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Abstract
This thesis is devoted to the study of the local fields in the Ising model. The scaling limit of

the critical Ising model is conjecturally described by Conformal Field Theory. The explicit

predictions for the building blocks of the continuum theory (spin and energy density) have

been rigorously established [HoSm13, CHI15]. We study how the field-theoretic description of

these random fields extends beyond the critical regime of the model. Concretely, the thesis

consists of two parts:

The first part studies the behaviour of lattice local fields in the critical Ising model. A lattice

local field is a function of a finite number of spins at microscopic distances from a given point.

We study one-point functions of these fields (in particular, their asymptotics under scaling

limit and conformal invariance). Our analysis, based on discrete complex analysis methods,

results in explicit computations which are of interest in applications (e.g. [HKV17]).

The second part considers the behaviour of the massive spin field. In the subcritical massive

scaling limit regime first considered by Wu, McCoy, Tracy, and Barouch [WMTB76], we show

that the correlations of the massive spin field in a bounded domain have a scaling limit. Fur-

thermore, to this end we generalise the notions and methods of discrete complex analysis

in the critical case to the massive regime, and give a new derivation of the formula for the

two-point correlation in the full plane in terms of a Painlevé III transcendent.

Keywords: Ising Model, Statistical Mechanics, Probability Theory, Conformal Field Theory,

Isomonodromy, Discrete Complex Analysis.
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Résumé
Cette thèse est consacrée à l’étude des champs locaux du modèle d’Ising. Il est conjecturé que

la limite d’échelle du modèle d’Ising critique est décrite par une théorie conforme des champs.

Les prédictions explicites pour les éléments de base (le spin et la densité d’énergie) de la théo-

rie continue ont été démontrées rigoureusement dans [HoSm13, CHI15]. On étudie comment

la description du point de vue de la théorie des champs s’étend au-delà du comportement

critique de ces champs aléatoires. Concrètement, cette thèse se compose de deux parties :

La première partie étudie le comportement des champs locaux de réseau. Un champ local

au niveau du réseau est une fonction d’un nombre fini des spins à distances microscopiques

d’un point donné. On étudie les fonctions de corrélation à 1 point de ces champs (en particu-

lier, comment ils se comportent dans la limite d’échelle). L’analyse, basée sur des méthodes

d’analyse complexe discrète, a pour résultat des calculs explicits d’intérêt pour applications

(e.g. [HKV17]).

La seconde partie examine le comportement du champ de spin. Dans le régime de limite

d’échelle sous-critique considéré pour la première fois par Wu, McCoy, Tracy et Barouch

[WMTB76], on démontre que les corrélations du champ de spin massif dans un domaine à

borne possèdent une limite d’échelle. Dans ce but, on généralise les notions et méthodes

d’analyse complexe discrète du cas critique au régime massif, et on donne une nouvelle

dérivation la formule pour la corrélation à 2 points dans le plan en termes de la fonction

transcendante de Painlevé III.

Mots-clés : modèle d’Ising, mécanique statistique, théorie des probabilités, théorie conforme

des champs, déformation isomonodromique, analyse complexe discrète.
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1 Introduction

1.1 The Ising Model

1.1.1 Definition

The Ising model was introduced as a mathematical model of ferromagnetism by Lenz [Len20]

and has been applied to a wide range of fields (see e.g. [DIK13]) and has seen a tremen-

dous mathematical development in the field of equilibrium statistical mechanics. Given a

finite graphΛ and inverse temperature β> 0, one defines the probability measure Pβ,Λ on a

configuration of ±1 spins σi on the sites (or vertices) i inΛ by:

Pβ,Λ [σ] ∝ exp

[
β

∑
i∼ j

σiσ j

]
,

where the sum is over pairs of adjacent sites i , j . As the inverse temperature β increases,

configurations with fewer disagreements between neighbouring σi ,σ j become more likely.

1.1.2 Phase Transition

In the case where the graph Λ is taken to be a finite subdomain of a lattice (such as Z2) the

Ising model is an emblematic example of a lattice model. One is typically interested in a large

scale behaviour which emerges asΛ becomes progressively bigger (thermodynamic limit). A

typical question one may ask is:

• In a large Λ⊂Z2, how strongly do spins at far-apart sites i , j interact? In other words:

how does the correlation Eβ,Λ
[
σiσ j

]
behave as |i − j | grows?

The Ising model goes through a phase transition at βc = 1
2 ln

(
1+p

2
)
: at β<βc , the model is

disordered, and atβ>βc , there is a long range order. In fact, the Ising model onZ2 undergoes a

continuous phase transition: as |i− j | grows, the correlation Eβ,Z2

[
σiσ j

]
tends to a continuous

1



Introduction

function of β which is zero if β ≤ βc , and strictly positive if β > βc . Its explicit formula was

given by Onsager and Yang [Yan52]. It was Onsager [Ons44] who had given a celebrated exact

solution of the model in Z2 which allowed for the demonstration that the model admits a

continuous phase transition at βc . Previously, Peierls [Pei36] had shown the existence of a

phase transition, and Kramers and Wannier [KrWa41] had determined βc to be the self-dual

point.

While the correlation does not decay to zero whenβ>βc , the truncated correlation Eβ,Z2

[
σiσ j

]−
Eβ,Z2 [σi ]Eβ,Z2

[
σ j

]
decays at an exponential rate ξ, known as the correlation length, for any

β 6=βc [McWu73].

1.1.3 Relation to Other Models

The Ising model has a rich array of equivalent formulations and generalisations based on them.

Many spin models can be considered to be natural generalisations of the model: among them

are the q-Potts, Zn , and O(N )-models, all of which allow the set of possible spins to be bigger

than {±1} (see e.g. [Mus10]). The family of q-Potts models, including the Ising (q = 2) case,

also has a fundamental connection to models called the Random Cluster or Fortuin-Kasteleyn

(FK) models; under the Edwards-Sokal coupling (see e.g. [Gri06]), one may sample a Potts

model from the corresponding FK model, and vice versa.

Another generalisation is based on the representation of the two-dimensional Ising model

in terms of loops. For example, with a + boundary condition, i.e. conditioning the boundary

spins to be +1, the interfaces separating plus and minus spins are precisely loops made of

dual edges, leading to the low-temperature expansion, where we describe a spin configuration

(up to σ→−σ symmetry) in terms of them. This loop model was then generalised to the loop

O(n) model, where the Ising case corresponds to n = 1. The loop O(n) models are themselves

a form of resummation known as high-temperature expansion of O(N ) models with N = n −1

(see e.g. [Smi06]).

In both cases, the Ising model serves as the central example of the above families. As we

will see below, the theory is incredibly rich; the Ising model is arguably the best known ex-

ample of exactly solvable models in two dimensions (see e.g. [Bax89]). In the recent years,

significant progress was made possible towards understanding these models rigorously (e.g.

[DGHMT16]), thanks to Smirnov’s introduction of discrete holomorphic parafermionic ob-

servables for these families [Smi06]. The exact analysis possible for the Ising model has not

only enriched our understanding of the model itself, but also shows potential for far-reaching

generalisation in analysis of various statistical mechanics models.

2



1.2. Scaling Limit and Conformal Invariance

1.2 Scaling Limit and Conformal Invariance

1.2.1 Scaling Limit and Universality

At the critical temperature βc of the 2D Ising model, the one-point functions Eβ,Λ
[
σi , j

]
decay

to zero proportionally to dist(i ,∂Λ)−1/8 asΛ grows [CHI15]. In the thermodynamic limit, the

correlation Eβ,Z2

[
σiσ j

]
decays proportionally to |i − j |−1/4, and the correlation length is infi-

nite, indicating there are fluctuations at all scales [CHI15]. To extract long-range information

from the decaying correlations, it is natural to consider the (renormalised) scaling limit: while

looking at progressively larger scales, offset the decay by multiplying a factor growing with

the scale. Renormalisation group arguments (see e.g. [Hen99]) suggest the emergence of

a continuous regime, which is scale invariant and is independent of the underlying square

lattice structure, a phenomenon known as universality.

δ → 0

φ : Ω → D

δ → 0

Dδ

Ωδ

D

Figure 1.2.1 – Convergence of the spin interface to conformally invariant random curves.

1.2.2 Conformal Invariance

Concretely, instead of taking domains Λ approaching Z2, consider a domain Ω⊂ C and set

Ωδ :=Ω∩δZ2 with δ ↓ 0, fixing appropriate boundary conditions (say, + boundary conditions).

While Ωδ still approximates δZ2 ∼= Z2 as a graph as δ ↓ 0, it becomes an approximation of

the continuous domainΩ by considering a sequence of sites zδ→ z ∈Ω inΩδ. This setup is

particularly useful to understand the fine structures of the critical model. The scaling limit is

conjectured to be universal and connected to two fundamental theories: Schramm-Loewner

3
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Evolutions (SLE), a family of conformally invariant random curves, and Conformal Field

Theory, (CFT), a framework providing a conjectural description of the local fields of the model,

to be elaborated below.

At the heart of both SLE and CFT is a symmetry called conformal symmetry or conformal

invariance. Loosely speaking, this symmetry may be formulated as follows: for any conformal

mapping (i.e. any angle-preserving diffeomorphism) φ :Ω1 →Ω2, we have

φ
(
Scaling limit of Ising Model onΩ1

) (law)= Scaling limit of Ising Model onΩ2.

Conformal invariance is an especially powerful symmetry in two dimensions thanks to the

size of the family of conformal transformations, as exemplified by the Riemann Mapping

Theorem, which states that such a map always exists between two simply connected proper

subdomains in the complex plane. As a result, the data of the critical Ising scaling limit on a

simply connected domain different from C can be reduced to that on, e.g., the disc.

1.2.3 Schramm-Loewner Evolutions

A particularly natural framework to understand the conformally invariant scaling limit of

the Ising model is that of Schramm’s [Sch00] SLE curves (see Figure 1.2.1): at criticality, the

macroscopic interfaces which separate plus and minus spins converge in law to continuous

random curves which are conformally invariant (in law). The SLE curves and their variants

form a one-parameter family indexed by a parameter κ> 0 corresponding to various univer-

sality classes. The universality class of the Ising model corresponds to κ= 3. The convergence

to SLE3 and variants has been shown in a number of cases, in particular for the interfaces

generated by boundary condition changes [CDHKS14, HoKy10, Izy17] and for the so-called

full scaling limit (the set of all loops arising with + boundary conditions) [BeHo16].

1.2.4 Conformal Field Theory

A manifestation of conformal invariance in the Ising model at a more local level is given by

the fact that Conformal Field Theory (CFT) accurately predicts various local statistics. For

example, if zδ is anΩδ-approximation to z ∈Ω, Chelkak, Hongler, and Izyurov [CHI15] have

shown that

〈σz〉Ω := δ−1/8E+βc ,Ωδ
[σzδ ]

δ↓0−−→C
∣∣r ′
Ω(z)

∣∣−1/8 ,

where the boundary spins on ∂Ωδ are set to +1 and the conformal radius rΩ(z) ofΩ seen from

z = x + i y is defined as rΩ(z) := |ϕ′
z (0)| where ϕz :D→Ω as a conformal map mapping 0 ∈D to

z ∈Ω. The expectation decays with a factor of δ1/8, and both the shape of the domainΩ and

the + boundary condition have a nontrivial effect as we renormalise; furthermore, their effect

4



1.3. Massive Regimes

reflects the overall continuous conformal geometry of the domain independent of the square

lattices structure, as suggested by universality.

Conformal Field Theory was initiated in the 1980s by physicists Belavin, Polyakov, and

Zamolodchikov [BPZ84]. Based on these ideas, [BuGu93] provided precise predictions for

the limit of δ−n/8E+
βc ,Ωδ

[σzδ1
· · ·σzδn

], later proven by [CHI15]. It is a theory which conjecturally

describes conformally covariant fields in the continuum, such as the spin σz which may be

understood as the continuous limit of the discrete spin σzδ . The spin field σz is treated as an

abstract object of the correlation operation which transforms well under conformal maps: for

example, it scales as σ→ a−1/8σ when the underlying domain is dilated by a factor of a. First

developed in terms of physical arguments, CFT has attracted diverse attempts to formalise

it (e.g. [Seg88]); a surprising facet to a result of the above type is that it may be also used to

make sense of the field σz itself in the continuum as a random distribution [CGN15]. In other

words, proving that the predictions of a CFT hold true may be the key to rigorously establish

its mathematical foundation.

Recently, a new approach to understand the relationship between the Ising model and CFT in

the continuum has been proposed. The idea is to define lattice local fields and try to realise

CFT directly on the lattice (cf. [GHP19, HKV17]). In this setup, a lattice local field φ(zδ) is a

function F (σzδ+δv : v ∈ V ) of the spins applied to a finite neighbourhood zδ+δv of a given

point zδ, and serves as the building blocks of the discrete field theory.

1.3 Massive Regimes

The vicinity of the critical point may also be studied by field theories, which are known as

massive field theories (as opposed to massless, i.e. scale invariant, field theories). In the

physical terminology, the mass of a field theory refers to the reciprocal of its correlation

length ξ. Renormalisation group arguments suggest that there are two ways of perturbing the

Ising model around criticality that leads to nontrivial perturbation of the Ising CFT (see e.g.

[Mus10]).

1.3.1 Magnetic Perturbation

A magnetic perturbation introduces a bias between ±1 spins by introducing a magnetic field

parameter h in the measure exp
[
βc

∑
i∼ j σiσ j +h

∑
i σi

]
. To yield a massive theory in the

scaling limit δ→ 0, h should be simultaneously scaled like δ15/8, and this setup has yielded

some preliminary results [CGN16] based on the convergence of the critical spin. In general,

the physical analysis of this regime has proved deeply complex and is still an active area of

research (see e.g. [Zam87]).
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1.3.2 Thermal Perturbation

In this thesis, we are interested in the perturbation by the other relevant perturbation of the

Ising model: the thermal perturbation to the critical model, which corresponds to β 6=βc . To

keep the correlation length finite as δ→ 0, we simultaneously take β→βc so that ξ→∞.

Below βc , the two-spin correlation E+
β,Z2

[
σiσ j

]
decays exponentially; in this supercritical

regime, the correlation length ξ scales like
(
βc −β

)−1, meaning that δ should be scaled like

βc −β to get nontrivial correlation length within the scaling limit. In the subcritical regime

(β>βc ), instead of the correlation, the truncated correlation E+
β,Z2

[
σiσ j

]−E+
β,Z2 [σi ]E+

β,Z2

[
σ j

]
decays exponentially with correlation length ξ scaling like (β−βc )−1 [McWu73]. In other

words, one should scale the temperature β(δ) such that δ∝|β(δ)−βc | in both cases.

1.3.3 Massive Ising Correlations

Unlike in the critical regime, the massive regime lacks conformal symmetry in the continuum,

and as such a theory analogous to CFT. Nonetheless, the scaling limit in the full plane Cδ→C

has been studied by Wu, McCoy, Tracy, and Barouch [WMTB76] and subsequently Sato, Miwa,

and Jimbo and others [SMJ77, KaKo80]. It has been shown [PaTr83] that the scaling functions

z1, . . . , zn 7→ lim
δ→0

δ−n/8E+β(δ),Cδ
[σzδ1

, . . . ,σzδn
]

exist in both super- and subcritical regimes, and describe a highly nontrivial integrable system:

for example, the two-point function, as a function of the distance r := |z1 − z2|, may be written

exactly in terms of a Painlevé transcendent of the third kind. The Painlevé equations have a

central role in the isomonodromic deformation of holomorphic functions (see e.g. [FIKN06]),

or infinitesimal movement of their singularities and monodromies; indeed [SMJ77] derives

the formula by considering a similar deformation for certain massive correlation functions.

Their continuous setup, a general quantum field theoretic analysis known as holonomic field

theory, is related to but independent of CFT.

1.4 Methods of Analysis

1.4.1 Field Theory and Combinatorics

The two-dimensional Ising model has been analysed in a variety of ways. The Transfer matrix

method takes a view akin to a discretisation of a quantum mechanical setup, in that it considers

the evolution of a one-dimensional state (for example, the plus boundary condition on the x-

axis) under a suitable (possibly infinite dimensional) matrix, one lattice spacing at a time, with

the y-axis playing the role of (pure imaginary) time. Taking the scaling limit is equivalent to

finding the operator theoretical limit of the discrete transfer matrix as mesh size tends to zero.

6
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For example, this is the view taken by [SMJ77], subsequently used in a proof of convergence

by [PaTr83]; note that the method is inherently suited for rectangular domains, rendering

modification of their methods into the case of general domains unfeasible.

As is common with other statistical mechanics models, combinatorial bijections have also

been fruitful in the study of the Ising model. A well-known example is a mapping to the dimer

model (perfect matching) through a modification of the underlying lattice, such as the Fisher

lattice [Fis66]. The investigation of such bijections enjoys continued attention and progress to

this day, being associated to other combinatorial representations of the model (e.g. Kac-Ward

determinants) [CCK17] or involving also the six-vertex and the eight-vertex models [Dub11].

1.4.2 Fermionic Observables

Throughout this thesis, we use lattice fermionic observables to analyse the model, which

combines combinatorics with the field-theoretic approach. These observables, which are

deterministic functions, are correlations of a discrete field ψ called fermion with other fields

(possibly including ψ itself) in the model, and converge to continuous functions which are

correlations of the continuous fermion, described at criticality by CFT. The fermion is not a

lattice local field in that its definition involves non-local quantities; it is designed precisely to

exploit the Kramers-Wannier duality inherent in the model [KrWa41, KaCe71].

A concrete definition for fermionic observables is given combinatorially, for example [HoSm13]:

FΩδ
(a, z) := 1

ZΩδ

∑
γ∈C (a,z)

exp

[
− i

2
W (γ)

]
exp

[−2β|γ|] ,

where the sum is over sets γ of edges of Ωδ which form a path from a to z with prescribed

orientation at a and closed loops, and W (γ) is the total turning of the tangent vector of the

path (see Figure 1.4.1). The normalisation factor ZΩδ
is the partition function of the aforemen-

tioned low-temperature expansion of the Ising model (loop O(n = 1) model), defined by sum

over loops γ with weight exp
[−2β|γ|]. FΩδ

is a natural modification of the low-temperature

expansion obtained by adding a path from a to z and complexify the weights. As z approaches

a, or both a, z approach the boundary, the sum reduces to recognisable combinatorial repre-

sentations of spin or energy density (product of two adjacent spins) correlations.

1.4.3 Criticality and Discrete Holomorphicity

The feature that makes fermionic observables particularly suitable for analysing the scaling

limit is that they are discrete holomorphic at the critical point: they satisfy discrete analogues

of the Cauchy-Riemann equations. Discrete holomorphic functions, being discrete harmonic

functions, are suitable for analysis using probabilistic methods; this follows from the connec-

tion between discrete harmonic functions and simple random walk. There is a rich theory
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a
z

W (γ) = −5π/4γ

Figure 1.4.1 – An example loop-path configuration γ.

of discrete complex analysis mirroring that of the continuous analysis developed based on

assumptions on the behaviour of random walk on a general lattice [Che16].

While methods involving holomorphic fermionic observables were among the many early

ones applied to the Ising model [SML64], there was a groundbreaking progress made in the

last 15 years with Smirnov’s identification of the notion of s-holomorphicity [Smi10]. The

observable FΩδ
satisfies this strong notion of discrete holomorphicity, which allows for an

effective integration of the square of the observable: concretely, one may define the line integral

Re
∫

F 2
Ωδ

d z. The existence of such integral is remarkable, since the square F 2
Ωδ

is not discrete

holomorphic. S-holomorphicity guarantees just enough regularity for the real part of the

integral to be well-defined and approximately harmonic. It has consequences for universality

in the aforementioned sense as well, being suited to a large class of lattices called isoradial

lattices (where each face is inscribed in circles of identical radius) [ChSm11, ChSm12], and

even larger families called s-embeddings [Che18].

A notable consequence of integrability of the square is that it allows for a unique characterisa-

tion of the fermionic observables in general simply connected domains through a boundary

value problem. One sees from the complex weight in the definition of FΩδ
that it has a pre-

scribed phase at any boundary point, which can be normalised as ν−1/2
out where νout is the unit

complex number in the direction exiting the domain. This condition translates to a constant

Dirichlet condition for the (approximate) discrete Laplace equation which Re
∫

F 2
Ωδ

d z solves.

Given s-holomorphicity and integrability of the square, the strategy for the analysis of the

scaling limit of the Ising model is a natural one in the field-theoretic viewpoint: one con-

structs a discrete fermion correlation related to the desired physical quantity, then shows that

it converges to a continuous ‘correlation’ uniquely identified by an analogous continuous

boundary value problem, suggesting some sort of convergence of the discrete fermion to a

continuous field. S-holomorphicity, the integral of the square in particular, is used to show

precompactness of the discrete correlations (in a suitable function space). Convergence then

follows once one has uniquely identified the limit.

8
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Discrete complex analysis is useful then to analyse the model in the scaling limit, but it also

provides the appropriate setting to study CFT symmetries at the lattice level. In general,

the symmetries of a CFT include actions of the Virasoro algebra on the space of local fields.

Surprisingly, one may implement an analogous representation of the Virasoro algebra at the

lattice level as well [HKV17]; it relies heavily on the discrete holomorphicity of the fermion

and construction of a basis of discrete holomorphic functions.

1.4.4 Massive Discrete Complex Analysis

As mentioned above, the thermal massive regime corresponds to perturbing the inverse

temperature β away from the critical point βc . The discrete notion of s-holomorphicity

survives in a perturbed form [BeDC12, HKZ15], facilitating analysis of the thermal massive

regime: instead of converging to continuous holomorphic functions satisfying the Cauchy-

Riemann PDE (∂z̄ f := 1
2 (∂x + i∂y ) f = 0), a massive s-holomorphic function should converge

to continuous functions satisfying the Vekua equation ∂z̄ f = m f̄ , where m is a real constant.

Many of the useful features in discrete complex analysis of s-holomorphic objects, such as

the integral of the square and harmonicity, survive in a perturbed form: the discrete massive

harmonic functions should converge to functions satisfying ∆ f = m2 f .

1.5 Objectives

The precise correspondence between discrete quantities and continuous fields is a matter of

considerable interest in the analysis of the Ising model in terms of Conformal Field Theory.

As mentioned in preceding sections, many foundational conjectures on the description of

the scaling limit of the critical Ising model in terms of Conformal Field Theory have been

verified explicitly; the pioneering results of Smirnov and Hongler [HoSm13], and Chelkak,

Hongler, and Izyurov [CHI15] have yielded convergence of the most basic field correlations,

those of the energy density and the spin. Smirnov’s introduction of s-holomorphic fermions

was instrumental in both formulating the physics of the model in terms of discrete complex

analysis and the subsequent analysis.

Armed by these results and their methods, we go on to give a more detailed field-theoretical

description of the model. The building blocks of the discrete field theory are the random spin

configurations, and any local functions of the configurations constitute a meaningful quantity

in the discrete field theory. Given the fact that the continuous theory primarily revolves around

the two aforementioned local fields [DMS97], how would a general local statistic fit into the

continuous CFT? Concretely, how would it scale and what would the rescaled limit be? The

second chapter of this thesis studies this question.

In the full plane, we know that spin correlations converge to massive limit (see e.g. [Pal07]);

does the bounded domain field theory generalise to the massive setup as well? The third

chapter of this thesis studies this question.
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All in all, the questions treated in this thesis arise naturally in the discrete Ising field theory

but have not been treated before. In the process of answering them, we situate the analysis in

the context of precursors and identify the relevant analytical ingredients and objects.

1.6 Main Theorems

In this section, we outline the main theorems of this thesis. For technical reasons, we consider

the Ising model on the dual rotated square lattice: consider the faces Cδ := (1+i )δZ2. LetΩ⊂C
be a bounded simply connected domain and defineΩδ :=Cδ∩Ω. We consider the model at

βc = 1
2 ln(1+p

2).

Theorem A (Theorems 2.1.1, 2.1.2; page 24). Assume 0 ∈Ω. Let B := {e1, . . . ,en} be a set of edges

in Cδ=1. Then δe1, . . . ,δen are edges in Ωδ for small enough δ> 0. Define the energy density

at an edge e = { f1, f2} ⊂ (Ωδ) by ε(e) :=
p

2
2 −σ f1σ f2 and its correlation ε(δB) :=∏

j ε(δe j ). The

spin-weighted energy density ε[0](e) and its correlation ε[0](δB) := ∏
j ε[0](δe j ) are defined

analogously, replacing
p

2
2 by the spin-weighted volume limit (2.1.1).

Then there exist explicit, real-valued constants FB ,EB ,FB
[0],E

B
x,[0],E

B
y,[0] such that

E+βc ,Ωδ
[ε(δB)] =FB +δr−1

Ω (0)EB +o(δ);

E+
βc ,Ωδ

[σ0ε[0](δB)]

E+
βc ,Ωδ

[σ0]
=FB

[0] +δ
(
∂x logrΩ(0)EB

x,[0] +∂y logrΩ(0)EB
y,[0]

)
+o(δ),

in the scaling limit δ ↓ 0, where rΩ is the conformal radius (defined below (1.2.4)).

Theorem A yields an analogous scaling result on the probability of a specific spin pattern

occuring at a point z ∈Ω: see Corollary 2.1.1.

Outline of Proof. We outline the different steps in the proof.

Combinatorial Representation. As noted above, we use discrete complex analytic methods

to analyse the quantities E+
βc ,Ωδ

[ε(δB)],
E+
βc ,Ωδ

[σ0ε(δB)]

E+
βc ,Ωδ

[σ0] . Recall that the notion of discrete

holomorphicity we use is the s-holomorphicity (Definition 2.2.1). The connection to

discrete s-holomorphic functions is made in Propositions 2.4.9 and 2.4.10:

E+βc ,Ωδ
[ε(δB)] = (−2)nPf F[{ek }]

Ωδ
;

E+
βc ,Ωδ

[σ0ε[0](δB)]

E+
βc ,Ωδ

[σ0]
= (−2)nPf F[{ek }]

[Ωδ,0],

where F[{ek }]
Ωδ

,F[{ek }]
[Ωδ,0] are 2n ×2n antisymmetric matrices whose entries are values of s-

holomorphic two-point fermions FΩδ
,F[Ωδ,0] (Definitions 2.3.2, 2.3.3) evaluated at the

edges in B. This decomposition of the energy multipoint function is based on the
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combinatorial definition of the fermions as in Figure 1.4.1 and requires a decomposition

of the 2n-point fermion, which are discrete s-holomorphic functions identified by their

singularities and a boundary condition, in terms of the two-point fermions. In the case

of E+
βc ,Ωδ

[ε(δB)], the formula is essentially identical to [Hon10, Proposition 85], but we

have to verify that the formula applies to adjacent correlations as well: this is based on a

refinement (2.2.1) of the definition of s-holomorphicity on corners.

Boundary Value Problem. It suffices to study the asymptotics of the two-point observables,

concretely the complexified ones H a
Ωδ

, H a
[Ωδ,0] (Definitions 2.3.4, 2.3.5). These are dis-

crete s-holomorphic functions in the variable z defined in terms of contours as in Figure

1.4.1, with defining properties:

• Singularity: s-holomorphicity fails when z approaches a, with explicit discrete

residue (Lemma 2.4.3);

• Monodromy: in the case of the spin-fermion observableHa
[Ωδ,0], the natural domain

of definition is the double cover ofΩδ ramified at 0, i.e. the covering space ofΩδ\{0}

with two sheets, and the observable might have a singular behaviour (but not an

s-holomorphic pole) at 0 (Lemma 2.2.4);

• Boundary Condition: when z is taken on a boundary outer edge of the direction

νout ,
p
νout H ∈R. (Lemma 2.4.4).

These properties uniquely determine the observables by an argument based on the inte-

gral of the square (Propositions 2.5.1-2.5.1), and their natural continuous counterparts

similarly constitute a boundary value problem (Remark 2.5.3).

Bulk Convergence. We show that the renormalised discrete two-point observables converge

as δ → 0 to continuous functions in the sense that the discrete functions, suitably

interpolated to the continuous domain, converge to continuous functions, uniformly in

compact subsets away from a and the monodromy at 0, if present. The case of δ−1H a
Ωδ

is a known result [Hon10, Theorem 91], so we have to treat the observables H a
[Ωδ,0] with

monodromy. In our scheme, since we study local correlations near 0, a is in fact taken

to be a lattice point δa at a microscopic distance from 0.

We use a precompactness argument: the functions {δ−1/2Hδa
[Ωδ,0]}δ>0, are precompact

and thus admit a subsequential limit, but then we show that there can be at most one

continuous limit, proving convergence.

By the Arzelà-Ascoli theorem, it suffices to show uniform boundedness and equicon-

tinuity on any compact subset. The aforementioned integration of the square (Propo-

sition 2.5.3) is useful in this setup. The (approximately) discrete holomorphic func-

tions δ−1
(
Hδa

[Ωδ,0]

)2
are derivatives of the (approximately) discrete harmonic functions

I
[
δ−1/2Hδa

[Ωδ,0]

]
:= Re

∫
δ−1

(
Hδa

[Ωδ,0]

)2
d z. As long as I

[
δ−1/2Hδa

[Ωδ,0]

]
is locally uniformly

bounded, the derivatives δ−1
(
Hδa

[Ωδ,0]

)2
are locally bounded and equicontinuous. To

show that the integral I is bounded, we use a full-plane observable Hδa
[Cδ,0], constructed

11
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by an infinite volume limit procedure in the discrete (Theorem 2.3.2). This observable

has the same discrete singularity as the domain observable, and can be explicitly shown

to scale at power δ−1/2 with a limit of the form Cαp
z

(Lemma 2.5.4).

We finally argue that the integral of the square of the domain observable Hδa
[Ωδ,0] cannot

scale differently, yielding δ−1/2 scaling. Comparison with the full-plane observable

uniquely identifies the limit as well: we expect the continuous limit of δ−1/2Hδa
[Ωδ,0]

to have a singularity and a monodromy at 0 behaving like Cαp
z

, since that is the limit

of the full-plane observable sharing the same discrete singularity. Such comparison

arguments are done by cancelling out the discrete singularity using the full-plane ob-

servable and showing that the remainder needs to be well-behaved (Proposition 2.5.7);

an added complication is that we need to control potential singular behaviour directly

near the monodromy, which is done by first estimating the value of the function near

the monodromy (Lemma 2.5.6).

The boundary condition
p
νout H ∈ R of the continuous limit is verified in terms of

its square integral: this boundary condition is equivalent to having a square integral

(the real part thereof) which is constant and has positive outer normal derivative on

the boundary. While we use familiar arguments based on uniform bounds (Beurling

estimate) on discrete harmonic functions here, we note that this part poses considerable

challenge in the massive case in the next chapter.

Analysis near the Singularity. In view of the statement of the Theorem A, we would like a

convergence result of the following type (Theorem 2.5.2): with both δa,δb scaling to

zero,

Hδa
[Ωδ,0](δz) = Fa,b +δ ·Ea,b +o(δ),

where Fa,b ,Ea,b are explicitly identifiable constants, the latter in terms of the conformal

map ϕz .

The bulk convergence gives that the discrete fermion δ−1Hδa
[Ωδ,0] is uniformly close on

any small but macroscopic domain around 0 to its continuous limit hd a
[Ω,0], which indeed

has a series expansion near z (Definition 2.5.4, Theorem 2.5.2) which is

C−1
α hd a

[Ω,0] =
1p
z
+2AΩ

p
z +o(|z|1/2),

where the coefficient AΩ is determined by ϕz (Remark 2.5.4).

But we are not allowed yet to compare the discrete observable to the continuous at

the point δβ scaling to zero. We need to find a way to say that the discrete fermion

mimics the above expansion at microscopic scales near 0. The strategy for the proof of

Theorem 2.5.2 is to model the series expansion above using discrete counterparts. The

singularity Cα/
p

z already had to be cancelled out with the full-plane fermion, and the

next is the square root behaviour. We construct a discrete s-holomorphic square root

G[Cδ,0] (Definition 2.3.7) for this purpose using a discrete integration procedure.
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Then we subtract a suitable multiple of G[Cδ,0] from the discrete fermion to get o(δ)

behaviour near 0; by bulk convergence, the difference can be controlled in any small but

macroscopic circle. While a holomorphic (thus harmonic) function which is small on

the boundary should be small everywhere, there is a potential problem here because of

the monodromy at 0. To use uniform bounds on discrete harmonic functions (Beurling

estimate) we additionally use an inherent symmetry (Remark 2.3.4) in the discrete

fermion to produce a discrete harmonic function in the slit plane and vanishing on the

slit.

Explicit Formulae and Spin Patterns. As mentioned above, we give explicit formulae for all

coefficients appearing in the statements of Theorem A. To this end, we introduce a new

explicit formula for the discrete harmonic measure of the tip of the slit plane (Proposition

2.7.1, Figure 2.3.2): the probability of a random walk on δ(1+ i )Z2 hitting 0 before any

point on the negative real line. All of our auxiliary functions (full-plane observables and

discrete square root) may be expressed in terms of this harmonic function (Proposition

2.3.9, Corollary 2.3.11, Definition 2.3.7). The formula is based on Fourier analysis, and

has been instrumental in fixing the scaling factor ϑ(δ) (Section 2.5.4) implicitly used in

[CHI15].

Spin patterns are treated by noting that the correlations of the type treated in this chapter

form a basis for any local function of the spin. We give an explicit matrix to translate

correlations into probabilities of specific patterns in Section 2.6.3.

Theorem B (Theorem 3.1.1; page 90). Assume the boundary ofΩ is smooth. Let β(δ) =βc − mδ
2

for a fixed m < 0. Then for a1, . . . , an ∈Ω, there is a continuous function 〈a1, . . . , an〉+Ω,m such

that

δ−n/8E+β(δ),Ωδ
[σaδ1

· · ·σaδn
]
δ↓0−−→〈a1, . . . , an〉+Ω,m ,

where aδ1 , . . . aδn ∈Ωδ are the closest faces to the respective points. In other words, the subcritical

massive spin correlations converge to continuous scaling functions when properly normalised.

The scaling functions < · >Ω,m in Theorem B are identified by their logarithmic derivatives and

asymptotics near the diagonal and ∂Ω; for example the one-point scaling functions approach

their critical counterparts near ∂Ω.

This theorem allows us to give a new derivation of the formula [WMTB76] of the spin two-point

function in the full plane in terms of Painlevé III transcendent (Corollary 3.1.2).

Outline of Proof. We again outline the different steps in the proof.

Logarithmic Derivatives. As in the previous chapter, we first need to connect physical quan-

tities to discrete complex analytic objects. Concretely, if a1, . . . , an ∈Ω are identified with
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the locations aδ1 , . . . , aδn of Ising spins, we will show the convergence of:

1

δ

(
E+
β(δ),Ωδ

[σaδ1+2δ · · ·σaδn
]

E+
β(δ),Ωδ

[σaδ1
· · ·σaδn

]
−1

)
;

1

δ

(
E+
β(δ),Ωδ

[σaδ1+2iδ · · ·σaδn
]

E+
β(δ),Ωδ

[σaδ1
· · ·σaδn

]
−1

)
,

i.e. the discrete logarithmic derivatives of the spin correlation E+
β(δ),Ωδ

[σaδ1
· · ·σaδn

] in

the x, y directions. Note that above convergence, by a discrete integration procedure,

implies the convergence of
E+
β(δ),Ωδ

[σaδ1
· · ·σaδn

]

E+
β(δ),Ωδ

[σbδ1
· · ·σbδn

]
,

for any other b1, . . . ,bn ∈Ω. The connection to discrete fermions is made in Proposition

3.2.3, which says that

F[Ωδ,a1,...,an ](a1 + 3δ

2
) =

E+
β(δ),Ωδ

[σaδ1+2δ · · ·σaδn
]

E+
β(δ),Ωδ

[σaδ1
· · ·σaδn

]
,

where F[Ωδ,a1,...,an ] is a massive generalisation (Definition 3.2.1) of the observable with

monodromy defined in the previous chapter; in this case, it is defined on the double

cover ramified at points a1, . . . , an . Our desired convergence result (Theorem 3.3.5) is of

the form

F[Ωδ,a1,...,an ](a1 + 3δ

2
) = 1+2AΩ(a1, . . . , an)δ+o(δ),

where AΩ(a1, . . . , an), the logarithmic derivative, is a quantity uniquely determined by

the continuous domainΩ and the positions of a1, . . . , an (Definition 3.2.17).

Massive Holomorphicity. To use a precompactness argument, we need analytic means to

both analyse and identify the discrete and continuous fermions. This is given by the

notion of massive s-holomorphicity, which the massive fermions F[Ωδ,a1,...,an ] satisfy

(Proposition 3.2.2). It is a discrete version of the continuous equation ∂z̄ f = m f̄ (Propo-

sition 3.5.1, Remark 3.5.2) which we call massive holomorphicity.

Then we prove that many of the helpful notions from the massless analysis also exist in

this regime, namely:

• Integration of the square: the real part of the integral of the square H[Ωδ,a1,...,an ] :=
I
[

F 2
[Ωδ,a1,...,an ]

]
exists (Proposition 3.2.4). Instead of being approximately harmonic,

it satisfies a discretisation of the continuous notion∆H[Ωδ,a1,...,an ] = 4m
∣∣∇H[Ωδ,a1,...,an ]

∣∣2 =
4m

∣∣F[Ωδ,a1,...,an ]
∣∣2 (Proposition 3.2.7).

• Identification via a boundary value problem: there is a boundary value problem

for a continuous massive holomorphic functions that admits at most one solution

(Proposition 3.2.15).

Massive holomorphic functions belong to a more general class of functions called gen-

eralised analytic functions, and we use some parts of the continuous theory, such as
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the fact that they may be expanded in a series resembling the power series for holo-

morphic functions (Corollary 3.2.13). In addition, in both discrete and continuous

senses, massive holomorphic functions are massive harmonic, i.e. solves a version of

the equation ∆ f = m2 f . Massive harmonic functions share many regularity properties

with harmonic functions; in particular, L2 bounded massive harmonic functions are

locally bounded and equicontinuous (Proposition 3.5.4).

Convergence. Instead of the uniform boundedness of the integral of the square I
[
δ−1F 2

[Ωδ,a1,...,an ]

]
as in the previous chapter, we rely on an L2 estimate and massive harmonicity of the

renormalised fermion δ−1/2F[Ωδ,a1,...,an ] for the bulk convergence.

• Precompactness: since m < 0, the integral of the square is nearly superharmonic

with approximate laplacian 4m
∣∣F[Ωδ,a1,...,an ]

∣∣2 < 0. Superharmonicity fails at the

singularity a1, where F[Ωδ,a1,...,an ] is singular but has very explicit bounds (Proposi-

tion 3.2.3). We may bound the singular laplacian at a1, and this gives an L2 bound

for the fermion (Proposition 3.3.1).

• Identification of the limit: in our subcritical massive regime where the integral of

the square H[Ωδ,a1,...,an ] is approximately superharmonic, many of the two-sided

estimates from the massless case, where the integral is approximately harmonic,

become only one-sided inequalities. As mentioned before, the boundary conditionp
νout F[Ωδ,a1,...,an ] ∈R translates to the integral of the square being constant and of

positive outer normal on the boundary (Remark 3.2.16). Even given boundedness

in the bulk, this condition might not be preserved for a continuous bulk limit of

general discrete superharmonic functions satisfying it.

Our strategy in the proof of unique identification is to show uniform boundedness

of δ−1/2F[Ωδ,a1,...,an ] away from the singularities at a1, . . . , an , and thus uniform con-

vergence of δ−1H[Ωδ,a1,...,an ] near the boundary. Since δ−1/2F[Ωδ,a1,...,an ] is bounded

in the bulk, it suffices to show that it is bounded at the boundary by massive

harmonicity. We have that the superharmonic δ−1H[Ωδ,a1,...,an ] is bounded below

by its harmonic minorant (a constant multiple of the domain Green’s function),

whose values are O(δ) on points adjacent to the boundary (Lemma 3.5.3). But

by positivity of outer derivatives, this is the only derivative bound one needs at

the boundary; thus the derivative δ−1/2F[Ωδ,a1,...,an ] is bounded at the boundary

(Proposition 3.3.3).

• Analysis near the Singularity: near the singularity, we rely on short-scale behaviour

of massive harmonic functions, which asymptotically approaches that of harmonic

functions. For example, the massive counterpart of the slit plane discrete harmonic

measure of the previous chapter is the hitting probability of a random walk ex-

tinguished at each step with a given probability (Proposition 3.2.11); full-plane

observable converges to exponentially weighted e2m|z|p
z

(Lemma 3.3.2). Therefore,

analysis near the singularity proceeds as in the previous chapter, with discrete

square root constructed using a discrete massive integration procedure (Proposi-

tion 3.3.4).
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Integration of the Coefficients. Given convergence of the logarithmic derivatives, and there-

fore convergence of the ratios
E+
β(δ),Ωδ

[σ
aδ1

···σ
aδn

]

E+
β(δ),Ωδ

[σ
bδ1

···σ
bδn

] , we simply need to show the convergence

of one renormalised correlation δ−n/8E+
β(δ),Ωδ

[σaδ1
· · ·σaδn

] for any domainΩ and n.

The convergence of the two-point fermion (3.3.7) in fact gives additional information, in

that E+
β(δ),Ωδ

[σaδ1
σaδ2

] ∼ E+
βc ,Ωδ

[σaδ1
σaδ2

] (3.1.1) as a1, a2 approach themselves in the bulk.

Given the convergence result at βc of [CHI15], this yields convergence of the two-point

functions.

For the convergence of other n, we use decorrelation near the boundary: as a j → ∂Ω,

the correlation of the spins is primarily determined by interaction with the bound-

ary, and not so much the interaction within themselves. In fact, by [CHI15, (1.3)],

E+
βc ,Ωδ

[σaδ1
σaδ2

] ∼ E+
βc ,Ωδ

[σaδ1
]E+
βc ,Ωδ

[σaδ2
] as a1, a2 approach the boundary away from

each other. To use this information, we bound the difference of logarithmic deriva-

tives AΩ(a1, a2) in the massive and massless cases (Lemma 3.4.9) to show that (3.1.2)

one may make a1, a2 → ∂Ω such that we still have E+
β(δ),Ωδ

[σaδ1
σaδ2

] ∼ E+
βc ,Ωδ

[σaδ1
σaδ2

]

while at the same time there is a decorrelation of the two-point functions. This yields

the fact that massive one-point functions approach the critical one-point functions near

the boundary (3.1.3), and therefore convergence of the massive one-point functions.

For n ≥ 3, we show that the n-point correlation near the boundary should decorrelate

into products of n one-point functions, which results in a uniquely identified n-point

function scaling at n-th power of the 1-point function.

Painlevé Transcendent. The formula [WMTB76] for the two-point spin correlation in the full

plane in terms of the Painlevé III transcendent has been obtained by an isomonodromic

deformation procedure [SMJ77]. In Section 3.4.2, we follow this strategy (as presented

in [KaKo80]) with our fermionic observables. The idea is simple: the change of the

observable under infinitesimal movements of the points a1, a2 may be expressed in

terms of the observables and their derivatives, since they form a basis of the space

of solutions to the massive boundary value problem (Proposition 3.2.15). To justify

differentiation in a j , we verify that the continuous observables are indeed differentiable

in the positions of the monodromies (Proposition 3.4.10).
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Chapter 2. Local Correlations and Conformal Invariance

Abstract.

We study the 2-dimensional Ising model at critical temperature on a simply connected subset

Ωδ of the square grid δZ2. The scaling limit of the critical Ising model is conjectured to

be described by Conformal Field Theory; in particular, there is expected to be a precise

correspondence between local lattice fields of the Ising model and the local fields of Conformal

Field Theory.

Towards the proof of this correspondence, we analyze arbitrary spin pattern probabilities

(probabilities of finite spin configurations occurring at the origin), explicitly obtain their

infinite-volume limits, and prove their conformal covariance at the first (non-trivial) order. We

formulate these probabilities in terms of discrete fermionic observables, enabling the study

of their scaling limits. This generalizes results of [Hon10, HoSm13] and [CHI15] to one-point

functions of any local spin correlations.

We introduce a collection of tools which allow one to exactly and explicitly translate any

spin pattern probability (and hence any lattice local field correlation) in terms of discrete

complex analysis quantities. The proof requires working with multipoint lattice spinors with

monodromy (including construction of explicit formulae in the full plane), and refined analysis

near their source points to prove convergence to the appropriate continuous conformally

covariant functions.

2.1 Introduction

The 2D Ising model is one of the most studied models of statistical mechanics. In its simplest

formulation it consists of a random assignment of±1 spinsσx to the faces of (subgraphs of) the

square grid Z2; the spins tend to align with their neighbors; the probability of a configuration

is proportional to e−βH(σ) where the energy H(σ) =−∑
i∼ j σiσ j sums over pairs of adjacent

faces; alignment strength is controlled by the parameter β > 0, usually identified with the

inverse temperature.

The 2D Ising model has found applications in many areas of science, from description of

magnets to ecology and image processing. Due to its simplicity and emergent features, it

is interesting both as a discrete probability and statistical field theory model. Of particular

physical interest is the phase transition at the critical point βc : for β < βc the system is

disordered at large scales while for β>βc a long-range ferromagnetic order arises. Classically,

the phase transition can be described in terms of the infinite-volume limit: in the disordered

phase β < βc there is a unique Gibbs measure, while in the ordered phase β > βc infinite-

volume measures are convex combinations of two extremal measures. It has a continuous

phase transition: only one Gibbs measure exists at β=βc .

Critical lattice models at continuous phase transition points are widely expected to have

universal scaling limits (independent of the choice of lattice and other details). In 2D, such
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2.1. Introduction

scaling limits are expected to exhibit conformal symmetry. This can be loosely formulated as

follows: for a conformal mapping ϕ :Ω→ Ω̃,

ϕ
(
scaling limit onΩ

)= scaling limit on Ω̃ .

There are two main tools used to describe the scaling limits of planar lattice models: curves

and fields. Schramm-Loewner Evolution (SLE) curves naturally arise in conformally invariant

setups: for the Ising model, they describe the scaling limit of interfaces between opposite

spins ([CDHKS14, BeHo16]). The fields on a discrete level, such as the ±1-valued spin field

σi , can be described by Conformal Field Theory (CFT): their correlations, in principle, are

conjecturally described using representation-theoretic methods. Such conjectures have been

proved for a number of natural fields ([Hon10, HoSm13, CHI15]); the present paper is part of

this program.

What makes it possible to mathematically analyze the 2D Ising model with great precision

is its exactly solvable structure, first revealed by Onsager [Ons44]. The exact solvability can

be formulated in many different ways; in recent years, the formulation in terms of discrete

complex analysis has emerged as one the most powerful ways to understand the scaling limit

of the model rigorously. In particular, the model’s conformal symmetry becomes much more

transparent in this context.

The results of [Hon10] and [CHI15] on (asymptotic) conformal invariance of spin and energy

fields can be formulated, in their simplest cases, as follows: consider the critical Ising model

with plus boundary conditions on the discretizationΩδ by a square grid of mesh size δ> 0 of

a simply-connected domain Ω around the origin. Take the origin 0 ∈Ω, identify it with the

closest face ofΩδ and let δ be the face to the right of 0. Then, as δ→ 0, we have the asymptotic

expansions,

[spin field] EΩδ
[σ0] = 0+Cσ

∣∣ϕ′ (0)
∣∣− 1

8 δ
1
8 +o

(
δ

1
8

)
,

[energy density field] EΩδ
[σ0σδ] =

p
2

2
+Cε

∣∣ϕ′ (0)
∣∣−1

δ+o (δ) ,

where Cσ,Cε > 0 are explicit (lattice-dependent) constants and ϕ is any conformal map from

the unit disk D to Ω fixing the origin. The first terms in the respective expansions are the

infinite-volume limits of the left-hand side quantities. These results illustrate the following:

for any local field one-point function, the correction to its infinite-volume expectation is

described by Conformal Field Theory (CFT) quantities.

The Ising Model is conjectured to be described by the unitary CFT minimal model M3,4 (see

e.g. [BPZ84], [DMS97]), also known as the Ising CFT. The Ising CFT consists of three primary

fields: those of respective scaling dimensions 0 (the identity field – a constant field identically
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Chapter 2. Local Correlations and Conformal Invariance

Figure 2.1.1 – An Ising model configuration on the faces of a square subset of Z2 with all-
plus boundary conditions, along with its “low-temperature expansion", indicating interfaces
separating plus and minus spins.

equal to one), 1
8 (the spin field) and 1 (the energy field). Each of these primary fields generates

an infinite-dimensional tower of fields called its descendants.

We conjecture that the space of the Ising CFT fields describes the limits of Ising lattice local

fields:

Definition. Let F be a finite connected collection of faces of Z2 including 0. For any F :

{±1}F → C, a lattice local field ΦF
δ

is a random field on the faces of Ωδ whose values are

given by ΦF
δ

(x) = F (σ|x+δF ). We call a local field spin-antisymmetric if F (−σ) = −F (σ) and

spin-symmetric if F (−σ) = F (σ).

Conjecture. For any nonzero lattice field (i.e. whose correlations do not vanish generically;

see [HKV17])ΦF
δ

, there exists D ∈N∪ (
N+ 1

8

)
such that

δ−DΦF
δ →Φ

in the sense of correlations (meaning that the n point functions converge), whereΦ is a nonzero

primary or descendant CFT field. If Φ is spin-antisymmetric then D ∈ N+ 1
8 ; if Φ is spin-

symmetric then D ∈N. Moreover every Ising CFT field can be obtained in such a manner.

Spin Pattern Probabilities

Correlations of any lattice local field at a point x can be rewritten in terms of probabilities

of observing certain spin patterns centered at x, i.e. probabilities of spin configurations in

a microscopic neighborhood of x. The main objective of this paper is to obtain explicit

representations for probabilities of spin pattern events, which are the most general local
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2.1. Introduction

quantities describing the model: we obtain infinite-volume limits for arbitrary local pattern

probabilities and give their first-order corrections corresponding to what can be expected

from the Ising-CFT correspondence (see Theorems 2.1.1–2.1.2 and Corollary 2.1.1).

More precisely, Let F be a finite connected set of faces in Z2 and fix a configuration ρ ∈ {±1}F .

We look at two types of lattice local fields:

• spin-antisymmetric pattern fields Φ
Fρ
δ

(x) where Fρ = 1{σ|F = ρ}, whose expectation

gives the probability of the spin-antisymmetric pattern ρ on F ,

• spin-symmetric pattern fieldsΦ
F±
ρ

δ
(x) where F±

ρ = 1{σ|F ∈ {±ρ}}, whose expectation gives

the probability of the spin-symmetric pattern ±ρ on F .

Every Ising lattice local field can easily be seen to be a finite linear combination of such fields.

The main result of the paper is the following.

Theorem (see Corollary 2.1.1). Let F and ρ be as above and let PZ2 be the infinite-volume

measure of the critical Ising model. Consider the critical Ising model onΩδ with plus boundary

conditions, and denote it by PΩδ
. Then as δ→ 0, we have

PΩδ

[
σ|δF = ρ] = PZ2

[
σ|F = ρ]+δ 1

8 ·geometric effect(ρ,Ω)+o
(
δ

1
8

)
,

PΩδ

[
σ|δF ∈ {±ρ}

] = PZ2

[
σ|F ∈ {±ρ}

]+δ ·geometric effect(±ρ,Ω)+o (δ) .

The infinite-volume probability and the geometric effects are given in terms of explicit Pfaffian

formulae.

The distinction between spin-symmetric and spin-antisymmetric pattern fields is both natural

and important in the CFT framework: the spin and energy fields are the most elementary

instances of spin-antisymmetric and spin-symmetric local fields respectively. The space of

lattice local fields is a vector space that can be decomposed into the direct sum of fields that

are symmetric and antisymmetric under spin flip.

The above theorem proves the aforementioned conjecture in the following specific case:

it allows one to study the scaling limit of the one-point function of δ−DΦF
δ

for D ≤ 1 in

simply-connected domains. Following [Hon10, HoSm13, CHI15], we expect the proof naturally

extends to multi-field correlations, in order to prove—in full—the conjecture for fields of

scaling dimension D ∈ {0,1/8,1}. Beyond that, the method we use provides a general toolbox

to express multipoint correlations of any local lattice field in terms of discrete fermionic

observables in discrete domains, and hence to give explicit infinite-volume limits and first

order corrections, and reduce the calculation of all subsequent CFT terms to questions in

discrete complex analysis (see Applications 2.1.3).

Moreover, the results allow one to study new interesting quantities: for instance, one can

estimate spin flip rates for critical Ising Glauber dynamics, including the geometric effects on

them up to first order in the mesh size (see Applications 2.1.3).
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Chapter 2. Local Correlations and Conformal Invariance

The results and approach of this paper, as well as the conjectured connection between Ising

lattice local fields and CFT, are expected to straightforwardly generalize in two directions.

First, the approach can be generalized to arbitrary combinations of +,− and free boundary

conditions (the three conformally invariant boundary conditions according to CFT [Car84]).

Second, the results should extend to more general planar graphs, including, in particular,

isoradial graphs.

Let us also point out similar connections between pattern probabilities and conformal invari-

ance obtained by Boutillier in [Bo07] in the context of the dimer model.

The proof relies mainly on discrete complex analytic methods: we use lattice observables, mod-

ifying the objects introduced in [Hon10] and [CHI15], to connect pattern probabilities with

solutions of discrete boundary value problems. This requires precise treatment of multipoint

observables on a topological double cover of the lattice with microscopically separated source

points at their singularities. We then study the scaling limits of such solutions using discrete

complex analysis technique, where, in particular, the neighborhood of the monodromy of the

double cover needs to be analyzed delicately. The new techniques introduced for this purpose

are: refined analysis of convergence of observables and constructions and characterizations

of lattice spinor observables on the slit plane (C\R>0)δ>0, both as limits of finite-volume ones

and in terms of discrete harmonic measures (explicitly computed with Fourier techniques).
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2.1. Introduction

2.1.1 Notation

We begin by defining the most important notation, that will be necessary for the statements of

the main theorems. We defer a more extensive discussion of the notation used in the proofs to

§2.1.5.

In this paper, we consider the Ising model with spins on the faces of the graphΩδ, a discretiza-

tion ofΩ of mesh size δ> 0. More precisely:

Identify Z2 with the square lattice with vertex set at Z+ iZ⊂C and nearest-neighbor edges.

Let

C1 := (1+ i )Z2 +1 and Cδ = δC1

be the rescaled, rotated and shifted lattice, and its rescaling by a mesh size δ> 0, respectively.

For a simply connected open domainΩ⊂C bounded by a smooth curve containing 0 (this

is easily relaxed to arbitrary simply connected domains [CHI15, Remark 2.10]), defineΩδ as

the largest connected component of the graphΩ∩Cδ. Denote by VΩδ
the set of vertices ofΩδ,

and by EΩδ
the set of edges inΩδ. We denote the set of faces of the graph by FΩδ

. Whenever

needed, we identify the edges in EΩδ
with their midpoints, and the faces in FΩδ

with their

centers, such that the origin is identified with a face.

Ising Model

An Ising configuration σ is an assignment of ±1 spins to the faces in FΩδ
. We consider the

critical Ising model on FΩδ
with plus boundary conditions, given by,

PΩδ
(σ) =P+

Ωδ
(σ) ∝ e−βc H(σ) ,

where βc = 1
2 ln(

p
2 + 1) is the critical inverse temperature and H (σ) = −∑

x∼y σxσy with

boundary faces fixed to have +1 spin. Let EΩδ
= E+Ωδ

be its corresponding expectation.

Define the energy density field (ε(δe))e∈C1 as follows: for δe ∈ EΩδ
separating faces δ f1 ∼ δ f2,

ε (δe) =µ−σδ f1σδ f2 , where µ :=
p

2

2
= ECδ [σδ f1σδ f2 ] = EC1 [σ f1σ f2 ] .

Define the spin-weighted energy density field (ε[0](δe))e∈C1 on EΩδ
by

ε[0](δe) =µe −σδ f1σδ f2 , where µe := lim
Ω→C

EΩδ
[σ0σδ f1σδ f2 ]

EΩδ
[σ0]

= lim
Ω→C

EΩ1 [σ0σ f1σ f2 ]

EΩ1 [σ0]

(2.1.1)

where the limit is trivially independent of δ and exists for every e ∈C1 by Theorem 2.1.2 (see
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Chapter 2. Local Correlations and Conformal Invariance

Figure 2.4.2 for some exact values). Given a set of edges B ⊂ EC1 , we write

ε(δB) := ∏
e∈B

ε(δe) and analogously ε[0](δB) := ∏
e∈B

ε[0](δe) .

2.1.2 Main Results

In this section we present the main results. By translation, it suffices to consider the statistics

of fields centered at x = 0. For a collection B = {e1, . . . ,en} ⊂ EC1 , consider the spin-symmetric

field ε(δB) = ε(δe1) · · ·ε(δen), i.e., the product of energy densities on a collection of edges

around x, and the spin-antisymmetric field σ0ε[0](δB) = σ0ε[0](δe1) · · ·ε[0](δen). If A,B are

anti-symmetric square matrices of the same dimensions, define the directional derivative of

the Pfaffian Pf(B) (defined in (2.4.6)) by

DAPf(B) = lim
t↓0

Pf(B+ tA)−Pf(B)

t
.

For spin-symmetric and spin-antisymmetric fields, we obtain the following two convergence

results:

Theorem 2.1.1 (Spin-symmetric correlations). Let B = {e1, ...,en} ⊂ EC1 . There exist explicit,

real-valued anti-symmetric 2n ×2n matrices FB and EB , such that as δ→ 0,

EΩδ
[ε(δB)] = (−2)n ·Pf(FB)+ (−2)n ·δ · r−1

Ω (0) ·DEB Pf(FB)+o(δ) ,

where rΩ(z) is the conformal radius ofΩ seen from z ∈Ω (i.e. rΩ(z) = ∣∣ϕ′(0)
∣∣ where ϕ :D→Ω is

the conformal map such that ϕ(0) = z).

Theorem 2.1.2 (Spin-antisymmetric correlations). Let B = {e1, ...,en} ⊂ EC1 . The limits µe

defined in (2.1.1) exist for every e ∈ EC1 and are given explicitly. There exist explicit anti-

symmetric 2n ×2n matrices FB
[0] and EB

[0], the former being real-valued, such that as δ→ 0,

EΩδ

[
σ0ε[0](δB)

]
EΩδ

[σ0]
= (−2)n ·Pf(FB

[0])+ (−2)n ·δ ·Re

[
−1

4
∂z logrΩ (z)

∣∣∣
z=0

·DEB
[0]

Pf
(
FB

[0]

)]+o(δ) ,

where z = x + i y and ∂z = 1
2 (∂x − i∂y ).

Remark. Theorems 2.1.1 and 2.1.2 yield that the infinite-volume limits of EΩδ

[
σ0ε[0](δB)

]
/EΩδ

[σ0]

and EΩδ
[ε(δB)] exist and are given explicitly by

lim
Ω→C

EΩδ
[ε(δB)] = (−2)n ·Pf(FB) , and lim

Ω→C

EΩδ

[
σ0ε[0](δB)

]
EΩδ

[σ0]
= (−2)n ·Pf(FB

[0]) .
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2.1. Introduction

For spin pattern fields, our results translate to the following:

Corollary 2.1.1 (Conformal invariance of pattern probabilities). Let F be a finite connected

collection of faces of C1 including 0. For any ρ ∈ {±1}F we have:

δ−1 (
PΩδ

[
σ|δF ∈ {±ρ}

]−PC1

[
σ|F ∈ {±ρ}

])−−−→
δ→0

〈〈F , {±ρ}〉〉Ω ,

δ−1/8 (
PΩδ

[σ|δF = ρ]−PC1 [σ|F = ρ]
)−−−→
δ→0

〈〈F ,ρ〉〉′Ω ,

where the functions 〈〈·〉〉Ω and 〈〈·〉〉′Ω depend only onΩ, and where:

• infinite-volume limits PC1

[
σ|F ∈ {±ρ}

] = lim
Ω→C

PΩ1 [σ|F ∈ {±ρ}] and PC1 [σ|F = ρ] are

explicit.

• 〈〈F , {±ρ}〉〉Ω and 〈〈F ,ρ〉〉′Ω are explicit and are such that for the map ϕ : D→Ω as in

Theorem 2.1.1,

〈〈F , {±ρ}〉〉Ω = r−1
Ω (0)〈〈F , {±ρ}〉〉D , and 〈〈F ,ρ〉〉′Ω = r

− 1
8

Ω (0)〈〈F ,ρ〉〉′D .

As a result of Corollary 2.1.1, our results include explicit expressions for all the finite-dimensional

distributions of PZ2 as finite linear combinations of a certain Fourier integral given in Theo-

rem 2.3.3.

2.1.3 Applications

In this subsection, we briefly detail three applications of our results: the lattice local field

conjecture of the introduction, relations between Markov chain dynamics flip rates and

the geometry of the domain where the dynamics live, and explicit computations of pattern

probabilities under the Gibbs measure.

Lattice Local Fields and CFT

Returning to the conjectured Ising-CFT correspondence in terms of lattice fields, we observe

that any lattice local fieldΦF
δ

(x) is such that F can be expressed as a linear combination of indi-

cator functions of spin-pattern events in a microscopic neighborhood of x; a spin-symmetric

lattice local field can in particular be written in terms of indicators of spin-symmetric pattern

events.

Then Theorems 2.1.1–2.1.2 give the infinite-volume limits, and first-order CFT corrections of

the one point function of any lattice local fieldΦF
δ

(x) in terms of those of spin-symmetric and

spin-antisymmetric pattern fields, whose one-point functions can be obtained explicitly. We

25



Chapter 2. Local Correlations and Conformal Invariance

believe extending this to multi-field correlations of fields with scaling dimension D ≤ 1 should

carry over from [Hon10, CHI15].

In the other direction, though our main statements only go up to first-order corrections (δ1/8

or δ), the methods of this paper can, in principle, be employed to reduce the computation of

higher order CFT corrections to correlations of any local lattice field to questions of discrete

complex analysis. Of course, then obtaining the necessary sharper discrete complex analytic

expansions is itself a major obstacle to the extension of such results. All the same, using the

present framework along with, hypothetically, improved discrete complex analysis asymp-

totics, should yield that all Ising lattice local fields are, as conjectured in the Introduction,

either zero in correlations, or have scaling dimensions ∆ ∈N∪ (N+ 1
8 ), as predicted from the

Ising CFT.

Local Markov Chain Dynamics

There are a number of Markov chain dynamics for which the Ising measure is the stationary

measure; as a result, an efficient way to sample the Ising model is to run such a Markov chain

for long times.

Of particular importance are local dynamics, such as the Glauber dynamics, where one picks

a spin at random, and flips it with a probability given by the state of spins in a microscopic

neighborhood of it (the simplest one using only the four neighbors). At critical temperature

interesting dynamical behavior arises (see [LuSl12]). In particular, as our results explain, the

geometry of the domainΩ has a measurable (i.e. inverse polynomial-sized) effect on the local

dynamics of the Markov chain.

For such a dynamics, our results allow one to describe, once we are at equilibrium, the relevant

observables to compute the average flip rates of the system: those are indeed given in terms of

the occurence probabilities of various spin patterns (typically spin-symmetric patterns).

In particular Corollary 2.1.1 gives us the following: at criticality, for any Glauber dynamics

(see e.g., [LuSl12, Section 2.1]), we can derive exact information about spin-symmetric pattern

probabilities, how they behave at constant order, and how the first-order correction depends

on a geometric quantity.

Knowing the long-term history of a Glauber dynamics in a microscopic neighborhood of a

point enables the computation of various spin pattern probabilities and hence lattice local

field one-point functions. Higher order corrections of these terms in turn give geometric

information beyond the conformal radius of the domain. A particularly interesting question,

for which our results provide relevant tools, is the following one, due to Benjamini (private

communication to the second author): does the complete (i.e., unbounded in time) knowledge

of the flip history of a single spin allow one to recover the shape of the domainΩ, up to isometry?
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Explicit Computations

Explicit calculation of infinite-volume limits and finite-size corrections of pattern probabilities

in the critical Ising model is of general interest, and may be particularly useful for the program

of Application 1.3.2. Such computation requires the explicit matrices of Theorems 2.1.1–2.1.2,

which are expressed in terms of the full-plane fermion and spin-fermion observables: some

values of the former are given in e.g., [Ken00]; we characterize the latter as a Fourier integral

(see Theorem 2.3.3) and give some of its values in Figure 2.3.2. In particular, the entries of

the matrices in Theorems 2.1.1–2.1.2 are given as finite linear combinations of a slit-plane

harmonic measure, whose values are explicitly computable as a Fourier integral.

We present an example computation of the infinite-volume limit and first-order conformal

correction of EΩδ
[σ0σ2δ] in Corollary 2.9.1 of Appendix 2.9, where, since the spins live on the

rotated square lattice, this is a pair of diagonally “adjacent” spins. The first and second order

corrections to this term, and their representation in terms of discrete complex analysis will

be used in the Ising stress tensor on the lattice level (see [BeHo18] and, for an alternative

approach to the stress tensor, [CGS17]).

As a computation of spin-antisymmetric fields, Corollary 2.9.2 gives the values of the infinite-

volume limit and conformal correction to the spin weighted “L”-shaped correlation

EΩδ
[σ0σ(1+i )δσ2δ]/EΩδ

[σ0].

2.1.4 Proof Outline

In this subsection we outline the strategy for proving our main results: Theorems 2.1.1–2.1.2.

The proof combines ideas from [Hon10, CHI15], and we try to focus the outline on the places

where substantial new ingredients are needed. The steps in proving the main theorems broadly

consist of the following.

Section 2.2 defines standard concepts in discrete complex analysis as well as the discrete

Riemann boundary value problems solved by certain discrete observables. Section 2.3 begins

by defining the two-point discrete fermion and spin-fermion (given by (α,ζ) 7→ Fα,ζ
Ωδ

and Fα,ζ
[Ωδ,0]

respectively) via the low-temperature expansion of the Ising model and disorder lines, as well

as their full-plane analogues.

• In §2.3.1, we define the bounded domain observables on Ωδ, as previously defined

in [HoSm13, CHI15].

• In §2.3.2, we introduce their full-plane analogues: the full plane fermion Hα
C1

(z) is given

explicitly by a formula due to Kenyon. For the special value of α0 = 1
2 , the full plane

spin-fermion Hα0
[C1,0](z) was given by [CHI15]. Here, we prove existence of the infinite-

volume limit of the spin-fermion Hα
[C1,0] for every α, and express it as a finite linear

combination of discrete harmonic measures on C1\R>0. Moreover, we give an explicit

representation formula using Fourier techniques for this discrete harmonic measure
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Chapter 2. Local Correlations and Conformal Invariance

(see Theorem 2.3.3), allowing computation of Hα
[C1,0](z) for arbitrary α.

Section 2.4 defines and analyzes n-point analogues of the two-point fermion and spin-fermion.

This section is notationally heavy, but many of its proofs are straightforward adaptations of

proofs in [Hon10].

• We first recall the multipoint fermion defined in [Hon10] and slightly, but crucially,

generalize its properties to the setting where its arguments are permitted to be adjacent

edges.

• Motivated by this definition, we consider a multipoint version of the spin-fermion

observable in Definition 2.4.2 and prove that the same properties hold after minor

modifications.

• In Proposition 2.4.6 we relate specific values taken by the multipoint fermion and

spin-fermion to the n-point spin-symmetric and spin-antisymmetric correlations of

Theorems 2.1.1–2.1.2.

• These results allow us to arrive at the spin-antisymmetric analogues of the Pfaffian

formulae of [Hon10], connecting spin-antisymmetric n-point Ising correlations to the

Pfaffian of a matrix with entries consisting only of the two-point spin-fermion (see

Proposition 2.4.10).

Section 2.5 defines two-point continuous observables, and proves that they are the renormal-

ized scaling limits (as δ→ 0) of the discrete two-point observables.

• In §2.5.2 we introduce the continuous analogues of the discrete Riemann boundary

value problem defined in Section 2.2 and give their full-plane solutions and bounded

domain solutions hαΩ and hα[Ω,0]. Again this was already done for the fermion in [Hon10,

HoSm13] and for the spin-fermion in the particular case of h
α= 1

2
[Ω,0] [CHI15]; extra care is

needed in constructing the continuous bounded domain and full-plane spin-fermions

for arbitrary source point α.

• The heart of Section 2.5, §2.5.4 proves convergence of a rescaled, renormalized discrete

spin-fermion to a conformally covariant quantity obtained by Taylor expanding hα[Ω,0],

for arbitrary α. In adapting the proof of convergence in [CHI15] to the case where

α 6= 1
2 , we require refined analysis of the observables near their branch points and

singularities. Here we encounter some discrete complex analytic peculiarities regarding

discretizations of the function i
p

z which are independently interesting.

Section 2.6 combines the Pfaffian formulae of §2.4.4 expressing n-point correlations in terms

of two-point discrete observables, with the convergence results of §2.5, to prove Theorems

2.1.1–2.1.2.
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In Appendix 2.7, we prove the validity of our explicit construction of the discrete harmonic

measure on C1\R>0 and provide a recursive formula to obtain its value at any lattice point

as a finite linear combination of Fourier integrals. In Appendix 2.8, Proposition 2.8.1, we

provide a combinatorial proof of the well-definedness of the discrete multipoint spin-fermion

we introduce in Definition 2.4.2. As mentioned earlier, Appendix 2.9 consists of explicit

computations of the infinite-volume limit and first-order correction of the correlations of two

diagonally adjacent spins and three spins in an “L” shape.

2.1.5 Extra Notation and Glossary

We now introduce extended notation that will be used globally throughout the paper. This

notation mimics very closely that of [CHI15], and we try to make note of places where our

conventions differ.

Relevant Constants

The following constants will recur throughout the paper.

βc = 1
2 log(1+p

2) µ=
p

2
2 λ= e iπ/4

Graph Notation

We list below the additional graph notation that will be used throughout the paper.

• For two adjacent vertices a,b ∈ VΩδ
the edge e = {a,b} is identified with the line segment

in Ω connecting a and b; we define the set of medial vertices V m
Ωδ

as the set of edge

midpoints; given an edge e ∈ EΩδ
, we denote its midpoint by m(e) ∈ V m

Ωδ
, and conversely

for m ∈ V m
Ωδ

the corresponding edge e(m) ∈ EΩδ
.

• We call corners the points that are at distance δ/2 from the vertices in one of the four

±1,±i directions. Following [CHI15], we set

V 1
Ωδ

:= VΩδ
+ δ

2
, V i

Ωδ
:= VΩδ

− δ

2
, V λ

Ωδ
:= VΩδ

− iδ

2
, and V λ̄

Ωδ
:= VΩδ

+ iδ

2
.

The set of corners V c
Ωδ

is the union V 1
Ωδ

∪V i
Ωδ

∪V λ
Ωδ

∪V λ̄
Ωδ

.

• The domain of definitions for most discrete functions in the following sections is the

set of both corners and medial vertices, or V cm
Ωδ

:= V c
Ωδ

∪V m
Ωδ

. We declare a medial vertex

and a corner adjacent if they are δ
2 apart from each other.

• The boundary faces ∂FΩδ
, boundary medial vertices ∂V m

Ωδ
, boundary edges in ∂EΩδ

are
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VΩδ
= •

V τ
Ωδ

=�τ
V c
Ωδ

=�
V m
Ωδ

= ◦
V cm
Ωδ

=�,◦
FΩδ

=×

λ̄

λ

1 i

1i

λ

λ̄

λ

1

λ̄

i

1

δ

Figure 2.1.2 – The graph notation on discretizations ofΩwhere τ ∈ {1, i ,λ, λ̄}; the notation on
[Ωδ,0] is analogously defined.

those faces, medial vertices, and edges in Cδ that are incident to but not contained in

FΩδ
, V m
Ωδ

, and EΩδ
.

• Given a boundary edge z (resp., boundary medial vertex), we define the unit normal

outward vector νz as the unit vector in the direction of the vertex in C\Ω viewed from

the vertex insideΩ.

Graph lifts to the double cover

For the discrete functions with monodromy which will be introduced in Section 3, we work

with graphs lifted to the double cover [Ω,0] ofΩ\ {0}.

• We denote by [C,0] the double cover of the plane C ramified at 0, i.e. the surface on

which the function z 7→p
z ∈C\ {0} is naturally defined; above each point of C\ {0} lie

exactly two points of [C,0]. We will sometimes use z ∈ [C,0] to refer to its projection on

C in unambiguous cases.

• If z1, z2 ∈ [C,0] are two points above w1, w2 ∈C\{0} such that Re
(

w1
w2

)
> 0, we say that they

are on the same sheet if Re
(p

z1p
z2

)
> 0 and that they are on opposite sheets if Re

(p
z1p
z2

)
< 0.

• If z ∈ [C,0] lies above w ∈C\ {0}, we define z + x ∈ [C,0], for x ∈C small enough, as the

point above w +x that is on the same sheet as z.

• We define complex conjugation on the double cover by conjugating the square root.

In other words, the complex conjugate z̄ of z ∈ [C,0] is defined by the condition thatp
z̄ =p

z.
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2.1. Introduction

• We call functions with monodromy −1 around 0 spinors; these are naturally defined on

[C,0].

• We denote by [Ωδ,0] the double cover ofΩδ ramified at 0; in other words, the vertices,

medial vertices, and corners get lifted fromΩδ to yield the lifted vertex, edge and corner

sets. We use similar notations for the lifted vertex, edge, and corner sets as above by

replacing Ωδ with [Ωδ,0]. Moreover, [Ωδ,0] can be naturally viewed as a subgraph of

[Cδ,0] via the natural inclusion [Ω,0] ⊂ [C,0].

• Identify the branches of the double cover [C,0] using the function
p

z as follows:

X :=C\R<0 with X+ = {z ∈ [C,0] : Re(
p

z) > 0} and X− = {z ∈ [C,0] : Re(
p

z) < 0}

Y :=C\R>0 with Y+ = {z ∈ [C,0] : Im(
p

z) > 0} and Y− = {z ∈ [C,0] : Im(
p

z) < 0}

On the discrete level, define the lift of V 1
Ωδ

to X± as X±
δ

, and the lift of V i
Ωδ

to Y± as Y±
δ

.

Orientations

We define orientations and s-orientations for corners and medial vertices.

• Given an edge e = {a,b} ∈ EΩδ
, we denote the two orientations of e by the complex

numbers (a −b)/ |a −b| and (b −a)/ |b −a|. We can subdivide e into two half edges

{a,m(e)} and {m(e),b}; their union is identified with the whole edge e. An orientation

o = o(e) is compatible with a half edge {a,m(e)} if a −m(e) points to the same direction:

i.e., o = (a −m(e))/|a −m(e)|.

• We call an oriented medial vertex and denote by mo an edge midpoint m (e) together

with an orientation of the edge e. We denote by V o
Ωδ

the set of oriented medial vertices.

• For a corner c, we define its orientation o = o (c) as the complex number (v − c)/ |v − c|,
where v is the nearest vertex to c.

• To an orientation o we further associate two s-orientations corresponding to the two

choices of square root for o; we often denote an s-orientation by (
p

o)2, indicating this

choice.

Glossary

For the reader’s convenience, we compile some of the most important terminology and

quantities used across the paper (see also Fig. 2.1.2 for the graph notation). We first recall the

various graphs we work with: ifΩ is a simply-connected smooth domain containing the origin

andΩ is its complex conjugate,

C1 = (1+ i )Z2 +1 Cδ = δC1 Ωδ =Ω∩Cδ Λδ =Ωδ∩ (Ω)δ a0 = 1
2
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Chapter 2. Local Correlations and Conformal Invariance

and the quantities [C1,0], [Ωδ,0], etc. are analogously defined on the ramified plane [C,0].

When proofs are independent of the choice, we let Dδ denote either ofΩδ or [Ωδ,0].

The domain-dependent quantities of interest match with [CHI15] and read as follows for fixed

z ∈Ω.

Geometric quantities

ϕ(ω) conformal map ϕ :D→Ωwith ϕ(0) = z

rΩ(z) rΩ(z) = |ϕ′(0)| conformal radius of z

AΩ AΩ =−1
4∂z logrΩ(z)

∣∣
z=0 Remark 2.5.4

In what follows, we present the notation for the fundamental observables we deal with; in

order to reduce multipoint observables to such two-point functions via Pfaffian relations we

need much heavier notation, that is restricted to §2.4. In the sequel, a, z will be medial vertices

or corners and α and ζ will be their s-oriented counterparts, e.g., α= a(
p

o)2
.

Fermion observables

Fα,ζ
Ωδ

discrete real fermion Definition 2.3.2

Hα
Ωδ

(z) discrete complexified fermion Definition 2.3.4

Fα,ζ
C1

discrete full-plane fermion Theorem 2.3.1

Hα
C1

(z) discrete full-plane complexified fermion Proposition 2.3.5

fΩ,hΩ, fC,hC continuous counterparts of the above Definitions 2.5.1, 2.5.3

F †
Ωδ

, H †
Ωδ

, f †
Ω,h†

Ω e.g., F †,α,ζ
Ωδ

= Fα,ζ
Ωδ

−Fα,ζ
Cδ

The notation for the spin-fermions is analogous to the above, but on the respective double

covers.
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2.2. Discrete Complex Analysis

Spinor observables

Fα,ζ
[Ωδ,0] discrete real spin-fermion Definition 2.3.3

Hα
[Ωδ,0](z) discrete complexified spin-fermion Definition 2.3.5

Fα,ζ
[C1,0] discrete full-plane spin-fermion Theorem 2.3.2, item (E)

Hα
[C1,0](z) discrete full-plane complexified spin-fermion Proposition 2.3.9

Sα[Ωδ,0](z), Aα
[Ωδ,0](z) symmetrized and anti-symmetrized observables Definition 2.3.6

G[C1,0](z),G̃±
[C1,0](z) auxiliary functions Definitions 2.3.7

Cα =Cao Cα =−Re
[

i
p

o(G̃+
[C1,0] −G̃−

[C1,0])(a)
]

Corollary 2.5.8

The lower-case versions of the spin-fermions above again are their continuous counterparts,

and when there is a † superscript, that denotes the difference of the bounded-domain and

full-plane spin-fermions.

2.2 Discrete Complex Analysis

In this section, we review basic notions of discrete complex analysis that will be useful in this

paper. We use discrete complex analysis for the following:

• To relate the Ising correlations to Pfaffians of fermion and spin-fermion observables.

• To obtain explicit formulae for the full-plane observables.

• To establish the convergence of the two-point observables and study their local behavior.

2.2.1 S-holomorphicity

Definition 2.2.1. Associate to each corner c ∈ V τ
Ωδ

with τ ∈ {1, i ,λ, λ̄}, the line l (c) := τR in the

complex plane. A function Hδ defined on corners and medial vertices of a discrete domain

Ωδ is said to be s-holomorphic at a corner c ∈ V τ
Ωδ

if for any adjacent medial vertex a ∈ V m
Ωδ

we

have

Hδ (c) =Pl (c) [Hδ (a)] := 1

2

(
Hδ (a)+τ2H̄δ (a)

)
, (2.2.1)

where Pl (c) denotes orthogonal projection in the complex plane onto the line l (c). The

function Hδ is said to be s-holomorphic at a medial vertex a ∈ V m
Ωδ

if Eq. (2.2.1) holds for all

corners c adjacent to a. A function is said to be s-holomorphic onΩδ if it is s-holomorphic at

every c ∈ V c
Ωδ

.

Remark 2.2.1. If a function Hδ is s-holomorphic on a discrete domain then it is purely real

on the corners of type 1 and purely imaginary on the corners of type i . We call respective
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restrictions to those corners the real part and the imaginary part of Hδ.

Remark 2.2.2. S-holomorphicity implies usual discrete holomorphicity of the real and imag-

inary parts, defined by a lattice version of Cauchy-Riemann equations ([Smi10]). If Hδ is

s-holomorphic, then the following discrete derivative vanishes:

∂̄δHδ(x) := Hδ

(
x + λδp

2

)
−Hδ

(
x − λδp

2

)
+ i

(
Hδ

(
x − λ̄δp

2

)
−Hδ

(
x + λ̄δp

2

))
= 0

for x ∈ V λ
Ωδ

∪V λ̄
Ωδ

. One similarly defines ∂δ by taking a negative sign in front of i . We extend

the definition to x ∈ VΩδ
∪FΩδ

by setting ∂δHδ(x) := ∂δHδ(x − iδ
2 )+∂δHδ(x + iδ

2 ). Note the

differences in our definitions compared to their continuous counterparts, as the discrete

derivatives are taken in rotated directions (thus differing by a phase factor); however, we will

not take direct scaling limits of the operator and this poses no problem.

The information defined on corners of type 1, i is enough to recover an s-holomorphic function

on V cm
Ωδ

: one can start from a discrete holomorphic function defined on corners of type 1

and i , reconstruct values on medial vertices based on their projections onto R and iR, then

project to corners of type λ and λ̄ (discrete holomorphicity guarantees well-definedness at

those corners); see [CHI15, Remark 3.1].

Definition 2.2.2. We define the discrete Laplacian ∆δ by

∆δHδ (x) = Hδ (x +δ+ iδ)+Hδ (x −δ+ iδ)+Hδ (x −δ− iδ)+Hδ (x +δ− iδ)−4Hδ (x) .

This quantity makes sense on any discrete domain of rotated square type, for example V 1
Ωδ

or V i
Ωδ

. A function Hδ on such a lattice is said to be discrete harmonic if ∆δHδ (x) = 0 for all x

at which ∆δHδ is defined. Analogously, it is discrete sub-harmonic if ∆δHδ ≥ 0, and discrete

super-harmonic if ∆δHδ ≤ 0.

Remark 2.2.3. The real and imaginary parts of an s-holomorphic function on a planar domain

are discrete harmonic on their respective lattices, V 1
Ωδ

and V i
Ωδ

. This is a direct consequence of

Remark 2.2.2: discrete holomorphicity converts discrete outward derivatives from the center

point in the Laplacian into discrete derivatives in the angular direction, and going in a closed

loop around the center point gives zero.

Remark 2.2.4. The notions of discrete complex analysis thus far introduced have been defined

on the planar domainΩδ, but they generalize to [Ωδ,0] in a straightforward manner since the

double cover is locally isomorphic to a planar domain (cf. Section 2.1.5). However, great care

is needed in applying Remark 2.2.3 because, if the center point of the Laplacian is one of the

corners on the monodromy face labeled by 0, the loop around the center point must enclose

the monodromy; as a result its lift to [Ωδ,0] is not closed, and thus discrete holomorphicity

does not imply harmonicity at the real and imaginary corners on the face 0. We may still

obtain harmonicity of a discrete holomorphic spinor at one of those two types of corners if

we assume in addition that it vanishes at the other, since the sum of discrete derivatives will

vanish as though the spinor does not branch at 0.
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2.2.2 Discrete Singularities

Discrete singularities appear as violations of the s-holomorphicity projection relations rela-

tions. To study these, we define front and back values at a singularity in order to introduce the

notion of discrete residue of a function Hδ at an oriented medial vertex.

Definition 2.2.3. Let Hδ be a function defined on an oriented medial vertex α= ao and its

adjacent four corners. Let c1,c2 be the two corners adjacent to a in the direction of o (i.e.,

c1 = a +
p

2Re(o)δ
2 and c2 = a +

p
2Im(o)δ

2 ). We define the front value Hδ(α+) as the unique value

such that

Hδ (c1) =Pl (c1) [Hδ(α+)] , and Hδ(c2) =Pl (c2) [Hδ(α+)] .

Likewise if c3,c4 are the two corners adjacent to a in the direction of −o (i.e., c3 = a −
p

2Re(o)δ
2

and c4 = a −
p

2Im(o)δ
2 ), we set the back value Hδ(α−) as the unique value such that

Hδ (c3) =Pl (c3) [Hδ(α−)] , and Hδ(c4) =Pl (c4) [Hδ(α−)] .

Definition 2.2.4. The discrete residue of Hδ atα is the difference Resα(Hδ) := Hδ (α+)−Hδ (α−).

By definition Hδ has an s-holomorphic extension to a if and only if the discrete residue is

zero at α. It is an analog of the residue in the continuous setting in that doing a closed

contour sum around a along the edges of the lattice (i.e. summing Hδ(e)~e where~e is the vector

pointing from the start to the end of the edge e on the closed counterclockwise path) will yieldp
2oiδResα(Hδ), for any choice of o.

2.2.3 Discrete Riemann Boundary Value Problems

The key tool for our analysis is the study of discrete Riemann boundary value problems. To

prove the convergence of the Ising model observables as the mesh size goes to zero, we will

formulate them as the unique solutions to such problems.

Recall that we denote by ∂V m
Ωδ

the set of boundary medial vertices, by νz the outer normal at

any z ∈ ∂V m
Ωδ

, i.e. the orientation at z which points outward fromΩδ, and ∂νz the outer normal

difference, i.e. the value on the outer adjacent vertex minus the value on the inner adjacent

vertex.

Definition 2.2.5. We say that a function Hδ : V cm
Ωδ

→C defined on corners and medial vertices

of a discrete domainΩδ is the solution to the discrete Riemann boundary value problem on

Ωδ with boundary data f : ∂V m
Ωδ

→ C if it is s-holomorphic and Hδ(z)− fδ(z) ∈ ν−
1
2

z R for any

boundary medial vertex z ∈ ∂V m
Ωδ

; note that the definition is independent of the branch of the

square root ν
− 1

2
z . This notion is straightforwardly generalized to a function on the double cover

H ′
δ

: V cm
[Ωδ,0] → C and the boundary data q : ∂V m

[Ωδ,0] → C by adding the assumption that both

have monodromy −1 around the origin.
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Chapter 2. Local Correlations and Conformal Invariance

Before proving a useful uniqueness result for the discrete Riemann boundary value problems,

we introduce the crucial notion of integration of the square of an s-holomorphic function,

defined on the vertices and faces (see also [Smi10, Hon10, CHI15]). Although the square of

an s-holomorphic function is not s-holomorphic, we can “line-integrate” the square of its

magnitude to obtain a single-valued function without monodromy. Its restrictions to the

two rotated square lattices respectively of faces and vertices are not harmonic, but they are

respectively super-harmonic and sub-harmonic, which will allow us to derive estimates crucial

for proofs of the convergence.

Iδ (Hδ) is a discrete analogue of the line integral Re
∫

[Hδ]2 d z, defined as follows.

Proposition 2.2.1 ([Smi10, Lemma 3.8]). Let Hδ be an s-holomorphic function onΩδ. There

exists a function Iδ [Hδ] : FΩδ
∪VΩδ

→R uniquely constructed (up to an additive constant) with

the rule

Iδ [Hδ] (w)− Iδ [Hδ] (v) = 2δ

∣∣∣∣Hδ

(
1

2
(w + v)

)∣∣∣∣2

,

where w is a face, v is a vertex incident to the face, so that 1
2 (w + v) is the corner between them.

It has ∆δIδ [Hδ] = 2δ |∂δHδ|2 on FΩδ
, ∆δIδ [Hδ] =−2δ |∂δHδ|2 on VΩδ

.

The following uniqueness statement for both types of the discrete Riemann boundary value

problems then allows one to characterize s-holomorphic functions in terms of their boundary

values.

Lemma 2.2.2. If Hδ is a solution of the discrete Riemann boundary value problem onΩδ with

boundary data 0, it is identically zero. Similarly, if H ′
δ

is a solution of the discrete Riemann

boundary value problem on [Ωδ,0] with boundary data 0, it is identically zero.

Proof. The case of Hδ is treated in [Hon10, Proposition 28], but we summarize it here. Given

s-holomorphicity and P
ν
− 1

2
z

Hδ = 0, we can calculate ∂νz Iδ(Hδ)(z) =p
2δ

∣∣∣∣P
iν

− 1
2

z

Hδ(z)

∣∣∣∣2

. Then

by using the discrete divergence formula ([Hon10, Lemma 6]) and the Laplacian, we can

bound from above the orthogonal component of Hδ on the boundary:

0 ≤ ∑
z∈∂V m

Ωδ

∂νz Iδ(Hδ)(z) = ∑
v∈VΩδ

∆δIδ(Hδ)(v) ≤ 0,

which implies that Hδ ≡ 0 on ∂V m
Ωδ

and that ∆δIδ [Hδ] = −2δ |∂δHδ|2 ≡ 0 in VΩδ
, so Hδ ≡ 0 in

VΩδ
.

For H ′
δ

, note that (see [ChIz13, Proposition 4.1]) we can similarly define the single-valued

square integral Iδ(H ′
δ

) with single valued increments Iδ
[
H ′
δ

]
(w)−Iδ

[
H ′
δ

]
(v) = 2δ

∣∣H ′
δ

(1
2 (w + v)

)∣∣2
.

While its restriction to faces fails to be sub-harmonic at the monodromy face in general, Iδ(H ′
δ

)
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on vertices is nonetheless super-harmonic everywhere with positive outer difference, and we

can apply the same argument as in the Hδ case.

2.3 Discrete Two-point Observables

In this section, we introduce discrete observables, which connect Ising model correlations to

discrete complex analysis. Bounded domain observables are defined by summing Boltzmann

weights over the set of contours made of the edges in the lattice, alluding to a path integral

formulation.

In this section, we define the two-point functions, in terms of which the correlations will be

formulated in Propositions 2.4.9 and 2.4.10. In §2.4, multipoint versions of these observables

are introduced to prove these statements.

Low-temperature Expansion

In this paper, we will use the low-temperature expansion of the Ising model: we represent

a spin configuration by the set of edges separating faces of opposite spins. Through this

representation, the probability of a set of edges ω is proportional to e−2β|ω|. When considering

+ boundary conditions, the relevant set of edges form a collection of loops (sets of distinct

edges {e1, ...,ek } such that ei is incident to ei+1 for every 1 ≤ i ≤ k with ek+1 = e1). In identifying

an edge configuration ω in which every vertex is incident to an even number of edges, with

a collection of loops, there is a possible ambiguity at vertices incident to four edges. For

concreteness, we fix the convention that at such ambiguous vertices, loops proceed by joining

northwest edges to northeast edges and southwest edges to southeast edges. We further prove

that all quantities we consider are independent of choice of convention at ambiguous vertices.

Denote by CΩδ
the set of all such ω (subsets of edges of EΩδ

with every vertex incident an even

number of edges), corresponding to collections of closed loops inΩδ.

As a result, for the critical Ising model with + boundary conditions, the low-temperature

expansion of the partition function is thus obtained by summing over the set CΩδ
:

ZΩδ
:= ∑

ω∈CΩδ

e−2βc |ω| .

We also note that in this representation, the value of a spin is determined by the parity of the

number of loops around it (independently of the choice of convention above), and it is easy to

see that

EΩδ
[σ0] =

∑
ω∈CΩδ

e−2βc |ω|(−1)`(ω)

ZΩδ

,

where `(ω) counts the number of loops in ω that surround 0.
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Disorder Lines

The main tool in the study of the 2D Ising model is its fermionic formulation. In this paper, we

use the low-temperature representation of the Ising fermion. The relevant sets of contours are

deformed versions of CΩδ
above: in addition to the collection of closed loops inΩδ, there are

paths linking a pair of marked points of the lattice. In the language of Kadanoff and Ceva (see

[KaCe71]), these correspond to the results of the insertion of disorder operators next to the

spin.

A medial vertex divides the corresponding edge into two half-edges. A walk between two

medial vertices a, z is a sequence that consists of a half-edge of a, then continues on succes-

sively adjacent, all distinct edges, before reaching a half-edge of z. If γa,z is any such a walk,

C a,z
Ωδ

:= {ω⊕γa,z :ω ∈CΩδ
}, where ⊕ denotes the symmetric difference operation (where the

symmetric difference of a half-edge and its edge is defined in the natural way), clearly does

not depend on the choice of γa,z . Each γ ∈C a,z
Ωδ

corresponds to a walk from a and to z and

possibly some collection of loops.

For an element γ ∈ C a,z
Ωδ

, we say a walk π(γ) ⊂ γ from a to z is an admissible choice of walk

if whenever it arrives at an ambiguous vertex, i.e. incident to four edges in γ, it chooses to

connect northeast with northwest edges and southeast with southwest edges (in accordance

with the aforementioned convention for loops). Again, we will prove well-definedness of

relevant quantities so that the choice of convention here is irrelevant. When one or both of

a, z are instead corners, the above is defined analogously, where “half-edge” is understood to

mean the segment joining the corner to its nearest vertex.

Recall that any choice of orientation on a medial vertex is in the direction of exactly one of its

two incident half-edges (see Section 2.1.5). If α= ao and ζ= zp are oriented medial vertices,

set C
α,ζ
Ωδ

to be the subset of γ ∈C a,z
Ωδ

including the particular half-edges given by the respective

orientations at a and z.

2.3.1 Bounded Domain Observables

In this subsection, we define the fermion and the spin-fermion observables. The former is

a function defined on the discrete domain Ωδ, whereas the latter is defined on the double

cover, [Ωδ,0]. Using the above definitions of loops, walks, C
α,ζ
Ωδ

, and admissible choices of

walks, we define some quantities central to the presentation of the (two-point) fermion and

spin-fermion observables.

Definition 2.3.1. If α = ao and ζ = zp are s-oriented medial vertices or corners, define the

constants,

cυ :=
1 if υ ∈ V m

Ωδ

cos π8 if υ ∈ V c
Ωδ

and λα,ζ :=
p

pp
o

cacz .
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For a walk and loops γ ∈ C
α,ζ
Ωδ

, define its length |γ| as the number of full edges (where the

two half-edges at the ends together count as one) in γ and for an admissible choice of walk

π(γ) in γ from a to z, denote its winding (more accurately, turning) angle by W(π(γ)) as

the total change in argument of the velocity vector of the walk π(γ) from a to z (see §5.2.1

of [Hon10]). The choice of counting two half-edges together as one full-edge, is different from

the counting in [CHI15]; this leads to an appearance of a normalizing factor of (cos π8 )2e−2βc =
1

2
p

2
, whenever considering observables with both arguments in corners.

The following is a real-valued weight on γ ∈C
α,ζ
Ωδ

:

φα,ζ
(
γ
)

:= iλα,ζ e−2βc |γ| e−
i
2 W(π(γ)) .

We also recall for a collection of loops ω ∈CΩδ
the definition of `(ω) as the number of loops of

ω around 0 (whose parity is independent of our convention for loops). See [Hon10, Proposition

67] for the well-definedness (i.e., independence of the choice of convention for the admissible

path π
(
γ
)
) of φα,ζ .

When α,ζ are s-oriented medial vertices or corners on [Ωδ,0], we define the spin-fermion

weight as

φΣα,ζ

(
γ
)

:=φα,ζ
(
γ
)

(−1)`(γ\π(γ)) sα,ζ
(
π(γ)

)
,

where π(γ) is any admissible choice of walk, and sα,ζ is the sheet number defined by

sα,ζ
(
π(γ)

)=
+1 if π(γ) lifted to [Ωδ,0] connects α to ζ

−1 if π(γ) lifted to [Ωδ,0] connects α to ζ∗
,

where ζ∗ is the point on [Ωδ,0] that is distinct from ζ but shares its projection with ζ. Here, the

real-valued weight φα,ζ(γ) is still computed by identifying α,ζ with their projections toΩδ.

See Remark 2.2(ii) of [CHI15] for the well-definedness of the spin-fermion weight φΣ
α,ζ.

We are now in position to define the real fermion Fα,ζ
Ωδ

and the real spin-fermion Fα,ζ
[Ωδ,0].

Definition 2.3.2. The (real) fermion observable FΩδ
is a function of two variables (α,ζ) 7→ Fα,ζ

Ωδ
,

where α := ao and ζ := zp are s-oriented corners or medial vertices ofΩδ given by

Fα,ζ
Ωδ

:= 1

ZΩδ

∑
γ∈C

α,ζ
Ωδ

φα,ζ
(
γ
)

.

Definition 2.3.3. The (real) spin-fermion observable F[Ωδ,0] is a function of two variables

(α,ζ) 7→ Fα,ζ
[Ωδ,0], where α := ao and ζ := zp live on the double cover [Ωδ,0] of domain Ωδ
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Chapter 2. Local Correlations and Conformal Invariance

α

ζ

Figure 2.3.1 – An configuration γ ∈C
α,ζ
[Ωδ,0], with an admissible choice of walk π(γ) in blue, from

α to ζ. The winding of the walk has W(π(γ)) = 2π. The loop number `(γ) is 1 since there is
precisely one loop with 0 in its interior and sα,ζ(π(γ)) = 1.

ramified at 0. Define Fα,ζ
[Ωδ,0] by

Fα,ζ
[Ωδ,0] := 1

ZΩδ
EΩδ

[σ0]

∑
γ∈C

α,ζ
Ωδ

φΣα,ζ

(
γ
)

.

Again, when computing ZΩδ
, and C

α,ζ
Ωδ

and φα,ζ, identify α,ζ with their projections toΩδ.

The well-definedness of Fα,ζ
Ωδ

and Fα,ζ
[Ωδ,0] are implied by well-definedness of φα,ζ and φΣ

α,ζ

respectively.

Remark 2.3.1. Informally, one can think of F[Ωδ,0] as the natural modification to FΩδ
when

one tries to reweight it by the value of the spin at 0. Since the spin and the disorders are

not mutually local (but quasi-local instead), this gives rise to a multivalued function (with

monodromy −1 around 0).

Antisymmetry of the Observables

An important elementary feature of the observables FΩδ
,F[Ωδ,0] is their antisymmetry proper-

ties, immediate from their definitions. The fermion observable satisfies the following:

Lemma 2.3.1. If α := ao ,ζ := zp are s-oriented corners or medial vertices of Ωδ and α′ :=
ao′

,ζ′ := zp ′
where o′ := e2πi o and p ′ := e2πi p, then we have the following antisymmetry prop-
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erties:

Fα,ζ
Ωδ

=−F ζ,α
Ωδ

=−Fα′,ζ
Ωδ

=−Fα,ζ′
Ωδ

.

Similarly, the spin-fermion observable satisfies the following antisymmetry properties.

Lemma 2.3.2. If α := ao ,ζ := zp are s-oriented corners or medial vertices of [Ωδ,0], and α′,ζ′

are as in the previous lemma and α∗ := (a∗)o ,ζ∗ := (z∗)p where a, a∗ and z, z∗ are respectively

distinct lifts of the same points inΩ\ {0}, we have

Fα,ζ
[Ωδ,0] =−F ζ,α

[Ωδ,0] =−Fα′,ζ
[Ωδ,0] =−Fα,ζ′

[Ωδ,0] =−Fα∗,ζ
[Ωδ,0] =−Fα,ζ∗

[Ωδ,0] .

Recall that we define complex conjugation on the double cover by letting the square root be

conjugated. We similarly conjugate the s-orientations, and define ᾱ := āō if α= ao . The fact

that the contour set ofΩδ and its mirror imageΩδ have a natural bijection arising from the

complex conjugation immediately yields the following.

Lemma 2.3.3. If α,ζ are s-oriented corners or medial vertices in [Ωδ,0], we have Fα,ζ
[Ωδ,0] =

−F ᾱ,ζ̄[
Ωδ,0

].

Complexified Observables

As explained in the previous subsections, the observables introduced in the previous subsec-

tions are real quantities antisymmetric in their two variables; exploiting those properties we

can define the following complexified versions, which can be analyzed with discrete complex

analysis.

Definition 2.3.4. Let α be an s-oriented corner or medial vertex ofΩδ. For an (unoriented)

medial vertex z ∈ V m
Ωδ

, we define the complex fermion-fermion observable Hα
Ωδ

by

Hα
Ωδ

(z) := 1

i
p

p1
Fα,ζ1

Ωδ
+ 1

i
p

p2
Fα,ζ2

Ωδ
,

where ζ1 := zp1 and ζ2 := zp2 are arbitrary s-orientations of z with opposite orientations, i.e.

p2 = e±πi p1. The resulting quantity is easily seen to be well-defined regardless of the choice of

s-orientations. Similarly for a corner c ∈ V c
Ωδ

with s-orientation κ= cq , define

Hα
Ωδ

(c) := 1

i
p

q
Fα,κ
Ωδ

.

Define the complexified spin-fermion observable in the same way:

Definition 2.3.5. Let α be an s-oriented corner or medial vertex of [Ωδ,0], let z be a medial

vertex of [Ωδ,0], and let c be a corner of [Ωδ,0]. Using the same notation as in Definition 2.3.4,
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we define the complex spin-fermion observable H[Ωδ,0] by

Hα
[Ωδ,0] (z) := 1

i
p

p1
Fα,ζ1

[Ωδ,0] +
1

i
p

p2
Fα,ζ2

[Ωδ,0] ,

Hα
[Ωδ,0] (c) := 1

i
p

q
Fα,κ

[Ωδ,0] .

Remark 2.3.2. Note that, given a complexified observable, the real observables can be recov-

ered by Fα,ζ
Ωδ

= i
p

pP 1
i
p

p R

[
Hα
Ωδ

(z)
]
= Re

[
i
p

pHα
Ωδ

(z)
]

for medial vertices ζ= zp , and obviously

at corners κ= cq , we have Fα,κ
Ωδ

= Re [i
p

q Hα
Ωδ

(c)].

Definition 2.3.6. Let Λδ = Ωδ ∩Ωδ. Then define the symmetrized and antisymmetrized

observables:

Sα[Ωδ,0] := 1

2

[
Hα

[Ωδ,0] +H ᾱ

[Ωδ,0]

]
, Aα

[Ωδ,0] := 1

2

[
Hα

[Ωδ,0] −H ᾱ

[Ωδ,0]

]
.

The following lemma then follows immediately from Lemma 2.3.1 and the definition of H[Ωδ,0].

Lemma 2.3.4. Let α be an s-oriented corner or medial vertex in [Ωδ,0], and z be a corner or

medial vertex in [Λδ,0]. Then,

on V 1
[Ωδ,0] ∩R>0,V i

[Ωδ,0] ∩R<0, we have Sα[Ωδ,0] = Hα
[Ωδ,0] and Aα

[Ωδ,0] = 0;

on V i
[Ωδ,0] ∩R>0,V 1

[Ωδ,0] ∩R<0, we have Aα
[Ωδ,0] = Hα

[Ωδ,0] and Sα[Ωδ,0] = 0.

2.3.2 Full Plane Observables

In this section, we study the infinite-volume limits of the fermion and spin-fermion observ-

ables. By scale invariance, it is enough to give a characterization on the rotated unit grid

C1 = (1+ i )Z2 +1 placed on increasing domains. On Cδ we can define HCδ(aδ) := HC1 (a) and

H[Cδ,0](aδ) := H[C1,0](a). In the δ→ 0 scaling limit, these converge to meromorphic functions

with a singularity at zero.

We first give a unique characterization for the full-plane limits and establish their existence,

and then we give an explicit construction. Using those explicit formulae, we define auxiliary

s-holomorphic functions on the double cover which are discrete forms of
p

z and i
p

z.

We take the limitΩ1 →C1 using an increasing sequence of bounded domainsΩ1
1 ⊂Ω2

1 ⊂ ·· · ⊂
Ωn

1 ⊂ ·· · such that
⋃

nΩ
n
1 =C1. The limiting functions will be seen to be unique, so that they

do not depend on the particular sequence.

Full Plane Fermion Observable

The following are straightforward modifications to our setting, of the construction [Hon10] of

the full-plane fermion.
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Theorem 2.3.1. As Ω1 → C1, the complexified fermion observable HC1 := limΩ→C HΩ1 exists

and is uniquely characterized by the following properties:

• if α= ao is an s-oriented medial vertex,

– Hα
C1

is s-holomorphic on C1 \ {a};

– At α we have the discrete residue Hα
C1

(α+)−Hα
C1

(α−) = 1p
o

;

– Hα
C1

(l ) → 0 as |l |→∞.

• For ζ= zp , the full-plane fermion

Fα,ζ
C1

:= i
p

p ·P 1
i
p

p R

[
Hα
C1

(z)
]

satisfies the antisymmetry properties of Lemma 2.3.1.

Proof. For a given s-oriented medial vertex α, such an Hα
C1

must be uniquely determined: if

any two satisfy the above properties, their difference will have an s-holomorphic extension to

a, but any entire s-holomorphic function which decays to 0 at infinity must be zero, since its

real and imaginary parts will be discrete harmonic functions.

To use the same reasoning when α is an s-oriented corner with adjacent medial vertices z, z ′,
it suffices to show that the s-holomorphic singularity at α, i.e. concretely the value of nonzero

Pl (α)

[
Hα
C1

(z ′)
]
−Pl (α)

[
Hα
C1

(z)
]

, is fixed by the medial vertex case above. But the antisymmetry

relation of Lemma 2.3.1 gives Hα
C1

(z) = 1
i
p

p1
Fα,ζ1

C1
+ 1

i
p

p2
Fα,ζ2

C1
for ζ1 = zp1 and ζ2 = zp2 , where

p1 and p2 are s-orientations of the two opposite orientations of z. Since Fα,ζ1

C1
=−F ζ1,a

C1
and

Fα,ζ2

C1
=−F ζ2,a

C1
, both terms are determined by their values on medial vertices, and similarly for

Hα
C1

(z ′).

An explicit formula, Eq. (2.3.1), for this full-plane observable, and thus its existence, is given

by Proposition 2.3.5. Then the fact that the given explicit function is the infinite-volume limit

is immediate from Theorem 2.5.1.

Proposition 2.3.5. Let a, z ∈ V m
C1

and for an s-orientation (
p

o)2 on a, write α = ao for the

s-oriented medial vertex. The function

Hα
C1

(z) = eπi /8

p
o

cos
π

8

(
C0

(p
2a

o
+1,

p
2z

o

)
+C0

(p
2a

o
− i ,

p
2z

o

))
(2.3.1)

+ e−3πi /8

p
o

sin
π

8

(
C0

(p
2a

o
−1,

p
2z

o

)
+C0

(p
2a

o
+ i ,

p
2z

o

))

for z 6= a satisfies the properties of Theorem 2.3.1, where the translation invariant function C0 is
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the dimer coupling function defined in [Ken00]:

C0(z1, z2) = 1

4π2

∫ 2π

0

∫ 2π

0

exp(i (xs − y t ))

2i sin s +2sin t
d sd t , if z2 − z1 = x + i y .

Moreover, atα, the front and back values of the s-holomorphic singularity are given by Hα
C1

(α±) =
µ±1
2
p

o
.

Proof. These properties were verified in [Hon10, Proposition 22] for a version on the non-

rotated lattice, which we will call HZ2 . We note that for any s-oriented medial vertex α= ao ,

we have

Hα
C1

(z) = e−
πi
8 Hα′

Z2 (z ′)

if α′ = (
a′)o′

is the rotated medial vertex a′ = a
1+i ∈ V m

Z2 oriented to
p

o′ = e−
πi
8
p

o, and z ′ = z
1+i .

Given that the projection lines in the s-holomorphicity relation Eq. (2.2.1) are also rotated by

e−
πi
8 from the definition in [Hon10], the results are easily seen to carry over. The explicit front

and back values Hα
C1

(α±) follow from straightforward computation.

Full Plane Spin-fermion Observable

First we recall some notation. Define the left slit plane X = C \R<0 and the right slit plane

Y=C\R>0. The double cover [C,0] contains two lifts X± of X and two lifts Y± of Y; define
p

z

on the double cover such that the superscripts of X± denote the sign of the real part of
p

z

and those of Y± denote the sign of the imaginary part of
p

z. In other words, X+∩Y+,X−∩Y−

are lifts of the upper half plane, and X+∩Y−,X−∩Y+ are lifts of the lower half plane. We use

the process outlined in Remark 2.2.2 to define an s-holomorphic extension from a discrete

holomorphic function defined on type 1 and i corners, so let us define the slit discrete domains

X1
1 := V 1

C1
∩X∼= V 1

[C1,0] ∩X± and Yi
1 := V i

C1
∩Y∼= V i

[C1,0] ∩Y±.

Theorem 2.3.2. AsΩ1 →C1, the complexified spin-fermion observable H[C1,0] := limΩ→C H[Ω1,0]

exists and is uniquely characterized by the following properties: for every α= ao ∈ V cm
[C1,0],

A Hα
[C1,0] has monodromy −1 around 0.

B Hα
[C1,0] is s-holomorphic on [C1,0] \ {a, a∗}, where a∗ is the point in [C1,0] distinct from a

which shares its projection onto C1 with the projection of a.

C if α= ao is an s-oriented medial vertex, we have discrete residue Hα
[C1,0] (α+)−Hα

[C1,0] (α−) =
1p
o

.

D If α= ao is an s-oriented real or imaginary corner, Pl (a)Hα
[Ω1,0](a ± i

2 ) =∓ i
2
p

2

p
o.

E For ζ= zp , the full-plane spin-fermion,

Fα,ζ
[C1,0] := i

p
p ·P 1

i
p

p R

[
Hα

[C1,0](z)
]
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satisfies the antisymmetry properties laid out in Lemmas 2.3.2–2.3.3.

F Hα
[C1,0](l ) → 0 as |l |→∞.

We first present the following three lemmas, then conclude the proof using them.

Lemma 2.3.6. There exists a uniform constant M > 0 such that
∣∣∣Hα

[Ωn
1 ,0] (z)

∣∣∣≤ M for all n ≥ 0

and any s-oriented corner α and any corner z.

Proof. The strategy will be to progressively extend the validity of the result to more and more

points of the domain. Below we will denote by a and z both corners and medial vertices

interchangeably:

1. When α := α0 is the imaginary corner on the monodromy face 0 (specifically, the lift

of 1
2 to Xδ) and z = a + 1, Hα

[Ωn
1 ,0] (z) has a probabilistic interpretation as a ratio of

magnetizations EΩn
1

[σ2]/EΩn
1

[σ0], which is bounded from above by the finite-energy

property of the model.

2. When α = α0 and z is on the boundary, we claim that
∑

z∈∂V m

[Ωn
1 ,0]

∣∣∣Hα
[Ωn

1 ,0] (z)
∣∣∣2 ≤ Cst ·

Hα
[Ωn

1 ,0] (a +1) (the right hand side of which is bounded by step 1). This inequality follows

by considering the discrete analogue Q1 := Iδ(Hα
[Ωn

1 ,0]) of Re
(∫

(H n,α0 )2) analyzed in

Section 2.5.1. By Proposition 2.5.3, the restriction of Q1 to the vertices is super-harmonic

(except perhaps at a +1), the sum of the Laplacians is hence bounded from above by

Cst ·Hα
[Ωn

1 ,0] (a +1). At the same time the sum of the Laplacians equals the sum of the

outer normal derivatives ∂νz Q1 on the boundary of
[
Ωn

1 ,0
]
, and these normal derivatives

∂νz Q1 equal
p

2
∣∣∣Hα

[Ωn
1 ,0] (z)

∣∣∣2
. Hence we deduce the inequality.

3. When α=α0 and z (corner or medial vertex) is in the interior, we extend the bound of

step 2 by the maximum principle.

4. When α is on the boundary and z is the imaginary corner adjacent to the monodromy

(z = 1
2 ), the bound follows from the antisymmetry of H and step 2.

5. When α and z are on the boundary, we have that
∣∣∣Hα

[Ωn
1 ,0] (z)

∣∣∣ acquires a probabilistic

interpretation: the winding factors out from the sum in the definition of H , and we sum

over contours that represent the low-temperature expansion of an Ising model with +/−
boundary conditions switching at a and z. As a result, it is easy to show that

∣∣∣Hα
[Ωn

1 ,0] (z)
∣∣∣

is the ratio E±
Ωn

1
[σ0]/E+

Ωn
1

[σ0], where ± and + indicate the boundary conditions. By

monotonocity of the Ising magnetization in boundary conditions, this ratio is less than

one, which gives us the desired bound.

6. When α is on the boundary and z in the interior, the result follows from steps 4 and 5

and the maximum principle.

45



Chapter 2. Local Correlations and Conformal Invariance

7. When α is in the interior and z is next to the monodromy or on the boundary, the result

follows from steps 3 and 6 by antisymmetry.

8. When α and z are in the interior, the result follows from the maximum principle.

Lemma 2.3.7. Any bounded function H := H[C1,0] that satisfies the properties A-E decays at

infinity.

Proof. We exploit the antisymmetry properties E, as specified in Lemmas 2.3.2–2.3.3. The

idea is to symmetrize-antisymmetrize H as in Definition 2.3.6 by writing it as S + A, where

Sα = 1
2

(
Hα+H ᾱ

)
and Aα = 1

2

(
Hα−H ᾱ

)
. Let us now show that S and A both decay at infinity.

We have that the restriction of S to real corners vanishes of the positive half-line. We can make

a branch cut where it vanishes and study the function on both slit-plane sheets separated by

the cut. Since it is uniformly bounded and harmonic except near 0 and a, ā, one can use planar

random walk arguments (Beurling estimate) to show that the function vanishes at infinity.

Similarly, the restriction to imaginary corners and analogous restrictions of A vanish on either

the positive or the negative half-line. By the same arguments as above, we can conclude the

proof.

Lemma 2.3.8. There is at most one function satisfying the properties A-F.

Proof. To prove the uniqueness, it suffices that if we have two such functions, their difference

is zero. Denote by Dα (z) this difference, which will be everywhere s-holomorphic and decay

at infinity. However, as noted in Remark 2.2.4, the absence of s-holomorphic singularities does

not guarantee harmonicity on the monodromy face, and some care is needed there (note that

below, we abuse notation to refer to points of [C,0] by their projections on C).

For α0 = ( 1
2 )o , Dα0 extends s-holomorphically to a0 by zero by property D, and we have that

the real part of Dα0 is everywhere harmonic by Remark 2.2.4. As a result, by the maximum

principle and discrete holomorphicity, the real part of Dα0 vanishes and Dα0 ≡ 0.

For an arbitrary corner a, by antisymmetry and the previous step, we have Dα (a0) = 0. As

a result the real part of Dα (z) is harmonic. Thus, as in the previous step, Dα (z) vanishes

everywhere.

Proof of Theorem 2.3.2. By Lemma 2.3.6, we have that for each s-oriented corner α of [C1,0],

the sequence of harmonic functions Hα
[Ωn

1 ,0] is uniformly bounded and hence by standard

arguments, it admits convergent subsequences as n →∞ on any finite graph. Any limit along

such subsequences satisfies properties A-E and as a result tends to 0 at infinity by Lemma

2.3.7. By Lemma 2.3.8, it is uniquely determined. This shows the convergence of the sequence

itself to a limit which satisfies the conditions of the theorem, which we call H[C1,0].
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2.3. Discrete Two-point Observables

Analytical Expressions

In this subsection, we give characterizations of H[C1,0] in a few special cases, then outline an

inductive process to construct it explicitly in general.

For the observables with monodromy, we have the following characterization near 0 from

[CHI15]. Recall α0 = ao
0 where a0 ∈X+ is the lift of 1

2 to X+ and o = (e2πi )2.

Proposition 2.3.9. For z ∈ V 1
[C1,0] ∪V i

[C1,0] \ { 1
2 } we have the characterization

Hα0
[C1,0](z) =


± 1

2
p

2
hm

X1
1

3/2(z) if z ∈ V 1
[C1,0] ∩X±

∓ i
2
p

2
hm

Yi
1

1/2(z) if z ∈ V i
[C1,0] ∩Y±

0 otherwise

,

where hm Dδ
a (z), for a discrete domain Dδ and a ∈Dδ∪∂Dδ, denotes the harmonic measure of a

as seen from z, i.e., the probability that a simple symmetric random walk on Dδ started at z will

first hit a when or before exiting Dδ.

Proof. In [CHI15, Lemma 2.14] the function defined above (without the additional normal-

ization factor cos2 π
8 · e−2βc = 1

2
p

2
) is proved to be the only function on [C1,0] which decays

at infinity and is s-holomorphic everywhere away from the singularity at a0 = 1
2 given by

Pl (a)Hα
[C1,0](

1±i
2 ) =∓i . Thus we can identify it as the unique infinite-volume limit introduced

in Theorem 2.3.2 for α=α0.

Remark 2.3.3. The zeros in the definition reflect the fact that a slit plane harmonic measure

vanishes everywhere on the slit except at the tip, e.g. 1
2 in case of hm

Yi
1

1/2(z). This function is

harmonic on all points ofYi
1, but harmonicity fails on the slit (positive real axis), the boundary

of the domain.

The following explicit characterization of the discrete harmonic measure of the slit plane may

be of independent interest. Using this, we provide the values of 2
p

2Hα0
[C1,0](z) near the origin

in Figure 2.3.2.

Theorem 2.3.3. We have the following expression for the discrete harmonic measure:

H0(z) := hm
Yi

1
1/2(z = s + i k + 1

2 ) = 1

2π

∫ π

−π
C |k|(θ)√
1−e−2iθ

e−i sθdθ,

where C (θ) := cosθ
1+|sinθ| .

Proof. We defer the proof of this theorem to Appendix 2.7, Proposition 2.7.1.

Now we inductively characterize Hα
[C1,0] in the cases where α ∈ V 1,i

[C1,0] ∩R>0.
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p
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Figure 2.3.2 – Some explicit values for the full-plane spin-fermion observable 2
p

2Hα0
[C1,0](z) for

z ∈ V 1,i
[C1,0] ∩X+, where a0 = 1

2 . The function has a monodromy about the origin, marked by the
orange ×, and singularity at α0 marked by the blue �.

Proposition 2.3.10. For an s-oriented corner α = ao with a ∈ X+∩R≥0, we can recursively

compute Hα
[C1,0] starting from the case α0 = 1

2
o0 ,o0 = (e2πi )2, as a finite linear combination

of functions given explicitly in Theorem 2.3.3. Explicitly, for s-oriented corners α0 + 2n :=
(a0 +2n)o0 ,α0 +2n +1 := (a0 +2n +1)o′

,o′ =
(
e
πi
2

)2
, we have on any of the four half-planes

X±∩Y±,

Hα0+2n
[C1,0] (z) = Hα0

[C1,0](z −2n)−
n∑

m=1

H0(−2m +2)

2m
Hα0

[C1,0](z −2(n −m)), and

Hα0+2n+1
[C1,0] (z) = i Hα0+2n

[C1,0] (z −1)− i

(
H0(2n +2)+ H0(2n)

2(n +1)

)
Hα0

[C1,0](z +1) .

In fact, for any a ∈ V 1
[C1,0] ∪V i

[C1,0] on the real or imaginary axes, we can compute Hα
[C1,0] using

rotational symmetry: if α = ao is any s-oriented corner on the real or imaginary line, and

α′ = (
a′)o′

is the rotated corner a′ = e−
πi
2 a ∈ V c

[C1,0] oriented to o′ = (e−
πi
4
p

o)2, and z ′ = e−
πi
2 z,

we have,

Hα
[C1,0](z) = e−

πi
4 Hα′

[C1,0](z ′) .

Proof. Generalizing from the proof of Proposition 2.3.9, we construct a function on [C1,0]

which decays at infinity and is s-holomorphic everywhere away from the specified singularity

at a, and we argue that it is the unique function which can satisfy the properties specified in
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2.3. Discrete Two-point Observables

Theorem 2.3.2. For convenience, we will take source pointsα on the sheetX+ unless otherwise

specified; i.e. the positive real line approached from above on Y+.

Assume a ∈ V i
[C1,0] ∩R>0 and consider the restriction Hα of Hα

[C1,0] to the imaginary corners

on the slit plane V i
[C1,0] ∩Y+. The function Hα can be characterized as the unique discrete

harmonic function on the slit plane V i
[C1,0] ∩Y+ which has the single-valued boundary data

Hα(a) :=− i
2
p

2

p
o and zero elsewhere on the slit R>0, and decays at infinity. The harmonic

function with these properties can be obtained by translating Hα−2 for α−2 := (a−2)o (which

takes its only nonzero boundary value at a −2) to the right, and subtracting off a multiple of

Hα0 in order to cancel the nonzero value at a0 = 1
2 . Specifically, letting

Hα(z) = Hα−2(z −2)−Hα−2(−3
2 ) ·hm

Yi
1

1/2(z) = Hα−2(z −2)−hm
Yi

1
a−2(−3

2 ) ·Hα0 (z) ,

then discrete holomorphicity relations imply that the real part is determined up to a an

additive constant; however since the real part must vanish on R<0, the real part is uniquely

determined. In fact, it is easy to see that, in order to maintain discrete holomorphicity, the

above recursive relation should also hold for the entire Hα
[C1,0] as long as we are in the four

real-translation invariant half-planesX±∩Y±. For the explicit identification of the coefficients,

we refer to Proposition 2.7.2.

For a ∈ V 1
[C1,0] ∩R>0, we use a similar recursive process but now instead first construct the

restriction H ′α of Hα
[C1,0] to the real corners on Y+, starting from the case a = 3

2 . Unlike the

imaginary case, we need to consider −1
2 as well as V 1

[C1,0] ∩R>0 as part of the slit boundary

(where harmonicity fails): since Hα
[C1,0](

1
2 ) 6= 0 in general, we cannot assume that the real part

is harmonic at −1
2 (see Remark 2.2.4).

In other words, H ′α is the function harmonic on the slit plane V 1
[C1,0] ∩Y+ \ {−1

2 } which takes

nonzero boundary values only at a and −1
2 =−a0. As above H ′α(a) =− i

2
p

2

p
o.

For the value at −a0 := eπi a0 with oriented version −α0 := (−a0)o′
, where o′ = (e

πi
2 )2 we

use antisymmetry in the two inputs to write Hα
[C1,0](−a0) = −i

p
oH−α0

[C1,0](a). Since by rota-

tion H−α0
[C1,0](a) =−i Hα0

[C1,0](e−πi a), we conclude Hα
[C1,0](−a0) =−poHα0

[C1,0](e−πi a) =− i
2
p

2

p
o ·

hm
Yi

1
1/2(−a). We can match these boundary values with recursion as above.

The general rotation identity can be verified independently with the same strategy, i.e., identi-

fying the restriction of the left-hand side to a specific type of corner as the unique harmonic

function with suitable boundary values, which the right-hand side solves.

Remark 2.3.4. The coefficients in Proposition 2.3.10 of various translated and rotated versions

of Hα0
[C1,0] (with the same scaling limit) become important when identifying the scaling limit

of the observables in Lemma 2.5.4. In particular, by Proposition 2.7.2, the coefficients in the

recursive expansion sum to zero in the case of a ∈ V 1
[C1,0]∩R>0, which will yield that C̃α = 0 =Cα

in Corollary 2.5.8.
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Chapter 2. Local Correlations and Conformal Invariance

Figure 2.3.3 – The full plane spinor Hα
[C1,0](z) is first defined at all blue corners � by its anti-

symmetry relations and Proposition 2.3.10. By s-holomorphicity, we can then deduce its value
at the brown medial vertex ◦, and then project from there onto the two brown corners �. We
continue this process, next moving to the red ◦, then the red �, and then green etc.

Corollary 2.3.11. For any a ∈ V cm
[C1,0], we can recursively compute Hα

[C1,0] as a finite linear

combination of functions given by Theorem 2.3.3.

Proof. By Proposition 2.3.10, Hα
[C1,0](z) is given for all z ∈ V cm

[C1,0] whenever α ∈ V 1,i
[C1,0] ∩ (R>0 ∪

iR>0). The antisymmetry relations it satisfies thus give Hα
[C1,0](z) for every α, whenever z ∈

R>0 ∪ iR>0 (as a finite linear combination of explicit harmonic measures).

Now observe that s-holomorphicity implies that the value, say, of Hα
[C1,0](

1+i
2 ) can be recovered

from its values at the 1
2 , i

2 . From there, one can project the values of Hα
[C1,0](z) when z = 1+ i

2 and
1
2 + i (see Figure 2.3.3). Continuing this process allows for a recursive construction of Hα

[C1,0](z)

for any z ∈ V cm
[C1,0] as a finite linear combination of the explicit functions of Theorem 2.3.3.

Auxiliary Functions

We introduce here full-plane auxiliary functions G and G̃±, which are everywhere s-holomorphic

functions on [C1,0] which do not decay at infinity. The real part of G was defined in [CHI15] as

a discrete version of the holomorphic function
p

z on the double cover; we extend the result in

order to give full s-holomorphic discrete representations of 1
2
p

2

p
z and i

2
p

2

p
z. Convergence

results for these functions will be proved in Section 2.5.4.

As in previous subsections, we define the functions on the unit grid [C1,0], and then scale
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2.4. Discrete Multipoint Observables

them by G[Cδ,0](zδ) := δG[C1,0](z) and G̃±
[Cδ,0](zδ) := δG̃±

[C1,0](z). We define them first on real

and imaginary corners by “integrating” the harmonic measures, then extend to other points

by s-holomorphicity. The fact that there are two discrete versions of i
2
p

2

p
z is a peculiarity

that will be important in the proof of the main convergence result in Section 2.5.4 (see also

[Dub15]).

Definition 2.3.7. Define for z ∈ V 1
[C1,0] ∪V i

[C1,0], the auxiliary functions

G[C1,0](z) :=


∑∞

n=0± 1
2
p

2
hm

X1
1

3/2(z −2n) if z ∈ V 1
[C1,0] ∩X±∑∞

n=0± i
2
p

2
hm

Yi
1

−3/2(z +2n) if z ∈ V i
[C1,0] ∩Y±

0 otherwise

,

and

G̃±
[C1,0](z) := iG[C1,0](z ±1) ,

where translation by 1 is well-defined at any point other than ±1
2 ; G[C1,0](±1

2 ) = 0 on both

sheets so there is no ambiguity in defining G̃±
[C1,0](∓1

2 ).

Remark 2.3.5. In [CHI15, Lemma 2.17] well-definedness and harmonicity of the real part of

G[C1,0] were proven. From symmetry, we see the same holds for the imaginary part. Discrete

holomorphicity of G[C1,0], and thus of G̃±
[C1,0], is proved in Appendix 2.7 using the explicit

formula of Theorem 2.3.3. Using that, we then extend these to s-holomorphic functions on

the corners and medial vertices, again using the process of Remark 2.2.2.

Remark 2.3.6. Since G[C1,0] (and thus G̃±
[C1,0]) is defined using infinite sums, one cannot a

priori calculate them exactly. However, once its s-holomorphicity is exhibited in Appendix 2.7,

we can use a propagation procedure similar to one shown in Fig. 2.3.3 and explained in

Corollary 2.3.11 to recursively calculate its values from its values on the real and imaginary

axes. Indeed, G[C1,0] is explicitly computable on the real line since the summands eventually

become zero; then we use the rotation identity eπi /4G[C1,0](eπi /2z) = 1
2

[
G̃+

[C1,0] +G̃−
[C1,0]

]
(z),

proved in Proposition 2.7.4, to find the values on the imaginary axis.

Using this procedure, we provide some explicit values of G[C1,0](z) near the origin in Figure 2.3.4

2.4 Discrete Multipoint Observables

In this section, we prove Pfaffian formulae expressing n-point energy correlations, with or

without a spin weight, in terms of the real fermion and spin-fermion two-point functions.

For the n-point energy correlations, we formulate them in terms of s-holomorphic multipoint

fermion observables introduced in [Hon10] and follow the strategy there to obtain their

Pfaffian formulation with the two-point observables introduced in Section 2.3. In [Hon10],

the arguments of the multipoint observable were required to be distinct, non-adjacent medial

vertices; we slightly but crucially generalize this to allow for adjacent medial vertices in
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Figure 2.3.4 – Some explicit values for the auxiliary function 2
p

2G[C1,0](z) for z ∈ V 1,i
[C1,0] ∩X+,

as defined in Definition 2.3.7. The function has monodromy about the origin, represented by
the orange ×.

Proposition 2.4.1 and Lemma 2.4.2, using a combinatorial correspondence between paths

sourced at medial vertices and at corners.

When looking at n-point energy correlations weighted by a spin, the process is analogous,

and we get fused multipoint spin-fermion observables, which then reduce to Pfaffians of the

two-point spin-fermion observables of Section 2.3.1.

The proofs of these relations connecting the two-point fermion and spin-fermion observ-

ables to edge correlations (namely, Propositions 2.4.9–2.4.10) are quite notationally heavy,

but all the extra notation is contained completely to this section. After generalizing the dis-

crete complex analytic properties of the multipoint observables to adjacent medial vertices

in Proposition 2.4.1, the rest of the proof is just a natural extension of the steps outlined

in [Hon10] to prove the desired relations. For an alternative approach using mostly combina-

torial arguments, see [CCK17].

2.4.1 Multipoint Observables

Recall that in Section 2.3 we denoted by ZΩδ
the low-temperature expansion of the partition

function defined by summing e−2β|ω| over all ω ∈ CΩδ
, where CΩδ

is the set of closed loops

inΩδ. Furthermore, for oriented corners or medial vertices α,ζ, we defined the contour sets

C
α,ζ
Ωδ

as well as admissible walks. We also chose the convention that and at ambiguous vertices

in the walk, we connect northeast to northwest edges and southeast and southwest edges
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2.4. Discrete Multipoint Observables

(see §2.3.1).

We now generalize the two-point observables defined in Section 2.3. First, let us define the

generalized contour set C
α1,...,α2n
Ωδ

for s-oriented corners or medial vertices α j = a
o j

j for j =
1,2, . . . ,2n. For now we assume that the underlying points a1, . . . , a2n are distinct (we will later

generalize to the case where they can take the same value: see Remark 2.4.3). In [Hon10], these

points were all medial vertices, and were required to be non-adjacent (the edges corresponding

to them were not allowed to be adjacent). We do not impose this non-adjacency requirement,

and this small extension is important to the proofs. As before, the half-edge of a corner is the

line segment connecting it to its nearest vertex.

Each element γ ∈C
α1,...,α2n
Ωδ

is a set containing

• 2n half-edges of a1, . . . , a2n selected by their respective orientations o1, . . . ,o2n , and

• a (possibly empty) collection of edges distinct from the above-mentioned half-edges of{
a j

}2n
j=1,

such that any vertex ofΩδ is incident to an even number of the edges and half-edges. Such a γ

will be an edge-disjoint union of n walks connecting α1, . . .α2n pairwise as well as a (possibly

empty) collection of edge-disjoint loops. In particular, the definition of the 2-point set C
α,ζ
Ωδ

coincides with the one given in Section 2.3.

Generalizing from the 2-point case in Section 2.3, given γ we can pick n admissible walks

which connect {αi } pairwise. We denote by Γ(γ) ⊂ γ, a set of those n edge-disjoint admissible

walks {γα j ,αk } chosen from the half-edges and edges constituting γ. We label them so that

j < k for each γα j ,αk . Define the crossing parity c(Γ(γ)) as the number of crossings, modulo

2 when linking 1, . . . ,2n ∈R pairwise with generic simple curves in the upper half plane (i.e.

connect j ,k if there is a walk in Γ(γ) connecting α j ,αk ). Moreover, recall the definitions of

λαi ,α j and W(γ) from Definition 2.3.1.

Definition 2.4.1. For a collection of s-oriented corners or medial vertices {α j }2n
j=1 inΩδ, define

the multipoint fermion observable as

Fα1,...,α2n
Ωδ

:= 1

ZΩδ

∑
γ∈C

α1,...,α2n
Ωδ

φ{α j }(γ) ,

φ{α j }(γ) := e−2βc |γ|(−1)c(Γ(γ))
∏

γ
α j ,αk ∈Γ(γ)

iλαi ,α j e−
i
2 W(γα j ,αk ) .

In analogy with the two point case, if ζ1 = zp1 and ζ2 = zp2 are s-orientations of the two

opposite orientations of z := a2n , so that p2 = e±πi p1, and κ= cq is an s-orientation of a corner
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α1

α3

α4

α2

Figure 2.4.1 – An example of a choice of two admissible walks between α1 and α3 and α2 and
α4 and a loop. The winding of γα1,α3 is 2π while the winding of γα2,α4 is −π

2 . The crossing
parity has c(Γ(γ)) = 1.

c inΩδ, we define the complexification of the multipoint fermion observable,

Hα1,...,α2n−1
Ωδ

(z) := 1

i
p

p1
Fα1,...,α2n−1,ζ1

Ωδ
+ 1

i
p

p2
Fα1,...,α2n−1,ζ2

Ωδ
, (2.4.1)

Hα1,...,α2n−1
Ωδ

(c) := 1

i
p

q
Fα1,...,α2n−1,κ
Ωδ

.

Definition 2.4.2. For a collection of s-oriented corners or medial vertices {α j }2n
j=1 in [Ωδ,0],

define the multipoint spin-fermion observable,

Fα1,...,α2n
[Ωδ,0] := 1

ZΩδ
E+Ωδ

[σ0]

∑
γ∈C

α1,...,α2n
Ωδ

φΣ{α j }
(
γ
)

,

φΣ{α j }
(
γ
)

:=φ{α j }
(
γ
)

(−1)`(γ\∪Γ(γ)) ∏
γ
α j ,αk ∈Γ(γ)

sαj,αk

(
γα j ,αk

)
,

where ` and sαj,αk are defined as in Definition 2.3.1. As in the two-point spin fermion, the

contour collection C
α1,...,α2n
Ωδ

and the weightφ{α j } are computed with respect to the projections

of α j onto Ωδ, but the sheet choices come in the terms sα,ζ. Define the complexified spin-

fermion Hα1,...,α2n−1
[Ωδ,0] on medial vertices and corners of [Ωδ,0] analogously to Eq. (2.4.1).

Remark 2.4.1. [Hon10, Propositions 67, 68] proves well-definedness ofφ{α j }
(
γ
)
. In Proposition

2.8.1 we prove the well-definedness of (−1)`(γ\∪Γ(γ)) ∏
sαj,αk (γα j ,αk ), and thus of φΣ{α j }

, so that

it is independent of our convention for admissible walks and the choice of pairings of source
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points; in particular, it is independent of our choice of admissible Γ(γ).

In addition to increasing the number of inputs, we can also define observables summing

over a subset C
α1,...,α2n

Ωδ:{e
sk
k }

⊂C
α1,...,α2n
Ωδ

formed by specifying the inclusion or exclusion of given

edges. Given a collection of edges {ek }m
k=1 in Ωδ (disjoint to the half-edges given by {a j }2n

i=1)

and corresponding inclusion variables sk ∈ {•,◦}, let

C
α1,...,α2n

Ωδ:{e
s1
1 ,...,e sm

m }
= {

γ ∈C
α1,...,α2n
Ωδ

: ek ∈ γ if sk = •, and ek ∉ γ if sk = ◦} .

Definition 2.4.3. We define the restricted fermion and spin-fermion observables, denoted

Fα1,...,α2n

Ωδ:{e
s1
1 ,...,e sm

m }
and Fα1,...,α2n

[Ωδ,0]:{e
s1
1 ,...,e sm

m }
, and their complexifications as in Definitions 2.4.1–2.4.2,

replacing the contour set C
α1,...,α2n
Ωδ

by the restricted contour set C
α1,...,α2n

Ωδ:{e
s1
1 ,...,e sm

m }
.

The following propositions will characterize the complexified fermion and spin-fermion

observables in terms of discrete complex analysis, proving the connection to the discrete

Riemann boundary value problem defined in Section 2.2 for possibly adjacent medial vertices

a1, ..., a2n .

We first modify the real weight φ{αk } defined on C
α1,...,α2n
Ωδ

for 2n s-oriented vertices α1, . . . ,α2n

into a complex weight χ defined on

C
α1,...,α2n−1,a2n
Ωδ

:=C
α1,...,α2n−1,α1

2n
Ωδ

tC
α1,...,α2n−1,α2

2n
Ωδ

for 2n −1 s-oriented medial vertices or corners α1, . . . ,α2n−1 and another medial vertex a2n .

Choose two s-orientations α1
2n = ap1

2n and α2
2n = ap2

2n of a2n such that the orientations p1, p2

are the two opposite permissible orientations on a2n . Define for γ ∈C
α1,...,α j

2n
Ωδ

⊂C
α1,...,α2n−1,a2n
Ωδ

the complex weight (where dependence on the choice of
p

p j eventually cancels out),

χ(γ) := 1

i
p

p j
φ

{a1,...,α2n−1,a j
2n }

(γ) ,

noting that the complexified observables can be defined in terms of sums of this weight. If

α2n = ao
2n is an s-oriented corner, there is only one corresponding orientation and χ(γ) :=

1
i
p

o
φ{αk }(γ).

Proposition 2.4.1. Hα1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
and Hα1,...,α2n−1

[Ωδ,0]:{e
s1
1 ,...,e sm

m }
are s-holomorphic wherever defined.

Proof. This was proven for the complexified fermion in [Hon10, Lemma 74] in the setting

where the αi are non-adjacent medial vertices. We extend this to all possible αi via the

extension of the complexified fermion to corners in addition to medial vertices. The idea is

that there is a natural bijection between the set of paths to a medial vertex e and those to an

adjacent corner c . Namely, if e(c) is the shortest walk from a2n to c consisting of two half-edges

both incident to the common vertex v , the map γ 7→ γ⊕e(c) is a bijection. One needs to show
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that the projection in s-holomorphicity relations (2.2.1) sends the winding weight e−
i
2 W(γ) to

the winding weight of the image, times a factor of cos(π/8).

Following this, the next lemma therefore proves s-holomorphicity in the case of Hα1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
.

The summands in the definition of Hα1,...,α2n−1

[Ωδ,0]:{e
s1
1 ,...,e sm

m }
only have additional real factors invariant

under the ·⊕e(c) bijection, so the lemma implies the s-holomorphicity for Hα1,...,α2n−1

[Ωδ,0]:{e
s1
1 ,...,e sm

m }
as

well.

Lemma 2.4.2. Let
{

a j
}2n−1

j=1 , {ek }m
k=1 be distinct medial vertices ofΩδ and denote the s-oriented

versions of
{

a j
}2n−1

j=1 by α j = a
o j

j , and inclusion variables s1, ..., sm ∈ {•,◦}. Suppose c is an

interior corner and a2n is an adjacent interior medial vertex distinct from
{

a j
}2n−1

j=1 . Let e(c) be

the shortest walk from a2n to c consisting of two half-edges both incident to a common vertex v.

Then the bijection,

γ 7→ γ⊕e(c) ,

from C
α1,...,α2n−1,a2n

Ωδ:
{

e
sk
k

} to C
α1,...,α2n−1,c

Ωδ:
{

e
sk
k

} satisfies the projection relation,

Pl (c)χ(γ) =χ(γ⊕e(c)) .

Proof. Suppose γ f ∈ Γ(γ) is the walk ending at a2n , starting at some αs . Suppose c is a corner

of type τ adjacent to a2n . Then Γ(γ⊕ e(c)), chosen using paths in Γ(γ) with γ f replaced by

γ f ⊕e(c), is clearly an admissible choice of walks in γ⊕e(c). Note that if o2n is any s-orientation

of a2n compatible with γ f , i
p

o2np
os

e−
i
2 W(γ f ) is a real quantity. Thus it suffices to show that

Pl (c)
e−2βc |γ|
p

os
e−

i
2 W(γ f ) = cos

π

8
· e−2βc |γ⊕e(c)|

p
os

e−
i
2 W(γ f ⊕e(c)) .

Commuting real quantities with projections, we may rewrite the left hand side as

i

p
o2np
os

e−
i
2 W(γ f )e−2βc |γ|Pl (c)

1

i
p

o2n
.

There are two cases to consider: the cases when the half-edge 〈a2n , v〉 ∈ γ f and when 〈a2n , v〉 ∉
γ f .

• In the first case,
∣∣γ⊕e(c)

∣∣= ∣∣γ∣∣. Subsequently τ2o2n =−e±
π
4 i , where the sign depends

on the winding change W(γ⊕e(c)) = W(γ)∓ π
4 . Now we have

Pl (c)
1

i
p

o2n
= 1−τ2o2n

2i
p

o2n
= e±

π
8 i

i
p

o2n
cos

π

8
,

and the result follows.
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• In the second case,
∣∣γ⊕e(c)

∣∣= ∣∣γ∣∣+1. Then τ2o2n = e±
π
4 i , where the sign depends on

the winding change W(γ⊕e(c)) = W(γ)± 3π
4 . Then

Pl (c)
1

i
p

o2n
= 1−τ−2o2n

2i
p

o2n
= e∓

3π
8 i

i
p

o2n
sin

π

8
.

Upon noting that tan π
8 = e−2βc , the result follows.

Lemma 2.4.3. The discrete residues at an s-oriented interior oriented medial vertex α j are

Hα1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
(α j+)−Hα1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
(α j−) = (−1) j+1

p
o j

F
α1,...,α j−1,α j+1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
,

Hα1,...,α2n−1

[Ωδ,0]:{e
s1
1 ,...,e sm

m }
(α j+)−Hα1,...,α2n−1

[Ωδ,0]:{e
s1
1 ,...,e sm

m }
(α j−) = (−1) j+1

p
o j

F
α1,...,α j−1,α j+1,...,α2n−1

[Ωδ,0]:{e
s1
1 ,...,e sm

m }
.

where in the two cases α1, . . . ,α2n−1 are all taken respectively onΩδ and [Ωδ,0].

Proof. We prove this for the fermion and spin-fermion simultaneously, letting Dδ represent

Ωδ or [Ωδ,0]. It suffices to show that the front and back values of Hα1,...,α2n−1

Dδ:{e
s1
1 ,...,e sm

m }
at α j are given

by

Hα1,...,α2n−1

Dδ:{e
s1
1 ,...,e sm

m }
(α j+) = (−1) j+1

p
o j

F
α1,...,α j−1,α j+1,...α2n−1

Dδ:
{

e
s1
1 ,...,e sm

m ,a◦
j

} ,

Hα1,...,α2n−1

Dδ:{e
s1
1 ,...,e sm

m }
(α j−) = (−1) j

p
o j

F
α1,...,α j−1,α j+1,...α2n−1

Dδ:
{

e
s1
1 ,...,e sm

m ,a•
j

} , (2.4.2)

where in the case Dδ = [Ωδ,0] the projection of a j ontoΩδ is considered in a◦,•
j .

Let c1 denote one of the two corners adjacent to the end vertex of a j in the direction o j . We

verify that Hα1,...,α2n−1

Dδ:{e
s1
1 ,...,e sm

m }
(α j+) projects to Hα1,...,α2n−1

Dδ:{e
s1
1 ,...,e sm

m }
(c1). Let c1 be a corner of type τ.

We note that anyγ ∈C
α1,...,α2n−1,c1

Dδ:
{
e

s1
1 ,...,e sm

m

} contains the walk e(c1) :=
{〈

a j , a j +o j
δp
2

〉
,
〈

a j +o j
δp
2

,c1

〉}
,

so we can start from γ f and complete Γ(γ). In addition, γ⊕ e(c1) ∈C
α1,...,α j−1,α j+1,...,α2n−1

Dδ:
{

e
s1
1 ,...,e sm

m ,a◦
j

} and

Γ(γ) \ {e(c1)} is naturally an admissible choice of walk for 2n −2 points. Since the additional

real factor in the case of Dδ = [Ωδ,0] is easily seen to be invariant under the bijection, it now

suffices to show the projection relation

Pl (c1)
(−1) j+1

p
o j

φ{α1,...,α j−1,α j+1,...,α2n−1}(γ⊕e(c1)) =χ(γ) .

This relation can be rewritten as Pl (c1)
1p
o j

= e−2βc cos π8 · e− i
2 W(e(c1))
p

o j
= cos 3π

8 · e− i
2 W(e(c1))
p

o j
using

explicit formulae and admissible choices Γ(γ) and Γ(γ⊕e(c1)) (where (−1) j+1 is precisely the

ratio between the crossing parity factor of Γ(γ⊕e(c1)) and Γ(γ); one sees this by drawing the
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pairing between j and 2n very close to [ j ,2n] ⊂ R, so that it crosses exactly 2n − j −1 other

lines).

Note that o j e i W(e(c1)) = τ2 and W(e(c1)) = ±3π
4 . Commuting real values with projection, we

have,

Pl (c1)

[
1p
o j

]
= 1

2

[
1p
o j

+
p

o j

τ2

]
= 1p

o j

1+e−i W(e(c1))

2
= cos

3π

8
· e−

i
2 W(e(c1))

p
o j

.

Remark 2.4.2. The explicit front and back values (2.4.2) shown in the proof above give us a

simple correspondence between the full-plane observables and the full-plane (normal and

spin-weighted) nearest-pair correlations µ,µa′ for edges a = δa′ ∈ EΩδ
defined in (2.1.1).

Notice that, by low-temperature expansion, the correlation of the nearest spin pair separated

by an edge a can be written 1
ZΩδ

[∑
ω∈CΩδ :{a◦}

e−2|ω|−∑
ω∈CΩδ :{a•}

e−2|ω|
]
= FΩδ:{a◦} −FΩδ:{a•}. By

the values given in (2.4.2), this is precisely
p

o
[

Hα
Ωδ

(α+)+Hα
Ωδ

(α−)
]

, for any s-oriented version

α of a. Now taking the infinite-volume limit by sendingΩ ↑C (whose existence is known by

Theorem 2.3.1), we have

µ=p
o

[
Hα
Cδ

(α+)+Hα
Cδ

(α−)
]

,

matching the values Hα
Cδ

(α±) = µ±1
2
p

o
given by Proposition 2.3.5.

By analogous reasoning, for every a = δa′ ∈ EΩδ
we can calculate µa′ as defined in (2.1.1) by

µa′ =p
o

[
Hα

[Cδ,0](α+)+Hα
[Cδ,0](α−)

]
,

or equivalently for every a = δa′ ∈ EΩδ
we have Hα

[Cδ,0](α±) = µa′±1
2
p

o
, where we know the infinite-

volume limitΩ ↑C of
p

o[Hα
[Ωδ,0](α+)+Hα

[Ωδ,0](α−)] exists by Theorem 2.3.2.

Recall the definition of νz as the outer normal at a boundary medial vertex z.

Lemma 2.4.4. If {αi }2n−1
i=1 are interior s-oriented medial vertices, {e s1

1 , ...e sm
m } are edges with

corresponding inclusion variables, and z = a2n is a boundary medial vertex, we have that

Hα1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
(z)

p
νz ∈R ;

Hα1,...,α2n−1

[Ωδ,0]:{e
s1
1 ,...,e sm

m }
(z)

p
νz ∈R .

Proof. [Hon10, Proposition 79] proves the lemma for Hα1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
with non-adjacent αi .

The idea is that if z is on the boundary, a path can only reach z via the half-edge in the

inner direction, which fixes the complex phase in the weight; this goes through unchanged

for possibly adjacent αi . For the spin-fermion observable, since the additional factors in

Hα1,...,α2n−1

[Ωδ,0]:{e
s1
1 ,...,e sm

m }
are real, the result holds.
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Figure 2.4.2 – Some explicit values of (µe )e∈EC1
. This represents the mean of the physical

quantity, the spin-weighted energy field. The orange × marks the identified origin face, whose
spin µe is weighted by; as |e|→∞, we have µe →µ.

2.4.2 Fused Observables and Ising Correlations

In this subsection, we formulate the Ising correlations in a bounded domain in terms of fusions

of the observables introduced above. We again write α1, . . . ,α2n for distinct s-oriented medial

vertices inΩδ or [Ωδ,0] and e1, ...,em distinct edges with inclusion variables s1, ..., sm ∈ {•,◦}.

Definition 2.4.4. Suppose b1, . . . ,bN are distinct medial vertices inΩδ with bN = δb′
N . Define

the fused fermion and fused spin-fermion observables and their complexifications inductively

by

Fα1,...,α2n :[b1,...,bN ]
Ωδ:{e

s1
1 ,...,e sm

m }
:= Fα1,...,α2n :[b1,...,bN−1]

Ωδ:{e
s1
1 ,...,e sm

m ,b◦
N }

− µ+1

2
Fα1,...,α2n :[b1,...,bN−1]
Ωδ:{e

s1
1 ,...,e sm

m }
, (2.4.3)

Fα1,...,α2n :[b1,...,bN ]
[Ωδ,0]:{e

s1
1 ,...,e sm

m }
:= Fα1,...,α2n :[b1,...,bN−1]

[Ωδ,0]:{e
s1
1 ,...,e sm

m ,b◦
N }

−
µb′

N
+1

2
Fα1,...,α2n :[b1,...,bN−1]

[Ωδ,0]:{e
s1
1 ,...,e sm

m }
,

and the usual complexification scheme on α2n (see e.g. (2.4.1)).

These fusions arise naturally from the process of removing singularities. Suppose α j is an

s-oriented interior medial vertex. Note that, by Lemma 2.4.3 and Theorems 2.3.1–2.3.2, the

functions

Hα1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
+ (−1) j F

α1,...,α j−1,α j+1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
H
α j

Cδ
, (2.4.4)

Hα1,...,α2n−1

[Ωδ,0]:{e
s1
1 ,...,e sm

m }
+ (−1) j F

α1,...,α j−1,α j+1,...,α2n−1

[Ωδ,0]:{e
s1
1 ,...,e sm

m }
H
α j

[Cδ,0] , (2.4.5)
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have discrete residue 0 at α j ; thus they extend to a j s-holomorphically. In fact, we have the

following extension result for them, which also applies to the corresponding fused observables.

Lemma 2.4.5. The following fused versions of the functions defined in (2.4.4)–(2.4.5) have

s-holomorphic extensions to a j given by the values[
Hα1,...,α2n−1:[e1,...,em ]
Ωδ

+ (−1) j F
α1,...,α j−1,α j+1,...,α2n−1:[e1,...,em ]
Ωδ

H
α j

Cδ

]
(a j )

:= (−1) j+1

p
o j

F
α1,...,α j−1,α j+1,...α2n−1:[e1,...,em ,a j ]
Ωδ

,[
Hα1,...,α2n−1:[e1,...,em ]

[Ωδ,0] + (−1) j F
α1,...,α j−1,α j+1,...,α2n−1:[e1,...,em ]
[Ωδ,0] H

α j

[Cδ,0]

]
(a j )

:= (−1) j+1

p
o j

F
α1,...,α j−1,α j+1,...α2n−1:[e1,...,em ,a j ]
[Ωδ,0] ,

where in the second case, a j in [Ωδ,0] is identified with its projection onΩδ in the expression[
e1, . . . ,em , a j

]
.

Proof. By R-linearity of s-holomorphicity and the definition of fused observables, it suffices

to show that the unfused observables given by (2.4.4)–(2.4.5) extend s-holomorphically to a j

with above right hand side values (without e1, . . . ,em).

Since the function (2.4.4) has discrete residue 0 at a j , it has an s-holomorphic extension to a j

given by [
Hα1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
+ (−1) j F

α1,...,α j−1,α j+1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
H
α j

Cδ

]
(a j )

= Hα1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
(α j+)+ (−1) j F

α1,...,α j−1,α j+1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
H
α j

Cδ
(α j+) .

In turn, by the explicit values in the proof of Lemma 2.4.3, this is given by

(−1) j+1

p
o j

F
α1,...,α j−1,α j+1,...α2n−1

Ωδ:
{

e
s1
1 ,...,e sm

m ,a◦
j

} + (−1) j F
α1,...,α j−1,α j+1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
H
α j

Cδ
(α j+)

= (−1) j+1

p
o j

F
α1,...,α j−1,α j+1,...α2n−1:[a j ]

Ωδ:{e
s1
1 ,...,e sm

m }
,

using that H
α j

Cδ
(a j+) = µ+1

2
p

o j
(see Remark 2.4.2). Identical computation gives the [Ωδ,0] case,

where now we use the fact that for every a j = δa′
j , we have H

α j

[Cδ,0](α j+) =
µa′

j
+1

2
p

o j
.

Remark 2.4.3. So far, we have assumed that the 2n inputs α1, . . . ,α2n of the real observable

are s-orientations of distinct a1, . . . , a2n . An important observation to be made is that the

combinatorial definition of the real observable is robust enough for the pairwise-fused case,

where a medial vertex e appears twice among the 2n inputs (say a j = ak = e), as long as their

respective orientations o j ,ok point to opposite directions.
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In the complexified case, a medial vertex can appear twice, again oppositely oriented, among

the first 2n −1 s-oriented medial vertices; if a j = ak onΩδ with opposite orientations o j and

ok , one can verify that the residue at α j is given by

(−1) j+1

p
o j

F
α1,...,α j−1,α j+1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
− (−1)k+1

p
ok

Fα1,...,αk−1,αk+1,...,α2n−1

Ωδ:{e
s1
1 ,...,e sm

m }
.

This is precisely a directed superposition of the two residues derived in Lemma 2.4.3 for s-

oriented medial verticesα j ,αk ; similarly Lemma 2.4.5 and the resulting Propositions 2.4.7–2.4.8,

introduced in the next subsection, easily generalize to the pairwise-fused case.

We are now in position to connect the fused multipoint observables to multipoint Ising

correlations.

Proposition 2.4.6. Suppose {bk }N
k=1 is a set of N distinct interior edges inΩδ. We have

EΩδ

[ ∏
b∈{bk }

ε(b)

]
= (−1)N 2N F [b1,...,bN ]

Ωδ
,

EΩδ

[
σ0

∏
b∈{bk } ε[0](b)

]
EΩδ

[σ0]
= (−1)N 2N F [b1,...,bN ]

[Ωδ,0] .

Proof. The first identity was proved in [Hon10, Proposition 72] inductively, where our above

extensions of the projection relations to adjacent edges now allow for the bk to be adjacent.

Explicitly, denoting
{

e
s j

j

}
= {

e s1
1 , . . . ,e sm

m
}

for a set of edges (distinct from bk ) with inclusion

variables s j ∈ {•,◦} and recalling C
Ωδ:

{
e

s j
j

}, it is straightforward to show by induction on N (the

base case is trivial),

EΩδ

[
1{

e
s j
j

} ∏
b∈{bk }

ε(b)

]
= (−1)N 2N F [b1,...,bN ]

Ωδ:
{

e
s j
j

} ,

(where for an edge e separating faces x, y with inclusion variable s ∈ {•,◦}, the indicator 1{e s }

denotes an indicator on the event thatσx =σy if s = ◦ andσx 6=σy if s = •) using the expansion

EΩδ

[
1{

e
s j
j

}ε(b1) · · ·ε(bN+1)

]
= (µ−1)EΩδ

[
1{

e
s j
j ,b◦

N+1

}ε(b1) · · ·ε(bN )

]
+ (µ+1)EΩδ

[
1{

e
s j
j ,b•

N+1

}ε(b1) · · ·ε(bN )

]
,

and that by definition F [b1,...,bN ]

Ωδ:
{

e
s j
j

} = F [b1,...,bN ]

Ωδ:
{

e
s j
j ,b◦

N+1

}+F [b1,...,bN ]

Ωδ:
{

e
s j
j ,b•

N+1

}.

The second identity follows from an analogous process, where we note that for a collection of

loops and walks ω, we have σ0(ω) = (−1)`(ω) due to the plus boundary condition.
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2.4.3 Pfaffian Formulae

Having related the Ising correlations to the fused observables, in this subsection we will

elucidate how the recursive relation (2.4.3) gives rise to the Pfaffian relation in Section 2.4.4.

The argument is identical to the one presented in Chapter 6 of [Hon10], albeit with the stronger

lemmas introduced in Section 2.4.1 allowing the αi ’s to be adjacent.

We first prove that a 2n-point observable is in fact a Pfaffian of a matrix of two-point observ-

ables. Recall that for a 2n ×2n antisymmetric matrix A = (A j k ) j ,k=1,...,2n ,

Pf A := 1

2nn!

∑
σ∈S2n

sgn(σ)Aσ(1)σ(2) Aσ(3)σ(4) · · · Aσ(2n−1)σ(2n) , (2.4.6)

and we have the recursive expansion formula,

Pf A =
2n−1∑
j=1

(−1) j A j ,2nPf A�j ;2n , (2.4.7)

where A�j ;2n is the matrix where the j and 2n-th rows and columns are removed.

Proposition 2.4.7. Suppose α j = a
o j

j , j = 1, . . . ,2n are distinct (possibly pairwise-fused) s-

oriented interior medial vertices of Dδ =Ωδ or [Ωδ,0]. Define the 2n×2n antisymmetric matrix

F
{α j }
Dδ

=



0 Fα1,α2
Dδ

· · · Fα1,α2n−1
Dδ

Fα1,α2n
Dδ

0 · · · Fα2,α2n−1
Dδ

Fα2,α2n
Dδ

0
...

...
. . . Fα2n−1,α2n

Dδ

0


.

Then

Fα1,...,α2n
Dδ

= Pf F
{α j }
Dδ

.

Proof. The 2×2 case is trivial. Given the recursive formula (2.4.7) for the Pfaffian, inductively

it suffices to show

Fα1,...,α2n
Dδ

=
2n−1∑
j=1

(−1) j F
α1,...,α j−1,α j+1...,α2n−1

Dδ
F
α j ,α2n

Dδ
.

The strategy is to use the boundary value problem uniqueness result (Lemma 2.2.2) to show

that the function Hα1,...,α2n−1
Dδ

(a2n)−∑2n−1
j=1 (−1) j F

α1,...,α j−1,α j+1...,α2n−1

Dδ
H
α j

Dδ
(a2n) is identically zero.

The boundary condition is obviously satisfied; the fact that all singularities at α1, . . . ,α2n−1 are

removable, i.e. have residue zero, is immediate from Lemma 2.4.3.

We now extend the Pfaffian representation to the fused observables. For any edge e, write

e+ = eo+
, e− = eo−

for a pair of s-orientations o± of e, so that o+ = eπi o−. Recall the use of the †
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to denote

F †
Ωδ

= FΩδ
−FCδ and F †

[Ωδ,0] = F[Ωδ,0] −F[Cδ,0] .

For edges e1, ...,em define the 2m×2m antisymmetric matrix with F
†e+

i ,e−
i

Dδ
on the anti-diagonal

i + j = 2m +1, i ≤ m, and more generally, entries,

F[{ek }]
Dδ

:=



0 F
e+

1 ,e+
2

Dδ
· · · F

e+
1 ,e+

m

Dδ
F

e+
1 ,e−

m

Dδ
· · · F

e+
1 ,e−

2
Dδ

F
†e+

1 ,e−
1

Dδ

0 · · · F
e+

2 ,e+
m

Dδ
F

e+
2 ,e−

m

Dδ
· · · F

†e+
2 ,e−

2
Dδ

F
e+

2 ,e−
1

Dδ

0
... . . . ...

...
. . . F

†e+
m ,e−

m
Dδ

F
e+

m ,e−
2

Dδ
F

e+
m ,e−

1
Dδ

0 · · · F
e−

m ,e−
2

Dδ
F

e−
m ,e−

1
Dδ

. . .
...

...

0 F
e−

2 ,e−
1

Dδ

0



.

Proposition 2.4.8. Suppose α j = a
o j

j for j = 1, . . . ,2n and ek for k = 1, . . . ,m are distinct (possi-

bly pairwise-fused) interior medial vertices of Dδ =Ωδ or [Ωδ,0]. Define the block antisymmet-

ric 2(m +n)×2(m +n) matrix F
{a j }:[{ek }]
Dδ

by

F
{a j }:[{ek }]
Dδ

:=
 F[{ek }]

Dδ
−

[
F

{a j }×[{ek }]
Dδ

]T

F
{a j }×[{ek }]
Dδ

F
{a j }
Dδ

 , where

F
{a j }×[{ek }]
Dδ

:=


F
α1,e+

1
Dδ

· · · F
α1,e+

m
Dδ

F
α1,e−

m
Dδ

· · · F
α1,e−

1
Dδ

...
...

...
...

F
α2n ,e+

1
Dδ

· · · F
α2n ,e+

m
Dδ

F
α2n ,e−

m
Dδ

. . . F
α2n ,e−

1
Dδ

 .

Then

Fα1,...,α2n :[e1,...,em ]
Dδ

= Pf F
{a j }:[{ek }]
Dδ

.

In particular, since Fα1,...,α2n :[e1,...,em ]
Dδ

does not depend on the choice of s-orientations o+
j ,o−

j on

ek , the Pfaffian does not.

Proof. Without loss of generality, we will assume Dδ =Ωδ; the case Dδ = [Ωδ,0] can be treated

identically. We use induction on m. The case m = 0 is given by Proposition 2.4.7. Now we

assume the result holds for m, and consider the case m +1. By Lemma 2.4.5, if e+m+1 = eo
m+1 is

an s-orientation of em+1, we can extend to the removed singularity[
H
α1,...,α2n ,e+

m+1:[e1,...,em ]
Ωδ

−Fα1,...,α2n :[e1,...,em ]
Ωδ

H
e+

m+1
Cδ

]
(em+1) := 1p

o
Fα1,...α2n :[e1,...,em+1]
Ωδ

.
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Then by the projection relations given by s-holomorphicity, we can deduce

F
α1,...,α2n ,e+

m+1,e−
m+1:[e1,...,em ]

Ωδ
−Fα1,...,α2n :[e1,...,em ]

Ωδ
F

e+
m+1,e−

m+1
Cδ

:= Fα1,...α2n :[e1,...,em+1]
Ωδ

.

By the inductive hypothesis, we have the desired Pfaffian formulations of F
α1,...,α2n ,e+

m+1,e−
m+1:[e1,...,em ]

Ωδ

and Fα1,...,α2n :[e1,...,em ]
Ωδ

. Expanding the Pfaffian along the last column as in (2.4.7) the result easily

follows.

2.4.4 Observables and Ising Correlations

In this subsection we present the connection between Ising model correlations and spin-

weighted correlations and the two-point observables defined in Section 2.3.1. These formulae

follow immediately from the results of Sections 2.4.2 and 2.4.3.

Spin-symmetric correlations

Recall that we have defined a spin-symmetric correlation as the expectation of a product of

energy densities which scale with the mesh size δ. Our characterization of the correlation

consists of a Pfaffian involving the real observables introduced in Section 2.3. For an edge e,

we will denote by e+ := eo+
,e− := eo−

for any pair of s-orientations o+,o− such that o+ = eπi o−;

the following characterization shows in particular that the Pfaffian does not depend on such

choice.

Proposition 2.4.9. For any collection of distinct (possibly adjacent) interior edges e1, . . . ,em in

Ωδ,

EΩδ

[ ∏
e∈{ek }

ε(e)

]
= (−1)m 2mPf

(
F[{ek }]
Ωδ

)
,

where for any admissible s-orientations, o±
1 , ...,o±

m , the antisymmetric matrix F[{ek }]
Ωδ

is given by



0 F
e+

1 ,e+
2

Ωδ
· · · F

e+
1 ,e+

m

Ωδ
F

e+
1 ,e−

m

Ωδ
· · · F

e+
1 ,e−

2
Ωδ

F
†e+

1 ,e−
1

Ωδ

0 · · · F
e+

2 ,e+
m

Ωδ
F

e+
2 ,e−

m

Ωδ
· · · F

†e+
2 ,e−

2
Ωδ

F
e+

2 ,e−
1

Ωδ

0
... . . . ...

...
. . . F

†e+
m ,e−

m
Ωδ

F
e+

m ,e−
2

Ωδ
F

e+
m ,e−

1
Ωδ

0 · · · F
e−

m ,e−
2

Ωδ
F

e−
m ,e−

1
Ωδ

. . .
...

...

0 F
e−

2 ,e−
1

Ωδ

0



,

where F †α,ζ
Ωδ

:= Fα,ζ
Ωδ

−Fα,ζ
Cδ

.
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Proof. Starting from the characterization of Proposition 2.4.6, we can calculate the fused

observable via an application of Proposition 2.4.8.

Spin-antisymmetric Correlations

Recall that a spin-weighted correlation was defined as the expectation of a product of the spin

at 0 and energy densities on adjacent sites. We characterize it as a Pfaffian analogously to

the previous subsection, but withΩδ replaced by its double cover and the two-point fermion

replaced with the spin-fermion observable. Accordingly, we again fix orientations e+,e− as

well as a choice of lift in [Ωδ,0] for an edge e inΩδ, on which the value of the Pfaffian does not

depend.

Proposition 2.4.10. For any collection of distinct (possibly adjacent) interior edges e1, . . . ,em

inΩδ,
1

EΩδ
[σ0]

EΩδ

[
σ0

∏
e∈{ek }

ε[0](e)

]
= (−1)m 2mPf

(
F[{ek }]

[Ωδ,0]

)
,

where for any admissible s-orientations o±
1 , ...,o±

m , the antisymmetric matrix F[{ek }]
[Ωδ,0] is given by



0 F
e+

1 ,e+
2

[Ωδ,0] · · · F
e+

1 ,e+
m

[Ωδ,0] F
e+

1 ,e−
m

[Ωδ,0] · · · F
e+

1 ,e−
2

[Ωδ,0] F
†e+

1 ,e−
1

[Ωδ,0]

0 · · · F
e+

2 ,e+
m

[Ωδ,0] F
e+

2 ,e−
m

[Ωδ,0] · · · F
†e+

2 ,e−
2

[Ωδ,0] F
e+

2 ,e−
1

[Ωδ,0]

0
... . . . ...

...
. . . F

†e+
m ,e−

m
[Ωδ,0] · · · F

e+
m ,e−

2
[Ωδ,0] F

e+
m ,e−

1
[Ωδ,0]

0 · · · F
e−

m ,e−
2

[Ωδ,0] F
e−

m ,e−
1

[Ωδ,0]
. . .

...
...

0 F
e−

2 ,e−
1

[Ωδ,0]

0



,

where F †α,ζ
[Ωδ,0] := Fα,ζ

[Ωδ,0] −Fα,ζ
[Cδ,0].

Proof. Again starting from the characterization of Proposition 2.4.6, we can calculate the

fused observable via Proposition 2.4.8, using now the equations corresponding to the spin-

fermion.

2.5 Scaling Limits of Observables

We have thus far defined the discrete observables which encode probabilistic information

in the form of n-point correlations. As a result of the Pfaffian formulae of Section 2.4.4,

it suffices to consider two-point discrete observables since all multipoint correlations can

now be written in terms of only two-point observables. In this section, we introduce the

continuous observables, which are precisely defined to have continuous analogues of the
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Chapter 2. Local Correlations and Conformal Invariance

properties satisfied by the discrete observables; see Section 2.2. With the appropriate scaling,

the discrete observables will be shown to converge to these continuous observables.

As the heart of convergence proofs is the extension of the convergence results of [CHI15] for

Hα
[Ωδ,0] to the case where the singularity point α is no longer at α0, familiarity with the proofs

of convergence in [CHI15] for the case α=α0 is very helpful to understanding the sequel.

2.5.1 Integration of the Square

Write νz for the unit outward normal vector at z ∈ ∂Ω. We have the following characterization

of the complex fermion observable HΩδ
in terms of discrete complex analysis:

Proposition 2.5.1 (see [Hon10]). Let α= ao be an s-oriented medial vertex ofΩδ that is not on

the boundary. The function Hα
Ωδ

is the unique function such that:

• Hα
Ωδ

is s-holomorphic onΩδ \ {a};

• Hα
Ωδ

has discrete residue 1 at α: Hα
Ωδ

(α+)−Hα
Ωδ

(α−) = 1p
o

;

• Hα
Ωδ

(z)
p
νz ∈R for any boundary medial vertex z.

Similarly, we have the following characterization of the complex spin-fermion observable

H[Ωδ0].

Proposition 2.5.2. Let α= ao be an s-oriented medial vertex of [Ωδ,0] that is not on the bound-

ary. The function Hα
[Ωδ,0] is the unique function such that:

• Hα
[Ωδ,0] has monodromy −1 around 0;

• Hα
[Ωδ,0] is s-holomorphic on [Ωδ,0] \

{
a, a∗}

, where a, a∗ are on opposite sheets of [Ωδ,0];

• Hα
[Ωδ,0] has discrete residue 1 at α: Hα

[Ωδ,0] (α+)−Hα
[Ωδ,0] (α−) = 1p

o
;

• Hα
[Ωδ,0] (z)

p
νz ∈R for any boundary medial vertex z.

Proof of Propositions 2.5.1–2.5.2. Monodromy for the latter is clear from the sheet factor sα,ζ.

Proposition 2.4.1 and Lemmas 2.4.3 and 2.4.4 provide the remaining properties. Uniqueness

follows from Lemma 2.2.2.

We now consider the square integral Qα
δ

of the observables. These are the same discrete square

integral analogues Iδ(Hδ) = Re
∫

(Hδ)2 introduced in Section 2.2.3 in the case where Hδ is

one of Hα
Ωδ

, Hα
[Ωδ,0], but we need to analyze their properties near the singularity at α and the

monodromy. These square integrals will be our primary means of estimating both observables,

but for conciseness, we will assume that we are working with Hα
[Ωδ,0]. Neither the construction
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2.5. Scaling Limits of Observables

nor the properties are changed in the Hα
Ωδ

case, except for the fact that there are no longer

complications arising from the branching at 0.

Proposition 2.5.3. Supposeα= ao is an s-oriented corner in [Ωδ,0]. Consider the single-valued

integral of the square Qα
δ

:= Iδ
[

Hα
[Ωδ,0]

]
: FΩδ

∪VΩδ
→R constructed with the usual rule

Qα
δ (w)−Qα

δ (v) = 2δ

∣∣∣∣Hα
[Ωδ,0]

(
1

2
(w + v)

)∣∣∣∣2

,

where w is a face, v is a vertex incident to the face, so that 1
2 (w + v) is the corner between them

(note that at the singularity a,
∣∣∣Hα

[Ωδ,0] (a)
∣∣∣2 = 1

8 ), and the Dirichlet boundary condition

Qα
δ (w) = 0 for w ∈ ∂FΩδ

.

It has

• ∆δQα
δ
= 2δ

∣∣∣∂δHα
[Ωδ,0]

∣∣∣2
on FΩδ

\
{

0, a −o δ
2

}
, ∆δQα

δ
=−2δ

∣∣∣∂δHα
[Ωδ,0]

∣∣∣2
on VΩδ

\
{

a +o δ
2

}
;

• The outer normal derivative ∂outQα
Ω =p

2
∣∣∣Hα

[Ωδ,0]

∣∣∣2
on ∂V m

Ωδ
.

Proof. The proof follows from direct computations in Chapter 2 of [Hon10] and Section 3.3

of [ChSm12]. Note that as in [CHI15, Proposition 3.6], the singularity at a (two projections

from neighboring medial vertices differing only by a sign) and branching at 0 does not affect

well-definedness of Qα
δ

, but does affect the Laplacian at 0, a ±o δ
2 .

Remark 2.5.1. In keeping with the Dirichlet boundary condition, we can define Q̃α
δ

which

simply modifies the value of Qα
δ

on ∂VΩδ
to be zero. This affects the Laplacian and normal

derivative, but one can define an alternate Laplacian ∆̃δ modified at the boundary which gives

∆̃δQ̃α
δ
=∆δQα

δ
; see [CHI15, Preposition 3.6].

Remark 2.5.2. Similarly, one can define the integral Q†α
δ

:= Iδ
[

Hα
[Ωδ,0] −Hα

[Cδ,0]

]
; this has the

advantage of removing the singularity at α, so that we have sub- and super-harmonicity at all

points except for 0. [CHI15, Remark 3.8] notes that in the special case a = δ
2 we in fact do have

sub-harmonicity at a, owing to the fact that
[

Hα
[Ωδ,0] −Hα

[Cδ,0]

]
(a) := 0.

2.5.2 Continuous Observables

The continuous observables are the solutions of the continuous Riemann boundary value

problem corresponding to the discrete b.v.p. of Lemma 2.2.2. We prove that they are in fact

the scaling limits of their discrete counterparts in Section 2.5.3.
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Continuous Full-Plane Observables

We begin by defining the continuous full-plane observables. In analogy with the discrete case,

we define an s-orientation o of a point a in a continuous domain Ω as a choice of any unit

complex number o with a specified square root.

Definition 2.5.1. Let α := ao and ζ := zp be two s-oriented points of Cwith a 6= z. We define

the continuous fermion observable fC by

f αC (ζ) := i
p

p ·P 1
i
p

p R

[
hαC(z)

]= Re
[
i
p

p ·hαC(z)
]

,

where the complex observable hC is defined by

hαC (z) := 1p
2π

p
o

z −a
.

Analogously to the previous definition, we proceed to define the continuous full-plane spin-

fermion observable. Since the source point δα of the discrete two-point spin-fermion tends to

the monodromy point 0 as δ→ 0, we fix it as α ∈ V cm
[C1,0], and formally denote the dependence

of the continuous spin-fermion on α by dα (not to be confused with δα ∈ V cm
[Cδ,0], which is the

scaling of α by δ> 0).

Definition 2.5.2. Let α := ao be an s-oriented corner or medial vertex of [C1,0]. Let ζ := zp be

an s-oriented point of [C,0]. We define the continuous spin-fermion observable f[C,0] by

f dα
[C,0] (ζ) := Re [i

p
p ·hdα

[C,0](z)] ,

where the complex observable hdα
[C,0] is defined by

hdα
[C,0] (z) := Cαp

z
,

and the scaling limit factor Cα ∈R is given by

Cα =−Re
[

i
p

o
(
G̃+

[C1,0] −G̃−
[C1,0]

)
(a)

]
. (2.5.1)

Recall, here, that G̃± are the discrete analogs of i
2
p

2

p
z given by Definition 2.3.7. Note that

when α is an s-oriented corner, we do not need to take the real-part in the definition above as

i
p

oG̃±(a) are already real, due to s-holomorphicity. In particular, if α is an s-oriented real or

imaginary corner we have that

Cα =
± 1

2
p

2

p
o ·hm

Xi
1

1/2(a) if a ∈ V i
[C1,0] ∩X±

∓ i
2
p

2

p
o ·hm

Y1
1

−1/2(a) if a ∈ V 1
[C1,0] ∩Y± .
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Continuous Bounded Domain Observables

Let Ω ⊂ C be a bounded simply connected domain containing 0. Recall that we denote by

ϕ the conformal mapping from Ω to the open unit disk D with ϕ (0) = z and ϕ′(0) > 0. Here

we set z = 0. We transform α= ao as ϕ(α) =ϕ(a)o′
,o′ = (√

ϕ′(a)
p

o
)2

/
∣∣ϕ′(a)

∣∣ under ϕ (with a

continuous square root branch choice for ϕ′ such that
√
ϕ′(0) > 0 ).

Definition 2.5.3. Let α= ao ,ζ= zp be two s-oriented points of Ω with a 6= z. We define the

fermion observable fΩ by

f αΩ (ζ) := i
p

pP 1
i
p

p R

[
hαΩ(z)

]= Re
[
i
p

p ·hαΩ(z)
]

,

where the complexified fermion observable hΩ is defined by

hαΩ (z) :=
√∣∣ϕ′(a)

∣∣√ϕ′(z)hϕ(α)
D

(ϕ(z)) , where hαD(z) := 1p
2π

(
1p
o
· 1

1− āz
+

p
o

z −a

)
.

Definition 2.5.4. Let α= ao be an s-oriented corner or medial vertex on [C1,0], and ζ= zp be

an s-oriented point ofΩwith a 6= z. We define the spin-fermion observable f[Ω,0] by

f dα
[Ω,0] (ζ) := i

p
pP 1

i
p

p R

[
hdα

[Ω,0](z)
]
= Re

[
i
p

p ·hdα
[Ω,0](z)

]
,

where the complexified spin-fermion observable h[Ω,0] is defined by

hdα
[Ω,0] (z) :=

√
ϕ′(z)hdα

D (ϕ(z)) , where hdα
[D,0](z) = Cαp

z
.

Remark 2.5.3. As explained above, these definitions imply continuous versions of the proper-

ties satisfied by the discrete observables; they share the singularities of the full-plane observ-

ables, and satisfy the boundary condition hαΩ(z),hdα
[Ω,0](z) ∈ νz

−1/2R, if νz is the unit outward

normal vector at z ∈ ∂Ω. These also uniquely characterize a holomorphic function: see [Hon10,

Proposition 48] and [CHI15, Lemma 2.9].

2.5.3 Observable Convergence: Statements

We now state the two observable convergence results for the fermion and spin-fermion that

are needed for the proof of the main theorem in Section 2.6. The bulk of the remaining work is

in the proof of the spin-fermion observable convergence; that proof is deferred until the next

subsection.

In what follows, we say an s-holomorphic function Hδ : V cm
Dδ

→C converges to a continuous

function h : D →C if for any sequence aδ ∈ V m
Dδ

such that aδ→ a ∈ D we have Hδ(aδ) → h(a).

Equivalently, the values of Hδ on type 1 and i corners respectively converge to the real and

imaginary parts of h.

For notational convenience and concreteness, when we take z ∈ D to be the argument of an
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s-holomorphic function Hδ defined on V cm
Dδ

, we will take a closest medial vertex zδ ∈ V m
Dδ

to

z and evaluate it at zδ. Then the convergence is often uniform on a compact set K ⊂ D, i.e.

|Hδ(zδ)−h(z)| is small uniformly in z ∈ K .

By a slight abuse of notation, we will then use the notation α= ao and ζ= zp both for the the

s-orientations of a or z, and those of aδ and zδ.

Theorem 2.5.1 ([Hon10, Theorem 91]). As δ→ 0, we have

1

δ

(
Fα
Ωδ

−Fα
Cδ

)
(ζ) → (

f αΩ − f αC
)

(ζ) ,

uniformly for a, z away from ∂Ω.

Now let α := ao and ζ := zp be s-oriented corners on [C1,0]. For δ> 0, denote by δα := (δa)o

and δζ := (δz)p their corresponding scaled versions on [Cδ,0] and, for sufficiently small δ, on

[Ωδ,0]. Recall that G ,G̃± are the discrete analogues of 1
2
p

2

p
z, i

2
p

2

p
z, respectively, introduced

in Definition 2.3.7.

Theorem 2.5.2. For α,ζ any s-oriented corners or medial vertices in [C1,0], we have as δ→ 0,

1

δ

(
Fδα

[Ωδ,0] −Fδα
[Cδ,0]

)
(δζ) →2 ·2

p
2Re AΩ · (CαRe

[
i
p

pG[C1,0](z)
]−CζRe

[
i
p

oG[C1,0](a)
])

+2 ·2
p

2Im AΩ ·
(
CαRe

[
i
p

pG̃−
[C1,0](z)

]
−CζRe

[
i
p

oG̃−
[C1,0](a)

])
,

where, for α0 = 1
2

o
as before, AΩ is the coefficient in the expansion

hdα0
Ω (z) = 1

2
p

2

(
1p
z
+2AΩ

p
z +O(|z|3/2)

)
.

Proof. This statement is the consequence of results proved in §2.5.4. Theorem 2.5.3 shows

the following in the case where α,ζ are both s-oriented corners: 1
δ [Hδα

[Ωδ,0](δz)−Hδα
[Cδ,0](δz)]

converges to

2 ·2
p

2 ·
[

Re AΩ ·
(
CαG[C1,0](z)+ i

p
o

[
G̃+

[C1,0] −G̃−
[C1,0]

]
(z)G[C1,0](a)

)
+Im AΩ ·

(
CαG̃−

[C1,0](z)+ i
p

o
[
G̃+

[C1,0] −G̃−
[C1,0]

]
(z)G̃−

[C1,0](a)
)]

,

where we used Corollary 2.5.8 in order to identify C̃α with Cα defined by (2.5.1). This formula

also applies in the case where z is a medial vertex by linearity. Reformulation in the form of

the theorem statement follows from the definition of the real observable; we can then swap

α,ζ from the antisymmetry of the real observable and proceed to prove the result for the case

where both are medial vertices.

Remark 2.5.4. It was shown in [CHI15, Lemma 2.21] that AΩ = A[Ω,0] = −1
4∂z logrΩ(z)

∣∣
z=0

which is the logarithmic derivative of the conformal radius as viewed from 0 ∈ Ω. This is
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used in Theorem 2.6.2 to identify the coefficient in the first-order correction to spin weighted

correlations with −1
4∂z logrΩ(z)|z=0.

2.5.4 Observable Convergence: Proofs

We now prove the aforementioned observable convergence theorems, in particular, the con-

vergence of the full-plane observables and Theorem 2.5.2.

A tricky point of this subsection is that the explicit coefficient Cα of Definition 2.5.2, in the

claimed limit hdα
[C,0](z) =Cα/

p
z of the full-plane spinor Hδα

[Cδ,0], can only be identified as such

once all convergence results are proven; until then we introduce a recursively defined stand-in

C̃α and h̃dα
[C,0](z) := C̃α/

p
z. We then show the equality C̃α =Cα at the end of this subsection in

Corollary 2.5.8.

Convergence of the Full-plane Observables

We first state direct extensions of some results in [CHI15] regarding convergence of the full-

plane observables and functions. In [CHI15], the renormalization factorϑ(δ) := hm Cδ\R<0
0 (2δb(2δ)−1c)

is used; we are able to calculate the constant explicitly thanks to Proposition 2.7.1. Specif-

ically, writing N := b(2δ)−1c, ϑ(δ) = 1
2 · 3

4 · · · 2N−1
2N = (2N )!

4N N !2 and Stirling’s approximation shows

ϑ(δ) ∼ 1p
πN

∼
√

2δ
π .

Lemma 2.5.4. For α ∈ V cm
[C1,0], we have

√
π

2δHδα
[Cδ,0](z)

δ↓0−−→ h̃dα
[C,0](z) := C̃αp

z
uniformly on compact

subsets in C\ {0} for some C̃α ∈R, which can be computed recursively.

Proof. [CHI15, Lemma 2.14] provides the case where α = α0 = 1
2

o
,o = (e2·πi )2 (C̃α0 = 1

2
p

2
in

our normalization). The other cases easily follow from the recursive constructions given in

Proposition 2.3.10 and Corollary 2.3.11. The fact that C̃α ∈R is inductively apparent from the

fact that for any source point α, the function Hδα
[Cδ,0](z) vanishes if z is an imaginary corner of

the positive real line, or a real corner of the negative real line.

Lemma 2.5.5. We have that
√

π
2δG[Cδ,0](z)

δ↓0−−→ 1
2
p

2

p
z and

√
π

2δG̃±
[Cδ,0](z)

δ↓0−−→ i
2
p

2

p
z uni-

formly on compact subsets in C\ {0}.

Proof. By [CHI15, Lemma 2.17], we have convergence of the real part of G[Cδ,0]. The lemma

follows by rotation and multiplication by i .

Convergence of the Bounded Domain Observables

We begin by proving the following convergence result, which is a simple generalization of

[CHI15, Theorem 2.18]. It provides a local estimate near the monodromy point 0 which will be

crucial to the proof of the general global convergence.
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As we have introduced h̃dα
[C,0] as the counterpart of hdα

[C,0] where Cα was replaced by C̃α in

Lemma 2.5.4, we define h̃dα0
[Ω,0] using Definition 2.5.4 where Cα in hdα

[Ω,0] is replaced by C̃α

(i.e. h̃dα0
[Ω,0](z) = √

ϕ′(z) C̃αp
ϕ(z)

). Note Cα0 = C̃α0 = 1
2
p

2
. Recall also that we defined AΩ as the

coefficient in the expansion,

hdα0
[Ω,0](z) = h̃dα0

[Ω,0](z) = 1

2
p

2

(
1p
z
+2AΩ

p
z +O(|z|3/2)

)
.

Lemma 2.5.6. For α0 = 1
2

o
,
p

o = 1, and a corner or medial vertex a on [C1,0],

H †δα0
[Ωδ,0](δa) = Hδα0

[Ωδ,0](δa)−Hδα0
[Cδ,0](δa) =

(
2Re AΩ ·G[Cδ,0] +2Im AΩ ·G̃−

[Cδ,0]

)
(δa)+o(δ) .

Proof. We closely follow the strategy in Section 3.5 of [CHI15]. Note that

H †δα0
[Ωδ,0] −

(
2Re AΩ ·G[Cδ,0] +2Im AΩ ·G̃−

[Cδ,0]

)
is s-holomorphic, so it suffices to show that it is o(δ) on real and imaginary corners and

propagate.

Recalling the symmetrized and antisymmetrized observables Sα[Ωδ,0] := 1
2

[
Hα

[Ωδ,0] +H ᾱ

[Ωδ,0]

]
, Aα

[Ωδ,0] :=
1
2

[
Hα

[Ωδ,0] −H ᾱ

[Ωδ,0]

]
and Λδ =Ωδ ∩Ωδ from Definition 2.3.6, define the following functions,

s-holomorphic everywhere on [Λδ,0]:

Sδ := Sδα0
[Ωδ,0] −Sδα0

[Cδ,0] −2ReAΩ ·G[Cδ,0] ,

Aδ := Aδα0
[Ωδ,0] − Aδα0

[Cδ,0] −2ImAΩ ·G̃−
[Cδ,0] .

Given that Sδ+ Aδ = H †δα0
[Ωδ,0] −

(
2Re AΩ ·G[Cδ,0] +2Im AΩ ·G̃[Cδ,0]

)
, it remains to estimate the

real and imaginary parts S1
δ

:= Sδ|V 1
[Λδ ,0]∩X+ ,Si

δ
:= Sδ|V i

[Λδ ,0]∩Y+ and A1
δ

:= Aδ|V 1
[Λδ ,0]∩Y+ , Ai

δ
:=

Aδ|V i
[Λδ ,0]∩X+ . Without loss of generality we show the o(δ) estimate for S1

δ
(δa), where S1

δ
is

harmonic in the slit domain V 1
[Λδ,0] ∩X+ and vanishes on V 1

[Λδ,0] ∩R<0.

Define the discrete circle w(r ) := {z ∈ Dom(S1
δ

) : r < |z| < r +5δ} for small r > 0. The same twist

of the discrete Beurling estimate ([LaLi04, Theorem 1]) as in [CHI15, Lemma 3.3] or our proof

of Theorem 2.3.2 gives hm
X+
δ

{δa}(z) ≤Cδ1/2|z|−1/2. By reversibility of the simple random walk we

have hm
X+
δ

w(r )(δa) ≤Cδ1/2r−1/2, which gives an estimate of a harmonic function identically 1

on w(r ) and vanishing on the slit. Comparing this with S1
δ

on w(r ) and applying the maximum

principle in the interior gives ∣∣S1
δ (δa)

∣∣≤Cδ
1
2 r− 1

2 sup
w(r )

∣∣S1
δ

∣∣ .
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Now by convergence of
√

π
2δHδα0

[Ωδ,0] to hdα0
[Ω,0], away from the singularity, as δ→ 0 (see Theo-

rem 2.16 of [CHI15]), we have√
π

2δ
S1
δ(z) →Re

[
1

2

(
h̃dα0

[Ω,0](z)+ h̃dα0
[Ω,0](z̄)

)
− h̃dα0

[C,0](z)−2AΩRe
p

z

]
=O(|z|3/2) .

Here we used the fact that h̃dα0

[Ω,0]
(·) = h̃dα0

[Ω,0](̄·) since the right hand side is the unique solution

to the boundary value problem in Remark 2.5.3. Thus, we have
∣∣S1
δ

(δa)
∣∣≤C ′δr and since r is

arbitrary we have S1
δ

(δa) = o(δ) as δ→ 0.

The estimate follows analogously for Si
δ

, A1
δ

, Ai
δ

, since they share the following properties

which were the two properties needed to deduce that S1
δ

(δa) = o(δ) above:

1. they are harmonic functions on their respective slit domains and vanish on the slits; we

might extend the slit by a point, specifically the slit for Ai
δ

includes δ
2 ∈ V i

[Λδ,0] ∩X+ given

that Aδ(δ2 ) = Ai
δ

(δ2 ) = 0 (which also implies that A1
δ

is harmonic at −δ
2 ).

2. they are O(|z|3/2) on the discrete circle w(r ) defined above.

Now we prove global convergence for general source point α 6=α0, away from 0.

Proposition 2.5.7. If α= ao is an s-oriented corner or medial vertex on [C1,0]; then as δ→ 0,

we have
√

π
2δHδα

[Ωδ,0](z)
δ↓0−−→ h̃dα

[Ω,0](z) uniformly on compact subsets ofΩ\ {0}.

Proof. [CHI15, Theorem 2.16] proves the case where α=α0 = 1
2

o
,
p

o = 1; they consider the

square integrals Q̃δα0

δ
and Q†δα0

δ
as introduced in Section 2.5.1 (in their notation, Hδ, H †

δ
), and

show that they converge to the continuous functions Re
∫ (

h̃δα0
[Ω,0]

)2
and Re

∫ (
h̃δα0

[Ω,0] − h̃δα0
[C,0]

)2
,

which implies convergence of the integrand (see Section 3.4 of [CHI15]). In our notation, they

show uniform boundedness, and thus equicontinuity, of Q̃δα0

δ
,Q†δα0

δ
in δ in each subdomain

ofΩδ, away from the boundary and 0. Their subsequential limits are then identified with the

continuous square integrals above.

We argue that a similar strategy works for all α. In fact, the only difference here is that the

sub-harmonicity of Q†δα
δ

at 0 fails, since in general H †δα
[Ωδ,0](

δ
2 ) 6= 0. Sub-harmonicity of the

square integral is used twice in the proof of [CHI15, Theorem 2.16]: it shows that their Hδ

(which corresponds to our Q†δα
δ

) is uniformly bounded near 0, which is needed to identify

the limit, and it is needed to apply the maximum principle near 0 and obtain [CHI15, Lemma

3.10]. We will thus reproduce these two bounds, except that we replace Q†δα
δ

in their argument

by a modified version Q††δα
δ

, which we now introduce.
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By Lemma 2.5.6 and rescaling,

H †δα0
[Ωδ,0](δa) = δ

(
2Re AΩ ·G[C1,0](a)+2Im AΩ ·G̃−

[C1,0](a)+o(1)
)

,

and by antisymmetry between the two arguments, it is easy to see that H †δα
[Ωδ,0](δa0) = 1

2
p

2
(Aα+

o(1))iδ as δ→ 0 for some constant Aα. Then the modified observable

H ††δα
[Ωδ,0] := H †δα

[Ωδ,0] −2
p

2
H †δα

[Ωδ,0](δa0)

δi
G̃+

[Cδ,0] = H †δα
[Ωδ,0] − (Aα+o(1))G̃+

[Cδ,0]

is everywhere s-holomorphic and satisfies H ††δα
[Ωδ,0](δa0) = 0, so its integral Q††δα

δ
:= Iδ

[
H ††δα

[Ωδ,0]

]
is sub-harmonic on faces and super-harmonic on vertices. It converges to

Re
∫ (

h̃dα
[Ω,0](z)− h̃dα

[C,0](z)− i

2
p

2
Aα

p
z

)2

d z

uniformly away from 0, so both the discrete observable and the continuous function are single-

valued and bounded near 0. This fact, alternatively to its analogue for Q†δα
δ

, also implies

[CHI15, (2.8)], which identifies the singularity at 0. The analog of [CHI15, Lemma 3.10] also

easily follows by replacing H †
δ

in their proof by Q††δα
δ

as defined above.

We now analyze the observable near the singularity at 0, finally giving the proof of the main

convergence theorem. Balancing the two discrete analogues G̃±
[Cδ,0] of i

2
p

2

p
z to create a

harmonic function which is amenable to the methods of analysis used thus far is crucial to the

proof.

Theorem 2.5.3 (Convergence Content of Theorem 2.5.2). If z ∈ V c
[C1,0] and α = ao is an s-

oriented corner on [C1,0], then as δ→ 0,

H †δα
[Ωδ,0](δz) =2

p
2C̃α

(
2Re AΩ ·G[Cδ,0] +2Im AΩ ·G̃−

[Cδ,0]

)
(δz)

+ i 2
p

2
p

o
(
2Re AΩ ·G[C1,0] +2Im AΩ ·G̃−

[C1,0]

)
(a)

[
G̃+

[Cδ,0] −G̃−
[Cδ,0]

]
(δz)

+o(δ) .

Proof. We argue that the same strategy as in the proof of Lemma 2.5.6 works here. Indeed,

after defining

Sδ :=Sδα[Ωδ,0] −Sδα[Cδ,0] −2 ·2
p

2C̃αReAΩ ·G[Cδ,0]

Aδ := Aδα
[Ωδ,0] − Aδα

[Cδ,0] −2 ·2
p

2C̃α ImAΩ ·G̃−
[Cδ,0]

− i 2
p

2
p

o
(
2Re AΩ ·G[C1,0] +2Im AΩ ·G̃−

[C1,0]

)
(a)

[
G̃+

[Cδ,0] −G̃−
[Cδ,0]

]
,

one sees that the real and imaginary parts of these two functions satisfy properties (1) and (2)

at the end of the proof of Lemma 2.5.6, sufficient to conclude that S1
δ

,Si
δ

, A1
δ

, Ai
δ

evaluated at
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(δz) are o(δ). The additional term in Aδ above is needed because we require Aδ(δa0) = 0;[
Aδα

[Ωδ,0] − Aδα
[Cδ,0]

]
(δa0) = H †δα

[Ωδ,0](δa0) =−poH †δα0
[Ωδ,0](δa)

=−δpo
(
2Re AΩ ·G[C1,0] +2Im AΩ ·G̃−

[C1,0]

)
(a)+o(δ) ,

so we insert G̃+ to cancel out this nonzero value, then adjust the coefficient in front of G̃− to

match the global limit.

We are now in position to explicitly characterize C̃α. The following is a consequence of

Theorem 2.5.3.

Corollary 2.5.8. For every α ∈ V cm
[C1,0], the constant C̃α defined in Lemma 2.5.4 is given explicitly

by

C̃α =−Re
[

i
p

o
(
G̃+

[C1,0] −G̃−
[C1,0]

)
(a)

]
=: Cα ,

and therefore h̃dα
[C,0] = hdα

[C,0].

Proof. First we suppose a is a real or imaginary corner; note that in this case the real part

operator in the definition of Cα or real observables is superfluous. In Theorem 2.5.3, let z = 3
2 ,

say on X+, and let ζ= zp with
p

p = i . Since F †δα,δζ
[Ωδ,0] = Re i

p
pH †δα

[Ωδ,0](δz) = i
p

pH †δα
[Ωδ,0](δz),

(2
p

2δ)−1F †δα,δζ
[Ωδ,0] →C̃α

[
i
p

p
(
2Re AΩ ·G[C1,0] +2Im AΩ ·G̃−

[C1,0]

)
(z)

]
−Cζ

[
i
p

o
(
2Re AΩ ·G[C1,0] +2Im AΩ ·G̃−

[C1,0]

)
(a)

]
,

(2
p

2δ)−1F †δζ,δα
[Ωδ,0] →C̃ζ

[
i
p

o
(
2Re AΩ ·G[C1,0] +2Im AΩ ·G̃−

[C1,0]

)
(a)

]
−Cα

[
i
p

p
(
2Re AΩ ·G[C1,0] +2Im AΩ ·G̃−

[C1,0]

)
(z)

]
.

Since the two limits should differ only by sign, the result follows by using that G[C1,0](z) 6=
0,G̃±

[C1,0](z) = Cζ = 0, and the fact that, by our recursive construction, C̃ζ = 0 (see Proposi-

tion 2.3.10, and in particular, Proposition 2.7.2).

In the case where a is a medial vertex, note that by s-holomorphicity of Hδα
[Cδ,0] and antisym-

metry of its real counterpart, in their arguments, we can express C̃α as a linear combination

of C̃β± , where β± are adjacent real and imaginary (s-oriented) corners. Notice that this linear

combination is exactly mirrored in the case of Cα, since G̃+
[C1,0] −G̃−

[C1,0] is s-holomorphic; thus

the desired equality holds.

2.6 Proofs of Theorems

In this section, we complete the proofs of Theorems 2.1.1–2.1.2 and Corollary 2.1.1.
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2.6.1 Spin-symmetric Fields

We first prove Theorem (2.1.1), establishing the conformal invariance of spin-symmetric fields.

Definition 2.6.1. Suppose a 6= z are medial vertices on C1. For s-orientations o, p on a, z

respectively, write α= ao ,ζ= zp . Define

Fα,ζ
C1

= Re
[

i
p

pHα
C1

(z)
]

,

Eα,ζ
C1

= Re

[
i
p

p
p

op
2π

]
,

where Hα
C1

(z) was explicitly defined in (2.3.1).

Now let {ek } = {e1, . . . ,en} be a collection of distinct edges of C1. Set

(x1, . . . , xn , xn+1, . . . , x2n) := (
e+1 , . . .e+n ,e−n , . . . ,e−1

)
,

where e+j := eo+
j and e−j := eo−

j denote a choice of opposite s-orientations of e j such that

o+ = eπi o−.

We write F{ek } to denote the 2n ×2n antisymmetric matrix with entries
(
F{ek }

)
j k := F

x j ,xk

C1
for

j +k 6= 2n +1, and
(
F{ek }

)
j k := 0 on the anti-diagonal j +k = 2n +1; we also set E{ek } to be the

matrix taking values
(
E{ek }

)
j k := E

x j ,xk

C1
. Now define

P {ek } := (−2)nPf
(
F{ek }) ,

Q{ek } := (−2)nDE{ek } Pf(F{ek }) ,

where DE{ek } Pf denotes the directional derivative of the Pfaffian function in the direction of

E{ek }.

Remark 2.6.1. The values P {ek } and Q{ek } only depend on the unordered collection {ek } since

they arise as limits of the Pfaffian from Proposition 2.4.9, which has an interpretation as a

physical quantity only depending on {ek }.

Theorem 2.6.1 (Restatement of Theorem 2.1.1). Let {ek }n
k=1 be a collection of n distinct edges

of C1. As δ→ 0, we have

EΩδ

[ ∏
e∈{ek }

ε(δe)

]
=P {ek } +δ · r−1

Ω (0) ·Q{ek } +o (δ) ,

where rΩ (z) is the conformal radius ofΩ at z ∈Ω, defined rΩ(z) := ∣∣ϕ′(0)
∣∣ where ϕ :D→Ω is a

conformal map with ϕ(0) = z.
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Proof of Theorem 2.6.1. By Proposition 2.4.9, we have that

EΩδ

[ ∏
e∈{ek }

ε(δe)

]
= (−1)n 2nPf

(
F[{δek }]
Ωδ

)
.

Write F[{δek }]
Ωδ

= F[{δek }]
Cδ

+
[

F[{δek }]
Ωδ

−F[{δek }]
Cδ

]
. By scale invariance, F[{δek }]

Cδ
= F[{ek }]

C1
, which, by defi-

nition, satisfies F[{ek }]
C1

= F{ek }.

By Theorem 2.5.1, for any α= ao ,ζ= zp , if we set δα := (δa)o , δζ := (δz)p we can calculate

lim
δ→0

1

δ

[
Fδα,δζ
Ωδ

−Fδα,δζ
Cδ

]
=

[
f 0o

Ω − f 0o

C

]
(0p ) = Eα,ζ

C1
r−1
Ω (0) ,

and the result follows from Taylor expansion of Pf
(
F[{δek }]
Ωδ

)
= Pf

(
F{ek } +δE{ek }r−1

Ω (0)+o(δ)
)
.

2.6.2 Spin-antisymmetric Fields

We now generalize the above proof to spin-antisymmetric fields, proving Theorem 2.1.2.

For any s-oriented medial vertex or corner ζ= zp , we introduce the real quantity

G[C1,0](ζ) = Re [i
p

pG[C1,0](z)] ,

and define the real quantities G̃±
[C1,0](ζ) analogously; G[C1,0](z),G̃±

[C1,0](z) were defined in Sec-

tion 2.3.2.

Definition 2.6.2. Suppose a 6= z are medial vertices on [C1,0]. For s-orientations o, p respec-

tively on a, z, write α= ao ,ζ= zp for the s-oriented medial vertices. Set

Fα,ζ
[C1,0] = Re

[
i
p

pHα
[C1,0](z)

]
,

Eα,ζ
[C1,0] := 2 ·2

p
2

(
[G[C1,0] − iG̃−

[C1,0]](α)[G̃+
[C1,0] −G̃−

[C1,0]](ζ)

− [G[C1,0] − iG̃−
[C1,0]](ζ)[G̃+

[C1,0] −G̃−
[C1,0]](α)

)
.

Let {ek } = {e1, . . . ,en} be a collection of distinct edges of C1. Let ẽ1, . . . , ẽn be a choice of lifts of

e1, . . . ,en to [C1,0]. Set

(x1, . . . , x2n) := (
ẽ+1 , . . . , ẽ+n , ẽ−n , . . . , ẽ−1

)
,

where ẽ+j := ẽo+
j and ẽ−j := ẽo−

j denote a choice of opposite s-orientations of ẽ j such that

o+ = eπi o−.

Define F{ek }
[0] as the 2n ×2n antisymmetric matrix with entries

(
F{ek }

[0]

)
j k

:= F
x j xk

[Cδ,0] for j +k 6=
2n +1, and

(
F{ek }

[0]

)
j k

:= 0 on the anti-diagonal, j +k = 2n +1. Define also E{ek }
[0] the 2n ×2n
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antisymmetric matrix given by
(
E{ek }

[0]

)
j k

:= E
x j xk

[Cδ,0]. Let

P
{ek }
[0] := (−2)nPf

(
F{ek }

[0]

)
,

Q
{ek }
[0] := (−2)nD

E{ek }
[0]

Pf
(
F{ek }

[0]

)
.

Remark 2.6.2. By the same reasoning as in the spin-symmetric case, the values P {ek } and Q{ek }

only depend on the unordered collection {ek }.

Theorem 2.6.2 (Restatement of Theorem 2.1.2). Let {ek }n
k=1 be a set of n edges of C1. For every

1 ≤ k ≤ n, the quantity µek defined in (2.1.1) exists and, independently of s-orientation ok on ek ,

is

µek =
p

ok

[
H

e
ok
k

[C1,0](eok

k+)+H
e

ok
k

[C1,0](eok

k−)

]
, (2.6.1)

so that ε[0](δek ) is a well-defined random variable for every k, and as δ→ 0,

EΩδ

[
σ0

∏
e∈{ek } ε[0](δe)

]
EΩδ

[σ0]
=P

{ek }
[0] +δ ·Re

[
−1

4
∂z logrΩ (z)

∣∣∣
z=0

·Q{ek }
[0]

]
+o (δ) ,

where ∂z = 1
2 (∂x − i∂y ) if z = x + i y. In particular, it follows from the results of [CHI15] that

EΩδ

[
σ0

∏
a∈{ek }

ε[0](δe)

]
= 0+C ·δ 1

8 ·P {ek }
[0] ·2

1
4 · rΩ(0)−

1
8 +o

(
δ

1
8

)
,

where C is a constant given explicitly by Eq. (1.1) of [CHI15].

Proof of Theorem 2.6.2. The expression for µe for every e ∈ EC1 was given by Remark 2.4.2.

Now by Proposition 2.4.10, we have that

EΩδ

[
σ0

∏
e∈{ek } ε[0](δe)

]
EΩδ

[σ0]
= (−1)n 2nPf

(
F{δek }

[Ωδ,0]

)
,

Write F{δek }
[Ωδ,0] = F{δek }

[Cδ,0] +
[

F{δek }
[Ωδ,0] −F{δek }

[Cδ,0]

]
.

As before, by scale invariance, F{δek }
[Cδ,0] = F{ek }

[C1,0], and by definition, F{ek }
[C1,0] = F{ek }

[0] . By Theorem

2.5.2, for any α= ao ,ζ= zp , if we set δα := (δa)o , δζ := (δz)p we have

lim
δ→0

1

δ
F †δα,δζ

[Ωδ,0] =−Re

[
1

4
∂z logrΩ (z)

∣∣∣
z=0

·Eα,ζ
[0]

]
,

and hence we get

lim
δ→0

1

δ

[
F{δak }

[Ωδ,0] −F{δak }
[Cδ,0]

]
=−Re

[
1

4
∂z logrΩ (z)

∣∣∣
z=0

·E{ak }
[0]

]
.
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The first result then follows from Taylor expansion as in the proof of the previous theorem,

and the second follows by multiplying through by the conformally covariant expansion of

EΩδ
[σ0] =C ·2

1
4 · rΩ(0)−

1
8 ·δ 1

8 +o
(
δ

1
8

)
given by [CHI15].

2.6.3 Spin Pattern Probabilities

Finally, we prove Corollary 2.1.1 as a consequence of the above two proofs.

Proof of Corollary 2.1.1. We begin by proving the corollary for the spin-symmetric pattern

fields. For a subset F ⊂FC1 , let B be the set of all edges separating two adjacent faces in F .

To any spin-symmetric pattern ±ρ on F , we can associate an edge subset B ⊂B via the usual

low-temperature expansion (see Figure 2.1.1 and Section 2.3). Denote the collection of such

edge subsets in B that are associated to a spin-symmetric pattern on F by PF (B) ⊂ P (B).

We will index the 2|F |−1-dimensional vector PF = (PB )B∈PF (B) of the probabilities of all spin-

symmetric patterns by corresponding edge subsets.

Given any such an edge subset B , we can calculate a spin-symmetric correlation EB =
EΩδ

[ε(δB)] = EΩδ

[∏
e∈B ε(δe)

]
and also form another vector EF = (EB )B∈PF (B) of dimension

2|F |−1.

Clearly, every correlation function EΩδ
[ε(B)] can be expressed as a linear combination of

probabilities of the 2|F |−1 spin-symmetric patterns on B.

Thus we have a 2|F |−1 × 2|F |−1 matrix (EPF )BB ′ = ∏
e∈B (µ− (21{e∈B ′} − 1)), such that EF =

(EPF )PF . One can check by hand that the matrix has inverse given by:

(PEF )B ′B = 1

2(2|F |−1)
(−1)

∑
e∈B 1{e∈B}⊕1{e∈B ′}

∏
e∈B

(µ+ (21{e∈B ′} −1)) .

Applying the inverse to EF , consisting of conformally covariant spin-symmetric correlations

from Theorem 2.1.1, yields the desired result for spin-symmetric patterns.

For the spin-antisymmetric patterns, an analogous approach but conditioning on σ0 = ±1

and replacing µ by µe , combined with the conformally covariant expansion EΩδ
[σ0] =C ·2

1
4 ·

rΩ(0)−
1
8 ·δ 1

8 +o
(
δ1/8

)
from [CHI15], gives the desired result.

2.7 Appendix: The Harmonic Measure on C1\R>0

We start this section by giving an analytic formula for the harmonic measure of the tip of the

slit plane. This uses Fourier series techniques, which was inspired by [ChHo16]. Using the

formula, we prove that the auxiliary functions G[C1,0],G̃±
[C1,0] are discrete holomorphic.

Since the slit-plane harmonic measures appear as different translations of the same function,
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we present the following prototype:

Proposition 2.7.1. For s + i k ∈ (1+ i )Z2, the function H0 given by,

H0(z) := hm (1+i )Z2\Z≥0
0 (z = s + i k) = 1

2π

∫ π

−π
C |k|(θ)√
1−e−2iθ

e−i sθdθ , (2.7.1)

where C (θ) := cosθ

1+|sinθ| and the square root is evaluated on the principal branch, is the unique

discrete harmonic function on the diagonal slit plane (1+ i )Z2 \Z≥0 with boundary values 1 at

the origin and 0 elsewhere on Z≥0 and as →∞.

Proof. We first state two Fourier expansions, thanks to the generalized binomial theorem:

1√
1−e−2iθ

=
∞∑

n=0
(−1)n

(
−1

2

n

)
e−2niθ = 1+ 1

2
e−2iθ+ 3

8
e−4iθ+ 5

16
e−6iθ+ . . . , (2.7.2)

|sinθ|√
1−e−2iθ

=
√

sin2θ

1−e−2iθ
= 1

2

√
1−e2iθ = 1

2

∞∑
n=0

(−1)n

(
1
2

n

)
e2niθ .

The first identity immediately gives the boundary values on Z≥0. Discrete harmonicity when

k 6= 0 follows directly from the structure of the integrand, and when k = 0 values of the discrete

Laplacian correspond to the Fourier coefficients in the second identity of Eq. 2.7.2, so vanishes

on Z<0 since there are no negative Fourier modes.

For the decay at infinity, it suffices to show |H0(s + i k)|→ 0 as |k|→∞ uniformly in s and as

|s|→∞ for fixed k. Note the latter is just the Riemann-Lebesgue Lemma. For the former, we

can use dominated convergence since |C |k|(θ)|p|1−e−2iθ| ↓ 0 pointwise a.e. as |k|→∞ and |C |k|(θ)|p|1−e−2iθ| ≤
1p|1−e−2iθ| =

1p
2|sinθ| , which is integrable.

Now, the above characterization of the harmonic measure of the tip of the slit plane leads

to a recursive construction of harmonic measures of other points on the slit, as discussed in

Proposition 2.3.10. Suppose Hn := hm (1+i )Z2

2n denotes the harmonic measure of the point 2n

on the slit plane (1+ i )Z2\R≥0. We have the following recursion formula:

Hn(m) = Hn−1(m −2)−Hn−1(−2)H0(m) (2.7.3)

=: H0(m −2n)−X1H0(m −2n +2)−X2H0(m −2n +4)−·· ·−Xn H0(m) .

The coefficients Xn := Hn−1(−2) can be used to calculate the recursive coefficients in Proposi-

tion 2.3.10 and the scaling limit coefficients Cα in Section 2.5.2 explicitly. We now give a simple

formula for Xi .

Proposition 2.7.2. For all i ≥ 1, we have that Xn = H0(−2n+2)
2n . Consequently,

1−X1 −X2 −·· ·−Xn = H0(−2n) .
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Proof. Define the generating functions

X (z) :=
∞∑

n=1
Xn zn = 1

2
z + 1

8
z2 + 1

16
z3 +·· · ,

F (z) :=
∞∑

n=0
H0(−2i )zn = 1+ 1

2
z + 3

8
z2 +·· · = 1p

1− z
.

Note that Eq. (2.7.3) implies a convolution identity by taking m = 0,

H0(−2m) =
m∑

n=0
Xn H0(−2m +2n) ,

and setting X0 = 0. Thus X F = F −1, and X = 1−p
1− z = ∑∞

n=1(−1)n+1
(1/2

n

)
zn . Given that

H0(−2n) = (−1)n
(−1/2

n

)
by Eq. (2.7.2), both results are straightforward.

Corollary 2.7.3. The auxiliary functions, G[C1,0],G̃±
[C1,0], defined in Definition 2.3.7 are discrete

holomorphic on [C1,0].

Proof. Without loss of generality, we will show discrete holomorphicity of G[C1,0] at a type-λ

corner z = s + i
(
k + 1

2

) ∈X+∩Y+ (k ≥ 0). By the fact that

∞∑
n=−∞

[
hm

X1
1

3/2(z + 1+ i

2
+2n)−hm

X1
1

3/2(z − 1+ i

2
+2n)

]
= lim
θ→0

C k (θ)
C (θ)−1√
1−e−2iθ

= 0,

and discrete holomorphicity of Hα0
[C1,0], we have

G[C1,0](z − 1− i

2
)−G[C1,0](z + 1− i

2
)

= i

2
p

2

∞∑
n=1

[
hm

Yi
1

1/2(z − 1− i

2
+2n)−hm

Yi
1

1/2(z + 1− i

2
+2n)

]
=− i

2
p

2

∞∑
n=1

[
hm

X1
1

3/2(z + 1+ i

2
+2n)−hm

X1
1

3/2(z − 1+ i

2
+2n)

]
= i

2
p

2

∞∑
n=0

[
hm

X1
1

3/2(z + 1+ i

2
−2n)−hm

X1
1

3/2(z − 1+ i

2
−2n)

]
= i

[
G[C1,0](z + 1+ i

2
)−G[C1,0](z − 1+ i

2
)

]
,

as desired.

Now we show that G in fact has some rotation symmetry, which can be exploited to recursively

compute its values as outlined in Remark 2.3.6. The proof relies on the same kind of analysis

of discrete harmonic functions as in the proof of Lemma 2.5.6 and therefore we omit some of

the details.

Proposition 2.7.4. On Cδ, the following holds: eπi /4 ·G[Cδ,0](eπi /2z) = 1
2

[
G̃+

[Cδ,0] +G̃−
[Cδ,0]

]
(z).
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Proof. We will write Lδ(z) for the left hand side, and Rδ(z) =
[

kG̃+
[Cδ,0] + (1−k)G̃−

[Cδ,0]

]
(z) for

an as yet undefined real number k. Both are s-holomorphic functions, and by Lemma 2.5.5,

both
√

π
2δLδ(z),

√
π

2δRδ(z) converge to i
2
p

2

p
z on compact subsets away from 0 as δ→ 0.

First, it is straightforward to check that G[Cδ,0] vanishes on λ̄-corners on the upper half of

the imaginary axis, and on λ-corners on the lower half by the symmetry between its real

and imaginary parts (in addition, G[Cδ,0](z̄) = G[Cδ,0](z)). So Lδ(z) has zero real part on the

positive real line, and zero imaginary part on the negative real line. This is also true for Rδ(z).

Now, Lδ
(
±δ

2

)
is not necessarily zero, so we will choose (taking δ

2 on X+) k =−i Lδ
(
δ
2

)
. Then

Lδ(z)−Rδ(z) is zero at δ
2 , so we have harmonicity at −δ

2 by Remark 2.2.4.

Without loss of generality, consider the restriction of
√

π
2δ [Lδ−Rδ] to V i

[Cδ,0] ∩X+. It vanishes

on the boundary R<0 and δ
2 , and as δ→ 0 the values on the boundary w(1) of the discrete

ball B1(0)∩V i
[Cδ,0] decays as o(1). By the discrete Beurling estimate (see proof of Lemma 2.5.6)

we can bound
∣∣∣√ π

2δ [Lδ−Rδ] (zδ)
∣∣∣ for any z ∈ V i

[C1,0] ∩X+ from above by Cδ1/2o(1). Since by

definition
√

π
2δ [Lδ−Rδ] (zδ) =

√
πδ
2 [L1 −R1] (z), [L1 −R1] (z) = 0, and thus Lδ = Rδ.

Then we conclude k = 1
2 since (1−k)G̃−

[Cδ,0]

(
eπi δ

2

)
= Lδ

(
eπi δ

2

)
= i Lδ

(
δ
2

)
= i kG̃+

[Cδ,0]

(
δ
2

)
and

−G̃−
[Cδ,0]

(
eπi δ

2

)
= G̃+

[Cδ,0]

(
δ
2

)
=G[Cδ,0]

(
3δ
2

)
again by the symmetry between real and imaginary

parts of G[Cδ,0].

2.8 Appendix: Contour Weights

Here we prove the well-definedness of the spin-fermionic contour weights introduced in full

generality in Section 2.4.1.

Recall from Sections 2.3 and 2.4.1 the definition of γ ∈C
α1,...,α2n
Ωδ

and the admissible choices

of walks {Γ(γ)} associated to it. Moreover recall the definition of the multipoint observable

F[Ωδ,a] from Definition 2.4.2.

Proposition 2.8.1. For any collection of distinct oriented medial vertices α1, ...,α2n and any

γ ∈C
α1,...,α2n
Ωδ

, for every two admissible choices of walks, Γ(γ),Γ′(γ), we have

(−1)`(γ\∪Γ(γ)) ∏
γ
α j ,αk ∈Γ(γ)

sα j ,αk

(
γα j ,αk

)= (−1)`(γ\∪Γ′(γ)) ∏
γ
α j ′ ,αk′ ∈Γ(γ)

sα j ′ ,αk′
(
γα j ′ ,αk′

)
.

As a result, the function F[Ωδ,a] is well-defined.

We will need the following two lemmas for the proof of the above proposition.

Lemma 2.8.2. If A, B are unions of disjoint loops inΩδ, (−1)`(A⊕B) = (−1)`(A)(−1)`(B).

Proof. For each of A and B , fill in the faces of the lattice with spins, beginning with the plus
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boundary conditions, such that there is an edge between two faces if and only if they differ in

sign. For each loop collection, we have the spin at zero σA
0 = (−1)`(A) and σB

0 = (−1)`(B).

The result follows after noting that A⊕B is identified with the spin configuration constructed

by multiplying the spins of configurations A and B pointwise.

Lemma 2.8.3. Suppose l walks w1, . . . , wl ∈
{
γ1, . . . ,γn ,γ′1, . . . ,γ′n

}
and l distinct oriented medial

vertices α1, . . . ,αl ∈ {α1, . . . ,α2n} form a cycle, i.e. w1 connects (projections of) α1 with α2, w2

connects α2 with α3, . . . , wl connects αl with αl+1 :=α1. Then we have,

(−1)`(w1⊕···⊕wl ) = sα1,α2 (w1) · · ·sαl ,α1 (wl ) .

Proof. Fix a half-lineΛ= e iθR≥0 such that it is not parallel to any edges and is disjoint from all

α1, . . . ,αl . Note thatΩ\Λ lifts to [Ω,0] as two sheets. We now define two quantities: given a

piecewise C 1 path inΩ \ {0}, we can count the number of times NΛ that the path crosses Λ;

given two points a, z ∈ [Ω,0] \Λ, we define Sα,ζ
Λ := 1 if they belong to the same sheet in [Ω,0] of

Ω\Λ and Sα,ζ
Λ :=−1 otherwise.

Concatenate the (possibly reversed) walks such that w := w1 ⊕w2 ⊕·· ·⊕wl is a continuous

loop onΩ\ {0} starting from α1. Then clearly `(w1 ⊕·· ·⊕wl ) ≡ NΛ(w) mod 2. Now it suffices

to note that for any j , (−1)NΛ(w j )sα j ,α j+1 (w j ) = Sα
j ,α j+1

Λ so that

(−1)NΛ(w)
l∏

j=1
sα j ,α j+1 (w j ) =

l∏
j=1

(−1)NΛ(w j )sα j ,α j+1 (w j )

=
l∏

j=1
Sα

j ,α j+1

Λ = Sα
1,α1

Λ = 1,

from which the lemma follows.

Proof of Proposition 2.8.1. First observe that γ1, . . . ,γn ,γ′1, . . . ,γ′n and a1, . . . , a2n are parti-

tioned into disjoint cycles P1, . . . ,Pl ′ in the sense of Lemma 2.8.3 (suppose each P j is the

resulting collection of loops of the form w1 ⊕·· ·⊕wl ). Note that P1 ⊕·· ·⊕Pl ′ =∪Γ(γ)⊕∪Γ′(γ),

and thus
(
γ\∪Γ(γ)

)⊕ (
γ\∪Γ′(γ)

)⊕P1 ⊕·· ·⊕Pl ′ =;. By Lemma 2.8.2,

(−1)`(γ\∪Γ(γ)) ∏
γ
α j ,αk ∈Γ(γ)

sα j ,αk

(
γα j ,αk

) · (−1)`(γ\∪Γ′(γ)) ∏
γ
α j ′ ,αk′ ∈Γ(γ)

sα j ′ ,αk′
(
γα j ′ ,αk′

)
=(−1)`(γ\∪Γ(γ))(−1)`(γ\∪Γ′(γ))

l ′∏
j=1

(−1)`(P j ) = (−1)`(;) = 1.

concluding the proof.
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2.9 Appendix: Explicit Pattern Probabilities

In this section we give an example using Theorem 2.1.1 by computing explicitly the infinite-

volume limit of and first-order conformal correction to a diagonal spin-spin correlation. On

rotated lattices,Ωδ ⊂Cδ with plus boundary, this corresponds to EΩδ
[σ0σ2δ] and is a quantity

that appears in the study of the lattice level Ising stress tensor ([BeHo18]). We then explain

how the similar computation would be done for an “L" shaped spin-weighted correlation

EΩδ
[σ0σ(1+i )δσ2δ]/EΩδ

[σ0] and give the explicit values one gets from the explicit recursion

process outlined to get values of the infinite-volume spin-fermion.

Corollary 2.9.1. Consider the Ising model onΩδ with plus boundary conditions and 0 ∈FΩδ
;

then, as δ→ 0,

EΩδ
[σ0σ2δ] = 2

π
+δ · 2

π
· r−1
Ω (0)+o(δ) .

Proof. We first observe that EΩδ
[σ0σ2δ] = EΩδ

[σ0σ(1+i )δσ(1+i )δσ2δ] and

EΩδ
[ε(a1)ε(a2)] =1

2
+EΩδ

[σ0σ(1+i )δσ(1+i )δσ2δ]−
p

2

2
(EΩδ

[σ0σ(1+i )δ]+EΩδ
[σ(1+i )δσ2δ]) ,

where a1 = 1+i
2 , a2 = 3+i

2 . By the first-order Taylor expansion of [HoSm13] (after rescaling) for

the energy density (EΩδ
[ε(a1)] =−δ ·

p
2
π · r−1

Ω (0)+o(δ)), this implies that as δ→ 0,

EΩδ
[σ0σ2δ] =1

2
+EΩδ

[ε(a1)ε(a2)]+δ · 2

π
· r−1
Ω (0)+o(δ) .

From this it suffices to compute the first-order asymptotics of limδ→0EΩδ
[ε(a1)ε(a2)]. In order

to do so, we consider the antisymmetric matrix

F{ek } =


0 F

a+
1 a+

2
C1

F
a+

1 a−
2

C1
F

†a+
1 a−

1
C1

0 F
†a+

2 a−
2

C1
F

a+
2 a−

1
C1

0 F
a−

2 a−
1

C1

0

 =


0 a b c

0 d e

0 f

0


where we choose orientations o+

1 = e7πi /4 and o+
2 = e5πi /4 on C1. Plugging in the explicit values

from the observable defined in Eq. (2.3.1) and using the definition Fα,ζ
C1

= Re[i
p

pHα,z
C1

], where

we choose the principal branch of the square root, observe that

a =− 1

2π
+
p

2

2π
+ 1

4
, b =−1

4
+ 1

2π
,

c = 0, d = 0,

e =−1

4
+ 1

2π
, f = 1

2π
+
p

2

2π
− 1

4
.
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Combined with Pf(F{ek }) = a f − be + cd and limδ→0EΩδ
[σ0σ2δ] = 1

2 + 4Pf(F{ek }) (where we

applied Theorem 2.1.1 to EΩδ
[ε(a1)ε(a2)]),

lim
δ→0

EΩδ
[σ0σ2δ] = EC1 [σ0σ2δ] = 2

π
.

In order to compute the constant in the conformal correction, note that the matrix E{ek } is

given by Eα,ζ
C1

= Re

[
i
p

p
p

op
2π

]
so that, here,

E{ek } =


0 E

a+
1 a+

2
C1

E
a+

1 a−
2

C1
E

a+
1 a−

1
C1

0 E
a+

2 a−
2

C1
E

a+
2 a−

1
C1

0 E
a−

2 a−
1

C1

0

= 1p
2π


0

p
2

2

p
2

2 1

0 1
p

2
2

0 −
p

2
2

0

 .

Inverting F{ek } by hand, and using the Pfaffian expansion formula Pf(A+δB) = Pf(A)+δPf(A)Tr(A−1B),

along with the above expressions, we see that, in fact, 4DE{ek } Pf(F{ek }) = 4Pf(F{ek })Tr((F{ek })−1E{ek }) =
0 which, combined with Theorem 2.1.1 implies the desired geometric correction.

Corollary 2.9.2. Consider the Ising model onΩδ with plus boundary conditions and 0 ∈FΩδ
;

then as δ→ 0,

EΩδ
[σ0σ(1+i )δσ2δ]

EΩδ
[σ0]

= 2(
p

2−1)+δ · 5
p

2−7

2
·Re

[
∂z logrΩ(z)|z=0

]+o(δ)

Proof. First observe that the edge e separating σ(1+i )δ from σ2δ has midpoint at δa where

a = 3
2 + i

2 .

EΩδ
[σ0ε[0](δa)]

EΩδ
[σ0]

= EΩδ
[σ0σ(1+i )δσ2δ]

EΩδ
[σ0]

−µa .

They by Eq. (2.6.1), picking an s-orientation o on a,

µa =p
o[H ao

[C1,0](ao
+)+H ao

[C1,0](ao
−)]

To compute the front and back values of H ao

[C1,0](a±) we have implemented the recursion

procedure for H using Mathematica as outlined in Proposition 2.3.10 and Corollary 2.3.11 (see

also Fig. 2.3.3). That yields that

µ3/2+i /2 = 2
p

2−2.

Now by Theorem 2.1.2, we wish to compute P a
[0] = (−2)Pf(Fa

[0]) but since Fa
[0] is a 2n × 2n

antisymmetric matrix that is zero on its anti-diagonal, P a
[0] = 0. On the other hand, that

implies that Qa
[0] = Ea

[0] whose entries are given by Definition 2.6.2 in terms of values of G[C1,0]
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and G̃±
[C1,0] evaluated on oppositely oriented ao±

. Via the explicit construction of the slit-plane

harmonic measure recursion procedure outlined in Remark 2.3.6, one can calculate

E ao+ ,ao−

[C1,0] = 5
p

2−7.

Putting these together and plugging in to the expansion given by Theorem 2.1.2 for the spin-

weighted correlation, we obtain the desired geometric correction.
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Chapter 3. Massive Scaling Limit

Abstract.

We study the spin n-point functions of the planar Ising model on a simply connected domain

Ω discretised by the square lattice δZ2 under near-critical scaling limit. While the scaling limit

on the full-plane C has been analysed in terms of a fermionic field theory, the limit in general

Ω has not been studied. We will show that, in a massive scaling limit wherein the inverse

temperature is scaled β∼βc −m0δ for a constant m0 < 0, the renormalised spin correlations

converge to a continuous quantity determined by a boundary value problem set in Ω. In

the case of Ω = C and n = 2, this result reproduces the celebrated formula of [WMTB76]

involving the Painlevé III transcendent. To this end, we generalise the comprehensive discrete

complex analytic framework used in the critical setting to the massive setting, which results in

a perturbation of the usual notions of analyticity and harmonicity.

3.1 Introduction

The Ising model is a classical model of ferromagnetism first introduced by Lenz [Len20],

whose simplicity and rich emergent structure have allowed for applications in various areas of

science. In two dimensions, tt famously exhibits a continuous phase transition [Ons44, Yan52],

where the characteristic length of the model diverges and the model becomes scale invariant.

Consequently the model at the critical temperature βc is expected to exhibit conformal sym-

metry under scaling limit, a prediction which has been formalised in terms of the Conformal

Field Theory [BPZ84].

Given the infinite dimensional array of 2D local conformal symmetry [DMS97], it is natural

to study the scaling limit of the model not only on the full plane C but on an arbitrary simply

connected domainΩ. Accordingly, recent research has focused on giving a rigorous descrip-

tion of the interaction between various physical quantities of the model under critical scaling

limit and the conformal geometry ofΩ, which results in explicit formulae for the limit of spin

correlations at the microscopic scale [HoSm13, GHP19], at the macroscopic scale [CHI15],

or in some mixture of the two [Hon10, CHI18] in terms of quantities such as the conformal

radius and its derivatives. Convergence of correlations also proves to be useful in proving

convergence in more general senses: [CGN15] proves that the discrete spin field converges to

a continuous random distribution using the convergence of their correlations.

Central to such analyses of the critical regime are discrete fermion correlations, which manifest

themselves as discrete functions capable of encoding relevant physical quantities. They

are discrete counterparts of the massless free fermion correlations in the continuous CFT,

which turn out to be explicit holomorphic functions thanks to conformal symmetry. Discrete

fermions instead enjoy a strong notion of discrete analyticity [Smi10], which, unlike some

of its weaker variants, readily lends itself to precompactness estimates that ultimately yield

convergence to the continuous fermion.

However, the free fermion is not an object unique to the massless (conformal) field theory;
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3.1. Introduction

indeed, the general field theory of the free fermion specifies a mass parameter m, or equiv-

alently a length scale ξ∝ 1/ |m|. In general, the corresponding regime in the Ising model is

the near-critical scaling limit, where the deviation from criticality βc −β scales proportionally

to the lattice spacing δ. Such scaling keeps the physical correlation length ξ asymptotically

constant, allowing the limit to be physically described by the massive fermion.

The discrete fermion survives in this near-critical setup, and discrete analyticity persists albeit

in a perturbed sense [DGP14, HKZ15, dT18]. While the continuous massive fermion is usually

described by the two-dimensional massive Dirac equation, our strong discrete analyticity in

fact features twice as many relations, resulting in (the discrete counterpart of) a perturbation

of the ordinary Cauchy-Riemann equations in 1D. Since there are as many lattice equations

in the near-critical limit as in the critical limit, it is natural to attempt to carry out in the

former the analogues of analyses from the latter. We note here that in addition to such a

thermal perturbation, one may also consider a magnetic perturbation to introduce mass (e.g.

[CGN16]). Another direction of research has recently focused on universality with respect to

general lattice, see [Che18].

In this paper, we undertake the analysis of macroscopic Ising spin correlations on a simply

connected domainΩ in the near-critical scaling limit where βc −β is held equal to m0δ for a

fixed m0 < 0 with + boundary conditions. We establish the existence of scaling functions to

which renormalised spin correlations converge, and show that their logarithmic derivatives are

determined by an explicit boundary value problem set inΩ. This extends the results of [CHI15]

to the massive regime (save for the conformal covariance, which should not hold), and our

proof combines the strategies of that paper with a massive perturbation of analytic function

theory, both in the discrete and the continuous settings. In the former, massive harmonic and

holomorphic functions can be studied via their relation to massive (extinguished) random

walk; in the latter, the perturbed Cauchy-Riemann equation is dubbed Vekua equation and

extensively treated in a theory established by Carleman, Bers, and Vekua, among others

[Ber56, Vek62].

In the full plane, the massive scaling limit of the spin correlations was revealed to exhibit

a surprising integrability property. Wu, McCoy, Tracy, and Barouch [WMTB76] first demon-

strated that the 2-point function on the plane can be described in terms of the Painlevé III

transcendent. Subsequently, Sato, Miwa, and Jimbo [SMJ77] recast the continuous analysis in

terms of isomonodromic deformation theory, where Painlevé equations are known to arise,

and obtained a closed set of differential equations for the n-point function. Letting Ω = C,

we reproduce the 2-point scaling limit in the case of full-plane (whose classical treatment is

given in, e.g., [PaTr83, Pal07]), setting up the continuous analysis. We explicitly carry out the

isomonodromic analysis following the formulation of [KaKo80].
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3.1.1 Main Results

Let Ω be a bounded simply connected domain with smooth boundary. We will treat the

unbounded cases Ω = C,H as well. Define the rotated square lattice Ωδ :=Ω∩δ(1+ i )Z2 =
Ω∩Cδ. We define the Ising probability measure P = P+

Ωδ,β with + boundary conditions at

inverse temperature β> 0 on the space of spin configurations {±1}Ωδ by

P+
Ωδ,β [σ :Ωδ→ {±1}] ∝ exp

∑
i∼ j

βσiσ j ,

where the sum is over pairs
{
i , j

}⊂Cδ, i ∈Ωδ such that
∣∣i − j

∣∣=p
2δ and we define σ j = 1 for

j ∉Ωδ ( j ∈F [Ωδ] in terms of detailed notation in Section 3.1.2). If a ∈Ω, we understand by

σa the spin at a closest point inΩδ to a.

The planar Ising model on the square lattice undergoes a phase transition at the critical

temperature βc = 1
2 ln

(
1+p

2
)
. Henceforth we will fix a negative parameter m and set β =

β(δ) =βc − mδ
2 . This is a subcritical massive limit, where the spins stay in the ordered phase

while approaching criticality.

Theorem 3.1.1. Let Ω be a bounded simply connected domain and suppose a1, . . . , an ∈ Ω.

Under δ ↓ 0,β = βc − mδ
2 , the spin n-point function converges to a continuous function of

a1, . . . , an ,

δ−
n
8 E+Ωδ,β(δ)

[
σa1 · · ·σan

]→〈a1, . . . , an〉+Ω,m ,

and its logarithmic derivative ∂a1 ln〈a1, . . . , an〉+Ω,m = A 1
Ω+ iA i

Ω, where ∂a1 = 1
2

(
∂x1 − i∂y1

)
, is

determined by the solution to the boundary value problem of Proposition 3.2.15 set on the do-

mainΩ. The functions 〈a1, . . . , an〉+Ω,m are uniquely determined by their diagonal and boundary

behaviours, see Section 3.1.3. In particular, as a1 → ∂Ω,

〈a1〉+Ω,m ∼ 〈a1〉+Ω,0 :=C ·2
1
4 rad− 1

8 (a1,Ω),

where C := 2
1
6 e−

3
2 ζ

′(−1), rad(a1,Ω) is the conformal radius of Ω as seen from a1, and ζ is the

Riemann zeta function.

If φ :D→Ω is a conformal map with φ(0) = a1, then rad(a1,Ω) = ∣∣φ′(a1)
∣∣. The normalisation

of our continuous functions 〈·〉+Ω,0 differ to that of [CHI15] by a factor of C n . The derivation of

the following result in our analytical setup may be of independent interest.

Corollary 3.1.2 ([WMTB76, SMJ77, KaKo80]). The 2-point function in the full-plane is given

by

〈−a, a〉+C,m = cst ·coshh0(am) ·exp

[∫ am

−∞
r
[(

h′
0(r )

)2 −4sinh2 2h0(r )
]

dr

]
,

〈−a, a〉free
C,−m = cst · sinhh0(am) ·exp

[∫ am

−∞
r
[(

h′
0(r )

)2 −4sinh2 2h0(r )
]

dr

]
,
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3.1. Introduction

where a > 0 and η0 =−1
2 lnh0 is a solution to the Painlevé III equation

rη0η
′′
0 = r

(
η′0

)2 −η0η
′
0 −4r +4rη4

0.

The constants are fixed by the condition that as a → 0

〈−a, a〉+C,m ∼ 〈−a, a〉+C,0 := C 2

|2a|1/4
,

and C := 2
1
6 e−

3
2 ζ

′(−1) as above.

3.1.2 Notation

Following signs will be used throughout the paper:

λ := e
iπ
4 ,βc = 1

2
ln

(
1+p

2
)

,H := {z ∈C : Imz > 0} , A⊕B := (A∪B) \ (A∩B) .

We will write partial derivatives in contracted form, i.e. ∂x = ∂
∂x , etc. And denote by ∂z ,∂z̄ the

Wirtinger derivatives: where z = x + i y ,

∂z := ∂x − i∂y

2
,∂z̄ := ∂x + i∂y

2
= e iθ

(
∂r + i r−1∂θ

)
2

.

We will also use ∂ to denote directional derivatives; i.e. ∂1 = ∂x , ∂i = ∂y , and so on. If z ∈ ∂Ω,

denote by νout(z) ∈C as the unit normal at x, i.e. the unit complex number which points to the

direction of outer normal vector at z. Then ∂νout is the outer normal derivative in the direction

of νout.

We denote by ∂δ
λ

,∆δ the following discrete operators:

∂δλ f (z) := f (z +
p

2λδ)− f (z), etc.,

∆δ f (z) := f (z +
p

2λδ)+ f (z −
p

2λ̄δ)+ f (z −
p

2λδ)+ f (z +
p

2λ̄δ)−4 f (z),

wherever they make sense, if z ∉ V [Ωδ]. On V [Ωδ], we make a small modification in the

coefficients in ∆δ; see (3.2.10). Note that (
p

2δ)−2∆δ→∆.

Mass Parametrisation.

There are various equivalent ways of parametrising the deviation βc −β, and we summarise

the relation amongst them here at once, which hold at all times. In this paper, M ,m,Θwill be

supposed to be negative unless otherwise specified. We also assume δ is small enough to, e.g.,

have β ∈ (0,∞).
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Chapter 3. Massive Scaling Limit

• Discrete mass M :=βc−β is scaled M = mδ
2 with the continuous mass m being a constant.

• Pure phase factor e2iΘ := λ−3 e−2β+i
e−2β−i

with Θ ∈ ]−π
8 , π8

[
. Equivalently e2β = cot

(
π
8 +Θ)

. Θ

is scaled Θ ∼ mδ
2 . Also define MH := 2sin2Θ

√
2

cos4Θ which is the mass coefficient in

massive harmonicity.

Graph Notation.

Recall that we work with the rotated square lattice Cδ := δ(1+ i )Z2. Our graphΩδ comprises

the following components (see Figure 3.1.1):

• faces F [Ωδ] :=Ω∩δ(1+ i )Z2,

• vertices V [Ωδ] := {
f ±δ, f ± iδ : f ∈F [Ωδ]

}⊂C∗
δ

,

• edge E [Ωδ] := {
(i j ) = ( j i ) : i , j ∈ V [Ωδ] ,

∣∣i − j
∣∣=p

2δ
}
, and

• corners C [Ωδ] := {
(v f ) : v ∈ V [Ωδ] , f ∈F [Ωδ] ,

∣∣v − f
∣∣= δ}

.

For consistency with the low-temperature expansion of the model, we prefer to visualise the

lattice in its dual form. Note that just as the faces are represented by their midpoints above, an

edge (i j ) and a corner (v f ) will be identified with their midpoints i+ j
2 and v+ f

2 , respectively.

Additionally, we draw a half-edge between either an edge midpoint or a corner to a nearest

vertex.

For τ= 1, i ,λ, λ̄, a corner c ∈C [Ωδ] is in C τ [Ωδ] if the nearest vertex is in the direction −τ−2.

The edges in C 1 [Ωδ] ,C i [Ωδ] are respectively called real and imaginary corners.

We will frequently denote union of various sets by concatenation, e.g. EC [Ωδ] := E [Ωδ]∪
C [Ωδ].

Graph Boundary.

• E [Ωδ] := {
(i j ) = ( j i ) : i ∈ V [Ωδ] , j ∈ V [Cδ] , |i − j | =p

2δ
}
, ∂E [Ωδ] := E [Ωδ] \E [Ωδ],

• boundary vertices ∂V [Ωδ] are the endpoints of edges in ∂E [Ωδ] not in V [Ωδ],

• boundary faces ∂F [Ωδ] are faces in F [Cδ] \F [Ωδ] which are δ away from a vertex in

V [Ωδ], and

• boundary corners ∂C [Ωδ] = {
(v f ) : v ∈ V [Ωδ] , f ∈ ∂F [Ωδ] ,

∣∣v − f
∣∣= δ}

• νout(z) for z ∈ ∂E [Ωδ] is the unit complex number corresponding to the orientation of z

pointing outwards fromΩ.
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λ̄ λ̄

•: V [Ωδ]

◦: F [Ωδ]

×τ : Cτ [Ωδ]

�: E [Ωδ]

•: @V [Ωδ]

◦: @F [Ωδ]

×: @C [Ωδ]

�: @E [Ωδ]

Figure 3.1.1 – The square lattice. Proposition 3.3.3: F[Ωδ,a1,...,an ] =O(1) on boundary edges and
corners in orange, since H•

[Ωδ,a1,...,an ] =O(δ) on adjacent vertices in V [Ωδ, a1, . . . , an].

Double Cover.

The fermions we introduce in forthcoming sections are functions defined on the double

cover of the continuous and discrete domains Ω,Ωδ. Define [Ω, a1, . . . , an] as the double

cover of Ω ramified at distinct interior points a1, . . . , an ∈ Ω; in particular, it is a Riemann

surface where
p

(z −a1) · · · (z −an) is well-defined, smooth and single-valued. In the case

where {ā1, . . . , ān} = {a1, . . . , an}, conjugation on the double cover is defined by requiring thatp
(z̄ −a1) · · · (z̄ −an) =p

(z −a1) · · · (z −an). On [C, a1], we will refer to the slit domains X+ :={
Re

p
z > 0

}
and Y+ := {

Im
p

z > 0
}
.

When the choice of the lift of z ∈Ω is clear, we will write z to denote the lift in [Ω, a1, . . . , an].

Conversely, if z ∈ [Ω, a1, . . . , an], we will write z, or, for clarification, π(z) ∈Ω \ {a1, . . . , an} for

the projection onto the planar domain; z · ∈ [Ω, a1, . . . , an] is the lift of π(z) which is not z. A

function which switches sign under switching z and z · is called a spinor.

We say that two points z, w ∈ [Ω, a1, . . . , an] are on the same sheet if we can draw a straight line

segment between them; i.e. the straight line segment onΩwhich connects π(z),π(w) can be

lifted to connect z, w on [Ω, a1, . . . , an].

For the discrete double cover [Ωδ, a1, . . . , an], we will take closest faces inΩδ to a1, . . . , an ∈Ω,

and then lift components ofΩδ minus those n faces. Clearly, [Ωδ, a1, . . . , an] is a lattice which

is locally isomorphic to the planar latticeΩδ. Given the first monodromy face a1, we will fix a

lift of a1 + δ
2 and refer to it throughout this paper.
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3.1.3 Proof of the Main Theorems

Proof of Theorem 3.1.1. Given the fermion convergence of Theorem 3.3.5 and identification

of Ising quantities in terms of the fermions of Proposition 3.2.3, we can integrate the discrete

logarithmic derivative which converges in the scaling limit (see also [CHI15, Proposition 2.22,

Remark 2.23])

1

2δ

Eβ,+
Ωδ

[
σa1+2δσa2 · · ·σan

]
E
β,+
Ωδ

[
σa1 · · ·σan

] −1

→A 1
Ω(a1, . . . , an),

1

2δ

Eβ,+
Ωδ

[
σa1+2iδσa2 · · ·σan

]
E
β,+
Ωδ

[
σa1 · · ·σan

] −1

→−A i
Ω(a1, . . . , an),

to get that
E
β,+
Ωδ

[
σb1 ···σbn

]
E
β,+
Ωδ

[
σa1 ···σan

] scales to a continuous limit
〈b1,...,bn〉+Ω,m

〈a1,...,an〉+Ω,m
for a1, . . . , an ,b1, . . . ,bn ∈Ω. The

convergence for A i
Ω follows by considering the result in a −90◦ rotated domain (see also

[CHI15, Proof of Theorems 1.5 and 1.7]).

Now it remains to uniquely relate the massive convergence rate to the massless conver-

gence rate:
E
β,+
Ωδ

[
σa1 ···σan

]
E
βc ,+
Ωδ

[
σa1 ···σan

] → 〈a1,...,an〉+Ω,m

〈a1,...,an〉+Ω,0
for some a1, . . . , an ∈ Ω. Given the convergence of

δ−
n
8 E

βc ,+
Ωδ

[
σa1 · · ·σan

]
to a continuous limit 〈a1, . . . , an〉+Ω,0, we have convergence of the massive

correlation to unique 〈a1, . . . , an〉+Ω,m .

The procedure partially relies on the process in the massless case of relating the bounded

domain correlations to full-plane correlations from [CHI15].

Note that β>βc , and denote the dual temperature by β∗ < βc . We always assume a scaling

βc −β= mδ
2 for m < 0.

1. Relating two point functions:
E
β,+
Ωδ

[
σa1σa2

]
E
βc ,+
Ωδ

[
σa1σa2

] tends to a continuous limit, since

1 ≤
E
β,+
Ωδ

[
σa1σa2

]
E
βc ,+
Ωδ

[
σa1σa2

] ≤
E
β,+
Ωδ

[
σa1σa2

]
E
β∗,+
Ωδ

[
σa1σa2

] ≤
E
β,+
Ωδ

[
σa1σa2

]
E
β∗,free
Ωδ

[
σa1σa2

] →|BΩ(a1, a2|m)|−1 , (3.1.1)

where we successively used the monotonicity of spin correlation in inverse temperature

(e.g. by coupling with FK-Ising) and in boundary condition (FKG inequality, [FrVe17,

Theorem 3.21]). We also used the convergence of Theorem 3.3.5 of the Ising ratio to

|BΩ(a1, a2|m)|. We conclude by noting that |BΩ(a1, a2|m)| can be made arbitrarily close

to 1 (Lemma 3.4.5) by merging a1, a2.
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2. One point functions: note that by above, we may write

〈a1, a2〉+Ω,m

〈a1, a2〉+Ω,0

= exp

[∫ a1

a2

[
A 1
Ω(z, a2|m)−A 1

Ω(z, a2|0)
]

d x

−
[
A i
Ω(z, a2|m)−A i

Ω(z, a2|0)
]

d y
]

, (3.1.2)

along any line from a2 to a1 if the integral converges. Choose a1 and a2 as in Lemma 3.4.9

(see Figure 3.1.2), then we can bound the integral:
〈a1,a2〉+Ω,m

〈a1,a2〉+Ω,0
≤ ecst ·(ε−γ|a1−a2|+|a1−a2|1−γ)

for some fixed γ ∈ (0,1). Now choose |a1 −a2| = εκ for some γ< κ< 1. Then
〈a1,a2〉+Ω,m

〈a1,a2〉+Ω,0
→ 1

as ε→ 0, while the hyperbolic distance between a1 and a2 grows; indeed, the hyperbolic

distance is comparable to ln |a1−a2|
dist({a1,a2},∂Ω) ∝ (1−κ) |lnε|. Therefore, by [CHI15, (1.3)],

〈a1,a2〉+Ω,0

〈a1〉+Ω,0〈a2〉+Ω,0
→ 1. Now we may relate the massive one-point functions to the massless

ones, so that the former are uniquely identified in terms of the latter. By the monotonic-

ity of spin correlation, Eβc ,+
Ωδ

[
σa1

]≤ Eβ,+
Ωδ

[
σa1

]
, and by GKS inequality [FrVe17, Theorem

3.20], Eβ,+
Ωδ

[
σa1

]
E
β,+
Ωδ

[
σa2

]≤ Eβ,+
Ωδ

[
σa1σa2

]
, so

1 ≤
E
β,+
Ωδ

[
σa1

]
E
βc ,+
Ωδ

[
σa1

] ≤
E
β,+
Ωδ

[
σa1σa2

]
E
βc ,+
Ωδ

[
σa1

]
E
βc ,+
Ωδ

[
σa2

] =
E
βc ,+
Ωδ

[
σa1σa2

]
E
βc ,+
Ωδ

[
σa1

]
E
βc ,+
Ωδ

[
σa2

] · Eβ,+
Ωδ

[
σa1σa2

]
E
βc ,+
Ωδ

[
σa1σa2

] .

(3.1.3)

By the above discussion, both factors on the right is made arbitrarily close to 1 by taking

small enough ε. Moreover, such choice of ε is uniform in the smoothness of the domain

(concretely, the bound on the derivative of a conformal map to the disc).

3. More points: we again use the GKS inequality, in that

1 ≤
E
β,+
Ωδ

[
σa1 · · ·σan

]
E
β,+
Ωδ

[
σa1

] · · ·Eβ,+
Ωδ

[
σan

] ≤
E
β,+
Ω1
δ

[
σa1

] · · ·Eβ,+
Ωn
δ

[
σan

]
E
β,+
Ωδ

[
σa1

] · · ·Eβ,+
Ωδ

[
σan

] , (3.1.4)

where Ω1 3 a1, . . . ,Ωn 3 an are choices of disjoint smooth simply connected subdo-

mains of Ω, each sharing a macroscopic boundary arc with Ω. By FKG inequality,

requiring the spins inΩ\
⋃n

j=1Ω
j to be plus raises the correlation, which gives the sec-

ond inequality above. By the uniform identification of the one point functions, there

is ε > 0 such that if each of a1, . . . , an are ε-close to the boundary arc that Ω1, . . . ,Ωn

shares withΩ, both Eβ,+
Ω

j
δ

[
σa j

]
,Eβ,+
Ωδ

[
σa j

]
become close to their massless counterparts.

Since the massless correlations are Caratheodory stable ([CHI15, (1.3)]), as ε decreases,

E
βc ,+
Ω

j
δ

[
σa j

]
/Eβc ,+
Ωδ

[
σa j

]
become close to 1. Clearly, any ratio between Eβ,+

Ω
j
δ

[
σa j

]
,Eβ,+
Ωδ

[
σa j

]
,

E
βc ,+
Ω

j
δ

[
σa j

]
,Eβc ,+
Ωδ

[
σa j

]
may be made arbitrarily close to 1 by setting ε small enough, and

thus
E
β,+
Ωδ

[
σa1 ···σan

]
E
β,+
Ωδ

[
σa1

]···Eβ,+
Ωδ

[σan ]
as well; this fixes the normalisation of an arbitrary n-point func-

tion.

95



Chapter 3. Massive Scaling Limit

Ω

H

a1a2

a
′

1
a
′

2

z

O(ǫ)

ǫ

ǫ
κ

Figure 3.1.2 – Setup for applying Lemma 3.4.9 to have decorrelation between a1, a2.

Proof of Corollary 3.1.2. Note that the argument for the scaling limit of the two-point functions

in the proof of Theorem 3.1.1 apply in the full plane as well. It also fixes the normalisation as

a → 0 by [CHI15, Remark 2.26]. From Theorem 3.3.5, we need to integrate A 1
C

(−a, a). Recall

r = am, and define 〈r 〉+
C

:= 〈−a, a〉+
C,m .

By (3.4.22), −m−1 ∂a ln〈−a,b〉+C,m

∣∣∣
b=a

= −1
2 (lncoshh0(r ))′− r

[
1
2

(
h′

0(r )
)2 −2sinh2 2h0(r )

]∣∣∣
r=am

,

which can be rephrased as

∂r ln〈r 〉+C = m−1∂a 〈−a, a〉+C,m = (lncoshh0(r ))′+ r
[(

h′
0(r )

)2 −4sinh2 2h0(r )
]

.

Then

〈−a, a〉+C,m = 〈r 〉+C = cst ·coshh0(am) ·exp

[∫ am

−∞
r
[(

h′
0(r )

)2 −4sinh2 2h0(r )
]

dr

]
.

Then the definition tanhh0 :=B0 gives the other case.

3.1.4 Structure of the Paper

This paper contains four sections and one appendix to which technical calculations and

estimates are deferred. Section 3.2 defines our main analytical tool, the discrete fermions.

The combinatorial definition in 3.2.1 involves contours on the discrete bounded domain and

is seen to naturally encode the logarithmic derivative of the spin correlation. Its discrete

complex analytic properties are then established, which are exploited in Section 3.2.2 to give a

definition on the full plane by an infinite volume limit.

Since analysis of the continuous fermions is needed for the scaling limit process (for a unique

characterisation of the continuous limit), we carry out the continuum analysis first in Section
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3.2. Massive Fermions

3.2.3. We formulate the boundary value problem onΩ for our continuous fermions, which

will be a massive perturbation of holomorphic functions treated in [Ber56, Vek62]. We verify

various properties we will use: such as the expansion in terms of formal ’powers’. Analysis in

the continuum is continued in Section 3.4.1.

Convergence of the discrete fermion under scaling limit is done in Section 3.3. The analysis is

divided into two parts: bulk convergence (Section 3.3.1), where the discrete fermion evalu-

ated on compact subsets of [Ω, a1, . . . , an] is shown to uniformly converge to the continuous

fermion, and analysis near the singularity (Section 3.3.2), where the discrete fermion evaluated

at a point in [Ωδ, a1, . . . , an] microscopically away from a monodromy face is identified from

the coefficients of a massive analytic version of power series expansion of the continuous

fermion. Bulk convergence is done in a standard manner, by first showing that the set of

discrete fermion correlations are precompact and then uniquely identifying the limit. Analy-

sis near the singularity mainly uses ideas from [CHI15], where the continuous power series

expansion is modelled in the discrete setting then the coefficients carefully matched.

In Section 3.4, we collect the analysis of the massive fermions necessary for the integration of

the logarithmic derivatives and isomonodromic analysis in Section 3.4.1, and finally in Section

3.4.2 we carry out the isomonodromic analysis and obtain the Painlevé III transcendent, which

can be identified in the logarithmic derivative of spin correlations in C given the convergence

results.
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3.2 Massive Fermions

In this section, we introduce the main discrete tool of our analysis, the massive discrete

fermion correlations. While the object and the terminology hearkens back to the physical

analysis of the Ising model, we shall give an explicit definition in Section 3.2.1 as a complex

function which extrapolates the desired local physical quantity to the entire domain. In the

same subsection we also show that, as a discrete function, it exhibits a notion in discrete

complex analysis called (massive) s-holomorphicity. At first we only define the fermion in

bounded discretised domains, i.e. finite sets; however we will define them in the complex

plane in Section 3.2.2. Then, we carry out analysis of the continuous spinors, to which the

discrete spinors presented in the previous section is shown to converge in Section 3.3. Since

the proof of scaling limit requires unique identification of the continuous limit, we first give

necessary analytic background in Section 3.2.3.
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Chapter 3. Massive Scaling Limit

3.2.1 Bounded Domain Fermions and Discrete Analysis

We introduce here the main object of our analysis, the discrete fermion F . Note that this

function is essentially the same object as in [CHI15, Definition 2.1] albeit at general β, and

we try to keep the same normalisation and notation where appropriate. The contents of this

subsection are valid for any β> 0.

In order to use the low-temperature expansion of the Ising model, we first define ΓΩδ
⊂ 2E [Ωδ]

as the collection of closed contours, i.e. setω of edges inΩδ such that an even number of edges

in ω meet at any given vertex. Given + boundary condition, any ω is clearly in one-to-one

correspondence with a spin configuration σ (where ω delineates clusters of identical spins),

and we can compute the partition function of the model and the correlation

Z
+,β
Ωδ

:= ∑
ω∈CΩδ

e−2β|ω|

E
+,β
Ωδ

[
σa1 · · ·σan

]= ∣∣∣Z +,β
Ωδ

∣∣∣−1 ∑
ω∈ΓΩδ

e−2β|ω|(−1)#loopsa1,...,an (ω),

where #loopsa1,...,an
denotes the parity of loops in ω which separate the boundary spins

from an odd number of a1, . . . , an . The unnormalised correlation Z
+,β
Ωδ

[
σa1 · · ·σan

]
:=Z

+,β
Ωδ

·
E
+,β
Ωδ

[
σa1 · · ·σan

]
will be used for normalisation below.

Definition 3.2.1. For a bounded simply connected domain Ω ⊂ C with n distinct interior

points a1, . . . an and inverse temperature β> 0, define for z ∈ EC [Ωδ, a1, . . . , an] which is not a

lift of a1 + δ
2 the discrete massive fermion correlation, or simply the discrete fermion

F[Ωδ,a1,...,an ]
(
z|β)= 1

Z
+,β
Ωδ

[
σa1 · · ·σan

] ∑
γ∈ΓΩδ (a1+ δ

2 ,z)

cz e−2β|γ| ·φa1,...,an

(
γ, z

)
where

• ΓΩδ
(a1 + δ

2 , z) is the collection of γ=ω⊕γ0, where ω runs over elements over ΓΩδ
, γ0 is

a fixed simple lattice path from a1 + δ
2 to π(z) ∈ EC [Ωδ], and ⊕ refers to the XOR (sym-

metric difference) operation. |γ| is the number of full edges in γ. cz := cos
(
π
8 +Θ(β)

)−1 if

z is an edge, and 1 if it is a corner. Note that none of these definitions refer to the double

cover.

• φa1,...,an

(
γ, z

)
is a pure phase factor, independent of β, defined by

φa1,...,an

(
γ, z

)= e−
i
2 wind(p(γ))(−1)#loopsa1,...,an (γ\p(γ))sheeta1,...,an (p(γ)),

where p(γ) is a simple path (we allow for self-touching, as long as there is no self-

crossing) from a1 + δ
2 to π(z) chosen in γ, wind(p(γ)) is the total turning angle of the

tangent of p(γ), and sheeta1,...,an (p(γ)) ∈ {±1} is defined to be +1 if the lift of p(γ) to the

double cover starting from the fixed lift of a1 + δ
2 (fixed once forever in Section 3.1.2)
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3.2. Massive Fermions

ends at z and −1 if it ends at z ·. φa1,...,an is well-defined; see e.g. [ChIz13, CHI15].

Note that F[Ωδ,a1,...,an ] is naturally a spinor, i.e. F[Ωδ,a1,...,an ]
(
z ·|β)=−F[Ωδ,a1,...,an ]

(
z|β)

.

The massive fermion satisfies a perturbed notion of discrete holomorphicity, called massive

s-holomorphicity. First, define the projection operator Proje iθRx := x+e2iθ x̄
2 to be the projection

of the complex number x to the line e iθR.

Proposition 3.2.2. The discrete massive fermion F[Ωδ,a1,...,an ]
(·|β)

is massive s-holomorphic,

i.e. it satisfies

e∓iΘProje±iΘτ(c)RF[Ωδ,a1,...,an ]

(
c ∓ τ(c)−2iδ

2
|β

)
= F[Ωδ,a1,...,an ]

(
c|β)

, (3.2.1)

between c ∓ τ(c)−2iδ
2 ∈ E [Ωδ, a1, . . . , an] and c ∈C [Ωδ, a1, . . . , an] which is not a lift of a1 + δ

2 . At

(the fixed lift of) a1 + δ
2 , we have instead

e∓iΘProje±iΘiRF[Ωδ,a1,...,an ]

(
a1 + δ±δi

2
|β

)
=∓i . (3.2.2)

Proof. The proof of massive s-holomorphicity, essentially identical to the massless case

[CHI15, Subsection 3.1], uses the bijection between ΓΩδ
(a1 + δ

2 ,c ∓ τ(c)−2iδ
2 ) and ΓΩδ

(a1 + δ
2 ,c)

by the ⊕ (symmetric difference) operation. Without loss of generality, notice that γ 7→ γ⊕ t

with the fixed path t :=
{(

c − τ(c)−2iδ
2 ,c − τ(c)−2δ

2

)(
c − τ(c)−2δ

2 ,c
)}

maps ΓΩδ
(a1 + δ

2 ,c − τ(c)−2iδ
2 ) to

ΓΩδ
(a1 + δ

2 ,c) bijectively (see Figure 3.1.1).

We now only need to show that the summand in the definition of F[Ωδ,a1,...,an ]

(
c ∓ τ(c)2iδ

2 |β
)

for

a given γ transforms to the summand in F[Ωδ,a1,...,an ]
(
c|β)

for γ⊕ t . Given p(γ) ⊂ γ, we may

take p(γ⊕ t ) := p(γ)⊕ t . Clearly (−1) #loops, sheet remain the same for γ and γ⊕ t , while

wind
(
p(γ⊕ t )

)=
wind

(
p(γ)

)+ π
4 if γ∩ t 6= ;

wind
(
p(γ)

)− 3π
4 if γ∩ t =;

∈ τ(c)R.

In the case where γ∩ t 6= ;,
∣∣γ⊕ t

∣∣= ∣∣γ∣∣ and

e−iΘProje iΘτ(c)Re−
i
2 wind(p(γ)) = e−iΘProje iΘτ(c)R

[
e iΘe−

i
2 wind(p(γ⊕t))

]
e−

πi
8 −iΘ

= e−iΘ
[

e iΘe−
i
2 wind(p(γ⊕t))

]
Ree−

πi
8 −iΘ

= e−
i
2 wind(p(γ⊕t)) cos

(π
8
+Θ

)
,
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a1 + δ
2

γ ∈ Γ
(
a1 + δ

2 , c+ τ−2(c)i
2

)

c− τ−2(c)iδ
2

c+ τ−2(c)iδ
2

c

a1 + δ
2

γ ⊕ t ∈ Γ
(
a1 + δ

2 , c
)

c− τ−2(c)iδ
2

c+ τ−2(c)iδ
2

c

Figure 3.2.1 – The proof of massive s-holomorphicity by bijection.

while if γ∩ t =;,
∣∣γ⊕ t

∣∣= ∣∣γ∣∣+1 and similarly

e−iΘProje iΘτ(c)Re−
i
2 wind(p(γ)) = e−iΘ

[
e iΘe−

i
2 wind(p(γ⊕t))

]
Ree

3πi
8 −iΘ

= e−
i
2 wind(p(γ⊕t)) sin

(π
8
+Θ

)
= e−

i
2 wind(p(γ⊕t))e2β cos

(π
8
+Θ

)
,

and the result follows.

At a1 + δ
2 , (say) γ ∈ ΓΩδ

(a1 + δ
2 , a1 + δ

2 + iδ
2 ) is mapped bijectively to γ⊕ t ∈ ΓΩδ

. It is easy to see

that

wind
(
p(γ)

)=
−5π

4 ±2π if t ⊂ γ,

−π
4 ±2π if γ∩ t =;

,

and (−1)#loopsa1,...,an (γ\p(γ))sheeta1,...,an (p(γ)) = (−1)#loopsa1,...,an (γ⊕t). Now a simple computation

similar to above yields the result.

We will take (3.2.1) as the definition of (M ,β,Θ)-massive s-holomorphicity (or just s-holomorphicity

when the mass is clear) at c (or between c∓τ(c)−2iδ
2 ). We will see later that massive s-holomorphicity

corresponds to the continuous notion of perturbed analyticity ∂z f = m f̄ .

The fermion defined above is a deterministic function without explicit connection to the Ising

model–we now record how it encodes probabilistic information.

Proposition 3.2.3. For v =−1,0,1, we have

F[Ωδ,a1,...,an ]

(
a1 +δ+ e i v π

2

2
δ|β

)
= e−i v π

4

E
β,+
Ωδ

[
σ

a1+δ+e i v π2 δ
σa2 · · ·σan

]
E
β,+
Ωδ

[
σa1 · · ·σan

] , (3.2.3)

where a1+δ+ e i v π2

2 δ is lifted to the same sheet as the fixed lift of a1+ δ
2 , and thus for any β1 <β2
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3.2. Massive Fermions

there exist constants C1(β1,β2),C2(β1,β2) > 0, uniform in β ∈ [
β1,β2

]
,Ω,δ, such that

C1 <
∣∣∣∣∣F[Ωδ,a1,...,an ]

(
a1 +δ+ e i v π

2

2
δ|β

)∣∣∣∣∣<C2.

In the case n = 2 we have also

∣∣∣∣F[Ωδ,a1,a2]

(
a2 + δ

2
|β

)∣∣∣∣= E
β∗,free
Ω∗
δ

[
σa1+δσa2+δ

]
E
β,+
Ωδ

[
σa1σa2

] . (3.2.4)

Proof. (3.2.3) and (3.2.4) were proved for the massless case in [CHI15, Lemma 2.6] and the

proof is easily seen to not depend on a specific value of β.

We carry out the v = 1 case here: the path t :=
{

(a1 + δ
2 , a1 +δ), (a1 +δ, a1 +δ+ iδ

2 )
}

is ad-

missible (i.e. without a crossing) as p(γ) with wind(p(γ)) = π
2 , sheeta1,...,an (p(γ)) = 1 in γ ∈

ΓΩδ
(a1 + δ

2 , a1 +δ+ iδ
2 ) if and only if γ does not contain a loop separating a1 from a1 +δ+ iδ

and (−1)#loopsa1,...,an (γ\t) = (−1)#loopsa1+δ+iδ,...,an (γ\t). If γ does contain such a loop L, we need to

choose p(γ) = t ∪L with wind
(
p(γ)

)= π
2 ±2π. In this case, sheeta1,...,an

(
p(γ)

)= 1 if and only if

L encloses an even number of ai . This means that

(−1)#loopsa1,...,an (γ\p(γ))sheeta1,...,an (p(γ)) = (−1)#loopsa1,...,an (γ\t)

=−(−1)#loopsa1+δ+iδ,...,an (γ\t),

so in all cases the summand in the definition of F[Ωδ,a1,...,an ] is λ−1(−1)#loopsa1+δ+iδ,...,an (γ\t) and

the result follows. The uniform bound comes from the finite energy property of the Ising

model (such expectations are uniformly bounded from 0 and ∞ in any finite distribution).

A crucial feature of (discrete) massive s-holomorphicity, shared with its continuous counter-

part, is that the line integral Re
∫ [

F[Ωδ,a1,...,an ]
(
z|β)]2 d z can be defined path-independently.

Proposition 3.2.4. There is a single valued function H[Ωδ,a1,...,an ]
(
x|β)

up to a global constant

on V F [Ωδ] constructed by

H◦
[Ωδ,a1,...,an ]

(
f |β)−H•

[Ωδ,a1,...,an ]

(
v |β)

:= 2δ

∣∣∣∣F[Ωδ,a1,...,an ]

(
v + f

2
|β

)∣∣∣∣2

, (3.2.5)

where f ∈F [Ωδ]∪∂F [Ωδ] and v ∈ V [Ωδ] are δ away from each other so that v+ f
2 is the corner

between them. Put
∣∣∣F[Ωδ,a1,...,an ]

(
a1 + δ

2 |β
)∣∣∣2 = 1.

At the boundary faces H◦ is constant, so we may put

H◦
[Ωδ,a1,...,an ]

(
f |β)

:= 0 if f ∈ ∂F [Ωδ] , (3.2.6)
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and further define H•
[Ωδ,a1,...,an ]

(
v |β)

:= 0 if v ∈ ∂V [Ωδ], then across a boundary edge e = (ainta)

with aint ∈ V [Ωδ] , a ∈ ∂V [Ωδ], we have

∂δνout
H•

[Ωδ,a1,...,an ]

(
e|β)

:=−H•
[Ωδ,a1,...,an ]

(
aint|β

)
= 2cos2

(π
8
+Θ

)
δ

∣∣F[Ωδ,a1,...,an ]
(
e|β)∣∣2 (3.2.7)

≥ 0.

Proof. (3.2.5) gives rise to a single valued function because doing a loop around any edge

will give zero: if e = (v1v2) is an edge which is incident to faces f1, f2, H◦
[Ωδ,a1,...,an ]

(
f1

)−
H•

[Ωδ,a1,...,an ] (v1)+ H◦
[Ωδ,a1,...,an ]

(
f2

)− H•
[Ωδ,a1,...,an ] (v2) according to (3.2.5) is simply equal to

2δ
∣∣∣F[Ωδ,a1,...,an ]

(
f1+v1

2

)∣∣∣2 + 2δ
∣∣∣F[Ωδ,a1,...,an ]

(
f2+v2

2

)∣∣∣2 = 2δ
∣∣F[Ωδ,a1,...,an ] (e)

∣∣2, since the two cor-

ner values at f1,2+v1,2

2 are simply projections of F[Ωδ,a1,...,an ] (e) onto orthogonal lines by s-

holomorphicity. H◦
[Ωδ,a1,...,an ]

(
f2

)−H•
[Ωδ,a1,...,an ] (v1)+H◦

[Ωδ,a1,...,an ]

(
f1

)−H•
[Ωδ,a1,...,an ] (v2) is also

equal to 2δ
∣∣F[Ωδ,a1,...,an ] (e)

∣∣2, and increments along the loop f1 ∼ v1 ∼ f2 ∼ v2 ∼ f1 sum to zero.

Then the boundary behaviour can be easily verified noting that F[Ωδ,a1,...,an ]
(
e|β) ∈ νout (e)−1/2R

if e is a boundary edge. See [CHI15, Proposition 3.6] for a massless counterpart.

Remark 3.2.5. Writing corner values in terms of edge projections, we obtain that H[Ωδ,a1,...,an ]

is a discrete version of the integral Re
∫ [

F[Ωδ,a1,...,an ]
(
z|β)]2 d z in that

H◦
[Ωδ,a1,...,an ]

(
f1|β

)−H◦
[Ωδ,a1,...,an ]

(
f2|β

)=p
2sin

(π
4
+2Θ

)
Re

[
F[Ωδ,a1,...,an ]

(
z|β)2 (

f1 − f2
)]

,

(3.2.8)

for all f1, f2 of distance
p

2δ from each other, and

H•
[Ωδ,a1,...,an ]

(
v1|β

)−H•
[Ωδ,a1,...,an ]

(
v2|β

)=p
2sin

(π
4
−2Θ

)
Re

[
F[Ωδ,a1,...,an ]

(
z|β)2

(v1 − v2)
]

,

(3.2.9)

for v1, v2 of distance
p

2δ from each other.

The functions H◦,• constructed in the previous proposition satisfy a discrete version of a

second-order partial differential equation. We first recall the standard discrete operators

∂δz̄ ,∆δ; as alluded to in the notation section, we make a small modification to the conven-

tional definition for the laplacian in V [Ωδ]. We make this boundary modification specifically

for V [Ωδ], which lets us define H•
[Ωδ,a1,...,an ] = 0 on boundary vertices; see [ChSm12] for a

motivation.

Definition 3.2.6. Suppose A is a function defined on E [Ωδ] and B on V [Ωδ] (or F [Ωδ], or
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any locally isomorphic graph). We define the discrete Wirtinger derivative and laplacian by

∂δz̄ A(x) :=
3∑

m=0
i me iπ/4 A

(
x + i me iπ/4 δp

2

)
if, e.g., x ∈ V F [Ωδ] ,

∆δB(x) :=
3∑

m=0
cm

[
B

(
x + i me iπ/4

p
2δ

)
−B(x)

]
if, e.g., x ∈ V [Ωδ] , (3.2.10)

where cm = 1 if x + i me iπ/4
p

2δ ∈ V [Ωδ], and cm = sin
(
π
4 −2Θ

)
cos2

(
π
8 +Θ

) if x + i me iπ/4
p

2δ ∈ ∂V [Ωδ]. For

any other lattice, cm ≡ 1. If ∆δB(x) = M 2
H B(x) for M 2

H = 8sin2 2Θ
cos4Θ , we call B (Θ,M 2

H )-massive

harmonic at x.

The spinor F[Ωδ,a1,...,an ] isΘ-massive harmonic [BeDC12, DGP14, HKZ15], at least away from

monodromy; see Proposition 3.5.1, and also the proof of Proposition 3.2.11 for the behaviour

near monodromy.

Note that in the scaling limit δ ↓ 0, 1
2
p

2δ
∂δz̄ → ∂z̄ := 1

2

(
∂x + i∂y

)
and 1(p

2δ
)2∆

δ →∆. Therefore,

in the following result, the second terms become negligible as δ→ 0 compared to the first, at

least if F is in some sense regular; for an analogue in the scaling limit, see (3.3.3).

Proposition 3.2.7. For x 6= a1 +δ, a2, . . . an , we have

∆δH◦
[Ωδ,a1,...,an ](x) = 2sin

(π
4
+2Θ

)
δ·[

AΘ
3∑

n=0

∣∣∣∣F (
x + i ne iπ/4 δp

2

)∣∣∣∣2

+BΘ
∣∣∂z̄ F̄

∣∣2
(x)

]
(3.2.11)

∆δH•
[Ωδ,a1,...,an ](x) = 2sin

(π
4
−2Θ

)
δ·[

−A−Θ
3∑

n=0

∣∣∣∣F (
x + i ne iπ/4 δp

2

)∣∣∣∣2

−B−Θ
∣∣∂z̄ F̄

∣∣2
(x)

]

where AΘ,BΘ are explicit numbers which depend onΘ. A is odd and B is even inΘ, AΘ ∼ 4
p

2Θ

and BΘ ∼ 1
2
p

2
asΘ→ 0 (see (3.5.3)).

Proof. We calculate ∂z̄ F 2
[Ωδ,a1,...,an ] in Proposition 3.5.1. The laplacians follow straightforwardly

by noting that ∆δH◦,•
[Ωδ,a1,...,an ](x) = Re

[
2sin

(
π
4 ±Θ)

δ∂z̄ F 2
[Ωδ,a1,...,an ]

]
, which is true if x ∈ V [Ωδ]

is adjacent to ∂V [Ωδ] as well (the boundary conductances are defined precisely to preserve

this relation). See also Remark 3.2.8.

Remark 3.2.8. Note that Proposition 3.2.7 applies for x = a1 as well, since, thanks to the singu-

larity (3.2.2), projections of F[Ωδ,a1,...,an ]

(
a1 +e i π4 · δp

2

)
,F[Ωδ,a1,...,an ]

(
a1 +e i 3π

2 ·e i π4 · δp
2

)
(on the

sheet which is cut along R≥0 and has the fixed lift of a1 + δ
2 on the upper side of R≥0) onto the

line iR are equal to −i ; on this sheet, F[Ωδ,a1,...,an ] does show s-holomorphicity between 4 edges

surrounding a1. The singularity effectively transfers the monodromy at face a1 to the vertex

a1 +δ.
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Chapter 3. Massive Scaling Limit

3.2.2 Full-Plane Fermions

We now define the fermion F[Ωδ,a1,...,an ] forΩ=C by taking increasingly bigger balls BR = BR (0),

allowing us to extract informations about the Ising measure on the corresponding discretised

domains.

Lemma 3.2.9. Fixδ> 0 andΘ< 0. There exists a constant C =C (δ,Θ) such that
∣∣F[(BR )δ,a1,...,an ](c)

∣∣≤
C for any c ∈C

([
(BR )δ , a1, . . . , an

])
.

Proof. Discrete Green’s formula implies that

∑
v∈V [(BR )δ]

∆δH•
[(BR )δ,a1,...,an ](v) = sin

(
π
4 −2Θ

)
cos2

(
π
8 +Θ) ∑

e∈∂E [(BR )δ]
∂δνout

H•
[(BR )δ,a1,...,an ] (e) , (3.2.12)

and we can use (3.2.11) on vertices other than a1 +δ for the laplacian and (3.2.7) for the

boundary outer derivatives, so leaving just the laplacian at (a1 +δ) on the left hand side

∆δH•
[(BR )δ,a1,...,an ](a1 +δ) =∑

v ∈ V
[
(BR )δ

]
v 6= a1 +δ

2sin
(π

4
−Θ

)
δ ·

[
A−Θ

3∑
n=0

∣∣∣∣F (
v + i ne iπ/4 δp

2

)∣∣∣∣2

+B−Θ
∣∣∂z̄ F̄

∣∣2
(v)

]

+ ∑
e∈∂E [(BR )δ]

2δsin
(π

4
−2Θ

)∣∣F[(BR )δ,a1,...,an ] (e)
∣∣2

≥ 2sin
(π

4
−Θ

)
A−Θδ

∑
c ∈C

[
(BR )δ

]
c 6= a1 +δ+ i mδ

2

|F (c)|2 (3.2.13)

Note that A−Θ,B−Θ > 0, so we have the desired bound if ∆δH•
[(BR )δ,a1,...,an ](a1 +δ) is bounded.

But by s-holomorphicity, clearly

∆δH•
[(BR )δ,a1,...,an ](a1 +δ) ≤ 16

p
2 max

0≤m≤3
δ

∣∣∣∣∣F[(BR )δ,a1,...,an ]

(
a1 +δ+ e i v π

2

2
δ

)∣∣∣∣∣
2

, (3.2.14)

but the fermion value on the right hand side is bounded by a constant only depending on β by

Proposition 3.2.3.

Given uniform boundedness, we can use diagonalisation to get a subsequential limit F[Cδ,a1,...,an ]

on the whole of [Cδ, a1, . . . , an]. It suffices to show that such a limit must be unique.

Proposition 3.2.10. Any subsequential limit F[Cδ,a1,...,an ] of F[(BR )δ,a1,...,an ] as R →∞

1. shows massive s-holomorphicity and the singularity at a1 + δ
2 as in Proposition 3.2.2,
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3.2. Massive Fermions

2. at infinity: F[Cδ,a1,...,an ] → 0 uniformly and its square integral H[Cδ,a1,...,an ] tends to a finite

constant,

3. has finite discrete ’L2 norm’:

∑
v ∈ V [Cδ]

v 6= a1 +δ

2sin
(π

4
−Θ

)
δ ·

[
A−Θ

3∑
n=0

∣∣∣∣F (
v + i ne iπ/4 δp

2

)∣∣∣∣2
]

(3.2.15)

≤ ∑
v ∈ V [Cδ]

v 6= a1 +δ

∣∣∣∆δH•
[Cδ,a1,...,an ](v)

∣∣∣< cst ·δ<∞,

with constant independent of δ.

Moreover, there is only one such function F[Cδ,a1,...,an ].

Proof. The first entry is immediate from the corresponding properties of F[(BR )δ,a1,...,an ].

The inequality (3.2.15) can be deduced from a uniform bound for the analogue for
∣∣∣∆δH•

[(BR )δ,a1,...,an ]

∣∣∣.
It is bounded independently of R by (3.2.12) and (3.2.14), so monotone convergence gives the

desired inequality for the limit as R →∞.

The infinity behaviour is then immediate from the fact that the sum of
∣∣F[Cδ,a1,...,an ]

∣∣2 along

any line in C\ BR vanishes uniformly as R →∞ by (3.2.15).

If there are two such F[Cδ,a1,...,an ], their difference F̂[Cδ,a1,...,an ] is everywhere s-holomorphic, and

since the sum of
∣∣F̂[Cδ,a1,...,an ]

∣∣2
along any line in C\ BR is finite and decays to zero, the square

integral Ĥ[Cδ,a1,...,an ] is finite and constant at infinity. Ĥ•
[Ωδ,a1,...,an ] is everywhere superharmonic

and is finite at infinity, so H †•
[Ωδ,a1,...,an ] is constant and F †

[Ωδ,a1,...,an ] ≡ 0 .

Fix Θ< 0. On the full plane, we have an explicit characterisation of the one point spinor in

terms of the massive harmonic measure of the slit plane hm0
(1+i )Z2\R<0

: hm0
(1+i )Z2\R<0

(z|Θ) for

z ∈ (1+ i )Z2 is the probability of a simple random walk started at z extinguished at each step

with probability
(
1+ 2sin2 2Θ

cos(4Θ)

)−1
2sin2 2Θ
cos(4Θ) to successfully reach 0 before hitting (1+ i )Z2 ∩R<0.

hm0
(1+i )Z2\R<0

(·|Θ) is the unique Θ-massive harmonic function (in the sense of (3.5.2)) on

(1+ i )Z2 \R≤0 which has the boundary values 1 at 0 and 0 on (1+ i )Z2 ∩R<0 and infinity.

Proposition 3.2.11. Denote the slit planes X+ := {
z ∈ [C,0] : Re

p
z > 0

} ∼= C \R>0 and Y+ :={
z ∈ [C,0] : Im

p
z > 0

}∼=C\R>0. Then

F[Cδ,0](cδ|Θ) =
hm0

(1+i )Z2\R<0

(
c − 3

2 |Θ
)

cδ ∈X+∩C 1 [Cδ,0]

−i hm0
(1+i )Z2\R<0

(1
2 − c|Θ)

cδ ∈Y+∩C i [Cδ,0]
.
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Chapter 3. Massive Scaling Limit

Proof. By Proposition 3.5.1, F[Cδ,0](cδ) restricted to C 1 [Cδ,0] or C i [Cδ,0] is Θ-massive har-

monic, except possibly at the lifts of ±δ
2 (because there is no planar neighbourhood Gδ around

these points in [Cδ,0], see Figure 3.5.1) and 3δ
2 (because F[Cδ,0](cδ) is not s-holomorphic at the

lifts of δ2 ).

From Definition 3.2.1, it is clear that F[Cδ∩BR ,0](cδ) = 0 for any c ∈ C 1 [Cδ,0] on the (lift

of) negative real line and c ∈ C i [Cδ,0] on the (lift of) positive real line, since the complex

phase φa1,...,an

(
γ,c

)
for any γ ∈ ΓCδ∩BR (δ2 ,π(c)) switches sign for the reflection across the real

line γr := {
ē : e ∈ γ}

, and ΓCδ∩BR (δ2 ,π(c)) is invariant under the reflection. We conclude that

F[Cδ,0](cδ) = 0 for c ∈C 1 [Cδ,0] .

Also note that F[Cδ,0](
3δ
2 ) = 1, where 3δ

2 is evaluated at the lift which is on the same sheet as

the fixed lift of δ2 , since the corresponding Ising quantity in (3.2.3) is precisely the ratio of two

adjacent magnetisations (spin 1-point functions); in the infinite volume limit with β>βc , the

ratio tends to 1.

All in all, F[Cδ,0](·|Θ) restricted to X+∩C 1 [Cδ,0] is the massive harmonic function which takes

the boundary values 1 on the lift of 3δ
2 in X+∩C 1 [Cδ,0] and 0 on the lift of the negative real

line and infinity, whence the identification with hm0
(1+i )Z2\R<0

. The same argument applies for

its restriction to Y+∩C i [Cδ,0], noting the boundary value at δ
2 given by (3.2.2).

3.2.3 Massive Complex Analysis: Continuous Fermions and their Uniqueness

We now present the boundary value problem which the limit of our discrete fermions solves.

Since massive models by definition do not possess conformal invariance, we cannot expect

the limit to be holomorphic as in the critical case; instead, it satisfies a particular perturbed

notion of holomorphicity ∂z̄ f = m f̄ , which belongs to various similar families of functions

dubbed generalised analytic or pseudoanalytic in writings of, e.g., L. Bers and I. N. Vekua.

Here we use a small excerpt of the established theory, saying that f is holomorphic up to a

continuous factor. Although any nonzero smooth function is trivially pseudoanalytic (with the

non-constant complex coefficient ∂z̄ / f̄ ), fixing the governing equation ∂z̄ f = m f̄ allows us to

use known functions which satisfy the same equation to successively cancel out singularities;

in other words, we have a generalised version of Laurent series. Imposing a real constant m in

addition yields the possibility to define the line integral Re
∫

f 2d z.

In analogy with the discrete terminology, we refer to our particular continuous condition

(m)-massive holomorphicity. We will assume m < 0 is fixed throughout this section.

Lemma 3.2.12 (Similarity Principle). Let D be a bounded domain in C. If a continuously

differentiable function f : D →C is m-massive meromorphic, i.e. satisfies ∂z̄ f := 1
2
∂
∂x f + i

2
∂
∂y f =

m f̄ except on a finite set, there exists a Hölder continuous function s on Ū such that e−s f is

holomorphic in U .

In particular, f only vanishes at isolated points.
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3.2. Massive Fermions

Proof. See [Ber56, Section 10] or [Vek62, Section III.4]; we also explain the underlying idea

and explicitly carry out specific cases in Section 3.4.1, e.g. the proof of Lemma 3.4.4.

Corollary 3.2.13. There exists a family of m-massive holomorphic functions Z 1
n , Z i

n for each

n ∈Z such that as z → 0

Z 1
n(z) ∼ zn , Z i

n(z) ∼ i zn ,

and any function f that is m-massive holomorphic in a punctured neighbourhood of a can be

expressed near a as formal power series in Zn , i.e.

f (z) =∑
n

[
A1

n Z 1
n(z −a)+ Ai

n Z i
n(z −a)

]
(3.2.16)

for real numbers A1,i
n . If f (z) is a spinor defined on a double cover ramified at a, f admits

formal power series in analogous functions indexed by half-integers Zn+ 1
2

. These expansions

are uniformly convergent in a small disc or annulus around a, respectively if f has a singularity

at a or not.

Proof. This corollary depends on the fact that s in Lemma 3.2.12 is continuous, so that if a

massive holomorphic function is o((z − a)n) at a then it is automatically O((z − a)n+1); see

[Ber56, Section 5].

Remark 3.2.14. There is no canonical choice of the ‘local formal powers’ Z 1,i
n . We will need

explicit functions to expand continuous fermions around their singularities and analyse them

further to derive Painlevé III in Section 3.4; we hereby fix the following radially symmetric

functions for half-integers ν:

Z 1
ν (r e iθ) := Γ(ν+1)

|m|ν
[

e iνθ Iν(2|m|r )+ (sgnm) ·e−i (ν+1)φIν+1(2|m|r )
]

, (3.2.17)

Z i
ν(r e iθ) := Γ(ν+1)

|m|ν
[

i e iνθ Iν(2|m|r )− i (sgnm) ·e−i (ν+1)φIν+1(2|m|r )
]

,

where In is the modified Bessel function of the first kind. One can easily verify the desired

asymptotics and massive holomorphicity from the corresponding facts about Iν, namely that

Iν(r ) r→0∼ Γ(ν+1)
( r

2

)ν and I ′ν(r ) = Iν±1(r )± ν
r Iν(r ) [DLMF, Chapter 10] (See Section 3.4 for

useful formulae, and note also that ∂z̄ = 1
2 e iθ

(
∂r + i r−1∂θ

)
).

As a special case, we have Z 1
− 1

2

(z) = e2m|z|p
z

.

Proposition 3.2.15. The following boundary value problem on a bounded smooth simply

connected domainΩ has at most one solution:

f : [Ω, a1, . . . , an] →C satisfies

1. f is continuously differentiable, square integrable, and ∂ f = m f̄ in [Ω, a1, . . . , an],

2. f (z) ∈
√
ν−1

out (z)R on the lift of ∂Ω, where νout (z) is the outer normal at π(z) ∈ ∂Ω,
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Chapter 3. Massive Scaling Limit

3. (z −a1)1/2 f (z) → 1 as z → a1, and

4. ∃B j ∈R such that (z −a j )1/2 f (z) → iB j as z → a j for j = 2, . . . ,n.

Proof. If there are any two such functions f1, f2, applying Green-Riemann’s formula to their

difference f̂ onΩr =Ω\∪ j Br (a j ) for small r > 0 yields∮
∂Ωr

f̂ 2d z = 2i
Ï
Ωr

∂z̄ f̂
2 = 2i

Ï
Ωr

2m| f̂ |2d z ∈ iR. (3.2.18)

f̂ ∼ cst · (z −a1)1/2 near a1 in view of Corollary 3.2.13 so
∮
∂Br (a1) f̂ 2d z tends to zero as r → 0,

and f̂ → iB̂ j (z −a j )−1/2 for some B̂i ∈R as z tends to any other a j . On the inner circles, we

have ∮
∂Br (a j )

f̂ 2d z
r→0−−−→−2πiB̂2

j ∈ iR for j = 2, . . . ,n, (3.2.19)

whereas the boundary condition on the lift of ∂Ω readily gives 1
i

∮
∂Ω f̂ 2d z = ∮

∂Ω | f̂ |2d s ≥ 0.

Therefore

0 ≤ 1

i

∮
∂Ω

f̂ 2d z = 2
Ï
Ωr

2m| f̂ |2d z −∑
j

2πB̂ j
2 ≤ 0,

so f̂ ≡ 0.

Remark 3.2.16. As in the proof of the Proposition 3.2.15, it is easy to show that h := Re
∫

f 2d z is

globally well-defined inΩ\ {a1, . . . , an}. In terms of h, the boundary condition f (z) ∈
√
ν−1

outR

and the asymptotics around ai is equivalent to

1. h is constant on ∂Ω and there is no x0 ∈ ∂Ω such that h > h(∂Ω) in a neighbourhood of

x0, and

2. h is bounded below near a2, . . . , an and h†(w) := Re
∫ w

(
f (z)−Z 1

− 1
2

(z −a1)

)2

d z is single

valued and bounded near a1.

We note that this boundary problem can easily be extended to the case whereΩ=C, by requir-

ing that h be finite and constant at infinity (we will in fact require that f decays exponentially

fast, see also Lemma 3.3.2).

We now define quantities which reflect the geometry of Ω exploiting the boundary value

problem above, which will turn out to be directly related to the Ising correlations through the

connection which is precisely our main convergence result in Section 3.3.2. Determination of

these quantities through isomonodromic deformation is the main subject of Section 3.4.

Definition 3.2.17. Given a solution f[Ω,a1,...,an ] of the boundary value problem presented in

Proposition 3.2.15 (the continuous massive fermion), define A 1,i
Ω =A 1,i

Ω (a1, . . . , an |m) as the
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real coefficients in the expansion

f[Ω,a1,...,an ](z) = Z 1
− 1

2
(z −a1)+2A 1

ΩZ 1
1
2

(z −a1)+2A i
ΩZ i

1
2

(z −a1)+O
(
(z −a)3/2) . (3.2.20)

In addition, in the case where n = 2, define BΩ =BΩ (a1, a2|m) as the coefficient

f[Ω,a1,a2](z) =BΩZ i
− 1

2
(z −a1)+O

(
(z −a)1/2) . (3.2.21)

For notational convenience, we do not assume BΩ > 0 as in [CHI15]; instead, its sign depends

on the sheet choice of Z i
− 1

2

(z −a1), which we will explicitly fix whenever needed.

3.3 Discrete Analysis: Scaling Limit

In this section, we show the convergence of the discrete fermions introduced in Section 3.2

to their continuous counterparts. Then we show that the family of discrete fermions as δ ↓ 0

is precompact in Section 3.3.1, whose limit satisfies a unique characterisation as laid out in

Proposition 3.2.15. These suffice to show convergence to the desired limit. Throughout this

section, we assume a continuous mass m < 0 is fixed.

3.3.1 Bulk Convergence

We finally undertake convergence of the discrete fermion F[Ωδ,a1,...,an ] to its continuous coun-

terpart f[Ω,a1,...,an ] in scaling limit. First, we need to interpolate the discrete function defined on

[Ωδ, a1, . . . , an] on the continuous domain [Ω, a1, . . . , an]. While any reasonable interpolation

(e.g. linear interpolation used in many papers dealing with massless case) should converge to

the unique continuous limit, we will assume an interpolation scheme with a continuously dif-

ferentiable F[Ωδ,a1,...,an ] as an easy way to show that the limit itself is continuous differentiable.

While we do not explicitly carry it out, we could show the limit is smooth by using arbitrarily

more regular interpolation scheme.

Proposition 3.3.1. SupposeΩ is bounded, simply connected with smooth boundary or C. For

any compact subset K ⊂Ω, any infinite collection
( 2
πδk

)−1/2
F[
Ωδk

,a1,...,an

] =: f[
Ωδk

,a1,...,an

] with

δk ↓ 0 has a subsequence that (suitably interpolated as above) converges in C 1(K )-topology to a

continuously differentiable limit.

Proof. By Arzelà-Ascoli, it suffices to show that the discrete derivatives

δ−1∂δx f[Ωδ,a1,...,an ](z) := δ−1 [
f[Ωδ,a1,...,an ](z +2δ)− f[Ωδ,a1,...,an ](z)

]
;

δ−1∂δy f[Ωδ,a1,...,an ](z) := δ−1 [
f[Ωδ,a1,...,an ](z +2δi )− f[Ωδ,a1,...,an ](z)

]
,

are equicontinuous on K . In view of Proposition 3.5.4, it suffices to show that the ’discrete L2
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Chapter 3. Massive Scaling Limit

norm’
∑

c∈C (Kδ)

∣∣ f[Ωδ,a1,...,an ](c)
∣∣2
δ2 is bounded by a universal number.

Apply the discrete Green’s formula as in (3.2.12) to H[Ωδ,a1,...,an ], then we get the following

analogue to (3.2.15) (dividing both sides by δ),

cst ≥ δ−1∆δH•
[Ωδ,a1,...,an ](a1 +δ) (3.3.1)

≥ 2sin
(π

4
−Θ

) ∑
c ∈C [Ωδ]

c 6= a1 +δ+ i mδ
2

δA−Θ
∣∣ f[Ωδ,a1,...,an ] (c)

∣∣2

+ ∑
e∈∂E [Ωδ]

2δsin
(π

4
−2Θ

)∣∣ f[Ωδ,a1,...,an ] (e)
∣∣2 ,

≥ 2sin
(π

4
−Θ

) ∑
c ∈C [Ωδ]

c 6= a1 +δ+ i mδ
2

δA−Θ
∣∣ f[Ωδ,a1,...,an ] (c)

∣∣2 (3.3.2)

and since A−Θ ∼−2
p

2mδ, we have the desired L2 bound from the sum ofδA−Θ
∣∣ f[Ωδ,a1,...,an ] (c)

∣∣2.

With a sequence Km of increasing compact subsets such that
⋃

m Km =Ω\{a1, . . . , an} and using

diagonalisation, we can find a global subsequential limit f[Ω,a1,...,an ] with uniform convergence

in compact subsets of Ω. We finish the proof of convergence by showing that a limit must

satisfy the boundary value problem of Proposition 3.2.15, and thus is unique. We note that

continuous differentiability, square integrability and the condition ∂z̄ f[Ω,a1,...,an ] = m f[Ω,a1,...,an ]

follows straightforwardly from Proposition 3.5.1 and Remark 3.5.2, so we are left to verify the

boundary conditions, as laid out in Remark 3.2.16.

We first treat the following explicit case:

Lemma 3.3.2. The one point spinor f[Cδ,0] converges to Z 1
− 1

2

(z = r e iθ) = e2mrp
z

uniformly in

compact subsets of [Cδ,0].

Proof. We show that a subsequential limit f[C,0] satisfies the unique characterisation of Remark

3.2.16, and thus has to be equal to Z 1
− 1

2

, an explicit solution. We first show that f[C,0] vanishes

at infinity sufficiently fast to yield that h[C,0] := Re
∫

f 2
[C,0]d z is constant at infinity. But this

follows from the identification of the discrete spinor with the massive harmonic measure (the

hitting probability of an extinguished random walk) of the tip of a slit in Proposition 3.2.11

and the exponential estimates of Proposition 3.5.4.

It now remains to identify the singularity at 0 as f[C,0] ∼ z−1/2. Note that the massless harmonic

measure [Kes87, LaLi04] and thus the spinor [CHI15, Lemma 2.14] (for the identificationϑ(δ) =( 2
πδ

)1/2
, see [GHP19, Lemma 5.14]) show that exact behaviour. Since the hitting probability

of a massive random walk is dominated by the hitting probability of a simple random walk,
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f[C,0] · z1/2 z→0−−−→ α for some α ∈ [0,1]. But the probability that the massive random walk is

extinguished can be made arbitrarily close to 0 as length scale becomes negligible compared

to 1
|m| , so the two harmonic measures become asymptotically equal as z → 0 and we conclude

α= 1.

By translation invariance of its definition, f[Cδ,a1](z) converges to Z 1
− 1

2

(z − a1) uniformly in

compact subsets of [C, a1].

Proposition 3.3.3. A subsequential limit f[Ω,a1,...,an ] of f[Ωδ,a1,...,an ] satisfies the conditions of

Remark 3.2.16, and thus is unique.

Proof. We first supposeΩ 6=C. Consider the renormalised discrete square integral h[Ωδ,a1,...,an ] :=( 2
πδ

)−1
H[Ωδ,a1,...,an ]. By Propositions 3.2.7 and 3.2.10, h•

[Ωδ,a1,...,an ] = δ−1H•
[Ωδ,a1,...,an ] is discrete

superharmonic on V [Ωδ] \ {a1 +δ} and takes the boundary value 0 on ∂V [Ωδ]. Moreover, by

Proposition 3.3.1, ∆δh•
[Ωδ,a1,...,an ](a1 +δ) ≤ cst =: c0. Thus, by superharmonicity, h•

[Ωδ,a1,...,an ] is

lower bounded by c0Gδ, where Gδ is the domain Green’s function Gδ :=GV [Ωδ](·, a1 +δ) with

Dirichlet boundary condition on ∂V [Ωδ].

Since Gδ is O(δ) on any vertex aint ∈ V [Ωδ] adjacent to a ∈ V [Ωδ] (Lemma 3.5.3), we have that

O(δ) = c0Gδ(aint) ≤ h•
[Ωδ,a1,...,an ](aint) ≤ 0 and h•

[Ωδ,a1,...,an ](aint) = − ∣∣ f[Ωδ,a1,...,an ]
( aint+a

2

)∣∣2
δ =

O(δ) by (3.2.7). We see that therefore f[Ωδ,a1,...,an ] is uniformly bounded on boundary edges

and corners (see Figure 3.1.1). Since
∣∣ f

∣∣2 is subharmonic by (3.5.5), f[Ωδ,a1,...,an ] is uniformly

bounded onΩr :=Ω\
⋃

j Br (a j ) for small fixed r > 0. Therefore by equicontinuity h[Ωδ,a1,...,an ] →
h[Ω,a1,...,an ] uniformly onΩr , and h[Ω,a1,...,an ] is continuous up to the boundary. Note that since

∂z̄ f[Ω,a1,...,an ] = m f[Ω,a1,...,an ], h[Ω,a1,...,an ] = Re
∫

f 2
[Ω,a1,...,an ]d z satisfies

∆h[Ω,a1,...,an ] = 4∂z̄∂z h[Ω,a1,...,an ] = 2∂z̄ f 2
[Ω,a1,...,an ] = 4m

∣∣ f[Ω,a1,...,an ]
∣∣2 . (3.3.3)

We now verify the two remaining conditions of the boundary value problem.

1. h[Ω,a1,...,an ] in Ωr is a continuous solution of a Poisson equation with bounded data

4m
∣∣ f[Ω,a1,...,an ]

∣∣2 and smooth boundary data; h[Ω,a1,...,an ] is continuously differentiable

up to the boundary thanks to standard Green’s function estimates (e.g. [GiTr15, The-

orem 4.3]). From [ChSm12, Remark 6.3], which only uses the superharmonicity (in

their convention, subharmonicity) of h•
[Ωδ,a1,...,an ] and does not depend on a particular

property of h◦
[Ωδ,a1,...,an ], we see that there is no neighbourhood of x0 ∈ ∂Ωwhere h > 0.

2. h[Ωδ,a1,...,an ] is bounded below by cGδ, which is bounded from negative infinity away

from a1 in the scaling limit. So near a2, . . . , an , h[Ω,a1,...,an ] is bounded below. For the

asymptotic near a1, note that f †
[Ωδ,a1,...,an ] := f[Ωδ,a1,...,an ] − f[Cδ,a1] is s-holomorphic near

a1 with f †
[Ωδ,a1,...,an ](a1 + δ

2 ) = 0, so by Proposition 3.5.1 it is everywhere massive har-

monic (unlike in the proof of Proposition 3.2.11, the zero prevents a singularity near
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Chapter 3. Massive Scaling Limit

monodromy; see also [GHP19, Remark 2.6]). But both f[Ωδ,a1,...,an ], f[Cδ,a1] are uniformly

bounded, say, in a discrete circle Sr := Br+5δ(a1) \ Br (a1) for small r > 0. As above, we

conclude that f †
[Ωδ,a1,...,an ] is uniformly bounded in Br (a1). Given Lemma 3.3.2, this

suffices to show boundedness and well-definedness for the continuous limits f †,h†.

If Ω= C, we first show that f[Ωδ,a1,...,an ] → 0 at infinity uniformly in δ and h[Ωδ,a1,...,an ] is con-

stant and finite at infinity using Proposition 3.5.4 and the uniform L2 bound (3.3.1). Since

f[Ωδ,a1,...,an ] → 0 at infinity uniformly in δ, we may compare with the Green’s function of a

suitably large ball to obtain lower boundedness around a2, . . . , an . The above proof applies

near a1.

3.3.2 Analysis near the Singularity

To show convergence of F[Ωδ,a1,...,an ]

(
a1 + 3δ

2

)
, we model the expansion of f[Ω,a1,...,an ] around

a1 from Definition 3.2.17 in the discrete setting, and carefully analyse the magnitude of the

difference. The candidate for discrete Z 1
− 1

2

is clear: F[Cδ,a1] is able to cancel out the singularity

of F[Ωδ,a1,...,an ], and converges to Z 1
− 1

2

by Lemma 3.3.2.

Then, we need to build a discrete analogue of Z 1
1
2

(or rather, some massive s-holomorphic

function that has square root behaviour around 0). Following [CHI15, (3.12)], we define a

discrete function G[Cδ,a1] by discrete integrating the F[Cδ,a1].

Proposition 3.3.4. Construct the spinor G[Cδ,a1] : C 1 [Ωδ, a1] →R by

G[Cδ,a1] (z) := δ
∞∑

j=0
Γ j F[Cδ,a1](z −2 jδ), (3.3.4)

where Γ(δ|Θ) := tan2
(
π
4 +2Θ

)
, and z −2 jδ is taken on the same sheet as z if π(z) ∉ a1+R>0 or if

π(z),π
(
z −2 jδ

) ∈ a1+R>0, while F[Cδ,a1](z−2 jδ) = 0 naturally as soon as π
(
z −2 jδ

) ∈ a1+R<0

(cf. Proposition 3.2.11).

It is massive harmonic with coefficient M 2
H on X+∩C 1 [Cδ,0], and

( 2
πδ

)−1/2
G[Cδ,a1] converges

uniformly in compact subsets of [C, a1] to g[C,a1] which has the asymptotic behaviour g[C,a1](z) ∼
Re

p
z −a1 near a1.

Proof. We first show that the discrete integrandΓ j F[Cδ,a1](z−2 jδ) is summable. Without loss of

generality, work on the sheet where F[Cδ,a1](z −2 jδ) > 0. By Proposition 3.2.11, F[Cδ,a1](z −2 jδ)

is the probability of a massive random walk started at the real corner z −2 jδ and extinguished

at each step with probability
(
1+ 2sin2 2Θ

cos(4Θ)

)−1
2sin2 2Θ
cos(4Θ) surviving to hit a1 + 3δ

2 before a1 +R<0;

denote by h j the probability of the same event withΘ= 0, i.e. the massless harmonic measure.

Project the two-dimensional walk into two independent one-dimensional walks respectively

in the x, y-directions with step lengths δ. If p2 j is the probability of the one-dimensional
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3.3. Discrete Analysis: Scaling Limit

massive random walk started at x −2 jδ surviving to hit x, we have the upper bound

Γ j F[Cδ,a1](z −2 jδ) ≤ Γ j p2 j h j .

However, p2 j is the massive harmonic measure of 0 as seen from −2 j in Z≤0. From the

boundary conditions p0 = 1, p−∞ = 0 and massive harmonicity in 1D p j−2 + p j −2p j−1 =
4sin2 2Θ

cos4Θ p j−1, it is straightforward to verify p j = Γ− j /2, and we have Γ j F[Cδ,a1](z −2 jδ) ≤ h j . By

[CHI15, Lemma 3.4], h j =O( j−3/2) uniformly for z in a compact subset, and thus the sum is

finite.

We know that
( 2
πδ

)−1/2
F[Cδ,a1](z ′) converges to Re e2mr ′p

z ′ on C 1 [Ωδ, a1] uniformly in compact

subsets away from a1. Also note that in the scaling limit x−2 jδ= x ′, Γ j converges to e−2m(x−x ′).

By above, if z = x + i y is in a compact subset, the discrete integrand Γ
x−x′

2δ F[Cδ,a1](z ′) decays to

zero as x ′ →−∞ uniformly in z, so we conclude that g[Cδ,a1] := ( 2
πδ

)−1/2
G[Cδ,a1] converges

g[Cδ,a1]
(
z = x + i y

) δ→0−−−→ 1

2

∫ x

−∞
e2m(x ′−x)Re

e2mr ′√
x ′+ i y ′ d x ′, (3.3.5)

uniformly for z in a compact subset. As z → 0, we can uniformly bound e2m(x ′−x)e2mr ′
close to

1, which gives the asymptotic of g[C,a1] near z.

Massive harmonicity is clear unlessπ(z) ∈R>0. Ifπ(z) ∈ a1+R>0,
(
∆δ−M 2

H

)
F[Cδ,a1](z−2 jδ) = 0

if π(z −2 jδ) ∈ a1 + 3δ
2 +R≥0 while F[Cδ,a1](z −2 jδ) = 0 if π(z −2 jδ) ∈ a1 +R<0, thus

(
∆δ−M 2

H

)
G[Cδ,a1] (z) = δ

∞∑
j=b(z−a1)/2δc

Γ j
(
∆δ−M 2

H

)
F[Cδ,a1](z −2 jδ)

= δΓb(z−a1)/2δc ∞∑
j=0
Γ j

(
∆δ−M 2

H

)
F[Cδ,a1](a1 + 3δ

2
−2 jδ),

where the laplacian is taken on the planar slit domain X+∩C 1 [Cδ,0] with zero boundary

values on the slit.

We need to show that the last sum vanishes.

N∑
j=0
Γ j

(
∆δ−M 2

H

)
F[Cδ,a1](a1 + 3δ

2
−2 jδ)

=
N∑

j=0
Γ j

∑
s=±1

[
F[Cδ,a1](a1 + 3δ

2
− (2 j + s)δ+ iδ)− tan

(π
4
− s2Θ

)
F[Cδ,a1](a1 + 3δ

2
−2 jδ)

]

+
N∑

j=0
Γ j

∑
s=±1

[
F[Cδ,a1](a1 + 3δ

2
− (2 j + s)δ− iδ)− tan

(π
4
+ s2Θ

)
F[Cδ,a1](a1 + 3δ

2
−2 jδ)

]
,

where two sums are done respectively above and below the slit. By massive discrete holo-

morphicity, we can convert the differences of real corner values into differences of imaginary

corner values: we need to be careful, since the points in X+ directly above and below the cut
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are on opposite sheets. We can in fact think of a1 + δ
2 as lying on the slit, since the singularity

(3.2.2) ascribes two values at a1+ δ
2 , coming from above and below a1+R. Above the slit, (3.5.1)

implies

∑
s=±1

[
F[Cδ,a1](a1 + 3δ

2
− (2 j + s)δ+ iδ)− tan

(π
4
− s2Θ

)
F[Cδ,a1](a1 + 3δ

2
−2 jδ)

]
=− i

[
F[Cδ,a1](a1 + 3δ

2
−2 jδ+ iδ)− tan

(π
4
+2Θ

)
F[Cδ,a1](a1 + 3δ

2
− (2 j −1)δ)

]
+ i

[
F[Cδ,a1](a1 + 3δ

2
−2 jδ+ iδ)− tan

(π
4
−2Θ

)
F[Cδ,a1](a1 + 3δ

2
− (2 j +1)δ)

]
=i tan

(π
4
+2Θ

)
F[Cδ,a1](a1 + 3δ

2
− (2 j −1)δ)− i tan

(π
4
−2Θ

)
F[Cδ,a1](a1 + 3δ

2
− (2 j +1)δ).

Thanks to the factor of Γ j , the sum telescopes (see Figure 3.5.1)

N∑
j=0
Γ j

∑
s=±1

[
F[Cδ,a1](a1 + 3δ

2
− (2 j + s)δ+ iδ)− tan

(π
4
− s2Θ

)
F[Cδ,a1](a1 + 3δ

2
−2 jδ)

]
=i tan

(π
4
+2Θ

)
F[Cδ,a1](a1 + 5δ

2
)− iΓN tan

(π
4
−2Θ

)
F[Cδ,a1](a1 + 3δ

2
− (2N +1)δ).

The sum below the slit analogously gives

N∑
j=0
Γ j

∑
s=±1

[
F[Cδ,a1](a1 + 3δ

2
− (2 j + s)δ− iδ)− tan

(π
4
+ s2Θ

)
F[Cδ,a1](a1 + 3δ

2
−2 jδ)

]
=−i tan

(π
4
+2Θ

)
F[Cδ,a1](a1 + 5δ

2
)+ iΓN tan

(π
4
−2Θ

)
F[Cδ,a1](a1 + 3δ

2
− (2N +1)δ),

where a1 + 3δ
2 − (2N +1)δ is approached from below the sheet. Summing the two and taking

a1 + 3δ
2 − (2N +1)δ from above the slit,

N∑
j=0
Γ j

(
∆δ−M 2

H

)
F[Cδ,a1](a1 + 3δ

2
−2 jδ) =−2iΓN tan

(π
4
−2Θ

)
F[Cδ,a1](a1 + 3δ

2
− (2N +1)δ).

Now, by Proposition 3.2.11, −i ·F[Cδ,a1](a1 + 3δ
2 − (2N +1)δ) is the massive harmonic measure

of the point a1+ δ
2 in the discrete planeY+∩C i [Cδ,0] slit by a1+R>0. −i ·ΓN F[Cδ,a1](a1+ 3δ

2 −
(2N +1)δ) =O(N−1/2) since we may bound it by the massless harmonic measure as above, and

the sum decays to zero, as desired.
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Theorem 3.3.5. As δ→ 0, for a1, . . . , an at a definite distance from the boundary and each other,

we have uniformly

F[Ωδ,a1,...,an ]

(
a1 + 3δ

2

)
= 1+2δA 1

Ωδ
(a1, . . . , an)+o(δ), (3.3.6)∣∣∣∣F[Ωδ,a1,a2]

(
a2 + δ

2

)∣∣∣∣= |BΩ(a1, a2)|+o(1). (3.3.7)

Proof. We adapt the strategy of [CHI15, Subsection 3.5]; the massive harmonic nature of

our functions are hardly visible since at short length scale massive hitting probabilities ap-

proach simple random walk hitting probabilities. While we try to use the same notation

for corresponding notions where appropriate, the functions we work with are all massive

harmonic.

Note that, due to explicit constructions in Propositions 3.2.11 and 3.3.4, (3.3.6) can be written

as

F[Ωδ,a1,...,an ]

(
a1 + 3δ

2

)
= F[Cδ,a1]

(
a1 + 3δ

2

)
+2A 1

Ωδ
(a1, . . . , an)G[Cδ,a1]

(
a1 + 3δ

2

)
+o(δ).

Define the reflection R (Ω) of Ω across the line a1 +R. Then there is a ball B(a1) around

a1 which belongs to Ω∩R (Ω). Denote Λ to be the lift of the slit neighbourhood B(a1) \

[a1 +R<0] such that both F[Ωδ,a1,...,an ],F[R(Ωδ),a1,...,an ] have their fixed lift of the path origin

a1 + δ
2 on Λ. By symmetry arguments about the path set Γ(a1 + δ

2 , z) similar to the proof

of Proposition 3.2.11, we have F[Ωδ,a1,...,an ]

(
a1 + 3δ

2

)
= F[R(Ωδ),a1,...,an ]

(
a1 + 3δ

2

)
, whereas the

boundary values F[Ωδ,a1,...,an ](z),F[R(Ωδ),a1,...,an ](z) on the slit π(z) ∈ a1 +R<0 cancel out to give

F[Ωδ,a1,...,an ](z)+F[R(Ωδ),a1,...,an ](z) = 0 for z ∈C 1 [Ωδ, a1]∩∂Λ (see also [CHI15, Subsection 3.5]).

Then, restricted to C 1 [Ωδ, a1]∩Λ, (recall g[Cδ,a1] := ( 2
πδ

)−1/2
G[Cδ,a1])

Kδ := 1

2

[
f[Ωδ,a1,...,an ] + f[R(Ωδ),a1,...,an ]

]− f[Cδ,a1] −2A 1
Ωδ

(a1, . . . , an) g[Cδ,a1],

is everywhere massive harmonic with zero boundary values on the slit C 1 [Ωδ, a1]∩∂Λ. We

have to show

Kδ(a1 + 3δ

2
) = f[Ωδ,a1,...,an ](a1 + 3δ

2
)−1−2A 1

Ωδ
(a1, . . . , an)δ= o(δ1/2).

Noting the expansion of Definition 3.2.17, we see that, onΛ, away from a1,

Kδ→
1

2

[
f[Ω,a1,...,an ] + f[R(Ω),a1,...,an ]

]−Z 1
− 1

2
−2A 1

Ωδ
(a1, . . . , an)Re

p
z −a1 = o

(
(z −a1)1/2) ,

so on the discrete circle Sr = Br+5δ(a1) \ Br (a1) for r > 0, maxSr |Kδ| = o(r 1/2) as r → 0. Sharp

discrete Beurling estimate (see [CHI15, (3.4)] for the form used here) for harmonic functions

may be used to dominate the value of the massive harmonic function Sδ at a1 + 3δ
2 , and we
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have ∣∣∣∣Kδ(a1 + 3δ

2
)

∣∣∣∣≤ cst ·δ1/2r−1/2 max
Sr

|Kδ| = cst ·δ1/2o(1),

where o(1) holds for r → 0. We conclude the right hand side is o(δ1/2) as δ→ 0.

For (3.3.7), without loss of generality assume BΩ(a1, a2) > 0. Define this time R (Ω) as the

reflection ofΩ across a2 +R. As above, writeΛ for the lift of the slit disc B(a2) \ [a2 +R<0] such

that we simultaneously define F[Ωδ,a1,a2](a2 + δ
2 ) = F[R(Ωδ),a1,a2](a2 + δ

2 ) =: iBδ with Bδ > 0.

Again, by symmetry, f[Ωδ,a1,a2] + f[R(Ωδ),a1,a2] is zero on the boundary ∂Λ∩C i [Ωδ, a1, a2], i.e.

the lift of a2 +R<0. Define the massive harmonic measure of the point a1 + δ
2 in the lattice

Λ∩C i [Ωδ, a1, a2] as Wδ. Then define

Tδ := 1

2

[
F[Ωδ,a1,...,an ] +F[R(Ωδ),a1,...,an ]

]− iBδWδ,

which is massive harmonic onΛ∩C i [Ωδ, a1, a2]\
{

a2 + δ
2

}
, takes the value 0 on ∂Λ∩C i [Ωδ, a1, a2]

and
{

a2 + δ
2

}
. Since 1

2

[
f[Ωδ,a1,...,an ] + f[R(Ωδ),a1,...,an ]

]
restricted to the imaginary corners con-

verges to a continuous limit with asymptotic i ·Re
BΩδ

(a1,a2)p
z−a2

+o((z −a2)−1/2) on the discrete cir-

cle Sr = Br+5δ(a2) \ Br (a2), it is easy to see that unless Bδ→BΩ(a1, a2) and Tδ
(
a2 + δ

2

)
= o(1),

we can find a point in the bulk which is greater than any value on the boundary Sr , contradict-

ing the maximum principle; see also [CHI15, (3.23)].

3.4 Continuum Analysis: Isomonodromy and Painlevé III

3.4.1 Continuous Analysis of the Coefficients

In this section, we carry out analysis of the continuum coefficients such as AΩ,BΩ needed

for the proof of the main theorem and the derivation of the Painlevé III transcendent in the

next section. We will assume that a continuous mass parameter m < 0 is fixed throughout this

section.

Preliminaries: Massive Cauchy Formula.

In Section 3.2.3, we have seen that massive holomorphic functions admit a generalisation of

Laurent-type expansions. Here we give explicit formulae related to the formal powers Z 1,i
ν and

note that a Cauchy-type integral formula holds.

Recall ∂z = 1
2 e−iθ

(
∂r − i r−1∂θ

)
,∂z̄ = 1

2 e iθ
(
∂r + i r−1∂θ

)
. The following holds ([DLMF, Section
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10]):

I ′ν(r ) = Iν±1(r )± ν

r
Iν(r ),

−2
sinνπ

πr
= Iν(r )I−ν−1(r )− Iν+1(r )I−ν(r ). (3.4.1)

Define Wν(r e iθ) := e iνθ Iν (2 |m|r ). The formal powers Z 1,i
ν defined in can be written as

Z 1
ν = Γ(ν+1)

|m|ν
(
Wν+

(
sgnm

)
Wν+1

)
, (3.4.2)

Z i
ν =

Γ(ν+1)

|m|ν
(
iWν− i

(
sgnm

)
Wν+1

)
.

Proposition 3.4.1 ([Ber56, Section 6]). Let f is an m-massive holomorphic function defined on

a ramified disk [BR (a), a]. The coefficients A1,i
ν of Z 1,i

ν in the expansion (3.2.17) may be extracted

by the line integrals:

A1
ν =

π

4 |m|ν2 Re
∮

C
f (z)Z i

−1−ν(z −a)d z, (3.4.3)

Ai
ν =− π

4 |m| (1+ν)2 Re
∮

C
f (z)Z 1

−1−ν(z −a)d z,

where the line integral is taken on any smooth curve C going once around a.

Proof. As in the discrete case, if f , g are m-massive holomorphic functions, the real part

Re
∫

f ·g d z is well defined: indeed, the increment around a closed curve ∂D inclosing a region

D is
∫
∂D f · g d z = 2i

∫
∂z̄ ( f g )d 2z = 2i

∫
mRe

(
f g

)
d 2z ∈ iR by the Green-Riemann formula. So

the integral (3.4.3) has a well-defined value regardless of choice of C .

We will take C = ∂Br (a) for some small r > 0. In view of the definition (3.4.2), it is straight-

forward to verify first that any line integral of the form Re
∫

C Z 1
νZ 1

ν′d z,Re
∫

C Z i
νZ i

ν′d z vanish.

Similarly one can verify the mixed integral

Re
∫

C
Z 1
νZ i

ν′d z = δν+ν′,−1
−4 |m|ν2

π
,

with the help of (3.4.1) and the standard Gamma function equality [DLMF, Section 5.5]

Γ(z)Γ(−1− z) = Γ(z)Γ(1− z)

z(1+ z)
= 1

z(1+ z)

π

sin zπ
.

Finally, we note the derivatives of the formal powers.

∂r Wν(r e iθ) = e iνθ ·2 |m| ·
(
Iν±1(2 |m|r )± ν

2|m|r Iν(2 |m|r )
)

and ∂θWν(r e iθ) = iνe iνθ Iν (2 |m|r ),
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and we see that

∂zWν = |m|Wν−1,∂z̄Wν = |m|Wν+1,

and the corresponding identities for Z 1,i
ν follow. In fact, we will record, noting ∂x = ∂z +∂z̄ ,∂y =

i (∂z −∂z̄ ),

∂x Z 1
ν = νZ 1

ν−1 + (ν+1)−1m2Z 1
ν+1,∂x Z i

ν = νZ i
ν−1 + (ν+1)−1m2Z i

ν+1,

∂y Z 1
ν = νZ i

ν−1 − (ν+1)−1m2Z i
ν+1,∂y Z i

ν =−νZ 1
ν−1 + (ν+1)−1m2Z 1

ν+1.

Preliminaries: Cauchy Transform and Harmonic Conjugate.

To work with generalised analytic functions, the Cauchy transformC=CΩ : t (·) 7→ − 1
π

∫
Ω

t (w)
w−z d 2w

will be used as the inverse of the derivative ∂z̄ . Define the Hölder seminorm [t ]Cα(Ω) (w) :=
supz∈Ω

|t (w)−t (z)|
|w−z|α , [t ]Cα(Ω) := supw∈Ω [t ]Cα(Ω) and the norm |t |Cα(Ω) := |t |C (Ω) + [t ]Cα(Ω). The

following estimates are standard and may be shown by direct analysis of the kernel 1
w−z .

Proposition 3.4.2. Let B = Br (z) be a ball of radius r > 0.

• If g ∈ Lp (B) for some p > 2, Cg ∈ Cα(C) for α = p−2
p , holomorphic outside of B, and

vanishes at infinity, with∣∣Cg
∣∣≤ cst · rα

∣∣g ∣∣
Lp (B) ;

[
Cg

]
Cα(C) ≤ cst · ∣∣g ∣∣

Lp (B) , (3.4.4)

where the constants only depend on p;

• If g ∈Cα(B), Cg is differentiable at z, with∣∣∇Cg (z)
∣∣≤ cst

(∣∣g (z)
∣∣+ rα

[
g
]

Cα(B) (z)
)

; (3.4.5)

where the constant only depends on α ∈ (0,1].

Proof. See [Vek62, Sections 1.4-8]. Specifically, for (3.4.4) refer to [Vek62, Theorem 1.19]; (3.4.5)

follows from [Vek62, (8.2), (8.7)].

Another standard analytic fact that we use is the Hölder regularity of harmonic conjugates.

Proposition 3.4.3 (Privalov’s Theorem). Let D be a smooth bounded simply connected domain,

and fix a conformal map ϕ : D →D such that M−1 < ∣∣ϕ′∣∣< M for some M > 0.

Let t ∈ Cα(∂D) be a real-valued function on the boundary. Then there exists a holomorphic

function g ∈Cα(D̄) such that Img = t which is unique up to a real constant. Moreover, if Reg = 0

at any point in D̄, ∣∣g ∣∣
Cα(D̄) ≤ cst · (1+M 2α) |t |Cα(∂D) ,

where the constant only depends on α.
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Proof. See, e.g., [GaMa08, Theorem 3.2], for the proof in the unit disc. Then it is straightfor-

ward to transfer the result to D using the conformal map ϕ′ given that the Hölder seminorm

transforms with a factor of
∣∣ϕ′∣∣α.

Analysis of the Continuous Observables.

We now study the continuous observables f[Ω,a1,...,an ](·|m) with m < 0 and its coefficients. Fix

a conformal map ϕ :Ω→D and let M > 0 be such that M−1 <ϕ′ < M . Note that diamΩ≤ 2M .

We first give the following lemma based on the Lemma 3.2.12 (similarity principle). The

following proof in fact contains the idea of the proof of the principle, but strictly speaking we

do rely on it, e.g. for the existence of the observable itself. Write fm(z) := f[Ω,a1,...,an ](z|m).

Lemma 3.4.4. There exists a unique function s in Ω̄ such that

• s is continuous in Ω̄;

• s is real on ∂Ω and Ree−s(a) = 1;

• e−s fm is holomorphic in [Ω, a1, . . . , an].

Then, defining c j := Re limz→a j e−s(z)pz −a j fm (note c1 = 1)

e−s(z) fm(z) =
n∑

j=1
cb f[Ω,a1,...,an ](z|0), (3.4.6)

Moreover, for any α ∈ (0,1),

|s|Cα ≤ cst · |m| (1+M 1+2α),

where the constant only depends on α.

Proof. First assume existence of such s. Suppose there are two such functions s1, s2. Then

e−s1(z)+s2(z) is bounded, real on ∂Ω, and holomorphic inΩ\ {a,b}; thus the value at a fixes it to

be constantly 1. So s1 − s2 ≡ 0 given that Im(s1 − s2) = 0 on ∂Ω and s is unique.

Then f̂ (z) := e−s(z) fm(z) is holomorphic in [Ω, a1, . . . , an] and
p
νout f̂ ∈ R on the boundary

∂Ω. Near a j , Re
p

z −a j f̂ (z) ∼ c j . Thus we obtain (3.4.6) since the difference of both sides is

zero by the uniqueness of the boundary value problem ([CHI15, Lemma 2.9], i.e. the massless

version of Proposition 3.2.15).

Now we show the existence of s. Define s0 :=C
[
∂z̄ fm/ fm

]
. Note that

∂z̄ fm

fm
= ∂z̄ f[Ω,a,b](z|m)

f[Ω,a,b](z|m)
= m

(
f[Ω,a,b](z|m)

f[Ω,a,b](z|m)

)
(3.4.7)
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is in Lp (Ω) for any p since fm only vanishes at isolated points, so s0 is bounded by Proposition

3.4.2.

We claim s0 is differentiable almost everywhere inΩ. s0 is differentiable at any point z0 near

which ∂z̄ f̄m/ fm satisfies a Hölder condition, sinceCΩ
[
∂z̄ fm/ fm

]
is the sum ofCΩ\Br (z0)

[
∂z̄ fm/ fm

]
,

which is holomorphic at z0, and CBr (z0)
[
∂z̄ fm/ fm

]
, which is differentiable by Proposition 3.4.2.

Since fm is smooth on [Ω, a1, . . . , an], s0 is differentiable away from a j and at isolated points

where fm vanishes.

So e−s0 fm is holomorphic almost everywhere, and by removable singularity it is holomorphic

on [Ω, a1, . . . , an]. Now let s1 be a holomorphic function onΩwith boundary data Ims1 = Ims0

on ∂Ω. We fix Ree s1−s0 = 1. Then s := s0 − s1 satisfies the desired properties.

For the Hölder estimate, recall that diamΩ≤ 2M and thus
∣∣∂z̄ fm/ fm

∣∣
Lp (Ω) ≤ cst ·|m|M 2

p . Then

from Proposition 3.4.2 we have |s0|Cα ≤ cst ·(1+Mα)·|m|M 1−α. Then the corresponding norm

for s1 is given by Proposition 3.4.3, and the sum gives the desired estimate.

The above lemma allows us to give the following results in the case n = 2.

Lemma 3.4.5. |BΩ (a1, a2|m)|→ 1 as |a1−a2|
dist({a1,a2},∂Ω) → 0.

Proof. By [CHI15, Remark 2.24], the result holds for m = 0.

Now consider the decomposition (3.4.6). Comparing the imaginary parts of the coefficient of
1p

z−a2
in both sides, we see that BΩ (a1, a2|m)Re

[
e−s(a2)

]=BΩ(a1, a2|0). Since Ree−s(a1) = 1

and e−s is Hölder continuous by the previous lemma, we have
∣∣∣BΩ(a1,a2|m)

BΩ(a1,a2|0)

∣∣∣→ 1 as |a1 −a2|→
0.

Before we go on to give a more delicate estimate on the two-point observable, we note a few

facts we use.

Remark 3.4.6. As mentioned above, the possible zeroes of fm are problematic for the regularity

of s. However, in the case where n = 2, fm cannot vanish inΩ.

Indeed, f̂ = e−s fm is a holomorphic function on [Ω, a1, a2] with the boundary conditionp
νout f̂ ∈R. By the argument principle for solutions of a Hilbert boundary problem ([Wen92,

Theorem 2.2]), one sees that 1 = 1
2 N∂Ω+NΩ, where 1 is the index of νout · (z −a1)(z −a2) on

∂Ω, N∂Ω, NΩ are number of zeroes of f̂ 2(z − a1)(z − a2) respectively on ∂Ω,Ω counted with

multiplicity. But since it is a square, any zero of f̂ 2(z −a1)(z −a2) is second order; the only

possible scenario then is that N∂Ω = 2, NΩ = 0. So f̂ does not vanish in Ω, and since s is

bounded, fm does not.

Remark 3.4.7. Since f̂ is a linear combination of the two observables with m = 0, we may

estimate fm using properties of them. The massless observables are conformally covariant: if
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φ :Ω→Ω′ is a conformal map [CHI15, Lemmas 2.9, 2.21],

f[Ω,a1,...,an ](z|0) = f[Ω′,φ(a1),...,φ(an )](φ(z)|0)φ′(z)1/2;

f[H,a,b](z|0) = (2i Ima)1/2

|b − ā|+ |b −a|

[
(b̄ − ā)(b̄ −a)

]1/2
(z −b)+ [(b −a)(b − ā)]1/2 (z − b̄)√

(z −a)(z − ā)(z −b)(z − b̄)
. (3.4.8)

Now we list some properties of the half-plane observable which need simple verifications.

Lemma 3.4.8. Suppose a,b ∈Hwith Ima = Imb = ε, Rea < Reb (i.e. |b −a| = Reb −Rea)

1. Let r ≤ 1
2 min(ε,d). Then ∣∣pz −a f[H,a,b](z)

∣∣≤ cst for z ∈ Br (a),∣∣∣pz −b f[H,a,b](z)
∣∣∣≤ cst for z ∈ Br (b),

with constants independent of the positions of a,b,r .

2. Let na,b ∈R be the zero of f[H,a,b].

0 ≤ na,b −nb,a ≤ |b −a|+2ε;∣∣na,b −a
∣∣≥ |b −a|+ε.

3. f[Ω,b,a](z|0)
f[Ω,a,b](z|0) can be extended to a holomorphic function inΩ, and

∣∣∣∣ f[Ω,b,a](a|0)

f[Ω,a,b](a|0)

∣∣∣∣≤ 3;

∣∣∣∣( f[H,b,a](z|0)

f[H,a,b](z|0)

)′
z=a

∣∣∣∣≤ cst

|b −a|+ε .

Proof. These results all follow from the explicit formulae above.

1. Note that |b −a| ≤ |b − ā| ≤ 2ε+|b −a|. We have∣∣∣∣∣
[
(b̄ − ā)(b̄ −a)

]1/2

|b − ā|+ |b −a|

∣∣∣∣∣≤
∣∣∣∣∣ [|b −a| (|b −a|+2ε)]1/2

2 |b −a|+2ε

∣∣∣∣∣≤
√

|b −a|√
2 |b −a|+2ε

< 1.

Then we estimate the two terms in (3.4.8) separately, noting that Ima = ε≤ |z − ā|, and

also
∣∣∣pz −b

∣∣∣≤ ∣∣∣√z − b̄
∣∣∣,

∣∣∣∣∣ (2i Ima)1/2 (z −b)√
(z −a)(z − ā)(z −b)(z − b̄)

∣∣∣∣∣≤
∣∣∣∣∣ (2i Ima)1/2p(z −b)√

(z −a)(z − ā)(z − b̄)

∣∣∣∣∣≤ cst∣∣pz −a
∣∣ . (3.4.9)

Since
∣∣z − b̄

∣∣≤ ε+ |b−a|
2 ,∣∣∣∣∣

√
|b −a|√

2 |b −a|+2ε

(2i Ima)1/2 (z − b̄)√
(z −a)(z − ā)(z −b)(z − b̄)

∣∣∣∣∣≤
∣∣∣∣∣ cst

√
|b −a|p

(z −a)(z −b)

∣∣∣∣∣ .
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If z ∈ Br (a), we have the result from |z −b| > 1
2 |a −b|. If z ∈ Br (b), similarly note |z −a| ≥

1
2 |a −b|, and apply

∣∣pz −a
∣∣> ∣∣∣pz −b

∣∣∣ to (3.4.9).

2. From the formula on f[H,a,b], we may write

na,b = Re
√

(b̄ − ā)(b̄ −a)b

Re
√

(b̄ − ā)(b̄ −a)
= Reb − Im

√
b̄ −aImb

Re
√

b̄ −a
,

nb,a = Rea − Im
p

b − āIma

Re
p

b − ā
= Rea + Im

√
b̄ −aIma

Re
√

b̄ −a
.

So

0 ≤ na,b −nb,a ≤ |b −a|+2ε,

and ∣∣na,b −a
∣∣≥ (na,b −Rea)+ Ima ≥ |b −a|+ε,

since
√

b̄ −a belongs to the fourth quadrant and thus

0 <− Im
√

b̄ −a

Re
√

b̄ −a
≤ 1.

3. Again examining the formula, we have, away from b, a (and then everywhere in H by

removable singularity),

f[H,b,a](z|0)

f[H,a,b](z|0)
= Re

[
(ā − b̄)(ā −b)

]1/2
(z −nb,a)

Re
[
(b̄ − ā)(b̄ −a)

]1/2
(z −na,b)

=: ρ
z −nb,a

z −na,b
,

so ∣∣∣∣ f[H,b,a](a|0)

f[H,a,b](a|0)

∣∣∣∣= ∣∣∣∣1+ na,b −nb,a

a −na,b

∣∣∣∣≤ 1+ |b −a|+2ε

|b −a|+ε ≤ 3;∣∣∣∣( f[H,b,a](z|0)

f[H,a,b](z|0)

)′
z=a

∣∣∣∣=
∣∣∣∣∣na,b −nb,a(

a −na,b
)2

∣∣∣∣∣≤ |b −a|+2ε

(|b −a|+ε)2 ≤ cst

|b −a|+ε .

Recall that we fix a conformal map ϕ :Ω→D such that M−1 ≤ϕ′ ≤ M . Now fix the standard

conformal map D → H such that 0 ∈ D is mapped to i ∈ H, and fix ϕH : Ω → H. Similar

estimate cst (R) ·M−1 ≤ϕ′
H ≤C st (R) ·M holds in ϕ−1 (BR ∩H) for R > 0. Write A 1

Ω(a1, a2|m)+
iA i

Ω(a1, a2|m) =: AΩ(a1, a2|m).

Lemma 3.4.9. Let a1, a2 ∈ ϕ−1
H

(BR ∩H) ⊂Ω be such that ImϕH(a1) = ImϕH(a2) = ε. Then for
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any fixed 0 < γ< 1, we have

|AΩ(a1, a2|m)−AΩ(a1, a2|0)| ≤ cst · (ε−γ+|a1 −a2|−γ
)

,

where the constant only depends on M ,R,m,γ.

Proof. We will refer to quantities only depending on M ,R,m,γ as constants in this proof. To

extract the desired difference A ∆ :=AΩ(a1, a2|m)−AΩ(a1, a2|0), we will study

e−2m|z−a1| fm(z)/ f[Ω,a1,a2](z|0). Indeed, around a1, we have

e−2m|z−a1| fm(z)

f[Ω,a1,a2](z|0)
= 1

e2m|z−a1|

(
e2m|z−a1|p

z−a1
+2AΩ(a1, a2|m)

p
z −a1 +o(|z −a1|1/2)

)
(

1p
z−a1

+2AΩ(a1, a2|0)
p

z −a1 +o(|z −a1|1/2)
)

= 1+2A ∆ (z −a1)+o(|z −a|),

therefore A ∆ is half the derivative of e−2m|z−a1| fm (z)
f[Ω,a1,a2](z|m) at a1.

By (3.4.6),
e−2m|z−a1| fm(z|m)

f[Ω,a1,a2](z|0)
= e s(z)−2m|z−a1|

(
1+ c2

f[Ω,a2,a1](z|0)

f[Ω,a1,a2](z|0)

)
,

and we will estimate the derivatives of the two factors separately. Fix α= 1−γ.

For the second factor, note that |c2| =
∣∣Ime−s(a2)BΩ(a1, a2|m)

∣∣ ≤ ∣∣Ime−s(a2)
∣∣, but since s is

uniform α-Hölder continuous and purely real on ∂Ω,
∣∣Ime−s(a2)

∣∣ ≤ cst ·dist(a2,∂Ω)α ≤ cst ·
(Mε)α. Now by conformal covariance,

f[Ω,a2,a1](z|0)

f[Ω,a1,a2](z|0) =
f[Ω,ϕH(a2),ϕH(a1)](ϕH(z)|0)

f[Ω,ϕH(a1),ϕH(a2)](ϕH(z)|0) , so we may apply the

third estimate in Lemma 3.4.8:

1+ c2
f[Ω,a2,a1](a1|0)

f[Ω,a1,a2](a1|0)
≤ 1+ cst · (Mε)α ≤ cst ,(

1+ c2
f[Ω,a2,a1](z|0)

f[Ω,a1,a2](z|0)

)′

z=a1

≤ cst ·Mα+1εα

|a2 −a1|+ε
≤ cst ·Mα+1εα−1. (3.4.10)

Now for the first factor, we claim that s(z) − 2m|z − a1| is differentiable at a1. Take r =
1

2M min(|a1 −a2| ,ε). fm(z) = e−s(z) f̂ (z), where f̂ (z) = f[Ω,a1,a2] + c2 f[Ω,a2,a1]. By the first es-

timate of Lemma 3.4.8,
p

z −a1 f̂ (z) is bounded on Br (a1) (the factor of M in r is there so that

ϕ(Br (a1)) ⊂H satisfies the condition of the first estimate Lemma 3.4.8). Expand for z ∈ B r
4

(a1),

∣∣pz −a1 f̂ (z)−e s(a1)
∣∣≤ cst

r
|z −a1| , (3.4.11)

where we use the fact that
p

z −a1 f̂ (z)
∣∣

z=a1
= e s(a1) and the derivative of

p
z −a1 f̂ (z) is

bounded by cst
r uniformly in B r

4
(a1) by the Cauchy formula. Then again using the uniform
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Hölder regularity of s,∣∣pz −a1 fm(z)−1
∣∣= ∣∣e−s(z)pz −a1 f̂ (z)−e−s(z)+s(a1) +e−s(z)+s(a1) −1

∣∣
= ∣∣e−s(z)

∣∣ ∣∣pz −a1 f̂ (z)−e s(a1)
∣∣+ ∣∣e−s(z)+s(a1) −1

∣∣
≤ cst

r
|z −a1|+ cst · |z −a1|α ≤ cst

rα
|z −a1|α .

Note that by (3.4.11) there is a constant c ∈ (0, 1
4 ] such that

∣∣pz −a1 fm(z)
∣∣> cst > 0 on Bcr (a1).

Thus we have in Bcr (a1)

|∂z̄ (s(z)−2m|z −a1|)| =
∣∣∣∣∣m ¯fm

fm
− m

p
z −a1

p
z −a1

∣∣∣∣∣
=

∣∣∣∣∣m f̄m
p

z −a1 − fm
p

z −a1

fm
p

z −a1

∣∣∣∣∣
≤ cst · |m|

rα
|z −a1|α .

Then by (3.4.5), CBcr (a1)∂z̄ (s(z)−2m|z−a1|) is differentiable at a1, with the derivative bounded

by |s(a1)|+ cst · |m| ≤ cst .

The remainder s(z)−2m|z −a1|−CBcr (a1)∂z̄ (s(z)−2m|z −a1|) is holomorphic in Bcr (a1), with

uniformly α-Hölder boundary values on ∂Bcr (a1). By Cauchy formula again, its derivative

at a1 is bounded by cst
r 1−α . Therefore, s(z)−2m|z − a1| is differentiable and its derivative is

bounded by cst
r 1−α for small r . Combining this estimate with (3.4.10) and writing γ= 1−α gives

the desired estimate.

Finally, we show that the full plane observables are differentiable in the positions a j of the

spins, grounding the isomonodromic analysis in the next section.

Proposition 3.4.10. The value of the full-plane observable f[C,a1,...,an ](z) and thus its coefficients

of the formal power series expansion around a j are differentiable in the positions a1, . . . , an .

Proof. Differentiability of the coefficients follow directly from that of the observable value,

since we can recover the coefficients using the Cauchy formula (3.4.3).

Without loss of generality, we show the x-derivative in a1 exists. Now, set h0 > 4h > 0, ah
1 = a1+

h and embed all
[
C, ah

1 , . . . , an
]

in the double cover C2h of C\ [B2h(a1)∪ {a2, . . . , an}]. Consider

the difference f h := f[C,ah
1 ,...,an

]− f[C,a1,...,an ] defined on C2h .

Clearly f h is massive holomorphic, limz→a j

p
z −a j f h(z) =: iBh

j ∈ iR for j ≥ 2, and f h decays

exponentially fast at infinity. So by applying the Green-Riemann theorem as in (3.2.18) to
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(
f h

)2
on Ch0 , we see that

i
∮
∂Bh0 (a1)

(
f h

)2
d z =−2

Ï
C\Bh0 (a1)

2m| f h |2d z +∑
j

2π
(
Bh

j

)2
. (3.4.12)

We claim that the left hand side, which is nonnegative and real since it is equal to the right

hand side, is O(h2) on ∂Bh0 (a1) as h → 0, which will be proven below. Then
{ 1

h f h
}

h<h0
is

uniformly L2-bounded in Ch0 . By a continuous version of Proposition 3.5.4, there exists a

subsequence hk such that 1
hk

f hk converges uniformly in compact subsets; the limit satisfies

the same boundary value problem as in Proposition 3.2.15 away from a1. By diagonalising as

h0 → 0, we may assume that there exists a limit f on [C, a1, . . . , an]. It suffices to show that f is

unique. But by the expansion (3.2.20), the form of a subsequential limit near a1 is determined;

indeed, the singular behaviour is

−1

2
Z 1
− 3

2
(z −a1)+2A 1

ΩZ 1
− 1

2
(z −a1)+2A i

ΩZ i
− 1

2
(z −a1)+ (regular part),

so the difference of any two limits is zero by the uniqueness of the boundary value problem.

Once smoothness in the position of a1 is proved, one may repeat the same arguments for

other points, say, a2. The difference is that the singularity at a2 is iB2p
z−a2

, and we need to

first show differentiability of B2 to make the argument work. But f[C,a2,a1,...,an ] and its coef-

ficients is differentiable in a2 by above, and i
(
Bh

2 −B2
)

h is equal to the coefficient of 1p
z−a1

in

1
h

[
f[C,ah

2 ,a1,...,an
]− f[C,a2,a1,...,an ]

]
by Green-Riemann’s formula applied to f[C,a1,ah

2 ,...,an
] f[C,ah

2 ,a1,...,an
],

so its limit as h → 0 exists.

Proof of Claim. Note that (3.4.12) shows that the integral is real and positive. Suppose
i

h2

∮
∂Bh0 (a1)

(
f h

)2
d z → ∞ as h → 0, possibly along a subsequence (for notational conve-

nience, we do not explicitly write the subsequence). Define sh
h0

:= i
∮
∂Bh0 (a1)

(
f h

)2
d z, then

h2

sh
h0

→ 0. Consider Z h := Z 1
− 1

2

(z − ah
1 )− Z 1

− 1
2

(z − a1). Clearly, 1
h Z h is bounded on ∂Bh0 (a1),

so i
sh

h0

∮
∂Bh0 (a1)

(
f h −Z h

)2
d z → 1. But f h − Z h is massive holomorphic in C2h , so the Green-

Riemann’s formula gives

i
∮
∂B2h (a1)

(
f h −Z h

)2
d z = i

∮
∂Bh0 (a1)

(
f h −Z h

)2
d z −2

∫
2m

∣∣∣ f h
∣∣∣2

d 2z,

i

sh
h0

∮
∂B2h (a1)

(
f h −Z h

)2
d z ≥ i

sh
h0

∮
∂Bh0 (a1)

(
f h −Z h

)2
d z

h→0−−−→ 1,

so it suffices to show that the left hand side tends to zero as h → 0 to derive contradiction.

Fix h0. Define f †
h (z) := f[C,ah

1 ,...,an
](z)− Z 1

− 1
2

(z − ah
1 ) for h < h0

4 , which is bounded near ah
1 .

Note that, since the L2 norm of f[C,ah
1 ,...,an

](z) is bounded on B 3
2 h0

(a1) \ B 1
2 h0

(a1) (uniformly in
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h < h0
4 ),

∣∣∣ f[C,ah
1 ,...,an

]∣∣∣ is bounded (uniformly for h < h0
4 ) on the circle ∂Bh0 (a1) by the continuous

version of Proposition 3.5.4. Similarly, Z 1
− 1

2

(z − ah
1 ) is bounded on ∂Bh0 (a1) (uniformly for

h < h0
4 ). By Proposition 3.4.2 and the proof of Lemma 3.4.4, f̂h := exp

[
−CBh0 (a1)

[
m

f̄ †
h

f †
h

]]
f †

h

is a holomorphic function in
[
Bh0 (a1), ah

1

]
which remains bounded near ah

1 and bounded

(uniformly for h < h0
4 ) on ∂Bh0 (a1). Therefore, f̂h

2
is a holomorphic function on Bh0 (a1)

which is zero at ah
1 ∈ B2h(a1) and has a bounded derivative in B2h(a1) (uniformly for h <

h0
4 ), applying Cauchy integral formula on ∂Bh0 (a1). Therefore,

∣∣ f̂ 2
h (z)

∣∣ ≤ cst ·h on B2h(a1)

for any h < h0
4 . Taking into account uniform boundedness of exp

[
CBh0 (a1)

[
m

f̄ †
h

f †
h

]]
, f †

h =

exp

[
CBh0 (a1)

[
m

f̄ †
h

f †
h

]]
f̂h is similarly bounded:

∣∣∣ f †
h (z)

∣∣∣2 ≤ cst ·h on B2h(a1) for h < h0
4 . Therefore

the integral

i

sh
h0

∮
∂B2h (a1)

(
f h −Z h

)2
d z = i

sh
h0

∮
∂B2h (a1)

(
f †

h − f †
0

)2
d z ≤ cst ·h2

sh
h0

,

tend to zero.

3.4.2 Derivation of Painlevé III

In this section, we take the convergence results established in Section 3.3 and derive estab-

lished correlation results in the full plane, first shown in [WMTB76] and reformulated in terms

of isomonodromic deformation in [SMJ77]. We will explicitly carry out the basic 2-point case

following the presentation of [KaKo80, Sections III, IV], using the continuous limit of our

discrete massive fermions which has been characterised in terms of a boundary value problem

in Definition 3.2.17. We cannot directly cite their formulae, since instead of considering a

complex space of functions which solve a two-dimensional Dirac equation, we cast them in

terms of a real space of massive holomorphic functions because massive holomorphicity is an

R-linear notion. The resulting analysis is equivalent.

Isomonodromy.

We would first like to note how the functions behave under rotation around the origin. We will

compose rotation of the coordinate system with multiplication by a phase factor and denote

it by RφWν(z) :=Wν(e−iφz)e−iφ/2 and so on: first we see that RφWν(z) = e−i (ν+ 1
2 )φWν(z), and
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similarly

RφZ 1
ν = Γ(ν+1)

|m|ν
(
e−i (ν+ 1

2 )φWν+
(
sgnm

)
e i

(
ν+ 1

2

)
φWν+1

)
(3.4.13)

= cos

[(
ν+ 1

2

)
φ

]
Z 1
ν + sin

[(
ν+ 1

2

)
φ

]
Z i
ν,

RφZ i
ν = cos

[(
ν+ 1

2

)
φ

]
Z i
ν− sin

[(
ν+ 1

2

)
φ

]
Z 1
ν .

Recall we fix m < 0. Suppose a > 0 is a positive real number, and consider the double cover

[C,−a, a]. Consider the real vector space of m-massive holomorphic functions on the double

cover which have singularity of order at most 3/2 at each monodromy and decay at infinity.

Around each monodromy, we can expand the singular part of a function in Z 1,i
− 3

2 ,− 1
2

, and from

Proposition 3.2.15 we see in fact fixing the coefficients of Z 1,i
− 3

2

, Z 1
− 1

2

at each monodromy fixes

the function. 6 basis functions are given by the two fermions f1 := f[C,−a,a], f2 := f[C,a,−a]

and their derivatives ∂x f1,∂y f1,∂x f2,∂y f2. The idea is to express the variation of f1 under

movement of the monodromies ±a as a linear combination of these six functions, and to

get a nontrivial equality by looking at the dependent coefficient of Z i
− 1

2

. First, we augment

the expansions (3.2.20), (3.2.21): f[C,−a,a] is equal to (C 1,i are real constants, unrelated to the

discrete notation C 1,i [Ωδ])

Z 1
− 1

2
(z +a)+2A 1Z 1

1
2

(z +a)+2A i Z i
1
2

(z +a)+2D1Z 1
3
2

(z +a)

+2Di Z i
3
2

(z +a)+O
(
(z +a)5/2) near z =−a,

BCZ i
− 1

2
(z −a)+2C 1Z 1

1
2

(z −a)+2C i Z i
1
2

(z −a)+2E 1Z 1
3
2

(z −a)

+2E i Z i
3
2

(z −a)+O
(
(z −a)5/2) near z = a.

We need to make some reductions. Let us first note that f1(z) and f̄1(z̄) both solves the

boundary value problem of Proposition 3.2.15 on [C,−a, a], and thus are equal to each other;

since only Z i
ν switches sign under the same transformation, we can conclude A i =C 1 =Di =

E 1 = 0.

Similarly, f2(z) and i f1(e iπz) are equal, assuming we carefully track the interaction between

global rotation z 7→ e iπz and the expansion bases Z τ
ν (·±a); given a sign choice of Z τ

ν (z +a)

(which is fixed by the coefficient +1 of Z 1
− 1

2

(z +a)) we will define Z τ
− 1

2

(z −a) := i Z τ
− 1

2

(e iπz +
a), which then fixes signs for general ν by Z τ

ν (e iπz ± a) = ±e iνπZ τ
ν (z ∓ a). As a result we

have A 1,i
C

(a,−a) = −A 1,i
C

(−a, a) = −A 1,i , BC(a,−a) = −BC(−a, a) = −B, C 1,i
C

(a,−a) =
C 1,i
C

(−a, a) =C 1,i , D1,i
C

(a,−a) =D1,i
C

(−a, a) =D1,i , E 1,i
C

(a,−a) =−E 1,i
C

(−a, a) =−E 1,i .

In fact, given Z τ
ν (z +a), if we define Z τ

− 1
2

(z ±e iφa) := e−
iφ
2 Z τ

− 1
2

(e−iφz ±a) for small
∣∣φ∣∣,

f[C,−ae iφ,ae iφ](z) = Rφ f[C,−a,a](z) again from (3.4.13):
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f[C,−ae iφ,ae iφ](z) = Rφ f1(z) = Z 1
− 1

2
(z +ae iφ)

+2cosφA 1Z 1
1
2

(z +ae iφ)+2sinφA 1Z i
1
2

(z +ae iφ)+2cos2φD1Z 1
3
2

(z +ae iφ)

+2sin2φD1Z i
3
2

(z +ae iφ)+O
(
(z +ae iφ)5/2

)
near z =−a, and

f[C,−ae iφ,ae iφ](z) =BΩZ i
− 1

2
(z −ae iφ)+2cosφC i Z i

1
2

(z −ae iφ)−2sinφC i Z 1
1
2

(z −ae iφ)

+2cos2φE i Z i
3
2

(z −ae iφ)−2sin2φE i Z 1
3
2

(z −ae iφ)+O

((
z −ae iφ

)5/2
)

near z = a.

Expansion.

We are now ready to analyse the variation of Rφ f1 under both ∂a and ∂φ at φ= 0.

Around z =−a,

f1(z) = Z 1
− 1

2
(z +a)+2A 1Z 1

1
2

(z +a)+2D1Z 1
3
2

(z +a)+O
(
(z +a)5/2) ,

∂x f1(z) =−1

2
Z 1
− 3

2
(z +a)+A 1Z 1

− 1
2

(z +a)+ (
3D1 +2m2) Z 1

1
2

(z +a)+O
(
(z +a)3/2) ,

∂y f1(z) =−1

2
Z i
− 3

2
(z +a)+A 1Z i

− 1
2

(z +a)+ (
3D1 −2m2) Z i

1
2

(z +a)+O
(
(z +a)3/2) ,

while around a,

f1(z) =BZ i
− 1

2
(z −a)+2C i Z i

1
2

(z −a)+2E i Z i
3
2

(z −a)+O
(
(z −a)5/2) ,

∂x f1(z) =−B

2
Z i
− 3

2
(z −a)+C i Z i

− 1
2

(z −a)+
(
3E i +2m2B

)
Z i

1
2

(z −a)+O
(
(z −a)3/2) ,

∂y f1(z) = B

2
Z 1
− 3

2
(z −a)−C i Z 1

− 1
2

(z −a)+
(
2m2B−3E i

)
Z 1

1
2

(z −a)+O
(
(z −a)3/2) ,

and similar formulae hold for f2 with −a and a interchanged and the signs in front of A ,B,E

reversed. As for the varied functions, we have

∂a f1(z) =−1

2
Z 1
− 3

2
(z +a)+A 1Z 1

− 1
2

(z +a)+ (
2
(
∂aA 1)+3D1 +2m2) Z 1

1
2

(z +a)

+O
(
(z +a)3/2) ,

∂φRφ f1(z) = a

2
Z i
− 3

2
(z +a)−aA 1Z i

− 1
2

(z +a)+ (
2A 1 −3aD1 +2am2) Z i

1
2

(z +a)

+O
(
(z +a)3/2) ,
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and

∂a f1(z) = B

2
Z i
− 3

2
(z −a)+

(
∂aB−C i

)
Z i
− 1

2
(z −a)+

(
2
(
∂aC i

)
−3E i −2m2B

)
Z i

1
2

(z −a)

+O
(
(z −a)3/2) ,

∂φRφ f1(z) = aB

2
Z 1
− 3

2
(z −a)−aC i Z 1

− 1
2

(z −a)+
(
2am2B−3aE i −2C i

)
Z 1

1
2

(z −a)

+O
(
(z −a)3/2) .

The resulting expansions are

∂a f1 =−2(A 1B+C i )B

1−B2 f1 + 1+B2

1−B2 ∂x f1 − 2B

1−B2 ∂y f2, (3.4.14)

∂φRφ f1 =−2a(A 1B+C i )

1−B2 f2 − 2aB

1−B2 ∂x f2 −a
1+B2

1−B2 ∂y f1. (3.4.15)

Derivation.

Comparing the coefficients of Z i
− 1

2

, Z 1
1
2

, Z i
1
2

, we get from (3.4.14)

∂aB−C i =−2(A 1B+C i )B

1−B2 B+ 1+B2

1−B2 C i + 2B

1−B2 A 1,

2
(
∂aA 1)+3D1 + 2m2

3
=−2(A 1B+C i )B

1−B2 2A 1 + 1+B2

1−B2 (3D1 +2m2)− 2B

1−B2

(
−2m2B+3E i

)
,

2
(
∂aC i

)
−3E i − 2m2B

3
=−2(A 1B+C i )B

1−B2 2C i + 1+B2

1−B2

(
3E i +2m2B

)
− 2B

1−B2 (3D1 −2m2),

while for (3.4.15) we get

2A 1 −3aD1 + 2am2

3
=−2a(A 1B+C i )

1−B2 2C i − 2aB

1−B2

(
−3E i −2m2B

)
−a

1+B2

1−B2 (3D1 −2m2),

2am2B

3
−3aE i −2C i = 2a(A 1B+C i )

1−B2 2A 1 − 2aB

1−B2 (3D1 +2m2)−a
1+B2

1−B2

(
2m2B−3E i

)
.

We now make the dependence in m explicit. Similarly to above, for any k > 0, f[C,−ak−1,ak−1](z|mk) =
f[C,−a,a](kz|m)k1/2. Analysing the effect of this dilation, which leaves r := am fixed, on the indi-

vidual coefficients, we can write A 1(a,m) =: mA0(r ), B(a,m) =: B0(r ), C i (a,m) =: mC0(r ).

Then we have ∂aA 1 = m2A ′
0, ∂aB = mB′

0, ∂aC 1 = m2C ′
0. In terms of these functions, we
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have

B′
0 =−2(A0B0 +C0)

1−B2
0

B2
0 +

2

1−B2
0

C0 + 2B0

1−B2
0

A0 = 2A0B0 +2C0, (3.4.16)

A ′
0 =−2B0(A0B0 +C0)

1−B2
0

A0 +
4B2

0(
1−B2

0

) + 3m−2B

1−B2 (BD1 −E i ), (3.4.17)

C ′
0 =−2B0(A0B0 +C0)

1−B2
0

C0 + 4B0(
1−B2

0

) − 3m−2

1−B2 (BD1 −E i ), (3.4.18)

A0 =−2r (A0B0 +C0)

1−B2
0

C0 +
4r B2

0(
1−B2

0

) − 3am−1B

1−B2 (BD1 −E i ), (3.4.19)

C0 =−2r (A0B0 +C0)

1−B2
0

A0 + 4r B0(
1−B2

0

) + 3am−1

1−B2 (BD1 −E i ). (3.4.20)

Define B0 =: tanhh0. Then
B′

0

1−B2
0
= h′

0 and
4B2

0

(1−B2
0 )2 = sinh2 2h0. From (3.4.19),(3.4.20),

A0 +B0
A0B0 +C0

1−B2
0

= A0 +B0C0

1−B2
0

=−r

[
2(A0B0 +C0)2(

1−B2
0

)2 − 8B2
0(

1−B2
0

)2

]
, (3.4.21)

and noting (3.4.16),

A0 =−1

2
(lncoshh0)′− r

[
1

2

(
h′

0

)2 −2sinh2 2h0

]
. (3.4.22)

To characterise h, first combine (3.4.17),(3.4.18) to get

A ′
0 +C ′

0B0

1−B2
0

=−2(A0B0 +C0)(A0B0 +B2
0C0)(

1−B2
0

)2 + 8B2
0(

1−B2
0

)2 ,

=−
[

2(A0B0 +C0)2(
1−B2

0

)2 − 8B2
0(

1−B2
0

)2

]
+ B′

0C0

1−B2
0

,

then differentiate (3.4.21) to get

A ′
0 +C ′

0B0 +B′
0C0

1−B2
0

+ 2B0B
′
0 (A0 +B0C0)(
1−B2

0

)2

=−
[

2(A0B0 +C0)2(
1−B2

0

)2 − 8B2
0(

1−B2
0

)2

]
− r

[
2(A0B0 +C0)2(

1−B2
0

)2 − 8B2
0(

1−B2
0

)2

]′
.

Then combining the two we finally have

2B′
0 (A0B0 +C0)(

1−B2
0

)2 =−r

[
2(A0B0 +C0)2(

1−B2
0

)2 − 8B2
0(

1−B2
0

)2

]′
,
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or (
h′

0

)2 =−r

[
1

2

(
h′

0

)2 −2sinh2 2h0

]′
.

Simplifying, we have h′′
0 +

h′
0

r = 4sinh4h0(r ). This is equivalent to the Painlevé III equation

rη0η
′′
0 = r

(
η′0

)2 −η0η
′
0 −4r +4rη4

0 by a change of variables η0 = e−2h0 [KaKo80, (4.12)].
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3.5 Appendix: Harmonicity Estimates

In this Appendix, we collect together the discrete analytic calculations and estimates used

in the paper. Fix a discrete simply connected planar graph Gδ, which can be thought of as a

subgraph ofΩδ or [Ωδ, a1, . . . , an] .

Proposition 3.5.1. A massive s-holomorphic function F : EC [Gδ] → C is massive discrete

holomorphic, that is to say

cos
(π

4
+2Θ

)
F (r+)−cos

(π
4
−2Θ

)
F (r−) =−i

(
cos

(π
4
+2Θ

)
F (i+)−cos

(π
4
−2Θ

)
F (i−)

)
,

cos
(π

4
−2Θ

)
F (i ′+)−cos

(π
4
+2Θ

)
F (i ′−) =−i

(
cos

(π
4
−2Θ

)
F (r ′

+)−cos
(π

4
+2Θ

)
F (r ′

−)
)

,

(3.5.1)

if there is a λ-corner c such that r± = c ± δ+δi
2 (real corners) and i± = c ± −δ+δi

2 (imaginary

corners), or a λ̄-corner c ′ such that i ′± = c ± δ+δi
2 and r ′

± = c ± −δ+δi
2 (resp. imaginary and real

corners).

It is massive harmonic, i.e.

∆δF (c) = 2

(
cos

(
π
4 −2Θ

)
cos

(
π
4 +2Θ

) + cos
(
π
4 +2Θ

)
cos

(
π
4 −2Θ

) −2

)
F (c) (3.5.2)

=
(

8sin2 2Θ

cos4Θ

)
F (c) =: M 2

H F (c) for c ∈C 1,i [Gδ] .

In addition, its square satisfies

∂δz̄ F 2 (x) =
AΘ

∑3
n=0

∣∣∣F (
x + i n δ

2

)∣∣∣2 +BΘ
∣∣∂z̄ F̄

∣∣2
(x) x ∈F [Ωδ] \ {a2, . . . , an}

−A−Θ
∑3

n=0

∣∣∣F (
x + i n δ

2

)∣∣∣2 −B−Θ
∣∣∂z̄ F̄

∣∣2
(x) x ∈ V [Ωδ] \ {a1 +δ}

. (3.5.3)

a1 c

Figure 3.5.1 – Using holomorphicity to get harmonicity. Blue differences (laplacian) are turned
into red, which telescope. Left: in the presence of a branch cut (orange). Right: simple planar
case.
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where AΘ = 2
(p

2cos
(
π
4 −2Θ

)−1
)

p
2cos2Θcos2

(
π
4 +2Θ

) , BΘ = 1
2
p

2cos2Θ
.

Proof. For the first line in (3.5.1), note that by massive s-holomorphicity we have the edge val-

ues F
(

r++i−
2

)
= e−iΘ [F (r+)+F (i−)] and F

(
i++r−

2

)
= e iΘ [F (i+)+F (r−)]. Since F is s-holomorphic

at the λ-corner c, which is adjacent to both of them, writing

e−iΘProje iΘλRF
(

r++i−
2

)
= e iΘProje−iΘλRF

(
i++r−

2

)
, equivalent to

1
2

[
e−2iΘ (F (r+)+F (i−))+ i e2iΘ (F (r+)−F (i−))

]= 1
2

[
e2iΘ (F (i+)+F (r−))+ i e−2iΘ (−F (i+)+F (r−))

]
,

and rearranging gives the result. For the second line, notice that i F is (−Θ)-massive s-

holomorphic if we move to the dual graph G∗
δ

(i.e. V (G∗
δ

) := F (Gδ)). Since this duality

transformation converts λ̄-corners into λ-corners, we can use the previous calculation.

For (3.5.2), suppose c is a real corner. Take four copies of the previous result (3.5.1) (see Figure

3.5.1) around for each of the four middle corners c ± δ±iδ
2 . Each of them involve c and one of

the four neighbouring real corners c ± (δ± iδ); summing the four equations with scalar factors

so that the coefficients of F (c ± (δ± iδ)) in each equation is 1, the result is straightforward.

The case where c is imaginary is immediate from duality as above.

For (3.5.3), take x ∈F [Gδ] and note that the value at each of the neighbouring edges x + i n λδp
2

can be reconstructed from two of the four corners x+ i nδ
2 . Explicitly, inverting s-holomorphicity

projections give

cos
(π

4
+2Θ

)
λi n+1F

(
x + i n λδp

2

)
= e iΘF̄

(
x + i n

2
δ

)
−e−iΘF̄

(
x + i n+1

2
δ

)
=−i n

[
e iΘF

(
x + i n

2
δ

)
−e−iΘi F

(
x + i n+1

2
δ

)]
.

noting that F̄
(
x + i n

2 δ
)
=−i nF

(
x + i n

2 δ
)
.

So multiplying the two lines

cos2
(π

4
+2Θ

)
i 2n+2λ2F

(
x + i n λδp

2

)2

=

− i n ·
[

e2iΘ
∣∣∣∣F (

x + i n

2
δ

)∣∣∣∣2

+ i e−2iΘ
∣∣∣∣F (

x + i n+1

2
δ

)∣∣∣∣2

−F

(
x + i n

2
δ

)
F̄

(
x + i n+1

2
δ

)
− i F̄

(
x + i n

2
δ

)
F

(
x + i n+1

2
δ

)]
=−i n ·

[
e2iΘ

∣∣∣∣F (
x + i n

2
δ

)∣∣∣∣2

+ i e−2iΘ
∣∣∣∣F (

x + i n+1

2
δ

)∣∣∣∣2

+2i n+1F

(
x + i n

2
δ

)
F

(
x + i n+1

2
δ

)]
.

So
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cos2
(π

4
+2Θ

)
∂δz̄ F (x)2 = cos2

(π
4
+2Θ

) 3∑
n=0

i nλF

(
x + i n λδp

2

)2

=λ−1
(
e2iΘ+ i e−2iΘ

) 3∑
n=0

∣∣∣∣F (
x + i n

2
δ

)∣∣∣∣2

+2λ−1
3∑

n=0
i n+1F

(
x + i n

2
δ

)
F

(
x + i n+1

2
δ

)

= 2cos
(π

4
−2Θ

) 3∑
n=0

∣∣∣∣F (
x + i n

2
δ

)∣∣∣∣2

+2λ−1
3∑

n=0
i n+1F

(
x + i n

2
δ

)
F

(
x + i n+1

2
δ

)
.

Now reuse the first relation

cos
(π

4
+2Θ

)
λ−1i−nF

(
x + i n λδp

2

)
=−i−2n

[
e iΘF̄

(
x + i n

2
δ

)
−e−iΘF̄

(
x + i n+1

2
δ

)]
cos

(π
4
+2Θ

)
λi n F̄

(
x + i n λδp

2

)
= (−1)n+1

[
e−iΘF

(
x + i n

2
δ

)
−e iΘF

(
x + i n+1

2
δ

)]
cos

(π
4
+2Θ

)
∂z̄ F̄ (x) =

(
e iΘ+e−iΘ

) 3∑
n=0

(−1)n+1F

(
x + i nδ

2

)

= 2cosΘ
3∑

n=0
(−1)n+1F

(
x + i nδ

2

)
.

Taking squares

cos2
(π

4
+2Θ

)∣∣∂z̄ F̄ (x)
∣∣2 = 4cos2Θ

[
3∑

n=0

∣∣∣∣F (
x + i nδ

2

)∣∣∣∣2

+Re
∑

n 6=n′
(−1)n+1F

(
x + i nδ

2

)
(−1)n′+1F̄

(
x + i n′

δ

2

)]

= 4cos2Θ

[
3∑

n=0

∣∣∣∣F (
x + i nδ

2

)∣∣∣∣2

−Re
∑

n 6=n′
(−1)n+n′

i n′
F

(
x + i nδ

2

)
F

(
x + i n′

δ

2

)]
,

but i n′
F

(
x + i nδ

2

)
F

(
x + i n′δ

2

)
∈ iR if |n −n′| = 2. The remaining 8 combinations of n,n′ all give
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rise to purely real terms, and resumming gives

Re
∑

n 6=n′
(−1)n+n′

i n′
F

(
x + i nδ

2

)
F

(
x + i n′

δ

2

)
=−

3∑
n=0

(
i n + i n+1)F

(
x + i nδ

2

)
F

(
x + i n+1δ

2

)

cos2
(π

4
+2Θ

)∣∣∂z̄ F̄ (x)
∣∣2 = 4cos2Θ

[
3∑

n=0

∣∣∣∣F (
x + i nδ

2

)∣∣∣∣2

+
3∑

n=0

p
2i n+1λ−1F

(
x + i nδ

2

)
F

(
x + i n+1δ

2

)]
.

Comparing the two expressions

cos2
(π

4
+2Θ

)[
2
p

2cos2Θ ·∂δz̄ F (x)2 − ∣∣∂z̄ F̄ (x)
∣∣2

]
= 4

(p
2cos

(π
4
−2Θ

)
−1

) 3∑
n=0

∣∣∣∣F (
x + i n

2
δ

)∣∣∣∣2

,

we have the full result given duality.

Remark 3.5.2. (3.5.1) is equivalent to massive s-holomorphicity in the sense that if we have

such values of F on C 1,i [Gδ] then it is easy to see from the proof that we have enough data to

extend the values s-holomorphically first to E [Gδ] and then the λ, λ̄-corners. In other words,

bound on C 1,i is equivalent to a global bound in an s-holomorphic function. On E [Gδ], (3.5.1)

becomes

∂δz̄ F (x) :=
3∑

n=0
i ne iπ/4F

(
x + i ne iπ/4 δp

2

)

= sinΘsec
(π

4
+2Θ

) 3∑
n=0

F

(
x + i ne iπ/4 δp

2

)
,

i.e. a discretised version of ∂z̄ f = m f̄ givenΘ∼ mδ
2 .

Lemma 3.5.3. Suppose Ω′ ⊂Ω are smooth simply connected domains. Any function H0 on

V
[(
Ω\Ω′)

δ

]
which is harmonic and takes the boundary value 0 on ∂V [Ωδ] and 1 on ∂V

[
Ω′
δ

]
satisfies 0 ≤ H0(aint) ≤C (Ω,Ω′)δ on any aint ∈ V

[(
Ω\Ω′)

δ

]
adjacent to ∂V [Ωδ] for a constant

C (Ω,Ω′) .

Proof. We believe this lemma is standard. One possible proof would proceed by mapping

Ω\Ω′ to the annulus B1 \ Br0 for some r0 > 0 using a Riemann map which smoothly extends

to B1 \ Br0 . The radial function 1−r
1−r0

on B1 \ Br0 is superharmonic, so its composition with

the Riemann map is (continuous) superharmonic onΩ\Ω′; the restriction to V
[(
Ω\Ω′)

δ

]
is

discrete superharmonic for small enough δ since the discrete laplacian (suitably renormalised)

and continuous laplacian are uniformly close on smooth functions, and we can use it to upper

bound H0.
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We frequently have local L2-bounds for our function F ; it turns out that thanks to massive

harmonicity, this is sufficient for equicontinuity.

We estimate massive harmonic functions by using the massive random walk, a simple random

walk which is extinguished at each step with probability
(
1+ 2sin2 2Θ

cos(4Θ)

)−1
2sin2 2Θ
cos(4Θ) . Recall that

the massive harmonic measure hma
A(z|Θ) for a discrete domain A, z ∈ A, and a ∈ ∂A ∪ A

is the probability of a massive random walk started at z hitting a before ∂A \ {a}. It is the

uniqueΘ-massive harmonic function on A which takes the boundary value 1 at a and 0 on

∂A\{a}. In the scaling limit δ ↓ 0 andΘ∼ mδ
2 , the massive random walk is extinguished after an

exponential step of mean 1
2m2δ2 . Taking into account the square-root scaling for the random

walk, this corresponds to a distance of order
p

2δ · 1p
2|m|δ = 1

|m| . For more precise asymptotics

than below, we refer to [BdTR17].

Proposition 3.5.4. There are constants C ,C ′,c > 0 such that, for a real massive harmonic

function F : C 1
[
(BR )δ

]→C (where δ< R
4 ) with ∆δF = M 2

H (Θ)F ,

∣∣∣∣F (
−δ

2

)∣∣∣∣≤CecmR

√
L

R
, (3.5.4)

δ−1
∣∣∣∣F (

δ

2
+ iδ

)
−F

(
−δ

2

)∣∣∣∣≤C ′ecmR

√
L

R3 ,

where L =∑
c∈C 1[(BR )δ] |F (c)|2δ2.

Proof. For the first bound, note that F 2 ≥ 0 is subharmonic:

∆δF 2(c) =
(

2M 2
H + M 4

H

4

)
F 2(c)+ 1

2

∑
c∼x,y

[
F (x)−F (y)

]2 . (3.5.5)

So we can use the mean value property for harmonic functions: for 0 < r < R , write the discrete

circle Sr =C 1
[
(BR )δ

]∩ (Br+4δ \ Br )∣∣∣∣F (
−δ

2

)∣∣∣∣2

≤ cst

r

∑
c∈Sr

|F (c)|2δ,

multiplying by δ and summing over the O(δ) discrete circles Sr such that their union equals

BR \ BR/2 ∣∣∣∣F (
−δ

2

)∣∣∣∣2

≤ cst

R

∑
c∈BR \BR/2

∣∣∣∣F (
−δ

2

)∣∣∣∣2

δ2 ≤ cst ·L

R
. (3.5.6)

For the desired bounds, note that by first applying (3.5.6) to smaller balls of radii R/2 we can
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opt for a bound of the form ∣∣∣∣F (
−δ

2

)∣∣∣∣≤ cst ·ecmR max
BR/2

|F | , (3.5.7)

δ−1
∣∣∣∣F (

δ

2
+ iδ

)
−F

(
−δ

2

)∣∣∣∣≤ cst ·ecmR maxBR/2 |F |
R/2

.

Consider the first estimate. By the maximum and minimum principles, we may bound

−max
BR/2

|F |hmSR/2
BR/2

≤ F ≤ max
BR/2

|F |hmSR/2
BR/2

.

The massive harmonic measure hmSR/2
BR/2

(c) is the hitting probability of SR/2 of the massive

random walk started at c. For the bound at −δ
2 , simply note that the probability of a massive

random walk reaching a box at distance d decays exponentially fast in |m|d . (see e.g. the

projection argument in the proof of Proposition 3.3.4).

For the second, by decomposing F (c) = ∑
c ′∈SR/2

hm{c ′}
BR/2

(c)F (c ′) for c ∈ BR/2, with hm{c ′}
BR/2

=
hm{c ′}

BR/2
(·|m) being the massive harmonic function on BR/2 whose boundary value is 0 on

SR/2 \ {c ′} and 1 at c ′ ∈ SR/2, it suffices to show
∣∣∣hm{c ′}

BR/2
(δ2 + iδ)−hm{c ′}

BR/2
(−δ

2 )
∣∣∣≤ cst · δ2ecmR

R2 . We

know that the hitting probability for the simple random walk (i.e. the harmonic measure of the

point c ′, with m = 0) satisfies the desired estimate (e.g. [ChSm11, Proposition 2.7]): as δ→ 0,

the difference of the probabilities P1,P2 of simple random walk started at neighbouring points

near 0 reaching c ′ before other points in SR/2 is bounded above by cst ·P1 · δR ≤ cst · δ2

R2 . For the

massive random walk, these instances (say, coupled with the same exponential clock) need

to survive to contribute to the difference; therefore the difference decays by an additional

exponential factor.

Remark 3.5.5. The second bound in (3.5.4) is valid for differences in other directions as well,

since massive harmonicity and the bound are rotationally invariant. By considering smaller

balls within BR , we in fact deduce uniform bounds for F and its discrete derivative in, say,

BR/2. Then, defining Dδ
λ

F (c) := F (c +δ+ iδ)−F (c),Dδ

λ̄
F (c) := F (c +δ− iδ)−F (c), which are

massive harmonic functions uniformly bounded in BR/2, and using the bound (3.5.7) on them,

we actually have bound on discrete derivatives of second order in, say, BR/4. Recursively, we

see that derivatives of any order can be locally bounded.
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We conclude by reviewing contributions made in this thesis and outlining potential future

directions of development.

4.1 Lattice Local Fields and Spin Patterns

Correlations of the energy density εzδ :=
p

2
2 −σzδσzδ+δ and the spin σzδ converge to those

predicted by Conformal Field Theory. These lattice fields correspond to two so-called noncon-

stant primary local fields of the Ising CFT [DMS97], obeying precise predictions verified by

[HoSm13, CHI15].

However, in the discrete model, there are clearly more observable local quantities, i.e. lattice

local fields: for example, the product of three spins in a row. How do these lattice local fields fit

into the CFT correspondence? The second chapter of this thesis provides a convergence result

that may serve as a partial answer to this question. Concretely, it proves that the quantities in

a bounded simply connected domainΩ

E+βc ,Ωδ

[
σδz1 · · ·σδz2n

]
, and

E+
βc ,Ωδ

[
σ0σδz1 · · ·σδz2n

]
E+
βc ,Ωδ

[σ0]
,

where 0, z1, . . . , z2n ∈ Ωδ=1, converge in the scaling limit at first order to explicit quantities

independent ofΩ, while the second order O(δ) correction depends explicitly on the conformal

geometry ofΩ. Such even- and odd-correlations form a basis for any local function of the spin

configuration σ. Convergence for the correlations in fact implies a similar convergence for the

probability of any specific spin pattern ρ ∈ {±1}B for some finite set of sites B . Here the scaling

of 1/8 amounts to breaking the σ 7→ −σ symmetry, so with explicit CP ,C ′
P we have
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P+
βc ,Ωδ

[
σ|δB =±ρ]=P+

βc ,Z2

[
σ|B =±ρ]+CP (A,ρ,Ω)δ+O(δ),

P+
βc ,Ωδ

[
σ|δB = ρ]=P+

βc ,Z2

[
σ|B = ρ]+C ′

P (A,ρ,Ω)δ1/8 +O(δ1/8).

The coefficients CP ,C ′
P are conformally covariant with dimensions 1, 1

8 , and they could in fact

be considered as the one-point functions of the corresponding (truncated then renormalised)

fields. The results of this chapter suggest that the product of an even number of local spins

scales like the energy and the product of an odd number of local spins scales like the spin, at

least at the one-point correlation level. Given the representation of the Virasoro algebra at the

lattice level [HKV17], it seems natural to expect that all the CFT local fields can be realised in

terms of lattice local fields by applying the discrete Virasoro generators to the spin-products

treated by our result. This suggests the following conjecture (page 20): any nonzero lattice

local field, suitably renormalised, converge to a continuous field in the Ising CFT, and all

continuous fields are obtained this way.

In addition, the results also highlight the richness of the discrete theory. The explicit quantities

in the full plane Z2 and the correction terms are not found in the continuous CFT, but are

obtained through analysis of the discrete fermion. A simple consequence of our analysis is a

scheme to explicitly calculate any finite dimensional distribution in the Ising measure in Z2.

A crucial ingredient in enabling such calculation is the explicit identification of the discrete

harmonic measure of the tip of the slit plane, which gives the hitting measure of the point 0 by

a simple random walk on the lattice δ(1+ i )Z2 \R≤0. Beyond its random walk interpretation, it

has yielded an explicit formula for a normalisation factor implicitly used in the proof of the

spin correlation result of [CHI15]. Furthermore, this result is important in the construction of

lattice representations in [HKV17].

The harmonic measure in turn can be used to construct discrete versions of the inverse

complex square root and square root functions. Although the discrete square root involves a

definition in terms of an infinite sum, we have succeeded in developing an algorithm based on

s-holomorphicity and rotational symmetry to compute it exactly using recursion. What makes

the subsequent use of the discrete square root in this chapter original is that it identifies two

discrete counterparts of the function i
p

z (see also [Dub15]); they must be balanced in a very

nontrivial manner to yield the precise convergence result obtained.

4.2 Massive Limit in Bounded Domains

Given the full-plane results on massive scaling limit and the emergence of CFT in the critical

scaling limit in general domains, a natural question of a massive scaling limit in general

domains Ω arises. Does spin correlation converge, and if it does how is it affected by the

geometry of Ω? In the third chapter of this thesis, we answer this question in the case of a
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subcritical massive scaling limit: scale β(δ) =βc − m
2 δ with a constant m < 0, then

< z1, . . . , zn >m,Ω:= lim
δ→0

δ−n/8E+β(δ),Ωδ
[σzδ1

, . . . ,σzδn
],

exists in the case where Ω is a smooth bounded simply connected domain. This scaling

function depends on the shape ofΩ in a much more complex manner than in the critical case,

where it depends on only a finite number of values of the conformal map φ and its derivative.

This is indeed expected, since the loss of scale invariance suggests that even a mere dilatation

of the domain would have a highly nontrivial effect on the fields.

As noted in the introduction, the methods that have yielded the convergence results in the

full plane are not readily generalisable to a general domain Ω. Our proof instead uses s-

holomorphic analysis of the fermionic observable. While the fact that the discrete fermionic

observables may also be defined in the massive setup and that they satisfy a perturbed notion

of s-holomorpicity has been known and even used to yield significant results, integrability of

the square or its properties have not been investigated before.

Hence, the analysis required a generalisation of the full s-holomorphic analysis of the critical

case into the massive setup. The approximate harmonicity of the integral of the square does

not generalise, and precompactness arguments based on harmonicity need to be replaced by

arguments based on an L2-bound; identification by the appropriate boundary value problem

in the continuum becomes highly nontrivial, lacking the conformal invariance of the Laplace

equation. Furthermore, any continuous limit f satisfies a perturbed notion ∂z̄ f = m f̄ of

massive holomorphicity named generalised analyticity [Ber56, Vek62], whose theory is in

many ways parallel to but strictly weaker than the theory of holomorphic functions. A crucial

observation used in the proof relies on exploiting the boundary condition ν−1/2
out in a new way

both to control the discrete function and uniquely identify the continuous limit.

The fermion being a central object in both the discrete and continuous Ising CFT, casting

the massive theory in the fermionic language hints at a massive perturbation of CFT. Indeed,

in the terminology of the previous chapter, all the lattice local fields endure in the form

of local functions of the spin; it is natural to conjecture that they converge to continuous

objects, forming perturbed versions of CFT fields. Cardy and Mussardo [CaMu90] in turn

gave arguments on the existence of a perturbation of the space of CFT fields in the massive

continuous theory. However, it is as of yet unclear whether the existing results in terms

of isomonodromic analysis may be connected to CFT methods. As a step towards a more

substantial investigation, the chapter contains an independent justification of the full-plane

convergence and the emergence of the Painlévé transcendent in the two-point case. While

the continuum analysis is equivalent, it derives the result solely using massive s-holomorphic

fermions and is readily accessible to readers familiar with the s-holomorphic analysis of the

model.
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4.3 Further Developments

In this thesis, we have tried to further examine and contribute to the understanding of the

correspondence between the Ising model and its continuous Conformal Field Theory beyond

the theory of critical scaling limits of the spin and the energy density. There are many directions

one may pursue in the theme based on the results of this thesis. The question most relevant to

this thesis would be a mixture of the questions considered in the two chapters: what is the

one-point behaviour of lattice local fields in the massive limit? Then we may go further, to

develop a general theory of correlations between lattice local fields centred at distinct points

z1, . . . , zn , both in the critical and the massive Ising model. One case that is both simple and

foundational is that of energy density correlation; a massive generalisation of Hongler’s work

[Hon10] should be readily attacked given the ideas presented in this thesis.

Another interesting line of inquiry concerns the limits of the +/− interfaces in the massive

regime, given results [MaSm10, ChWa19, NoWe09] on the massive loop erased random walk

(mLERW) and massive percolation. The primary obstacle here is the lack of explicitness. In

the critical case, limits of the interfaces may be identified in terms of holomorphic fermions

which serve as martingale observables of the growing curves, and convergence in part consists

of showing that the discrete martingale observable converges to the explicit continuous

formula which is conformally covariant. The interfaces in the massive model are much less

tractable in explicit terms without conformal symmetry. Preliminary analysis based on ideas

and techniques established in this thesis suggests that even a continuous heuristic on the

limiting interface is a nontrivial question, since generalised analytic functions are not explicit

in general. Discrete a priori information on the regularity of the interface might be helpful;

some are already available in terms of crossing probability bounds [DGP14]. In contrast, the

discrete analysis (say, the precompactness of the discrete observables) needs to be modified

and developed in specifics but the general strategies of this thesis should still have relevance.

Considering the manifestation of universality highlights many intriguing directions of general-

isation. In this regard, the fact that lattice local fields beyond the spin and the energy density

are inherently tied to the shape of the underlying lattice is interesting. The general framework

of s-holomorphicity is applicable in general isoradial lattices, but there are some arguments

specific to the square lattice which need to be generalised: construction of the discrete square

vs. vs. ?

Figure 4.3.1 – Comparable lattice local fields on distinct lattices.
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root is one. Assuming a convergence result, a naïve yet reasonable theme of inquiry would be

comparisons between lattice local fields which have comparable ‘shape’ overall but defined

on distinct lattices (see Figure 4.3.1). Moreover, ideas of s-holomorphic analysis have been

generalised to even broader classes, to circle patterns [Lis17] and s-embeddings [Che18]. In

particular, s-embedding sheds a light on the connection between critical Ising weights and

the underlying abstract topological graph; how the massive setup would fit into this picture is

a very interesting question analytically and geometrically.

Perhaps the most natural question given the results of the third chapter is the analysis of

the supercritical case, where m > 0 and β(δ) < βc . Many of the inequalities that worked for

our advantage in the subcritical case switch direction, and we do not even expect to have a

well-defined spin-fermion correlation in the full plane. Preliminarily, we note that the integral

of the square may still be defined, and that it satisfies a maximum/minimum principle.

In fact, the integral of the square is quite a robust construction. It may still be defined in

the case where we have varying temperature β on different edges. The fact that the mass m

is a constant was very useful in our analysis, since massive holomorphic functions become

discrete massive harmonic functions; they may be analysed in terms of massive simple random

walk, i.e. a random walk which is extinguished at each step with a given probability. However,

there is a good reason to allow the length scale ξ to vary spatially. In particular, a simple

change-of-variables argument shows that treating log-harmonic mass m is tantamount to

treating the constant mass case in all simply connected domains. In such a setup, massive

holomorphicity becomes an approximate discrete relation, and the equation ∆ f = m2 f is

replaced by a general discrete elliptic equation.
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