Ethynylbenziodazolones (EBZ) as Electrophilic Alkynylation Reagents for the Highly Enantioselective Copper-Catalyzed OxyAlkynylation of Diazo Compounds

Durga Prasad Hari, ${ }^{[a]}$ Lionel Schouwey, ${ }^{[a]}$ Verity Barber, ${ }^{[a]}$ Rosario Scopelliti, ${ }^{[b]}$ Farzaneh Fadaei-Tirani ${ }^{[b]}$ and Jerome Waser*[a]

Abstract

Ethynylbenziodoxol(on)es (EBXs) cyclic hypervalent iodine reagents are now established reagents for the alkynylation of radicals and nucleophiles, yet they present limited possibilities for further structure and reactivity modification. Herein, we report the first synthesis of the corresponding Ethynylbenziodazolones (EBZs) reagents, in which the oxygen atom in the iodoheterocycle is replaced by a nitrogen. The substituent on the nitrogen enables further finetuning of the reagent structure and reactivity. EBZ reagents were easily obtained from the corresponding benzamides using a one-step procedure, and displayed a reactivity comparable to that of EBX reagents. In particular, they were applied in an asymmetric coppercatalyzed oxyalkynylation of diazo compounds, which proceeded in high yield and enantioselectivity for a broad range of substituents on the diazo compounds and the alkyne.

Introduction

Alkynes are among the most versatile functional groups in synthetic chemistry. ${ }^{[1]}$ They have also found widespread applications in chemical biology and material sciences. ${ }^{[2]}$ Therefore, synthetic methods to make or transfer triple bonds are of high importance. As terminal acetylenes are easily deprotonated, acetylide additions and cross-coupling reactions have been most often used for the alkynylation of electrophiles. More recently, alternative electrophilic alkynylation reagents have been developed for the functionalization of nucleophiles. ${ }^{[3]}$ The use of hypervalent iodine reagents has been especially successful in this context and our group used for the first time ethynylbenziodoxole (EBX) reagents for the direct or metalmediated alkynylation of nucleophiles and radicals. ${ }^{[4]}$ EBX reagents are now widely used in synthetic chemistry. ${ }^{[5]}$ They are particularly well-suited for transition metal based catalytic processes, due to their unique combination of stability and reactivity (Scheme 1A). ${ }^{[4 \mathrm{a}, 4 \mathrm{~b}, 6]}$ Examples of successful processes include the gold or platinum-catalyzed synthesis of alkynylated
[a] Dr. Durga Prasad Hari, Lionel Schouwey, Verity Barber and Prof. Dr. Jerome Waser
Laboratory of Catalysis and Organic Synthesis
Ecole Polytechnique Fédérale de Lausanne
EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, CH E-mail: jerome.waser@epfl.ch
[b] Dr. Rosario Scopelliti, Dr. Farzaneh Fadaei Tirani Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC GE, BCH 2111, 1015 Lausanne, CH

Supporting information for this article is given via a link at the end of the document.
heterocycles, ${ }^{[4 a, 6 a]}$ the palladium-catalyzed functionalization of olefins, ${ }^{[4 \mathrm{~b}]}$ the rhodium-catalyzed alkynylation of $\mathrm{C}-\mathrm{H}$ bonds ${ }^{[6 \mathrm{~b}-\mathrm{d}]}$ and the copper-catalyzed oxyalkynylation of diazo compounds. ${ }^{[6 e-}$ ${ }^{f, 7]}$ The latter is particularly interesting, as it allows to transfer both parts of the reagent (iodobenzoic acid and alkyne) to the product. ${ }^{[8]}$ Using a copper catalyst with a chiral bisoxazoline (BOX) ligand gave access to propargylic esters with high enantiopurity. ${ }^{[6]]}$ These new transformations further extended the scope of multiple-functionalization of metal-carbene intermediates, a rapidly expanding field of organic chemistry. ${ }^{[9]}$

B) Ethynylbenziodiazolones (EBZ): fine-tuning of reactivity

C) Highly enantioselective oxyalkynylation with EBZ reagents

28 examples, $74-94 \%$ ee

Scheme 1. Established EBX reagents (A), newly designed EBZ reagents (B), and their application in the enantioselective oxyalkynylation of diazo compounds (C).

EBX reagents also offer the possibility of fine-tuning the reactivity by modifying the structure of the heterocyclic core. This has already proven essential for success in several transformations. ${ }^{[5]}$

The heteroatom connected to the iodine atom is expected to have the strongest impact on reactivity, yet so far only oxygen has been investigated. We were therefore highly interested in developing new reagents based on the benziodazolone core, in which the oxygen coordinated to iodine is replaced by a nitrogen atom. The extra substituent on nitrogen will allow to further modulate the electronic and steric environment of the reactive iodine atom (Scheme 1B). Benziodazolone-based hypervalent iodine reagents have been studied in the past, especially by Zhdankin and co-workers, ${ }^{[10]}$ but alkynylation reagents have never been reported to the best of our knowledge.
Herein, we report the first synthesis of ethynylbenziodazolone reagents (EBZ). EBZ bearing either a carbamide or a sulfonyl amide could be synthesized in high yield starting from the corresponding iodide. We further demonstrate that EBZ and EBX reagents have similar reactivities in both metal-free and metalcatalyzed transformations. In particular, they allowed the oxyalkynylation of diazo compounds with high enantioselectivities for aliphatic diazo esters as substrates (Scheme 1C).

Results and Discussion

Synthesis and structure of EBZ reagents

In order to access stable reagents, low electron-density on the nitrogen substituent next to the iodine center was expected to be essential. Therefore, we first selected tosyl substituted benzamide 3a as starting material, which had already been used for the synthesis of cyclic hypervalent iodine reagents before. ${ }^{[11]}$ In fact, the corresponding azidobenziodazolone had displayed enhanced stability when compared to the benziodoxolone reagent. The first EBZ reagent, TIPS-Ts-EBZ (2a) could be obtained in 96% yield on a gram scale using a slightly modified one-pot oxidation/alkynylation protocol develop by Olofsson and coworkers. ${ }^{[12]}$ In contrast to Olofsson's work, the most convenient trimethylsilyl acetylene 4a could be used as precursor instead of the corresponding boronic ester.

Scheme 2. Synthesis of TIPS-Ts-EBZ (2a).

Good quality crystals of 2a were obtained, and the structure of TIPS-EBX (1a) and TIPS-Ts-EBZ (2a) were compared by X-ray analysis (Figure 1 and 2). ${ }^{[13]}$ Bond lengths and angles around the iodine atom were similar for both reagents. The iodine alkyne bond, as well as the iodine-heteroatom bond were slightly longer in 2a when compared to 1a (2.060(9) vs 2.054(2) \AA and $2.387(6)$ vs $2.338(1)$, Å respectively. As for TIPS-EBX (1a), the hypervalent bond in 2a was close to linearity and in the plane of the aromatic ring. An interesting feature of the structure of $\mathbf{2 a}$ was a possible
interaction between one of the two oxygen atoms of the sulfonamide (O 3 in Figure 2) and the hypervalent iodine center (distance 3.281(5) Å).

Figure 1. Structure of TIPS-EBX (1a) as determined by X-ray diffraction. Selected bond lengths and angles: I1-C15: 2.054(2) \AA; I1-O1 2.338(1) \AA; Angle O1-I1-C15: 166.11(6) ${ }^{\circ}$; C15-11-C1: 91.37(7) ${ }^{\circ}$; Torsion C15-I1-C1-C2: -8.3(2) ${ }^{\circ}$. H -atom and substituents on Si are omitted for clarity.

Figure 2. Structure of TIPS-Ts-EBZ (2a) as determined by X-ray diffraction. Selected bond lengths and angles: I1-C15: 2.060(9) \AA; I1-N1: 2.387(6) \AA; O311: 3.281(5) Å; Angle N1-I1-C15: 165.8(3) ${ }^{\circ}$; C15-I1-C1: 92.1(3) ${ }^{\circ}$; Torsion C2-C1-I1-C15: 6.6(7) ${ }^{\circ}$; I1-N1-S1-O3:-17.6(4) ${ }^{\circ}$. H-atom and substituents on Si are omitted for clarity.

Different EBZ sulfonyl reagents were synthesized next (Scheme 3A). A phenylethynyl substituent could be introduced to give reagent 2b in 52% yield. In this case, good results were obtained when adding directly the terminal alkyne after in situ oxidation to iodine(III). Tosyl-derived reagents $\mathbf{2 a}$ and $\mathbf{2 b}$ displayed a lower solubility in commonly used organic solvents. Therefore, the mesitylenesulfonyl (Mts) 2c and 2d were synthesized. Indeed, these reagents were more soluble, although the yields obtained for their synthesis were lower. Reagent $\mathbf{2 e}$ derived from an aliphatic camphorsulphonamide could be also obtained in high yield. Reagents $\mathbf{2 f}$ and $\mathbf{2 g}$ bearing an acetyl group instead of the
sulfonyl group on the nitrogen atom could also be accessed, but only in 21% yield (Scheme 3B). Furthermore, these reagents were less stable and decomposition was observed upon storage at $4^{\circ} \mathrm{C}$. Further modification of the mesitylenesulfonyl derived reagents were then investigated, as they gave best results in the enantioselective oxyalkynylation of diazo compounds (vide infra).

Scheme 3. Scope of EBZ reagents. Mts = Mesitylenesulfonyl [a]The trimethylsilylalkyne was used for the synthesis. ${ }^{[b]}$ The terminal alkyne was used for the synthesis.

Arylalkynyl derivatives $\mathbf{2 h}$-I bearing fluoro, trifluoromethyl, alkynyl or cyano groups in para or meta positions could be obtained in $20-42 \%$ yield. Triethylsilylethynyl reagent 2 m could be also synthesized in 45% yield. The protocol could be also extended to aliphatic reagents without further optimization. Primary ($2 n-q$), secondary ($\mathbf{2 r}$ and $\mathbf{2 s}$) and tertiary ($\mathbf{2 t}$) alkyl groups could be all introduced successfully. Finally, derivatives 2u and 2v bearing methyl or methoxy substituents on the benzamide core could also be accessed. Although the yields obtained for the synthesis of the
reagent are moderate, the single step procedure is very convenient and both terminal or silyl alkynes can be used depending on their availability. No attempt was made to reoptimize the reaction conditions for specific reagents.

Comparison of the reactivity of EBZ and EBX reagents

As the structure of the EBZ reagents was very similar to the one of the highly successful EBXs, a few standard transformations reported for the latter were then examined (Scheme 4). The alkynylation of ketoesters was first investigated (eq. 1). ${ }^{[4 c]}$ TIPS-Ts-EBZ (2a) was as efficient as TMS-EBX in this transformation, giving the alkynylated product 6 in quantitative yield. With thiol nucleophile 7, 2a was slightly less efficient than TIPS-EBX, but the desired product 8 was still obtained in 79% yield (eq. 2). ${ }^{[4 d]}$ Finally, 2a could be also used in the gold-catalyzed alkynylation of indole (9) (eq. 3). ${ }^{[4 a]}$ These preliminary results are promising for the use of EBZ reagents in electrophilic alkynylation reactions.

Scheme 4. Alkynylation of keto ester 5, thiol 7 and indole (9) with TIPS-Ts-EBZ (2a).

Copper-catalyzed enantioselective oxyalkynylation of diazo compounds
Having established that EBZ reagents and EBXs have similar reactivity, we decided to investigate their use in the functionalization of diazo compounds. ${ }^{[6 e-f]}$ In this transformation, the benzoic acid core of the reagent is incorporated in the product. Our goal was therefore to achieve an aminoalkynylation of diazo compounds to access important amino acid derivatives (Scheme 5). Although no product was observed with silylated alkynes, 17\% of an addition product could be obtained when using Ph-Ts-EBZ (2b). The NMR and mass data were in good accordance with the desired aminoalkynylation product 13a. Nevertheless, X-ray diffraction on the more crystalline derivative $\mathbf{1 4 n}$ later showed that oxyalkynylation had occurred to give imidate 14a. ${ }^{[14]}$ In fact, full selectivity for reaction at the oxygen atom of EBZ reagents was always observed. This would be in agreement with a reaction mechanism involving first a nucleophilic attack of the more accessible oxygen atom onto an electrophilic carbene intermediate, followed by an alkyne transfer, as previously proposed in our work with EBX reagents. ${ }^{[6 e-f]}$

Scheme 5. Attempt of aminoalkynylation of diazo compound 11a with Ph-TsEBZ (2b) resulting in oxyalkynylation instead.

We then turned to the optimization of an enantioselective variation of the oxyalkynylation reaction (Table 1). When the oxyalkynylation of ethyl diazoacetate (11a) was attempted with $\mathrm{Ph}-\mathrm{Ts}$-EBZ (2b) and $2 \mathrm{~mol} \%$ CuOAC as catalyst with bisoxazoline (BOX) ligand 15a, which had given high yield and enantioselectivity in the oxyalkynylation reaction with EBX reagents, ${ }^{[6]]} \mathbf{1 4 a}$ could be obtained in an improved yield of 55% (entry 1). However, 14a was formed with only 33% ee. We therefore examined other BOX ligands. The use of PyBOX ligand 15b led to low yield and enantioselectivity (entry 2). With simple valine-derived BOX ligand 15b, oxyalkynylation product 14a was formed with 55% yield and 40% ee (entry 3). Better results were obtained with BOX 15d bearing more bulky tert-butyl groups (65% yield, 69% ee, entry 4). Cyclopropane- and cyclopentane- derived BOX ligands $\mathbf{1 5 e}$ and $\mathbf{1 5 f}$ led to a very fast reaction, but lower yields and enantioselectivities (entries 5 and 6). At this stage, solvent effects were investigated. Acetonitrile, xylene and chlorobenzene gave lower yields and enantioselectivities (entries $7-9$). The results in dichloromethane were similar to dichloroethane, but the reaction could be conducted at $35^{\circ} \mathrm{C}$ instead of $60^{\circ} \mathrm{C}$ without increasing the reaction time (entry 10). Further attempts to improve the yield or enantioselectivity by tuning the reaction conditions were not successful. Therefore, modification of the EBZ reagents was investigated. Gratifyingly, the use of mesitylenesulfonyl derived reagent 2d led to the formation of 14a in 81% yield and 80% ee, although the reaction was slower (entry 11). As a final factor, we investigated counter ion effects on the copper catalyst, whereas the active catalysts where generated in situ by combining CuCl with a silver salt. A triflimide counter ion led to a sluggish reaction (entry 12). In contrast, the use of tosylate allows further increasing the yield to 91% (entry 13). In this case, the reaction could also be run at room temperature, allowing improving the ee to 88% (entry 14). Finally, by using $3 \mathrm{~mol} \%$ of copper catalyst, the desired product 14 a could be obtained in 98% yield and 88% ee after one hour at room temperature (entry 15).

Table 1. Optimization of the oxyalkynylation reaction ${ }^{[a]}$					
Entry	EBZ	Cat./L	Solvent/T ${ }^{\circ} \mathrm{C}$	Time	Yield ${ }^{[b]} / e e^{[c]}(\%)$
1	2b	CuOAc/15a	DCE/60	2 h	$55 / 33^{[d]}$
2	2b	CuOAc/15b	DCE/60	15 min	20/10
3	2b	CuOAc/15c	DCE/60	3 h	55/40
4	2b	CuOAc/15d	DCE/60	1 h	65/69
5	2b	CuOAc/15e	DCE/60	5 min	46/37
6	2b	CuOAc/15f	DCE/60	5 min	46/63
7	2b	CuOAc/15d	$\mathrm{CH}_{3} \mathrm{CN} / 60$	1 h	<5/ND
8	2b	CuOAc/15d	xylene/60	1 h	9/ND
9	2b	CuOAc/15d	PhCl/60	1 h	29/59
10	2b	CuOAc/15d	DCM/35	1 h	68/68
11		CuOAc/15d	DCM/35	24 h	81/80
12		$\mathrm{CuCl} / \mathrm{AgNTf}_{2} / 15 \mathrm{~d}$	DCM/35	1 h	10/60
13	2d	CuCl/AgOTs/15d	DCM/35	2 h	91/82
	2d	CuCl/AgOTs/15d	DCM/RT	2 h	93/88
$15^{[\text {[] }]}$	2d	CuCl/AgOTs/15d	DCM/RT	1 h	98/88

[a] Reaction conditions: 0.20 mmol ethyldiazoacetate (11a), 0.10 mmol of $\mathbf{2 b}$ or 2d, copper catalyst ($2.0 \mathrm{~mol} \%$), silver catalyst ($2.0 \mathrm{~mol} \%$, if indicated), ligand 15 (2.5 mol\%), solvent (0.05 M). $\left.{ }^{[b]}\right]$ Yield after purification by column chromatography. ${ }^{[d]}$ Obtained by chiral HPLC. ${ }^{[d]}$ The opposite enantiomer of the product was obtained. ${ }^{[\text {[e] }}$ Copper catalyst ($3.0 \mathrm{~mol} \%$), ligand 15 d ($3.75 \mathrm{~mol} \%$).

Next the scope of diazo compounds was examined (Scheme 6A). Oxyalkynylation products $\mathbf{1 4 c}$ and 14d bearing benzyl and tertbutyl esters respectively were obtained with lower enantioselectivity. More bulky alkyl groups in contrast led to ee over 90% (products $14 \mathrm{e}-\mathrm{i}$) with the best yield and ee (94%) reached for dimethylbenzylester 14i. In contrast, bulky aryl esters $14 j$ and $14 k$, which gave best results with EBX reagents, ${ }^{[6]}$ were obtained with lower enantioselectivities. Interestingly, good
diastereoselectivities could be achieved with chiral menthol and cholesterol derivatives ($\mathbf{1 4 I}$ and $\mathbf{1 4 m}$).
We then turned to modification of the alkyne substituent on the EBZ reagent using dimethylbenzylester-derived diazo compounds (Scheme 6B). Aryl EBZs gave access to the corresponding oxyalkynylation products $14 \mathrm{n}-\mathrm{r}$ bearing fluoro, trifluoromethyl, alkynyl or cyano group in para- or meta- position of the aryl group in $60-91 \%$ yield and $85-93 \%$ ee. Gratifyingly, silylated alkynes could be now used successfully to give products 14s and 14t with more than 90% ee. Alkyl substituents on the alkyne were investigated next. Excellent results were obtained with primary alkyl groups bearing a simple aliphatic chain (14u and $14 v$) or a chloride/alkyne substituent ($14 w$ and $14 x$). Secondary alkyl groups, such as cyclopropane (14y) and
cyclopentane (14z) were also well tolerated. Tert-butyl alkyne 14aa was obtained in 63% yield and 86% ee. Finally, modification of the aromatic core of the EBZ reagent was also possible to give products 14ab and 14ac in excellent yield and enantioselectivity. Overall, EBZ reagents gave therefore superior or comparable results than EBXs, without the need of a bulky aryl ester substituent to reach high enantioselectivity. Unfortunately, all attempts to isomerize the obtained imidate to the originally targeted amide, or to initiate an Overman-type rearrangement for transferring the nitrogen atom to the triple bond were unsuccessful.

Scheme 6. Scope of the oxyalkynylation of diazo compounds.

Based on the well-established reactivity of electrophilic metal carbenes towards heteroatom nucleophiles, ${ }^{[9]}$ a tentative reaction mechanism can be proposed (Scheme 7A). Reaction of the copper catalyst with diazo compound 11 leads to copper carbene complex I. Nucleophilic attack of EBZ 2 gives then copper ylide II. Interestingly, the exclusive formation of the oxyalkynylation product supports a direct attack of the heteroatom not coordinated to the iodine, a fact that could not be established when using EBX reagents. Finally, electrophilic alkynylation of the copper ylide by the iodonium would give product 14 . Further studies would be needed to propose an exact mechanism for this intriguing alkyne transfer. Concerning stereoinduction, the model proposed in our previous work with EBX reagents ${ }^{[6]]}$ remains valid (Scheme 7B). We assume a 90° angle between carbene and bisoxazoline ${ }^{[15]}$ and attack of EBZ 2 on carbene I in the plane opposite to the bulky tert-butyl group. Attack on the Re face of I (Scheme 7B1, transition state III) is unhindered and favored, leading to the observed absolute stereochemistry of $\mathbf{1 4}$ if the alkynylation occurs with retention of the configuration. Attack on the Si face of I (Scheme 7B2, transition state IV) leads to steric interactions with the ester group on carbene \mathbf{I} and is therefore disfavored.

Scheme 7. Speculative mechanism and stereoinduction model for the oxyalkynylation reaction.

Conclusions

In summary, the first synthesis of ethynylbenziodazolone (EBZ) reagents has been described. The reagents can be easily obtained using a one-step procedure. Preliminary structure and stability studies showed their similarity with the more established ethynylbenziodoxolones (EBXs). In addition, the nitrogen substituent gave further flexibility to fine-tune the physical properties and reactivity of the reagent. The latter was instrumental in the development of a highly enantioselective oxyalkynylation of diazo compounds. This reaction proceeded with high yield and enantioselectivity for a broad range of diazo compounds and EBZ reagents. Our research is now focusing on further synthetic applications of the obtained enantioenriched imidate products, as well as on alternative strategies to implement the initially targeted aminoalkynylation process.

Acknowledgements

We thank European Research Council (ERC; Starting Grant iTools4MC, number 334840) and the EPFL for financial support.

Keywords: carbenes • diazo compounds • enantioselective transformation • catalysis • hypervalent iodine
[1] B. M. Trost, C. J. Li, Modern alkyne chemistry: catalytic and atomeconomic transformations., Wiley, 2014.
[2] F. Diederich, P. J. Stang, R. R. Tykwinski, Acetylene Chemistry: Chemistry, Biology and Material Science, Wiley-VCH, 2005.
[3] J. P. Brand, J. Waser, Chem. Soc. Rev. 2012, 41, 4165.
Selected references: a) J. P. Brand, J. Charpentier, J. Waser, Angew. Chem., Int. Ed. 2009, 48, 9346; b) S. Nicolai, S. Erard, D. F. Gonzalez, J. Waser, Org. Lett. 2010, 12, 384; c) D. Fernandez Gonzalez, J. P. Brand, J. Waser, Chem. Eur. J. 2010, 16, 9457; d) R. Frei, J. Waser, J. Am. Chem. Soc. 2013, 135, 9620; e) F. Le Vaillant, T. Courant, J. Waser, Angew. Chem., Int. Ed. 2015, 54, 11200.
[5] Reviews: a) J. Kaschel, D. B. Werz, Angew. Chem., Int. Ed. 2015, 54, 8876; b) Y. Li, D. P. Hari, M. V. Vita, J. Waser, Angew. Chem., Int. Ed. 2016, 55, 4436; c) D. P. Hari, S. Nicolai, J. Waser, PATAl'S Chem. Funct. Groups 2018, DOI doi:10.1002/9780470682531.pat0951; d) D. P. Hari, P. Caramenti, J. Waser, Acc. Chem. Res. 2018, 51, 3112.
[6] a) Y. Li, J. Waser, Angew. Chem., Int. Ed. 2015, 54, 5438; b) C. Feng, T.-P. Loh, Angew. Chem., Int. Ed. 2014, 53, 2722; c) F. Xie, Z. Qi, S. Yu, X. Li, J. Am. Chem. Soc. 2014, 136, 4780; d) K. D. Collins, F. Lied, F. Glorius, Chem. Commun. 2014, 50, 4459; e) D. P. Hari, J. Waser, J. Am. Chem. Soc. 2016, 138, 2190; f) D. P. Hari, J. Waser, J. Am. Chem. Soc. 2017, 139, 8420.
[7] Selected examples of multi-functionalization reaction involving diazo compounds and hypervalent iodine reagents: a) J. S. Tao, R. Tran, G. K. Murphy, J. Am. Chem. Soc. 2013, 135, 16312; b) W. M. Yuan, L. Eriksson, K. J. Szabo, Angew. Chem., Int. Ed. 2016, 55, 8410; c) Z. Zhao, K. G. Kulkarni, G. K. Murphy, Adv. Synth. Catal. 2017, 359, 2222; d) N. Döben, H. Yan, M. Kischkewitz, J. Mao, A. Studer, Org. Lett. 2018, 20, 7933.
[8] Other examples of atom-economic transformations involving hypervalent iodine reagents: a) S. G. Modha, M. F. Greaney, J. Am. Chem. Soc. 2015, 137, 1416; b) J. Buendia, B. Darses, P. Dauban, Angew. Chem., Int. Ed. 2015, 54, 5697. Review: c) A. Boelke, P. Finkbeiner, B. J. Nachtsheim, Beilstein J. Org. Chem. 2018, 14, 1263.
[9] Selected examples: a) H. Huang, X. Guo, W. Hu, Angew. Chem., Int. Ed. 2007, 46, 1337; b) W. Hu, X. Xu, J. Zhou, W.-J. Liu, H. Huang, J. Hu, L. Yang, L.-Z. Gong, J. Am. Chem. Soc. 2008, 130, 7782; c) C.-Y. Zhou, J.C. Wang, J. Wei, Z.-J. Xu, Z. Guo, K.-H. Low, C.-M. Che, Angew. Chem., Int. Ed. 2012, 51, 11376; d) S. K. Jia, D. Xing, D. Zhang, W. H. Hu, Angew. Chem., Int. Ed. 2014, 53, 13098; e) D. F. Chen, F. Zhao, Y. Hu, L. Z. Gong, Angew. Chem., Int. Ed. 2014, 53, 10763; f) Y. Xia, S. Feng, Z. Liu, Y. Zhang, J. Wang, Angew. Chem., Int. Ed. 2015, 54, 7891; Reviews: g) X. Zhao, Y. Zhang, J. Wang, Chem. Commun. 2012, 48, 10162; h) X. Guo, W. Hu, Acc. Chem. Res. 2013, 46, 2427; i) Y. Xia, D. Qiu, J. B. Wang, Chem. Rev 2017, 117, 13810.
[10] a) W. Wolf, Steinber.L, Chem. Commun. (London) 1965, 449; b) T. M. Balthazor, D. E. Godar, B. R. Stults, J. Org. Chem. 1979, 44, 1447; c) V. V. Zhdankin, R. M. Arbit, M. McSherry, B. Mismash, V. G. Young, J. Am. Chem. Soc. 1997, 119, 7408; d) V. V. Zhdankin, R. M. Arbit, B. J. Lynch, P. Kiprof, J. Org. Chem. 1998, 63, 6590; e) V. V. Zhdankin, J. T. Smart, P. Zhao, P. Kiprof, Tetrahedron Lett. 2000, 41, 5299; f) V. V. Zhdankin,
A. E. Koposov, J. T. Smart, R. R. Tykwinski, R. McDonald, A. MoralesIzquierdo, J. Am. Chem. Soc. 2001, 123, 4095; g) V. V. Zhdankin, A. Y. Koposov, L. S. Su, V. V. Boyarskikh, B. C. Netzel, V. G. Young, Org. Lett. 2003, 5, 1583; h) M. Ochiai, T. Sueda, K. Miyamoto, P. Kiprof, V. V. Zhdankin, Angew. Chem., Int. Ed. 2006, 45, 8203; i) A. Yoshimura, M. T. Shea, C. L. Makitalo, M. E. Jarvi, G. T. Rohde, A. Saito, M. S. Yusubov, V. V. Zhdankin, Beilstein J. Org. Chem. 2018, 14, 1016.
[11] S. Alazet, J. Preindl, R. Simonet-Davin, S. Nicolai, A. Nanchen, T. Meyer, J. Waser, J. Org. Chem. 2018, 83, 12334.
[12] M. J. Bouma, B. Olofsson, Chem. Eur. J. 2012, 18, 14242.
[13] The structures of $\mathbf{2 a}$ and $\mathbf{2 e}$ were determined by X-ray diffraction. The data are available from the Cambridge Crystallographic Data Center (CCDC numbers $1896879(\mathbf{2 a})$ and $1896878(\mathbf{2 e})$). The structure of $\mathbf{1 a}$ is already available (CCDC 863342), a new refined structure has been recently submitted (CCDC 1900537).
[14] The structure of $\mathbf{1 4 n}$ was determined by X-ray diffraction. The data are available from the Cambridge Crystallographic Data Center (CCDC number 1896880).
[15] J. M. Fraile, J. I. García, V. Martínez-Merino, J. A. Mayoral, L. Salvatella, J. Am. Chem. Soc. 2001, 123, 7616.

Entry for the Table of Contents (Please choose one layout)

FULL PAPER

Ethynylbenziodazolone (EBZ) cyclic hypervalent iodine reagents have been synthesized for the first time and displayed similar structure and reactivity when compared to the established ethynylbenziodoxolone (EBX) reagents. They were used in the oxyalkynylation of diazo compounds to access imidate derivatives in high yield and enantioselectivity for a broad scope of diazo compounds and alkynes.

Durga Prasad Hari, Lionel Schouwey, Verity Barber, Rosario Scopelliti,
Farzaneh Fadaei Tirani and Jerome
Waser*
Page No. - Page No.
Ethynylbenziodazolones (EBZ) as Electrophilic Alkynylation Reagents for the Highly Enantioselective Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds
Ethynylbenziodazolones (EBZ) as Electrophilic AlkynylationReagents for the Highly Enantioselective Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds
Durga Prasad Hari, Lionel Schouwey, Verity Barber, Rosario Scopelliti, Farzaneh Fadaei Tirani and Jerome Waser*
Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
Supporting Information
(262 pages)
Table of Contents

1. General methods S2
2. Preparation of EBZ reagents S3
3. Preparation of diazo compounds S25
4. Synthesis of ligands S37
5. Preliminary studies of EBZ reactivity S42
6. Optimization of the reaction conditions S44
7. Copper catalyzed oxy-alkynylation using EBZ reagents. S50
8. Crystal data S72
9. References S121
10. Spectra for new compounds S123

1. General Methods

All reactions were carried out in oven dried glassware under an atmosphere of nitrogen, unless stated otherwise. For quantitative flash chromatography technical grade solvents were used. For flash chromatography for analysis, HPLC grade solvents from Sigma-Aldrich were used. THF, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}$, toluene, hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried by passage over activated alumina under nitrogen atmosphere ($\mathrm{H}_{2} \mathrm{O}$ content $<10 \mathrm{ppm}$, Karl-Fischer titration). The solvents were degassed by Freeze-Pump-Thaw method when mentioned. All chemicals were purchased from Acros, Aldrich, Fluka, VWR, Aplichem or Merck and used as such unless stated otherwise. Chromatographic purification was performed as flash chromatography using Macherey-Nagel silica 40-63, $60 \AA$, using the solvents indicated as eluent with 0.1-0.5 bar pressure. TLC was performed on Merck silica gel $60 \mathrm{~F}_{254}$ TLC glass plates or aluminium plates and visualized with UV light, permanganate stain, CAN stain or Anisaldehyde stain. Melting points were measured on a Büchi B-540 melting point apparatus using open glass capillaries, the data is uncorrected. ${ }^{1} \mathrm{H}$-NMR spectra were recorded on a Brucker DPX-400 400 MHz spectrometer in chloroform-d, DMSO- d_{6} or $\mathrm{CD}_{3} \mathrm{OD}$, all signals are reported in ppm with the internal chloroform signal at 7.26 ppm , the internal DMSO signal at 2.50 ppm or the internal methanol signal at 3.30 ppm as standard. The data is being reported as $(\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{qi}=$ quintet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad signal, app $=$ apparent, coupling constant(s) in Hz , integration, interpretation). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded with ${ }^{1} \mathrm{H}$-decoupling on a Brucker DPX-400 100 MHz spectrometer in chloroform-d, DMSO- d_{6} or $\mathrm{CD}_{3} \mathrm{OD}$, all signals are reported in ppm with the internal chloroform signal at 77.0 ppm, the internal DMSO signal at 39.5 ppm or the internal methanol signal at 49.0 ppm as standard. Infrared spectra were recorded on a JASCO FT-IR B4100 spectrophotometer with an ATR PRO410-S and a ZnSe prisma and are reported as cm^{-1} ($\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{br}=$ broad). High resolution mass spectrometric measurements were performed by the mass spectrometry service of ISIC at the EPFL on a MICROMASS (ESI) Q-TOF Ultima API. HPLC measurements were done on a Agilent 1260 Infinity autosampler using a CHIRALPAK IA, IB, IC or ID column from DAICEL Chemical. Optical rotations were measured on a polarimeter using a 10 cm cell with a Na 589 nm filter. The specific solvents and concentrations (in $\mathrm{g} / 100 \mathrm{~mL}$) are indicated.

2. Preparation of EBZ reagents

4-Methylbenzenesulfonamide (17)

Following a slightly modified reported procedure, ${ }^{[1]}$ in a 100 mL round-bottom flask, a solution of 4-methylbenzene-1-sulfonyl chloride ($4.00 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.00$ equiv) in ammonium hydroxide solution $25 \% \mathrm{w} / \mathrm{w}(25.0 \mathrm{~mL}, 161 \mathrm{mmol}, 7.70$ equiv) was heated to reflux for 1 h . After reaction completion, the reaction mixture was cooled down and filtered. The crude product was recrystallized in water to afford 4-methylbenzenesulfonamide (17) as white crystalline solid ($2.81 \mathrm{~g}, 16.4 \mathrm{mmol}, 78 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), 7.32 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 4.77 (br s, 2H, NH2), 2.43 (s, 3H, ArCH_{3}). The characterization data corresponded to the reported values. ${ }^{[2]}$

2-Iodo- N -tosylbenzamide (3a)

In a 25 mL round-bottom flask, 2-iodobenzoic acid ($2.48 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.00$ eqiv) and DMF ($1 \mathrm{drop}, \sim 6 \mathrm{~mol} \%$) were suspended in DCM (7.0 mL). Oxalyl chloride ($1.1 \mathrm{~mL}, 12 \mathrm{mmol}, 98$ $\%, 1.2$ equiv) was added dropwise at $0{ }^{\circ} \mathrm{C}$. After the addition, the reaction was warmed up to RT and stirred for 3 h . The solvent and the oxalyl chloride excess were removed in vacuum. The crude 2-iodobenzoyl chloride was dissolved in toluene (6.5 mL) and transferred to a solution of 4-methylbenzenesulfonamide (17) ($1.50 \mathrm{~g}, 8.15 \mathrm{mmol}, 0.820$ equiv), N, N-dimethyl-4-amino-pyridine ($5.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.005$ equiv), and $\mathrm{Et}_{3} \mathrm{~N}$ ($3.2 \mathrm{~mL}, 23 \mathrm{mmol}, 2.3$ equiv) in isopropyl acetate (20 mL). The reaction mixture was heated to $55^{\circ} \mathrm{C}$ and stirred for 1 h . Water (10 mL) was added to quench the excess of acyl chloride. The organic layer was washed with 0.7 M HCl solution (70 mL) and the aqueous layer was back extracted with ethyl acetate (2 X 100 mL). The organic layers were combined, dried and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography using EtOAc:Pentane 1:3.5 as mobile phase to afford 3a as a slightly brown gum ($2.92 \mathrm{~g}, 7.27 \mathrm{mmol}$, 80%). TLC (EtOAc:Pentane 1:3.5): $\mathrm{R}_{\mathrm{f}}=0.26, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.04$ (s , $1 \mathrm{H}, \mathrm{N} H$), $7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} H), 7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.34(\mathrm{~m}, 4 \mathrm{H}, \operatorname{Ar} H)$, $7.10-7.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.9,145.4$,
$140.2,138.4,135.3,135.0,132.5,129.6,128.9,128.3,91.8,21.8$; IR v 3057 (w), 2363 (w), 1711 (m), 1594 (w), 1434 (m), 1353 (m), 1270 (s), 1172 (m), 1126 (w), 1081 (w), 1041 (w), 896 (w), 834 (m); HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{INO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 401.9655$; found 401.9669 .

General procedure 1 (GP1)

3
A solution of 2-iodobenzoic acid ($16.6 \mathrm{mmol}, 1.10$ equiv), N-(3-dimethylaminopropyl)- N^{\prime} ethylcarbodiimide hydrochloride ($22.6 \mathrm{mmol}, 1.50$ equiv) and 4-dimethylaminopyridine (22.6 mmol, 1.50 equiv) in DCM (0.5 M) was stirred for 1 h at RT. 2,4,6Trimethylbenzenesulfonamide ($15 \mathrm{mmol}, 1.0$ equiv) was added in one portion to the solution and the reaction mixture was stirred overnight. The reaction mixture was quenched with 1 M $\mathrm{HCl}(50 \mathrm{~mL})$ solution and stirred for 1 h . The organic layer was washed with $1 \mathrm{M} \mathrm{HCl}(2 \mathrm{X} 50$ mL) followed by saturated NaCl solution (50 mL). The combined aqueous layers were extracted with DCM (2 X 50 mL). The organic layers were combined and dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The product was purified by flash column chromatography using EtOAc:pentane ($1: 3 \mathrm{v} / \mathrm{v}$).

2-Iodo- N-[2,4,6-trimethylbenzenesulfonamide]benzamide (3b)

3b
Following GP1, 2-iodobenzoic acid (4.11 g, $16.6 \mathrm{mmol}, 1.10$ equiv), N-(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride ($4.33 \mathrm{~g}, 22.6 \mathrm{mmol}, 1.50$ equiv), 4dimethylaminopyridine $(2.76 \mathrm{~g}, \quad 22.6 \mathrm{mmol}, \quad 1.50$ equiv) and 2,4,6trimethylbenzenesulfonamide ($3.00 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.00$ equiv) were stirred for 14 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using EtOAc:pentane 1:3 as mobile phase to afford 3b as a white solid (5.12 g, $11.9 \mathrm{mmol}, 79 \%$). Mp: 206-209 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:pentane $1: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.55, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.44-7.32$ (m, 2H, ArH), 7.15 - 7.12 (m, , 1H, ArH), 7.01 (s, 2H, ArH), 2.74 (s, 6H, ArCH3), 2.33 (s, 3H, ArCH_{3}); ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.1,144.0,140.9,140.3,138.9,132.4,132.1,132.0$, 128.6, 128.3, 91.5, 23.1, 21.1; IR v 3210 (w), 2850 (w), 1710 (m), 1603 (w), 1468 (m), 1430
(s), 1343 (m), 1277 (w), 1239 (w), 1165 (s), 1098 (m), 1054 (w), 1037 (w), 1017 (w), 887 (w), 822 (m); HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{INO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 429.9968$; found 429.9972.

2-Iodo- N-(mesitylsulfonyl)-5-methylbenzamide (3c)

Following GP1, 2-iodo-5-methylbenzoic acid ($0.725 \mathrm{~g}, 2.76 \mathrm{mmol}, 1.10$ equiv), N-(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride ($0.721 \mathrm{~g}, 3.76 \mathrm{mmol}, 1.50$ equiv), 4-dimethylaminopyridine $(0.460 \mathrm{~g}, 3.76 \mathrm{mmol}, 1.50$ equiv) and 2,4,6trimethylbenzenesulfonamide ($0.50 \mathrm{~g}, 2.5 \mathrm{mmol}, 1.0$ equiv) were stirred for 14 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using EtOAc:pentane 1:3 as mobile phase to afford $\mathbf{3 c}$ as a white solid (0.864 $\mathrm{g}, 1.95 \mathrm{mmol}, 78 \%$). Mp: $194-198{ }^{\circ} \mathrm{C}$; TLC (EtOAc:pentane $1: 3 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.39, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 8.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.23-7.22(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar} H$), 7.01 (s, 2H, ArH), 6.97 (dd, $J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 2.74 (s, 6H, 2 X ArCH 3), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.1,143.9,140.9$, 140.1, 138.7, 138.6, 133.4, 132.1, 129.6, 87.3, 23.1, 21.1, 20.8; IR v 3225 (w), 2943 (w), 1711 (m), 1602 (w), 1566 (w), 1427 (m), 1341 (m), 1283 (w), 1245 (w), 1194 (w), 1160 (s), 1097 (m), 1053 (w), 1016 (w), 852 (m). One carbon was not resolved at 100 MHz . Couldn't identify the mass of the compound in HRMS. However, the product (14ab) of the next step is completely characterized.

2-Iodo- N-(mesitylsulfonyl)-4,5-dimethoxybenzamide (3d)

Following GP1, 2-iodo-4,5-dimethoxybenzoic acid ($0.850 \mathrm{~g}, 2.76 \mathrm{mmol}, 1.00$ equiv), N-(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride ($0.721 \mathrm{~g}, 3.76 \mathrm{mmol}, 1.50$ equiv), 4-dimethylaminopyridine $(0.460 \quad \mathrm{~g}, \quad 3.76 \mathrm{mmol}, \quad 1.50$ equiv) and 2,4,6trimethylbenzenesulfonamide $(0.50 \mathrm{~g}, 2.5 \mathrm{mmol}, 1.0$ equiv) were stirred for 14 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using EtOAc:pentane 1:3 as mobile phase to afford as a white solid (0.450 g ,
$0.920 \mathrm{mmol}, 37 \%$). Mp: 223-226 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:pentane $1: 3 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.3, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.01(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{ArH}$), $3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 2.76(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3$), $2.65(\mathrm{~s}, 3 \mathrm{H}$, ArCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.2,151.7,149.3,143.9,140.8,132.1,131.9,130.2$, 122.5, 112.7, 80.9, 56.4, 56.2, 23.1, 21.1; IR v 3241 (w), 2938 (w), 2846 (w), 1699 (w), 1594 (w), 1565 (w), 1505 (w), 1422 (m), 1369 (w), 1336 (m), 1261 (m), 1207 (w), 1159 (s), 1094 (m), 1031 (w), 951 (w), 854 (m); HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{INO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$490.0180; found 490.0179.
(1S)-(+)-Camphorsulfonamide (18)

In a 20 ml round-bottom flask, thionyl chloride ($0.42 \mathrm{~mL}, 5.7 \mathrm{mmol}, 1.2$ equiv) was slowly added to a refluxing solution of ($1 S$)-(+)-camphorsulfonic acid ($1.10 \mathrm{~g}, 4.74 \mathrm{mmol}, 1.00$ equiv) in chloroform (5.0 mL). The reflux was maintained overnight. The reaction was cooled down to $0^{\circ} \mathrm{C}$ and added over 1 h to $25 \% \mathrm{w} / \mathrm{w}$ ammonium hydroxide solution $(11.0 \mathrm{~mL}, 78.0 \mathrm{mmol}$, 16.6 equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated to RT and stirred for 4 h . The aqueous layer was extracted with DCM ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were washed with brine $(20 \mathrm{~mL})$. The organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography using EtOAc:pentane 1:2 as mobile phase to afford $\mathbf{1 8}$ as a white solid ($574 \mathrm{mg}, 2.48 \mathrm{mmol}, 53 \%$). TLC (EtOAc:pentane 1:2 v/v): $\mathrm{R}_{\mathrm{f}}=0.27, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.36(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{N} H_{2}$), 3.14 and $3.53\left(\mathrm{AB}\right.$ quartet, $J=15.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{NH}_{2}$), 2.43-1.43 (m, $7 \mathrm{H}, \mathrm{C}(\mathrm{O})-\mathrm{C}-$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}\right), 1.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. The characterization data corresponded to the reported values. ${ }^{[3]}$

2-Iodo- N-camphorsulfonylbenzamide (3e)

A solution of DMAP ($450 \mathrm{mg}, 3.68 \mathrm{mmol}, 1.60$ equiv), EDC ($882 \mathrm{mg}, 4.60 \mathrm{mmol}, 2.00$ equiv) and 2-iodobenzoic acid ($570 \mathrm{mg}, 2.30 \mathrm{mmol}, 1.00$ equiv) in DCM (40 mL) was stirred 1 h at RT. (1S)-(+)-Camphorsulfonamide (18) ($532 \mathrm{mg}, 2.32 \mathrm{mmol}, 1.00$ equiv) was added in one
portion to the solution and the reaction mixture was stirred overnight at RT. The reaction mixture was diluted with $\mathrm{DCM}(100 \mathrm{~mL})$ and washed with 1 M HCl solution (2 X 50 mL) and water (50 mL). The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography using MeOH:DCM 5:95 as mobile phase to afford 3e as a pale yellow solid ($833 \mathrm{mg}, 1.81 \mathrm{mmol}$, 79%). Mp: 89.8-90.7 ${ }^{\circ} \mathrm{C}$; TLC (MeOH:DCM 5:95 v/v): $\mathrm{R}_{\mathrm{f}}=0.19$, $\mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 7.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.61(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H)$, $7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.06$ and 3.46 (AB quartet, 14.0 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{NH}$), 2.46-1.25 (m, 7H, C(O)-C-CH2-CH2-CH-CH2), $1.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 215.5,167.1,140.8,138.6,132.8,129.0,128.5$, 92.4, 59.2, 52.0, 49.0, 43.0, 43.0, 27.2, 26.5, 20.1, 19.8; IR v 3667 (w), 2979 (s), 2903 (s), 2361 (w), 1748 (w), 1698 (w), 1627 (w), 1402 (m), 1251 (w), 1058 (s), 889 (w); HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{INO}_{4} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$484.0050; found 484.0063.

2-Iodo- N -acetylbenzamide (3f)

In a $2-5 \mathrm{ml}$ microwave reaction vial, 2-iodobenzamide ($247 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv) suspended in acetic anhydride ($0.3 \mathrm{ml}, 3 \mathrm{mmol}, 3$ equiv). Sulfuric acid (2 drops) was added and the tube was sealed. The vial was kept in microwave for 3 min at $100{ }^{\circ} \mathrm{C}(100 \mathrm{~W})$. The reaction mixture was diluted with ethyl acetate (20 mL), washed with a saturated NaHCO_{3} solution (10 mL) and brine (10 mL). The aqueous layers were back extracted with ethyl acetate (2 X 10 mL). The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography using EtOAc:pentane 1:3 as mobile phase to afford $\mathbf{3 f}$ as a white solid $(0.267 \mathrm{~g}, 0.924 \mathrm{mmol}$, 92%). Mp: 102.2-103.8 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:pentane 1:3.5 v/v): $\mathrm{R}_{\mathrm{f}}=0.29, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 7.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.25-$ $7.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4,167.6,140.6$, 140.2, 132.5, 128.6, 128.4, 92.1, 25.6; IR v 3269 (m), 3177 (w), 2961 (w), 1732 (s), 1694 (s), 1592 (w), 1495 (s), 1429 (m), 1375 (m), 1269 (s), 1226 (s), 1127 (w), 1019 (m), 953 (w), 887 (w), 839 (w); HRMS (ESI) calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{INO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 289.9672$; found 289.9683.

General procedure 2 (GP2)

In a $2-5 \mathrm{~mL}$ microwave reaction vial, 2 -iodo- N-substituted benzamide ($2.5 \mathrm{mmol}, 1.0$ equiv), p-toluenesulfonic acid (1.0 equiv) and meta-chloroperbenzoic acid (1.1 equiv) were dissolved in dichloroethane - trifluoroethanol mixture ($1: 1$ ratio, 0.6 M). The solution was stirred for 1 h at $40{ }^{\circ} \mathrm{C}$. The corresponding terminal or silylated alkyne (1.4 equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ overnight. The precipitate was dissolved in DCM (25 mL) and the organic layer was washed with NaHCO_{3} sat. solution (2 X 20 mL) and with brine (15 mL). The combined aqueous layers were back-extracted with DCM (2 X 20 mL). The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the solvent was removed under reduced pressure. The crude product was purified using the described method to afford the corresponding EBZ compound.
N-[Tolylsulfonyl]-1-[triisopropylsilylethynyl]-1,2-benziodazol-3(1H)-one (2a)

2a
Following GP2, 2-iodo- N-tosylbenzamide 3a ($1.00 \mathrm{~g}, 2.49 \mathrm{mmol}, 1.00$ equiv) and triisopropyl((trimethylsilyl)ethynyl) silane ($0.888 \mathrm{~g}, 3.49 \mathrm{mmol}, 1.40$ equiv) were stirred for 14 h . The crude reaction mixture was purified by recrystallization in ethyl acetate (35 mL) to afford 2a as white crystals ($1.39 \mathrm{~g}, 2.38 \mathrm{mmol}, 96 \%$). Mp: 241.0-243.6 ${ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.40-8.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.32-8.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), $7.70(\mathrm{dd}, J=6.5,3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 2.38(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 1.15 (m, 21H, TIPS); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.7,143.4,137.9,135.2,134.3$, 132.0, 131.6, 129.2, 128.0, 127.1, 115.0, 114.0, 70.6, 21.6, 18.6, 11.2; IR v 2950 (w), 2867 (w), 1661 (s), 1463 (w), 1440 (w), 1384 (w), 1287 (s), 1249 (w), 1148 (s), 1089 (m), 1002 (w), 894 (m), 862 (s), 819 (w); HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{INO}_{3} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{H}]^{+}$582.0990; found 582.0995.

N-[Tolylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2b)

2b
Following GP2, 2-iodo- N-tosylbenzamide 3a ($1.00 \mathrm{~g}, 2.49 \mathrm{mmol}, 1.00$ equiv) and phenylacetylene ($0.39 \mathrm{~mL}, 3.5 \mathrm{mmol}, 1.4$ equiv) were stirred for 14 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using EtOAc:DCM 1:24 as mobile phase followed by recrystallization by evaporation of DCM from a mixture of ethyl acetate / DCM $(0.5 \mathrm{~mL} / 10 \mathrm{~mL})$ to afford $\mathbf{2 b}$ as white crystals $(0.654 \mathrm{~g}, 1.31$ mmol, 52%). Mp: 157.6-160. $1^{\circ} \mathrm{C}$ (dec.); TLC (EtOAc:DCM 1:24 v/v): $\mathrm{R}_{\mathrm{f}}=0.21, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.34$ (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), 8.30 (dd, $J=7.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar} H), 8.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.75-7.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H)$, $7.53-7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 160.8,143.5,137.9,135.4,134.2,132.9,132.0,131.6,130.8,129.3,128.8$, 128.0, 127.3, 120.5, 115.5, 106.5, 56.3, 21.6; IR v 2360 (w), 2327 (w), 2146 (w), 1652 (s), 1521 (w), 1490 (w), 1439 (m), 1314 (s), 1294 (s), 1247 (w), 1150 (s), 1087 (m), 1038 (w), 897 (m), 857 (s), $799(\mathrm{w})$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{INO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 507.9968$; found 501.9974.

N-[Mesitylsulfonyl]-1-[(triisopropylsilyl)ethynyl]-1,2-benziodazol-3(1H)-one (2c)

3b

2c

In a 5 mL sealed tube, 2 -iodo- N -(mesitylsulfonyl)benzamide ($\mathbf{3 b}$) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and $m \mathrm{CPBA}$ ($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1(2 \mathrm{~mL})$ and stirred for 1 h at $40^{\circ} \mathrm{C}$. Ethynyltriisopropylsilane ($0.297 \mathrm{~g}, 1.63 \mathrm{mmol}, 1.40$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 X 10 mL). The
combined organic layers were washed with a saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:Pentane 1:4 as mobile phase followed by recrystallization in EtOAc (ca 10 mL) to afford 2c as white crystals ($0.450 \mathrm{~g}, 0.738 \mathrm{mmol}$, 63%). Mp: 219-223 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:Pentane 1:3): $\mathrm{R}_{\mathrm{f}}=0.73, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.41(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 8.32-8.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.79-7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 6.92 (s, 2H, $\mathrm{Ar} H$), 2.78 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}_{3}$), 2.26 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), $1.36-0.83$ (m, 21H, TIPS); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.2,142.2,139.8,135.1,134.9,134.4,131.9,131.6,131.6$, 127.0, 115.0, 113.9, 70.7, 23.2, 21.0, 18.5, 11.2; IR v 2940 (m), 2865 (m), 1656 (s), 1606 (w), 1465 (w), 1440 (w), 1380 (w), 1290 (s), 1249 (w), 1141 (s), 1055 (w), 998 (w), 892 (m), 849 (s); HRMS (ESI) calcd. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{INO}_{3} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{H}]^{+} 610.1303$; found 610.1305 .

N-[Mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d)

In a 5 mL sealed tube, 2 -iodo- N-(mesitylsulfonyl)benzamide (3b) $(1.00 \mathrm{~g}, 2.33 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.401 \mathrm{~g}, 2.33 \mathrm{mmol}, 1.00$ equiv) and $m \mathrm{CPBA}$ ($0.574 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1(4 \mathrm{~mL})$ and stirred for 1 h at $40^{\circ} \mathrm{C}$. Ethynylbenzene ($0.36 \mathrm{~mL}, 3.3 \mathrm{mmol}, 1.4$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and stirred vigorously with saturated solution of NaHCO_{3} $(20 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{X} 20 \mathrm{~mL}$). The combined organic layers were washed with a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:DCM 1:25 as mobile phase followed by washing with EtOAc (3 X 3 mL) to afford $\mathbf{2 d}$ as a white solid ($0.352 \mathrm{~g}, 0.665 \mathrm{mmol}, 29 \%$). Mp: 204-206 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:DCM 1:25): $\mathrm{R}_{\mathrm{f}}=0.18, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.37$ (dd, $J=8.0$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 8.29(\mathrm{dd}, J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.82-7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.64-7.56$ (m, 2H, ArH), $7.53-7.37(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.93(\mathrm{~s}, 2 \mathrm{H} \mathrm{ArH}), 2.80(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3$), $2.27(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{ArCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3,142.3,139.8,135.2,134.9,134.4,132.9$, 131.9, 131.7, 130.8, 128.8, 127.2, 120.6, 115.4, 106.5, 56.5, 23.2, 21.0; IR v 3072 (w), 2937
(w), 2146 (w), 1655 (s), 1525 (w), 1441 (m), 1294 (s), 1248 (w), 1142 (s), 1054 (w), 897 (m), 849 (s); HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{INO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 530.0281$; found 530.0283. One carbon was not resolved at 100 MHz .

2-((($(1 S, 4 S)$-7,7-Dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methyl)sulfonyl)-1-

 ((triisopropylsilyl)ethynyl)- 1,2-benziodazol-3(1H)-one (2e)

2e
Following GP2, 2-iodo- N-camphorsulfonylbenzamide $\mathbf{3 e}$ ($138 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.00$ equiv) and ethynyltriisopropylsilane ($107 \mathrm{mg}, 0.420 \mathrm{mmol}, 1.40$ equiv) were stirred for 14 h . The crude product was purified by flash chromatography using EtOAc:pentane $1: 1.5$ as mobile phase to afford 2 e as a white solid ($0.166 \mathrm{~g}, 0.259 \mathrm{mmol}, 86 \%$). Mp: $167.3-170.0^{\circ} \mathrm{C}$; TLC (EtOAc:pentane 1:1.5): $\mathrm{R}_{\mathrm{f}}=0.26, \mathrm{KMnO}_{4}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.43-8.32(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArH}), 7.77-7.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 3.90$ and $3.37\left(\mathrm{AB}\right.$ quartet, $\left.14.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{~N}\right), 2.46-$ 1.42 (m, 7H, C(O)-C-CH2-CH2-CH-CH2), $1.18-1.08(\mathrm{~m}, 21 \mathrm{H}, \mathrm{TIPS}), 1.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 215.3,162.0,135.3,134.3,132.0,131.7,127.2$, $114.9,113.9,70.6,59.0,50.1,48.5,42.8,42.7,27.2,25.6,19.9,18.6,18.4,11.2$; IR v 3667 (w), 3500 (w), 2963 (s), 2361 (w), 1744 (m), 1650 (m), 1582 (w), 1528 (w), 1449 (m), 1401 (m), 1313 (s), 1255 (m), 1134 (s), 1057 (s), 892 (m), 856 (m); HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{INO}_{4} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{H}]^{+}$642.1565; found 642.1570.

N-[Acetyl]-1-[(triisopropylsilyl)ethynyl]-1,2-benziodazol-3(1H)-one (2f)

$2 f$
Following GP2, 2-iodo- N-acetylbenzamide 3f ($289 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv) and ethynyltriisopropylsilane ($356 \mathrm{mg}, 1.40 \mathrm{mmol}, 1.40$ equiv) were stirred for 14 h . The crude product was purified by flash chromatography using EtOAc:pentane $1: 9$ as mobile phase to afford 2f as a white solid ($0.102 \mathrm{~g}, 0.217 \mathrm{mmol}, 21 \%$). Mp: 109.6-111.3 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:pentane 1:9): $\mathrm{R}_{\mathrm{f}}=0.10, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.56-8.51(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{ArH}), 8.39-8.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.76-7.71$ (m, 2H, ArH), 2.55 (s, 3H, CH C_{3}), 1.13 (m, 21H, TIPS); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 179.9,162.1,135.3,135.1,131.4,131.3$ 127.4, 115.4,
109.2, 81.1, 26.8, 18.5, 11.1; IR v 2944 (w), 2867 (w), 2324 (w), 1666 (s), 1617 (s), 1464 (w), 1441 (w), 1375 (s), 1344 (s), 1237 (w), 1158 (w), 1116 (w), 1021 (w), 885 (w); HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{INO}_{2} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{H}]^{+} 470.1007$; found 470.1037.

N-[Acetyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2g)

$2 g$
Following GP2, 2-iodo- N-acetylbenzamide 3f ($725 \mathrm{mg}, 2.51 \mathrm{mmol}, 1.00$ equiv) and phenylacetylene ($0.40 \mathrm{~mL}, 3.5 \mathrm{mmol}, 1.4$ equiv) were stirred for 14 h . The crude product was purified by flash chromatography using EtOAc:DCM 1:25 as mobile phase to afford $\mathbf{2 g}$ as a white solid ($0.204 \mathrm{~g}, 0.524 \mathrm{mmol}, 21 \%$). Mp: 173.6-176.0 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:DCM 1:25): $\mathrm{R}_{\mathrm{f}}=$ $0.24, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.48(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 8.37(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.75(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.46-7.36$ (m, $3 \mathrm{H}, \mathrm{ArH}), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.8,162.2,135.4,135.3,132.6$, 131.6, 131.4, 130.0, 128.7, 127.5, 121.7, 115.8, 103.3, 65.8, 26.9; IR v 2986 (w), 2908 (w), 2324 (w), 2141 (w), 1658 (s), 1616 (s), 1489 (w), 1443 (w), 1379 (s), 1344 (s), 1237 (w), 1211 (w), 1157 (w), 1118 (w), 1023 (w), 905 (w), 860 (w); HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{INNaO}_{2} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+} 411.9805$; found 411.9810.
N-[Mesitylsulfonyl]-1-[(4-fluorophenyl)ethynyl]-1,2-benziodazol-3(1H)-one (2h)

In a 5 mL sealed tube, 2-iodo- N-(mesitylsulfonyl)benzamide ($\mathbf{3 b}$) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and $m \mathrm{CPBA}$ ($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1(2 \mathrm{~mL})$ and stirred for 1 h at $40^{\circ} \mathrm{C}$. ((3-Fluorophenyl)ethynyl)trimethylsilane ($0.314 \mathrm{~g}, 1.63 \mathrm{mmol}, 1.40$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 10 \mathrm{~mL}$). The combined organic layers were washed with saturated solution of NaHCO_{3} (15 mL), brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure.

The crude product was purified by flash chromatography using EtOAc:DCM 1:20 as mobile phase followed by washing with EtOAc (3 X 3 mL) to afford 2 h as a white solid (0.125 g , $0.228 \mathrm{mmol}, 20 \%$). Mp: 205-209 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:DCM 1:20): $\mathrm{R}_{\mathrm{f}}=0.43, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.34$ (dd, $1 \mathrm{H}, \mathrm{ArH}$), 8.29 (dd, $1 \mathrm{H}, \mathrm{ArH}$), 7.72 (pd, $J=7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.63 - 7.55 (m, 2H, ArH), 7.19 - 7.08 (m, 2H, ArH), 6.93 (s, 2H, ArH), 2.80 (s, 6H, 2 $\left.\mathrm{X} \mathrm{ArCH}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.9(\mathrm{~d}, J=253.8 \mathrm{~Hz}), 161.2$, $142.3,139.8,135.2,135.1(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 134.8,134.4,131.9,131.7,127.2,116.7(\mathrm{~d}, J=3.5$ $\mathrm{Hz}), 116.3$ (d, $J=22.4 \mathrm{~Hz}$), 115.4, 105.3, 56.8, 23.2, 21.0; IR v 3074 (w), 2920 (w), 2145 (w), 1655 (m), 1600 (m), 1505 (m), 1438 (w), 1294 (s), 1239 (m), 1131 (s), 1054 (w), 898 (m), 859 (s), $839(\mathrm{~m})$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FINNaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 570.0007$; found 570.0013. One carbon was not resolved at 100 MHz .
N-[Mesitylsulfonyl]-1-[(4-(trifluoromethyl)phenyl)ethynyl]-1,2-benziodazol-3(1H)-one (2i)

In a 5 mL sealed tube, 2-iodo- N-(mesitylsulfonyl)benzamide (3b) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and $m \mathrm{CPBA}$ ($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1(2 \mathrm{~mL})$ and stirred for 1 h at $40^{\circ} \mathrm{C}$. Trimethyl((4-(trifluoromethyl)phenyl)ethynyl)silane ($0.395 \mathrm{~g}, 1.63$ mmol, 1.40 equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{X} 10 \mathrm{~mL})$. The combined organic layers were washed with saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:DCM 1:25 as mobile phase followed by washing with EtOAc (3 X 3 mL) to afford $\mathbf{2 i}$ as a white solid (0.240 g, $0.402 \mathrm{mmol}, 35 \%$). Mp: 237-240 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:DCM 1:15): $\mathrm{R}_{\mathrm{f}}=0.56, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.35$ (dd, $\left.J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 8.30(\mathrm{dd}, J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H)$, 7.78 - 7.71 (m, 6H, ArH), 6.94 (s, 2H, ArH), 2.80 (s, 6H, 2 X ArCH3), 2.27 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.1,142.4,139.9,135.4,134.7,134.3,133.0,132.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$
$=33.5 \mathrm{~Hz}), 132.0,131.8,131.7,127.2,125.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 124.4,123.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272.4\right.$ Hz), 115.3, 104.0, 60.3, 23.2, 21.0; IR v 3299 (w), 2935 (w), 2159 (w), 1762 (w), 1619 (m), 1573 (m), 1537 (m), 1435 (w), 1361 (m), 1324 (s), 1251 (m), 1169 (s), 1122 (s), 1060 (w), 1013 (w), 902 (w), 852 (m), 815 (m); HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{SNO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$598.0155; found 598.0167.

N-[Mesitylsulfonyl]-1-[(4-ethynylphenyl)ethynyl]-1,2-benziodazol-3(1H)-one (2j)

In a 5 mL sealed tube, 2 -iodo- N -(mesitylsulfonyl)benzamide ($\mathbf{3 b}$) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and m CPBA ($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1(2 \mathrm{~mL})$ and stirred for 1 h at $40^{\circ} \mathrm{C} .1,4$-Diethynylbenzene ($0.206 \mathrm{~g}, 1.63 \mathrm{mmol}, 1.40$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 X 10 mL). The combined organic layers were washed with saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:DCM 1:20 as mobile phase followed by washing with EtOAc to afford $\mathbf{2 j}$ as a pale yellow solid ($0.100 \mathrm{~g}, 0.181 \mathrm{mmol}, 16 \%)$. Mp : 205$209{ }^{\circ} \mathrm{C} ; \mathrm{TLC}(\mathrm{EtOAc}: D C M 1: 20): \mathrm{R}_{\mathrm{f}}=0.29, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.35$ (dd, $J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 8.29(\mathrm{dd}, J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.77-7.68$ (m, 2H, $\mathrm{Ar} H$), 7.54 (s, 4H, ArH), $\left.6.93(\mathrm{~s}, 2 \mathrm{H}, \operatorname{ArH}), 3.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CCH}), 2.80(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH})_{3}\right), 2.27(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.2,142.3,139.9,135.3,134.8,134.4,132.7,132.4$, 132.0, 131.7, 131.7, 127.2, 124.6, 120.8, 115.4, 105.4, 83.0, 81.0, 59.0, 23.2, 21; IR v 3074 (w), 2920 (w), 2145 (w), 1655 (m), 1600 (m), 1505 (m), 1438 (w), 1294 (s), 1239 (m), 1131 (s), 1054 (w), 898 (m), 859 (s), 839 (m); HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{INO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$554.0281; found 554.0281.

N-[Mesitylsulfonyl]-1-[(3-fluorophenyl)ethynyl]-1,2-benziodazol-3(1H)-one (2k)

In a 5 mL sealed tube, 2-iodo- N-(mesitylsulfonyl)benzamide ($\mathbf{3 b}$) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and m CPBA ($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1(2 \mathrm{~mL})$ and stirred for 1 h at $40^{\circ} \mathrm{C}$. ((3-Fluorophenyl)ethynyl)trimethylsilane ($0.314 \mathrm{~g}, 1.63 \mathrm{mmol}, 1.40$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 X 10 mL). The combined organic layers were washed with saturated solution of NaHCO_{3} (15 mL), brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:DCM 1:20 as mobile phase followed by washing with EtOAc (3 X 3 mL) to afford $\mathbf{2 k}$ as a white solid $(0.275 \mathrm{~g}$, $0.487 \mathrm{mmol}, 43 \%$). Mp: 221-225 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:DCM 1:20): $\mathrm{R}_{\mathrm{f}}=0.48, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.35$ (dd, $\left.J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 8.29(\mathrm{dd}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H)$, 7.79 - 7.66 (m, 2H, $\mathrm{Ar} H$), 7.43 - 7.36 (m, 2H, ArH), 7.27 - 7.25 (m, 1H, $\mathrm{Ar} H$) 7.24 - 7.14 (m, $1 \mathrm{H}, \mathrm{Ar} H), 6.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 2.79\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} \mathrm{H}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.2(\mathrm{~d}, J=248.7 \mathrm{~Hz}), 161.3,142.3,139.8,135.3,134.8,134.3,131.9,131.7$, 131.7, 130.5 (d, $J=8.4 \mathrm{~Hz}$), 128.7 (d, $J=3.2 \mathrm{~Hz}), 127.3,122.3(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 119.5(\mathrm{~d}, J=$ $23.3 \mathrm{~Hz}), 118.2$ (d, $J=21.4 \mathrm{~Hz}$), 115.3, 104.4 (d, $J=2.9 \mathrm{~Hz}$), 58.3, 23.2, 21.0; IR v 2972 (w), 2922 (w), 2145 (w), 1654 (m), 1604 (w), 1580 (w), 1480 (w), 1438 (w), 1293 (s), 1137 (s), 1055 (w), 940 (w), 895 (m), 851 (s); HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{FINO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$548.0187; found 548.0188.

N-[Mesitylsulfonyl]-1-[(3-cyanophenyl)ethynyl]-1,2-benziodazol-3(1H)-one (2I)

In a 5 mL sealed tube, 2 -iodo- N -(mesitylsulfonyl)benzamide ($\mathbf{3 b}$) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and $m \mathrm{CPBA}$ ($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE 1:1 (2 mL) and stirred for 1 h at $40{ }^{\circ} \mathrm{C}$. 3-((Trimethylsilyl)ethynyl)benzonitrile ($0.325 \mathrm{~g}, 1.63 \mathrm{mmol}, 1.40$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 X 10 mL). The combined organic layers were washed with saturated solution of NaHCO_{3} (15 mL), brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:DCM 1:20 as mobile phase followed by washing with EtOAc (3 X 3 mL) to afford $\mathbf{2 l}$ as a white solid $(0.270 \mathrm{~g}, 0.487$ mmol, 42%). Mp: 230-234 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:DCM 1:20): $\mathrm{R}_{\mathrm{f}}=0.29, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.33$ (dd, $\left.J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 8.29(\mathrm{dd}, J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.86$ - $7.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.82-7.69$ (m, 4H, ArH), $7.60-7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.93(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH})$, 2.79 (s, 6H, $2 \mathrm{X} \mathrm{ArCH}_{3}$), 2.27 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.1,142.5$, 139.9, 136.6, 135.9, 135.4, 134.6, 134.3, 133.6, 132.1, 131.9, 131.7, 129.8, 127.2, 122.4, 117.4, 115.2, 113.5, 102.7, 61.0, 23.2, 21.0; IR v 3068 (w), 2235 (w), 2138 (w), 1763 (w), 1654 (m), 1477 (w), 1438 (w), 1295 (s), 1247 (w), 1133 (s), 1053 (w), 899 (m), 852 (s); HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{IN}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 577.0053$; found 577.0055.

N-[Mesitylsulfonyl]-1-[(triethylsilyl)ethynyl]-1,2-benziodazol-3(1H)-one (2m)

In a 5 mL sealed tube, 2 -iodo- N -(mesitylsulfonyl)benzamide ($\mathbf{3 b}$) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and m CPBA
($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1(2 \mathrm{~mL})$ and stirred for 1 h at $40{ }^{\circ} \mathrm{C}$. Triethyl(ethynyl)silane ($0.229 \mathrm{~g}, 1.63 \mathrm{mmol}, 1.40$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 X 10 mL). The combined organic layers were washed with saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:Pentane 1:4.5 as mobile phase to afford $\mathbf{2 m}$ as a white solid ($295 \mathrm{mg}, 0.520 \mathrm{mmol}, 45 \%$). Mp: 196-200 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:Pentane 1:4.5): $\mathrm{R}_{\mathrm{f}}=0.3, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.38-8.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 8.29-8.27$ (m, 1H, ArH), 7.84 - 7.58 (m, 2H, ArH), 6.92 (s, 2H, ArH), 2.78 ($\mathrm{s}, 6 \mathrm{H}, 2$ X ArCH3), 2.26 (s , $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $1.08\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{XCH}_{2} \mathrm{CH}_{3}\right), 0.74\left(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{XCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.1,142.2,139.8,135.1,134.9,134.4,131.9,131.6,131.6$, 127.0, 114.8, 114.7, 70.6, 23.2, 21.0, 7.4, 4.1; IR v 2936 (w), 2868 (w), 2165 (w), 1653 (m), 1603 (w), 1438 (w), 1380 (w), 1290 (s), 1246 (w), 1169 (w), 1134 (s), 1055 (w), 1003 (w), 895 (m), 854 (s); HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{INNaO}_{3} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 590.0653$; found 590.0652. N-[Mesitylsulfonyl]-1-[(butyl)ethynyl]-1,2-benziodazol-3(1H)-one (2n)

In a 5 mL sealed tube, 2 -iodo- N-(mesitylsulfonyl)benzamide (3b) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and $m \mathrm{CPBA}$ ($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1(2 \mathrm{~mL})$ and stirred for 1 h at $40^{\circ} \mathrm{C}$. Hex-1-yne ($0.134 \mathrm{~g}, 0.190 \mathrm{~mL}, 1.63 \mathrm{mmol}, 1.40$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 X 10 mL). The combined organic layers were washed with saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product
was purified by flash chromatography using EtOAc:Pentane $1: 4$ as mobile phase followed by recrystallization in ethyl acetate (4 mL) to afford $\mathbf{2 n}$ as a white solid ($194 \mathrm{mg}, 0.380 \mathrm{mmol}$, 33%). Mp: 205-210 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:Pentane 1:4): $\mathrm{R}_{\mathrm{f}}=0.3, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.30-8.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.75-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 2.78(\mathrm{~s}, 6 \mathrm{H}$, 2 X ArCH 3), $2.58\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CCCH}_{2}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.69-1.60(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CCCH}_{2} \mathrm{CH}_{2}$), $1.57-1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.98\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.3,142.1,139.7,135.0,135.0,134.4,131.8,131.6,131.5,127.1,114.8$, 109.7, 45.5, 30.1, 23.2, 22.0, 21.0, 20.1, 13.5; IR v 2933 (w), 2868 (w), 2166 (w), 1653 (m), 1603 (w), 1438 (w), 1380 (w), 1290 (s), 1246 (w), 1168 (w), 1134 (s), 1053 (w), 1003 (w), 895 (m), 854 (s); HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{INO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 510.0594$; found 510.0609.

N-[Mesitylsulfonyl]-1-[(dodecyl)ethynyl]-1,2-benziodazol-3(1H)-one (2o)

In a 5 mL sealed tube, 2-iodo- N-(mesitylsulfonyl)benzamide (3b) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and $m \mathrm{CPBA}$ ($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1(2 \mathrm{~mL})$ and stirred for 1 h at $40^{\circ} \mathrm{C}$. Tetradec-1-yne ($0.317 \mathrm{~g}, 0.400 \mathrm{~mL}, 1.63 \mathrm{mmol}, 1.40$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 X 10 mL). The combined organic layers were washed with saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:Pentane $1: 4$ as mobile phase followed by recrystallization in ethyl acetate (5 mL) to afford $\mathbf{2 o}$ as a white solid $(0.207 \mathrm{~g}, 0.333 \mathrm{mmol}$, 29\%). Mp: 182-188 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:Pentane 1:2): $\mathrm{R}_{\mathrm{f}}=0.6, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.32-8.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.74-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 2.77(\mathrm{~s}, 6 \mathrm{H}$, 2 X ArCH 3) , $2.58\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CCCH}_{2}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.65(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CCCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.51-1.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.38-1.22\left(\mathrm{~m}, 16 \mathrm{H}, 10 \mathrm{X} \mathrm{CH}_{2}\right), 0.87(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3,142.1,139.8,135.0,135.0,134.5,131.8$, $131.6,131.5,127.1,114.9,109.8,45.6,31.9,29.7,29.6,29.5,29.3,29.1,28.9,28.2,27.7,23.2$,
22.7, 21.0, 20.4, 14.1; IR v 3056 (w), 2920 (s), 2850 (m), 2166 (w), 1652 (m), 1606 (w), 1470 (w), 1441 (w), 1298 (s), 1247 (w), 1165 (w), 1139 (s), 1056 (w), 898 (w), 856 (s); HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{INO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 622.1846$; found 622.1845.
N-[Mesitylsulfonyl]-1-[(3-chloropropyl)ethynyl]-1,2-benziodazol-3(1H)-one (2p)

In a 5 mL sealed tube, 2 -iodo- N-(mesitylsulfonyl)benzamide ($\mathbf{3 b}$) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and m CPBA ($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE 1:1 (2 mL) and stirred for 1 h at $40^{\circ} \mathrm{C} .5$-Chloropent-1-yne ($0.167 \mathrm{~g}, 0.180 \mathrm{~mL}, 1.63 \mathrm{mmol}, 1.40$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{X} 10 \mathrm{~mL}$). The combined organic layers were washed with saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:pentane 1:1 as mobile phase to afford 2p as a white solid ($186 \mathrm{mg}, 0.350 \mathrm{mmol}, 30 \%$). Mp: 209-212 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:pentane 1:1): R_{f} $=0.5, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.32-8.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.77-7.65(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ar} H), 6.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 3.71\left(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 2.81(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CCCH}_{2} \mathrm{CH}_{2}$), $2.77\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3\right.$), $2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.11(\mathrm{p}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.2,142.2,139.8,135.1,134.9,134.4$, $131.9,131.6,131.6,127.1,114.8,107.0,47.5,43.2,30.6,23.2,21.0,17.8 ;$ IR v 2942 (w), 2161 (w), 1657 (m), 1602 (w), 1586 (w), 1438 (w), 1313 (m), 1290 (s), 1247 (w), 1170 (w), 1133 (s), 1055 (w), $898(\mathrm{~m}), 857$ (s); HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClINO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 530.0048$; found 530.0050.

N-[Mesitylsulfonyl]-1-[hepta-1,6-diynyl]-1,2-benziodazol-3(1H)-one (2q)

In a 5 mL sealed tube, 2 -iodo- N -(mesitylsulfonyl)benzamide ($\mathbf{3 b}$) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and m CPBA ($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1(2 \mathrm{~mL})$ and stirred for 1 h at $40^{\circ} \mathrm{C}$. Hepta-1,6-diyne ($0.150 \mathrm{~g}, 0.190 \mathrm{~mL}, 1.63 \mathrm{mmol}, 1.40$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 X 10 mL). The combined organic layers were washed with saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:Pentane $1: 2$ as mobile phase followed by washing with EtOAc (2 X 3 mL) to afford $\mathbf{2 q}$ as a white solid ($0.120 \mathrm{~g}, 0.231 \mathrm{mmol}, 20 \%$). Mp: 178-182 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:Pentane 1:2): $\mathrm{R}_{\mathrm{f}}=0.4, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.32-8.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.76-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 2.77$ (s, 6H, 2 X $\left.\mathrm{ArCH}_{3}\right), 2.74\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.41\left(\mathrm{td}, J=6.8,2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, $2.05(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.88\left(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $161.3,142.2,139.8,135.1,134.9,134.4,131.8,131.6,131.5,127.1,114.8,108.0,82.5,69.8$, 46.8, 26.8, 23.2, 21.0, 19.3, 17.6; IR v 3232 (w), 2166 (w), 1648 (s), 1604 (w), 1438 (w), 1315 (s), 1295 (s), 1247 (w), 1176 (w), 1136 (s$), 1057$ (w), 1004 (w), 900 (m), 858 (s$) ;$ HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NNO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 520.0438$; found 520.0444.

N-[Mesitylsulfonyl]-1-[(cyclopropyl)ethynyl]-1,2-benziodazol-3(1H)-one (2r)

In a 5 mL sealed tube, 2-iodo- N -(mesitylsulfonyl)benzamide ($\mathbf{3 b}$) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and $m \mathrm{CPBA}$
($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1(2 \mathrm{~mL})$ and stirred for 1 h at $40^{\circ} \mathrm{C}$. Ethynylcyclopropane ($0.108 \mathrm{~g}, 0.140 \mathrm{~mL}, 1.63 \mathrm{mmol}, 1.40$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{X} 10 \mathrm{~mL}$). The combined organic layers were washed with saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:Pentane $1: 1$ as mobile phase followed by washing with EtOAc (2 X 3 mL) to afford $\mathbf{2 r}$ as a white solid ($0.100 \mathrm{~g}, 0.203 \mathrm{mmol}, 18 \%$). Mp: 212-217 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:Pentane 1:1): $\mathrm{R}_{\mathrm{f}}=0.4, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.27(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.80-7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 2.77$ (s, 6H, 2 X ArCH 3), $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.84-1.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCH}\left(\mathrm{CH}_{2}\right)_{2}\right), 1.17-0.85(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{X}$ CH_{2}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3,142.1,139.7,135.0,135.0,134.5,131.8,131.6$, 131.5, 127.0, 115.1, 113.4, 41.3, 23.2, 21.0, 9.8, 1.0; IR v 3010 (w), 2853 (w), 2164 (w), 1709 (w), 1653 (m), 1605 (w), 1476 (w), 1437 (w), 1313 (m), 1292 (s), 1247 (w), 1167 (w), 1131 (s), 1055 (w), 965 (w), 896 (m), 858 (s), 821 (w); HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NNO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 494.0281$; found 494.0289 .
N-[Mesitylsulfonyl]-1-[(cyclopentyl)ethynyl]-1,2-benziodazol-3(1H)-one (2s)

In a 5 mL sealed tube, 2 -iodo- N -(mesitylsulfonyl)benzamide ($\mathbf{3 b}$) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and m CPBA ($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1(2 \mathrm{~mL})$ and stirred for 1 h at $40^{\circ} \mathrm{C}$. Ethynylcyclopentane ($0.154 \mathrm{~g}, 0.190 \mathrm{~mL}, 1.63 \mathrm{mmol}, 1.40$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{X} 10 \mathrm{~mL}$). The combined organic layers were washed with saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, brine (15
mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:Pentane $1: 1$ as mobile phase followed by washing with EtOAc to afford 2s as a white solid ($0.167 \mathrm{~g}, 0.320 \mathrm{mmol}, 28 \%)$. Mp: 235-239 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:Pentane 1:1): $\mathrm{R}_{\mathrm{f}}=0.4, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.36-8.11$ (m, 2H, ArH), $7.81-7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 3.06-2.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.78(\mathrm{~s}$, $6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}_{3}$), $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.13-1.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.88-1.73\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{XCH}_{2}\right)$, $1.71-1.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3,142.1,139.7,135.1,135.0$, $134.5,131.8,131.6,131.5,127.0,114.9,114.1,45.0,33.8,31.5,25.2,23.2,21.0$; IR v 2966 (w), 2869 (w), 2167 (w), 1656 (m), 1605 (w), 1438 (w), 1294 (s), 1247 (w), 1136 (s), 1055 (w), 897 (w), 854 (s); HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{INNaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 544.0414$; found 544.0414.
N-[Mesitylsulfonyl]-1-[(t-butyl)ethynyl]-1,2-benziodazol-3(1H)-one (2t)

In a 5 mL sealed tube, 2 -iodo- N -(mesitylsulfonyl)benzamide ($\mathbf{3 b}$) $(0.500 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.201 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.00$ equiv) and $m \mathrm{CPBA}$ ($0.287 \mathrm{~g}, 77 \%$ purity, $2.56 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1(2 \mathrm{~mL})$ and stirred for 1 h at $40^{\circ} \mathrm{C} .3$,3-Dimethylbut-1-yne ($0.134 \mathrm{~g}, 0.200 \mathrm{~mL}, 1.63 \mathrm{mmol}, 1.40$ equiv) was then added and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 X 10 mL). The combined organic layers were washed with saturated solution of NaHCO_{3} (15 mL), brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:DCM 1:20 as mobile phase followed by washing with EtOAc (3 X 3 mL) to afford $\mathbf{2 t}$ as a white solid $(0.453 \mathrm{~g}, 0.888$ $\mathrm{mmol}, 76 \%$). Mp: 256-260 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:DCM 1:20): $\mathrm{R}_{\mathrm{f}}=0.4, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.27(\mathrm{dd}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.24(\mathrm{dd}, J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.54$ (m, 2H, ArH), 6.92 (s, 2H, ArH), 2.78 (s, 6H, $2 \times \mathrm{ArCH}_{3}$), 2.25 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), 1.38 ($\mathrm{s}, 9 \mathrm{H}$, $t \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3,142.1,139.8,135.0,135.0,134.5,131.8,131.6$, 131.5, 126.9, 117.5, 114.9, 44.5, 30.5, 29.6, 23.2, 21.0; IR v 2971 (w), 2927 (w), 2171 (w),

2140 (w), 1652 (m), 1604 (w), 1438 (w), 1293 (s), 1247 (w), 1135 (s), 1054 (w), 897 (m), 852 (s); HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{INNaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 532.0414$; found 532.0394.

N-(Mesitylsulfonyl)-5-methyl-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2u)

In a 5 mL sealed tube, 2 -iodo- N-(mesitylsulfonyl)-5-methylbenzamide (3c) ($0.700 \mathrm{~g}, 1.58$ mmol, 1.00 equiv), 4-methylbenzenesulfonic acid hydrate ($0.272 \mathrm{~g}, 1.58 \mathrm{mmol}, 1.00$ equiv) and m CPBA ($0.389 \mathrm{~g}, 77 \%$ purity, $1.74 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE $1: 1$ (2.8 mL) and stirred for 1 h at $40^{\circ} \mathrm{C}$. Ethynylbenzene ($0.25 \mathrm{~mL}, 2.2 \mathrm{mmol}, 1.4$ equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 X 10 mL). The combined organic layers were washed with saturated solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, brine (20 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:DCM 1:25 as mobile phase followed by washing with EtOAc (3 X 3 mL) to afford $\mathbf{2 u}$ as a white solid ($0.240 \mathrm{~g}, 0.442 \mathrm{mmol}, 28 \%$). Mp: 190-194 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:DCM 1:25): $\mathrm{R}_{\mathrm{f}}=0.18, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 8.10(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.55$ - 7.41 (m, 4H, ArH), 6.92 (s, 2H, ArH), 2.79 (s, 6H, $2 \mathrm{X} \mathrm{ArCH}_{3}$), 2.43 (s, 3H, ArCH_{3}), 2.26 (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.5,142.5,142.1,139.8,136.1,134.9$, 134.0, 132.8, 132.5, 131.6, 130.7, 128.7, 127.0, 120.6, 111.5, 106.1, 56.2, 23.2, 21.0, 20.8; IR v 3055 (w), 2975 (w), 2936 (w), 2144 (w), 1649 (s), 1526 (w), 1452 (m), 1403 (w), 1293 (s), 1250 (m), 1215 (w), 1138 (s), 1054 (m), 1002 (w), 869 (s); HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{INNaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$566.0257; found 566.0232.

N-(Mesitylsulfonyl)-5,6-dimethoxy-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2v)

In a 5 mL sealed tube, 2 -iodo- N -(mesitylsulfonyl)-4,5-dimethoxybenzamide (3d) (0.400 g , $0.817 \mathrm{mmol}, 1.00$ equiv), 4-methylbenzenesulfonic acid hydrate ($0.141 \mathrm{~g}, 0.817 \mathrm{mmol}, 1.00$ equiv) and m CPBA ($0.202 \mathrm{~g}, 77 \%$ purity, $0.899 \mathrm{mmol}, 1.10$ equiv) were suspended in DCE:TFE 1:1 (1.4 mL) and stirred for 1 h at $40^{\circ} \mathrm{C}$. Ethynylbenzene ($0.130 \mathrm{~mL}, 1.15 \mathrm{mmol}$, 1.40 equiv) was then added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred vigorously with saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. After 1 h , the reaction mixture was transferred into a separating funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 X 20 mL). The combined organic layers were washed with saturated solution of NaHCO_{3} (15 mL), brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography using EtOAc:DCM 1:25 as mobile phase followed by washing with EtOAc (3 X 3 mL) to afford 2v as a white solid (0.155 g , $0.263 \mathrm{mmol}, 32 \%$). Mp: 204-206 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:DCM 1:25): $\mathrm{R}_{\mathrm{f}}=0.31, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.52-$ 7.40 (m, 3H ArH), 6.93 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArH} \mathrm{Mts}$), 3.94 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.90 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.79 ($\mathrm{s}, 6 \mathrm{H}$, $2 \mathrm{X} \mathrm{ArCH}_{3}$), $2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.6,154.9,152.0,142.2$, $139.8,135.0,132.6,131.7,130.8,128.9,127.3,120.5,112.8,108.9,106.1,104.6,57.4,56.6$, 56.5, 23.2, 21.0; IR v 2942 (w), 2141 (w), 1634 (w), 1600 (w), 1500 (m), 1443 (w), 1396 (m), 1288 (s), 1219 (w), 1182 (w), 1141 (s), 1053 (w), 1029 (w), 879 (m), 812 (w); HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{INO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$590.0493; found 590.0485.

3. Preparation of Diazo-compounds

Ethyl 2-diazoacetate (11a), benzyl 2-diazoacetate (11b) and tert-butyl 2-diazoacetate (11c) were directly purchased from Sigma Aldrich. The synthesis of diazo compounds (11d-111) had been already described before. The procedures are taken here from the indicated publications to facilitate reproduction of the results by having all the data in the same file.

11a

11b

11c

2,4-Dimethylpentan-3-yl 2-diazoacetate (11d)

Following a slightly modified procedure, ${ }^{[4]}$ a mixture of 2,4-dimethylpentan-3-ol (19) (3.50 $\mathrm{mL}, 25.0 \mathrm{mmol}, 1.00$ equiv), 2,2,6-trimethyl-4H-1,3-dioxin-4-one (20) ($3.55 \mathrm{~g}, 25.0 \mathrm{mmol}$, 1.00 equiv), and xylene (5 mL) was stirred at $140^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the xylene was evaporated and the residue was purified by flash column chromatography using 1:50 EtOAc:pentane as mobile phase to afford 2,4-dimethylpentan-3-yl 3-oxobutanoate (21) as a colorless oil ($4.2 \mathrm{~g}, 21 \mathrm{mmol}, 84 \%$). TLC (EtOAc:pentane, $1: 20 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.36, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.17$ (s, $0.08 \mathrm{H}, \mathrm{OH}$ of enol form), 4.97 (s, 0.08 H , vinyl H of enol form), $4.60(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 3.46\left(\mathrm{~s}, 1.84 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}\right.$ of keto form), $2.26(\mathrm{~s}, 2.76 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{COCH}_{2}$ of keto form), 1.92 (s, $0.24 \mathrm{H}, \mathrm{CH}_{3}$ of enol form), $1.87(\mathrm{dq}, J=13.3,6.8 \mathrm{~Hz}, 2 \mathrm{H}, 2$ $\left.\mathrm{X} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.86\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.83\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.7,167.0,84.0,50.1,30.3,29.2,19.4,17.1$. Enol form, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.2,172.7,89.6,81.9$. Some carbons of enol form were not resolved at 100 MHz . The characterization data of keto form corresponded to the reported values. ${ }^{[4]}$

Following a slightly modified procedure, ${ }^{[4]}$ to a solution of 2,4-dimethylpentan-3-yl 3oxobutanoate ($\mathbf{2 1}$) ($1.0 \mathrm{~g}, 5.0 \mathrm{mmol}$, 1.0 equiv) in acetonitrile (6 mL) was added triethylamine ($660 \mathrm{mg}, 6.50 \mathrm{mmol}, 1.30$ equiv). The reaction mixture was cooled in an ice bath and a solution of tosyl azide ($1.1 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.1$ equiv) in acetonitrile (6 mL) was added slowly. The reaction mixture was allowed to warm to room temperature. After stirring for 20 h , the solvent was removed under reduced pressure. The residue was dissolved in ether (30 mL) and washed with 8% aqueous KOH solution. The organic layer was separated, dried over MgSO_{4}, and evaporated. The crude product was re-dissolved in acetonitrile (15 mL) and 8% aqueous KOH $(25 \mathrm{~mL})$ solution was added at room temperature. After vigorous stirring for 4 h , water (15 mL) was added and the reaction mixture was extracted with diethyl ether (2 X 30 mL). The combined organic layers were dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by column chromatography using 1:20 $\mathrm{Et}_{2} \mathrm{O}$:pentane as mobile phase to afford 2,4-dimethylpentan-3-yl 2-diazoacetate (11d) as a yellow oil ($800 \mathrm{mg}, 4.35$ mmol, 87%). TLC ($\mathrm{Et}_{2} \mathrm{O}:$ pentane, $1: 9 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.55, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 4.73 (br s, 1H, CHN 2), $4.62(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OC} H$), $1.88(\mathrm{dq}, J=13.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X}$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.88\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.85\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 167.0,83.1,45.8,29.4,19.5,17.1$. The characterization data corresponded to the reported values. ${ }^{[4]}$

Dicyclohexylmethyl 2-diazoacetate (11e)

Following a slightly modified procedure, ${ }^{[4]}$ a mixture of dicyclohexylmethanol (22) (2.45 g, $12.5 \mathrm{mmol}, 1.00$ equiv), 2,2,6-trimethyl-4 H -1,3-dioxin-4-one (20) ($1.78 \mathrm{~g}, 12.5 \mathrm{mmol}, 1.00$ equiv), and xylene (2.5 mL) was stirred at $140^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the xylene was evaporated and the residue was purified by flash column chromatography using 1:50 EtOAc:pentane as mobile phase to afford dicyclohexylmethyl 3-oxobutanoate (23) as a white solid ($3.00 \mathrm{~g}, 10.7 \mathrm{mmol}, 86 \%$). Mp: 64.5-66.8 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:pentane, $1: 20 \mathrm{v} / \mathrm{v}$): R_{f}
$=0.36, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.20(\mathrm{~s}, 0.09 \mathrm{H}, \mathrm{OH}$ of enol form), $4.99(\mathrm{~s}$, 0.09 H , vinyl H of enol form), $4.67(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 3.47\left(\mathrm{~s}, 1.8 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}\right.$ of keto form), $2.29\left(\mathrm{~s}, 2.7 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}\right.$ of keto form), $1.95\left(\mathrm{~s}, 0.27 \mathrm{H}, \mathrm{CH}_{3}\right.$ of enol form), 1.81-1.42 ($\mathrm{m}, 12 \mathrm{H}, 2 \mathrm{X} \mathrm{Cy}-\mathrm{CH}$ and $5 \mathrm{X} \mathrm{Cy}-\mathrm{CH}_{2}$), 1.34-0.83 (m, 10H, $5 \mathrm{X} \mathrm{Cy}-\mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 200.9,167.0,82.8,50.2,38.2,30.4,29.8,27.4,26.3,26.2,26.0$. Enol form, ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.2,172.8,89.8,80.8,38.3,21.2$, some carbons of enol form were not resolved at 100 MHz ; IR v 2976 (s), 2928 (s), 2862 (m), 2109 (w), 1725 (m), 1646 (w), 1447 (m), 1403 (m), 1313 (m), 1246 (m), 1188 (m), 1152 (m), 1056 (s), 891 (w); HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 303.1931$; found 303.1928.
Following a slightly modified procedure, ${ }^{[4]}$ to a solution of dicyclohexylmethyl 3-oxobutanoate (23) ($1.4 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv) in acetonitrile (6 mL) was added triethylamine ($660 \mathrm{mg}, 6.50$ $\mathrm{mmol}, 1.30$ equiv). The reaction mixture was cooled in an ice bath and a solution of tosyl azide ($1.1 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.1$ equiv) in acetonitrile (6 mL) was added slowly. The reaction mixture was allowed to warm to room temperature. After stirring for 20 h , the solvent was removed under reduced pressure. The residue was dissolved in ether $(30 \mathrm{~mL})$ and washed with 8% aqueous KOH solution. The organic layer was separated, dried over MgSO_{4}, and evaporated. The crude product was re-dissolved in acetonitrile (15 mL) and 8% aqueous $\mathrm{KOH}(25 \mathrm{~mL})$ solution was added at room temperature. After vigorous stirring for 4 h , water $(15 \mathrm{~mL})$ was added and the reaction mixture was extracted with diethyl ether (2 X 30 mL). The combined organic layers were dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by column chromatography using $1: 40 \mathrm{Et}_{2} \mathrm{O}$:pentane as mobile phase to afford dicyclohexylmethyl 2-diazoacetate (11e) as a yellow solid ($1.10 \mathrm{~g}, 4.16 \mathrm{mmol}, 83 \%$). Mp (Dec.): 81.2-83.2 ${ }^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}$:pentane, $1: 25 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.52, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 4.73\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{CH} \mathrm{N}_{2}\right), 4.67(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 1.84-1.45(\mathrm{~m}, 12 \mathrm{H}, 2 \mathrm{X} \mathrm{Cy}-\mathrm{CH}$ and $\left.5 \mathrm{X} \mathrm{Cy}-\mathrm{CH}_{2}\right), 1.31-0.88\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{X} \mathrm{Cy}-\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.0$, 82.0, 45.9, 38.4, 29.8, 27.4, 26.3, 26.2, 26.0; IR v 2929 (s), 2855 (m), 2110 (s), 1692 (s), 1451 (w), 1377 (m), 1242 (m), 1191 (s), 1099 (w), 991 (w), 931 (w); HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+]$ 264.1832; found 264.1836.

2,3,4-Trimethylpentan-3-yl 2-diazoacetate (11f)

24

25

$8 \% \mathrm{KOH}$

Following a slightly modified procedure, ${ }^{[4]}$ a mixture of 2,3,4-trimethylpentan-3-ol (24) (1.63 $\mathrm{g}, 12.5 \mathrm{mmol}, 1.00$ equiv), 2,2,6-trimethyl-4H-1,3-dioxin-4-one (20) ($1.78 \mathrm{~g}, 12.5 \mathrm{mmol}, 1.00$ equiv), and xylene (2.5 mL) was stirred at $140^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the xylene was evaporated and the residue was purified by flash column chromatography using 1:50 EtOAc:pentane as mobile phase to afford 2,3,4-trimethylpentan-3-yl 3-oxobutanoate (25) as a colorless oil ($1.5 \mathrm{~g}, 7.0 \mathrm{mmol}, 56 \%$). TLC (EtOAc:pentane, $1: 20 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.36, \mathrm{KMnO}_{4}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 12.28 (s, $0.05 \mathrm{H}, \mathrm{OH}$ of enol form), 4.94 ($\mathrm{s}, 0.05 \mathrm{H}$, vinyl H of enol form), $\delta 3.40\left(\mathrm{~s}, 1.9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}\right.$ of keto form), 2.33-2.21(m, 4.85H, $\mathrm{CH}_{3} \mathrm{COCH}_{2}$ of keto form and $\left.2 \mathrm{X} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.44\left(\mathrm{~s}, 2.85 \mathrm{H}, \mathrm{OCCH}_{3}\right.$ of keto form), $1.42\left(\mathrm{~s}, 0.15 \mathrm{H}, \mathrm{OCCH}_{3}\right.$ of enol form) $0.95\left(\mathrm{~m}, 12 \mathrm{H}, 2 \mathrm{X} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.2,166.3$, $92.8,51.5,34.3,30.2,18.0,17.8$; Enol form, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.5,172.8$, $91.2,76.0$, some carbons of enol form were not resolved at 100 MHz . The characterization data corresponded to the reported values. ${ }^{[5]}$

Following a slightly modified procedure, to a solution of 2,3,4-trimethylpentan-3-yl 3oxobutanoate ($\mathbf{2 5}$) ($1.07 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) in acetonitrile (6 mL) was added triethylamine ($660 \mathrm{mg}, 6.50 \mathrm{mmol}, 1.30$ equiv). The reaction mixture was cooled in an ice bath and a solution of tosyl azide ($1.1 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.1$ equiv) in acetonitrile (6 mL) was added slowly. The reaction mixture was allowed to warm to room temperature. After stirring for 20 h, the solvent was removed under reduced pressure. The residue was dissolved in ether (30 mL) and washed with 8% aqueous KOH solution. The organic layer was separated, dried over MgSO_{4}, and evaporated. The crude product was re-dissolved in acetonitrile (15 mL) and 8% aqueous $\mathrm{KOH}(25 \mathrm{~mL})$ solution was added at room temperature. After vigorous stirring for 4 h , water (15 mL) was added and the reaction mixture was extracted with diethyl ether (2×30 $\mathrm{mL})$. The combined organic layers were dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by column chromatography using 1:35 $\mathrm{Et}_{2} \mathrm{O}$:pentane
as mobile phase to afford 2,3,4-trimethylpentan-3-yl 2-diazoacetate (11f) as a yellow oil (800 $\mathrm{mg}, 4.05 \mathrm{mmol}, 81 \%$). TLC (Et2O:pentane, $1: 25 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.5, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 4.60\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CHN} \mathrm{N}_{2}\right), 2.26$ (hept, $\left.J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.41$ (s, 3 H , $\left.\mathrm{OCCH}_{3}\right), 0.93\left(\mathrm{~m}, 12 \mathrm{H}, 2 \mathrm{X} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.1,91.9,46.5$, 34.5, 18.1, 18.0, 17.8. The ${ }^{1} \mathrm{H}$ NMR data corresponded to the reported values. ${ }^{[5]}$

Adamantan-1-yl 2-diazoacetate (11g)

Following a slightly modified procedure, ${ }^{[4]}$ a mixture of adamantan-1-ol (26) (3.81 g, 25.0 mmol, 1.00 equiv), 2,2,6-trimethyl-4H-1,3-dioxin-4-one (20) ($3.55 \mathrm{~g}, 25.0 \mathrm{mmol}, 1.00$ equiv), and xylene (5 mL) was stirred at $140^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the xylene was evaporated and the residue was purified by flash column chromatography using 1:50 EtOAc:pentane as mobile phase to afford adamantan-1-yl 3-oxobutanoate (27) as a colorless oil ($5.2 \mathrm{~g}, 22 \mathrm{mmol}, 88 \%$). TLC (EtOAc:pentane, $1: 20 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.35, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.20(\mathrm{~s}, 0.07 \mathrm{H}, \mathrm{OH}$ of enol form), $4.85(\mathrm{~s}, 0.07 \mathrm{H}$, vinyl H of enol form), 3.32 ($\mathrm{s}, 1.85 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}$ of keto form), 2.22 ($\mathrm{s}, 2.8 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}$ of keto form), 2.17-2.04 (m , $9 \mathrm{H}, 3 \mathrm{X} \mathrm{CH}$ and $3 \mathrm{XCH}_{2}$ of adamantly group), 1.87 ($\mathrm{s}, 0.2 \mathrm{H}, \mathrm{CH}_{3}$ of enol form), 1.69-1.55 (m, $6 \mathrm{H}, 3 \mathrm{X} \mathrm{CH}_{2}$ of adamantly group); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.2,166.0,81.9,51.6$, 41.0, 35.9, 30.7, 29.9. Enol form, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.6,172.3,91.1,80.7,41.4$, 36.0, 21.1, One carbon of enol form was not resolved at 100 MHz . The characterization data corresponded to the reported values. ${ }^{[6]}$
Following a slightly modified procedure, ${ }^{[4]}$ to a solution of adamantan-1-yl 3-oxobutanoate (27) ($1.18 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) in acetonitrile (6 mL) was added triethylamine (660 mg , $6.50 \mathrm{mmol}, 1.30$ equiv). The reaction mixture was cooled in an ice bath and a solution of tosyl azide ($1.1 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.1$ equi) in acetonitrile (6 mL) was added slowly. The reaction mixture was allowed to warm to room temperature. After stirring for 20 h , the solvent was removed under reduced pressure. The residue was dissolved in ether (30 mL) and washed with 8% aqueous KOH solution. The organic layer was separated, dried over MgSO_{4}, and evaporated.

The crude product was re-dissolved in acetonitrile (15 mL) and 8% aqueous $\mathrm{KOH}(25 \mathrm{~mL}$) solution was added at room temperature. After vigorous stirring for 4 h , water (15 mL) was added and the reaction mixture was extracted with diethyl ether (2 X 30 mL). The combined organic layers were dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by column chromatography using 1:20 $\mathrm{Et}_{2} \mathrm{O}$:pentane as mobile phase to afford adamantan-1-yl 2-diazoacetate (11g) as a yellow solid ($960 \mathrm{mg}, 4.36 \mathrm{mmol}, 87 \%$). TLC ($\mathrm{Et}_{2} \mathrm{O}$:pentane, $1: 10 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.54, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.60(\mathrm{~s}, 1 \mathrm{H}$, CHN_{2}), 2.22-2.06 (m, 9H, 3 X CH and $3 \mathrm{X} \mathrm{CH}_{2}$), 1.69-1.61 (m, 6H, $3 \mathrm{X} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.9,81.5,46.7,41.6,36.1,30.8$. The characterization data corresponded to the reported values. ${ }^{[6]}$

2-Phenylpropan-2-yl 2-diazoacetate (11h)

Following a slightly modified procedure, ${ }^{[4]}$ a mixture of 2-phenylpropan-2-ol (28) (3.4 g, 25 mmol, 1.0 equiv), 2,2,6-trimethyl-4H-1,3-dioxin-4-one (20) ($3.55 \mathrm{~g}, 25.0 \mathrm{mmol}, 1.00$ equiv), and xylene (5 mL) was stirred at $140^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the xylene was evaporated and the residue was purified by flash column chromatography using 1:5 EtOAc:pentane as mobile phase to afford 2-phenylpropan-2-yl 3-oxobutanoate (29) as a colorless oil ($2.60 \mathrm{~g}, 11.8 \mathrm{mmol}, 48 \%$). TLC (EtOAc:pentane, $1: 4 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.4, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 11.98$ (s, $0.1 \mathrm{H}, \mathrm{OH}$ of enol form), 7.41-7.31 (m, 4H, ArH), 7.30$7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 5.06\left(\mathrm{~s}, 0.1 \mathrm{H}\right.$, vinyl H of enol form), $3.43\left(\mathrm{~s}, 1.8 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}\right.$ of keto form), $2.24\left(\mathrm{~s}, 2.7 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}\right.$ of keto form), $1.93\left(\mathrm{~s}, 0.3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of enol form), $1.80(\mathrm{~s}, 5.4 \mathrm{H}$, $\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Ar}$ of keto form), 1.79 (s, $0.6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Ar}$ of enol form); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 200.9,165.5,145.0,128.2,127.1,124.2,82.9,51.1,30.1,28.3$; Enol form, ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 175.2,171.7,145.7,128.1,126.8,123.9,90.6,81.5,28.9,21.1$. The characterization data corresponded to the reported values. ${ }^{[7]}$
Following a slightly modified procedure, ${ }^{[4]}$ to a solution of 2-phenylpropan-2-yl 3oxobutanoate (29) ($1.1 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv) in acetonitrile (6 mL) was added triethylamine
($660 \mathrm{mg}, 6.50 \mathrm{mmol}, 1.30$ equiv). The reaction mixture was cooled in an ice bath and a solution of tosyl azide ($1.1 \mathrm{~g}, 5.5 \mathrm{mmol}$, 1.1 equiv) in acetonitrile (6 mL) was added slowly. The reaction mixture was allowed to warm to room temperature. After stirring for 20 h , the solvent was removed under reduced pressure. The residue was dissolved in ether (30 mL) and washed with 8% aqueous KOH solution. The organic layer was separated, dried over MgSO_{4}, and evaporated. The crude product was re-dissolved in acetonitrile (15 mL) and 8% aqueous KOH $(25 \mathrm{~mL})$ solution was added at room temperature. After vigorous stirring for 4 h , water (15 mL) was added and the reaction mixture was extracted with diethyl ether (2 X 30 mL). The combined organic layers were dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by column chromatography using 1:10 $\mathrm{Et}_{2} \mathrm{O}$:pentane as mobile phase to afford 2-phenylpropan-2-yl 2-diazoacetate (11h) as a yellow oil ($820 \mathrm{mg}, 4.02 \mathrm{mmol}$, 80%). TLC ($\mathrm{Et}_{2} \mathrm{O}:$ pentane, $1: 10 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.17, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41-$ 7.32 (m, 4H, ArH), 7.28-7.24 (m, 1H, ArH), 4.72 (br s, 1H, CHN 2), 1.81 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Ar}$); ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.5,145.6,128.2,127.0,124.1,82.4,46.9,28.9$. The ${ }^{1} \mathrm{H}$ NMR data corresponded to the reported values. ${ }^{[7]}$

2,6-Diisopropylphenyl 2-diazoacetate (11i)

Following a slightly modified procedure, ${ }^{[4]}$ a mixture of 2,6-diisopropylphenol (30) (4.46 g, $25.0 \mathrm{mmol}, 1.00$ equiv), 2,2,6-trimethyl-4H-1,3-dioxin-4-one (20) ($3.55 \mathrm{~g}, 25.0 \mathrm{mmol}, 1.00$ equiv), and xylene (5 mL) was stirred at $140^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the xylene was evaporated and the residue was purified by flash column chromatography using 1:50 EtOAc:pentane as mobile phase to afford 2,6-diisopropylphenyl 3-oxobutanoate (31) as a colorless oil ($5.00 \mathrm{~g}, 19.1 \mathrm{mmol}, 76 \%$). TLC (EtOAc:pentane, 1:20 v/v): $\mathrm{R}_{\mathrm{f}}=0.35, \mathrm{KMnO}_{4}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.08(\mathrm{~s}, 0.22 \mathrm{H}, \mathrm{OH}$ of enol form), 7.31-7.24 (m, 1H, ArH), 7.24-7.18 (m, $2 \mathrm{H}, \mathrm{ArH}$), 3.81 ($\mathrm{s}, 1.56 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}$ of keto form), $3.03(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{X}$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.41\left(\mathrm{~s}, 2.32 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}\right.$ of keto form), $1.28-1.21\left(\mathrm{~m}, 12 \mathrm{H}, 2 \mathrm{X} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3}): $\delta 199.9,165.7,145.1,140.2,126.8,124.0,49.6,30.4,27.4,27.3 ;$ Enol form, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.7,171.5,144.5,140.5,126.5,123.9,88.7,23.7$, 22.7, 21.4; IR v 2966 (m), 2876 (w), 1760 (m), 1723 (m), 1634 (w), 1447 (m), 1410 (w), 1360 (m), 1315 (m), 1222 (s), 1140 (s), 1102 (m), 1053 (w), 976 (w); HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$285.1461; found 285.1467.
Following a slightly modified procedure, ${ }^{[4]}$ to a solution of 2,6-diisopropylphenyl 3oxobutanoate ($\mathbf{3 1}$) ($1.31 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) in acetonitrile (6 mL) was added triethylamine ($660 \mathrm{mg}, 6.50 \mathrm{mmol}, 1.30$ equiv). The reaction mixture was cooled in an ice bath and a solution of tosyl azide ($1.1 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.1$ equiv) in acetonitrile (6 mL) was added slowly. The reaction mixture was allowed to warm to room temperature. After stirring for 20 h, the solvent was removed under reduced pressure. The residue was dissolved in ether (30 mL) and washed with 8% aqueous KOH solution. The organic layer was separated, dried over MgSO_{4}, and evaporated. The crude product was re-dissolved in acetonitrile (15 mL) and 8% aqueous $\mathrm{KOH}(25 \mathrm{~mL})$ solution was added at room temperature. After vigorous stirring for 4 h , water (15 mL) was added and the reaction mixture was extracted with diethyl ether (2 X 30 $\mathrm{mL})$. The combined organic layers were dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by column chromatography using 1:30 $\mathrm{Et}_{2} \mathrm{O}$:pentane as mobile phase to afford 2,6-diisopropylphenyl 2-diazoacetate (11i) as a yellow oil (620 mg , $2.52 \mathrm{mmol}, 50 \%$). TLC ($\mathrm{Et}_{2} \mathrm{O}$:pentane, $1: 30 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.36, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.32-7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CHN} 2), 3.05$ (sept, $\left.J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.27\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}, 2 \mathrm{X} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.6,145.1,140.8,126.7,123.9,46.3,27.5,23.4$. The characterization data slightly differ from the reported values. ${ }^{[8]}$

2,6-Di-tert-butyl-4-methylphenyl 2-diazoacetate (11j)

Following a slightly modified procedure, ${ }^{[4]}$ a mixture of 2,6-di-tert-butyl-4-methylphenol (32) ($5.91 \mathrm{~g}, 25.0 \mathrm{mmol}, 1.00$ equiv), 2,2,6-trimethyl-4H-1,3-dioxin-4-one (20) ($3.55 \mathrm{~g}, 25.0 \mathrm{mmol}$, 1.00 equiv), and xylene (5 mL) was stirred at $140^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the xylene was evaporated and the residue was purified by flash column chromatography using 1:50 EtOAc:pentane as mobile phase to afford 2,6-di-tert-butyl-4-methylphenyl 3oxobutanoate (33) as a white solid ($6.40 \mathrm{~g}, 21.0 \mathrm{mmol}, 84 \%$). Mp: $96.5-99.6^{\circ} \mathrm{C}$; TLC (EtOAc:pentane, $1: 50 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.34, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $12.16(\mathrm{~s}, 0.55 \mathrm{H}$, OH of enol form), $\delta 7.13(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 5.39-5.24$ (m, 0.55 H , vinyl H of enol form), 3.73 (s, $1 \mathrm{H}, 0.9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}$ of keto form), $2.40\left(\mathrm{~s}, 1 \mathrm{H}, 1.35 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}\right.$ of keto form), 2.33 (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), 2.07 ($\mathrm{s}, 1.65 \mathrm{H}, \mathrm{CH}_{3}$ of enol form), $1.33\left(\mathrm{~s}, 8.1 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of keto form), 1.32 (s , $9.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ of enol form); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.2,167.7,145.3,141.8,135.0$, 127.2, 50.7, 35.2, 31.4, 30.8, 21.5; Enol form, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.4,173.3$, 144.9, 142.2, 134.6, 126.9, 90.4, 35.2, 31.4, 21.5, 21.5; IR v 2964 (m), 2919 (m), 2880 (w), 2110 (w), 1757 (m), 1726 (m), 1633 (s), 1408 (m), 1369 (m), 1318 (m), 1219 (s), 1199 (s), 1143 (s), 1113 (m), 1030 (w), 978 (w), 924 (w); HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 327.1931; found 327.1933.

Following a slightly modified procedure, ${ }^{[4]}$ to a solution of 2,6-di-tert-butyl-4-methylphenyl 3oxobutanoate (33) ($1.52 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) in acetonitrile (6 mL) was added triethylamine ($660 \mathrm{mg}, 6.50 \mathrm{mmol}, 1.30$ equiv). The reaction mixture was cooled in an ice bath and a solution of tosyl azide ($1.1 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.1$ equiv) in acetonitrile (6 mL) was added slowly. The reaction mixture was allowed to warm to room temperature. After stirring for 20 h , the solvent was removed under reduced pressure. The residue was dissolved in ether (30 mL) and washed with 8% aqueous KOH solution. The organic layer was separated, dried over MgSO_{4}, and evaporated. The crude product was re-dissolved in acetonitrile (15 mL) and 8% aqueous $\mathrm{KOH}(25 \mathrm{~mL})$ solution was added at room temperature. After vigorous stirring for 4 h , water (15 mL) was added and the reaction mixture was extracted with diethyl ether (2 X 30 $\mathrm{mL})$. The combined organic layers were dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by column chromatography using 1:30 $\mathrm{Et}_{2} \mathrm{O}$:pentane as mobile phase to afford 2,6-di-tert-butyl-4-methylphenyl 2-diazoacetate ($\mathbf{1 1 \mathbf { j }}$) as a yellow solid ($1.20 \mathrm{~g}, 4.16 \mathrm{mmol}, 83 \%$). TLC ($\mathrm{Et}_{2} \mathrm{O}$:pentane, $1: 30 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.36, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.12(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 5.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}_{2}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.36(\mathrm{~s}, 18 \mathrm{H}$, $\left.2 \mathrm{XC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,145.1,142.4,134.8,127.0,47.3,35.3$, 31.5, 21.5. The ${ }^{1} \mathrm{H}$ NMR data corresponded to the reported values. ${ }^{[5]}$

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-diazoacetate (11k)

Following a slightly modified procedure, ${ }^{[4]}$ a mixture of ($1 R, 2 S, 5 R$)-2-isopropyl-5methylcyclohexanol ($\mathbf{3 4}$) ($1.95 \mathrm{~g}, 12.5 \mathrm{mmol}, 1.00$ equiv), 2,2,6-trimethyl-4H-1,3-dioxin-4one (20) ($1.78 \mathrm{~g}, 12.5 \mathrm{mmol}, 1.00$ equiv), and xylene (2.5 mL) was stirred at $140{ }^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the xylene was evaporated and the residue was purified by flash column chromatography using 1:50 EtOAc:pentane as mobile phase to afford ($1 R, 2 S, 5 R$)-2-isopropyl-5-methylcyclohexyl 3-oxobutanoate (35) as a colorless liquid ($1.70 \mathrm{~g}, 7.07 \mathrm{mmol}$, 57%). TLC (EtOAc:pentane, $1: 25 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.3, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.18$ (s, $0.08 \mathrm{H}, \mathrm{OH}$ of enol form), 4.94 (s, 0.08 H , vinyl H of enol form), 4.71 (td, $J=10.9,4.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}$), 3.41 ($\mathrm{s}, 1.84 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}$ of keto form), 2.24 (s, $2.75 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COCH}_{2}$ of keto form), 2.04-1.95 (m, 1H), $1.93\left(\mathrm{~s}, 0.025 \mathrm{H}, \mathrm{CH}_{3}\right.$ of enol form), 1.90-1.79 (m, 1H), 1.71-1.61 (m, 2H), $1.54-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.10-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.83(\mathrm{~m}, 7 \mathrm{H}), 0.74(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.7,166.7,75.4,50.5,46.7,40.6,34.0,31.3$, 30.0, 26.0, 23.1, 21.9, 20.7, 16.0; Enol form, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.2,172.3$, $90.0,73.6,46.9,40.9,34.1,26.2,23.4,22.0,21.2,20.6,16.3$. One carbon of enol form was not resolved at 100 MHz . The ${ }^{1} \mathrm{H}$ NMR data corresponded to the reported values. ${ }^{[9]}$
Following a slightly modified procedure, ${ }^{[9]}$ to a solution of ($1 R, 2 S, 5 R$)-2-isopropyl-5methylcyclohexyl 3-oxobutanoate (35) ($0.72 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv) in acetonitrile (3.0 mL) was added triethylamine ($0.33 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv). The reaction mixture was cooled in an ice bath and a solution of tosyl azide ($0.77 \mathrm{~g}, 3.9 \mathrm{mmol}, 1.3$ equiv) in acetonitrile (3.0 mL) was added slowly. The reaction mixture was allowed to warm to room temperature. After stirring for 6 h , the reaction mixture was treated with a solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.38 \mathrm{~g}, 9.0 \mathrm{mmol}, 3.0$ equiv) in water (3 mL) and stirred for another 6 h . The resulting mixture was extracted with diethyl ether (2 X 15 mL). The combined organic layers were washed with brine (15 mL) and
dried over anhydrous MgSO_{4}. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography using 1:30 $\mathrm{Et}_{2} \mathrm{O}$:pentane as mobile phase to afford ($1 R, 2 S, 5 R$)-2-isopropyl-5-methylcyclohexyl 2-diazoacetate ($\mathbf{1 1 k}$) as a yellow solid ($0.60 \mathrm{~g}, 2.7 \mathrm{mmol}, 89 \%$). TLC ($\mathrm{Et}_{2} \mathrm{O}$:pentane, $1: 30 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.2, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.80-4.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHN}_{2}\right.$ and OCH$), 2.10-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.79(\mathrm{~m}, 1 \mathrm{H})$, $1.73-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.12-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.92-0.86(\mathrm{~m}$, $7 \mathrm{H}), 0.77$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.6,74.7,47.1,46.2$, $41.2,34.1,31.4,26.3,23.5,22.0,20.7,16.4$. The characterization data corresponded to the reported values (except one peak in ${ }^{1} \mathrm{H}$ NMR at 4.67 ppm). ${ }^{[10]}$
3S,8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)-

$\mathbf{2 , 3 , 4 , 7 , 8 , 9}, 10,11,12,13,14,15,16,17$-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 2diazoacetate (111)

Following a reported procedure, ${ }^{[11]}$ cholesterol $36(773 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv) and NaHCO_{3} ($840 \mathrm{mg}, 10.0 \mathrm{mmol}, 5.00$ equiv) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$) and bromoacetyl bromide ($0.53 \mathrm{~mL}, 6.0 \mathrm{mmol}, 3.0$ equiv) was added slowly at $0^{\circ} \mathrm{C}$ and stirred for 6 h at room temperature, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. After washing with water (50 mL) and drying over MgSO_{4}, the solvent was evaporated and the residue was used in the next step without further purification. The resulting crude bromoacetamide 37 and N, N^{\prime}-ditosylhydrazine ($1.36 \mathrm{~g}, 4.00$ mmol, 2.00 equiv) were dissolved in dry THF (10 mL) and cooled down to $0{ }^{\circ} \mathrm{C}$, then DBU ($1.5 \mathrm{~mL}, 10 \mathrm{mmol}, 5.0$ equiv) was added dropwise and stirred at room temperature for 1 h . After quenching with saturated solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracting with diethyl ether (3 X 50 mL), the organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The resulting crude product was purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane 1:20 as mobile phase to afford $\mathbf{1 1 1}$ as a pale yellow solid ($750 \mathrm{mg}, 1.65 \mathrm{mmol}$, 82%). TLC ($\mathrm{Et}_{2} \mathrm{O}$:pentane, $1: 20 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.4, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.38$ $\left(\mathrm{d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, olefinic H), 4.75-4.65 (m, 2H, $\mathrm{N}_{2} \mathrm{CH}$ and OCH$), 2.45-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.08-$
$1.76(\mathrm{~m}, 5 \mathrm{H}), 1.64-0.80(\mathrm{~m}, 33 \mathrm{H}), 0.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,139.5$, $122.8,74.6,56.7,56.1,50.0,46.3,42.3,39.7,39.5,38.3,36.9,36.5,36.2,35.8,31.9,31.8$, $28.2,28.0,28.0,24.3,23.8,22.8,22.5,21.0,19.3,18.7,11.8$. The characterization data corresponded to the reported values. ${ }^{[11]}$

4. Synthesis of ligands

The synthesis of ligands (15a, 15e-i) had been already described before. The procedures are taken here from the indicated publications to facilitate reproduction of the results by having all the data in the same file.
(3aR,3a'R,8aS,8a'S)-2,2'-(Cyclopropane-1,1-diyl)bis(8,8a-dihydro-3aH-indeno[1,2d]oxazole) (15a)

Following a reported procedure, ${ }^{[12]}$ to a solution of dihydrobisoxazoline $38(330 \mathrm{mg}, 1.00$ mmol, 1.00 equiv) in THF (4 mL), was added $\mathrm{NaH}(120 \mathrm{mg}, 60 \%$ dispersion in paraffin liquid, $3.00 \mathrm{mmol}, 3.00$ equiv) in portions at $0^{\circ} \mathrm{C}$. After complete addition, the mixture was stirred for 30 min . at that temperature. A solution of dibromoethane (39) ($130 \mu \mathrm{~L}, 1.50 \mathrm{mmol}, 1.50$ equiv) in THF (1 mL) was then added dropwise at $0^{\circ} \mathrm{C}$ over 10 min . After the addition, the ice bath was removed and the reaction mixture was heated to $50^{\circ} \mathrm{C}$ for an additional 2 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{X} 20 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, and removed under reduced pressure. The crude product was purified by chromatography on silica gel using $2 \% \mathrm{MeOH} / \mathrm{EtOAc}$ followed by recrystallization (EtOAc/hexane, 1:4, 15 mL) to afford ($3 \mathrm{a} R, 3 \mathrm{a}^{\prime} R, 8 \mathrm{a} S, 8 \mathrm{a}^{\prime} S$)-2,2'-(cyclopropane-1,1-diyl)bis(8,8a-dihydro-3a H-indeno[1,2-d]oxazole) (15a) ($220 \mathrm{mg}, 0.617$ mmol, 62%) as a white solid. TLC (EtOAc:MeOH, 9:1 v/v): $\mathrm{R}_{\mathrm{f}}=0.50, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.25-7.17$ (m, 6H, ArH), 5.52 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2$ x N-CH), 5.41-5.23 (m, 2H, 2 X O-CH), 3.38 (dd, $J=17.9,7.0 \mathrm{~Hz}, 2 \mathrm{H}, 2$ X ArCH ${ }_{a}$), 3.19 (dd, $J=17.9,1.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} b$), $1.44-1.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH} 2\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.0,141.9,139.8,128.5,127.5,125.7,125.3,83.5,76.5,39.8,18.5,16.0$. The characterization data corresponded to the reported values. ${ }^{[13]}$

$\operatorname{Bis}((S)$-4-(tert-butyl)-4,5-dihydrooxazol-2-yl)methane (15g)

Following a reported procedure, ${ }^{[14]}$ to a solution of (S)-tert-leucinol (40) ($0.94 \mathrm{~g}, 8.0 \mathrm{mmol}, 2.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added imidate $41(0.93 \mathrm{~g}, 4.0 \mathrm{mmol}, 1.0$ equiv). The resulting
cloudy solution was stirred at room temperature for 36 h . The reaction mixture was diluted with water $(8 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (40 mL), dried over MgSO_{4}, and concentrated. The resulting oily residue was distilled bulb-to-bulb (Kugelrohr distillation, $150{ }^{\circ} \mathrm{C}$ at 0.2 mbar) to afford bis((S)-4-(tert-butyl)-4,5-dihydrooxazol-2-yl)methane ($\mathbf{1 5 g}$) $(0.600 \mathrm{~g}, 2.84 \mathrm{mmol}, 71 \%)$ as a white solid: TLC (EtOAc:pentane, $1: 1 \mathrm{v} / \mathrm{v}): \mathrm{R}_{\mathrm{f}}=0.16, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.13$ (dd, $J=$ $10.1,8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{OCH})_{a}$), $4.02\left(\mathrm{dd}, J=8.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}\right), 3.81$ (ddt, $J=$ $10.1,7.8,1.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{OCH})_{b}$, $3.27\left(\mathrm{t}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{O}(\mathrm{C}=\mathrm{N}) \mathrm{CH}_{2}\right), 0.82(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{X}$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 161.5,76.0,69.1,34.0,28.4,26.0$. The characterization data corresponded to the reported values. ${ }^{[14]}$

(4S,4'S)-2,2'-(Cyclopropane-1,1-diyl)bis(4-(tert-butyl)-4,5-dihydrooxazole) (15e)

Following a reported procedure, ${ }^{[14]}$ to a solution of $\operatorname{bis}((S)-4-$ (tert-butyl)-4,5-dihydrooxazol-2yl)methane ($\mathbf{1 5 g}$) ($75 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.0$ equiv) in THF (5 mL) in a 20 mL microwave vial, was added TMEDA ($85 \mu \mathrm{~L}, 0.56 \mathrm{mmol}, 2.0$ equiv) and $i-\mathrm{Pr}_{2} \mathrm{NH}(40 \mathrm{~mL}, 0.28 \mathrm{mmol}, 1.0$ equiv). The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $n-\operatorname{BuLi}(0.38 \mathrm{~mL}, 1.5 \mathrm{M}$ in hexane, $0.56 \mathrm{mmol}, 2.0$ equiv) was added. The reaction mixture was warmed to $-20^{\circ} \mathrm{C}$ and stirred at that temperature for 30 min . The solution was cooled back to $-78^{\circ} \mathrm{C}$ and 1,2 dibromoethane (39) ($25 \mu \mathrm{~L}, 0.28$ $\mathrm{mmol}, 2.0$ equiv) was added in 10 min . After the addition, the cold bath was removed and the reaction mixture was allowed to stir at room temperature for an additional 16 h . The reaction mixture was quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(2.5 \mathrm{~mL})$ and diluted with water (2 mL) to dissolve the resulting salts. The mixture was extracted with diethylether (3 X 10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO_{4}, and concentrated. The resulting oily residue was purified by column chromatography using $1: 2$ to 1:1 EtOAc:pentane as mobile phase to afford (4S,4'S)-2,2'-(cyclopropane-1,1-diyl)bis(4-(tert-butyl)-4,5-dihydrooxazole) (15e) as a white solid. TLC (EtOAc:pentane, $1: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.15$, $\mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.18\left(\mathrm{dd}, J=10.0,8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{OCH}{ }_{a}\right), 4.10(\mathrm{dd}$, $\left.J=8.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}\right), 3.82(\mathrm{dd}, J=10.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{OCH} b), 1.52-1.47$ ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{CH}_{a}$ of CyP), 1.30-1.24 (m, 2H, $2 \mathrm{X} \mathrm{CH}_{b}$ of CyP), $0.86\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{XC}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.4,75.2,69.1,33.8,25.7,18.2,15.1$. The characterization data corresponded to the reported values. ${ }^{[14]}$

(4S,4'S)-2,2'-(Cyclopentane-1,1-diyl)bis(4-(tert-butyl)-4,5-dihydrooxazole) (15f)

Following a reported procedure, ${ }^{[14]}$ to a solution of bis((S)-4-(tert-butyl)-4,5-dihydrooxazol-2yl)methane ($\mathbf{1 5 g}$) ($75 \mathrm{mg}, 0.28 \mathrm{mmol}$, 1.0 equiv) in THF (5 mL) in a 20 mL microwave vial was added TMEDA ($85 \mu \mathrm{~L}, 0.56 \mathrm{mmol}, 2.0$ equiv) and $i-\operatorname{Pr}_{2} \mathrm{NH}(40 \mathrm{~mL}, 0.28 \mathrm{mmol}, 1.0$ equiv). The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $n-\operatorname{BuLi}(0.38 \mathrm{~mL}, 1.5 \mathrm{M}$ in hexane, $0.56 \mathrm{mmol}, 2.0$ equiv) was added. The reaction mixture was warmed to $-20^{\circ} \mathrm{C}$ and stirred at that temperature for 30 min . The solution was cooled back to $-78^{\circ} \mathrm{C}$ and 1,4 diiodobutane (42) ($37 \mu \mathrm{~L}, 0.28$ mmol, 2.0 equiv) was added in 10 min . After the addition. the cold bath was removed and the reaction mixture was allowed to stir at room temperature for an additional 16 h . The reaction mixture was quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(2.5 \mathrm{~mL})$ and diluted with water (2 mL) to dissolve the resulting salts. The mixture was extracted with diethylether (3 X 10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO_{4}, and concentrated. The resulting oily residue was purified by column chromatography using 1:4 EtOAc:pentane as mobile phase to afford ($4 S, 4$ 'S)-2,2'-(cyclopentane-1,1-diyl)bis(4-(tert-butyl)-4,5-dihydrooxazole) (15f) as a white solid. TLC (EtOAc:pentane, $1: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.6$, $\mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.15(\mathrm{dd}, J=10.1,8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{OCH} a), 4.07(\mathrm{dd}$, $\left.J=8.7,7.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}\right), 3.84\left(\mathrm{dd}, J=10.0,7.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{XCH}_{b}\right), 2.43-2.33$ ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{XCCH}_{a} \mathrm{CH}_{2}$), $2.20-2.05\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{XCCH}_{b} \mathrm{CH}_{2}\right), 1.81-1.62\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{XCCH}_{2} \mathrm{CH}_{2}\right)$, $0.86\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{X} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0,75.3,69.1,49.1,35.4,33.9$, 25.7, 25.0. The characterization data corresponded to the reported values. ${ }^{[14]}$
(3aR,3a'R,8aS,8a'S)-2,2'-(Propane-2,2-diyl)bis(8,8a-dihydro-3aH-indeno[1,2-d]oxazole) (15h)

Following a reported procedure, ${ }^{[15]}$ a Schlenk tube was charged with dry THF (2 mL), TMEDA ($46 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 2.0$ equiv) and $i-\mathrm{Pr}_{2} \mathrm{NH}(43 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 2.0$ equiv). The solution was cooled to $-20^{\circ} \mathrm{C}$ and n-BuLi ($0.20 \mathrm{~mL}, 1.5 \mathrm{M}$ in hexane, $0.30 \mathrm{mmol}, 2.0$ equiv) was added. The reaction mixture was stirred for 1 h at that temperature and $\mathbf{3 8}(50 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$
equiv) in THF (2 mL) was added. The mixture was stirred for 3 h . Then, MeI ($38 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$, 4.0 equiv) was added at $-20^{\circ} \mathrm{C}$. After the addition, the cold bath was removed and the reaction mixture was heated to $60^{\circ} \mathrm{C}$ for an additional 24 h . The solution was cooled, washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with EtOAc (3 x 30 mL). The combined organic phases were dried over MgSO_{4}, and removed under reduced pressure, to afford ($3 \mathrm{a} R, 3 \mathrm{a}^{\prime} R, 8 \mathrm{a} S, 8 \mathrm{a}^{\prime} S$) $-2,2^{\prime}-$ (propane-2,2-diyl)bis(8,8a-dihydro-3a H-indeno[1,2-d]oxazole) (15h) ($53.5 \mathrm{mg}, 0.15 \mathrm{mmol}$, quant.) as a white solid. No purification was needed. TLC (EtOAc:MeOH, 9:1 v/v): $\mathrm{R}_{\mathrm{f}}=0.53$, $\mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54-7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.30-7.18(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH})$, $5.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X}$ N-CH), $5.28-5.25(\mathrm{~m}, 2 \mathrm{H}, 2$ X O-CH), $3.30(\mathrm{dd}, J=17.9,7.1 \mathrm{~Hz}$,
 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.1,141.8,139.7,128.3,127.3,125.6,125.0,83.2,76.5,39.6,38.4$, 23.9. The characterization data corresponded to the reported values. ${ }^{[15]}$ (4S,4'S)-2,2'-(Ethane-1,1-diyl)bis(4-(tert-buty)-4,5-dihydrooxazole) (15i)

Following a reported procedure, ${ }^{[16]}$ diethyl methylmalonate (43) $(0.850 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.00$ equiv) and (S)-tert-leucinol ($\mathbf{4 0}$) ($1.23 \mathrm{~g}, 10.5 \mathrm{mmol}, 2.10$ equiv) were added to a Schlenk tube. The mixture was stirred for 3 days at $120^{\circ} \mathrm{C}$. The reaction mixture was cooled down to room temperature to obatine the product, which was used in the following step without further purification.
Following a reported procedure, ${ }^{[17]}$ a 50 mL Schlenk flask was charged with bis((S)-1-hydroxy-3,3-dimethylbutan-2-yl)-2-methylmalonamide (44) ($1.44 \mathrm{~g}, 4.54 \mathrm{mmol}, 1.00$ equiv), 4-(dimethylamino)-pyridine ($0.06 \mathrm{~g}, 0.05 \mathrm{mmol}, 0.100$ equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL}$). Triethylamine ($3.00 \mathrm{~mL}, 21.5 \mathrm{mmol}, 4.75$ equiv) was then added. A solution of p toluenesulfonyl chloride ($1.88 \mathrm{~g}, 9.90 \mathrm{mmol}, 2.10$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added slowly. The resulting bright yellow solution was stirred at room temperature for 24 h . It was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The aqueous layer was backextracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 X 15 mL). The combined organic extracts were washed with sat. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified by column chromatography using 98:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ to afford ($4 S, 44^{\prime}$) -2,2'-(ethane-1,1-diyl)bis(4-(tert-butyl)-4,5-dihydrooxazole) (15i) $(1.00 \mathrm{~g}, 3.57 \mathrm{mmol}, 79 \%)$ as a colorless thick liquid. TLC (EtOAc:MeOH, $9: 1 \mathrm{v} / \mathrm{v}): \mathrm{R}_{\mathrm{f}}=$
$0.53, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.21-4.13\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{OCH}{ }_{a}\right), 4.12-4.01(\mathrm{~m}$, $\left.2 \mathrm{H}, 2 \mathrm{X} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}\right), 3.97-3.76\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{OCH}_{b}\right), 3.61-3.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.46(\mathrm{~d}, J=$ $\left.7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 165.5,165.3,75.4,68.9,34.0,33.8,25.7,25.6,15.3$. The characterization data corresponded to the reported values. ${ }^{[17]}$

5. Preliminary studies of EBZ reactivity

Methyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5)

Following a reported procedure, ${ }^{[18]}$ a solution of 2,3-dihydro- $1 H$-inden-1-one (45) (1.00 g, 7.57 mmol, 1.00 equiv) in dimethyl carbonate (5 mL) was added dropwise to a suspension of 60% $\mathrm{NaH}\left(0.666 \mathrm{~g}, 16.7 \mathrm{mmol}, 2.20\right.$ equiv) in dimethyl carbonate $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Once the addition complete, the solution was heated up to $80^{\circ} \mathrm{C}$. After 2 h the reaction mixture was cooled to room temperature, and water (35 mL) was added. The aqueous layer was extracted with DCM ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography using EtOAc:pentane 1:9 as mobile phase to afford methyl 1-oxo-2,3-dihydro- 1 H -indene-2carboxylate (5) as an orange solid ($0.913 \mathrm{~g}, 4.80 \mathrm{mmol}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Keto-enol (6:1) $\delta 10.36$ (br s, $0.15 \mathrm{H}, \mathrm{OH}$ enol), 7.78 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.63 (t, $J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 3.86(\mathrm{~s}, 0.5 \mathrm{H}$, OCH_{3}-enol), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}), 3.55(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$ CH_{2}), $3.40\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$). The ${ }^{1} \mathrm{H}$ NMR data corresponds to literature data. ${ }^{[18]}$

Methyl 2-ethynyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (6)

A solution of TIPS-Ts-EBZ (2a) ($227 \mathrm{mg}, 0.390 \mathrm{mmol}, 1.30$ equiv) and methyl 1 -oxo-2,3-dihydro-1 H -indene-2-carboxylate (5) ($57.1 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.00$ equiv) was cooled down to $-78{ }^{\circ} \mathrm{C}$ and stirred for 5 min . After this time, tetrabutylammonium fluoride (1 M in THF, 0.40 $\mathrm{mL}, 0.40 \mathrm{mmol}, 1.3$ equiv) was added. After 1 h , the solvent was removed under reduced pressure and the crude product was purified by flash chromatography using EtOAc:pentane 1:5 as mobile phase to afford methyl 2-ethynyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (6) as a yellow oil ($65 \mathrm{mg}, 0.30 \mathrm{mmol}$, quant.). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar} H), 7.67(\mathrm{td}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.55-7.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar} H), 3.94\left(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.53\left(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.43 (s, $1 \mathrm{H}, \mathrm{C} \equiv \mathrm{C} H$). The ${ }^{1} \mathrm{H}$ NMR data corresponds to literature data. ${ }^{[19]}$

(((2-Bromophenyl)thio)ethynyl)triisopropylsilane (8)

In a 10 mL flask TIPS-Ts-EBZ (2a) $(0.206 \mathrm{~g}, 0.354 \mathrm{mmol}, 1.00$ equiv) was added in one portion to a solution of 1,1,3,3-tetramethylguanidine ($41 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.0$ equiv) and 2 bromobenzenethiol (7) ($67 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.0$ equiv) in THF (2.5 ml). The solution was stirred at room temperature for 5 min . The reaction was quenched with water $(5 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate (3 X 10 mL). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography using pentane as mobile phase to afford (((2bromophenyl)thio)ethynyl)triisopropylsilane (8) as a colourless oil ($104 \mathrm{mg}, 0.282 \mathrm{mmol}$, 79%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), 7.39 (dd, $J=7.9$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.98(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 1.05(\mathrm{~m}, 21 \mathrm{H}$, TIPS). The ${ }^{1} \mathrm{H}$ NMR data corresponds to literature data. ${ }^{[20]}$

3-((Triisopropylsilyl)ethynyl)-1H-indole (10)

In a 10 mL flask TIPS-Ts-EBZ (2a) ($0.135 \mathrm{~g}, 0.232 \mathrm{mmol}, 1.16$ equiv) was added to a solution of gold(I) chloride ($0.5 \mathrm{mg}, 2 \mu \mathrm{~mol}, 0.01$ equiv) and indole (9) ($23 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) in diethylether (3.3 mL). The solution was stirred at room temperature for 19 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, washed with $0.1 \mathrm{M} \mathrm{NaOH}(2 \mathrm{X} 5 \mathrm{~mL})$. The combined aqueous layers were back-extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The combined organic layers were washed with saturated NaHCO_{3} solution $(5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The crude product was purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane 1:4 as mobile phase to afford 3-((triisopropylsilyl)ethynyl)-1 H -indole (10) as colorless oil ($44 \mathrm{mg}, 0.15 \mathrm{mmol}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} \mathrm{H})$, $7.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.38(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H)$, 1.22 ($\mathrm{m}, 21 \mathrm{H}, \mathrm{TIPS}$). The ${ }^{1} \mathrm{H}$ NMR data corresponds to literature data. ${ }^{[21]}$

6. Optimization of the reaction conditions.

a) Screening of copper catalysts

A flame dried 5 mL microwave vial was charged under nitrogen with catalyst ($2.00 \mu \mathrm{~mol}, 0.02$ equiv), ligand $\mathbf{1 2}(2.25 \mu \mathrm{~mol}, 0.025$ equiv) and dry DCE $(0.5 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 30 min . To this solution was added a mixture of N -[tosyl]-1-[phenylethynyl]-1,2-benziodazol-3($1 H$)-one ($\mathbf{2 b}$) ($0.10 \mathrm{mmol}, 1.0$ equiv) and ethyl 2 diazoacetate (11a) (0.20 mmol , 2.0 equiv) in dry DCE (1.5 mL) in 2 min and the resulting reaction mixture was stirred at $60^{\circ} \mathrm{C}$ until the reaction was completed (monitored by TLC, EtOAc:pentane, $1: 4 \mathrm{v} / \mathrm{v}$), the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (EtOAc:pentane, $1: 4 \mathrm{v} / \mathrm{v}$) directly without any further work-up.

b) Screening of ligands

A flame dried 5 mL microwave vial was charged under nitrogen with $\mathrm{CuOAc}(2.00 \mu \mathrm{~mol}, 0.02$ equiv), ligand $\mathbf{1 5}$ ($2.25 \mu \mathrm{~mol}, 0.025$ equiv) and dry DCE (0.5 mL). The resulting solution was stirred at room temperature for 30 min . To this solution was added a mixture of N-[tosyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2b) ($0.10 \mathrm{mmol}, 1.0$ equiv) and ethyl 2 diazoacetate (11a) (0.20 mmol , 2.0 equiv) in dry DCE (1.5 mL) in 2 min and the resulting reaction mixture was stirred at $60^{\circ} \mathrm{C}$ until the reaction was completed (monitored by TLC, EtOAc:pentane, 1:4 v/v), the solvent was evaporated under reduced pressure and the crude
product was purified by column chromatography (EtOAc:pentane, $1: 4 \mathrm{v} / \mathrm{v}$) directly without any further work-up.

$15 \mathrm{~min}, 20 \%, 10 \%$ ee
3 h, $55 \%, 40 \%$ ee
0.5 h, 65\%, 69\% ee

1 h, $25 \%,<5 \%$ ee
2 h, $38 \%, 10 \%$ ee

1 h, $41 \%,,<5 \%$ ee

$1.5 \mathrm{~h}, 41 \%, 70 \%$ ee

c) Screening of solvents

A flame dried 5 mL microwave vial was charged under nitrogen with $\mathrm{CuOAc}(2.00 \mu \mathrm{~mol}, 0.02$ equiv), ligand $\mathbf{1 5 d}(2.25 \mu \mathrm{~mol}, 0.025$ equiv) and solvent $(0.5 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 30 min . To this solution was added a mixture of N -[tosyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2b) ($0.10 \mathrm{mmol}, 1.0$ equiv) and ethyl 2 diazoacetate (11a) ($0.20 \mathrm{mmol}, 2.0$ equiv) in solvent (1.5 mL) in 2 min and the resulting reaction mixture was stirred until the reaction was completed (monitored by TLC, EtOAc:pentane, $1: 4 \mathrm{v} / \mathrm{v}$), the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (EtOAc:pentane, $1: 4 \mathrm{v} / \mathrm{v}$) directly without any further work-up.

d) Replacing the tosyl group with mesitylsulfonyl group on the nitrogen atom

A flame dried 5 mL microwave vial was charged under nitrogen with $\mathrm{CuOAc}(2.00 \mu \mathrm{~mol}, 0.02$ equiv), ligand 15d ($2.25 \mu \mathrm{~mol}, 0.025$ equiv) and dry DCM (0.5 mL). The resulting solution was stirred at room temperature for 30 min . To this solution was added a mixture of N -[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) ($0.10 \mathrm{mmol}, 1.0$ equiv) and ethyl 2-diazoacetate (11a) $(0.20 \mathrm{mmol}, 2.0$ equiv) in dry $\mathrm{DCM}(1.5 \mathrm{~mL})$ in 2 min and the resulting reaction mixture was stirred until the reaction was completed (monitored by TLC, EtOAc:pentane, $1: 7 \mathrm{v} / \mathrm{v}$), the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (EtOAc:pentane, 1:7 v/v) directly without any further work-up.

2	Mts	24 h	81	80

Mts =

e) Screening of solvents using Ph-Mts-EBZ (2d)

A flame dried 5 mL microwave vial was charged under nitrogen with $\mathrm{CuOAc}(2.00 \mu \mathrm{~mol}, 0.02$ equiv), ligand $\mathbf{1 5 d}$ ($2.25 \mu \mathrm{~mol}, 0.025$ equiv) and solvent $(0.5 \mathrm{~mL}$). The resulting solution was stirred at room temperature for 30 min . To this solution was added a mixture of N -[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) ($0.10 \mathrm{mmol}, 1.0$ equiv) and ethyl 2-diazoacetate (11a) ($0.20 \mathrm{mmol}, 2.0$ equiv) in solvent $(1.5 \mathrm{~mL}$) in 2 min and the resulting reaction mixture was stirred until the reaction was completed (monitored by TLC, EtOAc:pentane, $1: 7 \mathrm{v} / \mathrm{v}$), the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (EtOAc:pentane, 1:7 v/v) directly without any further work-up.

Entry	Solvent	$\mathbf{T}^{\circ} \mathbf{C}$	Time	Yield (\%)	ee
1	DCE	$60{ }^{\circ} \mathrm{C}$	1.0 h	76	79
2	cholorobenzene	$60^{\circ} \mathrm{C}$	6.0 h	25	69
3	o-dicholorobenzene	$60^{\circ} \mathrm{C}$	3.0 h	63	72
$\mathbf{4}$	$\mathbf{D C M}$	$\mathbf{R T}$	$\mathbf{2 4} \mathbf{h}$	$\mathbf{8 1}$	$\mathbf{8 0}$

f) Screening of copper catalysts using Ph-Mts-EBZ (2d)

A flame dried 5 mL microwave vial was charged under nitrogen with catalyst ($2.00 \mu \mathrm{~mol}, 0.02$ equiv), ligand $15 d$ ($2.25 \mu \mathrm{~mol}, 0.025$ equiv) and dry $\mathrm{DCM}(0.5 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 30 min . To this solution was added a mixture of N -[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) ($0.10 \mathrm{mmol}, 1.0$ equiv) and ethyl 2-diazoacetate (11a) ($0.20 \mathrm{mmol}, 2.0$ equiv) in dry $\mathrm{DCM}(1.5 \mathrm{~mL})$ in 2 min and the resulting reaction mixture was stirred until the reaction was completed (monitored by TLC, EtOAc:pentane, 1:7 v/v), the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (EtOAc:pentane, $1: 7 \mathrm{v} / \mathrm{v}$) directly without any further work-up.

g) Screening of temperatures using Ph-Mts-EBZ (2d)

A flame dried 5 mL microwave vial was charged under nitrogen with $\mathrm{CuCl}(2.00 \mu \mathrm{~mol}, 0.02$ equiv), AgOTs ($2.00 \mu \mathrm{~mol}, 0.02$ equiv), ligand $\mathbf{1 5 d}(2.25 \mu \mathrm{~mol}, 0.025$ equiv) and dry DCM $(0.5 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 30 min . To this solution was added a mixture of N-[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) ($0.10 \mathrm{mmol}, 1.0$ equiv) and ethyl 2-diazoacetate (11a) ($0.20 \mathrm{mmol}, 2.0$ equiv) in dry DCM $(1.5 \mathrm{~mL})$ in 2 min and the resulting reaction mixture was stirred until the reaction was
completed (monitored by TLC, EtOAc:pentane, $1: 7 \mathrm{v} / \mathrm{v}$), the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (EtOAc:pentane, 1:7 v/v) directly without any further work-up.

Entry	Temperature	Time	Yield (\%)	ee
1	$35^{\circ} \mathrm{C}$	2.0 h	91	82
$\mathbf{2}$	$\mathbf{R T}$	$\mathbf{2 . 0} \mathbf{h}$	$\mathbf{9 3}$	$\mathbf{8 8}$
3	$0{ }^{\circ} \mathrm{C}$	20 h	90	88

h) Screening of catalyst loading

A flame dried 5 mL microwave vial was charged under nitrogen with CuCl ($\mathrm{x} \mathrm{mol} \%$), AgOTs ($\mathrm{x} \mathrm{mol} \%$), ligand $15 d$ ($2.25 \mu \mathrm{~mol}, 0.025$ equiv) and dry DCM (0.5 mL). The resulting solution was stirred at room temperature for 30 min . To this solution was added a mixture of N -[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) ($0.10 \mathrm{mmol}, 1.0$ equiv) and ethyl 2-diazoacetate (11a) ($0.20 \mathrm{mmol}, 2.0$ equiv) in dry $\mathrm{DCM}(1.5 \mathrm{~mL})$ in 2 min and the resulting reaction mixture was stirred until the reaction was completed (monitored by TLC, EtOAc:pentane, $1: 7 \mathrm{v} / \mathrm{v}$), the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (EtOAc:pentane, $1: 7 \mathrm{v} / \mathrm{v}$) directly without any further work-up.

		$\mathrm{CuCl}(\mathrm{x} \mathrm{mol} \%)$ AgOTs (x mol\%) ligand 15d ($1.25 \mathrm{x} \mathrm{mol} \%$) DCM (0.05 M), RT			
Entry	x mol\%	Time	Yield (\%)	ee	
1	2	2.0 h	93	88	
2	1	2.0 h	90	88	
3	3	1.0 h	98	88	

7. Copper catalyzed oxy-alkynylation using EBZ reagents

A flame dried 5 mL microwave vial was charged under nitrogen with $\mathrm{CuOAc}(0.3 \mathrm{mg}, 2 \mu \mathrm{~mol}$, 0.02 equiv), and ligand $\mathbf{1 5 d}(0.8 \mathrm{mg}, 3 \mu \mathrm{~mol}, 0.03$ equiv) and dry DCE (1 mL). The resulting solution was stirred at room temperature for 1 h and then added to a mixture of $\mathrm{Ph}-\mathrm{Ts}-\mathrm{EBZ}$ ($\mathbf{2 b}$) ($50 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and diazo compound $11 \mathbf{a}$ ($25 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 2.0$ equiv) in dry DCE (1 mL) in 2 min and the resulting reaction mixture was stirred $60^{\circ} \mathrm{C}$. After 1 h , the solvent was evaporated under reduced pressure and the crude product was purified by flash chromatography using EtOAc:pentane $1: 4$ as mobile phase to afford 14a as a pale yellow oil ($38.0 \mathrm{mg}, 0.065 \mathrm{mmol}, 65 \%$). TLC (EtOAc:Pentane 1:4): $\mathrm{R}_{\mathrm{f}}=0.28, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.49-7.43(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H)$, $7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{C} H), 4.23(\mathrm{qd}, J=$ $7.2,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 1.29\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0,164.6,143.7,138.9,137.6,137.2,132.0,131.8,129.3$, 129.2, 128.2, 127.6, 127.4, 121.2, 92.6, 88.6, 79.4, 67.4, 62.7, 21.6, 14.0; IR v 3063 (w), 2983 (w), 2926 (w), 2867 (w), 2239 (w), 1755 (s), 1714 (w), 1626 (s), 1581 (m), 1492 (w), 1464 (m), 1334 (s$), 1285$ (s$), 1255$ (m), 1190 (m), 1168 (s$), 1152$ (s$), 1092$ (s$), 1022$ (m), 993 (w), 914 (w), 816 (w); HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{INO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 588.0336$; found 588.0345; Chiral HPLC conditions: $e e=69 \%$; Chiralpak IB 80:20 Hexane $/ \mathrm{iPrOH}, 0.8 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min}$. $\mathrm{t}_{\mathrm{r}}($ minor $)=15.4 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=19.5 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+20.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. One carbon was not resolved at 100 MHz .

General procedure 3 (GP3)

A flame dried 5 mL microwave vial was charged under nitrogen with $\mathrm{CuCl}(0.3 \mathrm{mg}, 3 \mu \mathrm{~mol}$, 0.03 equiv), AgOTs ($0.9 \mathrm{mg}, 3 \mu \mathrm{~mol}, 0.03$ equiv), ligand $\mathbf{1 5 d}$ ($1.1 \mathrm{mg}, 3.8 \mu \mathrm{~mol}, 0.0375$ equiv) and dry dichloromethane $(1 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 1 h and then added to a mixture of R-EBZ $2(0.1 \mathrm{mmol}, 1.0$ equiv) and diazo compound 11 (0.20 mmol , 2.0 equiv) in dry dichloromethane (1 mL) in 2 min and the resulting reaction mixture was stirred at room temperature. After the reaction was completed (monitored by TLC, EtOAc ;pentane or $\mathrm{Et}_{2} \mathrm{O}$:pentane), the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (EtOAc:pentane or $\mathrm{Et}_{2} \mathrm{O}$:pentane) directly without any further work-up.
Ethyl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-phenylbut-3-ynoate (14b)

Following GP3, N-[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) (53 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and ethyl 2 -diazoacetate (11a) ($25 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 13 \mathrm{wt} . \%$ dichloromethane, 2.0 equiv) were stirred for 18 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using EtOAc:pentane 1:7 as mobile phase to afford $\mathbf{1 4 b}$ as a pale yellow solid ($60.0 \mathrm{mg}, 0.097 \mathrm{mmol}, 97 \%$). Mp: 51.4-56.1 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:Pentane 1:7): $\mathrm{R}_{\mathrm{f}}=0.35, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.85(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.46-7.28(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 7.22-7.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.89(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 6.07$ (s, $1 \mathrm{H}, \mathrm{OCH}$), $4.29-4.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.55\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3\right.$), 2.28 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), $1.28\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1,164.7,142.5,139.6$, 139.03, 137.4, 134.9, 132.1, 131.8, 131.6, 129.6, 129.3, 128.3, 127.5, 121.2, 92.6, 88.5, 79.6, 67.1, 62.8, 22.8, 21.0, 14.0; IR v 3059 (w), 2981 (w), 2938 (w), 2236 (w), 1763 (m), 1621 (s), 1580 (m), 1493 (w), 1464 (w), 1331 (s), 1282 (s), 1254 (m), 1194 (m), 1165 (s), 1144 (s), 1104 (w), 1017 (m), 999 (m), 952 (w); HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{INNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$638.0469; found 638.0474; Chiral HPLC conditions: $e e=88 \%$; Chiralpak IA 80:20 Hexane/iPrOH, 1.0 $\mathrm{mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=13.8 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=16.1 \mathrm{~min} . \lambda=250 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+28.8$ ($\mathrm{c}=0.5, \mathrm{CHCl}_{3}$).

Benzyl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-phenylbut-3-ynoate (14c)

Following GP3, N-[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) (53 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and benzyl 2-diazoacetate (11b) ($34 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 10 \mathrm{wt} . \%$ dichloromethane, 2.0 equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 4$ as mobile phase to afford $\mathbf{1 4 c}$ as a pale yellow solid ($56.0 \mathrm{mg}, 0.083 \mathrm{mmol}, 83 \%$). $\mathrm{Mp}: 73.3-75.8^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane 1:4): $\mathrm{R}_{\mathrm{f}}=0.17, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.40-7.30(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar} H), 7.16(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.87(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{Ar} H), 6.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}), 5.23\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}{ }^{a}{ }_{2} \mathrm{Ph}\right), 5.12\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}{ }^{b}{ }_{2} \mathrm{Ph}\right)$, 2.55 (s, 6H, $2 \mathrm{X} \mathrm{ArCH}_{3}$), $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1,164.5$, $142.5,139.5,139.0,137.3,134.9,134.6,132.1,131.7,131.6,129.6,129.4,128.6,128.6,128.3$, 128.3, 127.4, 121.1, 92.6, 88.7, 79.4, 68.2, 67.0, 22.8, 21.0; IR v 3066 (w), 3032 (w), 2938 (w), 2237 (w), 1762 (s), 1622 (s), 1580 (m), 1460 (m), 1330 (s), 1282 (s), 1254 (s), 1189 (m), 1146 (s), 1021 (m), 854 (w); HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{INNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 700.0625$; found 700.0635; Chiral HPLC conditions: $e e=80 \%$; Chiralpak IB 90:10 Hexane/iPrOH, $1.0 \mathrm{~mL} / \mathrm{min}$, $31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=13.4 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=14.4 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+13.2(\mathrm{c}=0.5$, $\left.\mathrm{CHCl}_{3}\right)$.

Tert-butyl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-phenylbut-3ynoate (14d)

Following GP3, N-[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) (53 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and tert-butyl 2-diazoacetate (11c) ($33 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 15 \mathrm{wt} . \%$ dichloromethane, 2.0 equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using EtOAc:pentane 1:7 as mobile phase to afford $\mathbf{1 4 d}$ as a pale yellow solid ($39 \mathrm{mg}, 0.06 \mathrm{mmol}, 61 \%$). Mp: 55.2-56.8 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc:Pentane 1:7): $\mathrm{R}_{\mathrm{f}}=0.35, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83(\mathrm{~d}, \mathrm{~J}=$
$8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.45-7.39(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.38-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.17$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}), 6.88$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar} H$), $5.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}), 2.56\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}\right.$) , $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.48(\mathrm{~s}, 9 \mathrm{H}$, $t \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1,163.5,142.4,139.5,139.0,137.6,135.0,132.0$, 131.7, 131.6, 129.6, 129.2, 128.3, 127.4, 121.4, 92.6, 87.9, 84.1, 67.5, 53.4, 27.8, 22.9, 21.0; IR v 2979 (w), 2935 (w), 2237 (w), 1752 (m), 1621 (m), 1580 (w), 1462 (w), 1371 (m), 1330 (m), 1283 (m), 1254 (m), 1145 (s), 1043 (w), 1016 (w), 844 (w); HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{INO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 644.0962$; found 644.0965; Chiral HPLC conditions: $e e=84 \%$; Chiralpak IA 95:5 Hexane $/ \mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=18.9 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=$ $21.4 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+17.9\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.

2,4-Dimethylpentan-3-yl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-phenylbut-3-ynoate (14e)

Following GP3, N-[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) (53 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2,4-dimethylpentan-3-yl 2-diazoacetate ($\mathbf{1 1 d}$) ($37 \mathrm{mg}, 0.20$ mmol, 2.0 equiv) were stirred for 18 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 12$ as mobile phase to afford 14 e as a white solid ($64.0 \mathrm{mg}, 0.093 \mathrm{mmol}, 93 \%$). Mp: $51.4-56.8^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane 1:10): $\mathrm{R}_{\mathrm{f}}=0.4, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar} H$), 7.45 - 7.27 (m, 7H, $\mathrm{Ar} H$), $7.20-7.11$ (m, 1H, ArH), 6.86 (s, 2H, ArH), 6.21 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{OCH}), 4.75-4.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}, i \mathrm{Pr}), 2.55\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}_{3}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.02-1.85$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{X} \mathrm{CHCH}_{3}\right), 0.93\left(\mathrm{dd}, J=6.8,4.2 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{XCHCH}_{3}\right), 0.83(\mathrm{dd}, J=18.2,6.8 \mathrm{~Hz}$, $6 \mathrm{H}, 2 \mathrm{X} \mathrm{CHCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.4,164.6,142.4,139.4,139.0,137.4$, 135.0, 131.9, 131.7, 131.6, 129.7, 129.3, 128.3, 127.4, 121.3, 92.7, 88.1, 86.1, 66.6, 53.4, 29.6, 29.5, 22.9, 21.0, 19.5, 19.3, 17.4, 16.8; IR v 3059 (w), 2968 (m), 2238 (w), 1760 (s), 1620 (s), 1580 (m), 1465 (m), 1332 (s), 1283 (s$), 1255$ (m), 1203 (m), 1165 (m), 1148 (s$), 1016$ (m), 930 (w), 890 (w); HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{INO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 686.1432$; found 686.1433; Chiral HPLC conditions: $e e=94 \%$; Chiralpak IA 95:5 Hexane $/ \mathrm{iPrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}$ (minor) $=16.6 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=20.9 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+36.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.

Dicyclohexylmethyl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-phenylbut-3-ynoate (14f)

Following GP3, N-[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) (53 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and dicyclohexylmethyl 2-diazoacetate (11e) ($53 \mathrm{mg}, 0.20 \mathrm{mmol}$, 2.0 equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 4$ as mobile phase to afford $\mathbf{1 4 f}$ as a white solid ($60.0 \mathrm{mg}, 0.078 \mathrm{mmol}, 78 \%$). $\mathrm{Mp}: 67.6-71.5^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane 1:4): $\mathrm{R}_{\mathrm{f}}=0.4, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.43-$ 7.37 (m, 4H, ArH), $7.37-7.27$ (m, 3H, ArH), 7.15 (ddd, $J=8.0,6.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.86 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArH}$), $6.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}), 4.75\left(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H},(\mathrm{Cy})_{2} \mathrm{CH}\right), 2.54(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3)$, $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.79-1.59\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Cy}-\mathrm{CH}_{2}\right), 1.25-0.95\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Cy}-\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 168.4,164.5,142.4,139.5,139.0,137.3,135.0,131.9,131.6,131.6$, 129.7, 129.3, 128.3, 127.4, 121.3, 92.7, 88.2, 84.8, 80.5, 66.6, 53.4, 38.6, 38.3, 29.8, 29.6, 27.7, 26.9, 26.2, 26.2, 26.1, 26.0, 25.9, 22.9, 21.0; IR v 3058 (w), 2929 (s), 2853 (m), 2237 (w), 1760 (s), 1620 (s$), 1580$ (m), 1449 (m), 1332 (s$), 1283$ (s$), 1255$ (m), 1192 (m), 1166 (s$), 1148$ (s$)$, 1045 (w), 1015 (m), 935 (w), 854 (w); HRMS (ESI) calcd. for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{INNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 788.1877$; found 788.1887; Chiral HPLC conditions: $e e=94 \%$; Chiralpak IA 95:5 Hexane $/ i \operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=17.8 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=$ $25.5 \mathrm{~min} . \lambda=260 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+41.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.

2,3,4-Trimethylpentan-3-yl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-phenylbut-3-ynoate (14 g)

Following GP3, N-[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) (53 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2,3,4-trimethylpentan-3-yl 2-diazoacetate (11f) ($40 \mathrm{mg}, 0.20$ mmol, 2.0 equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 4$ as mobile phase
to afford $\mathbf{1 4 g}$ as a white solid ($64.0 \mathrm{mg}, 0.093 \mathrm{mmol}, 93 \%$). Mp: 131.5-132.9 ${ }^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane 1:4): $\mathrm{R}_{\mathrm{f}}=0.37, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar} H), 7.47-7.27(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar} H), 7.15(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.87$ (s, 2H, ArH), 6.04 (s, $1 \mathrm{H}, \mathrm{OCH}$), $2.56\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}_{3}\right), 2.29-2.17\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArCH}_{3}\right.$ and $2 \mathrm{X} \mathrm{CHCH}_{3}$), $1.44(\mathrm{~s}, 3 \mathrm{H}$, $i \operatorname{PrCCH} 3$), , $0.97\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.95\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.90(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{CHCH}_{3}$); ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 168.4,163.2,142.4,139.4,139.0$, $137.5,135.1,131.9,131.6,131.6,129.8,129.2,128.3,127.4,121.5,95.0,92.7,87.8,80.6$, 67.2, 34.6, 34.4, 22.9, 21.0, 17.9, 17.9, 17.7, 17.6, 17.5; IR v 2972 (m), 2237 (w), 1757 (s), 1619 (s), 1580 (m), 1465 (m), 1380 (w), 1331 (s), 1283 (s), 1251 (m), 1204 (m), 1148 (s), 1060 (m), 1015 (m), $940(\mathrm{w})$; HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{INNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 722.1408$; found 722.1409; Chiral HPLC conditions: $e e=90 \%$; Chiralpak IA 95:5 Hexane $/ \mathrm{iPrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$, $31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=15.1 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=16.7 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+33.4(\mathrm{c}=0.5$, $\left.\mathrm{CHCl}_{3}\right)$.

Adamantan-1-yl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-phenylbut3 -ynoate (14h)

14h
Following GP3, N-[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) (53 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and adamantan-1-yl 2-diazoacetate (11g) ($44 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 4$ as mobile phase to afford $\mathbf{1 4 h}$ as a white solid ($47.0 \mathrm{mg}, 0.065 \mathrm{mmol}, 65 \%$). Mp: $78.4-84.6{ }^{\circ} \mathrm{C}$; TLC ($\left.\mathrm{Et}_{2} \mathrm{O}: P e n t a n e ~ 1: 4\right): ~ \mathrm{R}_{\mathrm{f}}=0.32, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 1H, ArH), $7.45-7.38$ (m, 4H, ArH), 7.37 - 7.28 (m, 3H, ArH), $7.20-7.14$ (m, 1H, ArH), 6.89 (s, 2H, ArH), 5.95 (s, 1H, OCH), 2.58 (s, 6H, $2 \mathrm{X} \mathrm{ArCH}_{3}$), 2.28 (s, 3H, ArCH_{3}), 2.15 ($\mathrm{s}, 3 \mathrm{H}, 3$ X Ad-CH), 2.11 - $1.99\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{X} \mathrm{Ad}-\mathrm{CH}_{2}\right.$), $1.64\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{X} \mathrm{Ad-CH}\right.$) ; ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 168.1,163.1,142.4,139.6,139.0,137.7,135.1,132.0,131.6,131.6,129.5,129.2$, $128.3,127.4,121.5,92.7,87.9,84.0,80.2,67.6,40.9,35.9,30.9,22.9,21.0$; IR v 3057 (w), 2914 (m), 2854 (w), 2236 (w), 1753 (m), 1620 (s), 1580 (m), 1460 (m), 1330 (s), 1283 (s), 1254 (s), 1192 (s), 1166 (s), 1147 (s), 1049 (s), 1015 (m), 856 (w); HRMS (ESI) calcd. for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{INO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 722.1432$; found 722.1427; Chiral HPLC conditions: ee $=94 \%$;

Chiralpak IA 90:10 Hexane $/ i \operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ major $)=16.8 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ minor $)$ $=21.7 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+8.1\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.
2-Phenylpropan-2-yl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-phenylbut-3-ynoate (14i)

Following GP3, N-[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) (53 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate (11h) ($41 \mathrm{mg}, 0.20 \mathrm{mmol}$, 2.0 equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 4$ as mobile phase to afford 14 i as a white solid ($66.0 \mathrm{mg}, 0.094 \mathrm{mmol}, 94 \%$). $\mathrm{Mp}: 86.8-87.7^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane $1: 2): \mathrm{R}_{\mathrm{f}}=0.35, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.48-$ 7.27 (m, 12H, ArH), 7.14 (ddd, $J=8.0,6.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.87 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar} H), 6.08$ (s, 1H, OCH), 2.55 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}_{3}$), 2.28 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), 1.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}$), 1.76 ($\mathrm{s}, 3 \mathrm{H}$, OCCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.2,162.6,144.6,142.5,139.6,138.9,137.4$, 135.0, 132.0, 131.6, 131.6, 129.6, 129.3, 128.4, 127.4, 124.3, 121.3, 92.6, 88.4, 85.0, 80.0, 67.4, 53.4, 29.1, 27.4, 22.9, 21.0; IR v 3059 (w), 2981 (w), 2938 (w), 2236 (w), 1763 (m), 1621 (s), 1580 (m), 1493 (w), 1464 (w), 1331 (s), 1282 (s), 1254 (m), 1194 (m), 1165 (s), 1143 (s), 1104 (w), 1017 (m), 995 (m), 952 (w), 943 (w), 852 (w); HRMS (ESI) calcd. for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{INNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 728.0938$; found 728.0948; Chiral HPLC conditions: $e e=94 \%$; Chiralpak IA 90:10 Hexane $/ i \operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}$ (minor) $=15.3 \mathrm{~min}$. and t_{r} (major) $=17.5 \min \cdot \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+40.8\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. One carbon was not resolved at 100 MHz.

2,6-Diisopropylphenyl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-phenylbut-3-ynoate (14j)

14j
Following GP3, N-[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) (53 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2,6-diisopropylphenyl 2-diazoacetate (11i) ($49.5 \mathrm{mg}, 0.200$ $\mathrm{mmol}, 2.00$ equiv) were stirred for 18 h . The crude reaction mixture was concentrated under
reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 6$ as mobile phase to afford $\mathbf{1 4 j}$ as a white solid ($76 \mathrm{mg}, 0.10 \mathrm{mmol}$, quant.). $\mathrm{Mp}: 73.6-82.0{ }^{\circ} \mathrm{C}$; TLC ($\left.\mathrm{Et}_{2} \mathrm{O}: P e n t a n e ~ 1: 6\right): ~ \mathrm{R}_{\mathrm{f}}=0.21, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.43-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H)$, 7.22 - 7.12 (m, 3H, ArH), 6.88 (s, 2H, ArH), 6.53 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 3.19 - 3.03 (m, 2H, 2 X $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.56\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3\right.$), $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}, 2 \mathrm{X}$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,163.3,145.0,142.6,140.5,139.5,139.0$, $137.0,134.9,132.0,131.8,131.67,129.9,129.6,128.4,127.4,127.1,124.1,121.1,92.7,89.0$, 79.5, 66.4, 27.3, 23.5, 22.9, 21.0; IR v 3062 (w), 2966 (w), 2870 (w), 2237 (w), 1779 (m), 1619 (s), 1579 (w), 1465 (w), 1332 (s), 1281 (m), 1252 (m), 1166 (s), 1142 (s), 1094 (w), 1040 (w), $1000(\mathrm{~m}), 939(\mathrm{w}), 851(\mathrm{w})$; HRMS (ESI) calcd. for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{NNNaO} 5 \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 770.1408$; found 770.1421; Chiral HPLC conditions: $e e=80 \%$; Chiralpak IA 80:20 Hexane/iPrOH, 1.0 $\mathrm{mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=8.6 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=17.9 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+49.9(\mathrm{c}$ $\left.=0.5, \mathrm{CHCl}_{3}\right)$.

2,6-Di-tert-butyl-4-methylphenyl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-phenylbut-3-ynoate (14k)

Following GP3, N-[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) (53 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2,6-di-tert-butyl-4-methylphenyl 2-diazoacetate (11j) (58 mg , $0.20 \mathrm{mmol}, 2.0$ equiv) were stirred for 18 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 6$ as mobile phase to afford $\mathbf{1 4 k}$ as a white solid ($80 \mathrm{mg}, 0.10 \mathrm{mmol}$, quant.). $\mathrm{Mp}: 84.2-89.9{ }^{\circ} \mathrm{C}$; TLC ($\left.\mathrm{Et}_{2} \mathrm{O}: P e n t a n e ~ 1: 5\right): ~ \mathrm{R}_{\mathrm{f}}=0.31, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 1H, ArH), $7.46-7.30(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 7.19-7.13$ (m, 1H, ArH), 7.13-7.08 (m, 2H, ArH), 6.87 (s, $2 \mathrm{H}, \mathrm{Ar} H$), $6.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}), 2.57\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}_{3}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.28(\mathrm{~s}, 3 \mathrm{H}$, $\left.\left.\mathrm{ArCH}_{3}, \mathrm{Mts}\right), 1.31(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.27(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.1,164.3$, $145.6,142.5,142.1,141.8,139.6,139.1,137.2,135.3,135.0,132.0,131.7,131.6,129.7,129.4$, $128.4,127.4,127.3,127.0,121.3,92.5,89.9,79.6,67.0,53.4,35.3,35.2,31.6,31.3,22.9,21.5$, 21.0; IR v 3058 (w), 2964 (m), 2238 (w), 1778 (m), 1622 (s), 1580 (m), 1464 (m), 1421 (w), 1365 (w), 1331 (s), 1279 (m), 1254 (m), 1146 (s), 1102 (m), 1038 (w), 991 (m), 904 (w), 859
(w), 838 (w); HRMS (ESI) calcd. for $\mathrm{C}_{41} \mathrm{H}_{45} \mathrm{INO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 790.2058$; found 790.2063; Chiral HPLC conditions: $e e=74 \%$; Chiralpak IA 95:5 Hexane $/ \mathrm{iPrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}$ (minor) $=12.5 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=15.7 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+59.8\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) . \underline{t} \mathrm{Bu}$ groups of BHT and Me groups of Mts were not identical and gave separate signals.
(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (S)-2-((E)-(2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-phenylbut-3-ynoate (14I)

Following GP3, N-[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one (2d) (53 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and ($1 R, 2 S, 5 R$)-2-isopropyl-5-methylcyclohexyl 3-oxobutanoate ($\mathbf{1 1 k}$) ($45 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv) were stirred for 18 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 6$ as mobile phase to afford $\mathbf{1 4 1}$ as a white solid ($60.0 \mathrm{mg}, 0.083 \mathrm{mmol}, 83 \%$). Mp: 56.6-61.2 ${ }^{\circ} \mathrm{C}$; $\mathrm{TLC}\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ Pentane 1:6): $\mathrm{R}_{\mathrm{f}}=0.23, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), 7.45 - 7.28 (m, 7H, ArH), 7.17 (ddd, $J=8.0,6.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.88 (s , $2 \mathrm{H}, \mathrm{ArH}), 6.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}), 4.81\left(\mathrm{td}, J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 2.57(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X}$ ArCH_{3}), $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.08-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 2 \mathrm{H})$, $1.12-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.81(\mathrm{~m}, 7 \mathrm{H}), 0.75\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of menthol); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.2,164.2,142.4,139.5,139.0,137.5,134.9,132.0,131.7,131.6$, $129.6,129.3,128.3,127.4,121.3,92.6,88.3,80.0,67.1,47.0,40.2,34.1,31.4,26.2,23.5,22.9$, 21.9, 21.0, 20.7, 16.3; IR v 2957 (s), 2928 (m), 2870 (m), 2241 (w), 1751 (m), 1621 (s), 1581 (m), 1491 (w), 1461 (m), 1377 (w), 1332 (s), 1282 (s), 1255 (s), 1205 (m), 1164 (s), 1152 (s), $1053(\mathrm{~m}), 1018(\mathrm{~m}), 912(\mathrm{~m})$; HRMS (ESI) calcd. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{INNaO} 5 \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 748.1564$; found 748.1571; Chiral HPLC conditions: $d r=2.5: 97.5$; Chiralpak IA 95:5 Hexane $/ i \operatorname{PrOH}, 1.0$ $\mathrm{mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=21.0 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=23.8 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+2.0(\mathrm{c}$ $=0.5, \mathrm{CHCl}_{3}$).
(3S,8S,9S,10R,13R,14S)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl (2S)-2-((E)-(2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-phenylbut-3-ynoate (14m)

Following GP3, N-[mesitylsulfonyl]-1-[phenylethynyl]-1,2-benziodazol-3(1 H)-one (2d) (53 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and ($3 S, 8 S, 9 S, 10 R, 13 R, 14 S, 17 R)$-10,13-dimethyl-17-($(R)-6-$ methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro- $1 H$ -cyclopenta[a]phenanthren-3-yl 2-diazoacetate (111) ($91 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv) were stirred for 18 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 6.5$ as mobile phase to afford $\mathbf{1 4 m}$ as a white solid ($81.0 \mathrm{mg}, 0.085 \mathrm{mmol}, 85 \%$). Mp: $96.4-100.4^{\circ} \mathrm{C}$; TLC (Et ${ }_{2} \mathrm{O}:$ Pentane $1: 5$): $\mathrm{R}_{\mathrm{f}}=0.4, \mathrm{KMnO}_{4}$; ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85$ (d, J=8.0 Hz, 1H, ArH), 7.46 - 7.39 (m, 4H, ArH), 7.38 - 7.28 (m, 3H, ArH), 7.18 (ddd, J=9.2, 7.9, 4.2 Hz, 1H, ArH), 6.88 (s, 2H, ArH), 6.03 (s, 1H, OCHCC), 5.37 (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic H), 4.63 (dtd, $J=12.5,8.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}$), $2.57\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}_{3}\right), 2.39-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.89$ $-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.64-0.97(\mathrm{~m}, 24 \mathrm{H}), 0.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86$ $(\mathrm{d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1,164.2,142.4,139.5$, $139.0,137.5,135.0,132.1,131.7,131.6,129.5,129.3,128.3,127.4,123.2,121.3,92.7,88.4$, $79.7,76.8,67.2,56.7,56.1,50.0,42.3,39.7,39.5,37.5,36.9,36.5,36.2,35.8,31.9,31.8,28.2$, 28.0, 27.3, 24.3, 23.8, 22.9, 22.8, 22.6, 21.0, 19.3, 18.7, 11.9; IR v 2942 (s), 2868 (m), 2238 (w), 1759 (m), 1623 (s), 1580 (m), 1465 (m), 1333 (s), 1283 (s), 1255 (s), 1193 (m), 1147 (s), 1016 (m), 852 (w); HRMS (ESI) calcd. for $\mathrm{C}_{53} \mathrm{H}_{66} \mathrm{INNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 978.3599$; found 978.3599; Chiral HPLC conditions: $d r=7: 93$; Chiralpak IA 80:20 Hexane $/ i \operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$, $31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=10.5 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=14.8 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+5.7(\mathrm{c}=0.5$, $\left.\mathrm{CHCl}_{3}\right)$. One carbon was not resolved at 100 MHz .

2-Phenylpropan-2-yl (S,E)-4-(4-fluorophenyl)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)but-3-ynoate (14n)

Following GP3, N-[mesitylsulfonyl]-1-[(4-fluorophenyl)ethynyl]-1,2-benziodazol-3(1H)-one ($\mathbf{2 h}$) ($55 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate ($\mathbf{1 1 h}$) ($41 \mathrm{mg}, 0.20$ mmol, 2.0 equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 5$ as mobile phase to afford $\mathbf{1 4 n}$ as a white solid ($66.0 \mathrm{mg}, 0.091 \mathrm{mmol}, 91 \%$). $\mathrm{Mp}: 96.8-98.9^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane 1:4): $\mathrm{R}_{\mathrm{f}}=0.33, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81$ (dd, $J=8.0,0.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), $7.47-7.26(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar} H), 7.15$ (ddd, $J=8.0,7.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), $7.07-7.00$ (m, 2H, ArH), 6.88 (s, 2H, ArH), 6.06 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OCH}$), 2.55 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH})_{3}$), $2.28(\mathrm{~s}, 3 \mathrm{H}$, ArCH_{3}), $1.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right.$), $1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.2$, $163.1(\mathrm{~d}, J=251.5 \mathrm{~Hz}), 162.6,144.6,142.5,139.6,138.9,137.3,134.9,134.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.6\right.$ $\mathrm{Hz}), 131.7,131.6,129.6,128.4,127.4,127.4,124.3,117.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 115.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ 22.2 Hz), 92.6, 87.4, 85.1, 79.8, 67.3, 29.1, 27.4, 22.9, 21.0; IR v 3063 (w), 2982 (w), 2938 (w), 2240 (w), 1763 (m), 1622 (s), 1508 (m), 1464 (w), 1331 (s), 1284 (s), 1238 (s), 1145 (s), 1017 (m), 841 (m); HRMS (ESI) calcd. for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{FINNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 746.0844$; found 746.0839; Chiral HPLC conditions: $e e=92 \%$; Chiralpak IB 90:10 Hexane/iPrOH, $1.0 \mathrm{~mL} / \mathrm{min}$, $31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=10.6 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=16.5 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+32.5(\mathrm{c}=$ $\left.0.5, \mathrm{CHCl}_{3}\right)$.

2-Phenylpropan-2-yl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-(4-(trifluoromethyl)phenyl)but-3-ynoate (140)

Following GP3, N-[mesitylsulfonyl]-1-[(4-(trifluoromethyl)phenyl)ethynyl]-1,2-benziodazol$3(1 \mathrm{H})$-one ($\mathbf{2 i}$) ($60 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate ($\mathbf{1 1 h}$) ($41 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane

1:4 as mobile phase to afford $\mathbf{1 4 o}$ as a white solid ($58.0 \mathrm{mg}, 0.075 \mathrm{mmol}, 75 \%$). Mp: 65.7-71.9 ${ }^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane $\left.1: 4\right): \mathrm{R}_{\mathrm{f}}=0.23, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{dd}, J=$ $8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.42-$ 7.27 (m, 7H, $\operatorname{Ar} H$), 7.16 (ddd, $J=8.0,7.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 6.87$ (s, 2H, $\operatorname{ArH}), 6.09(\mathrm{~s}, 1 \mathrm{H}$, OCH), $2.55\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3\right.$), 2.27 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), 1.84 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}$), 1.78 ($\mathrm{s}, 3 \mathrm{H}$, OCCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0,162.3,144.4,142.6,139.6,139.0,137.3$, $134.9,132.2,131.8,131.6,131.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=33.3 \mathrm{~Hz}\right), 129.6,128.4,127.5,127.4,125.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=3.6 \mathrm{~Hz}$), 125.1, 124.3, 92.6, 86.8, 85.3, 82.4, 67.1, 29.0, 27.4, 22.9, 21.0; IR v 3061 (w), 2982 (w), 2938 (w), 1763 (m), 1620 (s), 1580 (w), 1464 (w), 1325 (s), 1282 (m), 1255 (m), 1167 (s), 1132 (s), 1069 (w), 1016 (m), 953 (w), 846 (m); HRMS (ESI) calcd. for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{INNaO} 5 \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 796.0812$; found 796.0818; Chiral HPLC conditions: $e e=85 \%$; Chiralpak IB 90:10 Hexane $/ \mathrm{iPrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=8.8 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=$ $16.1 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+27.6\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) . \mathrm{CF}_{3}$ carbon was not resolved at 100 MHz.

2-Phenylpropan-2-yl (S,E)-4-(4-ethynylphenyl)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)but-3-ynoate (14p)

Following GP3, N-[mesitylsulfonyl]-1-[(4-ethynylphenyl)ethynyl]-1,2-benziodazol-3(1H)one ($\mathbf{2 j}$) ($55 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate ($\mathbf{1 1 h}$) (41 mg , $0.20 \mathrm{mmol}, 2.0$ equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 4$ as mobile phase to afford $\mathbf{1 4 p}$ as a white solid ($44 \mathrm{mg}, 0.06 \mathrm{mmol}, 60 \%$). Mp : 68.5-71.8 ${ }^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane $1: 3): \mathrm{R}_{\mathrm{f}}=0.29, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.48-$ 7.26 (m, 11H, ArH), 7.15 (ddd, $J=8.0,6.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}, . \operatorname{ArH}$), 6.87 (s, 2H, ArH), 6.07 (s, 1H, OCH), 3.19 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CCH}$), $2.55\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}_{3}\right.$), $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right)$, $1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1,162.5,144.6,142.5,139.6,138.9$, 137.3, 134.9, 132.1, 131.9, 131.7, 131.6, 129.6, 128.4, 127.4, 127.4, 124.3, 123.1, 121.7, 92.6, 87.7, 85.2, 82.9, 81.9, 79.5, 67.3, 29.0, 27.4, 22.9, 21.0; IR v 3290 (w), 3058 (w), 3035 (w), 2927 (w), 2853 (w), 2241 (w), 1762 (m), 1622 (s), 1581 (m), 1500 (w), 1464 (m), 1445 (w), 1368 (w), 1331 (s), 1284 (s), 1257 (m), 1194 (m), 1164 (s), 1145 (s), 1105 (w), 1018 (m), 997
(m), 953 (w), 913 (m); HRMS (ESI) calcd. for $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{INNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 752.0938$; found 752.0950; Chiral HPLC conditions: $e e=93 \%$; Chiralpak IA 90: 10 Hexane $/ i \mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$, $31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=18.4 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=21.2 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+50.9(\mathrm{c}=$ $\left.0.5, \mathrm{CHCl}_{3}\right)$.
2-Phenylpropan-2-yl (S,E)-4-(3-fluorophenyl)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)but-3-ynoate (14q)

Following GP3, N-[mesitylsulfonyl]-1-[(3-fluorophenyl)ethynyl]-1,2-benziodazol-3(1H)-one ($\mathbf{2 k}$) ($55 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate ($\mathbf{1 1 h}$) ($41 \mathrm{mg}, 0.20$ mmol, 2.0 equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 5$ as mobile phase to afford $\mathbf{1 4 q}$ as a white solid ($60.0 \mathrm{mg}, 0.083 \mathrm{mmol}, 83 \%$). $\mathrm{Mp}: 63.8-66.1^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane 1:4): $\mathrm{R}_{\mathrm{f}}=0.34, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{dd}, J=8.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.43-7.27$ (m, 8H, ArH), 7.22 (dt, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.18-7.06$ (m, $3 \mathrm{H}, \mathrm{ArH}), 6.88(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 6.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}), 2.55\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}_{3}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, $1.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1,162.4$, $162.2(\mathrm{~d}, J=247.3 \mathrm{~Hz}), 144.5,142.6,139.6,138.9,137.3,134.9,131.7,131.6,130.0(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}), 129.6,128.4,127.9(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 127.5,127.4,124.3,123.1(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 118.8$ $(\mathrm{d}, J=23.1 \mathrm{~Hz}), 116.8(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 92.6,87.0(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 85.2,80.9,67.2,29.0,27.4$, 22.9, 21.0; IR v 3064 (w), 2934 (w), 2851 (w), 2242 (w), 1763 (m), 1624 (s), 1469 (w), 1435 (m), 1332 (s), 1289 (s), 1250 (s), 1148 (s), 1001 (w), 945 (w), 873 (w); HRMS (ESI) calcd. for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{FINNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 746.0844$; found 746.0857; Chiral HPLC conditions: $e e=92 \%$; Chiralpak IB 90:10 Hexane/iPrOH, $1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}$ (minor) $=10.6 \mathrm{~min}$. and t_{r} (major) $=15.9 \mathrm{~min} . \lambda=230 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+29.6\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.
2-Phenylpropan-2-yl (S,E)-4-(3-cyanophenyl)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)but-3-ynoate (14r)

Following GP3, N-[mesitylsulfonyl]-1-[(3-cyanophenyl)ethynyl]-1,2-benziodazol-3(1 H)-one (21) ($55.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate ($\mathbf{1 1 h}$) (41 mg , $0.20 \mathrm{mmol}, 2.0$ equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 2$ as mobile phase to afford 14 r as a white solid ($59.0 \mathrm{mg}, 0.081 \mathrm{mmol}, 81 \%$). Mp: 83.9-85.6 ${ }^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane 1:2): $\mathrm{R}_{\mathrm{f}}=0.18, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85$ (dd, $J=8.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.72-7.64(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.49(\mathrm{td}, J=7.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.45-7.29$ (m, $7 \mathrm{H}, \mathrm{ArH}$), 7.19 (ddd, $J=8.0,7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.93-6.87$ (m, 2H, ArH), 6.09 (s, 1H, OCH), 2.57 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}_{3}$), 2.31 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), 1.86 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}$), 1.81 ($\mathrm{s}, 3 \mathrm{H}$, OCCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0,162.2,144.4,142.7,139.6,139.0,137.2$, $136.0,135.2,134.8,132.5,131.8,131.6,129.6,129.4,128.4,127.6,127.5,124.3,123.0,117.7$, 113.1, 92.5, 85.7, 85.4, 82.6, 67.0, 28.9, 27.5, 22.9, 21.0; IR v 2984 (m), 2904 (m), 2233 (w), 1763 (m), 1625 (s), 1580 (w), 1464 (w), 1408 (w), 1385 (w), 1332 (s), 1279 (m), 1253 (s), 1165 (s), 1147 (s), 1061 (s), 907 (w); HRMS (ESI) calcd. for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{IN}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 753.0891$; found 753.0892; Chiral HPLC conditions: $e e=87 \%$; Chiralpak IA 80:20 Hexane $/ i \operatorname{PrOH}, 1.0$ $\mathrm{mL} / \mathrm{min}, 40 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=22.9 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=29.2 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+31.8$ ($\mathrm{c}=0.5, \mathrm{CHCl}_{3}$).
2-Phenylpropan-2-yl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-(triisopropylsilyl)but-3-ynoate (14s)

Following GP3, N-[mesitylsulfonyl]-1-[(triisopropylsilyl)ethynyl]-1,2-benziodazol-3(1H)one ($\mathbf{2 c}$) ($61 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate ($\mathbf{1 1 h}$) (41 mg , $0.20 \mathrm{mmol}, 2.0$ equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 7$ as mobile phase to afford 14 s as a white solid ($56.0 \mathrm{mg}, 0.071 \mathrm{mmol}, 71 \%$). Mp: $116.4-121.6{ }^{\circ} \mathrm{C}$; TLC ($\left.\mathrm{Et}_{2} \mathrm{O}: P e n t a n e ~ 1: 5\right): ~ \mathrm{R}_{\mathrm{f}}=0.25, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{dd}, J=8.0,1.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), $7.40-7.26(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar} H), 7.13$ (ddd, $J=8.0,7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.88$ (s, $2 \mathrm{H}, \mathrm{ArH}$), $6.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}), 2.52\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3\right.$), 2.28 (s, 3H, ArCH_{3}), $1.81(\mathrm{~s}, 3 \mathrm{H}$, OCCH_{3}), $1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.08(\mathrm{~s}, 21 \mathrm{H}, \mathrm{TIPS}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.4$, $162.5,144.7,142.4,139.5,138.9,137.4,135.1,131.6,131.6,129.6,128.4,127.3,124.1,97.0$, 92.6, 91.1, 84.9, 66.8, 28.9, 27.6, 22.9, 21.0, 18.6, 11.1; IR v 2943 (m), 2866 (m), 1764 (m),

1620 (s), 1580 (w), 1464 (m), 1385 (w), 1332 (s), 1274 (s), 1252 (s), 1194 (m), 1144 (s), 1104 (w), 1059 (m), 1016 (m), 930 (w), 885 (w), 809 (w); HRMS (ESI) calcd. for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{INNaO}_{5} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$808.1959; found 808.1924; Chiral HPLC conditions: $e e=90 \%$; Chiralpak IA 95:5 Hexane $/ i \mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=9.9 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=$ $16.4 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+34.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. One carbon was not resolved at 100 MHz.

2-Phenylpropan-2-yl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-4-(triethylsilyl)but-3-ynoate (14t)

$14 t$
Following GP3, N-[mesitylsulfonyl]-1-[(triethylsilyl)ethynyl]-1,2-benziodazol-3(1 H)-one ($\mathbf{2 m}$) ($57 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate (11h) (41 mg , $0.20 \mathrm{mmol}, 2.0$ equiv) were stirred for 18 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 6.5$ as mobile phase to afford $\mathbf{1 4 t}$ as a white solid ($52 \mathrm{mg}, 0.07 \mathrm{mmol}, 70 \%$). Mp: $123.0-126.6^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane 1:6.5): $\mathrm{R}_{\mathrm{f}}=0.17, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82-7.79(\mathrm{~m}, 1 \mathrm{H}$, ArH), $7.42-7.26(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar} H), 7.13(\mathrm{ddd}, J=8.0,7.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.88(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H)$, 5.95 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OCH}$), 2.53 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}_{3}$), 2.28 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), 1.80 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}$), 1.74 (s, $3 \mathrm{H}, \mathrm{OCCH}_{3}$), $0.99\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{XCH}_{2} \mathrm{CH}_{3}\right.$), $0.63\left(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{XCH}_{3} \mathrm{CH}_{2}\right.$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,162.5,144.7,142.5,139.5,138.9,137.4,135.0,131.6$, 131.6, 129.6, 128.3, 127.3, 124.1, 96.3, 92.6, 92.2, 84.9, 67.0, 29.0, 27.5, 22.9, 21.0, 7.4, 4.0; IR v 3061 (w), 2955 (w), 2876 (w), 1766 (m), 1623 (s), 1581 (w), 1465 (w), 1334 (s), 1276 (m), 1253 (m), 1194 (w), 1166 (m), 1145 (s), 1105 (w), 1059 (w), 1017 (m); HRMS (ESI) calcd. for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{INNaO}_{5} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 766.1490$; found 766.1496; Chiral HPLC conditions: $e e=92 \%$; Chiralpak IA 95:5 Hexane $/ \mathrm{iPrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=10.8 \mathrm{~min}$. and t_{r} (major) $=15.8 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+24.7\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. One carbon was not resolved at 100 MHz .

2-Phenylpropan-2-yl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)oct-3ynoate (14u)

Following GP3, N-[mesitylsulfonyl]-1-[(butyl)ethynyl]-1,2-benziodazol-3(1H)-one (2n) (51 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate (11h) ($41 \mathrm{mg}, 0.20 \mathrm{mmol}$, 2.0 equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 4$ as mobile phase to afford $\mathbf{1 4 u}$ as a thick colourless gel ($48 \mathrm{mg}, 0.07 \mathrm{mmol}, 70 \%$). TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane $\left.1: 4\right): \mathrm{R}_{\mathrm{f}}=$ $0.37, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.41-7.27(\mathrm{~m}, 7 \mathrm{H}$, $\mathrm{Ar} H), 7.13$ (ddd, $J=7.9,7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.87(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 5.84(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}), 2.53\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}_{3}\right), 2.29-2.22\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArCH}_{3}\right.$ and $\left.\mathrm{CCCH}_{2}\right), 1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right)$, $1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.56-1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right), 1.47-1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.90(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,163.1,144.8,142.4,139.5$, $138.9,137.5,135.0,131.6,129.6,128.3,127.3,127.3,124.2,92.6,90.1,84.7,71.2,67.4,30.1$, 28.9, 27.4, 22.9, 21.9, 21.0, 18.5, 13.5; IR v 3061 (w), 2936 (w), 2869 (w), 2241 (w), 1764 (m), 1622 (s), 1580 (w), 1464 (w), 1333 (s), 1278 (s), 1255 (m), 1203 (m), 1150 (s), 1105 (w), 1016 (w), 854 (w); HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{INNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 708.1251$; found 708.1235; Chiral HPLC conditions: $e e=93 \%$; Chiralpak IA 90:10 Hexane $/ \mathrm{iPrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min}$. $\mathrm{t}_{\mathrm{r}}($ minor $)=11.3 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=13.9 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=-5.1\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. One carbon was not resolved at 100 MHz .

2-Phenylpropan-2-yl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)octadec-3ynoate (14v)

Following GP3, N-[mesitylsulfonyl]-1-[(dodecyl)ethynyl]-1,2-benziodazol-3(1H)-one (20) ($63 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate ($\mathbf{1 1 h}$) ($41 \mathrm{mg}, 0.20$ mmol, 2.0 equiv) were stirred for 18 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 5$ as mobile phase to afford 14v as a colourless thick gel ($60.0 \mathrm{mg}, 0.075 \mathrm{mmol}, 75 \%$). TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane 1:5):
$\mathrm{R}_{\mathrm{f}}=0.3, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.40-7.27$ (m, 7H, ArH), $7.13(\mathrm{td}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.88(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 5.84(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}), 2.54\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}_{3}\right), 2.29-2.22\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArCH}_{3}\right.$ and $\left.\mathrm{CCCH}_{2}\right), 1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right)$, $1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.56-1.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.42-1.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31-$ $1.21(\mathrm{~m}, 16 \mathrm{H}), 0.88\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3$, 163.1, $144.8,142.4,139.5,138.8,137.5,135.0,131.5,130.1,129.6,128.3,127.3,127.3,124.2,92.6$, 90.2, 84.7, 71.1, 67.4, 31.9, 29.6, 29.6, 29.5, 29.3, 29.1, 28.9, 28.9, 28.3, 28.1, 27.4, 22.9, 22.7, 21.0, 18.8, 14.1; IR v 2927 (m), 2854 (w), 2244 (w), 1764 (m), 1622 (s), 1580 (w), 1464 (m), 1334 (s), 1278 (s), 1255 (m), 1204 (m), 1150 (s), 1000 (w), 951 (w); HRMS (ESI) calcd. for $\mathrm{C}_{41} \mathrm{H}_{52} \mathrm{INNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 820.2503$; found 820.2510; Chiral HPLC conditions: ee $=93 \%$; Chiralpak IA 95:5 Hexane $/ i \operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=12.3 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=$ $15.7 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=-1.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.

2-Phenylpropan-2-yl (S,E)-7-chloro-2-((2-
iodophenyl)((mesitylsulfonyl)imino)methoxy)hept-3-ynoate (14w)

Following GP3, N-[mesitylsulfonyl]-1-[(3-chloropropyl)ethynyl]-1,2-benziodazol-3(1 H)-one ($\mathbf{2 p}$) ($53 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate ($\mathbf{1 1 h}$) ($41 \mathrm{mg}, 0.20$ mmol, 2.0 equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 4$ as mobile phase to afford 14 w as a white solid ($37.0 \mathrm{mg}, 0.052 \mathrm{mmol}, 52 \%$). Mp: $42.8-47.3^{\circ} \mathrm{C}$; TLC ($\left.\mathrm{Et}_{2} \mathrm{O}: P e n t a n e ~ 1: 4\right): ~ \mathrm{R}_{\mathrm{f}}=0.37, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{dd}, J=8.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.40-7.26(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 7.14(\mathrm{td}, J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.88(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H)$, $5.85(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 3.62\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 2.54(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3)$, $2.47\left(\mathrm{td}, J=6.8,2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CCCH}_{2}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.97(\mathrm{p}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $168.2,162.9,144.6,142.5,139.5,138.9,137.4,135.0,131.6,131.6,129.6,128.3,127.4,127.4$, 124.2, 92.6, 87.9, 84.9, 72.3, 67.1, 43.4, 30.7, 28.8, 27.4, 22.9, 21.0, 16.2; IR v 3060 (w), 2981 (w), 2939 (w), 2245 (w), 1761 (m), 1619 (s), 1580 (m), 1460 (m), 1329 (s), 1276 (s), 1254 (s), 1203 (m), 1140 (s), 1104 (m), 1000 (m), 853 (w); HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{ClINNaO} 5 \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 728.0705$; found 728.0698; Chiral HPLC conditions: $e e=90 \%$;

Chiralpak IA 90:10 Hexane $/ i \operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}$ (minor) $=17.9 \mathrm{~min}$. and t_{r} (major) $=23.2 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=-1.9\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.

2-Phenylpropan-2-yl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)nona-3,8diynoate (14x)

$14 x$
Following GP3, N-[mesitylsulfonyl]-1-[hepta-1,6-diynyl]-1,2-benziodazol-3(1H)-one (2q) ($52 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate ($\mathbf{1 1 h}$) $(41 \mathrm{mg}, 0.20$ mmol, 2.0 equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 3$ as mobile phase to afford $\mathbf{1 4 x}$ as a white semi-solid ($45.0 \mathrm{mg}, 0.065 \mathrm{mmol}, 65 \%$). TLC ($\left.\mathrm{Et}_{2} \mathrm{O}: P e n t a n e ~ 1: 3\right): \mathrm{R}_{\mathrm{f}}$ $=0.18, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.41-$ 7.27 (m, 7H, ArH), 7.13 (td, $J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.88(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 5.84(\mathrm{t}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}), 2.53\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3\right.$), $2.41\left(\mathrm{td}, J=7.0,2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCHCCCH}_{2}\right), 2.33-2.26$ $\left(\mathrm{m}, 5 \mathrm{H}, \mathrm{CHCCH}_{2}\right.$ and $\left.\mathrm{ArCH}_{3}\right), 1.97(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}), 1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.78-$ $1.71\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCCH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,163.0,144.7$, $142.5,139.5,138.9,137.5,135.0,131.6,129.6,128.4,127.4,124.3,92.6,88.7,84.8,83.1$, 72.0, 69.2, 67.2, 28.9, 27.5, 27.0, 22.9, 21.0, 17.8, 17.6; IR v 3300 (w), 2982 (w), 2939 (w), 2244 (w), 1761 (m), 1619 (s), 1463 (w), 1329 (s), 1274 (s), 1203 (m), 1144 (s), 1104 (m), 999 (m), 854 (w); HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{INO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 696.1275$; found 696.1276; Chiral HPLC conditions: $e e=90 \%$; Chiralpak IA 90:10 Hexane $/ \mathrm{iPrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min}$. $\mathrm{t}_{\mathrm{r}}($ minor $)=16.8 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=20.4 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=-3.6\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. Two carbons were not resolved at 100 MHz .

2-Phenylpropan-2-yl (S,E)-4-cyclopropyl-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)but-3-ynoate (14y)

Following GP3, N-[mesitylsulfonyl]-1-[(cyclopropyl)ethynyl]-1,2-benziodazol-3(1H)-one ($\mathbf{2 r}$) ($49.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate ($\mathbf{1 1 h}$) (41 mg , $0.20 \mathrm{mmol}, 2.0$ equiv) were stirred for 20 h . The crude reaction mixture was concentrated under
reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 3$ as mobile phase to afford $\mathbf{1 4 y}$ as a white solid ($59.0 \mathrm{mg}, 0.088 \mathrm{mmol}, 88 \%$). $\mathrm{Mp}: 51.4-56.8^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane 1:3): $\mathrm{R}_{\mathrm{f}}=0.22, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80$ (dd, $J=7.9,1.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.40-7.27$ (m, 7H, ArH), 7.13 (ddd, $J=8.0,7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.88 (s , $2 \mathrm{H}, \mathrm{ArH}), 5.79(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 2.53(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.78$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}$), $1.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.34-1.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCH}\left(\mathrm{CH}_{2}\right)_{2}\right), 0.86-0.78(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $0.78-0.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,163.0,144.8,142.4$, $139.5,138.8,137.5,135.0,131.6,129.5,128.3,127.3,124.2,93.2,92.6,84.6,67.5,66.3,53.4$, 29.1, 27.4, 22.9, 21.0, 8.4, 8.4, -0.5; IR v 2981 (w), 2936 (w), 2245 (w), 1762 (m), 1620 (s), 1580 (w), 1465 (w), 1330 (s), 1277 (s), 1255 (m), 1191 (w), 1145 (s), 1000 (w), 891 (w), 817 (w); HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{INNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$692.0938; found 692.0944; Chiral HPLC conditions: $e e=94 \%$; Chiralpak IA 90:10 Hexane $/ \mathrm{iPrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}$ $($ minor $)=14.5 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=17.6 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+2.9\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. One carbon was not resolved at 100 MHz .

2-Phenylpropan-2-yl (S,E)-4-cyclopentyl-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)but-3-ynoate (14z)

Following GP3, N-[mesitylsulfonyl]-1-[(cyclopentyl)ethynyl]-1,2-benziodazol-3(1 H)-one (2s) ($52 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate ($\mathbf{1 1 h}$) ($41 \mathrm{mg}, 0.20$ mmol, 2.0 equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 4$ as mobile phase to afford $\mathbf{1 4 z}$ as a white solid ($49 \mathrm{mg}, 0.07 \mathrm{mmol}, 70 \%$). Mp: 54.4-57.8 ${ }^{\circ} \mathrm{C}$; TLC ($\mathrm{Et}_{2} \mathrm{O}$:Pentane 1:4): $\mathrm{R}_{\mathrm{f}}=0.21, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H)$, $7.41-7.26(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 7.13$ (ddd, $J=8.0,7.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.88(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 5.85$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H), 2.68(\mathrm{pd}, J=7.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCCH}), 2.54(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH}$) , 2.28 (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $1.97-1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.70-$ $1.51\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{X} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,163.1,144.8,142.4,139.5$, $138.9,137.6,135.1,131.6,129.6,128.3,127.3,127.3,124.2,94.2,92.6,84.5,70.7,67.4,33.4$, 33.3, 30.1, 29.1, 27.4, 25.0, 22.9, 21.0; IR v 3061 (w), 2958 (w), 2870 (w), 2243 (w), 1764 (m), 1622 (s), 1580 (w), 1464 (w), 1333 (s), 1280 (m), 1255 (m), 1201 (w), 1148 (s), 1001 (w), 954
(w), 837 (w); HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{INNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 720.1251$; found 720.1256; Chiral HPLC conditions: $e e=92 \%$; Chiralpak IA 90:10 Hexane $/ i \mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min}$. $\mathrm{t}_{\mathrm{r}}($ minor $)=11.8 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=14.6 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+1.6\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. 2-Phenylpropan-2-yl (S,E)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)-5,5-dimethylhex-3-ynoate (14aa)

Following GP3, N-[mesitylsulfonyl]-1-[$(t$-butyl)ethynyl]-1,2-benziodazol-3(1H)-one (2t) (51 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate (11h) ($41 \mathrm{mg}, 0.20 \mathrm{mmol}$, 2.0 equiv) were stirred for 20 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 4$ as mobile phase to afford 14aa as a colourless thick gel ($43.0 \mathrm{mg}, 0.063 \mathrm{mmol}, 63 \%$). TLC ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane 1:4): R_{f} $=0.22, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.43-$ 7.26 (m, 7H, ArH), 7.13 (ddd, $J=8.0,7.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), 6.88 (s, 2H, ArH), 5.86 (s, 1H, OCH), 2.54 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3$), 2.28 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), 1.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}$), 1.72 ($\mathrm{s}, 3 \mathrm{H}$, OCCH_{3}), $1.24(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,163.1,144.8,142.4,139.5$, $138.9,137.6,135.1,131.6,129.6,128.3,127.3,127.3,124.1,97.6,92.6,84.5,69.9,67.2,53.4$, 30.5, 29.1, 27.6, 27.4, 22.9, 21.0; IR v 3061 (w), 2975 (w), 2250 (w), 1765 (m), 1621 (s), 1581 (w), 1463 (w), 1333 (s), 1280 (s), 1256 (m), 1203 (w), 1146 (s), 1015 (w), 862 (w); HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{INNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 708.1251$; found 708.1257; Chiral HPLC conditions: $e e=86 \%$; Chiralpak IA 90:10 Hexane $/ \mathrm{iPrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=9.5$ \min. and $\mathrm{t}_{\mathrm{r}}($ major $)=12.7 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+4.5\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.

2-Phenylpropan-2-yl(S,E)-2-((2-iodo-5-methylphenyl)((mesitylsulfonyl)imino)methoxy)-4-phenylbut-3-ynoate (14ab)

Following GP3, N-(mesitylsulfonyl)-5-methyl-1-[phenylethynyl]-1,2-benziodazol-3(1H)-one ($\mathbf{2 u}$) $(54.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate ($\mathbf{1 1 h}$) (41 mg , $0.20 \mathrm{mmol}, 2.0$ equiv) were stirred for 18 h . The crude reaction mixture was concentrated under
reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 5$ as mobile phase to afford 14ab as a white solid ($62.0 \mathrm{mg}, 0.086 \mathrm{mmol}, 86 \%$). Mp: $61.2-66.8^{\circ} \mathrm{C}$; TLC ($\left.\mathrm{Et}_{2} \mathrm{O}: P e n t a n e ~ 1: 5\right): ~ \mathrm{R}_{\mathrm{f}}=0.25, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.48-7.26(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 6.98(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.95-6.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H)$, $6.86(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 6.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}), 2.52\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3\right.$), 2.27 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), 2.22 (s , $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $1.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $168.4,162.7,144.7,142.4,139.6,138.7,137.6,137.0,135.0,132.6,132.0,131.5,130.0,129.3$, 128.4, 127.4, 124.3, 121.4, 88.6, 88.3, 85.0, 80.0, 67.3, 29.2, 27.4, 22.9, 21.0, 20.9; IR v 3058 (w), 2981 (w), 2940 (w), 2235 (w), 1762 (m), 1620 (s), 1566 (w), 1493 (w), 1464 (m), 1448 (m), 1387 (w), 1330 (s), 1288 (s), 1253 (s$), 1206$ (s$), 1162$ (s$), 1136$ (s$), 1104$ (m), 1016 (m), $1000(\mathrm{~m}), 964(\mathrm{w}), 849(\mathrm{~m}), 817(\mathrm{~m})$; HRMS (ESI) calcd. for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{INO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 720.1275$; found 720.1281; Chiral HPLC conditions: $e e=93 \%$; Chiralpak IB 95:5 Hexane/iPrOH, 1.0 $\mathrm{mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=11.7 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}($ major $)=16.5 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+34.6$ ($\mathrm{c}=0.5, \mathrm{CHCl}_{3}$). One carbon was not resolved at 100 MHz .

2-Phenylpropan-2-yl (S,E)-2-((2-iodo-4,5-dimethoxyphenyl) ((mesitylsulfonyl)imino)methoxy)-4-phenylbut-3-ynoate (14ac)

Following GP3, N-(mesitylsulfonyl)-5,6-dimethoxy-1-[phenylethynyl]-1,2-benziodazol$3(1 \mathrm{H})$-one ($\mathbf{2 v}$) ($59 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and 2-phenylpropan-2-yl 2-diazoacetate ($\mathbf{1 1 h}$) ($41 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv) were stirred for 18 h . The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography using $\mathrm{Et}_{2} \mathrm{O}$:pentane $1: 1$ as mobile phase to afford 14 ac as a whitesolid ($65.0 \mathrm{mg}, 0.085 \mathrm{mmol}, 85 \%$). Mp: $73.5-$ $76.3{ }^{\circ} \mathrm{C}$; $\mathrm{TLC}\left(\mathrm{Et}_{2} \mathrm{O}: P e n t a n e ~ 1: 1\right): \mathrm{R}_{\mathrm{f}}=0.3, \mathrm{KMnO}_{4} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-$ 7.44 (m, 2H, ArH), 7.43 - 7.40 (m, 5H, ArH), 7.39 - 7.35 (m, 2H, ArH), $7.29-7.27$ (m, 1H, $\operatorname{ArH}), 7.18(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar} H), 6.88(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar} H), 6.80(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar} H), 6.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CCH}), 3.87(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.56\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X} \mathrm{ArCH} 3\right.$), 2.27 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), 1.83 ($\mathrm{s}, 3 \mathrm{H}$, OCCH_{3}), $1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.2,162.7,150.9,148.5$, 144.7, 142.4, 139.5, 135.2, 132.0, 131.6, 129.4, 129.3, 128.4, 127.4, 124.2, 121.4, 121.2, 112.8, 88.3, 85.0, 81.8, 80.1, 67.4, 56.2, 56.0, 29.2, 27.4, 22.9, 21.0; IR v 2976 (w), 2938 (w), 2237 (w), 1764 (m), 1619 (s), 1566 (w), 1508 (m), 1464 (w), 1445 (m), 1380 (m), 1334 (s), 1268 (s),

1213 (s), 1183 (m), 1163 (m), 1142 (m), 1102 (w), 1079 (w), 1022 (m), 976 (w), 944 (w); HRMS (ESI) calcd. for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{INNaO}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 788.1149$; found 788.1142; Chiral HPLC conditions: $e e=94 \%$; Chiralpak IB 90:10 Hexane $/ i \mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \mathrm{t}_{\mathrm{r}}($ minor $)=$ 19.2 min . and t_{r} (major) $=21.7 \mathrm{~min} . \lambda=254 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25.0}=+29.8\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. One carbon was not resolved at 100 MHz .

8. Crystal Data

N-[Tolylsulfonyl]-1-[triisopropylsilylethynyl]-1,2-benziodazol-3(1H)-one (2a)

Table S1. Crystal data and structure refinement for 2a.

Identification code	1s01-022
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{INO}_{3} \mathrm{SSi}$
Formula weight	581.56
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$P 21 / c$
Unit cell dimensions	$\mathrm{a}=16.4417(18) \AA$ A $\quad \square=90^{\circ}$.
	$\mathrm{b}=7.7306(5) \AA$ 成 $\quad \square=94.776(8)^{\circ}$.
	$\mathrm{c}=20.8819(15) \AA$ ¢ $\quad \square=90^{\circ}$.
Volume	2645.0(4) \AA^{3}
Z	4
Density (calculated)	$1.460 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.361 \mathrm{~mm}^{-1}$
F(000)	1184
Crystal size	$0.412 \times 0.341 \times 0.236 \mathrm{~mm}^{3}$
\square range for data collection	1.243 to 27.499°.
Index ranges	$-21 \leq \mathrm{h} \leq 21,-10 \leq \mathrm{k} \leq 10,-27 \leq 1 \leq 24$
Reflections collected	32240
Independent reflections	$6050\left[R_{\text {int }}=0.0740\right]$
Completeness to $\square=25.242^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.3507
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6050 / 577 / 393
Goodness-of-fit on F^{2}	1.101
Final R indices $[\mathrm{I}>2 \square(\mathrm{I})$]	$R_{1}=0.0848, w R_{2}=0.2155$
R indices (all data)	$R_{1}=0.1081, w R_{2}=0.2482$
Largest diff. peak and hole	4.365 and -2.428 e. \AA^{-3}

Table S2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{X}\right.$ 10^{3}) for $\mathbf{2 a}$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	Z	U(eq)
I(1)	772(1)	-566(1)	6527(1)	31(1)
S(1)	-991(1)	-1693(2)	7250(1)	34(1)
Si(1)	3257(7)	2524(14)	5810(5)	57(2)
Si(2)	3408(7)	2513(16)	6022(5)	67(2)
$\mathrm{O}(1)$	-1603(4)	-3051(8)	5943(3)	55(2)
$\mathrm{O}(2)$	-1438(4)	-3211(8)	7414(3)	50(1)
$\mathrm{O}(3)$	-379(3)	-1052(8)	7724(2)	40(1)
$\mathrm{N}(1)$	-511(4)	-1953(7)	6613(3)	34(1)
C(1)	443(5)	-1704(9)	5610(3)	38(1)
C(2)	970(7)	-1635(11)	5134(4)	51(2)
C(3)	703(8)	-2395(11)	4533(4)	60(2)
C(4)	-53(8)	-3099(11)	4425(4)	62(2)
C(5)	-577(7)	-3133(9)	4906(4)	49(2)
C(6)	-327(6)	-2435(9)	5519(3)	41(2)
C(7)	-909(5)	-2530(8)	6036(4)	38(2)
C(8)	-1712(5)	-15(11)	7059(4)	37(2)
C(9)	-1433(5)	1647(10)	7046(4)	37(2)
C(10)	-1984(6)	2985(11)	6868(4)	50(2)
C(11)	-2803(7)	2626(13)	6698(5)	64(2)
C(12)	-3054(8)	947(17)	6728(8)	95(5)
C(13)	-2517(6)	-420(12)	6901(6)	63(3)
C(14)	-3374(10)	4046(19)	6495(8)	101(5)
C(15)	1818(5)	496(11)	6214(4)	44(2)
C(16)	2427(6)	1262(12)	6102(5)	53(2)
C(17)	2936(15)	4900(30)	5775(11)	78(3)
C(18)	2316(19)	5310(40)	6216(15)	79(5)
C(19)	2770(20)	5630(40)	5136(12)	106(7)
C(20)	4131(12)	2260(40)	6473(10)	81(3)
C(21)	3850(18)	2690(50)	7106(13)	101(5)
C(22)	4859(17)	3270(50)	6349(16)	115(7)
C(23)	3460(14)	1580(30)	4993(11)	66(3)

$\mathrm{C}(24)$	$3479(16)$	$-360(20)$	$5028(14)$	$73(5)$
$\mathrm{C}(25)$	$4195(14)$	$2220(30)$	$4717(15)$	$76(5)$
$\mathrm{C}(26)$	$3259(12)$	$4650(20)$	$6424(13)$	$81(3)$
$\mathrm{C}(27)$	$2495(12)$	$5610(30)$	$6186(18)$	$77(5)$
$\mathrm{C}(28)$	$3978(13)$	$5870(40)$	$6450(20)$	$117(8)$
$\mathrm{C}(29)$	$4301(13)$	$1370(30)$	$6484(10)$	$85(3)$
$\mathrm{C}(30)$	$4280(18)$	$1500(40)$	$7198(10)$	$99(5)$
$\mathrm{C}(31)$	$4390(18)$	$-460(30)$	$6297(13)$	$102(6)$
$\mathrm{C}(32)$	$3558(11)$	$2630(30)$	$5137(8)$	$71(3)$
$\mathrm{C}(33)$	$3310(16)$	$1010(30)$	$4798(14)$	$85(5)$
$\mathrm{C}(34)$	$4398(13)$	$3140(40)$	$4986(14)$	$89(5)$

Table S3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 2a.

$\mathrm{I}(1)-\mathrm{C}(15)$	2.060(9)
$\mathrm{I}(1)-\mathrm{C}(1)$	2.135(7)
$\mathrm{I}(1)-\mathrm{N}(1)$	2.387(6)
$\mathrm{S}(1)-\mathrm{O}(2)$	1.441(6)
$\mathrm{S}(1)-\mathrm{O}(3)$	1.441(5)
$\mathrm{S}(1) \mathrm{N}(1)$	1.614(7)
S(1)-C(8)	1.779(8)
$\mathrm{Si}(1)-\mathrm{C}(16)$	1.823(15)
$\mathrm{Si}(1)-\mathrm{C}(23)$	1.911(18)
$\mathrm{Si}(1)-\mathrm{C}(17)$	1.914(17)
$\mathrm{Si}(1)-\mathrm{C}(20)$	1.921(17)
$\mathrm{Si}(2)-\mathrm{C}(26)$	1.877(18)
$\mathrm{Si}(2)-\mathrm{C}(32)$	1.886(16)
$\mathrm{Si}(2)-\mathrm{C}(16)$	1.901(16)
$\mathrm{Si}(2)-\mathrm{C}(29)$	1.906(17)
$\mathrm{O}(1)-\mathrm{C}(7)$	1.210(10)
$\mathrm{N}(1)-\mathrm{C}(7)$	1.396 (9)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.372(11)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.386(13)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.422(13)
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	1.359(16)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	1.378(14)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500
$\mathrm{C}(5)-\mathrm{C}(6)$	1.418(10)
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(7)$	1.502(12)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.365(11)
$\mathrm{C}(8)-\mathrm{C}(13)$	1.375(12)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.405(12)
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500
$\mathrm{C}(10)-\mathrm{C}(11)$	1.391(15)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500
$\mathrm{C}(11)-\mathrm{C}(12)$	1.365(17)
$\mathrm{C}(11)-\mathrm{C}(14)$	1.483(15)

$\mathrm{C}(12)-\mathrm{C}(13)$	$1.404(14)$
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.203(13)$
$\mathrm{C}(17)-\mathrm{C}(19)$	$1.451(17)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.463(16)$
$\mathrm{C}(17)-\mathrm{H}(17)$	1.0000
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9800
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{C}(20)-\mathrm{C}(22)$	$1.469(18)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.473(18)$
$\mathrm{C}(20)-\mathrm{H}(20)$	1.0000
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800
$\mathrm{C}(23)-\mathrm{C}(25)$	1.9800
$\mathrm{C}(23)-\mathrm{C}(24)$	$0.969(17)$
$\mathrm{C}(23)-\mathrm{H}(23)$	$1.498(17)$
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	1.0000
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9800
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	0.9800
$\mathrm{C}(26)-\mathrm{C}(27)$	C
$\mathrm{C}(26)-\mathrm{C}(28)$	$\mathrm{C}(26)-\mathrm{H}(26)$
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	

$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	0.9800
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	0.9800
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	0.9800
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	0.9800
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	0.9800
$\mathrm{C}(29)$ - $\mathrm{C}(31)$	1.479 (16)
$\mathrm{C}(29)$ - $\mathrm{C}(30)$	$1.498(16)$
$\mathrm{C}(29)$ - $\mathrm{H}(29)$	1.0000
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	0.9800
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	0.9800
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	0.9800
$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	0.9800
$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	0.9800
$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	0.9800
$\mathrm{C}(32)-\mathrm{C}(33)$	1.484(16)
$\mathrm{C}(32)-\mathrm{C}(34)$	$1.495(15)$
$\mathrm{C}(32)-\mathrm{H}(32)$	1.0000
$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	0.9800
$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	0.9800
$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	0.9800
$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	0.9800
$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	0.9800
$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	0.9800
$\mathrm{C}(15)-\mathrm{I}(1)-\mathrm{C}(1)$	92.1(3)
$\mathrm{C}(15)-\mathrm{I}(1)-\mathrm{N}(1)$	165.8(3)
$\mathrm{C}(1)-\mathrm{I}(1)-\mathrm{N}(1)$	73.9(3)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(3)$	117.2(3)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	112.9(4)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{N}(1)$	104.3(3)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(8)$	107.7(4)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(8)$	108.5(4)
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(8)$	105.6(3)
$\mathrm{C}(16)-\mathrm{Si}(1)-\mathrm{C}(23)$	106.5(8)
$\mathrm{C}(16)-\mathrm{Si}(1)-\mathrm{C}(17)$	108.4(9)
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(17)$	113.7(11)
$\mathrm{C}(16)-\mathrm{Si}(1)-\mathrm{C}(20)$	103.8(9)
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(20)$	115.3(12)

$\mathrm{C}(17)-\mathrm{Si}(1)-\mathrm{C}(20)$	$108.4(12)$
$\mathrm{C}(26)-\mathrm{Si}(2)-\mathrm{C}(32)$	$115.3(12)$
$\mathrm{C}(26)-\mathrm{Si}(2)-\mathrm{C}(16)$	$105.4(8)$
$\mathrm{C}(32)-\mathrm{Si}(2)-\mathrm{C}(16)$	$107.0(8)$
$\mathrm{C}(26)-\mathrm{Si}(2)-\mathrm{C}(29)$	$107.8(11)$
$\mathrm{C}(32)-\mathrm{Si}(2)-\mathrm{C}(29)$	$111.2(10)$
$\mathrm{C}(16)-\mathrm{Si}(2)-\mathrm{C}(29)$	$110.0(10)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{S}(1)$	$121.6(6)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{I}(1)$	$115.6(5)$
$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{I}(1)$	$120.2(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$122.8(8)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{I}(1)$	$120.3(7)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{I}(1)$	$116.8(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$117.2(10)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	121.4
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	121.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$121.5(9)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	119.2
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	119.2
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.3(8)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	119.8
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	119.8
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.0(10)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	120.0
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	120.0
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$118.1(8)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$123.5(6)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$118.4(8)$
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{N}(1)$	$127.8(8)$
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$123.3(7)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$108.9(7)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$121.8(8)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{S}(1)$	$118.2(6)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{S}(1)$	$119.9(6)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$119.3(8)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.4
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	120.4
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$120.6(8)$
C	

$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	119.7
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.7
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$117.9(9)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	$122.0(12)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(14)$	$120.1(11)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$122.8(11)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	118.6
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	118.6
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$117.5(9)$
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{H}(13)$	121.2
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	121.2
$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{I}(1)$	$171.2(8)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{Si}(1)$	$170.8(9)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{Si}(2)$	$173.8(10)$
$\mathrm{C}(19)-\mathrm{C}(17)-\mathrm{C}(18)$	$114.1(17)$
$\mathrm{C}(19)-\mathrm{C}(17)-\mathrm{Si}(1)$	$115.8(18)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{Si}(1)$	$112.6(14)$
$\mathrm{C}(19)-\mathrm{C}(17)-\mathrm{H}(17)$	104.2
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	104.2
$\mathrm{Si}(1)-\mathrm{C}(17)-\mathrm{H}(17)$	104.2
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5

$\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{C}(21)$	111.2(19)
$\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{Si}(1)$	112.9(19)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{Si}(1)$	110.5(19)
$\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{H}(20)$	107.3
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	107.3
$\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{H}(20)$	107.3
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{C}(25)-\mathrm{C}(23)-\mathrm{C}(24)$	110.1(16)
$\mathrm{C}(25)-\mathrm{C}(23)-\mathrm{Si}(1)$	115.5(18)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{Si}(1)$	110.1(16)
$\mathrm{C}(25)-\mathrm{C}(23)-\mathrm{H}(23)$	106.9
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	106.9
$\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{H}(23)$	106.9
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	109.5
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{C}(23)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	109.5
$\mathrm{C}(23)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{C}(23)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(25 \mathrm{~B})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(28)$	109.3(13)
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{Si}(2)$	114.9(17)

$\mathrm{C}(28)-\mathrm{C}(26)-\mathrm{Si}(2)$	$116(2)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	105.3
$\mathrm{C}(28)-\mathrm{C}(26)-\mathrm{H}(26)$	105.3
$\mathrm{Si}(2)-\mathrm{C}(26)-\mathrm{H}(26)$	105.3
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	109.5
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	109.5
$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	109.5
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{H}(27 \mathrm{~B})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{C}(26)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	109.5
$\mathrm{C}(26)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.5
$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.5
$\mathrm{C}(26)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5
$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5
$\mathrm{H}(28 \mathrm{~B})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5
$\mathrm{C}(31)-\mathrm{C}(29)-\mathrm{C}(30)$	$110.0(16)$
$\mathrm{C}(31)-\mathrm{C}(29)-\mathrm{Si}(2)$	$113.6(16)$
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{Si}(2)$	$113.0(16)$
$\mathrm{C}(31)-\mathrm{C}(29)-\mathrm{H}(29)$	106.6
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29)$	106.6
$\mathrm{Si}(2)-\mathrm{C}(29)-\mathrm{H}(29)$	106.6
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	109.5
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	109.5
$\mathrm{H}(30 \mathrm{~A})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	109.5
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5
$\mathrm{H}(30 \mathrm{~A})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5
$\mathrm{H}(30 \mathrm{~B})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5
$\mathrm{C}(29)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	109.5
$\mathrm{C}(29)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	109.5
$\mathrm{H}(31 \mathrm{~A})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	109.5
$\mathrm{C}(29)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	109.5
$\mathrm{H}(31 \mathrm{~A})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	109.5
$\mathrm{H}(31 \mathrm{~B})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	109.5
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(34)$	$110.1(15)$
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{Si}(2)$	$111.9(16)$
$\mathrm{C}(34)-\mathrm{C}(32)-\mathrm{Si}(2)$	$114.7(16)$
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{H}(32)$	106.5
l	

$\mathrm{C}(34)-\mathrm{C}(32)-\mathrm{H}(32)$	106.5
$\mathrm{Si}(2)-\mathrm{C}(32)-\mathrm{H}(32)$	106.5
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	109.5
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	109.5
$\mathrm{H}(33 \mathrm{~A})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	109.5
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	109.5
$\mathrm{H}(33 \mathrm{~A})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	109.5
$\mathrm{H}(33 \mathrm{~B})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	109.5
$\mathrm{C}(32)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	109.5
$\mathrm{C}(32)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	109.5
$\mathrm{H}(34 \mathrm{~A})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	109.5
$\mathrm{C}(32)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5
$\mathrm{H}(34 \mathrm{~A})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5
$\mathrm{H}(34 \mathrm{~B})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2a. The anisotropic displacement factor exponent takes the form: $-2 \square^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U33	U^{23}	U13	U^{12}
I(1)	37(1)	29(1)	26(1)	2(1)	5(1)	3(1)
S(1)	34(1)	37(1)	32(1)	9(1)	-2(1)	-4(1)
Si(1)	48(4)	42(3)	87(5)	12(4)	33(4)	2(3)
Si(2)	44(4)	71(3)	87(5)	36(4)	20(3)	-1(3)
$\mathrm{O}(1)$	58(3)	45(3)	59(4)	-5(3)	-24(3)	-4(3)
$\mathrm{O}(2)$	47(3)	42(3)	60(4)	20(3)	3(3)	-9(3)
$\mathrm{O}(3)$	36(3)	58(3)	25(2)	5(2)	-1(2)	-3(2)
$\mathrm{N}(1)$	42(3)	29(3)	31(3)	3(2)	-7(2)	-1(2)
C(1)	72(4)	24(3)	17(3)	2(2)	9(3)	16(3)
C(2)	81(6)	43(4)	31(4)	9(3)	13(3)	24(4)
C(3)	110(6)	41(4)	31(4)	6 (3)	16(4)	36(4)
C(4)	125(7)	33(4)	25(4)	-3(3)	-5(4)	24(4)
C(5)	95(6)	20(3)	28(3)	1(3)	-17(3)	16(4)
C(6)	70(4)	26(3)	23(3)	-1(2)	-10(3)	10(3)
C(7)	51(4)	27(3)	33(3)	3(3)	-10(3)	6(3)
C(8)	42(4)	34(3)	33(4)	0(3)	-2(3)	-2(3)
C(9)	43(4)	35(3)	35(4)	-7(3)	9(3)	-1(3)
C(10)	79(5)	38(4)	34(4)	0(3)	11(4)	8(4)
C (11)	76(5)	53(4)	60(6)	-5(4)	-5(5)	21(4)
C(12)	58(6)	66(5)	153(14)	-13(7)	-43(8)	15(4)
C(13)	44(4)	39(4)	104(9)	-2(5)	-10(5)	-3(3)
C(14)	116(11)	77(7)	107(11)	-10(8)	-16(9)	48(8)
C(15)	47(4)	49(4)	37(4)	3(3)	16(3)	7(3)
C(16)	53(4)	49(4)	59(5)	12(4)	23(4)	8(3)
C(17)	76(7)	56(6)	105(7)	15(6)	31(6)	8(6)
C(18)	79(10)	57(10)	104(10)	16(9)	26(9)	10(9)
C(19)	120(17)	86(15)	116(12)	25(12)	33(12)	34(13)
C(20)	63(6)	82(6)	100(6)	23(6)	17(5)	3(5)
C(21)	85(11)	117(12)	101(10)	18(10)	12(9)	9(10)
C(22)	85(11)	124(13)	137(14)	17(13)	16(11)	-17(10)
C(23)	55(6)	61(6)	87(7)	10(6)	30(6)	2(6)

$\mathrm{C}(24)$	$70(11)$	$64(8)$	$88(12)$	$-1(9)$	$36(10)$	$11(8)$
$\mathrm{C}(25)$	$65(8)$	$75(9)$	$92(10)$	$15(9)$	$37(8)$	$4(8)$
$\mathrm{C}(26)$	$70(6)$	$67(6)$	$106(7)$	$17(6)$	$13(6)$	$-4(5)$
$\mathrm{C}(27)$	$76(9)$	$49(9)$	$107(11)$	$11(8)$	$18(9)$	$-2(8)$
$\mathrm{C}(28)$	$89(12)$	$97(14)$	$161(18)$	$19(15)$	$-5(14)$	$-26(11)$
$\mathrm{C}(29)$	$63(6)$	$94(7)$	$100(7)$	$34(7)$	$16(6)$	$-1(6)$
$\mathrm{C}(30)$	$84(11)$	$111(11)$	$102(8)$	$35(9)$	$5(9)$	$12(10)$
$\mathrm{C}(31)$	$81(13)$	$99(10)$	$123(14)$	$40(10)$	$-8(13)$	$24(11)$
$\mathrm{C}(32)$	$57(5)$	$73(5)$	$88(6)$	$25(5)$	$29(5)$	$4(5)$
$\mathrm{C}(33)$	$80(9)$	$85(9)$	$93(10)$	$15(8)$	$26(9)$	$7(8)$
$\mathrm{C}(34)$	$68(8)$	$103(11)$	$100(11)$	$23(10)$	$33(9)$	$-3(8)$

2-((($(1 S, 4 S)$-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methyl)sulfonyl)-1-

 ((triisopropylsilyl)ethynyl)- 1,2-benziodazol-3(1H)-one (2e)

Experimental. Single colourless prism-shaped crystals of $\mathbf{2 e}$ were obtained by recrystallisation from SOLVENT at TEMPERATURE. A suitable crystal of $0.85 \times 0.19 \times 0.10 \mathrm{~mm}^{3}$ was selected and mounted on a suitable support on a Bruker P4 diffractometer. The crystal was kept at a steady $T=100(2) \mathrm{K}$ during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the dual solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, 2015) using full matrix least squares on $|\boldsymbol{F}|^{2}$ minimisation.

Crystal Data. $\quad \mathrm{C}_{28} \mathrm{H}_{40} \mathrm{INO}_{4} \mathrm{SSi}, \quad M_{r}=641.66$, orthorhombic, $P 2_{1} 2_{1} 2_{1}$ (No. 19), $a=12.8506$ (17) \AA, $\mathrm{b}=15.8182(15) \AA, \mathrm{c}=31.718(4) \AA, \square=\square=\square=90^{\circ}$, $V=6447.4(14) \AA^{3}, T=100(2) \mathrm{K}, Z=8, Z^{\prime}=2$, $\square(\operatorname{MoK} \square)=1.125,74240$ reflections measured, 11585 unique ($R_{\text {int }}=0.1052$) which were used in all calculations. The final $w R_{2}$ was 0.1420 (all data) and R_{l} was 0.0634 (I > 2(I)).

Compound	2e
Formula	$\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{INO}_{4} \mathrm{SSi}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.322
$\square / \mathrm{mm}^{-1}$	1.125
Formula Weight	641.66
Colour	colourless
Shape	prism
Size/mm ${ }^{3}$	$0.85 \times 0.19 \times 0.10$
T/K	100(2)
Crystal System	orthorhombic
Flack Parameter	0.09(4)
Hooft Parameter	0.083(13)
Space Group	$P 2.22_{1}$
$a /$ Å	12.8506(17)
b/Å	15.8182(15)
c/Å	31.718(4)
$\square 1^{\circ}$	90
$\square 1^{\circ}$	90
$\square 1^{\circ}$	90
V/A ${ }^{3}$	6447.4(14)
Z	8
Z'	2
Wavelength/Å	0.71073
Radiation type	MoK \square
\square min ${ }^{\circ}$	1.710
$\square \max \chi^{\circ}$	25.200
Measured Refl.	74240
Independent Refl. 11585	
Reflections with I 9479$>2(\mathrm{I})$	
$R_{\text {int }}$	0.1052
Parameters	666
Restraints	682
${ }_{3}^{\text {Largest Peak/e } \AA^{-} 0.911}$	
\AA^{-3}	
GooF	1.109
$w R_{2}$ (all data)	0.1420
$w R_{2}$	0.1334
R_{l} (all data)	0.0811
R_{1}	0.0634

A colourless prism-shaped crystal with dimensions of $0.85 \times 0.19 \times 0.10 \mathrm{~mm}^{3}$ was mounted on a suitable support. Data were collected using a Bruker P4 diffractometer operating at $T=100(2) \mathrm{K}$.

Data were measured using \square scans using MoK \square radiation. The total number of runs and images was based on the strategy calculation from the program XS (Sheldrick, 2008). The maximum resolution achieved was $\square=25.200^{\circ}(0.83 \AA)$.

The diffraction pattern was indexed. The total number of runs and images was based on the strategy calculation from the program XS (Sheldrick, 2008) and the unit cell was refined using EvalCCD (Duisenberg \& Schreurs, 1990-2000) on 179 reflections, $0 \% \%$ of the observed reflections.

Data reduction, scaling and absorption corrections were performed using EvalCCD (Duisenberg \& Schreurs, 1990-2000). The final completeness is $99.80 \% \%$ out to 25.200° in \square. A multi-scan absorption correction was performed using SADABS-2008/1 (Bruker,2008) was used for absorption correction. $w R_{2}$ (int) was 0.1094 before and 0.0953 after correction. The Ratio of minimum to maximum transmission is 0.6779 . The $\square / 2$ correction factor is 0.0015 . The absorption coefficient \square of this material is $1.125 \mathrm{~mm}^{-1}$ at this wavelength ($\square=0.711 \AA$) and the minimum and maximum transmissions are 0.505 and 0.745 .

The structure was solved and the space group $P 2_{1} 2_{1} 2_{1}$ (\# 19) determined by the ShelXT (Sheldrick, 2015) structure solution program using dual and refined by full matrix least squares on $|\boldsymbol{F}|^{2}$ using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.

The structure was refined as a 2 -component inversion twin.

The value of Z^{\prime} is 2 . This means that there are two independent molecules in the asymmetric unit.
The Flack parameter was refined to $0.09(4)$. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in 0.083(13). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0 , a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Table S5: Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2e. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	x	y	z	$U_{e q}$
I1	3420.0(6)	6202.8(4)	7335.8(2)	24.34(19)
S1	1648(3)	5243.4(19)	6628.0(10)	31.5(7)
Si1	6032(3)	6838(3)	8517.1(13)	37.1(10)
O1	41(6)	6388(6)	7017(3)	32(2)
O 2	914(8)	4635(6)	6769(3)	42(2)
O3	2709(7)	4975(6)	6543(3)	45(3)
O4	1687(9)	6368(7)	5358(3)	58(3)
N1	1785(7)	6010(6)	6966(3)	30(2)
C1	2308(9)	7003(8)	7645(4)	28(3)
C2	2627(10)	7538(8)	7964(4)	30(3)
C3	1874(9)	8088(8)	8146(4)	32(3)
C4	861(10)	8077(8)	8003(4)	34(3)
C5	571(9)	7551(8)	7679(5)	39(3)
C6	1280(9)	6982(7)	7494(4)	27(3)
C7	963(9)	6428(8)	7147(4)	32(3)
C8	1143(10)	5761(8)	6173(4)	27(3)
C9	968(10)	5209(8)	5778(4)	30(3)
C10	1170(10)	5707(9)	5371(4)	36(3)
C11	694(12)	5249(9)	5022(4)	45(3)
C12	182(13)	4505(10)	5244(4)	48(3)
C13	-153(10)	4886(8)	5679(4)	32(3)
C14	-965(10)	5581(9)	5629(5)	42(3)
C15	-584(12)	4224(9)	5994(4)	47(4)
C16	1100(14)	3899(10)	5362(5)	62(5)
C17	1677(13)	4400(8)	5729(4)	44(3)
C18	4558(10)	6504(9)	7776(4)	35(3)

Atom	\mathbf{x}	y	z	$U_{\text {eq }}$
C19	5168(9)	6654(8)	8049(4)	31(3)
C20	5592(16)	6056(12)	8915(6)	86(4)
C21	5794(18)	5160(12)	8740(6)	87(4)
C22	4431(15)	6189(14)	9035(6)	86(4)
C23	5833(14)	7993(14)	8718(6)	88(6)
C24	4784(14)	8387(11)	8658(6)	78(6)
C25	6030(20)	8013(16)	9199(6)	115(9)
C26	7378(14)	6732(18)	8330(7)	113(5)
C27	7602(15)	7323(16)	7964(7)	113(6)
C28	8194(14)	6856(17)	8670(7)	114(6)
I2	8369.9(6)	5363.3(4)	7298.4(2)	22.51(19)
S2	6514(2)	6296.4(18)	6579.6(9)	23.4(6)
Si2	10788(3)	4417(3)	8490.8(14)	51.5(13)
O5	4986(6)	5197(5)	7018(2)	27.4(19)
O6	5881(7)	6940(5)	6776(3)	29(2)
O7	7531(6)	6531(6)	6428(3)	29(2)
O8	4614(8)	5113(6)	5502(3)	47(3)
N2	6727(7)	5500(6)	6901(3)	23(2)
C29	7287(8)	4515(7)	7595(4)	20(2)
C30	7574(9)	3982(7)	7904(4)	20(2)
C31	6852(9)	3445(8)	8097(4)	28(3)
C32	5837(10)	3447(8)	7945(4)	26(3)
C33	5540(9)	3987(8)	7626(4)	29(3)
C34	6259(8)	4527(7)	7443(3)	18(2)
C35	5925(9)	5109(7)	7101(3)	18(2)
C36	5805(9)	5819(8)	6152(4)	27(3)
C37	5193(9)	6406(8)	5855(4)	28(2)
C38	4704(10)	5850(9)	5498(4)	32(3)
C39	4379(11)	6506(9)	5157(4)	42(3)

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\boldsymbol{U}_{\text {eq }}$
C40	$4663(10)$	$7313(9)$	$5344(5)$	$40(3)$
C41	$5697(10)$	$7120(9)$	$5595(4)$	$37(3)$
C42	$6618(12)$	$6802(10)$	$5305(5)$	$55(4)$
C43	$6081(12)$	$7903(9)$	$5849(5)$	$52(4)$
C44	$3896(10)$	$7520(9)$	$5700(5)$	$43(3)$
C45	$4199(10)$	$6858(8)$	$6053(4)$	$33(3)$
C46	$9475(9)$	$5066(8)$	$7751(4)$	$30(3)$
C47	$10009(11)$	$4864(10)$	$8039(4)$	$42(4)$
C48	$10959(17)$	$5257(12)$	$8872(6)$	$90(4)$
C49	$11281(17)$	$6109(12)$	$8693(6)$	$91(4)$
C50	$11696(17)$	$5066(13)$	$9243(6)$	$90(4)$
C51	$11996(16)$	$3867(14)$	$8306(7)$	$99(4)$
C52	$12741(16)$	$4515(14)$	$8138(7)$	$99(4)$
C53	$11735(17)$	$3246(14)$	$7949(6)$	$99(4)$
C54	$9912(13)$	$3530(10)$	$8715(5)$	$63(4)$
C55	$10431(14)$	$2882(11)$	$8989(5)$	$67(5)$
C56	$8981(13)$	$3870(13)$	$8945(5)$	$75(5)$

Table S6: Anisotropic Displacement Parameters $\left(\times 10^{4}\right)$ 2e. The anisotropic displacement factor exponent takes the form: $-2 \square^{2}\left[h^{2} a^{* 2} \times U_{11}+\ldots+2 h k a * \times b^{*} \times U_{12}\right]$

Atom	\boldsymbol{U}_{11}	\boldsymbol{U}_{22}	\boldsymbol{U}_{33}	\boldsymbol{U}_{23}	\boldsymbol{U}_{13}	\boldsymbol{U}_{12}
I1	$18.1(4)$	$25.0(4)$	$30.0(4)$	$2.6(3)$	$0.5(4)$	$2.6(3)$
S1	$23.0(15)$	$23.9(16)$	$47.5(18)$	$-1.1(14)$	$-4.6(16)$	$0.0(16)$
Si1	$20.5(19)$	$51(3)$	$40(2)$	$7(2)$	$-5.8(17)$	$-5.4(18)$
O1	$17(4)$	$35(5)$	$44(5)$	$1(4)$	$3(4)$	$-2(4)$
O2	$47(6)$	$33(5)$	$45(6)$	$3(5)$	$-8(5)$	$-14(5)$
O3	$20(5)$	$41(6)$	$73(7)$	$-17(5)$	$-5(5)$	$16(4)$
O4	$46(6)$	$53(6)$	$73(7)$	$23(5)$	$13(6)$	$-10(5)$
N1	$15(5)$	$28(5)$	$46(6)$	$1(4)$	$-6(4)$	$-2(4)$

Atom	U_{11}	U_{22}	\boldsymbol{U}_{33}	U_{23}	U_{13}	U_{12}
C1	23(5)	29(6)	33(6)	2(5)	4(5)	1(5)
C2	23(6)	29(7)	39(7)	0(5)	-1(5)	1(5)
C3	30(6)	21(6)	45(8)	0(5)	8(5)	-3(5)
C4	27(6)	28(7)	48(8)	-3(6)	15(6)	5(6)
C5	18(6)	33(7)	68(9)	-6(7)	10(6)	-8(5)
C6	23(6)	13(6)	45(7)	1(5)	3(4)	-12(4)
C7	20(5)	23(7)	52(7)	5(5)	5(5)	-4(5)
C8	20(6)	23(7)	37(6)	0(5)	2(5)	5(5)
C9	35(6)	16(6)	40(6)	-3(5)	6(5)	-2(5)
C10	31(7)	35(6)	43(7)	9(5)	20(5)	11(5)
C11	52(9)	41(8)	43(7)	-4(6)	20(6)	12(6)
C12	63(9)	43(8)	39(7)	-10(6)	-3(6)	0 (6)
C13	32(6)	29(7)	35(6)	3(5)	1(5)	-4(5)
C14	32(7)	44(8)	48(9)	-4(7)	-8(6)	-9(6)
C15	56(10)	44(9)	40(8)	5(6)	-5(7)	-27(7)
C16	95(12)	43(9)	48(9)	-19(7)	-4(8)	23(8)
C17	55(8)	27(7)	50(8)	-4(5)	3(7)	19(7)
C18	24(6)	47(9)	35(7)	3(6)	2(5)	-1(6)
C19	19(6)	36(8)	37(7)	14(6)	1(5)	-1(6)
C20	119(10)	79(8)	60(7)	2(6)	16(7)	11(8)
C21	120(11)	79(8)	61(7)	2(7)	15(7)	12(8)
C22	118(11)	80(8)	60(7)	3(7)	17(7)	10(8)
C23	65(11)	89(13)	111(14)	-39(12)	-23(11)	-4(10)
C24	100(13)	44(11)	89(14)	-5(10)	-19(11)	8(10)
C25	130(20)	100(20)	111(14)	-18(16)	-15(14)	37(17)
C26	41(7)	167(15)	131(13)	-33(11)	21(7)	-23(8)
C27	43(7)	167(15)	131(13)	-33(11)	23(7)	-22(8)
C28	41(7)	169(15)	132(13)	-32(11)	19(7)	-22(8)
I2	15.7(3)	24.6(4)	27.3(4)	4.7(3)	-3.5(4)	-1.9(3)

Atom	\boldsymbol{U}_{11}	\boldsymbol{U}_{22}	\boldsymbol{U}_{33}	\boldsymbol{U}_{23}	U_{13}	U_{12}
S2	21.7(15)	23.2(15)	25.4(14)	0.2(12)	-5.2(14)	3.1(15)
Si2	33(2)	77(4)	44(2)	11(2)	-18.7(19)	7(2)
O5	18(4)	31(5)	33(5)	-4(4)	1(4)	4(4)
O6	37(5)	19(5)	32(5)	-7(4)	-15(4)	8(4)
O7	19(4)	34(5)	34(5)	5(4)	-4(4)	-6(4)
O8	68(7)	37(5)	37(5)	0 (4)	-9(5)	-7(5)
N2	17(5)	20(5)	32(5)	1(4)	2(4)	3(4)
C29	14(5)	21(6)	27(6)	0 (4)	-3(4)	-1(4)
C30	19(6)	7(5)	32(6)	-4(4)	-4(5)	-1(4)
C31	33(6)	24(6)	25(6)	1(5)	5(5)	-3(5)
C32	26(6)	24(7)	26(6)	-8(5)	13(5)	-1(5)
C33	25(6)	37(7)	25(6)	-5(5)	8(5)	-7(5)
C34	16(5)	19(6)	17(5)	-6(4)	4(4)	-3(4)
C35	16(5)	18(6)	21(6)	-8(4)	2(4)	3(4)
C36	20(6)	30(7)	30(6)	-4(5)	-1(5)	2(5)
C37	22(6)	35(6)	27(6)	0(4)	-7(4)	3(5)
C38	26(7)	44(6)	25(6)	-3(5)	-2(5)	-1(5)
C39	36(8)	52(8)	37(7)	6(5)	-14(6)	-18(6)
C40	23(6)	44(7)	52(7)	18(6)	-18(5)	-8(6)
C41	21(6)	41(7)	48(8)	23(5)	-12(5)	2(5)
C42	29(7)	75(11)	61(9)	30(7)	1(7)	9(8)
C43	45(9)	44(8)	66(10)	28(7)	-28(7)	-26(7)
C44	25(7)	48(9)	56(8)	-5(6)	-24(6)	9(6)
C45	30(7)	26(7)	45(7)	-5(5)	-3(5)	7(5)
C46	18(6)	40(8)	33(7)	10(6)	4(5)	-5(5)
C47	29(7)	62(10)	35(7)	13(7)	-4(5)	-20(7)
C48	108(10)	84(8)	77(8)	38(7)	-44(7)	-27(8)
C49	108(10)	86(9)	78(8)	38(7)	-45(7)	-27(8)
C50	108(10)	84(9)	77(8)	38(7)	-43(7)	-28(8)

Atom	$\boldsymbol{U}_{\mathbf{1 1}}$	$\boldsymbol{U}_{\mathbf{2 2}}$	$\boldsymbol{U}_{\mathbf{3 3}}$	$\boldsymbol{U}_{\mathbf{2 3}}$	$\boldsymbol{U}_{\mathbf{1 3}}$	$\boldsymbol{U}_{\mathbf{1 2}}$
C51	$79(8)$	$122(12)$	$95(10)$	$27(8)$	$-5(8)$	$-3(8)$
C52	$80(9)$	$122(12)$	$96(10)$	$27(8)$	$-3(8)$	$-5(8)$
C53	$80(9)$	$122(12)$	$95(10)$	$27(8)$	$-5(8)$	$-2(8)$
C54	$77(11)$	$57(10)$	$54(10)$	$10(8)$	$-11(8)$	$-2(8)$
C55	$79(13)$	$65(12)$	$57(11)$	$5(9)$	$-6(9)$	$3(9)$
C56	$61(11)$	$115(17)$	$49(10)$	$23(11)$	$-5(8)$	$-4(10)$

Table S7: Bond Lengths in Å for 2e.

Atom	Atom	Length/A
I1	N1	2.426(10)
I1	C1	2.145(12)
I1	C18	2.077(13)
S1	O2	1.420(10)
S1	O3	1.453(9)
S1	N1	1.627(11)
S1	C8	1.781(13)
Si1	C19	1.877(14)
Si1	C20	1.85(2)
Si1	C23	1.95(2)
Si1	C26	1.84(2)
O1	C7	1.256(14)
O4	C10	1.240(16)
N1	C7	1.372(16)
C1	C2	1.381(18)
C1	C6	1.405(17)
C2	C3	1.424(17)
C3	C4	1.378(18)
C4	C5	1.374(19)
C5	C6	1.409(17)
C6	C7	1.466(18)

Atom	Atom	Length/A
C8	C9	1.544(17)
C9	C10	1.532(18)
C9	C13	1.561(18)
C9	C17	1.580(17)
C10	C11	1.46(2)
C11	C12	1.52(2)
C12	C13	1.565(19)
C12	C16	1.57(2)
C13	C14	1.524(19)
C13	C15	1.550(18)
C16	C17	1.59(2)
C18	C19	1.192(17)
C20	C21	1.544(17)
C20	C22	1.555(17)
C23	C24	1.497(17)
C23	C25	1.546(18)
C26	C27	1.519(18)
C26	C28	1.517(17)
I2	N2	2.469(9)
I2	C29	2.150(11)
I2	C46	2.074(12)
S2	O6	1.445(9)
S2	O7	1.441(9)
S2	N2	1.642(9)
S2	C36	1.800(12)
Si2	C47	1.884(14)
Si2	C48	1.81(2)
Si2	C51	1.87(2)
Si2	C54	1.935(18)

Atom	Atom	Length/Å
O5	C35	1.242(13)
O8	C38	1.172(16)
N2	C35	1.359(14)
C29	C30	1.345(16)
C29	C34	1.406(15)
C30	C31	1.398(16)
C31	C32	1.391(17)
C32	C33	1.377(17)
C33	C34	1.386(16)
C34	C35	1.486(16)
C36	C37	1.538(17)
C37	C38	1.566(17)
C37	C41	1.541(18)
C37	C45	1.592(17)
C38	C39	1.555(19)
C39	C40	1.45(2)
C40	C41	1.578(16)
C40	C44	1.53(2)
C41	C42	1.58(2)
C41	C43	1.56(2)
C44	C45	1.582(18)
C46	C47	1.187(17)
C48	C49	1.519(17)
C48	C50	1.541(16)
C51	C52	1.501(17)
C 51	C53	1.535(18)
C54	C55	1.500(16)
C54	C56	1.501(16)

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C1	I1	N1	73.6(4)
C18	I1	N1	164.5(4)
C18	I1	C1	91.5(5)
O2	S1	O3	119.0(6)
O2	S1	N1	111.6(6)
O2	S1	C8	108.9(6)
O3	S1	N1	103.8(5)
O3	S1	C8	109.0(6)
N1	S1	C8	103.3(6)
C19	Si1	C23	109.0(7)
C20	Si1	C19	104.7(8)
C20	Si1	C23	111.2(9)
C26	Si1	C19	106.7(8)
C26	Si1	C20	116.5(10)
C26	Si1	C23	108.3(11)
S1	N1	I1	120.4(5)
C7	N1	I1	113.8(8)
C7	N1	S1	123.5(8)
C2	C1	I1	119.9(9)
C2	C1	C6	122.8(12)
C6	C1	I1	117.2(9)
C1	C2	C3	118.1(12)
C4	C3	C2	120.1(13)
C5	C4	C3	120.6(13)
C4	C5	C6	121.5(12)
C1	C6	C5	116.9(12)
C1	C6	C7	122.0(11)
C5	C6	C7	121.0(11)

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
O1	C7	N1	124.4(12)
O1	C7	C6	122.6(12)
N1	C7	C6	112.9(11)
C9	C8	S1	116.9(9)
C8	C9	C13	118.8(11)
C8	C9	C17	117.0(11)
C10	C9	C8	111.7(10)
C10	C9	C13	98.9(10)
C10	C9	C17	103.7(10)
C13	C9	C17	104.3(10)
O4	C10	C9	123.6(13)
O4	C10	C11	128.1(13)
C11	C10	C9	108.3(12)
C10	C11	C12	102.2(11)
C11	C12	C13	103.3(11)
C11	C12	C16	105.0(13)
C13	C12	C16	103.4(11)
C9	C13	C12	92.8(10)
C14	C13	C9	114.6(11)
C14	C13	C12	112.0(11)
C14	C13	C15	108.1(12)
C15	C13	C9	115.0(11)
C15	C13	C12	113.9(12)
C12	C16	C17	102.8(11)
C9	C17	C16	101.9(11)
C19	C18	I1	175.6(12)
C18	C19	Si1	174.1(12)
C21	C20	Si1	108.5(13)
C21	C20	C22	111.9(18)

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C22	C20	Si1	111.7(14)
C24	C23	Si1	117.8(13)
C24	C23	C25	105.3(17)
C25	C23	Si1	108.7(15)
C27	C26	Si1	111.7(15)
C28	C26	Si1	114.2(15)
C28	C26	C27	109.5(19)
C29	I2	N2	74.0(4)
C46	I2	N2	163.6(4)
C46	I2	C29	89.9(4)
O6	S2	N2	111.4(5)
O6	S2	C36	109.6(5)
O7	S2	O6	118.2(5)
O7	S2	N2	104.7(5)
O7	S2	C36	108.4(6)
N2	S2	C36	103.3(6)
C47	Si2	C54	104.0(6)
C48	Si2	C47	107.3(8)
C48	Si2	C51	116.7(10)
C48	Si2	C54	110.9(8)
C51	Si2	C47	112.1(8)
C 51	Si2	C54	105.1(8)
S2	N2	I2	121.8(5)
C35	N2	I2	111.7(7)
C35	N2	S2	120.9(8)
C30	C29	I2	122.2(8)
C30	C29	C34	121.1(11)
C34	C29	I2	116.7(8)
C29	C30	C31	121.1(11)

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C32	C31	C30	118.0(12)
C33	C32	C31	121.0(12)
C32	C33	C34	120.3(11)
C29	C34	C35	122.0(10)
C33	C34	C29	118.3(11)
C33	C34	C35	119.7(10)
O5	C35	N2	125.9(11)
O5	C35	C34	120.2(10)
N2	C35	C34	113.8(9)
C37	C36	S2	117.9(9)
C36	C37	C38	108.1(10)
C36	C37	C41	123.7(10)
C36	C37	C45	116.0(10)
C38	C37	C45	102.5(10)
C41	C37	C38	101.1(10)
C41	C37	C45	102.6(10)
O8	C38	C37	126.1(12)
O8	C38	C39	130.2(12)
C39	C38	C37	103.7(11)
C40	C39	C38	103.6(11)
C39	C40	C41	104.3(12)
C39	C40	C44	109.0(12)
C44	C40	C41	102.2(11)
C37	C41	C40	93.4(10)
C37	C41	C42	113.1(11)
C37	C41	C43	116.1(11)
C40	C41	C42	113.5(11)
C43	C41	C40	111.9(12)
C43	C41	C42	108.4(12)

Atom	Atom	Atom	Angle $^{\circ}$
C 40	C 44	C 45	$102.8(10)$
C 44	C 45	C 37	$102.5(10)$
C 47	C 46	I 2	$172.1(11)$
C 46	C 47	Si 2	$173.3(14)$
C 49	C 48	Si 2	$115.8(14)$
C 49	C 48	C 50	$107.0(15)$
C 50	C 48	Si 2	$116.2(15)$
C 52	C 51	Si 2	$108.8(16)$
C 52	C 51	C 53	$108.3(19)$
C 53	C 51	Si 2	$110.3(15)$
C 55	C 54	Si 2	$116.8(12)$
C 55	C 54	C 56	$108.6(14)$
C 56	C 54	Si 2	$112.5(12)$

Table S8: Hydrogen Fractional
Atomic Coordinates ($\times 10^{4}$) and Equivalent Isotropic
Displacement Parameters $\mathbf{x} \quad \mathbf{y}$
z
$\boldsymbol{U}_{\text {eq }}$
($\AA^{2} \times 10^{3}$) for $2 \mathrm{e} . U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom				
H2	3327.91	7539.6	8058.61	36
H3	2069.63	8462.67	8365.91	38
H4	358.37	8437.24	8130.13	41
H5	-123.96	7571.91	7577.58	47
H8A	469.79	6022.56	6250.46	32
H8B	1624.99	6224.07	6096.85	32
H11A	1223.86	5056.36	4816.86	55

Table S8: Hydrogen Fractional
Atomic Coordinates ($\times 10^{4}$)
and Equivalent Isotropic
Displacement Parameters
$\left(\AA^{2} \times 10^{3}\right)$ for 2e. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom				
H11B	-172.38	5602.46	4874.13	55
H12	-394.43	4231.56	5082.28	58
H14A	-1148.67	5805.92	5907.51	63
H14B	-687.74	5348.65	5494.09	63
H14C	-68.08	6036.76	5454.44	63
H15A	-1249.98	4756.95	6020.89	70
H15B	-688.36	4489.44	5889.37	70
H15C	1567.04	3805.84	5118.8	70
H16A	837.43	3346.63	5463.56	74
H16B	1697.42	4065.78	5992.85	74
H17A	2395.83	4553.28	5646.56	53
H17B	6022.77	6131.9	9174.69	53
H20	5410.46	5085.55	8475.84	103
H21A	5560.13	4739.39	8946.04	130
H21B	6540.48	5087.65	8687.88	130
H21C	4275.18	6795.01	9042.85	130
H22A	4299.34	5941.76	9313.77	129
H22B	3985.51	5912.62	8825.72	129
H22C	6362.66	8362.55	8578.85	129
H23	4658.6	8476.83	8356.35	106
H24A	4759.79	8931.3	8805.25	117
H24B			117	

Table S8: Hydrogen Fractional
Atomic Coordinates ($\times 10^{4}$)
and Equivalent Isotropic
Displacement Parameters
$\left(\AA^{2} \times 10^{3}\right)$ for 2e. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom				
H24C	4247.77	8011.44	8772.27	117
H25A	5594.05	7585.97	9336.86	173
H25B	5853.66	8573.91	9309.34	173
H25C	6763.89	7891.98	9255.36	173
H26	7457.87	6141.63	8221.96	136
H27A	7138.65	7186.9	7727.79	170
H27B	8327.33	7254.72	7874.39	170
H27C	7484.83	7908.88	8052.23	170
H28A	8280.36	7460.8	8726.22	171
H28B	8858.16	6617.67	8574.66	171
H28C	7972.4	6568.34	8928.46	171
H30	8279.86	3969.55	7993.02	23
H31	7048.84	3089.94	8324.65	33
H32	5340.1	3070.01	8062.47	31
H33	4838.9	3989.21	7530.89	35
H36A	6305.54	5493.79	5979.25	32
H36B	5308.1	5408.74	6274.59	32
H39A	4760.23	6410.56	4890.18	50
H39B	3622.02	6478.63	5101.2	50
H40	4739.24	7778.77	5132.98	48
H42A	7282.65	6894.66	5449.76	82
H42B	6612.42	7117.35	5039.26	82

Table S8: Hydrogen Fractional
Atomic Coordinates ($\times 10^{4}$)
and Equivalent Isotropic
Displacement Parameters
$\left(\AA^{2} \times 10^{3}\right)$ for 2e. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom				
H42C	6530.92	6197.87	5247.13	82
H43A	5481.42	8202.38	5968.36	77
H43B	6464.73	8284.01	5661.44	77
H43C	6539.67	7716.49	6078.02	77
H44A	3167.27	7441.26	5606.58	51
H44B	3988.37	8106.9	5801.05	51
H45A	3629.28	6448.97	6102.73	40
H45B	4373.67	7143.62	6321.54	40
H48	10258.115348 .39	9000.59	107	
H49A	11930.89	6046.68	8534.8	136
H49B	11385.05	6510.88	8924.76	136
H49C	10734.036319 .87	8505.33	136	
H50A	11386.964628 .17	9422.44	135	
H50B	11802.59	5581.49	9409.14	135
H50C	12366.17	4867.09	9134.38	135
H51	12323.2	3555.98	8546.37	118
H52A	12863.674410 .15	7837.22	149	
H52B	13400.644477 .32	8291.23	149	
H52C	12443.825081 .03	8174.41	149	
H53A	11102.54	2931.38	8021.89	148
H53B	12313.592850 .23	7911.49	148	
H53C	11620.853560 .58	7687.21	148	

Table S8: Hydrogen Fractional
Atomic Coordinates ($\times 10^{4}$)
and Equivalent Isotropic
Displacement Parameters
$\left(\AA^{2} \times 10^{3}\right)$ for 2e. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom			
H54	9634.43	3215.79	8466.16
H55A	10992.71	2608.36	8831.47
H55B	9919.26	2456.89	9075.85
H55C	10719.29	3158.83	9240.05
H56A	9212.04	4227.05	9179.67
H56B	8565.84	3399.45	9054.46
H56C	8556.96	4207.19	8750.68

Table S9: Solvent masking (Olex2) information for ls01-205.

No	\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{V}	\mathbf{e}	Content
1	0.495	0.250	0.500	392.3	107.4	$?$
2	0.208	0.750	0.000	392.3	107.5	$?$

2-Phenylpropan-2-yl (S,E)-4-(4-fluorophenyl)-2-((2-iodophenyl)((mesitylsulfonyl)imino)methoxy)but-3-ynoate (14n)

Table S10. Crystal data and structure refinement for 14n.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
\square range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\square=67.684^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \square(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
ps-097
$\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{FINO}_{5} \mathrm{~S}$
723.57
100.00(10) K
1.54184 Å

Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$\mathrm{a}=9.45135(4) \AA \quad \square=90^{\circ}$.
$\mathrm{b}=14.02781(6) \AA \quad \square=90^{\circ}$.
$\mathrm{c}=24.20130(9) \AA \quad \square=90^{\circ}$.
3208.65(2) \AA^{3}

4
$1.498 \mathrm{Mg} / \mathrm{m}^{3}$
$8.855 \mathrm{~mm}^{-1}$
1464
$0.649 \times 0.144 \times 0.094 \mathrm{~mm}^{3}$
3.642 to 73.748°.
$-11 \leq \mathrm{h} \leq 10,-17 \leq \mathrm{k} \leq 17,-30 \leq 1 \leq 30$
53907
$6449\left[R_{\text {int }}=0.0308\right]$
100.0 \%

Gaussian
0.904 and 0.181

Full-matrix least-squares on F^{2}
6449 / 0 / 403
1.065
$R_{1}=0.0156, w R 2=0.0405$
$R_{1}=0.0157, w R_{2}=0.0406$
-0.0179(13)

Extinction coefficient
Largest diff. peak and hole
0.00027(3)
0.302 and - -0.605 e. \AA^{-3}

Table S11. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$)
for $\mathbf{1 4 n} . U(e q)$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	U(eq)
I(1)	-1150(1)	5877(1)	4872(1)	21(1)
S(1)	2569(1)	4212(1)	5601(1)	14(1)
F(1)	-189(2)	12378(1)	7262(1)	32(1)
$\mathrm{O}(1)$	610(2)	6424(1)	6122(1)	15(1)
$\mathrm{O}(2)$	4079(2)	4256(1)	5564(1)	21(1)
$\mathrm{O}(3)$	1988(2)	3531(1)	5980(1)	20(1)
$\mathrm{O}(4)$	3012(2)	6437(1)	6822(1)	18(1)
$\mathrm{O}(5)$	4185(2)	7232(1)	6140(1)	14(1)
$\mathrm{N}(1)$	2116(2)	5315(1)	5789(1)	14(1)
C(1)	1747(2)	7099(2)	6038(1)	14(1)
C(2)	870(2)	5529(2)	5949(1)	14(1)
C(3)	-440(2)	4943(2)	5981(1)	14(1)
C(4)	-1443(2)	4981(2)	5559(1)	17(1)
C(5)	-2666(3)	4431(2)	5591(1)	22(1)
C(6)	-2896(3)	3865(2)	6049(1)	24(1)
C(7)	-1906(3)	3827(2)	6473(1)	24(1)
C(8)	-688(3)	4356(2)	6440(1)	20(1)
C(9)	1859(2)	4063(2)	4931(1)	15(1)
C(10)	2416(3)	4644(2)	4507(1)	18(1)
C(11)	1912(3)	4512(2)	3972(1)	22(1)
C(12)	886(3)	3839(2)	3848(1)	25(1)
C(13)	334(3)	3295(2)	4275(1)	22(1)
C(14)	801(2)	3376(2)	4820(1)	18(1)
C(15)	3542(3)	5397(2)	4592(1)	24(1)
C(16)	390(4)	3688(2)	3261(1)	37(1)
C(17)	165(3)	2694(2)	5235(1)	25(1)
C(18)	1240(3)	8035(2)	6221(1)	16(1)

$\mathrm{C}(19)$	$990(3)$	$8806(2)$	$6403(1)$	$16(1)$
$\mathrm{C}(20)$	$680(3)$	$9735(2)$	$6623(1)$	$17(1)$
$\mathrm{C}(21)$	$-238(3)$	$9833(2)$	$7071(1)$	$21(1)$
$\mathrm{C}(22)$	$-545(3)$	$10724(2)$	$7288(1)$	$24(1)$
$\mathrm{C}(23)$	$88(3)$	$11501(2)$	$7050(1)$	$23(1)$
$\mathrm{C}(24)$	$990(3)$	$11443(2)$	$6603(1)$	$28(1)$
$\mathrm{C}(25)$	$1287(3)$	$10547(2)$	$6391(1)$	$24(1)$
$\mathrm{C}(26)$	$3055(2)$	$6851(2)$	$6388(1)$	$14(1)$
$\mathrm{C}(27)$	$5599(3)$	$7178(2)$	$6404(1)$	$16(1)$
$\mathrm{C}(28)$	$5638(3)$	$7819(2)$	$6911(1)$	$16(1)$
$\mathrm{C}(29)$	$4601(3)$	$8496(2)$	$7018(1)$	$22(1)$
$\mathrm{C}(30)$	$4694(3)$	$9083(2)$	$7479(1)$	$26(1)$
$\mathrm{C}(31)$	$5837(3)$	$9012(2)$	$7837(1)$	$26(1)$
$\mathrm{C}(32)$	$6887(3)$	$8357(2)$	$7727(1)$	$25(1)$
$\mathrm{C}(33)$	$6792(3)$	$7763(2)$	$7268(1)$	$21(1)$
$\mathrm{C}(34)$	$6563(3)$	$7567(2)$	$5956(1)$	$24(1)$
$\mathrm{C}(35)$	$5962(3)$	$6139(2)$	$6529(1)$	$22(1)$

Table S12. Bond lengths [\AA] and angles [${ }^{\circ}$] for $\mathbf{1 4 n}$.

$\mathrm{I}(1)-\mathrm{C}(4)$	$2.102(2)$
$\mathrm{S}(1)-\mathrm{O}(2)$	$1.4317(17)$
$\mathrm{S}(1)-\mathrm{O}(3)$	$1.4328(17)$
$\mathrm{S}(1)-\mathrm{N}(1)$	$1.6682(19)$
$\mathrm{S}(1)-\mathrm{C}(9)$	$1.768(2)$
$\mathrm{F}(1)-\mathrm{C}(23)$	$1.358(3)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.348(3)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.446(3)$
$\mathrm{O}(4)-\mathrm{C}(26)$	$1.201(3)$
$\mathrm{O}(5)-\mathrm{C}(26)$	$1.336(3)$
$\mathrm{O}(5)-\mathrm{C}(27)$	$1.483(3)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.275(3)$
$\mathrm{C}(1)-\mathrm{C}(18)$	$1.465(3)$
$\mathrm{C}(1)-\mathrm{C}(26)$	$1.538(3)$
$\mathrm{C}(1)-\mathrm{H}(1)$	1.0000
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.488(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.394(3)$
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.402(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.391(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.380(4)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.389(4)$
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.372(4)$
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500
$\mathrm{C}(8)-\mathrm{H}(8)$	$1.397(3)$
$\mathrm{C}(9)-\mathrm{C}(10)$	1.9500
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.412(3)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.414(3)$
$\mathrm{C}(10)-\mathrm{C}(15)$	$1.387(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.386(4)$
$\mathrm{C}(11)-\mathrm{H}(11)$	C
$\mathrm{C}(12)-\mathrm{C}(13)$	C
$\mathrm{C}(12)-\mathrm{C}(16)$	$\mathrm{C}(13)-\mathrm{C}(14)$
$\mathrm{C}(13)-\mathrm{H}(13)$	

$\mathrm{C}(14)-\mathrm{C}(17)$	$1.511(3)$
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9800
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9800
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9800
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9800
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	0.9800
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.193(3)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.437(3)$
$\mathrm{C}(20)-\mathrm{C}(25)$	$1.394(3)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.397(3)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.386(4)$
$\mathrm{C}(21)-\mathrm{H}(21)$	0.9500
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.371(4)$
$\mathrm{C}(22)-\mathrm{H}(22)$	0.9500
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.378(4)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.387(3)$
$\mathrm{C}(24)-\mathrm{H}(24)$	0.9500
$\mathrm{C}(25)-\mathrm{H}(25)$	0.9500
$\mathrm{C}(27)-\mathrm{C}(34)$	$1.518(3)$
$\mathrm{C}(27)-\mathrm{C}(28)$	$1.523(3)$
$\mathrm{C}(27)-\mathrm{C}(35)$	$1.528(3)$
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.389(3)$
$\mathrm{C}(28)-\mathrm{C}(33)$	$1.393(3)$
$\mathrm{C}(29)-\mathrm{C}(30)$	$1.391(4)$
$\mathrm{C}(29)-\mathrm{H}(29)$	0.9500
$\mathrm{C}(30)-\mathrm{C}(31)$	$1.387(4)$
$\mathrm{C}(30)-\mathrm{H}(30)$	0.9500
$\mathrm{C}(31)-\mathrm{C}(32)$	$1.377(4)$
$\mathrm{C}(31)-\mathrm{H}(31)$	C
$\mathrm{C}(32)-\mathrm{C}(33)$	C
$\mathrm{C}(32)-\mathrm{H}(32)$	$\mathrm{C}(33)-\mathrm{H}(33)$
$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$

$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	0.9800
$\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~A})$	0.9800
$\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~B})$	0.9800
$\mathrm{C}(35)-\mathrm{H}(35 \mathrm{C})$	0.9800
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(3)$	116.75(10)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	103.47(10)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{N}(1)$	110.20(10)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(9)$	109.04(10)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(9)$	111.33(11)
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(9)$	105.18(10)
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)$	115.57(17)
$\mathrm{C}(26)-\mathrm{O}(5)-\mathrm{C}(27)$	120.38(17)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{S}(1)$	122.52(16)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(18)$	107.53(19)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(26)$	111.82(17)
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(26)$	107.46(18)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	110.0
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{H}(1)$	110.0
$\mathrm{C}(26)-\mathrm{C}(1)-\mathrm{H}(1)$	110.0
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	118.8(2)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	130.9(2)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	110.30(19)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	119.3(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	120.4(2)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	120.3(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.2(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{I}(1)$	119.01(18)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{I}(1)$	120.83(17)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	119.7(2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	120.2
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	120.2
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.6(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	119.7
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	119.7
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	120.1(2)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	119.9
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	119.9

$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$120.2(2)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.9
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8)$	119.9
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	$121.3(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{S}(1)$	$117.19(17)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{S}(1)$	$121.48(17)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$118.1(2)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)$	$117.4(2)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	$124.5(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$122.1(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	118.9
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	118.9
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$118.4(2)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(16)$	$120.5(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(16)$	$121.1(3)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$122.8(2)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	118.6
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	118.6
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$117.2(2)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(17)$	$116.8(2)$
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(17)$	$126.0(2)$
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(12)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(14)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.5
$\mathrm{C}(14)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{C}(14)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5

$\mathrm{H}(17 \mathrm{~B})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(1)$	$171.5(3)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$179.7(3)$
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(21)$	$119.2(2)$
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(19)$	$120.6(2)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$120.2(2)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$120.8(2)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	119.6
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	119.6
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$117.9(2)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	121.1
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	121.1
$\mathrm{~F}(1)-\mathrm{C}(23)-\mathrm{C}(22)$	$118.5(2)$
$\mathrm{F}(1)-\mathrm{C}(23)-\mathrm{C}(24)$	$118.0(2)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$123.5(2)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$118.0(2)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	121.0
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	121.0
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(20)$	$120.5(2)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	119.7
$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{H}(25)$	119.7
$\mathrm{O}(4)-\mathrm{C}(26)-\mathrm{O}(5)$	$127.8(2)$
$\mathrm{O}(4)-\mathrm{C}(26)-\mathrm{C}(1)$	$124.3(2)$
$\mathrm{O}(5)-\mathrm{C}(26)-\mathrm{C}(1)$	$107.73(18)$
$\mathrm{O}(5)-\mathrm{C}(27)-\mathrm{C}(34)$	$102.44(18)$
$\mathrm{O}(5)-\mathrm{C}(27)-\mathrm{C}(28)$	$109.85(18)$
$\mathrm{C}(34)-\mathrm{C}(27)-\mathrm{C}(28)$	$110.4(2)$
$\mathrm{O}(5)-\mathrm{C}(27)-\mathrm{C}(35)$	$109.70(19)$
$\mathrm{C}(34)-\mathrm{C}(27)-\mathrm{C}(35)$	$110.5(2)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(35)$	$113.40(19)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(33)$	$118.5(2)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	$122.4(2)$
$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{C}(27)$	$119.0(2)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$120.6(2)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29)$	119.7
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29)$	119.7
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	$120.5(2)$
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30)$	119.7
C	

$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30)$	119.7
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$	$119.2(2)$
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{H}(31)$	120.4
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31)$	120.4
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$120.5(2)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32)$	119.8
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{H}(32)$	119.8
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(28)$	$120.7(2)$
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(33)$	119.6
$\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{H}(33)$	119.6
$\mathrm{C}(27)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	109.5
$\mathrm{C}(27)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	109.5
$\mathrm{H}(34 \mathrm{~A})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	109.5
$\mathrm{C}(27)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5
$\mathrm{H}(34 \mathrm{~A})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5
$\mathrm{H}(34 \mathrm{~B})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5
$\mathrm{C}(27)-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~A})$	109.5
$\mathrm{C}(27)-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~B})$	109.5
$\mathrm{H}(35 \mathrm{~A})-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~B})$	109.5
$\mathrm{C}(27)-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{C})$	109.5
$\mathrm{H}(35 \mathrm{~A})-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{C})$	109.5
$\mathrm{H}(35 \mathrm{~B})-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{C})$	109.5

Symmetry transformations used to generate equivalent atoms:

Table S13. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1 4 n}$. The anisotropic displacement factor exponent takes the form: $-2 \square^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U11	U22	U33	U^{23}	U13	U12
I(1)	21(1)	26(1)	17(1)	3(1)	O(1)	6(1)
S(1)	13(1)	12(1)	18(1)	-2(1)	-2(1)	1(1)
F(1)	45(1)	18(1)	35(1)	-11(1)	-6(1)	10(1)
$\mathrm{O}(1)$	12(1)	12(1)	20(1)	-4(1)	2(1)	-1(1)
$\mathrm{O}(2)$	13(1)	21(1)	29(1)	-5(1)	-3(1)	4(1)
$\mathrm{O}(3)$	23(1)	16(1)	20(1)	1(1)	-2(1)	1(1)
$\mathrm{O}(4)$	20(1)	18(1)	16(1)	2(1)	1(1)	-3(1)
$\mathrm{O}(5)$	13(1)	16(1)	15(1)	0 (1)	O(1)	-2(1)
$\mathrm{N}(1)$	13(1)	13(1)	17(1)	-4(1)	-1(1)	0(1)
C(1)	13(1)	12(1)	17(1)	-1(1)	1(1)	-3(1)
C(2)	16(1)	12(1)	14(1)	-1(1)	-2(1)	0 (1)
C(3)	12(1)	13(1)	18(1)	-2(1)	0 (1)	0 (1)
C(4)	15(1)	15(1)	20(1)	-3(1)	O(1)	2(1)
C(5)	13(1)	22(1)	30(1)	-6(1)	-3(1)	0(1)
C(6)	13(1)	18(1)	42(2)	-3(1)	5(1)	-2(1)
C(7)	23(1)	18(1)	30(1)	6(1)	7(1)	4(1)
C(8)	18(1)	20(1)	23(1)	0 (1)	-2(1)	4(1)
C(9)	15(1)	14(1)	17(1)	-2(1)	1(1)	3(1)
C(10)	16(1)	18(1)	21(1)	-2(1)	5(1)	4(1)
C(11)	25(1)	23(1)	18(1)	0(1)	4(1)	5(1)
C(12)	28(2)	25(1)	21(1)	-5(1)	-3(1)	7(1)
C(13)	22(1)	19(1)	25(1)	-8(1)	-5(1)	1(1)
C(14)	16(1)	14(1)	22(1)	-5(1)	1(1)	0 (1)
C(15)	21(1)	24(1)	26(1)	0(1)	6(1)	-4(1)
C(16)	48(2)	41(2)	23(1)	-5(1)	-9(1)	0 (1)
C(17)	31(1)	18(1)	26(1)	-4(1)	O(1)	-9(1)
C(18)	15(1)	16(1)	19(1)	0(1)	-2(1)	-2(1)
C(19)	14(1)	17(1)	18(1)	1(1)	-1(1)	-1(1)
C(20)	18(1)	15(1)	17(1)	-3(1)	-4(1)	3(1)
C(21)	24(1)	19(1)	22(1)	-1(1)	2(1)	0 (1)
C(22)	25(1)	25(1)	23(1)	-5(1)	3(1)	5(1)

$\mathrm{C}(23)$	$28(1)$	$15(1)$	$25(1)$	$-6(1)$	$-8(1)$	$7(1)$
$\mathrm{C}(24)$	$42(2)$	$15(1)$	$26(1)$	$-1(1)$	$2(1)$	$-3(1)$
$\mathrm{C}(25)$	$31(2)$	$19(1)$	$24(1)$	$-2(1)$	$6(1)$	$-2(1)$
$\mathrm{C}(26)$	$16(1)$	$11(1)$	$16(1)$	$-6(1)$	$0(1)$	$0(1)$
$\mathrm{C}(27)$	$11(1)$	$17(1)$	$19(1)$	$-1(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(28)$	$17(1)$	$13(1)$	$17(1)$	$1(1)$	$1(1)$	$-3(1)$
$\mathrm{C}(29)$	$19(1)$	$20(1)$	$26(1)$	$-5(1)$	$-5(1)$	$1(1)$
$\mathrm{C}(30)$	$24(1)$	$22(1)$	$34(1)$	$-11(1)$	$-2(1)$	$4(1)$
$\mathrm{C}(31)$	$33(2)$	$23(1)$	$24(1)$	$-7(1)$	$-3(1)$	$-4(1)$
$\mathrm{C}(32)$	$27(2)$	$28(1)$	$21(1)$	$-1(1)$	$-8(1)$	$-2(1)$
$\mathrm{C}(33)$	$21(1)$	$20(1)$	$22(1)$	$0(1)$	$-3(1)$	$1(1)$
$\mathrm{C}(34)$	$16(1)$	$32(1)$	$23(1)$	$1(1)$	$3(1)$	$-1(1)$
$\mathrm{C}(35)$	$22(1)$	$16(1)$	$29(1)$	$-4(1)$	$-2(1)$	$3(1)$

Table S14. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1 4 n}$.
\qquad
\qquad

H(1)	2008	7124	5638	17
H(5)	-3338	4446	5300	26
H(6)	-3738	3498	6074	29
H(7)	-2074	3434	6786	28
H(8)	-10	4325	6729	24
H(11)	2283	4896	3683	26
H(13)	-392	2848	4193	26
H(15A)	3326	5765	4926	35
H(15B)	3563	5824	4272	35
H(15C)	4466	5088	4634	35
H(16A)	-602	3884	3228	56
H(16B)	477	3012	3164	56
H(16C)	972	4070	3009	56
H(17A)	882	2229	5349	37
H(17B)	-635	2359	5066	37
H(17C)	-164	3050	5558	37
H(21)	-658	9282	7230	26
H(22)	-1174	10794	7591	29
H(24)	1396	12000	6446	33
H(25)	1910	10486	6084	29
H(29)	3820	8558	6773	26
H(30)	3970	9535	7551	32
H(31)	5896	9410	8153	32
H(32)	7680	8311	7966	30
H(33)	7523	7314	7197	25
H(34A)	6487	7168	5625	36
H(34B)	7544	7564	6088	36
H(34C)	6283	8222	5866	36
H(35A)	5476	5940	6868	33
H(35B)	6987	6076	6580	33

$\mathrm{H}(35 \mathrm{C})$	5657	5736	6221	33

Table S15.Torsion angles [${ }^{\circ}$] for $\mathbf{1 4 n}$.

$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$-168.80(19)$
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$-43.3(2)$
$\mathrm{C}(9)-\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$76.8(2)$
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(18)$	$176.65(18)$
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(26)$	$-65.6(2)$
$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	$176.35(15)$
$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-3.8(3)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	$8.2(3)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-171.68(18)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-97.4(3)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$82.4(3)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$83.4(3)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$-96.7(2)$
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-0.9(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$179.9(2)$
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{I}(1)$	$178.36(17)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{I}(1)$	$-0.8(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$1.5(3)$
$\mathrm{I}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-177.77(18)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-1.1(4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$0.1(4)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$0.5(4)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$-0.1(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$179.1(2)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$-45.3(2)$
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$-175.57(16)$
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$65.08(19)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(14)$	$133.20(18)$
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(14)$	$3.0(2)$
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(14)$	$-116.38(18)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-1.1(3)$
$\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$177.48(18)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	$179.7(2)$
$\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	$-1.7(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$0.4(4)$
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$179)$

$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	1.1(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(16)$	-178.1(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-2.1(4)
$\mathrm{C}(16)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	177.1(2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	1.5(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(17)$	-176.3(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	0.1(3)
$\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	-178.34(17)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(17)$	177.7(2)
$\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(17)$	-0.7(3)
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	-0.2(4)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	179.9(2)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	-0.4(4)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{F}(1)$	-179.2(2)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	1.1(4)
$\mathrm{F}(1)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	179.2(3)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	-1.0(4)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(20)$	0.3(4)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	0.3(4)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	-179.9(3)
$\mathrm{C}(27)-\mathrm{O}(5)-\mathrm{C}(26)-\mathrm{O}(4)$	-0.6(3)
$\mathrm{C}(27)-\mathrm{O}(5)-\mathrm{C}(26)-\mathrm{C}(1)$	175.19(17)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(26)-\mathrm{O}(4)$	-28.5(3)
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(26)-\mathrm{O}(4)$	89.3(3)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(26)-\mathrm{O}(5)$	155.53(17)
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(26)-\mathrm{O}(5)$	-86.7(2)
$\mathrm{C}(26)-\mathrm{O}(5)-\mathrm{C}(27)-\mathrm{C}(34)$	172.79(19)
$\mathrm{C}(26)-\mathrm{O}(5)-\mathrm{C}(27)-\mathrm{C}(28)$	-69.9(2)
$\mathrm{C}(26)-\mathrm{O}(5)-\mathrm{C}(27)-\mathrm{C}(35)$	55.4(3)
$\mathrm{O}(5)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	-13.2(3)
$\mathrm{C}(34)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	99.0(3)
$\mathrm{C}(35)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	-136.4(2)
$\mathrm{O}(5)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(33)$	170.2(2)
$\mathrm{C}(34)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(33)$	-77.5(3)
$\mathrm{C}(35)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(33)$	47.1(3)
$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	-1.9(4)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	-178.5(2)
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	1.0(4)

$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	$0.4(4)$
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$-1.0(4)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(28)$	$0.1(4)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(32)$	$1.4(4)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(32)$	$178.1(2)$

Symmetry transformations used to generate equivalent atoms:

Citations

A. J. M. Duisenberg, L. M. J. Kroon-Batenburg, A. M. M. Schreurs, J. Appl. Crystallogr. (2003), 36, 220-229.
R. H. Blessing, Acta Cryst., (1995), A51, 33-38.

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, Acta Cryst., (2015), A71, 3-8.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C71, 3-8.
O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, J. Appl. Cryst., (2009), 42, 339-341.

9. References

[1] C. Wu, E. R. Decker, N. Blok, H. Bui, Q. Chen, B. Raju, A. R. Bourgoyne, V. Knowles, R. J. Biediger, R. V. Market, et al., J. Med. Chem. 1999, 42, 4485-4499.
[2] A. S. Deeming, C. J. Russell, M. C. Willis, Angew. Chemie - Int. Ed. 2016, 55, 747750.
[3] J. C. Towson, F. A. Davis, S. Lal, P. J. Carroll, M. C. Weismiller, J. Am. Chem. Soc. 2005, 110, 8477-8482.
[4] P. Müller, P. Polleux, Helv. Chim. Acta 1994, 77, 645-654.
[5] M. P. Doyle, V. Bagheri, T. J. Wandless, N. K. Ham, D. A. Brinker, C. T. Eagle, K. L. Loh, J. Am. Chem. Soc. 1990, 112, 1906-1912.
[6] K. Fukushima, Y. Q. Lu, T. Ibata, Bull. Chem. Soc. Jpn. 1996, 69, 3289-3295.
[7] M. P. Doyle, A. van Oeveren, L. J. Westrum, T. W. Clayton, M. N. Protopopova, J. Am. Chem. Soc. 1991, 113, 8982-8984.
[8] D. A. Nicewicz, J. S. Johnson, J. Am. Chem. Soc. 2005, 127, 6170-6171.
[9] H. W. Xu, G. Y. Li, M. K. Wong, C. M. Che, Org. Lett. 2005, 7, 5349-5352.
[10] T. Torna, J. Shimokawa, T. Fukuyama, Org. Lett. 2007, 9, 3195-3197.
[11] D. P. Hari, J. Waser, J. Am. Chem. Soc. 2016, 138, 2190-2193.
[12] M. P. Sibi, M. Liu, Org. Lett. 2000, 2, 3393-3396.
[13] A. H. Cherney, S. E. Reisman, J. Am. Chem. Soc. 2014, 136, 14365-14368.
[14] S. E. Denmark, G. M. Stiff, J. Org. Chem. 2000, 65, 5875-5878.
[15] G. Chollet, F. Rodriguez, E. Schulz, Org. Lett. 2006, 8, 539-542.
[16] G. Chollet, M. G. Guillerez, E. Schulz, Chem. - A Eur. J. 2007, 13, 992-1000.
[17] S. S. Lee, S. Hadinoto, J. Y. Ying, Adv. Synth. Catal. 2006, 348, 1248-1254.
[18] D. F. González, J. P. Brand, J. Waser, Chem. - A Eur. J. 2010, 16, 9457-9461.
[19] D. Fernández González, J. P. Brand, R. Mondière, J. Waser, Adv. Synth. Catal. 2013, 355, 1631-1639.
[20] R. Frei, J. Waser, J. Am. Chem. Soc. 2013, 135, 9620-9623.
[21] J. P. Brand, J. Charpentier, J. Waser, Angew. Chemie - Int. Ed. 2009, 48, 9346-9349.
10. Spectra of new compounds.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 3a

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3a

IR of compound 3a

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 b}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3b

IR of compound 3b

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 c}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3c

\qquad

IR of compound $\mathbf{3 c}$

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 d}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 d}$

IR of compound 3d

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 e}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 e}$

IR of compound 3e

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 f}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 f}$

IR of compound $\mathbf{3 f}$

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 a}$

${ }^{\mathbf{1 3}} \mathbf{C}$-NMR (100 MHz, CDCl_{3}) of compound 2a

IR of compound 2a

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 b}$

${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2b

IR of compound 2b

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 c}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2c

IR of compound 2c

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 d}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2d

IR of compound 2d

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 e}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2e

IR of compound $\mathbf{2 e}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 f}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 f}$

IR of compound $\mathbf{2 f}$

$$
\begin{array}{ll}
\text { TimePrinted: } 10 / 12 / 2015 _16: 16: 5 \\
\hline
\end{array}
$$

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 g}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 g}$

IR of compound $\mathbf{2 g}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 h}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 h}$

IR of compound $\mathbf{2 h}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 i}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 i}$

IR of compound $\mathbf{2 i}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 j}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2} \mathbf{j}$

IR of compound $\mathbf{2 j}$

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 k}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 k}$

IR of compound $\mathbf{2 k}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $2 \boldsymbol{1}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 I}$

IR of compound $\mathbf{2 I}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 m}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 m}$

IR of compound $\mathbf{2 m}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 n}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 n}$

IR of compound $\mathbf{2 n}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 o}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 o}$

IR of compound $\mathbf{2 0}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 p}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 p}$

T			150			1	110	10	T	1	70	1	1	10	1	1	
180	170	160	150	140	130	120	110	100	90 $p p m$	80	70	60	50	40	30	20	10

IR of compound $\mathbf{2 p}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 q}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 q}$

IR of compound $\mathbf{2 q}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 r}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 r}$

IR of compound $\mathbf{2 r}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 s}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2s

IR of compound 2s

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 u}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 u}$

IR of compound $\mathbf{2 u}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 v}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 v}$

IR of compound $\mathbf{2 v}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 a}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 14a

IR of compound 14a

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 b}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 b}$

HPLC of compound 14b

IR of compound 14b

${ }^{\mathbf{1}} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound $\mathbf{1 4 c}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 c}$

HPLC of compound 14c

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	13.469	MM	0.4316	4672.41211	180.43593	50.3740
2	14.575	MM	0.4915	4603.03125	156.08658	49.6260

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.447	MM	0.3915	1346.25659	57.30646	10.0089
2	14.407	MM	0.5109	1.21044 e 4	394.85516	89.9911

IR of compound 14 c

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound $\mathbf{1 4 d}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 d}$

IR of compound 14d

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 e}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 e}$

T	T	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
180	170	160	150	140	130	120	110	100	$\begin{array}{r} 90 \\ \mathrm{ppm} \end{array}$	80	70	60	50	40	30	20	10

HPLC of compound 14e

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	16.407	MM	0.4906	5283.46338	179.49147	49.4079
2	21.020		0.7325	5410.10693	123.09530	50.5921

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[\mathrm{~min}]$	$[$ min]	[mAU*s]	[mAU]	$\%$

IR of compound 14 e

${ }^{\mathbf{1}} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 f}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 f}$

HPLC of compound $\mathbf{1 4 f}$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	17.652		0.6013	2790.95996	77.36147	50.0213
2	25.680	MM	0.8653	2788.58301	53.71205	49.978

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*}\right]} \end{gathered}$	Height [mAU]	Area \%
1	17.783	MM	0.5595	167.04128	4.97625	2.8567
2	25.538	MM	0.9092	5680.30566	104.12856	97.1433

IR of compound $\mathbf{1 4 f}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 g}$

${ }^{13} \mathbf{C}$-NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 g}$

HPLC of compound $\mathbf{1 4 g}$

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[\mathrm{~min}]$	$[\mathrm{min}]$	[mAU*s]	[mAU]	$\%$

IR of compound $\mathbf{1 4 g}$

${ }^{\mathbf{1}} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 h}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 h}$

HPLC of compound 14h

| Peak
 RetTime | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# Type | Width | Area | Height | Area |
| [min] | [min] | [mAU*s] | [mAU] | $\%$ |

Peak RetTime Type	Width	Area	Height	Area	
$\#$	[min]	[min]	[mAU*s]	[mAU]	$\%$

IR of compound $\mathbf{1 4 h}$

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 i}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 i}$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	15.340	MM	0.4658	231.24036	8.27390	3.1422
2	17.520	MM	0.5354	7128.05273	221.89154	96.8578

IR of compound 14i

${ }^{\mathbf{1}} \mathbf{H} \mathbf{- N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4} \mathbf{j}$

		$\begin{aligned} & \text { Y } \\ & \stackrel{\circ}{-} \end{aligned}$		$\stackrel{T}{4}$	$\begin{aligned} & \text { H } \\ & \text { No } \\ & \text { No } \end{aligned}$							$\begin{aligned} & \upharpoonright \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & 4 \\ & \hline \\ & \hline 6 \end{aligned}$	$\begin{aligned} & \text { T } \\ & \stackrel{1}{\circ} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$				
э.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5		2.0	1.5	1.0	5
									ppm									S

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 j}$

| Peak
 RetTime Type | Width
 $\#$ | Area
 [min] | [min] | [mAU*s] | Height
 $[\mathrm{mAU}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | | Area |
| :---: |
| $\%$ |

Peak RetTime Type	Width	Area	Height	Area	
$\#$	[min]	[min]	[mAU*s]	[mAU]	$\%$

IR of compound $\mathbf{1 4 j}$

${ }^{\mathbf{1}} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 k}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 k}$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	Area $[\mathrm{mAU} \mathrm{~s}]$	Height [mAU]	Area \%
1	12.502	MM	0.3786	1533.63477	67.50656	13.2100
2	15.667		0.4580	1.00761 e 4	366.67584	86.7900

IR of compound 14 k

${ }^{\mathbf{1}} \mathbf{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 1}$
※

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 I}$

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[$ min]	$[$ min]	[mAU*s]	$[\mathrm{mAU}]$	$\%$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	21.008		0.5967	344.55612	9.62341	2.7690
2	23.759		0.772	1.20989 e 4	260.9765	7.23

IR of compound 141

${ }^{\mathbf{1}} \mathbf{H} \mathbf{- N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 m}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 m}$

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[\mathrm{~min}]$	$[\mathrm{min}]$	$\left[\mathrm{mAU}^{*} \mathrm{~s}\right]$	$[\mathrm{mAU}]$	$\%$

Peak RetTime Type	Width	Area	Height	Area	
\#	[min]	[min]	[mAU*s]	[mAU]	$\%$

IR of compound $\mathbf{1 4 m}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 n}$

${ }^{13} \mathbf{C}$-NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 n}$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	10.382	MM	0.3713	2388.39575	107.19816	50.1287
2	16.249		0.9090	2376.12988	43.56669	49.871

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	10.600	MM	0.3594	144.15353	6.68413	3.9618
2	16.511	MM	0.9283	3494.47144	62.73778	96.0382

IR of compound $\mathbf{1 4 n}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 o}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 0}$

HPLC of compound $\mathbf{1 4 0}$

Peak \#	RetTime [min]	Type	Width [min]	Area $[\mathrm{mAU} * \mathrm{~s}]$	Height [mAU]	Area \%
1	8.847		0.3256	939.07904	48.06764	7.6420
2	16.087	MM	0.9054	1.13493 e 4	208.90898	92.3580

IR of compound 140

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4} \mathbf{p}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 p}$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area $[\mathrm{mAU} * \mathrm{~s}]$	Height [mAU]	Area \%
1	17.841		0.5671	1871.95227	55.01223	50.4282
2	20.613		0.6431	1840.15845	47.68807	49.5718

Peak \#	RetTime [min]	Type	Width [min]	Area $\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]$	Height [mAU]	Area \%
1	18.415	MM	0.5903	261.69855	7.38915	3.4577
2	21.221		0.6919	7306.97656	176.01575	96.5423

IR of compound $\mathbf{1 4 p}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 q}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 q}$

HPLC of compound $\mathbf{1 4 q}$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area $[\mathrm{mAU} * \mathrm{~s}]$	Height [mAU]	Area \%
1	10.301		0.3411	3827.33472	187.01433	49.4597
2	15.598		0.8060	3910.95850	80.87256	50.5403

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	10.595	MM	0.3264	936.05255	47.79220	4.1735
2	15.874		0.8506	2.14922 e 4	421.11047	95.8265

IR of compound $\mathbf{1 4 q}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 r}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 r}$

HPLC of compound $\mathbf{1 4 r}$

Peak \#	RetTime [min]	Type	Width [min]	Area $[\mathrm{mAU} * \mathrm{~s}]$	Height [mAU]	Area \%
1	22.913		0.6632	639.87933	16.08115	6.4491
2	29.239	BB	0.8275	9282.15332	169.34767	93.5509

IR of compound $\mathbf{1 4 r}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 s}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 s}$

HPLC of compound 14s

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[\mathrm{~min}]$	$[$ min]	[mAU*s]	[mAU]	$\%$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	9.875	MM	0.2759	314.46310	18.99383	5.0938
2	16.390	MM	0.5181	5858.99707	188.49220	94.9062

IR of compound $\mathbf{1 4 s}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 t}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 t}$

HPLC of compound 14t

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.948	MM	0.3254	563.42926	28.85790	49.9662
2	16.224		0.4871	564.19244	19.30488	50.0338

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	10.781	MM	0.2844	290.10907	17.00128	4.1713
2	15.841		0.4981	6664.76611	223.00455	95.8287

IR of compound 14t

${ }^{\mathbf{1}} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound $\mathbf{1 4 u}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 u}$

HPLC of compound 14u

IR of compound $\mathbf{1 4 u}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 v}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 v}$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text {] }} \end{gathered}$	Height [mAU]	Area \%
1	12.343		0.3826	334.82959	14.58541	3.6676
2	15.654		0.5123	8794.47949	286.09067	96.3324

IR of compound $\mathbf{1 4 v}$

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound $\mathbf{1 4 w}$

${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 w}$

HPLC of compound 14w

| Peak RetTime Type | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# Width | Area | Height | Area | |
| [min] | $[$ min] | [mAU*s] | [mAU] | $\%$ |

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	Area $\text { [mAU*s }]$	Height [mAU]	Area \%
1	17.866	MM	0.5084	350.58383	11.49350	4.7672
2	23.222	MM	0.7396	7003.56445	157.82423	95.2328

IR of compound 14w

${ }^{\mathbf{1}} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound $\mathbf{1 4 x}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 x}$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	16.264		0.4934	855.70081	28.90598	50.6988
2	19.730		0.5889	832.11328	23.54800	49.3012

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	16.757		0.4662	141.22705	5.04856	5.1396
2	20.420		0.6148	2606.61377	70.65749	94.8604

IR of compound $\mathbf{1 4 x}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 y}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 y}$

HPLC of compound $\mathbf{1 4 y}$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area $[\mathrm{mAU} * \mathrm{~s}]$	Height [mAU]	Area \%
1	14.075	MM	0.4233	1251.21790	49.26518	50.7567
2	17.207		0.4999	1213.90906	40.46896	49.2433

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[\mathrm{~min}]$	$[$ min]	[mAU*s]	[mAU]	$\%$

IR of compound $\mathbf{1 4 y}$

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 z}$

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 z}$

HPLC of compound $\mathbf{1 4 z}$

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[\mathrm{~min}]$	$[$ min]	[mAU*s]	[mAU]	$\%$

IR of compound $\mathbf{1 4 z}$

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 14aa

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 14aa

HPLC of compound 14aa

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	9.391	MM	0.2783	1196.40881	71.66096	49.8421
2	12.631		0.3858	1203.99158	52.00711	50.1579

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[$ min]	$[$ min]	[mAU*s]	[mAU]	$\%$

IR of compound 14aa

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 14ab

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 14ab

HPLC of compound 14ab

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	11.606	MM	0.4214	685.57721	27.11613	50.2867
2	16.550	MM	0.9858	677.75977	11.45867	49.7133

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{* s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	11.753	MM	0.4029	434.48349	17.97125	3.6237
2	16.510	MM	1.0126	1.15554 e 4	190.18657	96.3763

IR of compound 14ab

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 14ac

${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 14ac

[^0]
HPLC of compound 14ac

Peak	Ret Time Type	Width	Area	Height	Area
\#	[min]	[min]	[mAU*s]	[mAU]	$\%$

IR of compound 14ac

[^0]:

