 - 1 -1.75 0.208 0.28 -1.44 0.340 0.23
8 - 1 -2.81 0.036 0.44 -2.62 0.072 0.41
9 - 1 -1.01 0.501 0.16 -0.47 0.783 0.07

10 - 1 -1.77 0.203 0.28 -1.00 0.501 0.16
11 - 1 -2.59 0.049 0.41 -1.85 0.242 0.29
12 - 1 0.73 0.630 -0.11 1.04 0.494 -0.16
13 - 1 -1.97 0.149 0.31 -2.38 0.109 0.37
14 - 1 2.18 0.110 -0.34 2.32 0.120 -0.36
15 - 1 1.63 0.234 -0.25 1.51 0.333 -0.24
16 - 1 1.66 0.233 -0.26 1.00 0.501 -0.16
17 - 1 -0.89 0.569 0.14 -1.04 0.494 0.16

3 - 2 0.66 0.658 -0.10 0.71 0.642 -0.11
4 - 2 -2.08 0.124 0.33 -1.68 0.282 0.27
5 - 2 0.96 0.530 -0.15 1.78 0.263 -0.28
6 - 2 0.32 0.827 -0.05 -0.23 0.888 0.04
7 - 2 -0.13 0.923 0.02 -0.37 0.810 0.06
8 - 2 -1.36 0.349 0.21 -1.45 0.340 0.23
9 - 2 -0.15 0.907 0.02 0.45 0.788 -0.07

10 - 2 -1.64 0.234 0.26 -1.02 0.497 0.16
11 - 2 0.30 0.836 -0.05 1.02 0.497 -0.16
12 - 2 0.26 0.840 -0.04 0.10 0.944 -0.02
13 - 2 -1.64 0.234 0.26 -1.73 0.277 0.27
14 - 2 2.18 0.110 -0.34 1.49 0.340 -0.23
15 - 2 1.91 0.164 -0.30 1.31 0.386 -0.21
16 - 2 2.61 0.048 -0.41 2.13 0.168 -0.33
17 - 2 0.89 0.568 -0.14 0.44 0.788 -0.07

4 - 3 1.29 0.385 -0.20 1.32 0.383 -0.21
5 - 3 -4.33 0.002 0.68 -3.99 0.003 0.63
6 - 3 2.96 0.031 -0.46 2.46 0.093 -0.39
7 - 3 1.81 0.194 -0.28 1.96 0.211 -0.31
8 - 3 -0.94 0.542 0.15 -0.23 0.888 0.04
9 - 3 -0.54 0.705 0.08 0.03 0.987 -0.00

10 - 3 -1.62 0.241 0.25 -1.47 0.340 0.23
11 - 3 0.07 0.958 -0.01 0.70 0.642 -0.11
12 - 3 -0.29 0.839 0.05 -0.64 0.684 0.10
13 - 3 1.60 0.246 -0.25 1.47 0.340 -0.23
14 - 3 3.19 0.018 -0.50 1.78 0.263 -0.28
15 - 3 1.92 0.162 -0.30 0.86 0.576 -0.14
16 - 3 1.18 0.423 -0.18 0.00 0.997 -0.00
17 - 3 0.60 0.675 -0.10 0.46 0.787 -0.07
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Percentage of scan time Jaccard score
effect size effect size

iCAP t-statistic p-value (Cohen’s d) t-statistic p-value (Cohen’s d)
positive
coupling

5 - 4 -2.22 0.107 0.35 -1.44 0.340 0.23
6 - 4 -2.00 0.142 0.31 -1.93 0.220 0.30
7 - 4 -1.18 0.423 0.19 -0.42 0.801 0.07
8 - 4 -2.82 0.036 0.44 -1.99 0.202 0.31
9 - 4 -2.39 0.074 0.38 -1.43 0.340 0.22

10 - 4 -2.24 0.103 0.35 -1.31 0.386 0.21
11 - 4 0.54 0.705 -0.09 1.42 0.342 -0.22
12 - 4 -1.73 0.214 0.27 -1.04 0.494 0.16
13 - 4 -2.60 0.049 0.41 -2.06 0.186 0.32
14 - 4 1.27 0.388 -0.20 1.11 0.457 -0.17
15 - 4 3.37 0.012 -0.52 3.65 0.007 -0.57
16 - 4 1.39 0.338 -0.22 1.81 0.253 -0.28
17 - 4 0.86 0.573 -0.13 1.34 0.377 -0.21

6 - 5 1.19 0.423 -0.19 1.58 0.305 -0.25
7 - 5 0.63 0.661 -0.10 1.56 0.310 -0.24
8 - 5 -3.52 0.010 0.55 -2.51 0.088 0.39
9 - 5 -3.60 0.008 0.57 -2.62 0.072 0.41

10 - 5 -2.77 0.037 0.44 -1.73 0.277 0.27
11 - 5 -1.59 0.252 0.25 -0.62 0.692 0.10
12 - 5 0.58 0.691 -0.09 1.39 0.350 -0.22
13 - 5 2.04 0.131 -0.32 3.09 0.030 -0.48
14 - 5 1.28 0.385 -0.20 1.58 0.305 -0.25
15 - 5 0.45 0.757 -0.07 0.89 0.562 -0.14
16 - 5 2.38 0.075 -0.37 3.08 0.030 -0.48
17 - 5 0.28 0.839 -0.04 0.40 0.809 -0.06

7 - 6 0.63 0.661 -0.10 0.53 0.766 -0.08
8 - 6 -0.04 0.977 0.01 0.12 0.942 -0.02
9 - 6 2.77 0.037 -0.43 3.35 0.018 -0.52

10 - 6 -2.21 0.107 0.35 -1.99 0.202 0.31
11 - 6 -0.39 0.788 0.06 -0.26 0.876 0.04
12 - 6 1.91 0.163 -0.30 1.71 0.278 -0.27
13 - 6 -0.37 0.801 0.06 -0.23 0.888 0.04
14 - 6 2.92 0.033 -0.45 2.10 0.170 -0.33
15 - 6 2.01 0.139 -0.31 1.98 0.203 -0.31
16 - 6 0.78 0.603 -0.12 0.16 0.941 -0.02
17 - 6 1.22 0.409 -0.19 0.91 0.553 -0.14

8 - 7 -2.73 0.040 0.43 -2.11 0.170 0.33
9 - 7 -2.53 0.056 0.40 -1.47 0.340 0.23

10 - 7 -2.20 0.107 0.35 -1.43 0.340 0.22
11 - 7 -2.92 0.033 0.46 -2.10 0.170 0.33
12 - 7 -1.11 0.460 0.17 -0.73 0.637 0.11
13 - 7 -1.14 0.446 0.18 -0.50 0.774 0.08
14 - 7 2.69 0.042 -0.42 2.76 0.056 -0.43
15 - 7 4.01 0.004 -0.62 4.40 0.002 -0.68
16 - 7 0.86 0.573 -0.14 1.02 0.497 -0.16
17 - 7 1.21 0.416 -0.19 1.58 0.305 -0.25
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Percentage of scan time Jaccard score
effect size effect size

iCAP t-statistic p-value (Cohen’s d) t-statistic p-value (Cohen’s d)
positive
coupling

9 - 8 -0.69 0.641 0.11 0.47 0.783 -0.07
10 - 8 -3.39 0.012 0.53 -2.26 0.135 0.35
11 - 8 -0.87 0.573 0.14 0.12 0.942 -0.02
12 - 8 -2.66 0.044 0.42 -2.39 0.109 0.38
13 - 8 -0.27 0.839 0.04 0.14 0.941 -0.02
14 - 8 1.23 0.408 -0.19 1.29 0.388 -0.20
15 - 8 0.54 0.705 -0.08 0.75 0.630 -0.12
16 - 8 -1.24 0.407 0.19 -1.25 0.401 0.20
17 - 8 -0.48 0.742 0.07 -0.38 0.810 0.06
10 - 9 -1.58 0.252 0.25 -0.09 0.944 0.01
11 - 9 0.68 0.641 -0.11 1.69 0.280 -0.26
12 - 9 -1.18 0.423 0.19 -0.39 0.810 0.06
13 - 9 0.26 0.840 -0.04 1.58 0.305 -0.25
14 - 9 2.90 0.033 -0.45 2.67 0.064 -0.42
15 - 9 3.15 0.019 -0.49 3.40 0.017 -0.53
16 - 9 1.41 0.328 -0.22 1.64 0.293 -0.26
17 - 9 0.65 0.659 -0.10 1.12 0.457 -0.17

11 - 10 -1.49 0.298 0.23 -0.04 0.986 0.01
12 - 10 0.50 0.730 -0.08 1.69 0.280 -0.26
13 - 10 -2.13 0.115 0.34 -0.70 0.642 0.11
14 - 10 0.18 0.889 -0.03 0.46 0.787 -0.07
15 - 10 0.74 0.625 -0.12 1.66 0.288 -0.26
16 - 10 0.97 0.530 -0.15 1.27 0.393 -0.20
17 - 10 -0.28 0.839 0.04 0.60 0.712 -0.09
12 - 11 -0.68 0.641 0.11 -0.32 0.840 0.05
13 - 11 -0.77 0.604 0.12 -0.15 0.941 0.02
14 - 11 4.44 0.002 -0.69 4.78 0.001 -0.74
15 - 11 1.78 0.202 -0.28 2.29 0.128 -0.35
16 - 11 0.29 0.839 -0.05 0.71 0.638 -0.11
17 - 11 0.80 0.590 -0.12 0.74 0.637 -0.12
13 - 12 -0.93 0.544 0.15 -1.11 0.457 0.17
14 - 12 3.38 0.012 -0.53 2.82 0.049 -0.44
15 - 12 1.74 0.208 -0.27 1.83 0.250 -0.29
16 - 12 2.04 0.131 -0.32 2.03 0.195 -0.32
17 - 12 0.82 0.583 -0.13 0.91 0.552 -0.14
14 - 13 2.18 0.110 -0.34 0.77 0.629 -0.12
15 - 13 1.41 0.328 -0.22 1.35 0.374 -0.21
16 - 13 0.72 0.633 -0.11 0.86 0.576 -0.14
17 - 13 0.00 0.997 -0.00 0.76 0.630 -0.12
15 - 14 2.87 0.034 -0.44 1.16 0.437 -0.18
16 - 14 1.17 0.424 -0.18 0.58 0.718 -0.09
17 - 14 2.11 0.118 -0.33 2.00 0.202 -0.31
16 - 15 2.71 0.041 -0.42 1.20 0.418 -0.19
17 - 15 2.90 0.033 -0.45 2.47 0.093 -0.38
17 - 16 1.64 0.234 -0.26 1.51 0.333 -0.24
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Percentage of scan time Jaccard score
effect size effect size

iCAP t-statistic p-value (Cohen’s d) t-statistic p-value (Cohen’s d)
anti-
coupling

1 - 2 -1.28 0.385 0.20 -1.31 0.386 0.21
1 - 3 0.70 0.641 -0.11 0.48 0.783 -0.08
1 - 4 -0.33 0.827 0.05 0.10 0.944 -0.02
1 - 5 -1.79 0.200 0.28 -1.00 0.501 0.16
1 - 6 1.64 0.234 -0.26 1.29 0.388 -0.20
1 - 7 1.67 0.228 -0.26 2.22 0.145 -0.35
1 - 8 -0.85 0.573 0.13 -0.43 0.798 0.07
1 - 9 -1.54 0.270 0.24 -1.08 0.473 0.17

1 - 10 -1.09 0.468 0.17 -0.13 0.942 0.02
1 - 11 -0.23 0.860 0.04 0.02 0.992 -0.00
1 - 12 0.24 0.849 -0.04 0.48 0.783 -0.07
1 - 13 2.17 0.111 -0.34 2.59 0.074 -0.41
1 - 14 3.40 0.012 -0.53 3.27 0.020 -0.51
1 - 15 1.75 0.208 -0.27 1.39 0.350 -0.22
1 - 16 1.37 0.344 -0.21 1.17 0.433 -0.18
1 - 17 0.51 0.723 -0.08 0.40 0.810 -0.06

2 - 3 1.03 0.496 -0.16 0.38 0.810 -0.06
2 - 4 0.81 0.588 -0.13 1.44 0.340 -0.23
2 - 5 -0.94 0.542 0.15 -0.14 0.942 0.02
2 - 6 3.18 0.018 -0.50 2.53 0.085 -0.40
2 - 7 0.57 0.692 -0.09 0.79 0.621 -0.12
2 - 8 -0.41 0.777 0.06 0.10 0.944 -0.02
2 - 9 0.41 0.777 -0.07 0.94 0.536 -0.15

2 - 10 -0.95 0.540 0.15 -0.34 0.826 0.05
2 - 11 -0.28 0.839 0.04 -0.77 0.629 0.12
2 - 12 0.48 0.742 -0.07 0.91 0.552 -0.14
2 - 13 3.20 0.018 -0.50 3.65 0.007 -0.57
2 - 14 3.45 0.011 -0.54 2.52 0.085 -0.39
2 - 15 2.51 0.059 -0.39 1.89 0.228 -0.30
2 - 16 1.86 0.179 -0.29 1.71 0.278 -0.27
2 - 17 2.37 0.077 -0.37 2.19 0.149 -0.34

3 - 4 -1.44 0.319 0.23 -1.09 0.468 0.17
3 - 5 2.90 0.033 -0.45 3.69 0.007 -0.57
3 - 6 1.43 0.325 -0.22 0.72 0.637 -0.11
3 - 7 -1.13 0.450 0.18 -1.21 0.413 0.19
3 - 8 -0.90 0.562 0.14 -0.86 0.576 0.14
3 - 9 0.85 0.573 -0.13 1.48 0.340 -0.23

3 - 10 -1.94 0.157 0.31 -1.45 0.340 0.23
3 - 11 -0.84 0.575 0.13 -0.76 0.630 0.12
3 - 12 1.35 0.352 -0.21 1.16 0.437 -0.18
3 - 13 -0.80 0.590 0.12 -0.79 0.621 0.12
3 - 14 3.13 0.020 -0.49 2.43 0.100 -0.38
3 - 15 2.21 0.107 -0.34 1.68 0.282 -0.26
3 - 16 2.48 0.062 -0.39 2.19 0.149 -0.34
3 - 17 1.67 0.228 -0.26 1.16 0.437 -0.18
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B.2. Supplementary material for section 4.2

Percentage of scan time Jaccard score
effect size effect size

iCAP t-statistic p-value (Cohen’s d) t-statistic p-value (Cohen’s d)
anti-
coupling

4 - 5 -2.08 0.125 0.33 -1.00 0.501 0.16
4 - 6 3.96 0.004 -0.62 4.14 0.002 -0.64
4 - 7 -1.05 0.488 0.16 -0.73 0.637 0.11
4 - 8 -2.07 0.127 0.33 -1.40 0.347 0.22
4 - 9 -0.87 0.573 0.14 0.45 0.788 -0.07

4 - 10 -2.82 0.036 0.45 -1.29 0.388 0.20
4 - 11 -3.67 0.007 0.58 -3.02 0.033 0.48
4 - 12 0.57 0.691 -0.09 1.42 0.340 -0.22
4 - 13 0.68 0.641 -0.11 1.29 0.388 -0.20
4 - 14 4.96 0.000 -0.77 4.65 0.001 -0.72
4 - 15 0.76 0.609 -0.12 0.72 0.637 -0.11
4 - 16 1.94 0.157 -0.30 1.80 0.260 -0.28
4 - 17 0.63 0.661 -0.10 0.49 0.781 -0.08

5 - 6 0.54 0.705 -0.09 1.27 0.393 -0.20
5 - 7 -2.81 0.036 0.44 -1.65 0.288 0.26
5 - 8 -1.19 0.423 0.19 -0.15 0.941 0.02
5 - 9 -0.64 0.661 0.10 1.22 0.410 -0.19

5 - 10 -3.35 0.012 0.53 -2.19 0.149 0.34
5 - 11 -1.75 0.208 0.28 -0.49 0.780 0.08
5 - 12 -0.97 0.530 0.15 0.27 0.868 -0.04
5 - 13 -3.79 0.005 0.60 -3.17 0.025 0.50
5 - 14 3.56 0.009 -0.55 4.11 0.002 -0.64
5 - 15 3.28 0.014 -0.51 3.75 0.007 -0.58
5 - 16 1.23 0.408 -0.19 1.92 0.221 -0.30
5 - 17 1.69 0.224 -0.26 2.33 0.120 -0.36

6 - 7 0.33 0.827 -0.05 -0.10 0.944 0.02
6 - 8 -0.44 0.765 0.07 -0.51 0.769 0.08
6 - 9 -1.08 0.471 0.17 -0.94 0.536 0.15

6 - 10 2.44 0.068 -0.38 3.30 0.020 -0.51
6 - 11 0.68 0.641 -0.11 0.67 0.664 -0.11
6 - 12 0.71 0.635 -0.11 0.35 0.821 -0.06
6 - 13 2.66 0.044 -0.41 2.72 0.060 -0.42
6 - 14 4.54 0.001 -0.71 3.77 0.007 -0.59
6 - 15 2.50 0.060 -0.39 1.39 0.350 -0.22
6 - 16 4.10 0.003 -0.64 4.20 0.002 -0.66
6 - 17 2.13 0.115 -0.33 1.90 0.225 -0.30

7 - 8 -2.15 0.112 0.34 -1.85 0.242 0.29
7 - 9 0.63 0.661 -0.10 1.81 0.253 -0.28

7 - 10 -2.15 0.112 0.34 -1.25 0.401 0.20
7 - 11 0.06 0.963 -0.01 0.95 0.530 -0.15
7 - 12 0.46 0.749 -0.07 0.85 0.582 -0.13
7 - 13 0.28 0.839 -0.04 0.85 0.582 -0.13
7 - 14 2.35 0.079 -0.37 2.71 0.060 -0.42
7 - 15 1.41 0.328 -0.22 1.63 0.296 -0.25
7 - 16 2.84 0.035 -0.44 3.20 0.024 -0.50
7 - 17 1.28 0.385 -0.20 1.47 0.340 -0.23
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Appendix B. Supplementary material for chapter 4

Percentage of scan time Jaccard score
effect size effect size

iCAP t-statistic p-value (Cohen’s d) t-statistic p-value (Cohen’s d)
anti-
coupling

8 - 9 -3.82 0.005 0.60 -2.97 0.035 0.47
8 - 10 -2.43 0.068 0.38 -1.24 0.401 0.20
8 - 11 -1.39 0.337 0.22 0.20 0.913 -0.03
8 - 12 0.02 0.990 -0.00 0.42 0.798 -0.07
8 - 13 -2.49 0.060 0.39 -1.62 0.297 0.26
8 - 14 1.04 0.491 -0.16 1.04 0.494 -0.16
8 - 15 0.86 0.573 -0.13 0.81 0.609 -0.13
8 - 16 0.26 0.840 -0.04 0.38 0.810 -0.06
8 - 17 1.05 0.490 -0.16 1.61 0.298 -0.25
9 - 10 -4.13 0.003 0.65 -2.74 0.058 0.43
9 - 11 -3.89 0.004 0.61 -3.01 0.033 0.47
9 - 12 -0.02 0.990 0.00 0.64 0.684 -0.10
9 - 13 -1.45 0.319 0.23 -0.52 0.769 0.08
9 - 14 2.77 0.037 -0.43 2.89 0.042 -0.45
9 - 15 1.02 0.501 -0.16 1.46 0.340 -0.23
9 - 16 1.09 0.470 -0.17 1.72 0.278 -0.27
9 - 17 0.13 0.923 -0.02 0.73 0.637 -0.11

10 - 11 -0.85 0.573 0.13 0.73 0.637 -0.11
10 - 12 -3.37 0.012 0.53 -3.27 0.020 0.51
10 - 13 -0.32 0.829 0.05 1.00 0.501 -0.16
10 - 14 2.68 0.042 -0.42 2.97 0.035 -0.47
10 - 15 0.85 0.573 -0.13 1.66 0.288 -0.26
10 - 16 -0.10 0.942 0.02 0.37 0.810 -0.06
10 - 17 1.04 0.490 -0.16 2.02 0.199 -0.31
11 - 12 -1.87 0.178 0.29 -1.50 0.336 0.23
11 - 13 -1.84 0.185 0.29 -1.26 0.401 0.20
11 - 14 -1.34 0.352 0.21 -1.23 0.403 0.19
11 - 15 0.59 0.683 -0.09 1.59 0.305 -0.25
11 - 16 0.36 0.804 -0.06 0.75 0.630 -0.12
11 - 17 0.41 0.778 -0.06 1.06 0.486 -0.17
12 - 13 -0.83 0.578 0.13 -0.31 0.846 0.05
12 - 14 0.81 0.587 -0.13 0.39 0.810 -0.06
12 - 15 2.77 0.037 -0.43 2.87 0.043 -0.45
12 - 16 2.87 0.034 -0.45 3.07 0.030 -0.48
12 - 17 2.14 0.114 -0.33 2.32 0.120 -0.36
13 - 14 1.72 0.214 -0.27 1.12 0.457 -0.18
13 - 15 0.80 0.590 -0.13 1.24 0.402 -0.19
13 - 16 1.80 0.197 -0.28 1.73 0.277 -0.27
13 - 17 0.19 0.882 -0.03 -0.19 0.913 0.03
14 - 15 2.69 0.042 -0.42 1.77 0.267 -0.28
14 - 16 3.00 0.029 -0.47 1.44 0.340 -0.23
14 - 17 1.06 0.484 -0.17 0.29 0.860 -0.05
15 - 16 2.62 0.048 -0.41 1.93 0.220 -0.30
15 - 17 -1.38 0.339 0.22 -1.56 0.310 0.25
16 - 17 1.71 0.218 -0.27 0.35 0.824 -0.05
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B.2. Supplementary material for section 4.2

Table B.8 – Bootstrap data corresponding to Figure 4.12: PLSC results from for positive psy-
chotic symptoms. The table shows bootstrap mean and 5 to 95 percentiles of behavior weights
and brain weights.

Weights type item mean 5th percentile 95th percentile
Behavior: P1:Del (22q) 0.64 0.403 0.89

SIPS Positive P2:Susp (22q) 0.51 0.307 0.72
Symptoms P3:Gand (22q) 0.32 0.115 0.53

P4:Hall (22q) 0.49 0.238 0.76
P5:DisCom (22q) 0.62 0.416 0.83

iCAPs activation dACC/dlPFC (5) 0.38 -0.002 0.78
duration PrimVis2 (8) 0.03 -0.246 0.33

FPN (9) 0.59 0.144 1.05
aDMN (10) -0.15 -0.490 0.21
pDMN (11) -0.01 -0.356 0.33

SM (6) 0.10 -0.288 0.49
iTEMP/FUS (14) 0.66 0.347 0.97

AMY/HIP (15) 0.14 -0.271 0.57
OFC (16) 0.09 -0.301 0.50

Weights type item mean 5th percentile 95th percentile
Behavior: P1:Del (22q) 0.69 0.468 0.90

SIPS Positive P2:Susp (22q) 0.54 0.318 0.76
Symptoms P3:Gand (22q) 0.18 -0.031 0.40

P4:Hall (22q) 0.44 0.211 0.67
P5:DisCom (22q) 0.54 0.324 0.77

anti-coupling AUD (3) 0.03 -0.320 0.38
duration with FPN (9) 0.41 0.005 0.86

dACC/dlPFC (5) AUD/SM (13) 0.31 -0.193 0.83
iTEMP/FUS (14) 0.88 0.575 1.22

AMY/HIP (15) 0.01 -0.440 0.50
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Appendix B. Supplementary material for chapter 4

Table B.9 – Bootstrap data corresponding to Figure 4.13: PLSC results from for anxiety. The
table shows bootstrap mean and 5 to 95 percentiles of behavior weights and brain weights.

Weights type item mean 5th percentile 95th percentile
Behavior: HC 0.74 0.406 1.07

CBCL/ABCL Anxiety 22q11DS 0.87 0.545 1.23
iCAPs activation dACC/dlPFC (5) 0.05 -0.301 0.42

duration PrimVis2 (8) 0.27 -0.085 0.63
FPN (9) -0.12 -0.494 0.28

aDMN (10) -0.39 -0.770 -0.02
pDMN (11) -0.16 -0.536 0.20

SM (6) -0.18 -0.510 0.14
iTEMP/FUS (14) 0.68 0.304 1.03

AMY/HIP (15) 0.41 0.033 0.78
OFC (16) -0.20 -0.479 0.08

Weights type item mean 5th percentile 95th percentile
Behavior: HC -0.11 -0.350 0.17

CBCL/ABCL Anxiety 22q11DS 1.05 0.688 1.44
Positive coupling LAN (4) 0.35 0.014 0.67

duration with dACC/dlPFC (5) 0.75 0.400 1.05
AMY/HIP (15) PREC/vDMN (7) -0.06 -0.375 0.25

FPN (9) 0.29 -0.024 0.60
aDMN (10) -0.32 -0.592 -0.04

iTEMP/FUS (14) 0.31 -0.071 0.67
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B.2. Supplementary material for section 4.2

Table B.10 – Test statistics for group comparison of iCAPs’ activation duration in high motion vs.
low motion healthy subjects (shown in Supplementary Figure B.11). P-values are corrected for
multiple comparisons using false discovery rate; age and gender were included as covariates.

iCAP t-statistic p-value effect size (Cohen’s d)
PrimVIS1 (1) -0.27 0.795 0.06

SecVIS (2) 1.89 0.211 -0.41
aIN (3) -2.01 0.205 0.44

LAN (4) 0.71 0.669 -0.15
dACC/dlPFC (5) -0.60 0.669 0.13

SM (6) -1.57 0.294 0.34
PREC/vDMN (7) -0.63 0.669 0.14

PrimVis2 (8) 0.36 0.795 -0.08
FPN (9) 1.39 0.330 -0.30

aDMN (10) 2.70 0.071 -0.59
pDMN (11) 2.71 0.071 -0.59

VSN (12) 0.75 0.669 -0.16
AUD/SM (13) -1.25 0.367 0.27

iTEMP/FUS (14) -1.37 0.330 0.30
AMY/HIP (15) -2.08 0.205 0.45

OFC (16) -1.81 0.211 0.39
PFC (17) -0.26 0.795 0.06
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C Supplementary material for chapter 5

C.1 Supplementary material for section 5.1

C.1.1 Supplementary tables

Table C.1 – Number of scans recorded before and after a scanner update. There was no
significant group-by-scanner interaction.

image Siemens Trio scanner Siemens Prisma scanner p-value
modality (22q11DS/HCs) (22q11DS/HCs) (χ2)
fMRI 42/54 36/31 0.209
dMRI 41/49 36/29 0.227
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C.1.2 Supplementary figures

x=7              y=32             z=27   
gzi.. 

x=-51              y=-42              z=5   
gzi.. 

x=40              y=-55              z=46  
gzi.. 

x=5              y=-59              z=48  
gzi..

x=46              y=8             z=38   
gzi..

x=-4              y=43             z=23  
gzi.. 

x=34              y=-83              z=3 
gzi.. 

x=14              y=-60              z=8 
gzi..

x=6              y=-80              z=8  
gzi.. 

x=40              y=10             z=2   
gzi.. 

x=7              y=-10              z=65  
gzi.. 

x=57              y=-19              z=18  
gzi..

x=-4              y=-45              z=31 
gzi.. 

x=10              y=36             z=-25     
gzi..

x=58              y=-28              z=-25 
gzi.. 

x=-24              y=-8              z=-20 
gzi.. 

x=15              y=59             z=-11 
gzi..

2.3                                         4.0
z-score

0.67                                                            0.84                                                            0.80

0.62                                                            0.58                                                            0.79

0.81                                                            0.72                                                            0.86

0.83                                                            0.83                                                            0.90

0.82                                                            0.82                                                            0.56

0.88                                                            0.97
cluster consensus

iCAP1 - dACC/dlPFC iCAP2 - LAN iCAP3 - FPN

iCAP4 - PREC/vDMN iCAP5 - VSN iCAP6 - aDMN

iCAP7 - SecVIS iCAP8 - PrimVIS1 iCAP9 - PrimVIS2

iCAP10 - aIN iCAP11 - SM iCAP12 - AUD/SM

iCAP13 - pDMN iCAP14 - OFC iCAP15 - iTEMP/FUS

iCAP16 - AMY/HIP iCAP17 - PFC

2343                                                           2408                                                           2141

2188                                                           1899                                                           2062

2472                                                           2477                                                           2166

1982                                                           1051                                                           1715

2433                                                           2329                                                           1850

1302                                                           562 number of frames

Figure C.1 – Spatial patterns of the 17 iCAPs retrieved from all subjects, including both HCs
and patients with 22q11DS. The locations denote displayed slices in MNI coordinates. Blue
values denote the average consensus of each cluster, purple values indicate the total number
of innovation frames that were assigned to this cluster. Maps are identical to the ones in (Zöller
et al., 2019a); or section 4.2 of this thesis, sorted according to the activation duration in HCs.
dACC/dlPFC – dorsal anterior cingulate cortex / dorsolateral prefrontal cortex, LAN – language
network, FPN – fronto-parietal network, PREC/vDMN – precuneus/ventral DMN, VSN –
visuospatial network, aDMN – anterior DMN, SecVIS – secondary visual, PrimVIS1 – primary
visual 1, PrimVIS2 – primary visual 2, aIN – anterior insula, SM – sensorimotor, AUD/SM
– auditory/sensorimotor, pDMN – posterior DMN, OFC – orbitofrontal cortex, iTEMP/FUS
–inferior temporal/fusiform, AMY/HIP – amygdala/hippocampus, PFC – prefrontal cortex.
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C.1. Supplementary material for section 5.1

Figure C.2 – Statistics of total temporal duration for each iCAP. P-values are false discovery
rate (FDR)-corrected for the 17 multiple comparisons, and both age and sex were included as
covariates. Significant group differences (p<0.05) were marked with an asterisk. Error bars
indicate 5th to 95th percentiles of group distributions. Single-subject duration measures were
included as scatterplots. Results are identical to those in (Zöller et al., 2019a); or section 4.2 of
this thesis, but sorted according to the activation duration in HCs.
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Appendix C. Supplementary material for chapter 5

Results:

Duration alterations  

Persistence Energy alterations

both lower 
in 22q

both lower 
in 22q

both lower 
in 22q

both higher 
in 22q

only PE 
higher in 22q

only duration 
lower in 22q

only PE 
higher in 22q

only duration 
higher in 22q

only duration 
higher in 22q

duration lower  
and  

PE higher in 22q

4. Comparing alterations in iCAPs duration and Persistence Energy

Figure C.3 – Comparison of alterations in resting-state activation duration and structural
persistence control energy. While there were widespread alterations in both modalities, there
was no clear pattern of common alterations. PE – persistence control energy.
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Mišić, B., Betzel, R. F., Nematzadeh, A., Goñi, J., Griffa, A., Hagmann, P., Flammini, A., Ahn, Y. Y.,

and Sporns, O. (2015). Cooperative and Competitive Spreading Dynamics on the Human

Connectome. Neuron, 86(6):1518–1529.
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