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Abstract: Limited time-resolution in microscopy is an obstacle to many biological studies.
Despite recent advances in hardware, digital cameras have limited operation modes that constrain
frame-rate, integration time, and color sensing patterns. In this paper, we propose an approach to
extend the temporal resolution of a conventional digital color camera by leveraging a multi-color
illumination source. Our method allows for the imaging of single-hue objects at an increased
frame-rate by trading spectral for temporal information (while retaining the ability to measure
base hue). It also allows rapid switching to standard RGB acquisition. We evaluated the feasibility
and performance of our method via experiments with mobile resolution targets. We observed a
time-resolution increase by a factor 2.8 with a three-fold increase in temporal sampling rate. We
further illustrate the use of our method to image the beating heart of a zebrafish larva, allowing
the display of color or fast grayscale images. Our method is particularly well-suited to extend the
capabilities of imaging systems where the flexibility of rapidly switching between high frame
rate and color imaging are necessary.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Many biological processes are highly dynamic and a low time-resolution in microscopy seriously
limits their study [1]. Several recent developments in both illumination and detection technology
allow pushing towards higher frame rates. Light emitting diodes (LEDs), which are bright yet
emit little heat, are both cost-effective and reliable [2]. Several open-source projects have made
building custom microscopes increasingly accessible [2–4] and facilitated hardware control
outside of standard operating modes [5,6]. Despite these developments, many imaging setups
remain constrained by the achievable frame-rate, integration time, and color sensing patterns,
because digital cameras have limited operation modes.
In this paper, we propose to extend the temporal resolution of a conventional digital color

camera (whose frames can be externally-triggered) by leveraging a multi-color LED illumination
source and computational post-processing. Our method assumes that the observed object is of a
single hue (such as obtained by use of a single stain or dye) and embeds time information into
each acquired frame by spectrally encoding temporal light patterns that are then collected by a
color camera. Following acquisition, the images undergo an unmixing procedure that increases
the frame-rate and effective temporal resolution. Our approach is related or combines approaches
leveraged for other imaging methods, which we briefly review below.
To increase the (temporal and spatial) resolution beyond what cameras can offer directly,

several computational approaches have been proposed, often relying on multiple simultaneous
observations of a signal, which are then fused to reconstruct a high-resolution version of the
signal of interest [7–10]. Despite the resolution gains, these methods require availability of
multiple cameras, which can be hard to integrate in a standard microscopy setup, or which may
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not be compatible in low photon count situations. Other methods make assumptions on the signal
structure itself, for instance assuming the signal has a sparse representation in a function basis
[11–13] or relying on the repeatable nature of the imaged motion [14,15]. Alternative approaches,
which require no prior assumptions include a method by Bub et al. [16], who proposed using a
modified camera, whose pixels have staggered exposure times, which allows for a flexible tradeoff
between time and spatial resolution. This method offers great possibilities for microscopy, yet
with the drawback that it requires a modified camera, requiring low-level hardware control.

Controlled illumination is a core aspect of any optical microscope’s performance, as demon-
strated by Köhler over a century ago [17]. In particular, structured illumination has been proposed
as a way to access high-frequency components of the object via multiple modulations [18–22].
The modulated signals are combined computationally, and numerical methods have focused on
aspects such as taking into account experimental artefact [23], performing structured illumination
without precise knowledge of the projected pattern [24], or lowering the number of required
images [25]. Our proposed method leverages ideas from structured illumination, albeit in the
temporal domain. Our method also relies on unmixing spectrally encoded signals, which bears
similarities with multi-spectral unmixing in fluorescence microscopy [26].
In order to improve temporal resolution and reduce motion blur, several methods have been

proposed that take advantage of the availability of controllable illumination sources driven by rapid
controllers that work in synchrony with the camera, followed by computational post-processing.
For example, Staudt et al. [27] used short light pulses (stroboscopy) to reduce motion blur
(while remaining limited by the camera framerate) when imaging the beating heart. Gorthi et
al. [28] proposed a method for linear motion deblurring for fluorescence microscopy based on
the fluttered shutter principle [29] by using a pseudo-random temporal illumination sequence,
allowing to reduce motion blur by a factor of 50. This improvement is, however, only possible in
the case of linear motions, which are common in cytometry, yet might not be applicable to more
general biological motions.
Other active illumination methods have also been proposed in fields other than microscopy.

Shiba et al. in [30] used an active illumination to project six dense dot patterns during an
image acquisition duration and recover both depth and speed of elements in the imaged scene
through computation. Rangarajan et al. in [31] presented active computational imaging methods
to do spatial super-resolution as well as depth-estimation, via the projection of space-varying
illumination patterns.
The main contributions of the present paper are:

1. a procedure to encode temporal details by illuminating each frame with colored light
patterns;

2. a reconstruction method to achieve temporal superresolution based on the encoded
measurements;

3. the characterization of our method’s performance and its robustness both on synthetic and
experimental data.

The paper is organized as follows: in Section 2 we present the signal and imaging models and
detail the assumptions on the image acquisition and the signal. In Section 3, we derive our
superresolution method and present a color calibration procedure to adjust the free parameters
of our method and retrieve base hues. In Section 4 we characterize our method in terms of
resolution gain and robustness and demonstrate its applicability for imaging biological samples
in microscopy in Section 5. We discuss these results in Section 6 before concluding in Section 7.
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2. Imaging model

We consider an imaging system consisting of L co-located illumination light sources and a color
camera with C color channels. We assume that the camera has a global shutter, meaning that
each pixel collects light over the same, fixed interval of time. We further consider that each light
source has a fixed spectrum while the overall intensity can be varied over the duration of the
camera shutter time. The timing of the illumination is linked to the camera. The imaged scene is
assumed to be of a single hue and the optical parameters are assumed to be constant over the field
of view. Figure 1 schematically depicts an example arrangement for three illumination sources
and a color camera with a Bayer pattern.
Our method operates on each pixel and each frame independently. We can therefore proceed

with the derivation of our method by considering a single color pixel, denoted by the vector
Y = (Y1, . . . ,YC)>, whose C color components can be modeled as:

Yc =
∫ E

0

(
L∑̀
=1
γ`,cx(t)s`(t)

)
dt + Dc (1)

= Dc +

L∑̀
=1
γ`,c

∫ E

0
x(t)s`(t)dt, (2)

where x(t), t ∈ [0, E) is the imaged time signal (which we wish to recover) at the location in the
scene corresponding to the pixel, E is the exposure duration, s`(t) ∈ R+0 is the intensity function
of the `th active light over time, Dc ∈ R+0 is an electronic bias for channel c and γ`,c ∈ R+0 is the
spectral impact of the ` th light source on channel c. Within the duration of one movie frame, we
model the imaged signal x(t) as a piecewise constant signal:

x(t) =
Q∑
i=1

x[i]β0(Q · (t − i)), (3)

with Q an integer number of steps over the exposure time, x[i], i = 1, . . . ,Q, the values of x(t) at
each step, and

β0(t) =
{
1 if 0 ≤ t < E

Q
0 otherwise,

(4)

the causal B-spline of degree 0 (box function). Given this model for the signal x(t), Eq. (1) can
be rewritten as:

Yc = Dc +

L∑̀
=1
γ`,c

∫ E

0

Q∑
i=1

x[i]β0(Q · (t − i))s`(t)dt

= Dc +

L∑̀
=1
γ`,c

Q∑
i=1

x[i]
∫ E

0
β0(Q · (t − i))s`(t)dt

= Dc +

L∑̀
=1
γ`,c

Q∑
i=1

x[i]S`[i],

(5)

with the average light intensity S`[i] in the ith sub-frame interval defined as:

S`[i] =
∫ E

0
β0(Q · (t − i))s`(t)dt

=

∫ i·E/Q

(i−1)·E/Q
s`(t)dt.

(6)
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Fig. 1. (a) Acquisition setup. The moving sample is imaged with three active light sources
si(t). The projection of the scene to the camera is shown with x(t). The color (Bayer) filter
makes each pixel sensitive to a specific spectrum that is independent of the light sources.
Each light source has its own time function, capturing the sample at different times and
encoding this information in different spectra which is then captured by the color sensor in
the hue domain. (b) Example of possible temporal functions for the three light sources. (c)
Real example of acquired data with the depicted system of (a). (d)-(e) Close-ups to the real
acquired data, the Bayer filter is visible. (f) Reconstruction of three grayscale frames from
the acquisition shown in (c).
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With these notations, we can rewrite Eq. (5) in matrix form:

Y = SQΓQx + D, (7)

where x =
(
x[1] · · · x[Q]

)>
is the vector of signal samples, D =

(
D1 · · · DC

)>
is a bias

vector, and SQ contains the time coefficients of the L lights:

SQ =
(
S1
Q . . . S`Q . . . SL

Q

)
C×CQL

, (8)

with:

S`Q =

©«

(S`[1], . . . , S`[Q]) 01×Q . . . 01×Q

01×Q
. . . . . .

...
...

. . . . . . 01×Q

01×Q . . . 01×Q (S`[1], . . . , S`[Q])

ª®®®®®®®®¬C×CQ
. (9)

The matrix Γ is built as:

ΓQ =

[(
Γ1
Q . . . Γ`Q . . . ΓL

Q

)>]
CQL×Q

, (10)

with:
Γ`Q =

[(
γ1,`IQ . . . γc,`IQ . . . γC,`IQ

)>]
CQ×Q

, (11)

where IQ is the identity matrix of size Q × Q and 0m×n a matrix with m rows and n columns of
zeros (for clarity, we have indicated the dimensions of certain matrices as subscripts in a similar
fashion).

3. Methods

3.1. Temporal super-resolution

The super-resolution problem is equivalent to retrieving the signal x from a single color pixel
Y by solving Eq. (7). When the number of channels C is at least equal to the super-resolution
factor Q, we propose to obtain approximate solutions in the least-squares sense by solving the
minimization problem (under the assumption that the data is corrupted by additive white noise)

x? = min
x

Y − D − SQΓQx
2
2 . (12)

When Q ≤ C and Q ≤ L, this minimization problem can be solved efficiently with a number of
numerical methods (e.g. see Chapter 5.3 in [32], p. 236).

3.2. Determination of the system spectral mixing coefficients and electronics offsets

In order to retrieve x? in Eq. (12), given the measured color pixel Y and the user-controlled
illumination pattern SQ, the coefficients in matrix ΓQ and in the bias vector D must be known
beforehand. We propose to determine these coefficients via a calibration procedure in which we
image a static scene with a series of fixed illumination patterns that combine contributions from
one or several LEDs. The static scene is illuminated with P static intensity combinations of the
LEDs. These patterns are fully specified by the operator, who can choose which lights to turn
on or off and who can manually select an area, comprisingM pixels, on which to calibrate the
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system. We first consider a single pixel with a given illumination pattern and set Q = 1 in Eq. (7)
to obtain: [

Y
]
C×1
=

[
S1

]
C×CL

[
Γ1

]
CL×1

[
x
]
1×1
+

[
D
]
C×1

, (13)
which we rearrange as:

Y =
(
xS1 IC

) ©«
Γ1

D
ª®¬ , (14)

where IC is the identity matrix of size C × C. Then we combine similar equations forM pixels
and P illumination patterns to form the full calibration matrix:

©«

Y1,1

Y1,2

...

Y1,P

Y2,1

...

YM,P

ª®®®®®®®®®®®®®®®®®¬︸  ︷︷  ︸
Ycal

=

©«

x1S1
1 IC

x1S2
1 IC

...
...

x1SP
1 IC

x2S1
1 IC

...
...

xMSP
1 IC

ª®®®®®®®®®®®®®®®®®¬︸         ︷︷         ︸
Acal

©«
Γ1

D
ª®¬ , (15)

where the xm are the intensity of the mth pixel of all M static calibration pixels, Sp
1 is the pth

calibration illumination pattern and Ym,p is the measurement vector on pixel m for illumination
pattern p. With this setup, all involved quantities in Ycal and Acal are known, either measured or
user-imposed. Note that the expression in Eq. (14) involves Γ1, rather than ΓQ, yet even if the
dimensions and structure of ΓQ depend on Q, its free parameters, the γc,` , are independent of Q,
which allows their inference from Γ1.

Given these definitions and measurements, we solve for Γ1 and D in Eq. (14) to minimize the
`1-norm cost:

e(Γ1,D) =
Ycal − Acal

©«
Γ1

D
ª®¬

1

. (16)

We find the solution to this cost minimization problem by using an Iteratively Reweighted
Least-Squares (IRLS) method [33]. IRLS proceeds by solving, at each iteration, a weighted
least-square problem:

u(t+1) = argmin
u

W(t)Ycal −W(t)Acalu(t)
2
2
, (17)

where W(t) = diag(w(t)1 , . . . , w(t)MP) is a diagonal weighting matrix, whose entries w(t+1)k are
updated at each iteration t + 1 [34,35]:

w(t+1)k =

((
Ycal,k − Acalu(t)k

)2
+ ε (t)

)−1/2
. (18)

The weights are initialized with w(0)k = 1 and ε (0) = 1. We follow an acceleration method similar
to that proposed by Chartrand and Yin [34], where the variable damping factor ε (t) is divided by
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10 each time the relative change of the `1-norm of the residual is smaller than
√
ε (t)/100, until the

residual converges or ε (t) reaches a set minimum value (10−6). Once convergence is attained, we
retrieve the values of Γ1 and D from u(tfinal). In practice, solutions we obtained with this approach
were identical to those obtained by use of an exact linear programing method (CPLEX [36]). We
favored our implementation for its simplicity and the possibility to make it available [37].
Although a similar approach could be used for minimizing Eq. (12) in order to retrieve the

data, we found that for our applications, the least-squares approach, which is direct rather than
iterative, is sufficient. The `1 norm is more robust to mismatches between the affine response
model and the actual measurements. Mismatches may be due to, for example, low photon count
(in dark regions), saturated pixels, or a nonlinear detector response curve. Since good calibration
has a strong influence on the reconstruction quality and can be carried out offline, we favored the
`1-norm in Eq. (16) over least-squares, despite it being slower to mimimize. We note that other
robust norms, for which efficient algorithms exist, could be used.

3.3. Base-hue recovery and hue-dependent model-selection for non-gray samples

Although our method trades spectral information to gain temporal resolution, we can leverage our
use of a color camera to collect the hue of the imaged sample during the calibration procedure
of Section 3.2 (using white illumination), and assign the measured and normalized RGB triplet
to build a color pixel x?[i](R G B)> from the monochromatic, temporally super-resolved
reconstruction x? obtained with our method described in Section 3.1.
Furthermore, if the scene to be imaged is made of moving objects of any one hue among

N possible hues, we can recover super-resolved images as follows. We first calibrate the
system according to Sec. 3.2 for each one of the possible hues (indexed by n = 0, . . . ,N − 1),
hence obtaining N parameter sets

(
Γ(n)Q ,D(n)

)
and base hue triplets (R(n), G(n), B(n)). After

acquiring images of a moving object (whose type or hue index n is unknown), we apply our
temporal super-resolution method using each model

(
Γ(n)Q ,D(n)

)
in turn (e.g. on a manually

selected region of interest (ROI)). We then evaluate the quality of the reconstructions x?,(n) =[
x(n)[1] · · · x(n)[Q]]>, n = 0, . . . , N −1 obtained with the corresponding models

(
Γ(n)Q ,D(n)

)
by computing

R(n) =
Q−1∑
i=1

���x(n)[i] − x(n)[i + 1]��� (19)

as a measure of smoothness. The rationale behind this criterion is that only correct model
parameters will reduce flicker in regions and time-intervals where the scene is static (which we
assume are present in the scene), hence decreasing R(n).

4. Experiments

4.1. Hardware and parameters setup

We implemented the illumination with commonly available and cost effective hardware. We
assembled a light source using a 6-LED chip (SLS Lighting RGBWA+UV, Aliexpress, China).
The LEDs have hues red (λ ≈ 620nm), green (λ ≈ 525nm), blue (λ ≈ 465nm), amber
(λ ≈ 595nm), white (broad spectrum via fluorescence), and ultra-violet (λ ≈ 395nm). We drove
the LED via a micro-controller (Arduino Uno, Arduino, Italy), which we programmed to generate
the illumination time-pattern shown on Fig. 1(b), individually controlling each color. For the
LED-camera synchronization, the micro-controller monitored the flash trigger output of the
camera. Whenever the trigger signal transitions from low to high state, the micro-controller
starts the time-sequence of the LEDs for the frame about to be recorded. The LEDs were directly
powered by the controller’s outputs, without additional power amplification of the signal.
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We used a CMOS color camera (Thorlabs DCC3240C, Thorlabs, Germany) with 1280 × 1024
pixels, each with a standard RGGB-Bayer filter pattern (C = 3). We used this camera both for
imaging macroscopic objects, in which case we used a 12mm focal length camera objective
(Navitar NMV-12M1, HR F1.4/12mm), and for microscopic samples, in which case we attached
the camera to the camera port of a custom-built wide-field transmission microscope consisting of
a 20× Olympus water dipping lens (Olympus Plan Fluorite UMPLFLN 20xW) combined with a
180mm tube lens (Olympus U-TLU-1-2).

We either used the LED source as-is, when illuminating macroscopic scenes, or placed it into
the illumination port of the microscope, which we adjusted for Köhler illumination (transmission).
In all experiments presented here, we adjusted the exposure of our camera to E = 60

milliseconds, the target over-sampling factor to Q = 3, and three LEDs per experiment, hence
L = 3.

For the validation experiment in Section 4.2 and the beating heart data acquisition of Section
5.2, we used the red, green, and blue LEDs. For the robustness characterization experiment in
Section 4.3, we used all available LEDs alternatively, by set of three. In all of these experiments,
the illumination code sequences, S`[i], i ∈ {0, 1, 2} corresponding to Eq. (6) were:

S1[i] = [1, 0, 0]
S2[i] = [0, 1, 0]
S3[i] = [0, 0, 1],

(20)

with s1(t) the time-function of the first, s2(t) the second, and s3(t) the third LED, respectively.
In Section 4.4, we investigate various illumination sequences that are specified in Table 2.
For all experiments, to calibrate D and Γ1, we acquired P = 30 images (≈ 3 calibration images

per channel and per LED) of a static binary patterned sample, each with one of P different
combinations of LEDs that were turned on or off (see Section 3.2).

4.2. Resolution improvement characterization

To quantitate the resolution improvement achievable by our method, we moved a test target
(USAF resolution pattern) printed on a white cardboard paper and imaged it either: (i) with
steady white light illumination; (ii) with strobed white light (one 20 ms pulse per frame); and (iii)
with our proposed HESM method, followed by reconstruction.

In order to replicate the same motion in each case and thereby to allow for direct comparison,
we used a robotic arm (Baxter, RethinkRobotics, Boston, MA, USA) to carry out the motion.

Under constant white light illumination (Fig. 2(a)), the resolution bars of the test target are
blurred since the shutter remains open while the test target moves. With a single white light pulse
per frame (Fig. 2(b)) the bars are sharp but only one image per camera frame is available. Using
our method (Fig. 2(c)) we observe both sharp bars (comparable to what can be obtained with the
strobed white light) and an increase in the frame-rate by a factor of three. We determined the finest
resolvable resolution bar triplet in both the images obtained under white light illumination (0.25
line pairs/mm) and with our proposed HESM method (0.707 line pairs/mm). This corresponds
to a 2.8-fold improvement in lateral resolution, which directly results from the improvement in
temporal resolution of the same factor, given that the motion of the resolution target was uniform.

4.3. Characterization of robustness with choice of illumination hues

Our method allows, in principle, for an arbitrary choice of LED wavelength spectra for the
different LEDs. In practice, however, selecting appropriate wavelengths for the LEDs given the
type of imaged sample is essential to ensure the stability of the reconstruction. To illustrate
this point, we explored different combinations of colors, chosen among the 6 individually
addressable LEDs in our illumination head: red (R), green (G), blue (B), amber (A), white (W),
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Fig. 2. Imaging a moving sample with (a, f) a constant white light, (b, g) a 20ms white
pulse and (c, d, e, h, i, j) our proposed method (see Visualization 1). The zoom on the
element 1 of the group −2 of the USAF-grid (close-up in a, b, c) shows that all three methods
can resolve it. It is the limit for the constant illumination. This element is 0.625 mm wide.
The detailed views on the whole group −1 (f, g, h) show that the stroboscopic illumination
and our method (g, h) are able to resolve up to element 4. This corresponds to a resolution
improvement factor of 2.8. Moreover, with our method operating at the same frame-rate, we
have six reconstructed frames (c, d, e, h, i, j) while with the two other methods we have two
acquired frames (a, b, f, g), thus we improved the frame-rate by a factor of 3.

and ultra-violet (UV). Specifically, we repeated the experiment of the moving target using our
proposed imaging method with the following color combinations: R-G-B, A-G-UV, B-UV-W, or
R-UV-B (each turned on in sequence). In order to characterize the robustness of the imaging
system in each case, we calibrated the system then we calculated the conditioning number κ(A)
(see Chapter 4.4 in [38], p.82) of the obtained system matrix A = SQΓQ:

κ(A) = σmax(A)
σmin(A) , (21)

https://doi.org/10.6084/m9.figshare.8166704
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where σmax(A) and σmin(A) are the highest and lowest eigen-values of the matrix A.
Table 1 gives the condition number κ for the 4 combinations of LEDs that we tested. See

Visualization 2 for the corresponding videos. We observed that whenever the system matrix was
poorly conditioned, whose likely cause we attribute to overlapping spectra of two (or three) lights
in a given combination (e.g. blue and UV LEDs in the B-UW-W combination), the reconstruction
was noisy and flickering. We think that there is crosstalk in the lights signal contribution, which
translates into a poorly conditioned system matrix. We observed sharp reconstructions with little
noise for the color combinations R-G-B and A-G-UV. The reconstructions with the two other
color combinations B-UV-W and R-UV-B flickered and showed amplified noise.

Table 1. Condition number κ depending on the LEDs used (see Visualization 2).

this point, we explored different combinations of colors, chosen among the 6 individually
addressable LEDs in our illumination head: red (R), green (G), blue (B), amber (A), white (W),
and ultra-violet (UV). Specifically, we repeated the experiment of the moving target using our
proposed imaging method with the following color combinations: R-G-B, A-G-UV, B-UV-W, or
R-UV-B (each turned on in sequence). In order to characterize the robustness of the imaging
system in each case, we calibrated the system then we calculated the conditioning number κ(A)
(see Chapter 4.4 in [38], p.82) of the obtained system matrix A = SQΓQ:

κ(A) = σmax(A)
σmin(A) , (21)

where σmax(A) and σmin(A) are the highest and lowest eigen-values of the matrix A.
Table 1 gives the condition number κ for the 4 combinations of LEDs that we tested. See

Visualization 2 for the corresponding videos. We observed that whenever the system matrix was
poorly conditioned, whose likely cause we attribute to overlapping spectra of two (or three) lights
in a given combination (e.g. blue and UV LEDs in the B-UW-W combination), the reconstruction
was noisy and flickering. We think that there is crosstalk in the lights signal contribution, which
translates into a poorly conditioned system matrix. We observed sharp reconstructions with little
noise for the color combinations R-G-B and A-G-UV. The reconstructions with the two other
color combinations B-UV-W and R-UV-B flickered and showed amplified noise.

Table 1: Condition number κ depending on the LEDs used (see Visualization 2).

LEDs R-G-B A-G-UV B-UV-W R-UV-B

κ 1.9 2.6 49.1 91.5

Reconstruction good good noisy, flickering noisy, flickering

4.4. The conditioning number of the system matrix depends on the illumination func-
tions

Wenext investigated the influence of the illumination functions on the quality of the reconstructions.
To that end, we performed an experiment similar to that in Section 4.3 but keeping a single set of
LEDs (R-G-B) to image the same repeating motion, while varying the illumination functions.
We then compared the condition number of the system matrix corresponding to each illumination
pattern with the quality of the reconstruction. Table 2 shows the illumination intensities of
the LEDs in the sub-frame time intervals for the four different cases with the corresponding
condition number of the system matrix. We observed good reconstructions when the system was
well-conditioned. A comparative video is provided (Suppl. Video 2).

5. Applications

5.1. Model selection applied to two samples

To demonstrate our method’s ability to recover both the hue of an object and a temporally
super-resolved sequence, we imaged two paper cards, one whose hue was white and the other
off-white. In both cases, our method could retrieve both a temporally-super-resolved image
sequences as well as assign RGB values for the base-color, directly from the raw images (Figure 3
b,c).

4.4. The conditioning number of the system matrix depends on the illumination func-
tions

Wenext investigated the influence of the illumination functions on the quality of the reconstructions.
To that end, we performed an experiment similar to that in Section 4.3 but keeping a single set of
LEDs (R-G-B) to image the same repeating motion, while varying the illumination functions.
We then compared the condition number of the system matrix corresponding to each illumination
pattern with the quality of the reconstruction. Table 2 shows the illumination intensities of
the LEDs in the sub-frame time intervals for the four different cases with the corresponding
condition number of the system matrix. We observed good reconstructions when the system was
well-conditioned. A comparative video is provided (Visualization 2).

Table 2. Condition number κ with various time functions. R1, R2, R3 are the values of the red LED
respectively at the first, second and third time-steps of the whole exposure time (see Visualization

3).

5. Applications

5.1. Model selection applied to two samples

To demonstrate our method’s ability to recover both the hue of an object and a temporally
super-resolved sequence, we imaged two paper cards, one whose hue was white and the other
off-white. In both cases, our method could retrieve both a temporally-super-resolved image

https://doi.org/10.6084/m9.figshare.8166716
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sequences as well as assign RGB values for the base-color, directly from the raw images (Fig. 3(b,
c)).

Fig. 3. When any of several objects with different, but known, hues enters the field of view,
the system matrix adapted to the object can be automatically selected. (a) Color image of
a static scene, with two kind of papers illuminated by a white light. The gray areas show
the calibration ROIs. (b) Each sample has a corresponding calibrated set of parameters Γ
and D as well as the sample hue. (c) Data acquisition of a dynamic scene with the active
illumination. (d) Reconstruction with model selection as explained in Section 3.3. (e, f) Two
reconstructions with our method after model selection, using RGB LEDs and reconstructing
the hue of the samples from the raw data acquired with our method (see Visualization 4).
Scalebar: 5 cm.

5.2. Fast imaging of the beating heart

To illustrate the applicability of our HESM method for biological microscopy, we imaged the
beating heart of a live 4 days post fertilization (dpf) old zebrafish larva mounted in agarose gel,
with a wide-field microscope under transmitted illumination.

Zebrafish (wild-type AB zebrafish strain (Zebrafish International Resource Center) were raised
under standard laboratory conditions (14/10 hour light/dark cycle, fish water of the system
(ZEBTEC Techniplast Aquatic Solution) at 26.5◦C temperature, 500 µs conductivity, and pH 7.3)
in a facility approved by the Veterinary Service of the State of Valais (Switzerland). Fertilized
eggs were collected and the embryos raised at 29◦C in standard E3 medium in an incubator
(Termaks B8054), supplemented by 0.003% 1-phenyl 2-thiourea (PTU) from 24 hours post
fertilization (hpf) to prevent pigmentation. For imaging, we embedded 4 dpf larvae, anesthetized
with 0.1% tricaine (ethyl 3-aminobenzoate methanesulfonate salt, Sigma), in low melting agarose.

Following raw image acquisition (see hardware and parameter setup, above), we selected an
ROI over which we applied our method, keeping the rest of the images in color. Figure 4 shows a
single frame of Visualization 5, where color imaging allows clearly visualizing cells within the
heart wall of both the atrium and ventricle, which are blurred in the color images. Visualization

https://doi.org/10.6084/m9.figshare.8166752
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5 first shows only color imaging of the beating heart, then it shows reconstructions from our
method within an ROI and finally a comparison side by side of standard color imaging and our
method, both on the same ROI. Our method therefore offers the flexibility of either using RGB or
fast monochrome imaging.

Fig. 4. Flexible color and fast grayscale imaging of the beating heart in a 4 days post
fertilization zebrafish larva. (a) Single frame of an RGB color movie, with (b) ROI with
reconstructed grayscale (no hue was measured beforehand, gray reconstruction) movie
at threefold increased frame-rate. See Visualization 5 for the full movie. Anatomical
features visible include the ventricle (v), the atrium (at), the bulbus arteriosis (BA) and the
pericardium (p). Orientation is indicated as V: ventral, D: dorsal, A: anterior, P: posterior.
Scalebar: 100µm.

6. Discussion

The hardware implementation of our method has only few hard design requirements. In particular,
frame acquisition and illumination must be in synchrony, which is straightforward to implement
provided the camera has a trigger output. Given variability in hardware clocks and data transfer,
independently running the illumination and acquisition systems results in rapid asynchrony and
departure from the acquisition model (making it difficult to invert the system matrix). Beyond
synchronization, given the frame rate of our camera (60 frames per second), neither the clock-time
of our micro-controller (16 MHz) nor the rise time of our LEDs (20 ns) appeared to be limiting
our method.

In order to calibrate our system as described in Section 3.2, it is necessary to manually select
an ROI. We observed that the best results were obtained when calibration ROIs were chosen
among a wide range of intensities. Our method requires a static sample (or scene) for calibration,

https://doi.org/10.6084/m9.figshare.8166755
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ideally with a variety of intensities. Since acquiring calibration images is fast, many images
of identical regions can be acquired fairly rapidly, which allows to limit the influence of noise,
in particular in darker regions. We empirically found that acquiring P = 30 images gave good
calibration results and used that number for all experiments in Section 4.
The results in Section 4.2 show a time-resolution improvement of a factor

√
8 ≈ 2.8 with a

temporal sampling improvement by a factor 3. This factor depends on the number of channels
available and using additional channels (e.g. through wavelength splitting and use of multiple
cameras) higher resolution factors might be achievable. Less motion blur can be obtained by
shortening the illumination pulses yet without improvement of the frame-rate, at the cost of a
higher peak-intensity (which is sometimes undesirable in microscopy) and at the risk of producing
aliasing. Longer-duration pulses are less prone to aliasing and might help preserve live samples
as their peak intensity can be lower for a given camera integration time.

Although the model presented in Section 2. is non-specific regarding the precise illumination
functions, the discrete formulation in Eq. (7) reveals that our model becomes ill-posed should the
matrix SQΓQ not be full rank, i.e. if rank(SQΓQ) < Q. This provides us with a tool for verifying
that a proposed illumination function does not lead to an ill-posed system. For example, should
data from a particular channel be missing, Q should be lowered such as to have Q ≤ C and the
matrices SQ adapted accordingly. Similarly, the matrix ΓQ should be well-conditioned, which
depends on the sample itself, the color-filters of the camera, and the spectrum of the lighting. The
spectrum absorbed and reflected by the sample and then acquired by the camera should form a
matrix of rank Q, when calibrating with the procedure in Section 3.2. With the condition number
κ (Section 4.3), we have a means of predicting the quality of reconstructions with our method
given the sample, the LEDs, and the chosen camera. The results in Section 4.4 suggest that a
condition number above 10 should be avoided, in order to guarantee a good reconstruction. For a
given matrix ΓQ (specified by the sample, LED, and detection spectra) the matrix SQ containing
the temporal patterns could be optimized for SQΓQ to have maximal rank, an NP-hard problem
which we have not pursued here

We investigated the impact of the illumination hues in Section 4.3. Since the camera captures
transmitted or reflected light, the same conclusions apply to changing the hue of the sample,
rather than the illumination.

Simply using more lights would not necessarily produce a more stable system matrix. Instead,
chasing the proper combination of lights does. A simple case for choosing the number of LEDs,
channels, and super-resolution factor, is to set L = C = Q (of course one must still ensure that
the choice of lights and illumination functions produces well-conditioned matrices, as discussed
above).

In practice, temporal flickering may remain in the reconstructed videos, depending on how well
the system’s matrix SQΓQ matches dynamic conditions. Calibration and experimental conditions
may differ, for example, because calibration is carried out in regions different than those imaged.
Furthermore, LED rise and fall times during calibration and imaging may differ as the LEDs’
electronic current drivers can be frequency-dependent
For single-hue objects, the possibility of recovering the base hue simultaneously to recon-

structing temporally super-resolved image sequences (as shown in Section 3.3) is particularly
appealing as this advantage comes without requiring an increase in the bandwidth of the system.
This capability is preserved even in the case of multiple objects with different hues, via the model
selection scheme we proposed in Section 3.3. Furthermore, for applications in microscopy, where
often only a single camera can be mounted, making rapid switching to a different camera or
view-port unfeasible, our method brings clear practical advantages: (i) the same camera can
be used both for color and fast imaging as demonstrated in Section 5.2 and (ii) the motion blur
can be reduced when acquiring stacks in continuous scanning mode. While the former may
be particularly attractive for building versatile imaging systems, the latter may be particularly
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relevant for applications that require fast inspection, such as for screening or flow cytometry. We
also foresee that the improved frame-rates and temporal resolution could be beneficial for object
tracking applications, a point that we may investigate in the future.

Since the wavelength of the photons emitted by a fluorophore are independent of the excitation
wavelength, our method would not be applicable on samples labeled with a single fluorophore.
However, our method could be applied for imaging structures simultaneously co-labeled with
two or more fluorophores: while the individual emission spectra shape would remain unchanged
(except for scaling), as their combined emission intensity (and therefore the resulting combined
spectrum) will vary with the relative excitation intensities of the illumination sources our method
could, in principle, provide similar benefits to fluorescence imaging.
We provide the code, data, and instructions to reproduce results in this paper [37].

7. Conclusion

We introduced a general computational imaging method to carry out temporal super-resolution
with a color camera and a set of multi-spectral active illumination sources. Each frame includes
multiple copies of the signal at various times, encoded in the hue of the image. The computational
procedure retrieves a high time-resolution signal, along with the base-hue, under the assumption
that the imaged sample has a single color. We showed a direct method to characterize the
robustness of the method, depending on the sensing and illumination spectra, as well as the
base-hue of the imaged sample. We experimentally showed a temporal resolution improvement
of a factor 2.8 combined with a three-fold increase of the frame-rate. We illustrated our method
with an application exhibiting both color imaging and fast grayscale (on a chosen ROI) of the
beating heart, showing its applicability to bio-microscopy.
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