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Abstract
The performance of tokamak fusion plasmas is heavily linked to the radial heat and particle

transport, which is known to be mainly produced by turbulence driven by micro-instabilities.

Understanding such processes is thus of key importance for the design and operation of

future fusion reactors such as ITER. One of the most commonly used tools to study turbulent

transport in the very hot core of tokamaks is gyrokinetic theory, which aims at reducing the

physical complexity by averaging out the fast gyromotion, while keeping its averaged effect.

The ORB5 program is a numerical code solving the gyrokinetic Maxwell-Boltzmann system of

equations to study various phenomena such as turbulent transport. It is a global particle-in-

cell code using a finite element representation with B-spline basis function for the fields and

various noise control schemes.

The main objective of this work is to improve the performance and physical model of

ORB5 in order to be able to carry out simulations relevant for the Tokamak à Configuration

Variable (TCV) at the Swiss Plasma Center. This is done in three major steps.

First, the code undergoes a complete refactoring and optimization process with the aim of

increasing its maintainability and performance. Using a simple test bed being a simplification

of the PIC method while retaining the key elements, various algorithms and parallelization

schemes are developed. Furthermore, it is shown that one of the most critical kernels of the

PIC algorithm, the charge deposition, can be accelerated by a factor 2.4 in ORB5.

Second, the hybrid electron model, which is used to simulate certain electron modes at a

lower numerical cost than the fully kinetic electron model, needs to be corrected. Indeed, in

this model, trapped electrons are kinetic while passing electrons have an adiabatic response.

This is problematic because it does not satisfy the ambipolarity condition and produces spuri-

ous sources of particles and momentum. A corrected model in which the flux-surface averaged

contribution of the passing electrons is treated as kinetic is developed and implemented in

ORB5. As a first step, an approximation of the flux-surface average consisting of a Fourier filter

retaining only the n = m = 0 mode is tested. Linearly, both the proper flux-surface average and

its n = m = 0 approximation lead to an accurate description of the geodesic acoustic mode

dynamics. Nonlinearly, the n = m = 0 model exhibits interesting physical features such as

sharp radial structures at the mode rational surface q = 1 and a transport regime transition. To

conclude this chapter, a first attempt at studying TCV transport stiffness is shown.

Finally, a moment-conserving heat source is implemented in the ORB5 code to allow
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for flux-driven simulations. The heat source conservation properties are verified and it is

shown that conservation of density, parallel momentum, and zonal flows is satisfied up to

machine precision. A “mode-switching” approach consisting of using an effective heat source

computed from a gradient-driven simulation as an input for the flux-driven run is also tested

and consistent results are obtained between gradient-driven, flux-driven, and “mode-switched”

simulations. Finally, the heat source is characterized, along with variations, using a 2D phase-

space diagnostics. It is shown that in some cases, the use of this fixed heat source can lead to a

sampling problem causing an artificial source/sink of moments.

Keywords: plasma, fusion, tokamak, gyrokinetic, PIC, micro-instabilities, turbulence, opti-

mization, flux-driven, hybrid electron model
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Résumé
La performance des plasmas de fusion générés dans les tokamaks est largement déterminée

par le transport radial de chaleur et de particules. Il est maintenant admis que ce transport

provient majoritairement de la turbulence induite par certaines micro-instabilités. Il est donc

primordial d’étudier ces phénomènes de transport turbulent, afin d’optimiser la conception

et de maîtriser le fonctionnement des futurs réacteurs à fusion nucléaire, comme celui d’ITER.

La théorie gyrocinétique est certainement l’outil le plus utilisé pour étudier la dynamique

des plasmas peu collisionels présents dans le coeur des tokamaks. Le but de cette théorie est

de réduire la complexité d’un modèle cinétique en moyennant, de manière consistante, le

mouvement cyclotronique rapide de Larmor. Le programme ORB5 est un code de simulation

numérique utilisé pour résoudre le système d’équations de Maxwell-Boltzmann, afin d’étudier

divers phénomènes tels que le transport turbulent dans le coeur des tokamaks. Basé sur la

méthode des éléments finis avec une représentation B-spline pour les champs électromagné-

tiques et la représentation en particules numériques pour les fonctions de distribution, ORB5

est un code global et possède différentes méthodes de contrôle du bruit numérique.

Le but principal de cette thèse est d’améliorer la performance et le modèle physique

d’ORB5, afin d’être capable de simuler des plasmas similaires à ceux produits dans le Tokamak

à Configuration Variable (TCV) du Swiss Plasma Center. Trois objectifs majeurs sont donc

définis.

Dans un premier temps, un réusinage complet du code ainsi qu’une procédure d’optimisa-

tion de sa performance sont effectués. Pour ce faire, un “banc d’essai”, consistant en un code

PIC simplifié, bien que contenant toutes les méthodes essentielles, est développé pour faciliter

l’implémentation et le test de nouveaux algorithmes et procédures de parallélisation. Il est

démontré, à titre d’exemple, que la déposition de charge, méthode au coeur de l’algorithme

PIC, peut être accélérée d’un facteur 2.4 dans ORB5.

Le deuxième objectif, quant à lui, consiste à corriger le modèle à électrons hybrides im-

plémenté dans ORB5. En effet, dans le modèle initial, les électrons passants sont traités de

manière adiabatique alors que les électrons piégés sont traités de manière cinétique. La des-

cription adiabatique des électrons passants fait que ce modèle ne satisfait pas la condition

d’ambi-polarité et produit des sources fictives de particules et de quantité de mouvement. Un

modèle corrigé, dans lequel la contribution de la moyenne de surface de flux des électrons pas-

sants est traitée de manière cinétique, est développé et implémenté dans ORB5. En première
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approximation, un second modèle, dans lequel la moyenne de surface de flux est remplacée

par un filtre de Fourier ne retenant que le mode n = m = 0, est également implémenté. Il

est montré que ces deux modèles décrivent précisément les propriétés linéaires de la dyna-

mique des GAMs. D’autre part, des simulations non linéaires, présentant des particularités

intéressantes telles que des fines structures radiales à la surface de mode rationnelle q = 1,

ainsi qu’une transition de régime de transport, sont également présentées. Pour conclure ce

chapitre, une première étude préliminaire de la “rigidité” du transport dans TCV.

Finalement, une source de chaleur avec des propriétés de conservation des moments est

implémentée dans ORB5 permettant de faire des simulations à flux imposé. Les propriétés de

conservation de la source sont vérifiées jusqu’à la précision machine. De plus, la méthode de

“changement de mode”, consistant à démarrer une simulation à flux imposé à partir de la source

de chaleur effective calculée à l’aide d’une simulation à gradient imposé, est présentée et il

est démontré qu’elle donne des résultats consistants avec des simulations à flux et à gradient

imposés. Pour conclure, la source de chaleur et quelques variantes sont caractérisées par le

truchement d’un diagnostic 2D dans l’espace de phase. Il est notamment montré que, dans

certains cas, l’utilisation de cette source de chaleur mène à un problème d’échantillonnage de

l’espace de phase, causant la création d’une source artificielle de moments.

Mots Clés : plasma, fusion, tokamak, gyrocinétique, PIC, micro-instabilités, turbulence,

optimisation, simulation à flux imposé, modèle à électrons hybrides
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1 Introduction

Energy production is for sure one of the main challenges that mankind has to face in the near

future. Whether it is used for heating, for mechanical work, or to produce electricity, energy

has always been a driver of human progress. In the 19th century, the steam engine—first

human-controlled type of energy—played an important role in the Industrial Revolution,

which lead to a sustained growth of the living standards. Even today, there is a clear correlation

between energy consumption and human development, Figure 1.1. Usually, an abundant

source of energy provides, directly or indirectly, a higher life expectancy, better education

and, as a result, a higher economic growth. However, despite the well recognized importance

of energy production in the current society, there is presently no satisfying solution to meet

the increasing demand with an economically viable and environmentally-friendly source of

energy. On the one hand, the needs grow exponentially due to the higher demands in the

industrialized parts of the world combined with the needs of rapidly developing countries

such as China and India and, on the other hand, the negative effects of greenhouse gases on

the environment put a severe constraint on the energy production.

In 2016, a bit less than 60% of the total electricity production in the Organisation for

Economic Cooperation and Development (OECD) came from fossil fuels such as coal, oil

and natural gas [3]. These fuels are generally not expensive but the process of converting

them into electrical energy is not very efficient. Furthermore, they allow for a continuous and

remote production in large power plants each able to supply hundreds of thousands of people.

However, burning carbon-based fuels inevitably produces carbon dioxide—and other harmful

by-products of the combustion—which is one of the responsible gases for the greenhouse

effect.

Alternatives that produce less or no greenhouse gases during their life cycle1 are the

renewable energies such as wind, solar and geothermal. The main problem of these sources is

that they are intermittent and/or need certain particular conditions to work, which cannot

be controlled. For example, geothermal plants and hydro-electric dams can only be built in

1To be accurate, one should also take into account the production and dismantling energy cost. For example,
most of the solar panel production is currently made in China using electricity coming mostly from coal- and
gas-fired plants.
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Figure 1.1 : World human development index (HDI) as a function of the energy use. The HDI is a

composite index built from the life expectancy, education, and per capita income indicators. It provides

a measure of the well-being of a country. Source [1, 2].

very localized geographical areas and solar panels do not produce any electricity at night.

Energy storage and transportation would be a solution to these problems but, unfortunately,

the current technology does not allow for an efficient and low-cost storage/transport.

Finally, nuclear fission is another alternative to fossil fuels. Heat is extracted from the

fission of heavy atoms such as the uranium isotope U235 and transformed into electrical

energy. This technology, which is often of major public concern, produces almost no carbon

dioxide nor emits harmful particles. Furthermore, because of the high energy density available

in the nuclear combustibles, the current fuel supplies are sufficient to provide energy for

hundreds of years and even more, if one uses more advanced technologies such as breeder

reactors. The main concern about nuclear fission is without any doubt related to safety. Even

though there is no statistical evidence that nuclear fission is more dangerous than fossil fuels,

there is a large public concern about this technology, especially after the Tchernobyl and

Fukushima events in 1986 and 2011, respectively. Countries such as Switzerland and Germany

have decided to renounce nuclear fission after the latter event. Still related to safety, the

treatment of radioactive waste, the decommissioning of power plants, and the problem of

nuclear proliferation are other important issues of nuclear fission.

In summary, the future of energy production should be environment-friendly, safe, and not

expensive. This will most certainly consist of a mix of renewable energies and an abundant type

of energy serving as a background continuous production to compensate for the intermittent

nature of renewable energies.

One of the most promising candidates for supplying a large and steady amount of elec-
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tricity with a minimal impact on the environment is nuclear fusion, a process consisting of

fusing light nuclei and harvest the produced energy. For power plant applications, deuterium

and tritium—two hydrogen isotopes—are typically used as fuels in the so-called D-T reaction.

While deuterium is available in large quantity in sea water, tritium is sparsely found in nature

due to its short half-life, ∼12 years. To overcome this problem, a secondary reaction consisting

of producing tritium atoms from lithium will be used in future fusion reactors. The main

advantage of this technology is that everything that enters and exits the reactor is safe and

non radioactive. Furthermore, there is no risk of uncontrolled chain reactions and nuclear

proliferation as it is the case for nuclear fission. The main challenge of nuclear fusion, however,

is to overcome the scientific and engineering difficulties inherent to the fusion process in an

economically viable way.

The D-T reaction consumes one nucleus each of deuterium and tritium and releases a

helium nucleus (α particle) and a neutron:

D2 +T3 −−→ He4

(3.5 MeV)
+ n1

(14.1 MeV)
. (1.1)

The huge amount of energy released by fusion reactions is around four million times higher

than the one from burning coal and four times higher than the energy released by nuclear

fission reactions at equal mass. This clearly makes nuclear fusion an interesting candidate for

mass production of energy. Unfortunately, the fusion process is difficult to achieve because

of the Coulomb repulsion between the two positively charged nuclei. Typically, the optimal

temperature which maximizes the probability of fusion events is of the order of 10 keV (around

100’000’000 K). At such temperature, the D-T gas is fully ionized, i.e. it is in the plasma

state. Despite its apparent simplicity, the plasma has a very complicated self-consistent

behaviour, because of the presence of electromagnetic interactions. Indeed, the charged

particles composing the plasma are affected by the electromagnetic fields, but are also sources

of such fields.

In a fusion reactor, the very hot plasma must be confined in such a way as to avoid contact

with the vessel to prevent the destruction of the latter. On Earth, this can be achieved using

either inertial confinement or magnetic confinement. The basic principle of the latter is to

exploit the Larmor motion of charged particles immersed in a magnetic field; the excursion of

charged particles is constrained perpendicular to the magnetic field lines. The most advanced

concept of magnetic confinement device is the tokamak, a toroidal vessel using helicoidal

magnetic field lines to confine the plasma. The twisted field is a superposition of a toroidal

magnetic field produced by magnetic coils and a poloidal magnetic field produced by an

induced toroidal electric current2. An alternative to the tokamak is the so-called stellarator

which uses an arrangement of very complex magnetic coils to generate the twisted field

magnetic lines. The present work will entirely be dedicated to tokamak plasmas.

2Other coils may be required for shaping and stabilization
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One of the most important criteria that determines the output power of a tokamak is the

triple product, also called Lawson criterion [4]:

nTτE ≥ 1021 keV · s ·m−3. (1.2)

Basically, this condition states that the product of plasma density n, temperature T , and energy

confinement time τE must be greater than a certain value determining the output power gain.

In other words, for fusion reactions to take place frequently, there should be enough plasma

particles close to each other, with a sufficient energy to overtake the Coulomb repulsion, and

for a sufficiently long period of time. Ultimately, most of the research on tokamak confinement

comes down to increasing the triple product while avoiding operational limits such as pressure

and density limits [5, 6].

Transport theory aims at understanding energy confinement and is therefore one of the

most active fields of research in magnetic confinement fusion. An important characteristics of

tokamak plasmas is that heat transport is almost always dominated by turbulence-driven pro-

cesses; this is the so-called anomalous transport. The usual measured levels of heat transport

in tokamaks are orders of magnitude higher than the one predicted from collisional transport

estimations—either in cylindrical geometry (classical transport) or in toroidal geometry (neo-

classical transport). Anomalous transport is governed by highly nonlinear processes, with

multiple sources of drive and regulation mechanisms, occurring at different spatio-temporal

scales. Due to this inherent complexity, the description of turbulent transport requires ad-

vanced mathematical modelling. In the very hot core of tokamaks, a kinetic theory is necessary

to correctly describe the different processes taking place. In general, the evolution of the

distribution function of each plasma species is computed in the presence of collisions and

sources. However, the six-dimensional nature of the phase space (three dimensions for con-

figuration space and three for the velocity) and the wide range of spatial and temporal scales

are very challenging obstacles to overcome. Thanks to the anisotropic nature of tokamak

turbulence and the scale separation observed in the core of tokamaks, it is possible to make

some approximations which allow one to reduce the complexity of the model. For example,

gyrokinetic theory consists of averaging out the fast cyclotron motion of plasma particles while

taking care to keep the important effects related to it. In this way, the problem dimensionality

is reduced from 6D to 5D and the fast cyclotron time scale is removed consistently from the

system. Even with this simplification, the complete description of real tokamaks remains a

complex task to carry out and further approximations are often used, e.g. adiabatic electrons,

collisionless system, electrostatic limit, etc.

In general, solving the gyrokinetic Vlasov-Maxwell (or Boltzman-Maxwell) system of equa-

tions is no easy task and cannot be done without the help of numerical codes. In the past

decades, a lot of resources have been dedicated to the development of gyrokinetic codes.

On the one hand, the physical model is constantly improved, allowing for more realistic de-

scriptions and, on the other hand, numerical algorithms and high performance computers
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(HPC) are developed to allow for more complex simulations. One of the particularities of

magnetized plasma turbulence is that geometric effects due to the background magnetic field

play an important role. Because of that, the global approach takes into account the geometry

of the whole domain and background profiles are generally left free to evolve. A possible

simplification that is typically made is the local, or flux-tube limit. In this approximation, one

restricts the simulation domain to a small flux tube following a magnetic field line around the

tokamak. The size of the flux-tube is supposed to be small enough so that the background

profile variations can be neglected but large enough compared to the radial turbulence corre-

lation length so that radial periodicity can be assumed. These conditions can be difficult to

satisfy in some cases where long radial structures such as streamers are excited. Nevertheless,

the flux-tube limit is very useful as the computational requirements are much smaller than

for a global approach. Furthermore, it was shown that local and global codes results agree in

the limit of vanishing ρ∗ [7, 8], where ρ∗ is the ion sound Larmor radius to tokamak minor

radius ratio. Another important difference between codes is the heating scheme. In a typical

global nonlinear simulation, the marginal stability is quickly reached in the absence of a

heat source because of the temperature profile relaxation. While these transient simulations

have been used to benchmark codes [9], it is difficult to make statistically-relevant turbulent

diagnostics. A heat source is then mandatory to replace the heat transported radially to the

outer edge of the domain. Two main different approaches are used. In so-called temperature

gradient-driven simulations, the background temperature profile gradients are prescribed in

input and a special heat source injects the required amount of heat necessary to maintain the

total temperature profile as close as possible to the initial background profile. This approach

is very interesting in terms of computational resources because the system remains close to its

initial state and sufficient statistics can be obtained over turbulence timescale. However, this

method does not reflect the experimental conditions where heat fluxes are typically imposed

by various heat sources such as neutral beam injection, electron and ion cyclotron resonance

heating, or ohmic heating. To address this issue, the so-called flux-driven approach can be

used. It consists of prescribing heat fluxes as input, and letting the temperature profiles evolve

consistently.

Currently, several gyrokinetic codes are available; even though very similar in appearance,

they are all particular in the approximations and/or the numerical schemes they use. They

can be sorted into three groups depending on the numerical scheme they use for solving the

gyrokinetic equations. The Lagrangian approach, often called particle-in-cell (PIC) approach,

consists in separating particle and field data. The physical particles are represented by nu-

merical particles, also called markers, that sample a portion of the phase space. On the other

hand, field data is represented on a discretized grid of configuration space. The main steps

of the PIC algorithm are: a deposition method during which the particle charge and current

are computed. This involves an interpolation of the quasi-random particle positions to the

discrete field grids. Then, the self-consistent electromagnetic fields are computed in the field
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solver using the previously computed charge and current. Finally, the particle positions in

phase space are evolved according to the gyrokinetic equations and the self-consistent fields.

Note that this step also involves an interpolation of field data to particle data. The second

numerical method is the Eulerian approach, which consists in discretizing the phase space

using fixed grids. Finally, the third approach is the so-called semi-Lagrangian method which

uses fixed grid for discretizing the phase space and the values of the distribution function at

the next timestep are computed by following backward the characteristics. As a non exhaustive

list, we can cite the Lagrangian codes ORB5 [10], GT3D [11], XGC [12], GTC [13], GTS [14, 15],

ELMFIRE [16], and PG3EQ [17]; the Eulerian codes GENE [18], GT5D [19], GYRO [20], GS2 [21],

GKV [22], and GKW [23]; and the semi-Lagrangian codes GYSELA [24] and NLT [25].

1.1 Basic concepts of plasma and tokamak physics

1.1.1 Particle and fluid drifts

Plasma is, as a first approximation, a gas composed of positively and negatively charged

particles. As such, it is subject to electric and magnetic fields but is also the source of electro-

magnetic perturbations. This self-consistent problem can become very complex, especially

when the magnetic fields possess a complex topology, which is typically the case in magnetic

confinement devices. To begin with, let us look at the different forces and drifts that the

moving plasma particles may be subject to. Two kind of drifts can be identified: particle and

fluid drifts. Particle drifts are caused by a force acting on a single plasma particle while fluid

drifts are the consequence of macroscopic effects.

The most basic case is the one of a single charge in an imposed constant and uniform

magnetic field. This very simple example defines the Larmor motion of charged particles in a

magnetic field. Even though very basic, this case—comparable to the harmonic oscillator—is

at the origin of many plasma properties. Let us consider a particle of mass m, charge q , and

velocity v immersed in a constant and uniform magnetic field B = Bêz , where êx , êy , and êz

are the unit vectors defining an arbitrary Cartesian coordinate system. The Lorentz force F L

acting on the charge is given by

F L = qv ×B , (1.3)

Due to this force, the charged particle has a characteristic Larmor motion defined by

x −x0 = ρL sin(Ωct ), (1.4)

y − y0 = ρL cos(Ωct ), (1.5)

z − z0 = v‖t , (1.6)

whereΩc = qB/m is the cyclotron frequency, ρL = v⊥/Ωc is the Larmor radius, and v‖ and v⊥
are respectively the parallel and perpendicular components of the velocity with respect to the
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magnetic field. The coordinates (x0, y0, z0) define the guiding center of the particle.

In general, the Lorentz force is not the only force acting on the plasma particles. If another

force is present, the motion of the particle is slightly changed to include a drift of the guiding

center perpendicular to the magnetic field and the acting force F . This drift has a velocity v d

defined by

v d = 1

q

F ×B

B 2 . (1.7)

Note that here, F is assumed to not vary too much on the scale of ρL, this is the so-called drift

approximation. The particle motion can then be decomposed into three components: the very

fast Larmor gyration, the motion parallel to the magnetic field, and the slower guiding center

drift. An illustration of such a drift is made in Figure 1.2. In this setup, the force F is along the y

direction, perpendicular to the magnetic field. Because of F , the particle is accelerated in the y

direction which causes the Larmor radius to increase when the particle is moving in the same

direction as the force and to decrease when the particle is moving in the direction opposite to

the force. This combined motion generates a drift perpendicular to the force and the magnetic

field. In principle, the force F could be of any nature. However, there are a few relevant cases

Figure 1.2 : Illustration of the particle drift generated by the presence of a force F .

to the physics of magnetically confined plasmas, e.g. in the presence of an electric field or in

an nonuniform magnetic field.

In the presence of an electric field E , supposed along the y direction, the force is simply

F = qE . This gives rise to the so-called E ×B drift with velocity

v E×B = E ×B

B 2 . (1.8)

An interesting point to note is that v E×B is independent of the particle mass and charge; ions

and electrons drift at the same velocity.
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The second drift occurs in a curved magnetic field. It arises from the centrifugal force

due to the curvature of the magnetic field lines combined with a nonuniform magnetic field

amplitude. The drift velocity is given by

vC = m

q

Rc ×B

R2
c B 2

(
v2
‖ +

1

2
v2
⊥

)
, (1.9)

where Rc is the radius of curvature of the magnetic field lines.

Finally, the fluid drifts are not caused by a force acting on a single particle but rather by the

interplay between spatial inhomogeneities of the plasma density and temperature, and the

finite Larmor radius in a constant magnetic field. At the microscopic level, the guiding centers

do not move, but at the macroscopic level, drifts appear due to the interplay of many particles.

The diamagnetic drift is a fluid drift due to the spatial variation of the plasma pressure p. The

related drift velocity is given by

v dia =−∇p ×B

qnB 2 . (1.10)

Note that the diamagnetic drift velocity is essentially the drift defined by Eq. (1.7) with a force

−∇p/n.

1.1.2 Trapped particles

In general, the spatial inhomogeneity of the magnetic field causes a force parallel to the

magnetic field lines that affects the parallel motion of the particles:

F‖ =−µ∇‖B , (1.11)

where µ= mv2
⊥/2B is the magnetic moment, which is an adiabatic invariant, and ∇‖ is the

gradient along the magnetic field lines.

The parallel force of Eq. (1.11) is at the origin of the magnetic mirror. As a plasma particle

travels along the magnetic field lines from a low-B region to a high-B region, it sees an increas-

ing magnetic field amplitude. Since the magnetic moment µ is constant, the perpendicular

velocity v⊥ must increase to compensate the variation of B . This, in turns, leads to a decrease

of the parallel velocity v‖ because of the energy conservation. This can be directly seen by

writing v‖ as

v‖ =
√

2
(
E −µB

)
, (1.12)

where E is the energy of the particle. If, at some point, the magnetic field is high enough, v‖
vanishes and the particle is reflected back. This type of confinement is typically used in linear

mirror machines where a set of coils creates a nonuniform magnetic field, Figure 1.3 left. A

particle is said to be trapped if its magnetic moment is large enough so that the change in
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Coil

Coil

Figure 1.3 : Illustration of the magnetic mirror. (left) Due to a non-ideal magnetic coil setup, the

magnetic field is not axisymmetric in the z direction. This causes a force parallel to the magnetic field

lines that decreases the parallel velocity of the particle. Under certain conditions, particles can be

trapped in this magnetic well. (right) Cone of loss illustrating the part of velocity space where particles

are trapped (shaded area) and passing.

magnetic field makes its parallel velocity vanish, i.e.

µ>µmax =
E

Bmax
, (1.13)

where Bmax is the maximum amplitude of the magnetic field. Another way to write Eq. (1.13)

is

tanα= v‖
v⊥

<
√

Bmax

B
−1, (1.14)

where B is the magnetic field amplitude at the position of the particle and α is the angle

defined in Figure 1.3 right, which shows an illustration of the so-called loss cone. The figure

depicts the velocity space (v⊥, v‖) where two regions have been delimited according Eq. (1.14)

and which represent the portion of velocity space where particles are trapped (shaded area)

and where they are passing. Trapped (passing) particles may become passing (trapped) by

two main mechanisms: through a change of their pitch angle, typically caused by collisions or

the parallel non-linearity, and through a radial drift which changes the local trapped/passing

limit.

1.1.3 Tokamak magnetic equilibrium

In tokamaks, the plasma confinement is done using a twisted magnetic field B generated by

external coils and induced toroidal current. To characterize the static magnetic equilibrium,
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the ideal MHD equations in the stationary limit with v = 0 are given by

j ×B =∇p, (1.15)

∇×B =µ0 j , (1.16)

∇·B = 0, (1.17)

where j is the current density and p is the plasma pressure. The static magnetic equilibrium is

reached when the plasma pressure force is balanced with the magnetic forces, Eq. (1.15). Even

tough stationary flows are observed in many fusion experiments, the v = 0 limit is chosen

in this introductory section for the sake of simplicity. A more developed physical model

integrating strong flows will be briefly presented in Chapter 2.

By forming the dot product of B and j with Eq. (1.15), it follows that

B ·∇p = j ·∇p = 0. (1.18)

In other words, magnetic field lines and currents lie on surfaces of constant pressure, also

called flux surfaces, Figure 1.4. The magnetic equilibrium is thus composed of a set of nested

flux surfaces ranging from the magnetic axis, where the surface is a unique toroidal magnetic

field line, to the last closed flux surface (LCFS) delimiting the core and scrape-off layer (SOL).

Labelling each flux surface with its pressure is not convenient. Usually, one uses the poloidal

flux label defined as

ψ=
∫

S
B ·dS, (1.19)

where the integration is made over a surface extending from the magnetic axis to a line on

an isobaric surface and dS is an infinitesimal surface element normal to the surface and

pointing outside of it. In this work, the poloidal flux ψ is always normalized to its edge value,

i.e. ψ≡ψ/ψe.

Tokamak magnetic fields need to be twisted, i.e. to have finite rotational transforms

in order to counteract the drifts related to the curvature of the magnetic field that would

otherwise eject all the plasma to the outer-side walls through a self-generated electric field.

Furthermore, at first order approximation, background quantities in tokamaks can be assumed

to be axisymmetric3. The most general form of divergence-free magnetic field satisfying the

aforementioned conditions can be written as

B = F (ψ)∇ϕ+∇ϕ×∇ψ, (1.20)

where F (ψ) is the poloidal current flux4 and (R, Z ,ϕ) is the cylindrical coordinate system

3This is of course not the case in experimental conditions because of the non-ideal toroidal coil setup for
example

4According to Ampère’s law: ∇×B = ∇F (ψ)×∇ϕ+∇× (∇ϕ×∇ψ)
. The ∇F (ψ)×∇ϕ term thus represent the
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Figure 1.4 : Illustration of the tokamak nested flux surfaces.

presented in Figure 1.4. The magnetic field defined by Eq. (1.20) is clearly a combination of a

purely toroidal magnetic field B T = F (ψ)∇ϕ and a purely poloidal magnetic field B P =∇ϕ×∇ψ.

Combining Eqs. (1.15) and (1.16), and using the general definition of the magnetic field,

Eq. (1.20), leads to the so-called Grad-Shafranov equation:

R2∇·
(

1

R2 ∇ψ
)
=−F (ψ)F ′(ψ)−µ0R2p ′(ψ). (1.21)

Providing a pressure profile p(ψ) and poloidal current function F (ψ), the Grad-Shafranov

equation allows one to obtain the corresponding ideal MHD magnetic equilibrium. Codes

such as CHEASE[26] solve the Grad-Shafranov equation to find magnetic equilibria.

One important parameter to characterize the magnetic surfaces is the safety factor q

defined by

q(ψ) = 1

2π

∮ 2π

0

B ·∇ϕ
B ·∇θ dθ, (1.22)

where θ is the geometrical poloidal angle, Figure 1.4. The safety factor is a flux surface quantity

and its inverse, the rotational transform ı = 1/q , is a measure of how twisted the magnetic

field lines are.

Plasmas generated in current tokamaks exhibit various sizes and shapes. An analytical

axisymmetric toroidal equilibrium expansion [27] can be used to derive the (R, Z ) contours of

the flux surfaces. Furthermore, using this expansion, one can define a set of analytical shaping

parameters such as elongation and triangularity. The decomposition of the Grad-Shafranov

equation, Eq. (1.21), is made using a discrete Fourier transform in the poloidal direction and

poloidal current flux.
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an expansion in the inverse local aspect ratio ε= r /R0 of the cylindrical coordinates (R, Z ).

Here r is the geometrical radius and R0 is the tokamak major radius localizing the magnetic

axis. The Fourier expansion of (R, Z ) is written:

R = R0 + r cos(θ)−∆(r )+
∑

m=2
Sm(r )cos[(m −1)θ]+O (ε3), (1.23)

Z = r sin(θ)−
∑

m=2
Sm(r )sin[(m −1)θ]+O (ε3), (1.24)

where ∆ is the Shafranov shift and Sm are related to the shaping coefficients. For example, the

elongation κ and triangularity δ are defined by S2 and S3 respectively:

κ= r −S2

r +S2
, (1.25)

δ= 4S3

r
. (1.26)

Using the decomposition defined by Eqs. (1.23)–(1.24), the magnetic field amplitude can be

written as

B = B0

{
1−εcos(θ)+ε2

[
cos2(θ)+ 1

2q2

]
+ ∆

R0
−

∑
m=2

Sm(r )

R0
cos[(m −1)θ]

}
. (1.27)

The Shafranov shift ∆ and the shaping coefficients can then be found by solving the Grad-

Shafranov equation, Eq. (1.21), using the decomposition, Eqs. (1.23)–(1.24) and the magnetic

field expansion, Eq. (1.27). Two magnetic configurations are shown as examples in Figure 1.5.

Apart from the MHD stability point of view, different experiments have shown that plasma

shape also influences transport properties. For example, different experiments in TCV and DIII-

D [30, 31, 32] showed that plasmas with a negative triangularity exhibit a significantly reduced

level of core electron heat transport compared to similar shots with positive triangularity. This

was also confirmed, at least qualitatively, by gyrokinetic simulations [33].

1.1.4 Microinstabilities

Tokamak plasmas exhibit a vast number of microinstabilities spanning over multiple spa-

tial and temporal scales. These modes provide a mechanism for the generation of plasma

turbulence, which in turns leads to an important fraction of the particle and heat transport.

Although fluid models allow one to derive basic properties for these microinstabilities, impor-

tant effects such as dissipation due to the Landau damping are not described. In general, a

rigorous description of these modes generally requires to solve the nonlinear Vlasov equation.

However, a linear analysis of the mode characteristics is already insightful and allows one to

identify possible turbulence drive mechanisms. A general description, even linear, including

the complex magnetic geometry of a tokamak requires numerical codes to solve the complex

set of equations of the physical model. Various approximations are often used to simplify
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Figure 1.5 : Illustration of two different magnetic geometries taken from [28]. The amplitude of the

magnetic field is shown as well as some flux surfaces (white dashed lines). The left figure represents the

so-called “Case V” which is a circular equilibrium and the right figure shows the so-called “Case I” with

enhanced shaping and which is very close to a real DIII-D discharge [29].

the model, e.g. adiabatic electrons or cold ion limit, thus allowing one to derive analytical

predictions such as dispersion relations.

Various types of microinstabilities exist with different drives. For example, one distin-

guishes between electrostatic and electromagnetic instabilities depending on the dominant

fluctuating field. They can be destabilized by density and temperature gradients, magnetic

field curvature, or even interaction with fast particles. In this work, we mainly focus on

electrostatic-type instabilities: the toroidal ion (electron) temperature gradient (ITG/ETG)

instability and the trapped electron modes (TEM). An emphasis is also made on the zonal

flows, which act as a saturation mechanism for some type of turbulence, and their oscillatory

counterpart, the so-called geodesic acoustic modes (GAM).

1.1.4.1 Drift waves

Drift waves are electrostatic modes that develop in an inhomogeneous plasma. They are

driven by a density gradient and propagate essentially perpendicular to the magnetic field at

a phase velocity of the order of the diamagnetic drift velocity, Eq. (1.10). Drift waves usually

lead to fluctuations in density, temperature and electrostatic potential and are identified as

the main mechanism for anomalous transport, along with the ITG/ETG/TEM discussed in the

following sections. The drift wave is essentially a deformed sound wave, i.e. in the absence of

density gradient, the drift wave dispersion relation reduces to the ion sound wave dispersion

relation. Using a kinetic approach, one can show that drift waves are linearly stable in the limit
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of adiabatic electrons and destabilized by resonant interactions between particles and the

wave.

Figure 1.6 : Illustration of the basic mechanisms leading to the drift wave propagation. (left) In the limit

of adiabatic electrons, both density and electrostatic potential perturbations are in phase thus leading

to a linearly stable waves. (right) On the other hand, if there is a finite phase between the density and

electrostatic potential perturbations, the drift wave becomes linearly unstable.

The basic mechanisms leading to the development of a drift wave are illustrated in Fig-

ure 1.6. The setup is the following. A plasma with a background density profile having a

gradient ∇n is immersed into a fixed magnetic field B such that B ·∇n = 0. At some arbitrary

position, there is a small density perturbation δn consisting of regions where the perturbation

is positive (red dots) and regions where the perturbation is negative (blue dots). Similarly,

perturbations of the electrostatic potential δφ are created self-consistently to the density per-

turbations. Note that, in the sketch, they are placed next to each other for the sake of visibility.

In reality, both perturbations are superimposed. First, let us look at the case where electrons

respond adiabatically, i.e. there is no phase between the density and electrostatic potential per-

turbations, left figure. Because of the density perturbation, a fluctuating electrostatic potential

is generated self-consistently to which an electric field E is associated. This electric field in

turns makes the plasma drift due to the E ×B drift. Since there is a density gradient, regions of

lesser density plasma are advected to the positive perturbation, i.e. when both density gradient

and E ×B velocity are in the same direction, and regions of higher density plasma are advected

to the negative perturbation, i.e. when ∇n and vE are in the opposite direction. This causes

the perturbation to drift essentially perpendicularly to the density gradient and the magnetic

field. Note that since both perturbations are in phase, the amplitude of the drift wave does
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not change in time: it is linearly stable. On the other hand, if there is a finite phase between

δn and δφ (right figure), the drift waves becomes now linearly unstable. Indeed, when the

perturbations are in phase, a minimum of δn corresponds to a null E ×B drift. This causes

the drift to “fill” (“dig”) the density perturbation holes (bumps). On the other hand, when

there is a phase difference between δn and δφ, the E ×B drift is non null at the position of

minimum/maximum density perturbation thus amplifying it.

1.1.4.2 Ion temperature gradient modes

Ion temperature gradient modes have been extensively studied over the last decades because

they are identified as being mainly responsible for the anomalous ion heat transport in toka-

maks. The ITGs are a drift-wave type instability driven by a temperature gradient, with a

perpendicular phase velocity related to the ion diamagnetic drift motion, and are character-

ized by relatively long perpendicular wavelengths, kθρsi ∼0.1–1, where ρsi is the ion acoustic

gyroradius.

An insightful description of the ITG can be derived using the approximation of a slab

plasma, i.e. without any magnetic field curvature; this is the so-called slab-ITG. It basically

consists of an ion acoustic wave destabilized by a temperature gradient. If one bends the

magnetic field, forces due to the curvature and ∇B act on the plasma and the ITG develop an

interchange like behaviour. This is the so-called toroidal-ITG. To derive its dispersion relation,

we follow the procedure presented in [34]. The system is perturbed by a small electrostatic

fluctuation δφ of the form

δφ= δ̂φexp
[
ı
(
kθθ+k‖ϕ−ωt

)]
, (1.28)

where k = (0,kθ,k‖) is the wave vector and ω is the mode complex frequency. Assuming

adiabatic electrons and quasineutrality, we solve the dielectric function ε(k ,ω) = 0 with

ε(k ,ω) = 1

(kλDe)2 + 1

(kλDe)2


1+ (

ω−ω′
Ti

)∫
dv

f0i

n0i

J 2
0

(
kθv⊥
Ωci

)

k‖v‖+ωdi −ω


 . (1.29)

Here, λDσ is the Debye length of species σ, f0i and n0i are respectively the ion background dis-

tribution function and density, J0 is a Bessel function of the first kind describing finite Larmor

effects, ω′
Ti =

(
kθTi∇Ti/qB

)
∂/∂Ti is an operator defining the temperature drift frequency, and

ωdi = k · (v∇B +vC ) is the drift frequency due to the ∇B and curvature drifts.

To solve ε(k ,ω) = 0, we use the so-called fluid-like limit, i.e. |ω/(k‖vth,i)| ¿ 1, where vth,i

is the ion thermal speed. Furthermore, finite Larmor effects are neglected, i.e. J0 ∼ 1 and the

mode frequency is supposed to be small as compared to the diamagnetic drift frequency, i.e.

|ω¿ωdi|. With the aforementioned approximations, ε(k ,ω) = 0 reduces to

1−
(
1− ωT

ω

)[
k‖cs

ω
+ Te

Ti

〈ωdi〉
ω

]
= 0, (1.30)
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where we have carried out the temperature derivative in ω′
Ti and 〈ωdi〉 = 2Tikθ|∇⊥ lnB |/(eB).

Note that, in this derivation, the density gradient has been neglected to emphasize that the

ITG drive is the temperature gradient.

It is interesting to note that the ITG instability has a finite growth rate even in the limit

k‖ −→ 0. Indeed, further assuming that |ω|¿ |ωT | leads to

1+ Te

Ti

ωT 〈ωdi〉
ω2 = 0 (1.31)

which admits the following two solutions

ω=±
[
−2

Te

Ti

(
kθ
eB

)2

∇ lnTi ·∇ lnB

]1/2

. (1.32)

In this case, ITG modes are destabilized if the gradients of the temperature and magnetic fields

are in the same direction, i.e. in the so-called unfavorable curvature region, and are stable in

the inverse case, i.e. in the so-called favorable curvature region. They are then ballooned in

the low field side of the tokamak.

Note that at sufficiently small perpendicular wavelength, the effect of perturbations on

ions is averaged out due to the finite Larmor radius effects. One can thus assume that ions

have an adiabatic-like behaviour. In this case, the role of ions and electron is exchanged and

the corresponding mode is the so-called ETG, which was predicted to drive significant electron

heat transport [35].

1.1.4.3 Trapped electron modes

Another important mode of interest for understanding tokamak transport is the trapped

electron mode (TEM). First identified in [36], it is now recognized as the main player for

the anomalous electron heat transport and has been extensively been investigated using

gyrokinetic simulations [37, 38, 39, 40, 41].

Trapped electrons bounce back and forth between regions of high and low magnetic field,

Figure 1.7. Due to the magnetic field curvature, they experience drifts that slightly displace

them radially. If one projects their trajectory on a poloidal plane, this periodic motion takes

the particular shape of a banana with a width and a bounce frequency that can respectively be

estimated by

∆rb ∼ qp
ε
ρL, (1.33)

ωb ∼p
ε

vth

qR0
. (1.34)

Because of their particular shape, trapped particle trajectories are called banana orbits. Fur-

thermore, trapped particles also experience a finite toroidal precession with velocity 〈ϕ̇〉b and
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1.1. Basic concepts of plasma and tokamak physics

Figure 1.7 : Cartoon illustrating the trapped particle trajectory. Trapped particles are reflected back

and forth at the turning points, where their parallel velocity becomes zero. Due to the magnetic field

curvature they have a finite toroidal precession (red plain line). Projected on a poloidal plane, the

trapped particle trajectory takes the particular shape of a banana, hence the name of banana orbits.

can resonate with an electrostatic perturbation thus developing an instability; the TEM in the

case of trapped electrons (trapped ions have their counterpart called trapped ion mode).

In the following, we give a short summary of the procedure leading to a dispersion relation

for the TEM. The complete derivation, from which this summary is based on, can be found

in [42]. Due to their small mass, electrons have, in general, a Larmor radius much smaller

than the ions5. This justifies the use of the drift-kinetic limit where one assumes that electrons

have no Larmor radius, i.e. particles coincide with their guiding centers. Furthermore, the

frequency ω of the modes of interest is typically much smaller than the bounce frequency

of trapped electrons, Eq. (1.34). In this limit, the drift-kinetic Vlasov equation can be further

reduced by taking its bounce average:

(
∂

∂t
+〈ϕ̇〉b

∂

∂ϕ

)
G̃e =−

(
e f0e

Te

∂

∂t
− 1

Bp

∂ f0e

∂x

∂

∂ϕ

)
〈φ〉b, (1.35)

where 〈ϕ̇〉b is the toroidal precession velocity and Bp is the poloidal component of the magnetic

field and x is a flux surface label. The electron background distribution function is supposed

to be a Maxwellian of temperature Te and G̃e is the non-adiabatic fluctuating part of the total

distribution function:

G̃e = fe −
eφ

Te
f0e. (1.36)

5Considering electrons with the same temperature as the ions
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Finally, the operator 〈A〉b is the bounce average of the quantity A defined by

〈A〉b = ωb

2π

∫

orbit
A

dl

v‖
. (1.37)

Considering perturbations of the form Eq. (1.28), Eq. (1.35) can be solved for the non-

adiabatic part of the distribution function:

G̃e =−e f0e

Te

ω−ω∗
e

ω−n〈ϕ̇〉b
〈φ〉b, (1.38)

where the drift frequency of the species σ is given by

ω∗
σ =ωnσ+ω

′
Tσ = kθTσ

qσB

(
dlnnσ

dx
+∇Tσ

∂

∂Tσ

)
. (1.39)

Finally, using the quasineutrality equation, the dispersion relation is found, assuming 〈φ〉b ≈φ:

Ti

Te
+ Ti

Te

2αt

ωϕe

{[
ω−ωne

(
1− 3

2
ηe

)]
W (zbe)−ωneηe

(
ω

ωϕe
W (zbe)+ 1

2

)}
+ (1.40)

+1−
∫

dv
f0i

n0i

ω−ω∗
i

ω−k‖v‖−ωdi
= 0, (1.41)

where αt is the fraction of trapped electrons, ησ = dln Nσ/dlnTσ, ωϕ = n〈ϕ̇〉b, the plasma

dispersion function W (z) = (2π)−1/2
∫ ∞
−∞ x/(x − z)exp

(−x2/2
)
dx, and zb = sign

(
ωϕ

)√
2ω/ωϕ.

The dispersion relation defined by Eqs. (1.40)–(1.41) is, in fact, not restricted to the pure TEM

case. One can recover the ITG dispersion relation by removing the TEM drive, i.e. putting

αt = 0. Note that contrarily to the ITG dispersion relation presented in Eq. (1.29) which only

considered a temperature gradient, here one also retains the effect of a density gradient. On

the other hand, if the ITG drive is neglected, one finds the dispersion relation for a pure TEM:

Ti

Te
+ Ti

Te

2αt

ωϕe

{[
ω−ωne

(
1− 3

2
ηe

)]
W (zbe)−ωneηe

(
ω

ωϕe
W (zbe)+ 1

2

)}
+ ωni

ω
= 0, (1.42)

Finally, one can estimate a typical frequency and growth rate of the TEM in the limit of

isothermal species with |ωϕe ¿ω|:

ω'ωne, (1.43)

γ'
√

3

2
αtωϕeωne

(
1+ηe

)
. (1.44)

1.1.5 Physics of zonal flows and geodesic acoustic modes

Zonal flows (ZFs) are axisymmetric band-like shear flows that are present in many situations

going from the Jovian atmosphere to tokamak plasmas. In the latter case, which is the one
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1.1. Basic concepts of plasma and tokamak physics

of interest in this work, ZFs are n = m = 0 electrostatic fluctuations, where n and m are

respectively the toroidal and poloidal Fourier mode number, with a finite radial wavenumber

and can be viewed as a superposition of a geodesic acoustic mode (GAM) with frequencyωGAM

and a Landau damping rate γGAM, and a zero-frequency residual. As such, ZFs cannot tap

free energy stored in, e.g. density and temperature gradients and are thus driven by nonlinear

interactions—even though they are linearly stable. ZFs are generated through nonlinear

coupling with drit-wave-type instabilities and also act as a saturation mechanism of the

turbulence generated by the primary instability. An example of this saturation mechanism was

shown in [29]: ZFs quench the growing ITG instability thus increasing the critical temperature

gradient at which ITG modes can grow; this is the so-called Dimits shift. A pictural explanation

of the saturation mechanism by ZFs is shown in Figure 1.8. The turbulent eddies are sheared

by the ZFs until they eventually break up and couple to small scale dissipation. Zonal flows

being modes with n = 0 and k‖ = 0, they are not subject to Landau damping. This implies that

the only dissipation is made assymptotically through collisions.

Figure 1.8 : Cartoon illustrating the turbulence saturation mechanism through ZF shearing of the

turbulent eddies. Because of the ZF shearing the typical turbulent eddy radial width is reduced thus

decreasing the diffusive-type transport coefficient D ∼∆x2/∆t .

The finite frequency ZFs are the geodesic acousitc modes (GAMs). They are perturbations

of the n = m = 0 electrostatic potential coupled with the n = 0, m = 1 sidebands of the density

perturbation because of the magnetic field toroidicity. Various analytical works have aimed at

computing the GAM frequency and growth rate as well as the residual level, e.g. [43, 44, 45, 46].

Among them, the calculations of Rosenbluth and Hinton (RH) in [43] have given birth to the

eponymous test, which is nowadays commonly used to test the ZF properties of gyrokinetic

codes and cross-code benchmarks. The typical RH test setup is to initialize an axisymmetric

perturbation with a finite radial wave number and letting the system evolve free of any drive.

After a first phase of GAM oscillation of the electrostatic potential, the system converges to a
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(non) vanishing ZF residual for collisional (collisionless) systems.

1.2 Contribution and outline of the thesis
The main goal of this work is to enable the ORB5 code to perform flux-driven simulations and

study their application to comparison with experiments carried out in the TCV tokamak [47].

To this end, three major lines of work have been defined.

Flux-driven simulations are very demanding in terms of computational resources because

the runs have to be long enough for the plasma profiles to relax toward a quasi-steady equi-

librium consistent with the imposed heat fluxes. This relaxation process takes place over

transport time scales that are much longer than the turbulence time scales. Indeed, it is

proportional to the squared of the normalized machine size, which makes flux-driven simu-

lations of a large machine such as ITER [48] impractical. A solution to mitigate this problem

is to ensure that the code makes an optimal use of the numerical resources. To this end, the

first main objective of this thesis consists of the refactoring and optimization of the ORB5

code. After almost 20 years of continuous development, the code became impractical to work

with. Furthermore, the optimization process requires the logic of the code to be as simple

as possible, which further motivated the need of a refactoring. To carry out the optimization

process, which essentially consists of implementing multi-threading using OpenMP, we first

implemented a test bed retaining only the key elements of the PIC algorithm that allowed us

to easily test various algorithm optimization and parallelization strategies, the best of which

were then implemented into the full production ORB5 code.

One of the extensions of this work is to study numerically the problem of profile stiffness

observed in the TCV tokamak [49]. The prerequisites to carry out such TCV-relevant simu-

lations is to work with kinetic electrons since TCV shots often exhibit regimes dominated

by electron modes. However, resolving the physics at the electrons space and time scales

is constrained by the fast electron velocities and small scales. An alternative to the kinetic

electrons is to use a hybrid model in which passing electrons have an adiabatic response while

trapped electrons are kinetic. This model is able to simulate the trapped electron modes which

are dominant in the aforementioned TCV experiments. However, this model is wrong in the

nonlinear regime as it does not ensure the ambipolar condition and creates spurious sources

of particle and momentum. The second main objective of this thesis is thus to develop a

corrected hybrid electron model which addresses the problems of the current model.

The final objective of this work is to enable the flux-driven capabilities of ORB5. To this

end, a heat source prescribing a fixed heat flux while conserving other moments such as

density and parallel momentum is implemented in ORB5. We also tested a “mode switching”

approach consisting of pursuing gradient-driven simulations in flux-driven mode. This is done

to reach more quickly a quasi-steady state and thus limit the numerical resources needed. This

approach is tested on production-relevant cases and compared against both pure gradient-

driven and pure flux-driven runs to ensure the consistency of the method. Finally, the heat
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source is characterized using a 2D phase-space diagnostics.

This thesis is organized as follows. The gyrokinetic model of ORB5 and in particular

the upgraded hybrid electron model that corrects the former hybrid model are presented in

Chapter 2. In Chapter 3, the numerical implementation of ORB5 as well as the refactoring and

optimization processes are described with a short explanation of the different optimization

techniques used during this process. The linear and nonlinear validation of the upgraded

hybrid electron model is presented in Chapter 4. This chapter also includes a short discussion

about radial structures appearing at lowest-order mode rational surfaces and a TCV simulation

using the upgraded hybrid model is presented as well. In Chapter 5, the methodology used

to perform flux-driven simulation with ORB5 is presented with some illustrative “proof-of-

principle” nonlinear simulations. Furthermore, the different problems encountered with

various heat sources/sinks are documented. Finally, Chapter 6 summarizes this work and

exposes the conclusions and future perspectives.
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2 The ORB5 gyrokinetic model

In this chapter, the ORB5 gyrokinetic model is presented including its variants. First, the

magnetic geometry, the coordinate system and the normalizations are presented. Then, using

a variational approach, the gyrokinetic Vlasov-Maxwell system is derived in a consistent

manner which ensures, at least theoretically, energy conservation. Different variants of the

physical model are then presented. They include approximations for the polarization density

in the quasineutrality equation as well as various electron models. Finally, the strong flows,

collisions, and conservation laws are presented. Note that, even though the whole ORB5

model is presented here for completeness, only simulations using the electrostatic limit

without collisions and strong flows have been carried out in this work.

2.1 Magnetic geometry, coordinate system, and normalization
The background fields of a tokamak are usually approximated as axisymmetric. A general

axisymmetric magnetic field in the nested-flux-surface region may be expressed as

B = F (ψ)∇ϕ+∇ψ×∇ϕ, (2.1)

where F (ψ) is the poloidal current flux function, ψ is the poloidal magnetic flux and ϕ is the

toroidal angle. The ORB5 code uses ideal-MHD equilibria, solutions of the Grad-Shafranov

equation, that are provided by the CHEASE code [26]. It can also use an analytical ad-hoc

approximated magnetic equilibrium comprising circular concentric magnetic surfaces.

A straight-field-line coordinate system is used in ORB5. The magnetic surfaces are labeled

by s =√
ψ/ψedge where ψedge is the value of ψ at the radial edge, the toroidal angle is ϕ, and

the straight-field-line poloidal angle is defined by

θ∗ = 1

q(s)

∫ θ

0

B ·∇ϕ
B ·∇θ′ dθ′, (2.2)

where q(s) is the safety factor profile and θ is the geometric poloidal angle.

All the physical quantities in ORB5 are normalized according to four reference parameters;

23



Chapter 2. The ORB5 gyrokinetic model

these normalizations are used internally and in the code output. The reference quantities

are the ion mass mi, the ion charge qi = e Zi with e being the elementary charge and Zi the

ion atomic number, the magnetic field amplitude at the magnetic axis B0, and the electron

temperature Te(s0) at a reference magnetic surface s0. Note that for simulations with multiple

ion species, the user must define a reference ion species for the normalization. Derived units

are then defined with respect to these four parameters: time is in units of the inverse of the

ion cyclotron frequency Ωci = qiB0/mic with c the speed of light in vacuum (CGS units are

used in the following), velocities are normalized to the ion sound velocity cs =
p

eTe(s0)/mi,

lengths are given in units of the ion sound Larmor radius ρs = cs/Ωci, and the densities are

normalized to the volume averaged density n̄. These reference quantities are then used to

construct normalizations for other quantities in the code such as the electrostatic potential,

various fluxes, etc.

2.2 Gyrokinetic equations for fields and particles
The gyrokinetic Vlasov-Maxwell model implemented in ORB5 is derived from a variational

principle [50, 51] which has some advantages compared to models implemented in other

gyrokinetic codes which are derived outside such a variational framework. The first advantage

is the possibility to include all necessary approximations into the expression of the action

before deriving the equations of motion. The second advantage lies in the possibility to

consistently derive exactly conserved quantities, corresponding to the model, such as the

energy. In the ORB5 code these quantities are then used for diagnostics and the verification of

the quality of the simulations. Finally, the variational formulation directly provides the weak

form of gyrokinetic Poisson and Ampère equations suitable for a finite element discretization.

The choice of the ordering plays a crucial role in defining the complexity of the gyrokinetic

model, and in particular the nonlinear terms which are taken into account. The gyrokinetic

variational principle corresponding to the ORB5 model is established according to the specific

gyrokinetic ordering achievable for numerical implementation. In particular, it means that all

the geometrical effects due to the non-uniformity of the background magnetic field are consid-

ered one order smaller than the relative fluctuations of the electromagnetic fields. To quantify

that statement, we define the magnetic field geometry-related small parameter εB = ρth/LB ,

where ρth is the thermal Larmor radius of the particle and LB = |∇B/B |−1 sets up the length

scale of the background magnetic field variation. The electromagnetic-fluctuations-related

small parameter is defined by εδ ∼ |B 1|/B ∼ c|E 1⊥|/(B vth) ∼ (
k⊥ρth

)
eφ1/Ti ≡ ε⊥eφ1/Ti, where

E is the electric field, vth is the thermal velocity, k⊥ is the wave number perpendicular to the

magnetic field, B is the amplitude of the background magnetic field, φ1 is the perturbed

electrostatic potential, Ti is the ion temperature, the subscript 1 refers to the fluctuating part of

the corresponding fields and the subscript ⊥ represents the component perpendicular to the

magnetic field line. The parameter ε⊥ allows the distinction between the gyrokinetic theory

with ε⊥ ∼O (1) and the drift-kinetic theory with ε⊥ ¿ 1. Both models are implemented in the
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code ORB5.

As shown in [51, 52] the ordering εB = ε2
δ

corresponds to gyrokinetic models implemented

in most global codes. In particular, it has been demonstrated that the ORB5 equations can be

derived via variational calculation from the field-particle Lagrangian accurate to second order

with respect to the parameter εδ. Below we present the variational framework and summarize

the main gyrokinetic equations resulting from the variational derivation.

The expression of the action functional leading to the ORB5 code gyrokinetic Maxwell-

Vlasov equations containing first order geometric corrections, i.e. O (εB ) terms, and the elec-

tromagnetic corrections up to the second order, i.e. O (ε2
δ

) terms, is given by:

A =
∫ t1

t0

dt L =
∑
σ

∫
dt dΩ

(
qσ
c

A∗ · Ẋ + mσc

qσ
µΘ̇−H0

)
fσ (2.3)

− εδ
∑

σ6=e

∫
dt dΩ H1 fσ−εδ

∫
dt dΩ H dk

1 fe

− ε2
δ

∑

σ6=e

∫
dt dΩ H2 feq,σ−αε2

δ

∫
dt dΩ H dk

2 feq,e −αε2
δ

∫
dt dV

∣∣∇⊥A1‖
∣∣2

8π
,

where α= 0 corresponds to the electrostatic model and α= 1 to the electromagnetic model,

dΩ= dV dW with dV = d 3X and dW = B∗
‖ dµ dpz represents the infinitesimal volume of the

reduced (gyrocenter) phase space, B∗
‖ is defined as the parallel component of the symplectic

magnetic field B∗ =∇× A∗ with A∗ = A + (c/qσ) pz b̂ being the symplectic magnetic potential

and b̂ being the unit vector parallel to the unperturbed magnetic field line. The action is

derived using the pz formulation in which we define the reduced gyrocenter position X , the

canonical gyrocenter momentum pz = mσv‖+α εδ(qσ/c)A1‖ with the parallel velocity v‖, the

magnetic moment µ and the fast gyro angleΘ. The sums are made over all the speciesσ except

for the second and third sums where the electrons are excluded because they are treated as

drift-kinetic, i.e. their Larmor radius is neglected and they are identified at their guiding center.

The first five terms of the gyrokinetic action are gyrocenter contributions and the last term is a

contribution from the perturbed magnetic field.

Before presenting the equations of motion implemented in ORB5, we discuss all necessary

approximations included in the gyrokinetic action given by Eq. (2.3). The first three terms of

the action involves the full distribution functions fσ, while the fourth and fifth terms, involving

the nonlinear Hamiltonian H2, involve equilibrium distribution functions feq,σ, which are

by definition invariant under the unperturbed Hamiltonian dynamics, i.e. they satisfy the
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condition { feq,σ, H0} = 0, where {F,G} is the Poisson bracket defined by [53]:

{F,G} = e

mc

(
∂F

∂Θ

∂G

∂µ
− ∂F

∂µ

∂G

∂Θ

)
+ B∗

B∗
‖
·
(
∇F

∂G

∂pz
− ∂F

∂pz
∇G

)
(2.4)

− cb̂

eB∗
‖
· (∇F ×∇G)− ∂F

∂w

∂G

∂t
+ ∂F

∂t

∂G

∂w
, (2.5)

where w is the canonically conjugate variable to t . This approximation brings several sim-

plifications in the model. First, it results in the linearization of the gyrokinetic Poisson and

Ampère equations. Second, it simplifies the gyrokinetic Vlasov equation by excluding some

nonlinear terms from the gyrocenter characteristics associated with the Hamiltonian H2.

The gyrocenter model is fixed via the Hamiltonian terms H0 (non-perturbed dynamics),

H1 (linear gyrocenter dynamics), H dk
1 (linear drift-kinetic dynamics for electrons), and H2

(nonlinear second order gyrocenter dynamics). The choice of the linear H1, H dk
1 and nonlinear

Hamiltonians H2 determines the expressions for the gyrokinetic charge and current in the

reduced Poisson and Ampère equations. In this section we present the general electromagnetic

model of the ORB5 code. For further options and approximations implemented on the level of

the reduced particle dynamics, see the sections below.

Concerning the field part of the gyrokinetic action, three approximations have been made.

First of all, the quasi-neutrality approximation, which allows one to neglect the perturbed

electric field energy −ε2
δ

∫
dt dV |E 1|2 /8π. The second approximation consists of neglecting

the magnetic compressibility of perturbations, i.e. the parallel component B1‖ = εδ|B 1⊥| of

the perturbed magnetic field is neglected and only the perpendicular part of the perturbed

magnetic field B 1⊥ = b̂×∇A1‖, associated with A1‖, is implemented. Finally, due to the chosen

ordering, the background component of the magnetic field can be excluded from the Maxwell

part of the gyrokinetic action.

The background Hamiltonian contains information about the kinetic energy of a charged

particle moving in the unperturbed magnetic field with amplitude B :

H0 =
p2

z

2mσ
+µB. (2.6)

The linearized Hamiltonian model for ions is given by the gyroaveraged linear electromagnetic

potential:

H1 = qσ

〈
φ1 −αA1‖

pz

mσc

〉
, (2.7)

where 〈. . .〉 is the gyroaveraging operator. The gyroaveraging is absent in the linear Hamiltonian
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model for the electrons which are considered as drift-kinetic:

H dk
1 =−e

(
φ1(X )−αA1‖(X )

pz

mec

)
. (2.8)

The nonlinear Hamiltonian model which contains all orders in finite Larmor radius (FLR) in its

electrostatic part and up to second order FLR terms in its electromagnetic part is considered

for ions only:

H2 = − q2
σ

2B

∂

∂µ

〈
φ̃1

(
X +ρ0

)2
〉

(2.9)

+ α
q2
σ

2mσc2

[
A1‖(X )2 +mσ

(
c

qσ

)2 µ

B
A1‖(X )∇2

⊥A1‖ (X )

]
,

where φ̃1 =φ1 −〈φ〉 represents the fluctuating part of a perturbed electrostatic potential and

ρ0 is the lowest order guiding-center displacement. Finally the second order Hamiltonian for

the electrons contains the first FLR correction to the electromagnetic potential only:

H dk
2 =α e2

2mec2 A1‖(X )2.

2.2.1 Quasineutrality and Ampère equations

The corresponding quasineutrality equation in a weak form is derived using a functional

derivative of the gyrokinetic action, Eq. (2.3):

∑

σ6=e
Q

gyr
σ +Qdk

e =
∑

σ6=e
Q

pol
σ , (2.10)

Q
gyr
σ =

∫
dΩ fσ qσ

〈
φ̂1

〉
, (2.11)

Qdk
e =−

∫
dΩ fe e φ̂1(X ), (2.12)

Q
pol
σ = εδ

∫
dΩ feq,σ

q2
σ

B

∂

∂µ

(〈
φ1φ̂1

〉−
〈
φ1

〉〈
φ̂1

〉)
, (2.13)

where φ̂1 represents an arbitrary test function, which in the case of ORB5 is a B-spline of a

required order for the finite element discretization. On the left-hand side of the equation, Q
gyr
σ

represents the gyro-charge density of the ions, Qdk
e the drift-kinetic charge of the electrons and

on the right-hand side, Q
pol
σ represents the linear ion polarization charge. Note that due to the

drift-kinetic approximation used for the electrons, there is no contribution to the polarization

density from the electron species.
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Similarly, the Ampère equation derived from the variational principle is given by

0 = − εδ

∫
dV

4π
∇⊥A1‖ ·∇⊥ Â1‖+

∑

σ6=e

∫
dΩ fσ

qσpz

mσc

〈
Â1‖

〉−
∫

dΩ fe
e pz

mec
Â1‖ (2.14)

− εδ

∫
dΩ feq,e

(
e2

mec2 A1‖ Â1‖
)

−
∑

σ6=e
εδ

∫
dΩ feq,σ

[
q2
σ

mσc2 A1‖ Â1‖+
µ

2B

(
A1‖∇2

⊥ Â1‖+ Â1‖∇2
⊥A1‖

)]
,

for any test function Â1‖.

2.2.2 Nonlinear gyrokinetic Vlasov equation

The gyrokinetic Vlasov equation for the distribution function fσ of each species σ is recon-

structed from the linearized gyrocenter characteristics according to the approximations per-

formed on the action functional given by Eq. (2.3):

0 = d fσ
dt

= ∂ fσ
∂t

+ Ẋ ·∇ fσ+ ṗz
∂ fσ
∂pz

, (2.15)

where the gyrocenter characteristics are derived from the Euler-Lagrange equation and depend

on the linearized Hamiltonian model:

Ẋ = cb̂

qσB∗
‖
×∇H + ∂H

∂pz

B∗

B∗
‖

, (2.16)

ṗz =−B∗

B∗
‖
·∇H , (2.17)

with H = H0 +εδH1, where H0 is a Hamiltonian corresponding to the non perturbed guiding-

center dynamics given by Eq. (2.6) and H1 corresponds to the first order gyrocenter contribu-

tions given by Eq. (2.7).

For the ordering considered above, the characteristics become:

Ẋ = cb̂

qσB∗
‖
×∇

[
µB +εδqσ

(〈
φ1

〉−α pz

mσ

〈
A1‖

〉)]+ B∗

B∗
‖

(
pz

mσ
−εδα

qσ
mσ

〈
A1‖

〉)
, (2.18)

ṗz =−B∗

B∗
‖
·∇

[
µB +εδqσ

(〈
φ1

〉−α pz

mσ

〈
A1‖

〉)]
, (2.19)
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which can be written in a different form to make the usual drift velocities appear:

Ẋ = pz

mσ
b̂− c p2

z

qσmσ

1

B∗
‖

[
b̂×

(
b̂× ∇×B

B

)]
+ c

qσB∗
‖

(
µB + p2

z

mσ

)
b̂× ∇B

B
(2.20)

+εδ
c

B∗
‖

b̂×∇
(〈
φ1

〉−α pz

mσ

〈
A1‖

〉)+εδα
c pz

mσB∗
‖

〈
A1‖

〉
κ−εδα

qσ
mσ

〈
A1‖

〉
b̂

≡v‖+v D +v∇B +v C +v E×B +v A‖ , (2.21)

where κ is the curvature vector

κ= b̂×
[

b̂× ∇×B

B

]
+ ∇B × b̂

B
. (2.22)

The first term of the equation is the parallel velocity v‖ (plus a first order correction term

for the electromagnetic case), the second is the diamagnetic drift v D, the third term can be

separated in the ∇B drift v∇B and curvature drift v C, the fourth is the E ×B drift v E×B , and

the last two terms are labeled as v A‖ . Similarly, the same procedure can be applied to the pz

characteristic:

ṗz =µB ∇·B − c pzµ

qσB∗
‖

[
b̂×

(
b̂× ∇×B

B

)]
·∇B (2.23)

−εδ∇
(〈
φ1

〉−α pz

mσ

〈
A1‖

〉) ·
(

qσb̂+ c pz

B∗
‖
κ

)
(2.24)

≡− mσ

pz

(
v‖+v D +v C

) ·∇
(
µB +εδqσ

〈
φ1

〉−εδα
pz

mσ

〈
A1‖

〉)
. (2.25)

In the ORB5 gyrokinetic model, different additional approximations can be made on the

total time derivative operator introduced in Eq. (2.15): the linear and/or neoclassical limits. To

this end, the characteristic equations (2.18) and (2.19) are slightly modified. In the linear limit,

all the perturbed terms, proportional to εδ, are neglected leading to:

Ẋ lin = v‖+v D +v∇B +v C, (2.26)

ṗ lin
z =−µmσ

pz

(
v‖+v D +v C

) ·∇B. (2.27)

The neoclassical limit is made neglecting the fluctuating electromagnetic fields and as-

suming small banana widths compared to the characteristic lengths of the system which leads

to neglecting all drift velocities compared to the parallel drift velocity:

Ẋ neo = v‖, (2.28)

ṗneo
z =−µmσ

pz
v‖ ·∇B. (2.29)
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Chapter 2. The ORB5 gyrokinetic model

2.3 Variants of the physical models
In this section, we present the different variants of the physical model presented above that

are available in the ORB5 code. Usually, each variant can be obtained in the framework

of the variational formulation by changing the H0, H1 and H2 Hamiltonians according to

the corresponding approximations. This is the case for the long-wavelength approximated

electromagnetic model as well as the electrostatic models with a Padé approximation and

a strong background flow. For the adiabatic electron model, an external coupling of the

gyrokinetic equations with a fluid polarization density of the electrons is assumed. Including

this model into the general framework requires some additional approximations on the field

term of the field-particles Lagrangian given by Eq. (2.3). Note that these models are not

necessarily mutually exclusive and a summary of the different possible combinations will be

presented at the end of the section.

2.3.1 Long wavelength approximation

This approximation is obtained by replacing the second order nonlinear Hamiltonian H2

given by Eq. (2.9) in the gyrokinetic Lagrangian, Eq. (2.3), by the nonlinear Hamiltonian

model [52] containing FLR expansions up to the second order for both its electrostatic and

electromagnetic parts:

H FLR
2 =−mσc2

2B 2

∣∣∇⊥φ1 (X )
∣∣2 +α q2

σ

2mσc2

[
A1‖(X )2 +mσ

(
c

qσ

)2 µ

B
A1‖∇2

⊥A1‖ (X )

]
. (2.30)

This changes only the term associated with the polarization charge of the quasineutrality

equation, Eq. (2.10), so that Eq. (2.13) is replaced with

Q
pol
σ,LWA = εδ

∫
dΩ feq,σ

mσc2

B 2 ∇⊥φ1 ·∇⊥φ̂1, (2.31)

for any test function φ̂1. The subscript LWA stands for long wavelength approximation. Since

the magnetic terms in Eq. (2.30) remain unchanged compared to the Hamiltonian H2 given

by Eq. (2.9), for which the long wavelength approximation had already been considered, the

corresponding Ampère equation remains the same as given by Eq. (2.14). The gyrokinetic

Vlasov equation is unchanged as well, since the background H0 and linear H1 Hamiltonians are

not affected by the approximation and no contributions from the second order Hamiltonian

appear in the characteristics given by Eqs. (2.18)–(2.19).

2.3.2 Padé approximation

In addition to the long wavelength approximation, a Padé-approximated quasineutrality

model for the ion species is available in ORB5 [54, 55]. In practice, the Padé approximation is

currently only implemented for one ion species (σ= i). In order to include this approximation

inside the common variational principle, the linear Hamiltonian model has to be slightly
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modified with respect to Eq. (2.7) for both ions:

H1,Padé =
(
1−∇⊥ ·ρ2

i ∇⊥
)

H1, (2.32)

and electrons:

H dk
1,Padé =

(
1−∇⊥ ·ρ2

i ∇⊥
)

H dk
1 . (2.33)

The nonlinear Hamiltonian model in that case is given by the FLR second-order truncated

Hamiltonian H FLR
2 , Eq. (2.30). The quasineutrality equation in weak form is written in a

different way by multiplying it by the operator [1−∇⊥ ·ρ2
i ∇⊥] to cancel the

[
1−∇⊥ ·ρ2

i ∇⊥
]−1

term in the polarization density. This is done for computational reasons: the inverse of the

block banded matrix coming from the discretization of the
[

1−∇⊥ ·ρ2
i ∇⊥

]
operator is a full

matrix. For example, with drift-kinetic electrons, this leads to:

0 = qi

∫
dΩ fi

(
1−∇⊥ ·ρ2

i ∇⊥
)〈
φ̂1

〉−e
∫

dΩ fe
(
1−∇⊥ ·ρ2

i ∇⊥
)
φ̂1

+ εδ

∫
dΩ feq,i

mic2

B 2 ∇⊥φ1 ·∇⊥φ̂1. (2.34)

2.3.3 Adiabatic electron model

In order to include a model with adiabatic electrons inside the variational formulation, we

need to include a fluid approximation for the electron dynamics inside the field-particle

Lagrangian. Compared to the main field-particle Lagrangian, Eq. (2.3), here the sum over the

species in the first term is over the ion species only and the field term is modified by a purely

electrostatic contribution from the electrons. The action principle for a model with adiabatic

electrons is then given by

Aadiab =
∫

dt Ladiab =
∑

σ6=e

∫
dt dΩ

[
qσ
c

A∗ · Ẋ + mσc

qσ
µΘ̇− (H0 +εδH1)

]
fσ

+εδ
∫

dt dV

[
ne0φ1 +εδ

e

2Te
ne0

(
φ1 −φ1

)2
]

(2.35)

−ε2
δ

∑

σ6=e

∫
dt dΩH2 feq,σ,

where φ1 represents the flux-surface-averaged electric potential given by

φ1 ≡
∫
φ1 Jsθ∗ϕ(s,θ∗)dθ∗dϕ
∫

Jsθ∗ϕ(s,θ∗)dθ∗dϕ
, (2.36)

where Jsθ∗ϕ(s,θ∗) =∇s · (∇θ∗×∇ϕ) is the Jacobian of the magnetic coordinate transformation

and ne0 is the equilibrium electron density. Since the adiabatic electron model is only valid
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Chapter 2. The ORB5 gyrokinetic model

in the electrostatic limit, pz = mσv‖ and the velocity part of the phase space volume reduces

to dW = B∗
‖ mσdv‖dµ and B∗ = ∇× A∗ with A∗ = A + (c/qσ)mσv‖b̂, while the spatial part

dV = d3X remains unchanged with respect to the electromagnetic case. The Hamiltonian

models are now defined for a simplified electrostatic case as

H0 =
mσv2

‖
2

+µB , (2.37)

H1 = qσ
〈
φ1

〉
. (2.38)

The nonlinear ion dynamics is defined by the electrostatic part of either the full FLR, the Padé-

approximated, or the second order FLR long-wavelength-approximated nonlinear Hamilto-

nian.

The corresponding Vlasov equation does not contain any contribution from the electron

species, so we have for ions (σ= i)

0 = d fi

dt
= ∂ fi

∂t
+ Ẋ ·∇ fi + v̇‖

∂ fi

∂v‖
, (2.39)

with the characteristics corresponding to the electrostatic limit (α= 0) of Eqs. (2.16) and (2.17):

Ẋ = cb̂

qiB∗
‖
×∇(

µB +εδqi
〈
φ1

〉)+ B∗

B∗
‖

v‖, (2.40)

v̇‖ = −B∗

B∗
‖
·∇(

µB +εδqi
〈
φ1

〉)
.

For the quasineutrality equation, only the electron contribution to the gyro-charge density

term is modified, leading to

Qdk
e,adiab = εδ

∫
dV

ene0

Te

(
φ1 −φ1

)
φ̂1 +

∫
dV ne0 φ̂1. (2.41)

2.3.4 Hybrid electron model

There is also the possibility to include a hybrid electron model inside the variational formula-

tion. In that case the fraction of passing electrons designated with a coefficient αP is treated as

an adiabatic species, while the fraction of trapped electrons is treated as a drift-kinetic species.

At the same time, the ions are treated as kinetic species. The corresponding action functional
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is given by

Ahybrid =
∫

dt Lhybrid =
∑

σ6=e

∫
dt dΩ

[
qσ
c

A∗ · Ẋ + mσc

qσ
µΘ̇− (H0 +εδH1)

]
fσ

−ε2
δ

∑

σ6=e

∫
dt dΩ H2 feq,σ

+
∫

dt dV
∫

trapped
dW

[e

c
A∗ · Ẋ + mec

e
µΘ̇−

(
H0 +εδH dk

1

)]
fe

+εδ
∫

dt dV αP

[
ne0φ1 +εδ

e

2Te
ne0

(
φ1 −φ1

)2
]

,

where the integral over the fraction of trapped electrons in the velocity phase space is assumed

with
∫

trapped dW . The trapped/passing boundary is defined with respect to equilibrium fields

and neglecting radial drifts, Eq. (1.14). Note that for electrons, the banana width is neglected

and the amplitude of the magnetic field is taken locally at the electron position. The phase

space configuration is the same as in the case of an adiabatic electron model. The gyrocenter

model used for modelling the ion species dynamics is identical to the one presented for the

adiabatic electron model discussed in the previous section, i.e. the Hamiltonians H0 and

H1 are given by Eqs. (2.37)–(2.38) and the nonlinear Hamiltonian is coming from either the

full FLR, the Padé approximation or the long wavelength approximation. Concerning the

gyrocenter models used for modeling the hybrid electron dynamics, the equilibrium dynamics

is defined with H0 given by Eq. (2.37). The linear part of the trapped electron dynamics is

defined by the drift-kinetic model defined by Eq. (2.8) withα= 0. The quasineutrality equation

is only affected through the electron contribution to the gyro-charge term that reads

Qdk
e,hyb = εδ

∫
dV αPne0

e

Te

(
φ1 −φ1

)
φ̂1 +

∫
dV ne0 φ̂1 +

∫

trapped
dΩ feφ̂1. (2.42)

The ion characteristics are reconstructed identically to the case with adiabatic electrons,

accordingly to Eq. (2.40). The characteristics for the electrons are defined by the simplified

drift-kinetic equations corresponding to the dynamics of H = H0 +H dk
1 :

Ẋ = − cb̂

eB∗
‖
×∇(

µB +εδe φ1
)+ B∗

B∗
‖

v‖, (2.43)

v̇‖ = −B∗

B∗
‖
·∇(

µB +εδe φ1
)

.

Note that all the electrons, passing and trapped, are evolved according to the above drift-kinetic

characteristics.

The hybrid electron model presented above was originally implemented to simulate linear

electron modes such as TEM, allowing for a larger timestep than with fully drift-kinetic elec-

trons. However, in nonlinear regime, it does not ensure the ambipolar condition—which also
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Chapter 2. The ORB5 gyrokinetic model

impacts the conservation of the toroidal angular momentum—as no flux-surface-averaged

passing-electron density is accounted for. Spurious sources of e.g. density and momentum are

added in this model because particles that are becoming trapped (detrapped) are suddenly

(not) accounted for kinetically in the quasi-neutrality equation. The trapping/detrapping

processes are the collisions and parallel nonlinearity that affect the particle pitch angle and

radial drifts that change the value of the local background magnetic field. To correct this

trapped/passing hybrid model, a part of this thesis was dedicated to implementing an up-

graded hybrid electron model in ORB5 as an improvement of the model presented in [56]. The

main difference between the former ORB5 model and this upgrade is that the flux-surface

average of the passing electrons is also treated kinetically leading to the following weak form

of the electron contribution to the quasi-neutrality equation:

Qdk
e,hyb =εδ

∫
dV αPne0

e

Te

(
φ1 −φ1

)
φ̂1 +

∫
dV ne0 φ̂1 (2.44)

+
∫

trapped
dΩ feφ̂1 +

∫

passing
dΩ feφ̂1,

where φ̂1 is the flux-surface average of the arbitrary test function φ̂1. As a first approximation,

the flux-surface average is computed by filtering out all the m 6= 0 kinetic contributions of the

passing electrons for the n = 0 mode while keeping an adiabatic response for the other passing

components. This way, the quasineutrality equation, Eq. (2.44), is slightly changed as follows

Qdk
e,hyb =εδ

∫
dV αPne0

e

Te

(
φ1 −φ1

)
φ̂1 +

∫
dV ne0 φ̂1 (2.45)

+
∫

trapped
dΩ feφ̂1 +

∫

passing
dΩ feφ̂

00
1 ,

where φ̂00
1 is the n = m = 0 component of the arbitrary test function φ̂1. A more detailed

description can be found in Chapter 4.

2.3.5 Summary of the models

All the variants of the particle models presented in the previous sections are summarized here.

The main changes brought by the different models mainly come through the quasineutrality
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equation which can be written

∑

σ6=e
Q

gyr
σ +Qdk

e =
∑

σ6=e
Q

pol
σ , (2.46)

Q
gyr
σ =

∫
dΩ fσ qσ

〈
φ̂1

〉
, (2.47)

Qdk
e =−

∫
dΩ fe e φ̂1(X ), (2.48)

Q
pol
σ = εδ

∫
dΩ feq,σ

q2
σ

B

∂

∂µ

(〈
φ1φ̂1

〉−
〈
φ1

〉〈
φ̂1

〉)
, (2.49)

where Q
gyr
σ is the term corresponding to the ion gyrodensity contribution, Qdk

e is the term

corresponding to the electron drift kinetic density contribution and Q
pol
σ represents the

polarization density contribution from the ions. For the ions, only Q
pol
σ is affected by the

different models:

Q
pol
σ,LWA = εδ

∫
dΩ feq,σ

mσc2

B 2 ∇⊥φ1 ·∇⊥φ̂1, (2.50)

Q
pol
i ,Padé = εδ

∫
dΩ feq,i

mic2

B 2

[
1−∇⊥ ·ρ2

i ∇⊥
]−1[

∇⊥φ1 ·∇⊥φ̂1

]
. (2.51)

Note that in the case of the Padé approximation, all the quasineutrality equation is multiplied

by
[

1−∇⊥ ·ρ2
i ∇⊥

]
to avoid having to invert it.

For the electrons, only Qdk
e is changed by the different fluid and hybrid approximations:

Qdk
e,adiab =εδ

∫
dV

ene0

Te

(
φ1 −φ1

)
φ̂1 −

∫
dV ne0 φ̂1, (2.52)

Qdk
e,hyb =αP εδ

∫
dV

ene0

Te

(
φ1 −φ1

)
φ̂1 −

∫
dV ne0 φ̂1

−
∫

trapped
dΩ feφ̂1 +

∫

passing
dΩ feφ̂1. (2.53)

In ORB5, the previous approximations are not mutually exclusive, i.e. each model for the

polarization density can be combined with any electron model.

2.4 δ f method and background distribution functions
The ORB5 code uses a δ f control-variates approach to reduce the numerical noise due to

the finite phase-space sampling [57, 58]. The rationale of this method is to separate the total

distribution function into two parts: a time-independent part f0 and a time-dependent part

δ f . The first function, f0, is supposed to be known and easily computable. Only the δ f part is

represented with a sample of “numerical particles” or “markers”. The statistical sampling error

will thus be reduced, compared to a full- f method, if |δ f |¿ f0.

In the collisionless limit and in the absence of sources, the total distribution function is
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conserved along the trajectories. Using the δ f separation, we obtain

dδ f

dt
=−d f0

dt
=− d f0

dt

∣∣∣∣
0
− d f0

dt

∣∣∣∣
1

, (2.54)

where the time-derivative operator has been split into two parts labeled by 0 and 1, which

respectively represent the unperturbed dynamics, i.e. without the fluctuating fields, and the

perturbed dynamics. In the standard δ f method, we choose f0 ≡ feq to be an equilibrium

distribution, solution of the unperturbed collisionless equations of motion and thus, to satisfy

{ feq, H0} = 0 reducing Eq. (2.54) to

dδ f

dt
=− d feq

dt

∣∣∣∣
1

. (2.55)

In ORB5, different choices for the initial distribution function are available. The plasma

can be assumed to be in a local thermodynamic equilibrium described by a local Maxwellian

fL(ψ,ε,µ) defined by

fL(ψ,ε,µ) = nσ(ψ)
(
2πTσ(ψ)/mσ

) 3
2

exp


−

1
2 mσ

(
v2
‖ +2µB

)

Tσ(ψ)


 . (2.56)

Both the particle energy ε and the magnetic momentµ are constants of motion but the poloidal

magnetic flux ψ is not. Note that in ORB5, the magnetic moment is defined as µ= v2
⊥/(2B).

The local Maxwellian is therefore not invariant under the unperturbed dynamics and Eq. (2.54)

must be used. The inclusion of the d fL/dt
∣∣
0 term leads to the drive of a spurious zonal flow

discussed in [11], which appears already in the linear phase of a simulation, even though zonal

flows are linearly stable and excited through nonlinear coupling [59]. As done in many PIC

codes, the above-mentioned term responsible for this zonal flow drive can be neglected but it

is not consistent with the perturbative ordering used here.

The alternative approach is to use a distribution function that is a true equilibrium, imply-

ing that f0 is a function of constants of motion only. This is verified by the so-called canonical

Maxwellian fC(ψ0,ε,µ) defined by

fC(ψ0,ε,µ) = nσ(ψ0)
(
2πTσ(ψ0)/mσ

) 3
2

exp


−

1
2 mσ

(
v2
‖ +2µB

)

Tσ(ψ0)


 , (2.57)

where ψ0 = ψ+ (mσc/qσ)(F (ψ)/B)v‖ is the toroidal momentum which is conserved in an

axisymmetric toroidal system. However, it is easily shown that the effective density nσ(ψ) and

temperature Tσ(ψ) computed from fC are different from the ones, nσ(ψ0) and Tσ(ψ0), given

as input and function of ψ0. The use of a canonical Maxwellian can lead to large, unrealistic

values of parallel flows preventing any instability to develop, especially for small system size
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and large n0 and v‖ gradients [60]. To address this issue, a corrected canonical Maxwellian

fCC(ψ̂,ε,µ) is used. A correction term is added to the toroidal momentum to minimize the gap

between the local and canonical Maxwellians while still being an equilibrium distribution.

The corrected toroidal momentum reads

ψ̂=ψ0 +ψ0,corr =ψ0 − sign(v‖)
mσc

qσ
R0

√
2(ε−µB0)H

(
ε−µB0

)
, (2.58)

where R0 is the major radius and H is the Heaviside function. The correction term is zero

for trapped particles and of opposite sign for forward and backward passing particles. The

corrected toroidal momentum being built only with constants of motion, fCC(ψ̂,ε,µ) satisfies

{ fCC, H0} = 0.

2.5 Strong flows

The strong flow gyrokinetic ordering allows for uE /vth,i ∼ 1, with uE = c
(
b̂×∇Φ/B

)
the back-

ground E×B velocity, whereΦ represents the background electric potential, and vth,i =
p

Ti/mi

is the ion thermal velocity [61]. Implementing this ordering in ORB5 enables the treatment

of plasmas rotating toroidally at close to the Mach velocity. More details of this formalism

have been published earlier [62]. In this case, a further approximation is performed on the

background distribution function. While a local Maxwellian is used for the polarization density

in the quasineutrality equation, the canonical Maxwellian is implemented for the derivation

of the gyrokinetic Vlasov equation.

In order to include the model containing a background electrostatic potentialΦwithin the

general field-gyrocenter action given by Eq. (2.3), the background Hamiltonian H0, as well as

the symplectic magnetic potential A∗ have to be consistently modified:

H flow
0 = qσΦ+µB + p2

z + (mσuE )2

2mσ
, (2.59)

and A∗ = A + (c/qσ) pz b̂+ (mσc/qσ)uE .

In ORB5, when considering strong flows, only the electrostatic limit is considered. This

corresponds to setting α= 0 in Eq. (2.3). Remark that including the background E ×B velocity

does not affect the quasineutrality equation, since no corrections due to the presence of a

strong flow are included into the linear and nonlinear Hamiltonian models given by Eqs. (2.7)-

(2.9). The gyrokinetic Vlasov equation is modified according to the change in the background

dynamics from H0 given by Eq. (2.6) to H flow
0 given by Eq. (2.59). The corresponding δ f

gyrokinetic Vlasov equation is reconstructed from the modified characteristics. Since the
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perturbed magnetic field is not considered, pz = mσv‖ is a purely kinetic momentum:

Ẋ = cb̂

qσB∗
‖
×∇

(
qσΦ+µB + mσ

2
|uE |2 +εδqσ

〈
φ1

〉)+ B∗

B∗
‖

v‖, (2.60)

v̇‖ = −B∗

B∗
‖
·∇

(
qσΦ+µB + mσ

2
|uE |2 +εδqσ

〈
φ1

〉)
.

For strongly rotating plasmas, with Mach number around one, dynamic pressure resulting

from the flow is comparable to the thermal pressure, and a modified Grad-Shafranov equation

should be used to accurately compute the magnetic equilibrium. To self-consistently include

these effects, we have used the MHD code FLOW [63] which can solve the MHD force balance

equation in the presence of a background flow. FLOW reads the equilibrium via the standard

EQDSK format [26]. We have considered only toroidally rotating MHD equilibria, with the tem-

perature being a flux surface function, as this allows collisionless kinetic and MHD equilibria

to be consistent in the large-system size limit.

2.5.1 Global gyrokinetic equilibria for rotating plasmas

The constants of motion are the magnetic moment µ, the unperturbed energy of the particle

ε = H flow
0 , the sign of the parallel velocity (for passing particles), and finally the toroidal

canonical momentum ψ0, which is conserved in a tokamak due to axisymmetry. The strong-

flow canonical momentum ψC is an extension of the canonical momentum discussed in

Section 2.4:

ψflow
C =ψ+ mσc

qσ

F

B
v∥+

mσc

qσ
uϕ, (2.61)

where uϕ is the toroidal component of the background E ×B velocity.

In the presence of toroidal rotation, the canonical Maxwellian, which is corrected so that

the flux surface averaged density remains close to n0σ when rotation is introduced, is given by

fC =
(

mσ

2πT0σ(ψC)

)3/2

n0σ(ψC)exp

{
− 1

T0σ(ψC)

[
H flow

0 + mσR0(ψC)2

2

(
∂Φ

∂ψ

)2]}
, (2.62)

whereΦ is the flux surface average ofΦ. In the local limit, this choice leads to an in-out density

variation

nσ = n0σ(ψ)exp

[
mσ(R2 −R2

0)Ω2

2

]
, (2.63)

where the plasma rotation frequencyΩmay be expressed asΩ= ∂Φ/∂ψ.
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2.6 Collisions

The inclusion of collisions in a gyrokinetic code like ORB5 is important to assess the right

level of transport. Indeed, collisions are required to model the neoclassical physics, which is a

key player in the transport of certain classes of particles, e.g. heavy impurities. Furthermore,

collisions are known to impact turbulence. For example, ITG driven turbulence increases when

collisions are taken into account due to the collisional damping of the zonal flows [64, 65].

On the other hand, TEM turbulence is reduced by collisions via the collisional detrapping of

electrons.

ORB5 currently includes ion-ion intra-species and electron-ion collisions [66]. For the

collisional dynamics, FLR and polarization effects are neglected. In ORB5, collisions are

represented by a linearized Landau collision operator. The linearization procedure is done with

respect to a local Maxwellian background fL. The full Landau operator describing collisions

of species a on species b is bilinear with respect to the distributions fa and fb and may thus

be decomposed into four terms: Cab[ fb, fa] = Cab[ fb,L, fa,L]+Cab[ fb,L,δ fa]+Cab[δ fb, fa,L]+
Cab[δ fb,δ fa], where δ fs is the perturbed part of the distribution of species s. Note that in

our notation, Cab[ fa, fb] refers to the effect of collisions of species a on species b. Note that,

for the whole collision part, the species background distribution function is converted to a

local Maxwellian if it is not already the case. After the collision dynamics has been treated,

the background Maxwellian is converted back to its original form if needed, f = f0 +δ f =
f0L +δ fL. The perturbed part δ f is modified accordingly such that the total distribution

remains unchanged in this “background switching” process. For Maxwellian distributions

with identical parallel velocities and temperatures, the first term on the right-hand side is

zero. Assuming the perturbation is small, the final, nonlinear term, is also neglected leaving

two terms called the “test particle” term Cab[ fb,L,δ fa] and the “background reaction” term

Cab[δ fb, fa,L].

For the self-collisions, the “test particle” term can be readily evaluated using the exact

Landau operator in its drag-diffusion form:

C [ fL,δ f ] = ∂

∂v
· [Γ( fL)δ f

]− ∂2

∂v v
:
[

D( fL)δ f
]

, (2.64)

where the drag vector and the diffusion tensor are respectively given by

Γ=−ν̄H(x)v , D =
ν̄v2

th

4

[
K (x)

(
I − v : v

v2

)
+2H(x)

v : v

v2

]
, (2.65)

where the collision frequency is defined as ν̄= 8πnq4 lnΛ/m2v3
th, x = v/

p
2vth is the normal-

ized velocity with vth =
p

T /m the thermal velocity of the species, and I is the identity tensor.

The Coulomb logarithm lnΛ is assumed constant across the plasma, and typically has a value

of 10–15. The functions K (x) and H(x) are resulting from the analytical evaluation of the
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Rosenbluth potentials in the case of a Maxwellian background distribution:

H(x) = 1

2
p

2x3

[
erf(x)−x

d

dx
erf(x)

]
, (2.66)

K (x) = 1p
2x
φ(x)−H(v). (2.67)

where erf stands for the error function.

Evaluating the background reaction term exactly would in particular require the reconstruc-

tion of the δ f distribution function and taking its velocity derivative. Such a direct approach is

too expensive and includes steps subject to significant noise in a PIC code. Instead, ORB5 uses

an approximation first suggested by [67]: C [δ f , fL] ' fLβ(δ f ), with

β(δ f ) = 1

n

[
6
p
πH(x)

δP||v||
v2

th

+p
πG(x)

δE

v2
th

]
, (2.68)

where G(v) = (4x2 − 1)H(x)−K (x). The two terms δP|| and δE represent respectively the

parallel momentum and energy transferred to the distribution by the “test particle” operator.

This approximation can be shown to satisfy the desirable properties of a collision operator

[67, 68]. Indeed, it conserves the mass and, when combined with its counterpart C [ fL,δ f ],

conserves also the momentum and energy. Furthermore, the combined linear operator is

self-adjoint and satisfies the H-theorem. The operator is zero if the perturbation is a shifted

linearized Maxwellian, i.e. such distributions are stationary states.

The only interspecies collisions which are currently taken into account in ORB5 are the

electron-ion collisions. The “test particle” part of the electron-ion collisions in ORB5 is repre-

sented by a Lorentz operator, which assumes a large mass ratio between ions and electrons. In

this limit, electrons experience only pitch-angle scattering. This Lorentz operator can simply

be written:

Cei[ fi,δ fe] =−νei (v)
∂

∂ξ

[
(1−ξ2)

∂δ fe

∂ξ

]
, (2.69)

where the electron-ion collision frequency is given by νei (v) = (ν̄ei/4)(vth,e/v)3, with ν̄ei =
8πniZ 2e4 lnΛ/m2

e v3
th,e and ξ= v‖/v⊥ is the pitch angle variable. The “test particle” Lorentz

operator conserves the mass and energy. The “background reaction” of the Lorentz operator

is neglected in ORB5. Therefore, momentum conservation is not ensured by the reduced

electron-ion collision operator.

2.7 Conservation laws and diagnostics
In this section we present the conserved quantities associated with the field-particle La-

grangian, which are implemented in ORB5 as diagnostic tools. These quantities can be ob-

tained from a direct application of the Noether method, details of the derivation can be found
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in [51]. We start by presenting the energy invariant corresponding to each model. This invari-

ant is used for constructing the so-called power balance diagnostic, which allows one to verify

the quality of numerical simulations.

First, we provide a generic expression for the energy density corresponding to the most

complete electromagnetic model, which can also be obtained from a direct application of the

Noether method, see e.g. [51].

E EM =
∑
σ

∫
dΩ H0 fσ+εδ

∑

σ6=e

∫
dΩ H1 fσ+εδ

∫
dΩ H dk

1 fe (2.70)

+ ε2
δ

∑

σ6=e

∫
dΩ H2 feq,σ+αε2

δ

∫
dΩ H dk

2 feq,e +α ε2
δ

∫
dV

∣∣∇⊥A1‖
∣∣2

8π
.

This expression can be simplified and rewritten in the form of code diagnostics by direct

substitution of the expression for the Hamiltonians H0, H1 given by Eqs. (2.6) and (2.7), while

H2 is given by Eq. (2.9) in the case of the all-orders in FLR polarization density model and by

Eq. (2.30) in the case of the long-wavelength approximation. All the terms in the expression

for energy except the first one are then rewritten using the corresponding quasineutrality and

Ampère equations in their weak form. Here we choose a particular test function φ̂1 =φ1 and

we substitute it in Eqs. (2.10)–(2.13) or, for the case of the long-wavelength approximation,

in Eqs. (2.10), (2.11), (2.12), and (2.31). Similarly, the test function Â1‖ = A1‖ is substituted to

the corresponding Ampère equation given by Eq. (2.14). In PIC codes, particles and fields are

evaluated in two different ways: particles are advanced continuously along their characteristics

while fields are evaluated with finite elements on a fixed grid. To test the quality of the

simulation, the contributions to the energy from the particles and from the fields should

be computed independently. This is why we are considering the power balance equation,

also called the E ×B transfer equation. The code diagnostics are implemented to verify the

following balance equation for E EM = EF +Ekin:

0 = dE EM

dt
⇒ dEkin

dt
=−dEF

dt
, (2.71)

where the time derivative of the left hand side of this relation can be evaluated through the

particle characteristics and the right hand side from the field contributions evaluated on the

grid.

From Eq. (2.70), the first term on the r.h.s. is defined as the “kinetic energy” Ekin:

Ekin =
∑
σ

∫
dΩ H0 fσ =

∑
σ

∫
dΩ

(
p2

z

2mσ
+µB

)
fσ, (2.72)

which depends only on the unperturbed Hamiltonian H0 and therefore, its time derivative can

be evaluated considering only the unperturbed characteristics. The other terms are defined as

the “field energy” EF, which can be written, for the case of the H2 Hamiltonian written in the
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LWA, Eq. (2.30), as:

EF =εδ
∑

σ6=e

∫
dΩqσ

〈
φ1 −αA1‖

pz

mσ

〉
fσ−εδ

∫
dΩe

(
φ1 −αA1‖

pz

me

)
fe

+ε2
δ

∑

σ6=e

∫
dΩ feq,σ

{
−mσc2

2B 2

∣∣∇⊥φ1
∣∣2 +α q2

σ

2mσ

[
A2

1‖+
(

mσ

qσ

)2 µ

B
A1‖∇2

⊥A1‖
]}

+ε2
δα

∫
dΩ feq,e

e2

2me
A2

1‖+ε2
δα

∫
dV

∣∣∇⊥A1‖
∣∣2

8π
. (2.73)

Using the quasineutrality equation Eqs. (2.10)–(2.12) with the polarization term in the LWA,

Eq. (2.31), Ampère equation, Eq. (2.14), and setting φ̂1 = φ1 and Â1‖ = A1‖, we obtain two

equivalent expressions for the field energy:

EF = εδ
1

2

∑

σ6=e
qσ

∫
dΩ

(〈
φ1

〉−α pz

mσ

〈
A1‖

〉)
fσ−εδ

1

2
e
∫

dΩ

(
φ1 −α

pz

me
A1‖

)
fe. (2.74)

Note that Eq. (2.74) does not depend on the particular choice for the nonlinear Hamiltonian

H2. Indeed, Eq. (2.74) is also valid for the all order FLR polarization density, Eq. (2.13). This is a

direct consequence of the fact that the equations of motion, which are used for rewriting the

expression of the energy are obtained from the same field-particle Lagrangian.

Similarly, a second expression for the field energy written in terms of the polarizations and

magnetizations and depending on the expression of the nonlinear Hamiltonian H2 can be

obtained. For the full FLR polarization density given by Eq. (2.13), the alternative field energy

is given by

EF =1

2

∑

σ6=e
εδ

∫
dΩ feq,σ

q2
σ

B

∂

∂µ

〈
φ̃1

(
X +ρ0

)2
〉

+ 1

2
α

∑

σ6=e
ε2
δ

∫
dΩ feq,σ

(
q2
σ

mσ
A2

1‖+
µ

B
A1‖∇2

⊥A1‖
)

+ 1

2
α ε2

δ

∫
dΩ feq,e

e2

me
A2

1‖+α ε2
δ

∫
dV

8π

∣∣∇⊥A1‖
∣∣2 . (2.75)

For the polarization density in the LWA, Eq. (2.31), the field energy becomes

E LWA
F =1

2

∑

σ6=e
εδ

∫
dΩ

mσc2

B 2 feq,σ
∣∣∇⊥φ1

∣∣2

+ 1

2
α

∑

σ6=e
ε2
δ

∫
dΩ feq,σ

(
q2
σ

mσc2 A2
1‖+

µ

B
A1‖∇2

⊥A1‖
)

+ 1

2
αε2

δ

∫
dΩ feq,e

e2

mec2 A2
1‖+αε2

δ

∫
dV

8π

∣∣∇⊥A1‖
∣∣2 . (2.76)
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For the Padé approximated model, the expression for the field energy is

E Padé
F =εδ

1

2
qi

∫
dΩ

(
1−∇⊥ ·ρ2

i ∇⊥
)〈
φ1

〉
fi −εδ

1

2
e
∫

dΩ
(
1−∇⊥ ·ρ2

i ∇⊥
)
φ1 fe

+εδ
∑
σ

∫
dΩ fσ

(
p2

z

2mσ
+µB

)
. (2.77)

In the case of the model with adiabatic electrons, the expressions for the conserved energy

have to be discussed separately since they are derived from a slightly different variational

formulation, which combines a fluid and kinetic formalism. With adiabatic electrons, the

corresponding contribution to the energy should be considered as a field term:

E =
∑

σ6=e

∫
dΩ (H0 +εδH1) fσ+ε2

δ

∑

σ6=e

∫
dΩH2 feq,σ

+εδ
∫

dV

[
ene0φ1 +εδ

e

2Te
ne0

(
φ1 −φ1

)2
]

, (2.78)

where the last term is considered as a field term that includes the energy of the adiabatic

electrons in the system. Following the general procedure, we substitute the test function

φ̂1 =φ1 into the quasineutrality equation. The field energy is then given by

EF = εδ
1

2

∑

σ6=e

∫
dΩqσ fσ

〈
φ1

〉+εδ
1

2

∫
dV ene0 φ1 (2.79)

and the kinetic part of energy consists of the ion contribution only:

Ekin =
∑

σ6=e

∫
dΩ fσ H0 =

∑

σ6=e

∫
dΩ fσ

(
mσv2

‖
2

+µB

)
. (2.80)

2.8 Summary of the chapter
In this chapter, the gyrokinetic model implemented in ORB5 with all the different variants

and approximations is presented. To ensure that conserved quantities, such as the energy,

are consistently derived, all the approximations to the model are included in the action and

the gyrokinetic Vlasov-Maxwell system is derived using a variational approach. In ORB5, the

derivation is made up to first order in geometric corrections, i.e. O (εB ), and up to second order

in electromagnetic fluctuations, i.e. O
(
ε2
δ

)
.

All the variants of the physical model, which affect principally the quasineutrality equation,

are presented. The polarization density of the gyrokinetic species can be either in integral

form, i.e. containing all orders in k⊥ρi , or approximated using a Padé approximation or the

long wavelength approximation. Three electron models are presented: adiabatic, kinetic, and

hybrid electrons. The latter, which has been implemented in this work, consists in considering

trapped electrons and the flux-surface average of passing electrons as kinetic and the rest of
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passing electrons as adiabatic. This correction to the former ORB5 hybrid model has allowed

consistent nonlinear simulations including trapped electron modes and at a lower numerical

cost than with fully kinetic electrons. An approximation of this model where the flux-surface

average is replaced by a n = m = 0 filter is also implemented. The strong flow and collision

capabilities of the code are also presented. Finally, the energy conservation associated to the

variational formulation is derived for all the variants of the physical model.
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3 ORB5 numerical implementation,
refactoring, and optimization

In this chapter, the numerical aspects of ORB5 are presented. First, the current numerical

implementation of the code is shown in Section 3.1. This includes the discretization of the

gyrokinetic model presented in Chapter 2 as well as noise control schemes and heat sources.

The refactoring and optimization of the ORB5 code are presented in Section 3.2, beginning with

a short motivation for the refactoring and a brief description of the optimization techniques

that have been used. In Section 3.3, the PIC_ENGINE is presented, a test bed that is used to

easily implement and test the various algorithms and parallelization schemes before including

them into ORB5. Finally, Section 3.4 presents, as an example, the actual optimization of the

ORB5 charge deposition step.

3.1 Numerical implementation

ORB5 uses a low-noise δ f PIC method [69, 70] consisting of separating the full distribution

function f into a prescribed, time-independent background distribution f0 and a perturbed,

time-dependent distribution δ f such that only the latter is discretized using markers, or

numerical particles, that are used to sample the phase space. Furthermore, the code uses an

operator splitting approach which consists of solving first for the collisionless dynamics and

then considering the collisions and various sources. The time integration of the collisionless

dynamics is made using a 4th-order Runge-Kutta method (RK4). The collisions are treated

with a Langevin approach.

This section describes the numerical implementation of the gyrokinetic equations pre-

sented in the previous chapter. First, the low-noise δ f PIC method as well as the field dis-

cretization and solving are presented. Then, the noise reduction techniques, essential to

control the noise inherent to the finite sampling of phase space with particles, are described.

Finally, the different heat sources, relevant diagnostics, and the parallelization of the code

are discussed. In this section, we omit the subscripts σ specifying the species for the sake of

simplifying the notation.
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3.1.1 Discretization of δ f and equations of motion

In ORB5, phase space is sampled using a set of N markers that are distributed according to a

function g (z, t ) which is discretized as

g (z, t ) '
N∑

i=1

δ [z − zi (t )]

J (z)
, (3.1)

where δ[x] is the Dirac distribution, z is a set of generalized phase-space coordinates, zi (t)

is the orbit of the i-th marker in phase space, and J(z) is the Jacobian associated with the

coordinates z. Even though the choice of the distribution function g (z, t ) is not constrained,

we make the convenient choice of using a distribution satisfying

dg

dt
(z, t ) = 0, (3.2)

where the d/dt operator is the collisionless total time derivative defined by the general Vlasov

equation, Eq. (2.15). In other words, Eq. (3.2) is ensured by evolving the trajectories zi (t ) of the

markers along the same characteristics as the physical particles, as defined by the collisionless

Vlasov equation, Eq. (2.15).

Both background and perturbed distribution functions can be linked to the marker distri-

bution by the weight fields W (z, t ) and P (z, t ):

f0 = P (z, t )g (z, t ) ' P (z, t )
N∑

i=1

δ [z − zi (t )]

J (z)
=

N∑

i=1
P (zi (t ), t )

δ [z − zi (t )]

J (z)
(3.3)

=
N∑

i=1
pi (t )

δ [z − zi (t )]

J (z)
, (3.4)

δ f =W (z, t )g (z, t ) 'W (z, t )
N∑

i=1

δ [z − zi (t )]

J (z)
=

N∑

i=1
W (zi (t ), t )

δ [z − zi (t )]

J (z)
(3.5)

=
N∑

i=1
wi (t )

δ [z − zi (t )]

J (z)
, (3.6)

where pi (t) = P (zi (t), t) and wi (t) =W (zi (t), t) are the marker weights representing respec-

tively the amplitude of f0 and δ f carried by each marker. The total distribution functions are

normalized such that
∫

f (z, t )J (z)dz = Nph, (3.7)

where Nph is the physical number of particles in the system. Note that the coefficient Nph/N

is hereafter included in the weights such that pi (t ) ≡ (Nph/N )pi (t ) and wi (t ) ≡ (Nph/N )wi (t ).
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3.1.1.1 Solving for the collisionless dynamics

According to the time splitting approach, the collisionless dynamics is solved first using the

standard δ f or the direct δ f [71] methods. For the standard δ f the time evolution of a marker

weight wi is given by

d

dt
wi (t ) = d

dt
W (zi (t ), t ) = d

dt

[
δ f (z, t )

g (z, t )

]
= 1

g (z, t )

d

dt
δ f (z, t )− δ f (z, t )

g (z, t )2

d

dt
g (z, t ). (3.8)

The last term cancels due to the choice for the evolution of the distribution function g (z, t),

Eq. (3.2). The total distribution function f being constant along collisionless trajectories in

phase space, the evolution equation of wi , Eq. (3.8), can be written as

d

dt
wi (t ) =− 1

g (z, t )

d

dt
f0(zi (t )) =−pi (t )

1

f0(zi (t ))

d

dt
f0(zi (t )). (3.9)

Similarly, an equation for the pi weight can also be derived:

d

dt
pi (t ) = 1

g (z, t )

d

dt
f0(zi (t )) = pi (t )

1

f0(zi (t ))

d

dt
f0(zi (t )). (3.10)

In ORB5, both weight equations as well as the numerical particle trajectories are integrated in

time using a RK4 method.

On the other hand, the direct δ f method exploits the invariance of the total distribu-

tion function f along the nonlinear collisionless trajectories; this property is not ensured in

the linear and/or neoclassical limits. It allows one to directly evaluate the weights without

numerically solving a differential equation. Adding Eqs. (3.9) and (3.10) leads to

d

dt
(wi (t )+pi (t )) = 0 =⇒ wi (t )+pi (t ) = wi (t0)+pi (t0), ∀t , (3.11)

which comes from the invariance of both the f and g distribution functions. Furthermore,

rewriting Eq. (3.10), we find

d

dt

[
ln

(
pi (t )

f0(zi (t ))

)]
= 0 =⇒ pi (t )

f0(zi (t ))
= pi (t0)

f0(zi (t0))
. (3.12)

The direct δ f algorithm thus consists of first evaluating the pi (t ) weight according to Eq. (3.12)

and then computing the wi (t ) weight using Eq. (3.11). Note that whatever the δ f method used,

if the collisionless limit is considered only the wi weights are required since the distribution

g (z, t ) is invariant along the marker trajectories. Indeed, inserting Eq. (3.12) into Eq. (3.9) leads

to

d

dt
wi (t ) =− pi (t0)

f0(zi (t0))

d

dt
f0(zi (t )), (3.13)

47



Chapter 3. ORB5 numerical implementation, refactoring, and optimization

which, in the limit ∆t → 0, gives

wi (t +∆t ) ' wi (t )− 1

g (zi (t0))

[
f0(zi (t +∆t ))− f0(zi (t ))

]
. (3.14)

Therefore, in the collisionless limit, we do not need to explicitly evolve pi (t ).

3.1.1.2 Solving for the collisional dynamics

The collision operators are derived assuming linearization with respect to a local Maxwellian

distribution. However, ORB5 is typically operated using the canonical background Maxwellian

distribution as control variates in order to keep the background distribution in equilibrium in

the collisionless gyrokinetic equation. Upon entering the collisions module, the weights wi

and pi are therefore converted to represent the perturbation with respect to a local Maxwellian

background distribution, and are reverted when leaving it [66]. In this section, f0 and δ f

always refer to these converted distributions, i.e. f0 = fL and δ f = f − fL. At each time step,

the collision operators are applied sequentially after the collisionless dynamics.

The electron-ion collision operator and the test-particle component of the intra-species

collision operators are applied using a Langevin approach. In the gyrokinetic framework, this

corresponds to applying random “kicks” in velocity space.

For electrons colliding on ions, Eq. (2.69) is reformulated in a spherical coordinate system

in velocity space with radius v , polar angle θ, and azimuthal angle α in which the incoming

electron’s velocity corresponds to θ = 0. Then, coming back to the ORB5 set of coordinates, the

outgoing velocity of the electron is given by

v||,out = vin

[
−sin(∆θ)sin(αout)

√
1−ξ2

in +ξin cos(∆θ)
]

, (3.15)

v2
⊥,out = v2

in − v2
||,out, (3.16)

where ∆θ = 2R
p
νei(v)∆t , R being a random sample of a PDF with mean 0 and variance 1, and

αout is a random sample of a uniform distribution between 0 and 2π. Note that the kinetic

energy is exactly conserved by this procedure as in the original model.

Applying a similar approach for the “test-particle” self-collisions, Eqs. (2.64)–(2.67) yield

the following outgoing particle trajectory:

v||,out =
1

vin

[−∆vy v⊥,in + (vin +∆vz )v||,in
]

, (3.17)

v2
⊥,out =∆v2

x +
1

v2
in

[
∆vy v||,in + (vin +∆vz )v⊥,in

]2 , (3.18)

where ∆vx , ∆vy , and ∆vz are the particle’s change in velocity, with the unit vector ẑ in the
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direction of the incoming particle’s velocity. These kicks are described by

∆vx = vth

√
K (vin)ν̄∆t

2
R1, (3.19)

∆vy = vth

√
K (vin)ν̄∆t

2
R2, (3.20)

∆vz =−H(vin)vinν̄∆t + vth

√
H(vin)ν̄∆tR3, (3.21)

where R1, R2, and R3 are again independent random numbers sampled from a PDF with mean

0 and variance 1. The marker’s magnetic moment µ is then updated accordingly.

It can be shown [66] that the evolution of the marker weight wi due to collisions can be

expressed as

d

dt
wi (t ) =−pi (t )

C [δ f , fL]

fL

∣∣∣∣
[zi (t ),t ]

, (3.22)

where zi (t ) is the marker position after the “test-particle” kicks. At this point, the “background-

reaction” operator, Eq. (2.68), is slightly corrected as follows:

∆wi (t ) =− pi

nα

[
(
1−3

p
πG(x)

)
∆Nα+6

p
πH(x)

∆P||,αv||out,r

v2
th,α

+p
πG(x)

∆Eα
v2

th,α

]
, (3.23)

where ∆Nα, ∆P||α, and ∆Eα are determined by imposing that the combined effect of applying

the test particle collision operator and the background reaction term conserves mass, parallel

momentum, and kinetic energy within each configuration space bin α to machine precision.

3.1.1.3 Adding the dynamics related to the source terms

In the presence of sources, Section 3.1.4, or noise reduction schemes such as the Krook

operator or the coarse graining, Section 3.1.3, the marker dynamics represented by

d

dt
wi (t ) = S(t ), (3.24)

where S is a source term, is evolved using a first order finite difference approximation:

wi (t n+1) ≈ wi (t n)+∆tS(t n), (3.25)

where n is the current timestep.

3.1.1.4 Particle loading

At the beginning of a simulation, the markers are loaded in phase space using a

Halton-Hammersley sequence [72, 73] and according to the distribution function
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g (z, t = 0) = frad(s) fv (v‖, v⊥), where frad(s) and fv (v‖, v⊥) define respectively the radial

and velocity sampling distributions, and s = √
ψ/ψedge is a normalized radial coordinate.

In ORB5, the spatial sampling is defined by the specified loading distribution function

frad(s) = 1− fg + fg exp
[
(s − s0)2 /∆s2

]
, where fg ∈ [0,1], s0, and ∆s are input parameters. In

velocity space (v‖, v⊥), the distribution is either uniform in the half-plane (v‖, v⊥ > 0) within

v =
√

v2
‖ + v2

⊥ ≤ κv vth,σ with

fv (v‖, v⊥) = 1

v⊥ (πκv vth(s))2 , (3.26)

or uniform in 3D velocity space within a velocity sphere of radius κv vth,σ with

fv (v‖, v⊥) = 1
4
3πκ

3
v v3

th(s)
, (3.27)

where κv is an input parameter usually set at κv = 5 and which allows one to define a cut-off

in velocity sampling.

For the marker weight initialization, two main schemes are implemented. The first option

is a white noise initialization defined by

wi (t0) = A(2Qi −1)pi (t0), (3.28)

where Qi is a quasi-random number in [0,1] given by the i-th term of a van der Corput sequence

[74] and A the maximum amplitude given as an input parameter, typically of the order of

A ∼ 10−3 −10−5. The disadvantage of this scheme is that the initial density perturbation is

inversely proportional to the number of particles and the time until physical modes emerge

from the initial state is roughly proportional to the number of particles. To accelerate the

mode development, the mode initialization can be used. It consists of initializing a number of

Fourier modes:

wi (t0) = A0pi (t0)

(m2 −m1 +1)(n2 −n1 +1)

∣∣∣∣
T (s0)

∇T (s0)

∣∣∣∣
∣∣∣∣

T (si (t0))

∇T (si (t0))

∣∣∣∣
m2∑

m=m1

n2∑
n=n1

cos(mθ∗i (t0)−nϕi (t0)),

(3.29)

where A0, n1, n2, m1, m2 are input parameters. Typically, for linear simulations of mi-

croinstabilities with a toroidal mode number n0, it is convenient to use n1 = n2 = n0 and

m1 = m2 =−n0q(s0) as modes are almost aligned with the magnetic field lines. Finally, what-

ever initialization is used, the initial average value of the weights is set to zero to avoid breaking

quasi-neutrality ensured by the background distributions:

1

N

N∑

i
wi (t0) = 0. (3.30)
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As mentioned in section 2.1 the markers are pushed in toroidal magnetic coordinates

(s,θ∗,ϕ). To avoid the singularity that would appear in the equations of motion at the magnetic

axis, the coordinate system is changed to (ξ,η,ϕ) = (s cosθ∗, s sinθ∗,ϕ) near the axis. All

equilibrium quantities for both ad-hoc and MHD equilibria are loaded on an (R, Z ) grid, where

R and Z are cylindrical coordinates, and are linearly interpolated to an (s,θ∗) grid. Markers

that exit the radial domain at s > 1 are reflected back into the plasma at a position which

conserves toroidal momentum, the particle energy, and the magnetic moment but with a null

weight to avoid unphysical accumulation of perturbed density at the radial edge.

3.1.2 Quasineutrality and Ampère equations

In ORB5 the quasineutrality and Ampère equations are solved using the Galerkin method

considering linear, quadratic, or cubic B-splines finite elements defined on a (Ns , Nθ∗ , Nϕ)

grid. The perturbed fields φ and A‖ hereafter notedΨ= {φ, A‖} are thus discretized as follows:

Ψ(X , t ) =
∑
µ
Ψµ(t )Λµ(X ), (3.31)

where {Ψµ(t)} are the field coefficients and {Λµ(X )} are a tensor product of 1D B-splines of

degree p = {1,2,3},Λµ(X ) =Λp
j (s)Λp

k (θ∗)Λp
l (ϕ), with µ= ( j ,k, l ).

Using the decomposition defined in Eqs. (3.5) and (3.31), and setting the test functions

φ̂1 =Λν(X ), ν= ( j ′,k ′, l ′) of the variational forms of the quasineutrality and Ampère equations,

Eqs. (2.10) and (2.14), leads to a linear system of the form

∑
µ

AµνΨµ(t ) = bν(t ), (3.32)

where Aµν and bν are respectively a real symmetric positive-definite square matrix and a

column vector that are defined by the physical models used in the quasineutrality and Ampère

equations. Due to the finite support of the B-splines, the matrix Aµν is usually a block diagonal

matrix composed of banded submatrices. Note that in the case of the quasi-neutrality valid

to all orders, the matrix A in general becomes a full matrix. As illustration, we show here the

linear system for the case of a single ion species plasma in the limit of adiabatic electrons with

the long wavelength approximation for the ion polarization density:

ALWA,adiab
µν =

∫
en0(ψ)

Te(ψ)

(
Λµ(X )Λν(X )− Λ̄µ(s)Λ̄ν(s)

)
dV (3.33)

+
∫

n0(ψ)mi

B 2 ∇⊥Λµ(X ) ·∇⊥Λν(X )dV , (3.34)

bν(t ) =
N∑

p=1

wp (t )

2π

∫ 2π

0
dαΛν

(
X p +ρL,p (α)

)
, (3.35)

where ρL,p is the Larmor radius of a particle p. Here, the gradient perpendicular to the mag-
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netic field is approximated by the gradient in the poloidal plane, i.e. ∇⊥ '∇pol =∇s ∂
∂s +∇θ∗ ∂

∂θ∗ .

Note that the expression for bν(t ), Eq. (3.35), is independent of the choice of coordinates. This

is due to the particle representation of δ f , Eq. (3.5), and the Galerkin finite element method

based on the variational form of the field equations, Eqs (2.10) and (2.14). This is very conve-

nient practically as the charge deposition is totally transparent to the choice of the coordinates

system, which greatly simplifies the numerical implementation. A more complete description

of the discretized Poisson equation for arbitrary wavelengths can be found in [54].

In ORB5, the linear system of equations, Eq. (3.32), is represented in Fourier space to obtain

an equivalent system of equations [8] that is solved using the FFTW library [75] and a direct

solver from the LAPACK library [76]. This Fourier representation of the fields is convenient

because it allows one to decouple the toroidal mode numbers n, provided that the field

equations are linear and that the unperturbed system is axisymmetric. Furthermore, the

modes of interest, e.g. drift-wave type and Alfvén waves, are typically almost aligned with the

magnetic field lines and can thus be described with just a small set of Fourier coefficients,

which greatly decreases the numerical cost as compared to solving the system in direct space.

Finally, in the case of moderate shaping, there is a limited number of couplings of poloidal

modes m. Denoting with F the double discrete Fourier transform on both poloidal and

toroidal directions, the linear system of equations (3.32) becomes

∑
µ

F AµνF
−1FΨµ =Fbν, (3.36)

F AµνF
−1 = ˆ̂A(n,m),(n′,m′)

( j , j ′) , (3.37)

FΨµ = ˆ̂Ψn,m
j , (3.38)

Fbν = ˆ̂bn,m′

j ′ , (3.39)

where n and m are respectively the toroidal and poloidal Fourier mode numbers.

Due to the axisymmetry of the system and because the Poisson-Ampère system of equation

is linear, the toroidal direction can be decoupled from the others with n = n′ [77]:

∑

j

∑
m

ˆ̂A(n,m),(n,m′)
( j , j ′)

ˆ̂Ψn,m
j =

ˆ̂bn,m′

j ′

M n,p ∀n, (3.40)

where the matrix M n,p is defined by

M n,p =
Nϕ∑

l ′=1

∫
dϕΛp

l ′(ϕ)Λp
l (ϕ)exp

[
2πi

Nϕ
n(l ′− l )

]
, (3.41)
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and can be computed analytically for any B-spline of order p:

M n,1 = 2π

Nϕ

[
2

3
+ 1

3
cos

(
2π

Nϕ
n

)]
, (3.42)

M n,2 = 2π

Nϕ

[
8

15
+ 13

30
cos

(
2π

Nϕ
n

)
+ 1

30
cos2

(
2π

Nϕ
n

)]
, (3.43)

M n,3 = 2π

Nϕ

[
136

315
+ 33

70
cos

(
2π

Nϕ
n

)
+ 2

21
cos2

(
2π

Nϕ
n

)
+ 1

630
cos3

(
2π

Nϕ
n

)]
. (3.44)

This toroidal decoupling is very interesting numerically because the different toroidal mode

numbers n can be solved for separately.

The matrix Aµν and the right-hand side bν are modified such that the following boundary

conditions are used. At the magnetic axis the unicity condition is applied,Ψ(s = 0,θ∗,ϕ, t ) =
Ψ(s = 0,θ∗ = 0,ϕ, t ),∀θ∗. At the outer radial edge, Dirichlet boundary conditions are applied,

Ψ(s = 1,θ∗,ϕ, t) = 0. Note that ORB5 can also be run in an annulus, i.e. s ∈ [smin, smax], with

smin > 0 and smax < 1, in which case Dirichlet boundary conditions are applied on both edges.

For the quasineutrality equation with polarization density valid to all orders in k⊥ρ, the

equation is integral and no Dirichlet boundary conditions need to be applied [54].

3.1.2.1 Gyroaveraging

For all gyroaveraging operations, the plane of the Larmor ring is approximated to lie in the

poloidal plane. The number of gyropoints can be either fixed or determined by an adaptive

scheme, in which a fixed number of gyropoints is used for all the particles having a Larmor

radius smaller than or equal to the thermal Larmor radius and the number of points increases

linearly for larger Larmor radii. Usually, a fixed number of 4 gyropoints is sufficient for

perturbations up to k⊥ρL ∼ 1. However, using the adaptive scheme reduces the noise as it acts

as a Bessel filter averaging out shorter wavelength fluctuations [78].

In magnetic coordinates, the positions of the gyropoints are parametrized using the gy-

roangle α:

x(α) = X +ρ(α) = X +ρ ∇s

|∇s| cosα+ρ b ×∇s

|b ×∇s| sinα, (3.45)

where X is the position of the guiding center.

The gradient of gyroaveraged electric potential, ∇〈
φ1

〉
, is approximated as

∇X
〈
φ1

〉' 〈∇φ1
〉= 1

2π

∮ 2π

0
∇Xφ1

(
X +ρ)

dα, (3.46)

where the subscript X stands for the gradient with respect to the gyrocenter coordinates and

α is the gyroangle. We define a new set of coordinates X =
(
R, Z

)
= (

R +ρ cosα, Z +ρ sinα
)=

X +ρ representing the position of the particle on the gyro-ring in the poloidal plane where R is
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in the direction of the major axis and Z is in the direction of the vertical axis. This coordinate

system is the projection of Eq. (3.45) on the (R, Z ) plane of a cylindrical coordinate system.

Using the chain rule, the term ∇Xφ1 from Eq. (3.45) can be written as

∇Xφ1
(

X +ρ)=∇Xφ1 −
ρ

2

(
∂φ1

∂R
cosα+ ∂φ1

∂Z
sinα

) ∇X B

B
. (3.47)

A similar procedure is done for ∇〈
A1‖

〉
. In ORB5, Eq. (3.47) can be either directly evaluated as

in [58] or approximated by neglecting the second term, leading to ∇Xφ1 ≈∇Rφ1.

3.1.2.2 Fourier filter

Typical physical modes of interest, e.g. drift waves and low-frequency Alfvén waves, are mainly

aligned with the magnetic field lines, i.e. they have m ≈ nq(s). Due to this strong anisotropy,

only a limited set of (n,m) Fourier coefficients is required to describe the physical modes as

the amplitude of the (n,m) coefficients rapidly decreases away from m = nq(s) [79]. It is then

beneficial to filter out all the non physically relevant Fourier modes in order to reduce the

sampling noise and maximize the timestep size. The filter is applied on the Fourier coefficients

of the perturbed density and current to remove all the non physical Fourier modes introduced

by the charge and current depositions:

b̃( j ,k,l ) =
∑
n,m

f j ,n,m
ˆ̂bn,m

j e i mθ∗k e i nϕl , (3.48)

where f j ,n,m is the Fourier filter that in general depends on the radius (radial index j ), and the

poloidal and toroidal mode numbers m and n, respectively.

Two different filters are used successively. First, a rectangular filter, which is the simplest

one, is applied such that all the modes outside of the window [nmin,nmax]× [mmin,mmax] spec-

ified in input are filtered out. This filter is not sufficient as it keeps modes with k‖/k⊥ much big-

ger than ρ?, which is inconsistent with the gyrokinetic ordering [79]. Since the modes of inter-

est are mainly aligned with the magnetic field, i.e. they satisfy k‖ρi '
[
m −nq(s)

][
q(s)R

]−1
ρi =

O
(
ρ?

)
, a second surface-dependent field-aligned filter is applied. It consists of retaining only

m modes close to nq(s), i.e. m ∈ [nq(s)−∆m,nq(s)+∆m], where ∆m is an input param-

eter specifying the width of the filter. With this field-aligned filter, the maximum value of

|k‖| represented is |k‖|max = |∆m|/qR. Since |k‖|maxρi scales with ρ?, the value of ∆m re-

quired to describe all physically relevant modes is invariant with the system size. Typically, a

value of ∆m = 5 is sufficient [8]. In summary, for each mode n ∈ [nmin,nmax] only the modes

m ∈ [mmin,mmax]∩ [−nq(s)±∆m] are retained.

3.1.3 Noise control techniques

Due to the finite number of markers used to sample phase space, PIC simulations are subject

to sampling errors, referred to as numerical noise, which in fact increases in a nonlinear
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simulation, thus deteriorating the signal quality and forbidding long simulations without

noise control techniques. All the difficulty of such noise-reducing schemes is to actually

control the weight growth without creating severe non-physical artifacts. In this section we

present the different noise control schemes implemented in ORB5.

3.1.3.1 Krook operator

The Krook operator implemented in ORB5 [80] is a source term which weakly damps the non

axisymmetric fluctuations without significantly affecting the zonal flows. This is done via a

correction term that also allows one to conserve various moments by projecting out some

components of the source. The Krook noise-control term, SNC
K , is composed of a relaxation

term and its correction Scorr
K :

SNC
K =−γKδ f +Scorr

K , (3.49)

Scorr
K =

Nmom∑

i=1
gi (s)Mi f0, (3.50)

where γK is the Krook damping rate. The correction term is a sum over the Nmom moments

Mi one wishes to conserve on a flux-surface average. Typically, in ORB5, the moments that

can be conserved are the density, parallel velocity, zonal flows, and kinetic energy. They are

respectively defined by Mi = {1, v‖, v‖/B −â(v‖/B),EK}, where the tilde represents the bounce

average and EK is the kinetic energy of a particle. The coefficients gi (s) are defined such that

there is no contribution of the source to a given moment M j , i.e.

∫
dW M j SNC

K = 0, ∀ j , (3.51)

where the bar notation stands for the flux-surface average. Injecting the definition of the Krook

source term, Eq. (3.49), in Eq. (3.51) leads to a linear system of equations that is solved at each

time step and radial position to find the coefficients gi (s):

Nmom∑

i
Si j (s)gi (s) = δS j (s), (3.52)

with

Si j (s) =
∫

dW M j (X , v‖,µ)Mi (X , v‖,µ) f0(X , v‖,µ), (3.53)
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δS j (s) = γK

∫
dW δ f (X , v‖,µ)M j (X , v‖,µ). (3.54)

Note that the flux-surface average is numerically represented by a binning of the markers in

the radial direction. This implies that the conservation is ensured only on average across each

radial bin.

As already mentioned, the noise control should not affect significantly the turbulence.

To this end, values of the order of one tenth of the maximum linear growth rate are usually

used for the Krook damping rate γK. In this way, the linear phase is not substantially modified

and a high signal-to-noise ratio can be obtained. On the other hand, applying this noise

control technique is not appropriate when considering collisions as the damping rate γK

is comparable to typical values of the collision frequency thus interfering with the effect of

collisions.

By construction, the Krook operator damps the fluctuations to restore the full distribution

function to its initial state. If the kinetic energy is not conserved while conserving the other

moments, it allows one to run temperature gradient-driven simulations by acting as an auto-

regulated heat source while allowing for the unconstrained evolution of the density and flow

profiles.

3.1.3.2 Coarse-graining

Coarse-graining [68, 81] is an additional noise-control method implemented in ORB5 [65]

to reduce the problems of weight-spreading and filamentation of the distribution function,

that lead to large mean squared particle weights. The idea is essentially to dissipate fine-

scale structures of the distribution function in phase space, as represented by the marker

weights. This is an improvement compared to the Krook operator, which only preserves certain

moments of the zonal distribution function but otherwise somewhat indiscriminately damps

the whole distribution function; the Krook operator, for example, was found to be unsuitable

for neoclassical studies for which collisional effects are clearly essential.

In a Eulerian code, phase space dissipation is often implemented as a hyper-viscosity

operator on the grid in the five spatial and velocity directions. As the PIC approach does not

involve a phase-space grid, we need an alternative method to smooth the weights of nearby

markers.

Computationally, the method consists of binning the particles in phase space cells which

are field-aligned in configuration space, and then reducing the deviation of particle weights in

the grid cell from their average value. To avoid smoothing structures at the turbulence scale

too strongly, the bins must be small compared to typical length and velocity scales; on the

other hand the bins need to frequently contain more than one marker for this procedure to be

effective. Elongated field-aligned bins are used because the distribution function varies much
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more rapidly perpendicular to the field line than along it.

The bins are volumes in a block-structured Cartesian mesh in coordinates (s, z,θ∗,λ,ε),

with the number of bins uniform in each direction, except that the number of bins in the

θ∗ direction is proportional to s, so that the spatial volume of bins is roughly constant. The

coordinate ε is the particle kinetic energy, λ is the pitch angle, and z is a field-line label that is

computed as

z =ϕ−q(s)[θ∗−θ∗0 (θ∗)], (3.55)

with θ∗0 the center of the bin in the θ∗ direction:

θ∗0 (θ∗) =
(⌊
θ∗+π
∆θ∗

⌋
+ 1

2

)
∆θ∗−π, (3.56)

where b•c is the floor function and ∆θ∗ is the width of a bin in the θ∗ direction. With this

choice of z we have a field-aligned bin, but we also have z ∼ ϕ if there are many bins in

the θ∗ direction because θ∗0 (θ∗) tends to θ∗ for an infinite number of bins. This is useful

because the domain decomposition—discussed in detail in Section 3.1.5—means that markers

on a single processor have a small range of values of ϕ. Thus, the first step in the binning

process is to distribute the markers according to z and move them to this alternative domain

decomposition. In the z decomposition, coarse-graining is local to each domain, so we do not

need to communicate quantities on the 5D coarse-graining mesh.

The number of bins in the s and z directions are the field mesh quantities Ns and Nϕ

respectively and the number of θ∗, energy and pitch-angle bins are specified as input param-

eters. To avoid excessive damping of zonal flows, around 32 bins are needed in each of the

energy and pitch-angle directions. Often 16 bins in the θ∗ direction are sufficient to avoid

excessive damping of parallel structures.

The smoothing operation changes the particle weight w by an amount N ∆tγcg(w −w),

where w is the average particle weight in the bin, N is the number of timesteps (of length ∆t )

between coarse-graining operations, and γcg is a parameter controlling the coarse-graining

rate. In the limit of large number of markers, this leads to a damping of fine-scale structures in

the distribution function with a rate γcg. Note, however, that in practice typical runs have 0.1

markers per bin, so that the effective coarse-graining rate is lower than γcg by a factor of 10.

3.1.3.3 Quad-tree particle-weight smoothing

The grid-based coarse-graining procedure has the possible drawback of being inaccurate if

the grid of phase-space bins is too fine so that the local statistics is not good enough, or being

very diffusive if the grid is too coarse. An alternative procedure, gridless in velocity space

and more probabilistic in nature, has been proposed in [82] and implemented in ORB5. It

consists of pairing neighbouring markers and replacing their weights by an average, weighted

by a function of their distance in velocity space. The way of computing the distance and the
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weight has an influence on the diffusivity of the method, for this reason we use a procedure

for pairing only particles which are close enough. Since the gyrokinetic velocity space is 2D,

the pairing procedure is done using a quad tree algorithm: first, the particles are binned

in the configuration space and then, a quad tree procedure is applied to define regions in

velocity space within which particles will be paired. This works by subdividing recursively

the 2D velocity space in four sub-boxes until the number of particles in a sub-box is smaller

than a given value set as an input parameter. At this point, the particles within a sub-box are

randomly paired and their weight is changed according to the following procedure: for a pair

of two markers with weights w1 and w2 and velocities v 1 and v 2, the new weights are given by

wnew
1 = (1−Γ) wold

1 +Γw , (3.57)

wnew
2 = (1−Γ) wold

2 +Γw , (3.58)

with

Γ= e
− (v x

1 −v x
2 )2+(v

y
1 −v

y
2 )2

h2
v , (3.59)

w = wold
1 +wold

2

2
, (3.60)

where the x and y superscripts are used to identify the two dimensions of the velocity and

the hv parameter defines how strong is the smoothing procedure with respect to the distance

separating the pair of markers in velocity space. Note that, by construction, the smoothing

operation conserves the total weight, ensuring density conservation. By picking different

pairs of particles within the same quad tree sub-box, the smoothing operation can be applied

several times per timestep. Typically, one smoothing step is done at every timestep.

3.1.3.4 Enhanced control variates

The ORB5 code solves the uncoupled electromagnetic gyrokinetic equations in the pz -

formulation, Eqs. (2.10) and (2.14) and therefore includes the cancellation problem [83]

which, if untreated, in practice limits the electromagnetic simulations to very-low-beta

cases, β<p
me/mi, where β is the stored kinetic energy divided by the magnetic field energy.

Different methods mitigating this problem have been developed for the particle-in-cell

framework in Refs. [84, 85, 86, 87, 58] and for the Eulerian approach in Ref. [20]. In ORB5 the

cancellation problem is treated [88] using the enhanced control variates scheme presented

in [87, 58]. A further development of the mitigation schemes is given in Refs. [89, 90], the

so-called pullback mitigation based on the mixed-variable formulation [91] of the gyrokinetic

theory, has also been implemented in ORB5 [92]. Mitigation of the cancellation problem has

made possible the ORB5 electromagnetic simulations described in Refs. [93, 94].

The enhanced control variates approach is based on the decomposition of the distribu-

tion function into the so-called adiabatic and nonadiabatic parts introduced in [95] while
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constructing a perturbative procedure for the solution to the gyrokinetic Vlasov equation.

The same decomposition can be extracted via the pull-back transformation between the

particle distribution function and the reduced gyrokinetic distribution [96]. This transforma-

tion requires that the equilibrium distribution commutes with the background dynamics, i.e.{
feq, H0

}= 0. Furthermore, in ORB5 the distribution function is assumed to be a canonical

Maxwellian, i.e. satisfying

∂ feq,σ

∂H0
= feq,σ

Tσ
, (3.61)

where the temperature is defined as

Tσ = 1

n0σ

∫
dW

p2
z

2mσ
feq,σ. (3.62)

In the enhanced-control-variate scheme, the perturbed distribution function is split according

to

fσ,1 =Gσ−
feq,σ

Tσ
H1, (3.63)

where the first and second terms are respectively the nonadiabatic and adiabatic parts.

The cancellation problem is related to the coexistence of very large and very small quan-

tities in the variational form of the Ampère equation (2.14). To illustrate the problem, let us

consider a case with only one ion species and rewrite Eq. (2.14). Note that the second and

third integrals of Eq. (2.14) are the projections Jσ,‖of the ion and electron currents onto the

basis function Â1‖:

〈
Ji,‖

〉≡
∫

dV
〈

ji,‖
〉

Â1‖ =
∫

dΩ fi
qipz

mic

〈
Â1‖

〉
, (3.64)

Je,‖ ≡
∫

dV je,‖ Â1‖ =
∫

dΩ fe
e pz

mec
Â1‖. (3.65)

Then, the fourth integral and the first term of the fifth integral of Eq. (2.14) are the so-called

skin terms and can be written as

∫
dΩ feq,σ

(
4πq2

σ

mσc2 A1‖ Â1‖
)
= βσ

ρ2
th,σ

∫
dV A1‖ Â1‖, (3.66)

where one defines βσ = 4πnσTσ/B 2 and ρth,σ is the thermal Larmor radius. Finally, the
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remaining terms of Eq. (2.14) are combined to form

∫
dV ∇⊥A1‖ ·∇⊥ Â1‖+

∫
dΩ feq,i

2πµ

B

[
A1‖∇2

⊥ Â1‖+ Â1‖∇2
⊥A1‖

]

=
∫

dV ∇⊥ · [(1−βi
)∇⊥A1‖ Â1‖

]
, (3.67)

where the integration by parts has been used and the terms containing second order gradients

of the background quantities neglected. Putting Eqs. (3.64)–(3.67) back into Eq. (2.14) leads to

4π

c

(〈
Ji,‖

〉−Je,‖
)= βi

ρ2
th,i

∫
dΩ feq,i A1‖ Â1‖+

βe

ρ2
th,e

∫
dΩ feq,e A1‖ Â1‖

−
∫

dΩ ∇⊥
[(

1−βi
)∇⊥A1‖ Â1‖

]
(3.68)

The two skin terms can become very large, especially for electrons, due to their small mass.

They cancel up to the second order FLR corrections with the adiabatic part of the currents〈
ji,‖

〉
and je,‖. This can be seen by splitting the currents into an adiabatic and nonadiabatic

part using the splitting defined in Eq. (3.63) and injecting them back into Eq. (3.68).

The cancellation problem occurs in PIC simulations due to the different discretizations

of particles and fields: the currents are typically computed using the particles while the skin

terms are computed using the finite element grid. The terms to be cancelled are much larger in

magnitude than the remaining terms which are supposed to represent the physics. Therefore,

the cancellation must be numerically extremely accurate, otherwise the relevant signal is

dominated by numerical noise.

In ORB5, the cancellation problem is mitigated by discretizing both the skin terms and the

adiabatic part of the currents in Eq. (3.68) with the same markers. The polarisation-current

term, −∫
dΩ ∇⊥ · [(1−βi

)∇⊥A1‖ Â1‖
]
, is discretized on the grid since it does not contribute to

the cancellation. This approach to the discretization is used in ORB5 in Ampère’s law.

Ampère’s law, Eq. (3.68), is used to compute the parallel magnetic potential A1‖. Note that

the non-adiabatic perturbed distribution function Gσ depends on A1‖ which is unknown at

this point of the computation. The solution is to use an easy-to-compute estimator Ŝ and

solve iteratively for A1‖. In ORB5, the skin term (βσ/ρ2
σ)A1‖ is used as a simple estimator for

the A1‖-dependent part of the distribution function. One reformulates Ampère’s law using the

estimator Ŝ:

(Ŝ +L) a = ( j −Sa)+ Ŝa, (3.69)

where a is the discretized magnetic vector potential component, S and L are respectively

the discretized skin terms and polarization current term, and j represents the sum over the

species of the discretized currents. For a good estimator, a small parameter ‖Ŝ −S‖ =O (ε) can
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be introduced to expand the vector potential, a = a0 +εa1 +ε2a2 +O (ε3). Ampère’s law is then

solved iteratively order by order in ε:

(Ŝ +L) a0 = j ,

(Ŝ +L) a1 = (Ŝ −S) a0,

. . .

In practice, for typical production runs, less than 10 iterations are necessary. In ORB5, the

estimator is expressed using the finite elements Ŝkl =
∫
βσ/ρ2

σ Λk (x)Λl (x)d3x. The marker-

dependent part of the right-hand side of the iterative scheme is written as the enhanced

control variates:

jk −Skl an−1
l =

Np∑
ν=1

pzν


wν+

qσpz

〈
A(n−1)

1‖
〉

mσ

feq,σ

Tσ
(Zν) ζν


〈Λk〉ν . (3.70)

The same enhanced control variates is used also for the perturbed particle density. In practice,

it results in a straightforward and computationally cheap modification of the charge and

current assignment routines in ORB5.

3.1.4 Heating operators

A primary goal of simulating the full plasma core (by contrast to a local approach) is to examine

the self-consistent evolution of plasma profiles in the presence of both turbulence-driven

transport and external sources. In practice, even for running global simulations where realistic

global profile evolution is not of interest, it is generally inconvenient to run simulations without

a heat source: if the goal is to look at transport properties at a specific temperature gradient,

simulations where the temperature gradient relaxes rapidly evolve away from the desired

parameters. In ORB5 temperature gradient control and injection of energy flux are imposed

through sources added to the r.h.s. of the Vlasov equation. These do not model the detailed

physics of a realistic heat source (for example, the radially localized temperature anisotropy

generated by resonant heating schemes) but simply control moments of the distribution

function.

For the control of the temperature gradient, so that it stays close to an initial gradient, a

thermal relaxation operator is used (this can be seen as an effective interaction with a heat

bath) of the form

SH1 =−γH

[
δ f (ε, s)− f0(ε, s)

∫
d3v δ f (ε, s)∫
d3v f0(ε, s)

]
. (3.71)

Note that contrarily to Eq. (3.49), here δ f depends only on the radial position s and the kinetic

energy ε. This source term maintains the distribution function f (ε, s) close to the initial value,
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i.e. it relaxes back to f0 with a rate γH. Note that the heating operator, Eq. (3.71), does not act

as a noise control, unlike the modified Krook operator defined in Section 3.1.3.1. Indeed, this

operator applies the same correction to all the markers within a velocity bin, which does not

reduce the noise caused by filamentation in velocity space. The second term in the equation

ensures that the gyrocenter density is not modified by the source term, i.e. the heat source does

not act as an effective particle source. Due to the symmetry of this operator in v|| it also does

not add parallel momentum to the system; testing [80, 97] has shown that long wavelength

flows are largely unaffected by this heat source although certain higher order effects could

lead to significant flow drive on shorter wavelengths [98].

The choice of γH determines how strongly the temperature gradient is clamped to the

initial gradient; since the form of the heating is not physical, it is necessary to set γH small

enough to not excessively damp temperature corrugations; empirical investigations suggest

that setting γH ten times smaller than typical instability growth rates is appropriate to ensure

convergence. It is possible to specify this heat source to be active only in certain regions of the

plasma, so that, for example, a “source-free” region in the middle of the simulation domain

may be obtained.

Fixed-input power simulations may be obtained by using a fixed heat source of the form

SH2 = γR(s)
∂ f0

∂T
, (3.72)

whereγR(s) defines the spatial heating profile written in terms of an effective inverse timescale1

over which the local temperature would vary in the absence of transport. Generally this

operator is used to represent a fixed input power source in the core of the tokamak. To model

the energy losses near the edge, two options can be chosen: first, to define a fixed heat sink by

setting a profile γR(s) with negative values in the edge region; second, to define a buffer region

near the boundary in which a Krook operator is specified (see Section 3.1.3.1), thus damping

the edge profiles close to their initial values.

3.1.5 Parallelization
In order to simulate complex physical systems in a reasonable amount of time, the ORB5 code is

massively parallelized using a hybrid MPI/OpenMP and MPI/OpenACC implementation. The

MPI parallelization is done using both domain cloning and domain decomposition [99, 100]

techniques, Figure 3.1.

The physical domain is first replicated into disjointed clones and the markers are evenly

distributed among them. Each clone can be further decomposed by splitting the physical

domain in the toroidal direction into subdomains. Each subdomain of each clone is attributed

to an MPI task such that the total number of processes is given by PMPI = Psub ×Pclones, where

Psub and Pclones are respectively the number of tasks attributed to the subdomains and clones.

1To be accurate, γR has units of a temperature over time.
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Figure 3.1 : MPI parallelization using domain decomposition in the toroidal direction ϕ and domain

cloning.

After each time step, data must be transferred between the clones and subdomains. For the

clones, mainly global reductions of grid quantities are required, e.g. after each charge deposi-

tion step all the contributions from the clones must be gathered to compute the self-consistent

electromagnetic fields. For the subdomains, it consists of nearest neighbour communications

for the guard cells, global communications of grid data (parallel data transpose) for Fourier

transforms and point to point communications of particle data where we exchange the parti-

cles that have moved from a subdomain to another. Note that in ORB5, the particle exchange

algorithm is not restricted to the nearest neighbours, all-to-all is supported.

While the domain decomposition scales well with the number of subdomains, a large num-

ber of clones is problematic in terms of performance. Indeed, the domain cloning approach is

quickly limited by the more demanding communications and the memory congestion due

to the field data replication. To overcome this issue each MPI task is multithreaded using

OpenMP. This has the main advantage of limiting the number of clones while still increasing

the code performance by sharing the workload among threads.

To take advantage of the new HPC platforms equipped with accelerators, the ORB5 code

has been recently ported to GPU using OpenACC. These developments will be detailed in a

separate paper [101]. The choice of using OpenMP and OpenACC was motivated by the intent

to keep all parallelization options in a single source code version.

3.2 Refactoring and optimization for multicore platforms
ORB5 is a large Fortran code of around 60’000 lines that has been developed for the last 20

years by many scientists. Over time, the code has grown ands as more and more physics

and numerical schemes have been added to it, it lost modularity and clarity due to a lack

of refactoring2. The refactoring is a very important process in the development cycle as it

2The refactoring is a process during which the design of the code is improved in such a way to make it more
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improves the design of the code which makes it clearer and easier to extend. This is in contrast

to what is usually done in a simulation code where a lot of resources are spent adding new

features without ensuring an overall coherent programming structure, which ultimately leads

to a “spaghetti code”. A few issues made the code particularly difficult to work with. First,

multiple versions with different physics modules existed, which forced the user to make

tedious manual merges between these versions if needed. Second, there was no test suite to

ensure that no bug was introduced during development.

A few years ago, it was decided to make a large refactoring of the ORB5 code which was

mainly motivated by the new trend in high performance computing (HPC) platforms to include

multi- and many-core processors such as the Intel many integrated cores (MIC) Xeon Phi and

GPUs. To make an efficient use of these platforms, a code has to follow a certain number of

programming practices and it was decided to refactor the ORB5 code to facilitate future testing

and development. The refactoring process essentially consisted of:

• a big merge of all the code versions into a unique source code,

• a thorough cleaning of the code to eliminate all unused or out-of-date lines of code,

• a code documentation to describe the numerous routines and input parameters,

• a new workflow allowing developers to implement new features without impacting the

production code,

• an automatic testing setup that allows one to quickly detect new bugs in the code.

In addition to the refactoring, an optimization process took place. It allowed the code to

fully make use of the computing power of the modern HPC platforms. During this process,

the data structures of the code have been changed and different optimization techniques

have been applied to increase the code performance. Furthermore, the parallelism has been

increased to make use of the multi- and manycore platforms. This was done through the

inclusion of OpenMP and OpenACC directives that allow one to use thread-level parallelism

and GPUs.

3.2.1 Optimization techniques used to improve the code performance
ORB5 uses a PIC method and, as almost all particle-based codes, it is memory bound, i.e. the

performance of the code is mainly limited by the speed of the data transfers from the main

memory to the processor and vice-versa. It is thus important to improve data management,

either on the hardware level or on the software level, to reduce this performance bottleneck.

Before presenting the optimization techniques used to improve the code performance, it

is important to review how computers manipulate and work with the huge amount of data

and instructions in order to write efficient code. To this end, let us focus on a conventional

computer using a CPU; the case of GPUs will not be treated here.

readable, and easier to extend and work with, without changing its external behaviour.
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Figure 3.2 : Illustration of the CPU and its adjacent memory levels. Note that this sketch is only a

simplified abstraction of the CPU architecture and does not represent the actual layout, which is more

complicated in practice.

An illustrative abstraction of the CPU and its adjacent memories is sketched in Figure 3.2.

From left to right, the first block is the random access memory (RAM) which can hold around

1–64 gigabyte (GB) of data. Then, the central block is the CPU chip, which is composed of

several cores that perform the actual computations, and a cache memory. The cache memory

can be decomposed into three levels, L1, L2, and L3 that can respectively store around 2–64

kilobyte (kB) per core, 256kB–2 megabyte (MB) per up to two cores, and 8–32 MB for the whole

CPU. Note that Figure 3.2 is a simplified sketch. In reality, the CPU architecture is very complex

and treating it in detail is beyond the scope of this discussion.

The purpose of the cache memory is to increase the CPU performance by providing a

fast memory access. Indeed, following the principle of locality, a program tends to access the

same data multiple times (temporal locality) and tends to access successively data that are

stored close to each other in memory (spatial locality). To address this principle, the cache

memory is an extremely fast—but also very expensive—memory. To limit the cost of a CPU,

cache memories are usually small and most of the temporary storage is provided by the RAM.

The main optimization process of memory-bound programs consist in improving the correct

usage of cache memories. To illustrate the importance of a correct usage of the data in cache,

Table 3.1, lists the estimated memory access times for a hypothetical 3.3GHz CPU with a cycle

time of 0.3 ns. To better grasp the different access times, the last column of the table shows

scaled values where the CPU cycle is set to 1 s.

The general workflow used by the CPU to fetch data is the following. Whenever the program

requires a specific data, the CPU will first query the cache memories. If the data is present

in the cache, it is a cache hit and the data can directly be loaded in the core registers. If the

data is not present in the cache, it is a cache miss and the data has to be loaded first from the

RAM into the cache, and then from the cache into the core registers. To address the spatial
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Table 3.1 : Table illustrating the memory access latency for a hypothetical 3.3GHz CPU. The table

shows estimated memory access times as well as scaled timings relative to the CPU cycle. The scaled

values are obtained by scaling the reference CPU cycle to one second and normalizing the other timings

accordingly. This table is partially reproduced from [102].

Event Latency Scaled

1 CPU cycle 0.3 ns 1 s
L1 cache access 0.9 ns 3 s
L2 cache access 2.8 ns 9 s
L3 cache access 12.9 ns 43 s
RAM access 120 ns 6 min
Solid-state disk access 50–150 µs 2–6 days
Hard-disk drive access 1–10 ms 1–12 months

locality principle, if the data query results in a cache miss, not only the required data is read

from the RAM and stored into the cache but a whole cache line, which is typically 64 bytes

long, is loaded. This way, data stored in adjacent memory locations, that will most probably

be used later, are already present in the cache.

Without presenting the details of implementation, we now discuss the different techniques

used during the optimization process of ORB5. All these techniques mainly aimed at increasing

data locality so as to better exploit the cached data.

Common memory storage, such as RAM, stores data in a linear way and a convention must

be chosen for knowing in which order the dimensions of multidimensional arrays should be

stored. The Fortran language uses a column-major order method in which the consecutive ele-

ments of a column are stored contiguously in memory, Figure 3.3. This means that whenever

Figure 3.3 : Illustration of how a 3×3 matrix is stored in a linear memory device such as RAM for a

programming language using column-major order.

multiple loops are used to address all elements of an array, the fastest varying index, i.e. the

66



3.2. Refactoring and optimization for multicore platforms

one of the inner-most loop, must represent the row index in order to have maximum perfor-

mance. The benefits of doing this are twofold. First, since memory locations are accessed in a

contiguous way, the ratio cache hit to cache miss is maximized thus improving performance.

Second, this allows modern processors to use their vector registers. This particular type of

register can perform the so-called single instruction on multiple data (SIMD) which consists in

executing the same type of operation on multiple data in one clock step. This is the so-called

vectorization.

One of the particularity of a PIC code is that it has both particle and field data. Usually,

particle data consists of a set of attributes for each marker such as the phase space coordinates

and particle weights. Many operations involve loops over particles. The way particle data

is stored can again influence the code performance. For a storage using multidimensional

arrays, which is the case for ORB5, particle data has been changed from array of structures

(AOS) to structure of arrays (SOA). In the former, particle attributes are stored contiguously

in memory, i.e. particles(natts, np), where particles is a 2D array of size natts×np
with natts and np being respectively the number of attributes and particles. In the latter,

the array is transposed with respect to AOS and the particles are now contiguously stored in

memory, i.e. particles(np, natts). This option offers better performance because several

neighbouring particles are loaded in the cache at once, thus increasing data locality.

One of the main technical difficulties of PIC codes is the fact that particle data has to be

interpolated to field grids and vice versa. To understand why this is problematic for perfor-

mance, let us look at the charge deposition step. The goal of this operation is to interpolate

the charge carried by the markers to the field grid. The deposited charge is then used in

the quasi-neutrality equation to solve for the electric potential. This deposition operation

is typically done by looping over the particles, and involves computing in which cell they lie

in the field grid, and depositing the charge. Since particles and the charge array are stored

independently in memory, there is no direct relation between them. This means that particles

that are stored contiguously in memory may lie in very different grid cells, Figure 3.4 (left). This

indirect addressing gives rise to a lot of random memory accesses that typically result in near

to 100% cache misses. To avoid the indirect addressing, markers can be sorted according to

their position. Note that the markers are not required to be fully sorted but only within the grid

cell level, i.e. particles within the same grid cell do not need to be further sorted. In this way,

the particle data structure and field grid are now linked since the markers are sorted so that

neighbouring particles in the physical space are also stored contiguously in memory, Figure 3.4

(right). The use of particle sorting greatly increases data locality and removes the need for

indirect addressing, also allowing for vectorization, which otherwise would be forbidden by

the compiler.

As mentioned in Section 3.1.5, ORB5 makes use of OpenMP to further divide the workload

among different OpenMP threads. It is exclusively used in routines that involve looping over

particles. OpenMP usually ensures good scalability up to many cores but this performance
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Unsorted Sorted

Particle data Field grid Particle data Field grid

Figure 3.4 : Illustration of the charge deposition step with unsorted (left) and sorted (right) markers.

The unsorted case leads to indirect addressing causing a lot of random memory access. On the other

hand, in the sorted case, the indirect addressing is supressed and all memory accesses are contiguous.

can be compromised by false sharing: to ensure consistency between the data stored in the

cache and the data in the main memory, the CPU implements a cache coherence protocol that

invalidate the data in the cache if the same data is modified in the main memory. This will

automatically lead to a cache miss that will force the data in the cache to be reloaded. The

false sharing occurs when multiple threads share the same cache line but work in distinct

memory locations—this is typically the case of ORB5 1D diagnostics. Once one thread modifies

its memory location, all the other threads sharing the same cache line in RAM must reload

their data due to the cache coherence protocol, as illustrated in Figure 3.5. This leads to an

increasing number of cache misses that slow down the program execution. A way to avoid

false sharing is to make sure that the data used by a thread is located in a memory location

that is at least a cache line size apart from the data used by another thread.

Cache

RAM

Thread 0

Cache

Thread 1

Figure 3.5 : Illustration of the false sharing. When a thread modifies a memory location in the main

memory, all the other threads having this memory location in their cache must reload the data to

ensure cache coherence.
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3.3 The Pic_Engine: a simple test bed for algorithmic testing
To test the different techniques presented in the previous section, as well as various new algo-

rithms to improve the code performance, we have developed a test bed called PIC_ENGINE.

This platform has been developed with the aim of allowing one to easily implement and test

algorithms in a framework retaining only the key elements of the PIC algorithm. It is designed

to be modular and portable such that it can be used on different multi- and manycore architec-

tures such as GPU-equipped machines [103, 104, 105]. Here, this study focuses on multicore

CPUs and the Intel Xeon Phi Many Integrated Core (MIC) [106] processors. The portability is

an important aspect of the work since the PIC_ENGINE is designed to develop generic opti-

mizations for the PIC algorithm that are then used in porting to multi- and manycore platforms

full application codes such as the global gyrokinetic code ORB5 [77, 79, 10] and the RAMSES

[107] code that models astrophysical systems. To this end, the PIC_ENGINE is designed to be

the simplest abstraction possible of the PIC algorithm but nevertheless retaining its essential

elements. In this way, we can study the optimization techniques implemented on the most

general parts of the algorithm and treat the fundamental parallelization problems inherent to

the PIC method.

As a base case for this work, the PIC_ENGINE evolves a simple plasma physics system and

the methods will thus be designed with this goal in mind. The portability is ensured by only

treating the elements of the PIC algorithm that are common between different application

codes.

3.3.1 The Pic_Engine platform

The standard PIC algorithm adopts a Lagrangian description of the particle distribution which

is evolved following four steps, as seen in Figure 3.6. The first one is the charge assignment,

called setrho, in which the charge and current carried by the particles are deposited from the

particle positions (p index) to the field grid (i index). In the second step, the self-consistent

electromagnetic fields E and B are computed on the grid according to Maxwell’s equations

and for the charge and current deposited previously. In the following step, called accel, the

Lorentz force acting on the particles is evaluated and interpolated back from the field grid to

the particle positions. Finally, the particle positions and velocities are updated in the push
step. A PIC simulation typically consists of a sequence of time iterations during which each of

these four steps is carried out.

3.3.1.1 Structure of the Pic_Engine

With the aim of developing and testing optimization techniques and parallelization schemes

for porting PIC codes to the new multicore and MIC architectures, the PIC_ENGINE has been

implemented using Fortran and parallelized with both OpenMP and MPI. The OpenMP API

(Application Programming Interface) has been chosen as it is standardized and portable.

Furthermore, it is usually easy to handle and can be implemented incrementally. Note that
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Figure 3.6 : Time loop of the PIC algorithm. Each iteration consists of four steps. (1): The contribution

to the charge and current fields (ρ, j ) are deposited from the particle positions (p index) to the field grid

(i index). In the PIC_ENGINE, this step is called setrho and only the charge is deposited. (2): Using the

deposited charge and current, the electromagnetic fields E and B are computed by the field solver. (3):

The Lorentz forces F acting on the particles are estimated based on the electromagnetic fields which

are interpolated from the grid to the particle positions x . (4): These forces allow updating the particle

velocities v . Finally, the particle positions are updated. In the PIC_ENGINE, the last two steps are called

accel and push respectively.

with this programming model, the same source code can be run either on CPUs or MICs in

native or symmetric modes, i.e. treating the MICs as standalone processors. The PIC_ENGINE

corresponds to an abstraction of the PIC algorithm presented in the previous paragraph,

retaining only its key elements. For the sake of simplicity, it evolves a single-species plasma in

the electrostatic limit. No magnetic field is considered and the electric field E (x) is imposed,

i.e. dropping step (2) in algorithm summarized in Figure 3.6, assuming periodic boundary

conditions in all three configuration space dimensions and stationary in time. The electric

field has been defined as follows:

φ(x, y, z) = cos(kx x)cos
(
ky y

)
cos(kz z) , (3.73)

E (x, y, z) =−∇φ(x, y, z), (3.74)

where φ(x, y, z) is the electrostatic potential and ki = ni 2π/Li , ni ∈N, i = x, y, z are the compo-

nents of an arbitrary wave vector. Consequently, no field solver is required here. Note that the

computation of the fields reduces to a linear problem that can be solved with various types of

approaches, e.g. Fourier, direct, iterative and multigrid methods. Since these methods and

their parallelization are well known, they are not considered here. Furthermore, in general,

the field solve duration only represents a small fraction of the timeloop in ORB5. Due to

the electrostatic approximation, only the charge is deposited on the field grid in the charge

assignment step setrho. In the accel step, to evaluate the Lorentz force F , the electrostatic

field is interpolated from the field grid to the particle positions and then used to evolve the
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particle velocities in the push step. Similarly, the positions of the particles are also updated in

the push method. In these last two steps, the time integration is done using a second order

accurate leap-frog scheme that is energy conserving and reversible [108], see Section 3.3.1.1

for more details.

At this point, it is important to note that the PIC_ENGINE is only meant to study the

algorithmic performance of the different parts of the PIC algorithm and no physical results are

sought. Thus, the absence of a field solver and the use of the aforementioned approximations

are not critical for our study. Furthermore, with a field solver and some minor changes, the

PIC_ENGINE can solve different plasma physics problems of interest [109, 110, 111, 112]. Also,

we keep in mind that for application codes such as ORB5 using non-standard PIC methods, e.g.

involving higher order schemes, or more complex equations of motion such as the gyrokinetic

Vlasov-Maxwell system, the numerical cost of accel, push and setrho is greatly enhanced

by the complexity of the problem. Despite the very simple abstraction of the PIC algorithm

implemented in the PIC_ENGINE, all the conclusions drawn from this test bed were found to

also hold for ORB5.

Data structure and particle initialization In the PIC_ENGINE, field and particle data struc-

tures have to be distinguished. The field quantities, such as the electrostatic field and the

particle charge density, are represented on a 3D periodic domain of length lx, ly and lz
discretized in nx, ny and nz intervals. The x, y, z letters represent along which direction of the

Cartesian coordinates (x, y, z) the quantity applies. On the other hand, particle quantities, i.e.

their position and velocity, can take any values in the phase space (x , v ), and are stored in the

part_att(natts,np) array, where natts represents the six particle attributes, namely the

Cartesian coordinates of the position and the corresponding three coordinates of the velocity,

and np is the number of particles in the system. The part_att array can be stored either

in Array Of Structures (AOS), i.e. part_att(natts,np) or in Structure Of Arrays (SOA), i.e.

part_att(np,natts). As we shall see in the next sections, the way of storing data in memory

significantly affects the performance.

At the beginning of the simulation, the particle position and velocity components are ini-

tialized using the Fortran random_number method. The positions are uniformly distributed in

the periodic configuration domain. The velocities vx and vy are initially distributed uniformly

with |vx,vy| ≤ vmax, where the parameter vmax sets a maximum velocity while vz can be

either uniformly distributed as vx and vy , or distributed according to a normalized Boltzmann

distribution.

Parallelization The PIC_ENGINE parallelization is achieved using a hybrid MPI/OpenMP

implementation, see Figure 3.7. Note that the MPI parallelization is essentially the same as in

ORB5, Section 3.1.5 and Figure 3.1. First, the 3D domain is decomposed into nsd subdomains

in the z direction. Each subdomain grid data is then replicated into nclones clones and this
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2D decomposition is mapped onto an MPI grid. Finally, a third level of parallelism is added

using OpenMP by assigning nthread threads to each MPI task, so that the total number of

cores3 used is equal to the product nsd×nclones×nthread. Usually, the number of cores

used by the program is equal to the number of physical cores on the processor. However, using

Intel’s Hyper-Threading technology, it is possible to initialize more threads than physical cores.

Depending on the application, this can be beneficial or, in the worst case, can decrease the

performance.

0

1

2

3

0 1 2 3 4 5 6 7

Figure 3.7 : Illustration of the PIC_ENGINE parallelization. The 3D domain is first decomposed into

nsd subdomains in the z direction. Each subdomain is then copied nclones times and this 2D

decomposition is mapped onto an MPI 2D grid. Finally, OpenMP is introduced and nthread threads

are affected to each clone. With this parallelization scheme, only two types of communications are

needed for three operations: a reduction is done across the clones to gather the partial charges with MPI

allreduce and particles and guard cells are transferred across subdomains with MPI point-to-point

sendrecv.

It is important to note that communications between MPI tasks are only needed for three

operations. First, all the partial charges computed by setrho on each clone of one subdomain

are added using MPI allreduce operations and the guard-cells must be exchanged with

neighboring subdomains using MPI point-to-point sendrecv. Then, the particles have to be

transferred between subdomains; this is done by the pmovez routine using MPI point-to-point

sendrecv directives. The pmovez method allows one to transfer the particles not only to the

nearest neighboring subdomains but is applicable to an arbitrary source/destination pattern.

Charge deposition, particle accelerating and pushing As we have seen at the beginning of

this section, the PIC_ENGINE consists of three main steps: the charge deposition, the particle

accelerating, and pushing. In the program, they are implemented respectively in the setrho,

accel and push methods. In this section, we discuss their implementation which is mainly

inspired by [108].

The first step in the PIC algorithm is the charge deposition. Its goal is to collect the electric

3Here, core refers either to MPI task or OpenMP thread.
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charge density ρ of all particles and to deposit it on the field grid with the aim of computing

the electrostatic field. Thus, for each particle, we have to compute

ρgrid ←− ρgrid +ρdep
p (particle to grid), (3.75)

where ρgrid is the charge density already deposited on the field grid and ρdep
p is the contribution

of the current particle deposited on this same grid using a first-order deposition scheme. This

approach, also called Cloud-In-Cell (CIC), works as follows. For a particle that lies in the

interval [xi , xi+1), we first compute its relative position with respect to xi :

ξp = xp −xi

∆x
,

where xp is the particle position and ∆x is the length of the interval. Then, we deposit the

charge according to

ρ
dep
p (xi ) = 1−ξp , ρ

dep
p (xi+1) = ξp .

Note that in the PIC_ENGINE, the equations are normalized such that the elementary charge e

and the mass m of the particles are unity in absolute value. Because particles are distributed

randomly in configuration space, the charge deposition clearly involves an indirect addressing

to the ρ array when depositing the contribution from each particle. This indirect writing has to

be taken care of carefully when parallelizing the setrho method for shared memory systems

to avoid race conditions, i.e. when two or more threads try to modify data stored at the same

memory location.

The particle equations of motion

dv

dt
= F =−E , (3.76)

dx

dt
= v , (3.77)

are respectively solved by the accel and push methods. To evolve the particle positions and

velocities, we use the leap-frog method [108] that consists in discretizing the equations with a

finite-difference scheme:

v new −v old

∆t
= F old =⇒ v new = v old +∆tF old, (3.78)

xnew −xold

∆t
= v new =⇒ xnew = xold +∆t v new, (3.79)

where Fold is the Lorentz force computed at xold and ∆t is the numerical time step. They are

then evolved on two separate time-grids staggered by ∆t/2, see Figure 3.8. By doing so, the

leap-frog method is time centered and thus second order accurate with respect to ∆t .
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Figure 3.8 : Illustration of the leap-frog method.

When using this method, two issues must be correctly addressed. First, since the velocities

and positions are evolved on two different time grids, care must be taken when computing any

quantity involving both the particle positions and velocities such as the total energy. Secondly,

at the beginning of the simulation, both the velocities and positions have to be correctly

initialized on their respective time grid. Even though the PIC_ENGINE is not meant to produce

physically relevant results, the energy diagnostic is very useful to check the correctness of the

implementation of the various algorithms.

In the accel method, the electrostatic potential is linearly interpolated from the field grid

to the particle positions in the x, y and z directions. The electrostatic field components Ex ,

Ey and Ez that result from the gradient of the potential are, in their turn, piece-wise constant

in the x, y and z directions, respectively, and piece-wise linear in the other two directions.

This method is not subject to race conditions because there are no concurrent writes and

can, therefore, be parallelized in a straightforward way. However, due to the indirect read of

the field array, vectorized operations are not possible because they are not allowed by the

compiler.

In summary, the push method can be trivially parallelized using OpenMP since it consists

of vector add and multiply (SAXPY) operations. The most challenging methods to parallelize

are in fact accel because of the indirect addressing and setrho, as it involves indirect writes

that are subject to race conditions. For these reasons, we shall particularly focus here on accel
and setrho.

3.3.1.2 Particle sorting

In the PIC_ENGINE, and more generally in most PIC codes, the particles are randomly dis-

tributed in space. As a consequence, data locality is poor and performance drops due to

non-contiguous memory writings in setrho and accesses in accel. Indeed, cache memories

are designed to be efficient with consecutive data accesses. If this is not ensured, significant

overhead time will be spent by reloading the data from the main memory. With increased

data locality, it is more likely that the data already in the cache can be reused for further

computations, thus avoiding cache misses and reloading.

To this end, we have implemented a sorting method based on the counting sort algorithm
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[113]. As a reminder, the algorithm sorts the particles into buckets that typically represent one

or more grid cells. This is done in three main steps, see Algorithm 1:

1. In this first step, we create a histogram of the np particles by parsing them and computing

the indices of their recipient bucket. To this end, the 2D (x, y) plane is mapped on a 1D

vector using a linear mapping, i.e.

index=
⌊ xp

∆x

⌋
+

⌊
yp

∆y

⌋
nx, (3.80)

where ∆x, ∆y , xp and yp are the interval lengths of the sorting buckets and the particle

positions in the x and y directions respectively. Note that we consider only domains

with one grid interval in the z direction but a 3D generalization is straightforward. Other

options like Hilbert filling curves [114] are also of interest to preserve data locality across

the mapping but they are not considered here.

2. In the second step, an inclusive prefix sum (cumulative sum) is made. It essentially

consists of parsing the nbtot buckets to compute the ending position of each bucket in

the sorted particle array. In other words, it consists of identifying how many particles

each bin contains.

3. Finally, using the results of the prefix sum, the particles are put in their sorted place.

4. The temporary sorted array is copied back to part_att.

Algorithm 1 The counting sort algorithm is composed of three main loops that respectively
compute the histogram of the particles in the buckets (lines 1 to 4), compute the starting and
ending indices of each bucket with a prefix sum (lines 5 to 8) and move the particles in their
correct order with the help of a temporary array (lines 9 to 13).

1: for i p = 1,np do
2: i d = i ndex(i p) . The i ndex function returns the particle grid-cell index
3: count (i d) = count (i d)+1
4: end for
5: di spl s(1) = count (1)
6: for i b = 2,nbtot do
7: di spl s(i b) = di spl s(i b −1)+ count (i b −1)
8: end for
9: for i p = np,1,−1 do

10: i d = i ndex(i p)
11: par t_at t_tmp(:,di spl s(i d)) = par t_at t (:, i p)
12: di spl s(i d) = di spl s(i d)−1
13: end for
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Note that the fourth step was added because this sorting algorithm is out-of-place and hence

requires a temporary array. Memory can be saved with in-place versions but such methods

[113] have not been implemented because memory was not an issue for this application.

A straightforward algorithmic analysis shows that the timing of this sorting is linear in the

number of particles and buckets, i.e. Tpsort =O (np)+O (nb), where Tpsort is the serial timing of

the sorting method.

Vectorization Both setrho and accel methods have to read the particle positions to com-

pute in which grid cell they belong. This requires an indirect addressing in the particle loop

which prevents the compiler to use auto-vectorization because no such vectorization oper-

ations are in the instruction set of the processor. To solve this issue, we can take advantage

of the particle sorting. Indeed, with a full sorting, i.e. if the buckets coincide with the grid

cells, all the particle loops with indirect addressing can be replaced by a double loop involving

first a loop over the buckets and a second loop over the particles in each of these buckets, see

Algorithm 2. Indeed, by knowing which bucket one is treating, one automatically knows the

field grid positions of the particles if they have been fully sorted. By doing so, the inner loop is

totally independent of the indirect addressing and the compiler can vectorize it. This method

can be beneficial if the inner loop is long enough to allow a good vectorization.

Algorithm 2 Illustration of the vectorization procedure. In the first method (lines 1 to 4), the
grid cell index of each particle is computed and rest of the routine is executed. In the second
method (lines 6 to 12), the loop over the particle is decomposed into a loop over the grid cells
and a loop over the particles in the grid cells. With this approach, all the particles within each
bucket have the same grid cell index for the inner loop. Hence, the compiler can vectorize it.

1: for i p = 1,np do
2: ! Compute particle grid cell index
3: . . .
4: end for
5:

6: for i b = 1,nx ∗ny ∗nz do
7:

8: for i p = di spl s(i b)+1,di spl s(i b +1) do
9: ! Then do the calculation for each particle in the current grid cell

10: . . .
11: end for
12: end for

3.3.2 Performance analysis
In this section, we present the different optimizations made to the PIC_ENGINE as well as the

timings and performance gains obtained. The study was performed on the Piz Daint and Piz
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Dora supercomputers from the Swiss National Supercomputing Centre (CSCS) and the Helios

supercomputer at the Computational Simulation Center of the International Fusion Energy

Research Centre (IFERC-CSC) in Japan. All the relevant characteristics of these machines are

summarized in Table 3.2.

For both CSCS machines, Piz Daint and Piz Dora4, the Cray compiler cce 8.3.12 and the

Cray MPICH 7.2.2 library were used. On Helios, the Intel compiler 15.0.2 in conjunction with

Intel MPI 5.0.3 was used. Except for the MICs, which showed a better performance with four

threads per core, the hyper-threading was always disabled to obtain an optimal performance.

All the available cores were used by ensuring that the product nsd×nclones×nthread was

always equal to the total number of cores. In this work, nclones equal to 1 corresponds to

a pure OpenMP run and nclones equal to the number of cores per node corresponds to a

pure MPI run. Note that when we talk about pure OpenMP runs, there may be several MPI

processes for the inter-node communications which is typically the case for multi-node runs.

This terminology is only used here to emphasize that within each node, all the parallelization

is made using OpenMP.

For the MIC nodes, three different run modes are available on Helios: offload, symmetric

and native. In this work, to ensure a homogeneous performance among the processors and

avoid complicated interactions between MICs and CPUs, we focus on the latter which consists

of using the MICs as standalone processors. This is possible because each of them is equipped

with a Linux micro operating system. In this mode, only the MICs are used, as opposed to the

symmetric mode where both the CPUs and MICs are used in a similar way. Finally, the offload

mode consists of using the MIC as an accelerator, in which case the host, generally the CPU,

starts the application and offloads some data and computations to the MIC.

The standard single-node problem tested in this study consists of a 512(nx)×256(ny)×1(nz)

grid with 106 particles similar to [103] for the sake of comparison. Whenever activated, the

sorting was always full, i.e. we considered 512 and 256 buckets in the x and y directions respec-

tively; the z direction is trivially sorted as we consider only one (x, y) plane per subdomain. All

the timings given here are normalized to the standard single-node problem and are reported

in nanoseconds per particle and per time step.

In the following, if not mentioned otherwise, only the results on Helios CPU and MIC

nodes are presented for the sake of conciseness. For every conclusion, it has been checked

that it also applies to Piz Daint and Piz Dora.

3.3.2.1 Data structure

As a first result, the effect of the data structure is studied. To this end, the code is compiled

with either SOA or AOS data structures and is run on the Helios machine on both CPU and

MIC nodes. The single-node results for the CPU case are presented in Table 3.3 for both pure

4Piz Daint and Piz Dora were two clusters from CSCS before the upgrade that took place in November of 2016
and during which the CPUs were updated and both machines merged into one.

77



Chapter 3. ORB5 numerical implementation, refactoring, and optimization

Table 3.2 : Characteristics of the clusters used for this study. Piz Daint and Piz Dora are two computers

from the Swiss Supercomputing Centre (CSCS) and Helios is a magnetic fusion research supercomputer

from the Computational Simulation Centre (CSC) in Japan. Note that this last computer is equipped

with both CPU and MIC nodes.

Piz Daint Piz Dora Helios Helios
(Cray XC30) (Cray XC40) (CPU) (MIC)

Socket(s) 1 2 2 2

Intel Xeon Intel Xeon Intel Xeon Intel Xeon
CPU E5-2670 E5-2690 v3 E5-2680 Phi

Sandy Bridge Haswell Sandy Bridge KNC

Frequency 2.6 GHz 2.6 GHz 2.7 GHz 1.3 GHz

Cores 8/CPU 12/CPU 8/CPU 60/MIC

MPI (nclones= 16) and pure OpenMP (nclones= 1). The SOA data structure is always faster

than AOS. Most of the gain comes from the setrho routine resulting in an overall time gain of

6.4% for the pure MPI case and 14.4% for pure OpenMP. Similar results are observed on the

MIC nodes.

In the remaining of this work, we have always used the SOA data structure as it is the most

efficient option.

Table 3.3 : Comparison between the AOS and SOA data structures on Helios (CPU) for the pure MPI

and OpenMP cases. All the timings are in ns/particle/∆t . In both cases, the standard problem with

unsorted particles is considered. Similar results are observed for the MIC equipped nodes.

Pure MPI Pure OpenMP
AOS SOA Gain AOS SOA Gain

push() 0.84 0.78 7.95 % 1.43 1.40 2.00%
accel() 8.58 8.47 1.25 % 4.25 4.15 2.53%

setrho() 9.17 8.21 11.67% 5.78 4.47 29.34%
Total 18.62 17.5 6.40 % 11.47 10.03 14.36%

3.3.2.2 Particle sorting

Different thread-parallel implementations of the sorting algorithm have been designed using

OpenMP. Essentially, out of the three loops presented in Algorithm 1, only the prefix scan

(second loop) is not parallelized because it is quite complex to do so and it never represents

more than 4% of the total timing of the sorting. Here is a brief description of the different

versions implemented. More details can be found in A.1.

psort_1: The first loop is parallelized using OpenMP reduction while the third loop uses
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the parallel do directive in parallel with atomic to avoid race conditions.

psort_2: This implementation slightly differs from Algorithm 1. During the first loop, the

histogram is computed as well as the index of each particle in the sorted array and Open-

MP atomic is used to avoid race conditions. By doing so, the third loop only consists in

a simple OpenMP parallel do loop.

In Figure 3.9 (left), we show the timings of the sorting methods for different hybrid runs,

i.e. we vary the number of clones and threads such that their product corresponds to the total

number of available cores per node.

nclones

1 2 4 8 16

ti
m
e
[n
s/
pa

rt
/∆

t]

5.5

6

6.5

7

7.5

8

8.5

9

9.5
Comparison of thesorting methods

psort 1

psort 2

nclones

1 2 4 8 16

ti
m
e
[n
s/
pa

rt
/∆

t]

0

1

2

3

4

5

6

7

8
Split view of psort 2

loops over np

loop over nb

both loops

psort 2

Figure 3.9 : Comparison of the different sorting parallelizations on Helios CPU (left) and split view of

psort_2 showing the timings of the loops composing the sorting algorithm (right). In each case, the

timings are shown on a full node such that the product nclones×nthread is always equal to the total

number of cores.

For the CPU nodes, the timings of the two sorting methods have the same qualitative

behavior. Their costs are maximum for pure OpenMP (nclones = 1). They then decrease

towards their minimum value for nclones= 8 and finally, increase for pure MPI (nclones=
16). To explain this, first recall that the sorting timing depends linearly on both the number of

particles and buckets:

Tsort = Tnp +Tnb, (3.81)

where Tnp and Tnb are two linear functions of the number of particles and buckets respectively.
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Also, with the decomposition in clones, we have:

Npclones ≡
Nptot

Nclones
, (3.82)

where Npclones and Nptot are respectively the number of particles per clone and the total number

of particles and Nclones is the number of clones. Thus, with an increasing number of clones,

each of them must perform the sorting on fewer particles.

In Figure 3.9 (right) we show the timings of the loop over the buckets (loop over nb) and

the two loops over the particles combined (loops over np) composing the sorting method for

psort_2. First, note that the number of particles sorted per core is constant for the different

hybrid runs since the product nclones×nthread is constant. This means that Tnp should

be constant. However, for pure OpenMP, we think that the high number of threads tends to

increase false sharing. The loop over the number of buckets is negligible, never more than 4%

of the sorting total timing. Finally, the difference between the timing of psort_2 and the sum

of the three loops is due to the copy of the temporary particle array to part_att.

In conclusion, method psort_2 is found to be the most efficient on the CPU nodes. For

that reason, it is always used in the following results whenever sorting is activated. Equivalent

conclusions are found for the MIC nodes.

3.3.2.3 Charge deposition

We have seen that both accel and push are thread-parallelized in a straightforward way,

typically with OpenMP parallel loops, whereas care must be taken with setrho because of the

race conditions, furthermore complicated by the indirect writing.

In the PIC_ENGINE, four different parallelization procedures for the charge deposition are

implemented:

setrho_1: Threads on particles, collision free, with data replication. In this method, threads

are defined on the particles and we try to mimic OpenMP reduction. To this end, race

conditions are avoided using private copies of the ρ array for each thread. Although

being data safe, this algorithm requires more memory and a scalar reduction must be

made at the end of the routine to collect all the data from the threads.

setrho_2: Threads on particles, collision resolving, no data replication. The OpenMP atomic
directive is used to resolve the race conditions.

setrho_3: Threads on particles, collision free, with data replication. Similarly to the first

method, we use the OpenMP reduction directive to avoid race conditions.

setrho_4: Threads on grid points, collision free, no data replication. In this method, we

use the finite support of the linear CIC method to compute the charge and avoid race

conditions. Indeed, with this scheme, a particle will only deposit its charge to the eight
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nearest grid points (for a 3D problem) so the algorithm consists basically in parsing first

the grid points and then the particles contained in the eight nearest grid cells. Note that

this method requires the particles to be sorted according to their positions in bins that

coincide with the cells of the field data.

More details on these parallelizations can be found in A.2.

In Figure 3.10, we show the setrho timings for the four implementations, for unsorted

and sorted particles, without and with vectorization, on a single Helios node. Both CPU (left)

and MIC (right) results are shown.

Beginning with the CPU case with unsorted particles, we see that setrho_1 is the fastest

with a best timing of 4.8 ns per particle and per timestep in the pure OpenMP case. This

represents a gain of around 2.8 compared to the pure MPI run that is mainly explained by the

reduction of memory contention due to the use of a shared memory programming language

such as OpenMP. For 8 and 16 clones, setrho_1 and setrho_3 have similar timings. This is

not surprising as they are both based on a reduction approach. Indeed, using the OpenMP

standard, we tried to mimic the OpenMP reduction in setrho_1. However, setrho_3 is slower

for nclones< 8. We think that this is because, in our case, the problem is too simple and thus

dominated by the OpenMP overhead.

For the sorted particles without vectorization, we first observe that setrho_2 is greatly

improved because, as the particles are now sorted, the OpenMP atomic occurrences are

reduced. Furthermore, due to the enhanced data locality, the timings are improved for all

methods. On the gain graph below, we show the time gain of the optimal method, setrho_1,

as compared to the unsorted case. The maximum gain of 44% is obtained for the pure OpenMP

case and decreases to 10% for the pure MPI run.

Similarly, the third column of the figure shows the timings in the sorted and vectorized

case. Note that we have now included setrho_4 as it requires a full sorting and is vectorized by

default. This method has the advantage of not being subject to race conditions and not using

additional memory. However, it is only beneficial for high number of threads (nthread> 8)

otherwise, the method is the slowest for nthread< 4. For the other methods, the conclusions

are the same as for the sorted case. The vectorization allows one to have a small gain for a

number of clones between one and four but it becomes negative for higher values. It has to be

noted that the vectorization is poor because there are too few particles per grid cell. Indeed, as

we will see later, the performance of the vectorization depends on the number of particles per

grid cell; it needs a high particle density to be efficient.

In summary, for all CPU cases, setrho_1 with homemade reduction is the fastest method.

The method setrho_3 using OpenMP reduction has a similar timing as the first method for

nclones≥ 8 but becomes surprisingly slower for nclones< 8. Although greatly improved by

the sorting, setrho_2 has a poor performance compared to the reduction methods because

of the OpenMP atomic directives. Finally, setrho_4 uses no additional memory and is not

subject to race conditions. Furthermore, for nthread= 16, it is the second fastest candidate

81



Chapter 3. ORB5 numerical implementation, refactoring, and optimization

nclones

1 2 4 8 16

ti
m
e
[n
s/
pa

rt
/∆

t]

5

10

15

20

25

Unsorted

5

10

15

20

25
Charge assignment on a single Helios CPU node

Sorted, no vec.

setrho 1 setrho 2

5

10

15

20

25

Sorted, vec.

setrho 3 setrho 4

nclones

1 2 4 8 16
0.8

1

1.2

1.4

Gain

nclones

1 2 4 8 16
0.8

1

1.2

1.4

Gain

nclones

1 2 4 6 15 30 60

ti
m
e
[n
s/
pa

rt
/∆

t]

10

20

50

100

200

300

400

Unsorted
10

20

50

100

200

300

400
Charge assignment on a single Helios MIC node

Sorted, no vec.

setrho 1 setrho 2

10

20

50

100

200

300

400

Sorted, vec.

setrho 3 setrho 4

nclones

1 2 4 6 15 30 60

1

2

3

Gain

nclones

1 2 4 6 15 30 60

1

2

3

Gain

Figure 3.10 : Comparison of the different charge assignment methods on a single CPU (top) and MIC

(bottom) Helios node. Unsorted and both sorted without and with vectorization cases are considered.

Method setrho_4 is only present in the sorted and vectorized case because it requires a full sorting and

it is intrinsically vectorized. For both CPU and MIC, the center gain plots show the performance gain of

the sorted version of respectively setrho_1 and setrho_2 against the unsorted. Similarly, the right

gain plots show the performance gain of the vectorized version of respectively setrho_1 and setrho_2

compared to the sorted version without vectorization. The unconnected data points (nclones= 16 for

CPU and nclones= 60 for MIC) show the timing of the pure MPI version of the code compiled without

OpenMP.82
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but otherwise, it is among the slowest of our charge deposition methods.

For the MIC case, the best option is not as obvious. Indeed, depending on the number of

clones, different setrho methods are optimal. Even though setrho_4 is more than two times

faster for pure OpenMP, we have chosen, for the following, setrho_2 (with atomic directives)

because it is the second fastest around pure OpenMP, where we expect the program to run

fastest, and it is not constrained to sorted particles with vectorization. Furthermore, where it

is not optimal, only a small difference is observed compared to the fastest method.

The sorting allows one to reduce the timing of setrho_2 by factors from 1.5 to 3 for the

same reasons as the CPU case. Essentially, with sorted particles, the atomic occurrences are

reduced.

Similarly to the CPU case, the performance gain due to the vectorization is very small

because too few particles per grid cell are present. It has been checked, see Figure 3.11,

that with around 10 times more particles per grid cell, i.e. a total of 10 million particles, the

vectorization performance is enhanced. In the CPU case, the overall gain is of 40% with an
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Figure 3.11 : Performance gain with different number of particles for both CPU (left) and MIC (right).

In each case, the timings of push, accel, setrho and psort are presented for the standard case with 1

million particles and a test case with 10 million particles.

impressive gain of a factor 3.7 for setrho. For the MIC, the overall gain with 10 million particles

is of only ∼ 10%. This is less than the CPU case because the MICs have vector registers twice as

big as the CPU registers and they need much more particles per grid cell to fully benefit from

the vectorization. In our application, we could not test the program with much more than 10
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million particles due to the limited memory capacity.

In all cases shown in Figure 3.10, the unconnected data points at nclones = 16 for the

CPU and nclones= 60 for the MIC show the timings of the PIC_ENGINE compiled as pure

MPI, i.e. without OpenMP. As expected, the first three methods have the same timings because

they rely on the same algorithm, only the OpenMP parallelization is different. Surprisingly,

the timings of pure MPI are between 30% and 90% (!) lower than the runs with one OpenMP

thread. This is explained by the OpenMP overhead introduced to manage the threads and

indicates that it is better to compile the code without OpenMP if we want to use it for a pure

MPI run.

The timings of the MICs are on average more than five times higher than CPUs. This is

mainly because the MIC heavily relies on vectorization and in our case, there is either no

vectorization or too few particles per grid cell to benefit from it.

3.3.2.4 Comparison of the different HPC platforms

In the previous sections, we have identified the optimal methods for the data structure, sorting,

and charge deposition. We found that the SOA data structure with psort_2 and setrho_1
were the most efficient methods on CPU while psort_2 and setrho_2 were the most efficient

on MIC. In the following, we study the overall timings of the PIC_ENGINE on Helios and then

compare the results with the other machines, Piz Daint and Piz Dora.

In Figure 3.12, we show the timings of the different components of the PIC_ENGINE for the

unsorted, and sorted without and with vectorization cases on a single Helios CPU node.

The hybrid implementation using OpenMP allows one to reduce the total timing by a factor

of around 2 in the unsorted case. Indeed, with a hybrid approach, fewer data replications are

made among the clones which improves the memory usage.

When the sorting is activated, the timings of both accel and setrho are reduced by a

factor of 3.25 and 1.44, respectively, due to the increased data locality in the memory. However,

we note that the total timing is effectively slower than the unsorted case as a result of the

sorting cost. It has to be noted that different approaches or sorting algorithms may lead to a

better performance but they are not tested here. For example, particles that have not moved

enough to change grid cell do not need to be sorted. Also, sorting may not be needed at each

timestep.

With vectorization, the timings of both accel and setrho are further decreased by ∼ 25%

and ∼ 8% respectively for nclones< 8 and are increased as we approach the pure MPI runs.

This loss of performance is explained by the small particle density per grid cell that makes the

vectorized loops too short to be efficient.

The unconnected data points located at nclones = 16 represent the timing of the

PIC_ENGINE when compiled without OpenMP. As for the charge deposition, it is seen that

OpenMP, even with a unique thread introduces a lot of overhead in this simple application as

the program runs around 30% faster without OpenMP activated.
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Figure 3.12 : Complete hybrid scan on a single Helios CPU node using the most efficient methods,

namely psort_2 and setrho_1. The unconnected points at nclones= 16 show the timing of the pure

MPI version of the code compiled without OpenMP.

In Figure 3.13, a comparison is shown between Helios CPU and MIC nodes, and the CSCS

machines Piz Daint and Piz Dora. The timings are obtained as follows. For each case, a

hybrid scan similar to Figure 3.12 is made and the minimum total timing is retained. For each

machine, four cases are presented. First, the timing of the PIC_ENGINE made in the pure MPI

version of the code compiled without OpenMP (MPI) is shown. Then, the usual unsorted (U)

and sorted without (N) and with vectorization (V) timings are presented.

As we will see shortly, the conclusions are the same for all the machines but differ quanti-

tatively as the architectures and compilers are different.

The hybrid unsorted version of the code is very beneficial for the performance with a

time gain of at least 60% compared to the pure MPI due to the reduced memory contention.

Furthermore, the sorting and vectorization add a significant performance gain on both accel
and setrho on a single node.

Note that except for Piz Dora, the optimum timings are obtained for a pure OpenMP run

with one clone. For Piz Dora, the optimal configuration is found for two clones and twelve

threads which corresponds to one clone per socket.

Finally, the performance of the MIC is surprisingly poor compared to the CPU timings,

∼ 5 times slower for our simple application. In fact, we have shown that for an increased

particle density per grid cell, the MIC performance is enhanced. Indeed, the main advantage

of the MICs is their improved vectorization with 512-bits vector registers but it is bound in
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Figure 3.13 : Comparison of the performance on the different computers considered in this study.

For each machine, the best timing of the MPI version and the unsorted and sorted with and without

vectorization cases are shown, denoted respectively by MPI, U, N and V in the graph. Above each hybrid

result, the number of clones and threads used to obtain this timing is shown. Note that for the MIC,

hyperthreading has been used with four threads per core.

our application by the small number of particles per grid cell. Note that for these results,

the optimal performance was found for a pure OpenMP run with 4 (!) hardware threads per

physical core.

Multi-node study Single-node runs as presented previously are a useful way to provide

insight into the program performance. However, for production runs, we generally need to use

several nodes to partition the large problem size and number of particles across the cluster

nodes. For this reason, in this section, we present multi-node timings of the PIC_ENGINE.

Specifically, we will be able to measure the timings of the inter-node communications that

are present in setrho to transfer the guard cells between subdomains and in pmovez that

transfers the particles between the subdomains.

The results presented in this section are made on 16 nodes of the different machines.

To be able to compare them with the single-node results, the cases tested here correspond

to 16 copies of the single-node problem. In other words, we evolve 16×106 particles on a

512×256×16 grid such that each node has the equivalent workload of a single-node problem.

Furthermore, the timings are again given in ns per particle and per timestep normalized to

one node, i.e. for one million particles.

86



3.3. The Pic_Engine: a simple test bed for algorithmic testing

nclones

1 2 4 8 16

ti
m
e
[n
s/
pa

rt
/∆

t]

100

101

Unsorted

nclones

1 2 4 8 16

100

101

Sorted, no vec.

Hybrid scan on a Helios CPU multi-node problem

push accel setrho

nclones

1 2 4 8 16

100

101

Sorted, vec.

psort pmovez Total

Figure 3.14 : Hybrid scan on 16 Helios CPU nodes using the most efficient methods, namely psort_2

and setrho_1. The single points show the timing of the pure MPI version of the code compiled without

OpenMP.

In Figure 3.14, we show the multi-node hybrid scan on the Helios computer for the un-

sorted, and sorted without and with vectorization cases. The timings are qualitatively very

similar to the single-node runs. The main difference comes from the pmovez routine that is

now activated and that represents around half of the total timing. In our case, less than 1% of

the particles per subdomain are moved. Thus, the communication time is negligible. However,

the pmovez routine spends a lot of time preparing the communication by, for example, deter-

mining the particles that should be moved, which represents, in this case, most of the pmovez
timing. Similar to the sorting method, this is in fact not an issue for some application codes

with a higher physical complexity, as the relative cost of pmovez will be significantly reduced.

Indeed, it has been found in ORB5, for example, that it does not represent more than 10% of

the total timing for all production runs made so far.

In Figure 3.15 are shown the timings of the multi-node hybrid runs on all the machines.

We can see that the pmovez method dominates the timings in all cases. This conclusion is even

enhanced for the MIC that suffers from a poor communication network as the messages must

first pass through the CPU before being sent to the recipient MIC. Again, let us emphasize that

only the improvements of setrho and accel are relevant as they are the most time-consuming

methods of PIC codes such as ORB5.

The single and multi-node results are compared in Table 3.4. As expected, the timings of

push and accel are the same for single and multi-node cases.
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Figure 3.15 : Comparison of the performance of a 16 nodes run on the different computers considered

in this study for a multi-node simulation. For each machine, the unsorted (U) and sorted without (N)

and with (V) vectorization cases are shown. Above each hybrid result, the number of clones and threads

used to obtain this timing is shown. Note that for the MIC, hyperthreading has been used with four

threads per core.

The timings of setrho are slightly higher in the multi-node case because we need MPI

communications between the subdomains to transfer the guard cells. This represents around

20% of the total setrho timing.

Surprisingly, the sorting method is slower for the multi-node runs. This is however ex-

plained by the fact that in multi-node simulations, the particles travel through the subdomains

in the z direction and their positions are not sorted in the (x, y) plane in the recipient subdo-

main.

3.4 Application to the ORB5 code: the color scheme
The PIC_ENGINE is a very useful tool that has allowed us to develop new algorithms and

test different parallelization strategies before implementing them in ORB5. Starting with a

simplified PIC code yet implementing similar features of ORB5, e.g. parallelization and data

structures, we were able to easily develop various numerical schemes without the tedious task

of implementing them in a large production code. Using the knowledge acquired from the

PIC_ENGINE, we have then implemented the most promising algorithms in ORB5. One of

the most critical parts of the PIC scheme is the charge/current deposition routine because
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Table 3.4 : Comparison of the performance for the single- and multi-node simulations. The timings

shown here correspond to pure OpenMP runs and are presented in ns/particle/∆t normalized to the

single-node problem to compare the results.

Helios CPU Piz Daint Piz Dora Helios MIC
Nodes Single Multi Single Multi Single Multi Single Multi

push 1.41 1.37 1.75 1.76 0.73 0.73 4.33 5.01
accel 1.30 1.30 1.90 1.93 0.81 0.81 1.59 1.69

setrho 2.80 3.56 3.10 3.54 2.76 3.28 13.18 15.93
psort 7.02 9.66 10.07 12.12 4.65 5.43 44.93 47.65

it interpolates data from hundreds of millions of particles onto the field grid. The way it

was originally implemented in ORB5 essentially consisted of indirect memory addressing,

which is known to lead to poor performance. In this section, we study the performance of the

charge/current deposition routine of ORB5 after having implemented the sorting and various

other schemes developed using the PIC_ENGINE. The other parts of the code have also been

optimized, but they are not presented in this work.

All the results presented in this section are produced using a typical nonlinear TEM simu-

lation which is scaled down to a single-node problem. The main relevant parameters for this

study are the following. The timestep is set to ∆t = 2 [Ω−1
ci ] and the resolution of the field grid

is Ns ×Nθ∗ ×Nϕ = 128×1024×1 with second order B-splines. The number of markers is 4 ·106

for each of the two species (ions and electrons) but it has to be noted that 4 points were used

for the gyroaveraging, effectively leading to 16 ·106 gyropoints to be treated in the deposition

step for the ions. The timings are done on the upgraded XC40 compute nodes of the Piz Daint

machine at CSCS, which are equipped with two 18-core Intel Xeon E5-2695 v4 with a clock

frequency of 2.10GHz.

3.4.1 Effect of sorting on the charge deposition step

As we have already seen with the PIC_ENGINE in Section 3.3.2.3, sorting the particles with

respect to their position allows for a better performance due to an improved data locality. In

Figure 3.16, the timings of the former ORB5 charge deposition, i.e. with loop over particles

and no OpenMP, are presented for various sorting granularities and with the MPI version of

the code. For reference, the case without sorting is also shown. As the granularity of sorting

is decreased, the timings of the charge deposition step are reduced with a maximal timing

reduction of 11% with a full sorting, i.e. 128 buckets in the s direction and 1024 buckets in the

θ∗ direction. This timing reduction is due to a better cache usage since the L1 cache misses

are halved in this case. Note that, as for the PIC_ENGINE, the sorting has a non negligible

timing which is not compensated by the time gain on the charge deposition step only. Further

optimizations on the sorting algorithm are possible but not considered in this work.
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Figure 3.16 : Influence of sorting on the charge deposition routine. The scan goes from no sorting

to a full sort (128s ×1024θ∗) with a single MPI task and no OpenMP threads. The labels on the y axis

represent how many buckets are used for the sorting in the s and θ∗ directions.

3.4.2 OpenMP performance and the color scheme

Let us now consider the inclusion of the third level of parallelism using OpenMP. To this

end, three charge deposition algorithms are considered. The first two are the setrho_1 and

setrho_4 routines developed using the PIC_ENGINE, Section 3.3.2, and which consist of

looping over the particles with manual data replication for the former and looping over the

grid points, thus taking advantage of the full sorting, for the second. Note, however, that in the

ORB5 case, the cloud-in-cell deposition is replaced by a second order B-spline deposition. The

third charge deposition method, inspired from [105], is called the color scheme. The basic idea

of this algorithm is to partition the grid into four sets of sub-grids in such a way that all the

sub-grids from each sets are totally disjoint, Figure 3.17. For a better visualization, a different

color is attributed to each set of sub-grids. Note that since the deposition is considered to

be done within a single poloidal plane per subdomain, which is the usual setup for an ORB5

production simulation, only four colors are needed. This number would be increased to eight

for a 3D version of this algorithm. To avoid race conditions, the charge deposition step is

then performed as follows. A first loop over the four colors is made. Then, all the sub-grids

and corresponding sorted particles of the current color are shared among OpenMP threads

for charge deposition. The main advantage of the color scheme is that it is a collision free

algorithm by construction. It does not need to use OpenMP atomic directives which were

leading to a poor performance of the PIC_ENGINE. Furthermore, a small or no data replication

nor data reduction are needed. The main disadvantage is that it requires a sorting of the

particles, which has a certain cost.
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Figure 3.17 : Illustration of the color scheme. The 2D poloidal grid is divided into four sets of sub-grids

and each set is attributed a color in such a way that all the sub-grids of each set are totally distinct.

In all the following tests, full sorting is always activated, i.e. we use 128 buckets in the s

direction and 1024 buckets in the θ∗ direction. Furthermore, all the timings are compared with

a reference case which is the former ORB5 charge deposition routine without sorting and with

no OpenMP threads. Then, similarly to the PIC_ENGINE tests, a scan is made in the number of

MPI clones and OpenMP threads in such a way that nclones×nthreads= Ncores = 32, which

ensures that all the resources are used. All the timings are done on the XC40 partition of the

Piz Daint machine at CSCS.

First, Figure 3.18 shows the results for the setrho_1 routine, which loops over the particles

and uses a manual data reduction. The timings decrease as the number of threads is increased

with an optimal configuration using 8 clones and 4 OpenMP threads, which leads to a perfor-

mance improvement of ∼ 25% as compared to the reference case. As the number of OpenMP

threads is further increased, a tendency reversal is observed and the performance worsens.

The pure OpenMP case is surprisingly 2.5 times slower than the reference case. This is mainly

due to the allocatable arrays used for the data replication that are allocated/de-allocated at

every time step. Another important factor which alters the performance of the pure OpenMP

case is that the compute nodes used for this study have two CPU sockets. With only one clone,

threads on one CPU may have access to the memory of the other CPU. Note that the case with

32 clones and 1 OpenMP thread is actually similar to the case with full sorting presented in Fig-

ure 3.16, which showed a performance improvement of ∼10% compared to the reference case.

The only difference is the unique OpenMP thread. As already observed using the PIC_ENGINE,

the difference in timing is essentially due to the overhead brought by OpenMP. It is however

less important in this case since it only represents a slowdown of ∼5% while it was ∼30% in

the PIC_ENGINE case.

In Figure 3.19, the timings for the setrho_4 method, which loops over the grid cells are

presented. As for the first case, the performance improves as the number of OpenMP threads
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Figure 3.18 : Timings for charge deposition with loop over particles. Hybrid scan clones versus threads

for the charge deposition with loop over the particles. The reference case corresponds to a pure MPI

run without sorting. The labels of the y axis represent how many clones (C) and threads (T) are used.

is increased up to an optimal configuration with 4 clones and 8 threads which gives a ∼50% of

improvement with respect to the reference case. After this optimal setup, the timings increase.

Once again, the poor performance of the pure OpenMP case is attributed to the two-socket

compute node used.
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Figure 3.19 : Same as Figure 3.18 but with loop over the grid cells.
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Finally, the results for the color scheme are presented in Figure 3.20. For each of the

Nclones × Nthreads configuration, a scan is made in the sub-grid size for the color scheme

decomposition and only the optimal value is retained. Contrarily to the previous cases, the
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OpenMP parallelization: color scheme

Figure 3.20 : Same as Figure 3.18 but using the color scheme.

performance of the color scheme increases as the number of OpenMP threads is increased up

to its maximum leading to a ∼60% timing reduction compared to the reference case.

3.5 Summary of the chapter
In this chapter, all the numerical aspects of ORB5 have been presented. We first discussed

the current numerical implementation of the ORB5 code followed by a short summary of the

refactoring process as well as the optimization techniques used to optimize the code.

With the goal of porting the ORB5 code to the new multi- and manycore HPC platforms,

we have developed and tested different optimization techniques and parallelization schemes.

For this purpose, we have developed a test bed called the PIC_ENGINE serving as a simple and

portable abstraction of the PIC algorithm and allowing us to easily test these techniques on a

simplified yet realistic code. To that end, only the key elements common to all PIC applications

are retained.

In this work, we have considered a 6D Vlasov equation describing the evolution of a single-

species plasma in the electrostatic limit in Cartesian coordinates. For the sake of simplicity,

no magnetic field is considered and no field solver is used. The charge depositions and grid-

to-particle interpolations are done using, respectively, a cloud-in-cell method and a linear

interpolation on the electrostatic potential. The time integration scheme evolving the particle

equations of motion is based on the second order leap-frog method.
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In order to preserve the portability of the program, it has been coded using Fortran and a

hybrid implementation of MPI and OpenMP for the parallelization. By doing so, the code can

be run on most modern HPC clusters including MIC-equipped computers.

We have presented different possible optimizations, which have been tested on a single-

node problem in order to apprehend the shared memory programming model and the inherent

difficulties.

We have first discussed the data structure used in the PIC_ENGINE to store particle quanti-

ties. Both structure of arrays and array of structures have been considered. Since most of the

memory access is made following the particle order, it is found that the structure of arrays is

more efficient because data is accessed contiguously—recall that Fortran uses a column-major

order to store arrays in memory. A performance gain up to 14.4% is observed in this mode.

In most of the PIC codes, particles are stored randomly in computer memory. This is

critical for the program performance since random memory accesses are very inefficient.

To avoid this problem, we have implemented a counting sort algorithm to sort the particles

according to their positions. Despite its cost, the sorting allows increasing the performance of

the most time-consuming methods, namely accel and setrho, by respectively factors of 3.25

and 1.44. Furthermore, the particle sorting also allows for the vectorization of these methods,

which is otherwise not possible due to their indirect addressing. A performance gain up to 25%

is observed thanks to vectorization for the case considered, with an average of eight particles

per grid cell. Furthermore, we have shown that with an increased number of particles per grid

cell, the vectorization performance further increases. For the CPU, the gain is up to 30% while

it is around 10% for the MIC. The lower gain increase for the MIC compared to the CPU is

explained by the poor vectorization due to the small number of particles per grid cell and the

wide 512-bits vector registers used by the MIC that can vectorize up to eight doubles compared

to four for the CPU.

The setrho method is a challenging candidate for the parallelization because of the race

conditions. In the PIC_ENGINE, we have implemented different parallelization methods based

either on an atomic update of the memory or data safe algorithms that completely avoid these

race conditions.

The use of a shared memory programming language allows for a reduction of the memory

contention problem by limiting data replication thus improving the performance. Indeed, it is

observed that the pure OpenMP version of the code runs up to 2.15 times faster than the pure

MPI version.

Multi-node experiments were done to test the PIC_ENGINE in more realistic conditions

and to time the MPI communications. The total multi-node timings are almost twice as

slower than the single-node results mainly because of the pmovez method used to transfer the

particles across the subdomains. Indeed, for more complex applications, the timings of psort
and pmovez will remain the same in absolute value, but the timings of the other methods will

be much higher due to the more complex physics and/or higher order schemes. Therefore,
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the relative timings of psort and pmovez is expected to be much smaller in such applications.

We have been able to test the performance of the PIC_ENGINE on the MIC architectures.

This is possible because the same programming model is used for both CPUs and MICs in

native mode. Unfortunately, the MIC performance is poor compared to the CPU, which we

interpret as resulting from poor vectorization. However, a recently published study [115]

shows that with the appropriate low-level optimizations, the Intel MIC can be up to 1.6 times

faster than an Intel eight-core CPU. In a future work, we will consider their approach and try

to apply it to the PIC_ENGINE.

Finally, the knowledge acquired from the PIC_ENGINE has allowed us to implement op-

timized versions of the ORB5 main parts. As an example, the charge deposition method

optimization of ORB5 has been presented. First, the effect of the sorting on the original depo-

sition method has been studied. It is shown that using a full sorting increases the performance

by ∼10%. Then, three different OpenMP parallelization algorithms of the charge deposition

are tested. Usually, it is observed that the optimal performance depends on the clone/thread

configuration and no general rules can be drawn. The color scheme, which is the most efficient

algorithm, leads to a timing improvement of ∼60%. The main drawback of this scheme is that

it requires various testings to find the optimal number of clones/threads and the correct grid

sub-division.
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4.1 Introduction
Magnetically confined fusion plasmas often exhibit large temperature and density gradients

which are the source of free energy for a multitude of drift-wave-type micro-instabilities that

span over different spatial and temporal scales. For low-β plasmas, anomalous transport

of particle, heat, and momentum is attributed to the turbulence caused by ITG, TEM, and

ETG modes. The ITG-driven instability, which is responsible for the anomalous ion transport,

has been extensively studied using gyrokinetic simulations since the pioneering work of Lee

and Parker [116, 117] in the late 1980s. In first approximation, an adiabatic electron model is

sufficient to describe these modes. If a kinetic electron response is included, the TEM and

ETG modes, which are responsible for the anomalous electron heat and particle transport,

can also be described. While a partial kinetic electron response including only the trapped

electrons allows one to simulate TEM, the ETG instability requires a fully kinetic electron

model. At higher β values, the ITG perturbations are stabilized and electromagnetic modes

such as the kinetic ballooning mode (KBM) [118], micro-tearing [119], and Alfvén ITG modes

[120] are destabilized. In addition to those drift-wave-type micro-instabilities, the kinetic

electron model is also needed to study internal kink modes [121], and interaction between

turbulence and energetic particles [94].

The main drawback of the full kinetic electron model is the computational cost that is

required to solve the fast electron parallel dynamics. For example, the so-called ωH mode

[116], which is the electrostatic limit of the kinetic Aflvén wave, severely limits the simulation

timestep as its frequency, ωH = (k‖/k⊥)
p

mi/meΩci, becomes comparable to the ion cyclotron

frequency at long perpendicular wavelengths. Note also that in this limit, the ωH mode is

not consistent with the gyrokinetic ordering presented in Section 2.2, for which the ratio

ω/Ωci is considered to be small, where ω is the typical frequency of the mode of interest.

Two approaches can be use to avoid the ωH mode while still being able to simulate TEM. A

finite-β value can be used as it quickly decreases the frequency of the shear Alfvén wave [122].

However, this requires a code able to simulate electromagnetic fluctuations and usually these

are more challenging runs to carry out in terms of numerical resources. The other possibility is
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to use a hybrid electron model in which trapped electrons have a kinetic response and passing

electrons are adiabatic. This was the former hybrid electron model implemented in ORB5

[41]. Although this model is satisfactory in the linear and collisionless limit, major issues are

observed in the nonlinear regime and/or in the presence of collisions. Indeed, the ambipolar

condition is not satisfied as no contribution from the passing electrons is accounted for in the

flux-surface-averaged gyrokinetic Poisson equation, which also leads to a non-conservation of

the canonical toroidal angular momentum. This is because the trapping/detrapping processes,

which can only occur because of the parallel nonlinearity, collisions, and radial drifts, are not

well accounted for1. In the above-mentioned hybrid model, particles that are (de)trapped are

suddenly treated as (adiabatic) kinetic. This generates a spurious source of density, energy and

momentum. Other hybrid electron models using bounce-averaged trapped electrons [123] or

fluid-kinetic electrons [124] have been developed but they suffer from the same problems.

More recently, an improvement to the kinetic trapped hybrid electron model has been

proposed [56]. It allows one to solve the major issues of the previously described model

while avoiding the ωH mode. In this corrected model, the gyrokinetic Poisson equation is

first decomposed into non-axis and axisymmetric toroidal Fourier modes, n 6= 0 and n =
0. The non axisymmetric part is similar to the former hybrid model in ORB5, i.e. trapped

electrons are kinetic while passing electrons have an adiabatic response. For the n = 0 part,

there is no distinction between passing and trapped electrons in the Poisson equation; they

both contribute kinetically. Once the electrostatic potential is obtained by solving the quasi-

neutrality equation, a filter is applied to the axisymmetric part of the potential to keep only

the poloidal Fourier mode m = 0. This is done to eliminate the ωH mode, since finite k‖
contributions are filtered out. This correction allows the model to ensure the ambipolarity

condition, the conservation of the toroidal angular momentum, and the trapped/passing

boundary is well accounted for. However, because of the filtering of the n = 0 component of

the total electrostatic potential, the GAM frequency is changed, which can be problematic for

comparison with experiments [125, 9].

In this work, we propose a further enhancement to the model proposed in [56], which

allows one to correctly capture the GAM frequency. The main idea behind this upgraded

hybrid electron model is to account only for a flux-surface-averaged (FSA) kinetic contribution

of the passing electrons to the quasi-neutrality equation. The non flux-surface-averaged

contribution is assumed to have an adiabatic response. For this reason, we will refer to this

model as the “FSA” hybrid electron model. The weak form of the electron contribution to the

gyrokinetic Poisson equation is given by

εδ

∫
dV αPne0

e

Te

(
φ1 −φ1

)
φ̂1 +

∫
dV ne0 φ̂1 +

∫

trapped
dΩ feφ̂1 +

∫

passing
dΩ feφ̂1, (4.1)

1Note that in collisionless flux-tube codes, the parallel nonlinearity is generally neglected and background
profiles are assumed to be constant. Within these approximations, the trapped/passing hybrid electron model is
correct
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where φ̂1 is the flux-surface average of the test function φ̂1. The first term represents the

adiabatic contribution of the passing electron fraction αP given by

αP(ψ,θ∗) = 1−
∫

trapped d3v
∫

d3v
= 1−

√
1− B(ψ,θ∗)

Bmax(ψ)
. (4.2)

The second term is the background contribution, which is assumed to cancel with the ion

background contribution, the third term is the trapped electron gyro density, and the last term

is the flux-surface-averaged contribution of the passing electrons. Note that the “trapped” and

“passing” subscripts mean that the integrals in the velocity space are done over the trapped

and passing portions of phase space respectively, which are defined using Eq. (1.14).

As a first approximation, the flux-surface-averaged kinetic contribution of the passing elec-

trons can be computed by filtering out all m 6= 0 kinetic contributions of the passing electrons

to the n = 0 mode, i.e. approximating the FSA by taking only the n = m = 0 component into

account. This can be written as

εδ

∫
dV αPne0

e

Te

(
φ1 −φ1

)
φ̂1 +

∫
dV ne0 φ̂1 +

∫

trapped
dΩ feφ̂1 +

∫

passing
dΩ feφ̂

00
1 , (4.3)

where φ̂00
1 is the n = m = 0 component of φ̂1. Note that this approximation is exact if the

Jacobian Jsθ∗ϕ, related to the spatial coordinates, depends only on the radial coordinate which

corresponds to a cylindrical system.

The main difference between the correction presented in [56] and both the FSA and

its n = m = 0 approximation is that in the former, the axisymmetric part of the whole self

consistent electrostatic field φ is filtered to retain only the m = 0 mode, thus also affecting the

ion response. In the FSA and n = m = 0 models, the filtering is done only on the axisymmetric

contribution of the passing electrons without modifying the ion or trapped electron response.

By doing so, the GAM properties are not affected.

the next section of this chapter, the validation of the upgraded hybrid electron model is

presented. It is done using a Rosenbluth-Hinton (RH) test [43] to validate the zonal properties,

i.e. the GAM frequency and the convergence toward the correct zonal flow residual level.

Finally, the ambipolar condition is verified using nonlinear simulations. In Section 4.3, a

nonlinear simulation of the TCV tokamak showing interesting features is presented.

4.2 Validation of the upgraded hybrid electron model

4.2.1 Linear validation: Rosenbluth-Hinton test

The setup used for the RH test presented in this section is mainly inspired from [56] which is a

modified CYCLONE-like setup [29]. It consists of a deuterium plasma in a circular concentric

magnetic equilibrium with ρ∗ = 1/150, R0/a = 2.79, a quadratic safety factor profile q(ρ/a) =
0.85+2.18(ρ/a)2, and a magnetic field amplitude at the magnetic axis of B0 = 1.91T. The
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Table 4.1 : Numerical parameters used for the RH test with different electron models. From top

to bottom: adiabatic electrons, the former ORB5 hybrid electron model not ensuring ambipolarity,

the correction proposed in [56], the upgraded model with the flux-surface average passing kinetic

contribution, its n = m = 0 approximation, and the fully kinetic electron model with a small β= 10−4

value.

Grid resolution Timestep Number of markers
(Ns ×Nθ∗ ×Nϕ) [Ω−1

ci ] [·106]

Adiabatic 180×256×32 30 10 (ions only)
Former 180×256×32 5 10 (both species)
Idomura2016 180×256×32 5 10 (both species)
FSA 180×256×32 5 10 (both species)
n = m = 0 180×256×32 5 10 (both species)
Kinetic 180×256×64 0.5 10 (both species)

surface of reference is located at ρ/a = 0.5, both the density and temperature profiles are

chosen to be flat over the whole radial domain ρ/a ∈ [0,1], and the ion to electron mass ratio

is mi/me = 100. For the RH test, an initial perturbation on the deuterium weights is applied

while the electron weights are initialized to zero. The radially-dependent perturbation is of the

form

δ f
(
ρ/a

)= A cos
(
πkrρ/a

)
f0

(
ρ/a

)
, (4.4)

where A = 10−5 is the amplitude and kr = 1 is the radial wave number harmonic. This pertur-

bation is such that the radial electric field Er is maximum at ρ/a = 0.5. Only the axisymmetric

modes, for which n = 0, are retained in the Fourier filter of the solver. Various electron models

are compared in this validation. Their numerical parameters are summarized in Table 4.1.

Note that the grid resolution and number of particles are set for the most restrictive case and

they are used for all the electron models (except for the kinetic electrons), even though they

could be reduced in some cases. The benefit of using the hybrid model is illustrated here, as it

allows one to increase the timestep by a factor of 10 compared to the kinetic electron model,

which in this case actually uses a small β value to decrease the ωH mode frequency. A similar

ratio is also observed for the nonlinear simulations presented in the following sub-sections.

The results of the RH test are shown in Figure 4.1. The radial electric field defined by

Er(ρ/a, t ) =−∂φ(ρ/a, t )

∂(ρ/a)
, (4.5)

is normalized to its initial value, i.e. Er(ρ/a, t )/Er(ρ/a,0) and plotted as a function of time at

the center of the radial domain, ρ/a = 0.5, where ρ and a are respectively a geometric radial

coordinate and the minor radius. The figure shows an initial, oscillatory phase corresponding
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Figure 4.1 : Rosenbluth-Hinton test realized for different electron models. The normalized radial

electric field at ρ/a = 0.5 is plotted against time. The subplot in the top-right corner is a zoom of the

time interval tΩci ∈ [0,1500]

to the GAM followed by a saturated phase corresponding to the ZF residual. All the simulations

converge toward the same residual, which is non-zero in the collisionless limit. The GAM

frequencies and damping rates differ however between the different models. The adiabatic

electron model has the lowest damping rate. The former ORB5 hybrid model, the FSA model

and its approximation n = m = 0, and the fully kinetic electrons have a similar damping rate.

Finally, the hybrid model from [56] has the highest damping rate. Note that the damping rate

from the adiabatic electron model can be recovered if the real ion to electron mass ratio is

used.

The GAM frequency is computed from a Fourier transform in time of the radial electric

field Er defined by Eq. (4.5). The GAM spectrum as a function of the radial position is shown in

Figure 4.2. An analytical estimate of the frequency, ωana [45], is also plotted in dashed red line,

where

ω2
ana =

5−κ
4

[
ω2

GAM,0 +
1

q2ω2
GAM,0

(
23

2
+8τe +2τ2

e

)]( vth,i

R

)2
, (4.6)

ω2
GAM,0 =

7

2
+2τe, (4.7)

with τe = Te/Ti, R the major radius, vth,i the ion thermal velocity, and κ the elongation. Note

that another analytical computation of the GAM frequency [46] has been used for compari-

son and gave very similar estimates as the one presented above. As mentioned in [56], the

Idomura2016 model significantly underestimates the GAM frequency, especially for ρ/a > 0.5.
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Figure 4.2 : GAM spectrum computed from the normalized radial electric field amplitude for the

different electron models. The red dashed line is an analytical prediction, Eq. (4.6), of the GAM

frequency.

The other models have similar GAM frequency estimates. They are particularly close to the

analytical prediction for ρ/a > 0.5, however they tend to overestimate the frequencies for

ρ/a < 0.5. Both the FSA model and its n = m = 0 approximation show a similar frequency

evaluation as the former ORB5 hybrid electron model and as the kinetic electron model.

4.2.2 Nonlinear verification
We now turn to the nonlinear verification of the ambipolar condition. The case considered here

is a deuterium plasma without impurities and it uses an ideal MHD equilibrium reconstructed

from TCV shot #43516 with an aspect ratio of 3.64, an elongation of 1.44, and a triangularity of

0.20, Figure 4.3. The safety factor profile is quadratic, q(s) = q0 + (qedge −q0)s2, with q0 = 0.78

and qedge = 3.29. The quantities are normalized with respect to the s0 = 1.0 reference magnetic

surface and ions play the role of reference species for the normalization. It follows that

ρ∗(s0) = ρi(s0)/a = 1/245—at mid-radius ρ∗ is around 1/100.

The temperature and density profiles are inspired from [49] that found electron profiles

exhibiting constant logarithmic gradients in the core region but excluding the sawtooth in-

version radius, and a pedestal region—even in L-mode plasmas—with constant gradients. In

ORB5, the temperature profile is parametrized as follows, Figure 4.4:

T (ρV ) =
{

min
{
T0,Tped exp

[−κT
(
ρV −ρped

)]}
for ρV ≤ ρped,

T1 −µT · (ρV −1) for ρV > ρped,
(4.8)

where Tped = T1+µT (1−ρped), and the radial variable is defined as ρV =√
V (ψ)/V (ψedge) with
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Figure 4.3 : Illustration of the TCV equilibrium based on shot #43516. Poloidal cut of the simulated

potential fluctuation δφ during the turbulent phase of the run. The dashed lines represent magnetic

surfaces.

V (ψ) being the volume enclosed by the magnetic surfaceψ= const andψedge is the value ofψ

at the radial outer edge. The parameters T0, T1, κT , and µT are input parameters defining the

profile. A similar definition is used for the density profile with parameters n0, n1, κn , and µn .

Note that the profiles defined by Eq. (4.8) are used to qualitatively reproduce the experimental

profiles found in [49]. From the point of view of the ORB5 gyrokinetic model, they are not

consistent as the instability mechanisms taking place in the sawtooth inversion region are not

correctly described.

If not stated otherwise, for all the nonlinear TCV simulations presented in this chapter,

the following parameters are used. The temperature and density profiles are defined by

ρped = 0.8, T i
0 = 5, T i

1 = 1, κi
T = 2.3, µi

T = 6, ni
0 = 5, ni

1 = 1, µi
n = 5, κi

n = 2.3 and T e
0 = 10,

T e
1 = 1, κe

T = 2.5, µe
T = 10, ne

0 = 5, ne
1 = 1, µe

n = 5, κe
n = 2.3. Ions and electrons have the

same density profile and different temperature profiles except at the radial outer edge where

Ti(s0) = Te(s0). The ion to electron mass ratio is set to mi/me = 200. The numerical resolution

for these runs is Np = 256 ·106 markers for each species and∆t = 2[Ω−1
ci ]. The grid resolution is

Ns ×Nθ∗ ×Nϕ = 256×512×256. The field-aligned Fourier filter is set to keep only modes such
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Illustration of the temperature and density profiles

Figure 4.4 : Illustration of the temperature and density profiles used in this work. They are composed of

three regions. From left to right, the first region mimics the sawtooth inversion region where gradients

are zero. Then, a region with constant logarithmic gradients κT spans up to ρped. The outer radial

region is the pedestal, characterized by constant gradients defined by µT .

that 0 ≤ n ≤ 64 and satisfying m = nq(s)±5. Finally, the modified Krook operator conserving

density, parallel momentum and ZF, with a rate γK = 4.2 ·10−4 [Ωci] is set for both species. It

is used as a noise control but also as a heat source to perform temperature-gradient-driven

simulations. Note that for the rest of this work, only the upgraded hybrid electron model in

the n = m = 0 approximation is used. Corresponding results considering the full FSA model

have not yet been obtained.

To verify that the upgraded hybrid model does indeed satisfy the ambipolarity condition,

we will look at the density profile evolution and the particle fluxes. In ORB5, the particle

diagnostics (profiles, fluxes, etc.) are usually done on flux-surface averaged quantities, leading

to 1D radial profiles. The gyrocenter density profile is defined as

n(ψ) =
∫

f d3v , (4.9)

where the overline symbolizes the flux-surface average which is defined as

A(ψ) =
∫ ∫

dθ∗dϕJsθ∗ϕ(ψ,θ∗)A(ψ,θ∗,ϕ)

2π
∫

dθ∗ Jsθ∗ϕ(s,θ∗)
. (4.10)

Numerically, the flux-surface average consists of a radial binning of the markers. For example,

104



4.2. Validation of the upgraded hybrid electron model

the gyrocenter density is computed as

n(ψi ) ≈ Vtot

Ntot

∑
p|ψp∈[ψi ,ψi+1]

[
f0

(
ψp ,θ∗p ,Ekin,p

)
Ωp +wp

]

2π
∫ ψi+1
ψi

∫
dψdθ∗ Jsθ∗ϕ(ψ,θ∗)

, (4.11)

where the sum is taken over all the markers within a bin [ψi ,ψi+1], Vtot = 2π
∫ ∫

dψdθ∗ Jsθ∗ϕ

is the total torus volume, and Ntot is the total number of markers. Note that the use of the

poloidal magnetic flux coordinate ψ for binnings is motivated by statistics properties. Indeed,

radial bins defined by an equidistant partition in ψ have roughly the same volume as ψ∼ r 2,

where r is the minor radius, which ensures a similar number of markers per bin. Similarly, the

radial gyrocenter particle flux density is defined by

Γσ = ∇ψ∣∣∇ψ
∣∣ ·

∫
fσẊ d3v = 1∣∣∇ψ

∣∣
∫

fσψ̇d3v , (4.12)

where Ẋ is the gyrocenter characteristics defined by Eq. (2.16) and dψ/dt =∇ψ ·dX /dt .

In Figure 4.5 (left), the ion and electron density profiles are compared between the former

ORB5 hybrid electron model and the n = m = 0 model. In the former case, the difference
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Figure 4.5 : The left plot shows the relative difference between the ion and electron density profiles

at the beginning (dashed lines) and at the end (plain lines) of the simulation, t = 4.7 ·104 [Ω−1
ci ]. The

densities are normalized with the averaged density, n̂ = n/n̄. The right plot shows the difference

between ion and electron particle fluxes, i.e. Γi −Γe at the radial position s ' 0.6. In the two figures, the

former ORB5 hybrid electron model and the n = m = 0 model are compared against each other.

.

between the ion and electron densities goes up to ∼ 20% and the two profiles are markedly

different on the whole radial domain considered. On the other hand, with the n = m = 0

model, both ion and electron density profiles are essentially identical, with a maximum

relative difference of ∼ 1%. Let us recall that the ORB5 density diagnostic actually computes
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the gyrocenter density and not the particle density. It is then expected that the ion and electron

density profiles are slightly different since the ion polarization density and FLR effects are not

accounted for in the density diagnostics. On the right plot, the relative difference in particle

flux between ions and electrons evaluated at s = 0.6 is shown for both models. For the former

model, the relative difference between ion and electron particle flux rapidly goes up to ∼ 80%.

On the other hand, for the n = m = 0 case, the difference is bounded by ∼ 30% which is more

than 2.5 times smaller than in the former case.

The use of the n = m = 0 model has greatly improved the ambipolarity condition which is

confirmed by ORB5 density and particle flux diagnostics. Some differences are nevertheless

observed between ion and electron densities and fluxes and are attributed to two main reasons.

First, the code actually diagnoses gyrocenter density and particle fluxes, while in the quasi-

neutrality condition both ion polarization and FLR effects are accounted for. Second, the

n = m = 0 is an approximation of the flux-surface average operation which is not exact in this

case because of the toroidicity and shaping of the magnetic equilibrium.

4.3 Effect of the n = m = 0 hybrid electron model on turbulence

properties

In the previous section, the n = m = 0 hybrid model was verified on the following points.

Linear RH tests showed a correct representation of the GAM frequency and damping rate, as

well as correct ZF residual. Nonlinearly, the ambipolarity condition was shown to be satisfied

on average in time. In this section, we shall compare some turbulence properties between the

upgraded model and the former hybrid model. To this end, heat fluxes and E ×B shearing

rates will be compared between the two models.

In ORB5, the heat flux density qσ,H is defined as

qσ,H = qσ,kin +qσ,pot −
5

2
mσv2

thΓσ, (4.13)

qσ,kin(ψ) = 1∣∣∇ψ
∣∣
∫

1

2
mσv2 fσψ̇d3v , (4.14)

qσ,pot(ψ) = 1∣∣∇ψ
∣∣
∫

fσqσφ1ψ̇d3v , (4.15)

where Γσ is the gyrocenter particle flux defined by Eq. (4.12). Neglecting the off-diagonal terms

of the transport matrix, we then define an effective heat diffusivity χσ such that

qσ,H =−nχσ∇T, (4.16)

and which is assumed to be constant on a flux surface. Taking the flux-surface average of

106



4.3. Effect of the n = m = 0 hybrid electron model on turbulence properties

Eq. (4.16) leads to the definition of the effective heat diffusivity:

χσ =− qσ,H
∣∣∇ψ

∣∣

ndT /dψ|∇ψ|2
. (4.17)

This definition is used throughout this work and is further normalized in gyro-Bohm units, i.e.

with respect to χGB = ρ2
s0cs0/a, where ρs0 and cs0 are respectively the ion sound Larmor radius

and ion sound velocity of the reference species taken at the reference radial position s0.

In Figure 4.6, the time evolution of the radially-averaged effective heat diffusivity is plotted

for both the former ORB5 hybrid electron model and the n = m = 0 hybrid model. Using
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Figure 4.6 : Time trace of the radially-averaged effective heat diffusivities. The radial average is taken

over s ∈ [0.7,0.9]. Both ion and electron diffusivities are shown for the former ORB5 hybrid electron

model as well as the upgraded model n = m = 0.

the former hybrid electron model, the simulation is TEM-dominated and during the whole

simulation the effective electron heat diffusivity is ∼ 2.5 times higher than the ion diffusivity.

With the n = m = 0 hybrid electron model, the electron heat diffusivity is not significantly

changed and its magnitude corresponds to the level obtained with the former hybrid model.

On the other hand, the ion heat diffusivity is now growing linearly in time until reaching

the same level as that of the electrons. They are then both closely related in magnitude

and fluctuations. This result is rather surprising. Indeed, a priori one does not expect the

ion transport to be significantly modified given that the correction to the hybrid electron

model only directly affects the way passing electrons are treated; the inclusion of a kinetic

passing electron response seems to drive ion heat transport. Two hypotheses can be used

to explain this observation. First, from a linear point of view, the relaxation of the density
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profiles observed in Figure 4.5 leads to larger ηi = Ln/LT which could destabilize an ITG mode.

Second, a nonlinear interaction could change the ZF amplitude thus leading to modified ion

transport properties.

To test the first hypothesis, two linear scans are made to compute the contributions to the

linear growth rate γlin of unstable modes coming from both ions and electrons. The parameters

used for these two scans are inspired by the nonlinear TCV case presented above. Note that

the numerical parameters are slightly adapted for the linear runs, namely ∆t = 1[Ω−1
ci ], the

grid resolution is changed to Ns ×Nθ∗ ×Nϕ = 256×512×512, the number of markers is set to

20 ·106 for the ions and 48 ·106 for the electrons, and the Krook noise control is turned off.

The first scan uses the same physical setup as the nonlinear run, i.e. a density profile

defined by κn = 2.3, µn = 5. On the other hand, the second linear scan uses a density profile

which corresponds to the relaxed density profile from the former run, i.e. defined by κn = 1.3,

µn = 6.1. These values of κn and µn for the second scan are obtained by fitting the final density

profile of the nonlinear run assuming the same functional form as defined in Eq. (4.8), see

Figure 4.7.
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ρV
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n

Density profile comparison

κn = 2.3, µn = 5.0: t = 0 [Ω−1
ci ]

κn = 2.3, µn = 5.0: t = 4.7 ·104 [Ω−1
ci ]

κn = 1.3, µn = 6.1: t = 0 [Ω−1
ci ]

Figure 4.7 : Illustration of the density fitting procedure. The first run is initialized with a density profile

defined by κn = 2.3 and µn = 5.0 (blue plain line). At the end of the run, the final density profile (blue

dashed line) is fitted in such a way to obtain the κn coefficient. Note that we have assumed the same

pedestal width and edge density for both runs.

Both scans are presented in Figure 4.8. They are composed of the linear growth rate for

toroidal mode numbers n ranging from 4 up to 64, which is the highest value solved in the

nonlinear case. In these scans, the total linear growth rate is shown, as well as the ion and

electron contributions. In both scans, there are three distinct toroidal-mode-number intervals

that can be assigned to different radial regions where the most unstable modes grow. In the
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Figure 4.8 : Linear growth rates as a function of the toroidal mode number n. The maximum n = 64

value corresponds to kθρi ∼ 0.85. The left plot shows the results for the case with κn = 2.3, µn = 5

and the right plot shows the case with κn = 1.3, µn = 6.1. In both plots, the ion (blue) and electron

(orange) contributions are shown as well as the total linear growth rate (black). The three distinct

toroidal-mode-number intervals [4,9], [10,48], and [49,64] for the left plot and [4,10], [11,32], and

[33,64] for the right plot denote regions where the instability is developing in the pedestal (p) (shaded)

or in the core (c).

intervals marked with “p”, the instabilities develop in the pedestal, i.e. 0.8 ≤ ρV ≤ 1.0, whereas

for intervals marked with “c”, the instabilities develop in the core, i.e. 0.4 ≤ ρV ≤ 0.8. For the

case with the initial density profile (left plot), i.e. with the parameters κn = 2.3, µn = 5, we

have an ITG-TEM mix even though the electron growth rates always dominate over the ion

ones, e.g. for n = 36, the ion contribution represents ∼ 40% of the total growth rate. In the

right plot, the results for the case with relaxed density, i.e. κn = 1.3, µn = 6.1 are shown. The

striking difference comes from the modes n ∈ [10,32] developing in the core region. The

ion contribution to the instability drive is negligible. For higher toroidal-mode numbers,

n ∈ [33,64], there is no significant influence of the density profile on the growth rates. For low

toroidal-mode numbers, n ∈ [4,10], the ion contribution to the growth rate is significantly

increased by an average of ∼ 70% for the relaxed density case compared to the initial density

profile case. Even though all the ion contribution to the growth rate is decreased in the core

region, the low-n contributions are destabilized which leads to an increased nonlinear ion

heat transport. This can be illustrated using a mixing-length argument, where the anomalous

heat diffusion coefficient can be estimated, using a random walk model, as

χ∼ γ

k2
⊥
∼ γ

k2
θ

∼ γ
(
nq(r )/r

)2 , (4.18)

where we have used k⊥ ≈ kθ and m ≈ nq which is valid for both ITG and TEM modes, and r is

the geometrical radial coordinate. Note that geometric coefficients are neglected for the sake
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of simplifying the expression. In Figure 4.9, the growth rate is normalized with n2 following

Eq. (4.18) to show, qualitatively, the contribution of each mode to the heat transport. For
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×10−5 Mixing length argument

Ions: κn = 2.3,µn = 5

Ions: κn = 1.3,µn = 6

Electrons: κn = 2.3,µn = 5

Electrons: κn = 1.3,µn = 6

Figure 4.9 : Estimation of the toroidal mode number diffusion coefficient using a mixing length

argument. The estimation of the ion coefficient for both the case with κn = 2.3, µn = 5 (blue) and the

case with κn = 1.3, µn = 6.1 (orange) are plotted.

n ≤ 12, the estimated ion heat diffusivities are approximately two times higher for the relaxed

density case. On the other hand, we see that the electron heat diffusivities are slightly reduced.

Around n = 12 and above, the tendency is inverted. Ion diffusivities are reduced in the relaxed

density case while electron diffusivities are increased. The enhanced ion heat transport is thus

only partly explained through this mixing length argument.

The former nonlinear simulation is now compared to a second nonlinear run initialized

with the relaxed density profile with κn = 1.3, µn = 6.1, Figure 4.7. The main motivation for

doing a second run instead of continuing the former simulation is that the density relaxation

becomes so large in the former run that |δ f | becomes large. As a result, the numerical noise

increases and it would be difficult to pursue the simulation. Indeed, let us recall that ORB5

relies on a control variate PIC approach in which the condition |δ f |¿ f0 has to be satisfied to

effectively reduce the numerical noise. Since the background distribution f0 is constant in

time, all the profile relaxations are accounted for in the perturbed distribution δ f . Restarting

the simulation with a relaxed density profile allows one to transfer the profile relaxations

to the new background distribution and restart with a clean run; this would correspond to

a step-wise approximation of a more continuous adaptive f0 approach [68]. The radially-

averaged effective heat diffusivities as functions of the characteristic density gradient length

are plotted in Figure 4.10 for the cases with density profiles defined by κn = 2.3, µn = 5 and

κn = 1.3, µn = 6.1, respectively. The former simulation starts at around R/Ln = 8. The electron

diffusivity reaches almost immediately its quasi-steady state level while the ion diffusivity

grows slowly up to the electron level at R/Ln ∼ 6.5. At this point, both diffusivities stay at

their saturated level
〈
χ/χGB

〉
s ∼ 25. The second simulation with κn = 1.3, µn = 6.1 starts at
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Figure 4.10 : Radially-averaged effective heat diffusivities as a function of the density characteristic

gradient length R/Ln . The radial average is made over s ∈ [0.7,0.9]. Both ion and electron heat

diffusivities are shown for the case with κn = 2.3, µn = 5 and the case with κn = 1.3, µn = 6.1.

R/Ln ∼ 4.5. In this case, both ion and electron diffusivities quickly reach their saturated level

which correspond to the one of the previous run. Two preliminary conclusions can be drawn

from this figure. First, restarting the simulation using the final state of the previous run as

initial condition gives consistent results. Second, we see that the density relaxation for the

second case is much smaller than in the first case, even though both runs have the same

physical duration. This suggests that the simulation state is approaching the zero-particle-flux

condition [126, 127, 128, 129].

We now look at the radially-averaged effective heat diffusivities as a function of the E ×B

shearing rate, Figure 4.11. In the left plot is shown the ion effective heat diffusivity. As the

density profile relaxes, the E ×B shearing rate amplitude decreases leading to an increase in

ion heat transport. On the other hand, for the electrons (right plot), the shearing rate does

not significantly affect the transport properties. Indeed, for ITG-driven turbulence it is well

established that ZFs provide the main saturation mechanism that quenches turbulence, but

for TEM-driven turbulence the situation is not so clear and depends on various parameters

such as Te/Ti and ∇Te [40]. In this case, the TEM-driven turbulence is not significantly affected

by zonal flow quenching.

In Figure 4.12, the spatio-temporal evolution of the E ×B shearing rate ωE×B is shown

for both the former hybrid and the n = m = 0 models. It is interesting to note that with

the n = m = 0 model, there is a long-lived sharp radial structure located at s1 ∼ 0.5 which

corresponds to the rational surface with q(s1) = 1. This structure is further shown in Figure 4.13

(top), where the radial profiles ofωE×B are time-averaged over t ∈ [1,4.6] ·104 [Ωci] for both the
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Figure 4.11 : Radially-averaged effective heat diffusivities as a function of E ×B shearing rate. The

radial average is made over s ∈ [0.7,0.9]. Both ion (left) and electron (right) heat diffusivities are shown

for the case with κn = 2.3, µn = 5 and the case with κn = 1.3, µn = 6.1.

Figure 4.12 : E ×B shearing rate evolution for using the former ORB5 hybrid model (top) and the

upgraded n = m = 0 model (bottom).
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former model and the n = m = 0 model. In the former case, a broader structure is observed

with a sharp transition from positive to negative shearing rate. The other significant difference

between the two models is the direction of the ωE×B avalanches; their frequency, however, is

left unchanged. With the former model, avalanches propagate outward and they are present

on the whole second half of the radial domain, i.e. s ∈ [0.6,1.0]. With the n = m = 0 model,

avalanches mainly propagate inward, especially during the early simulation stages. At longer

times, t > 4 ·104 [Ω−1
ci ], there is a mix of inward and outward going avalanches. Note also the

presence of a radial interval, around s ∈ [0.55,0.70], with outward propagating avalanches of

small amplitude, and which disappears with time as the inward going avalanches penetrate it.

Note that, the different avalanche directions observed in Figure 4.12 is correlated with the sign

of the average shearing rate [130]. For the former hybrid model, a negative averaged shear

rate is observed in s ∈ [0.54,0.95] which corresponds to outward propagating avalanches. For

the n = m = 0 model, three distinct regions delimited by s ∈ [0.54,0.66], s ∈ [0.66,0.91], and

s ∈ [0.91,0.95] are observed with respectively negative, positive, and negative averaged shear

rate, which corresponds to mainly outward, inward, and outward propagating avalanches.

In Figure 4.13 (bottom), the shearing rate profile of the n = m = 0 model is shown averaged

over the whole turbulent phase and averaged over an avalanche period. In both cases, there

is a large, fine structure around s1 ∼ 0.5. On other lowest mode rational surfaces, e.g. q = 2

at s = 0.9, no such sharp structure is found. Simulations with higher resolution should be

performed to confirm this observation.
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Figure 4.13 : Radial profile of the E ×B shearing rate. The top plot shows a comparison between the

former ORB5 model (green line) and the n = m = 0 model (blue line) averaged in t ∈ [1,4.6] ·104 [Ωci].

The bottom plot shows the n = m = 0 model. The blue line is a time average over the whole turbulent

phase and the orange line shows a short-term average over one avalanche period around t = 2·104 [Ω−1
ci ].

The vertical dashed line at s1 = 0.54 represents the radial position where q = 1.
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4.4 Core and pedestal TEM turbulent transport
Experimental investigations made in the TCV tokamak [49] showed that the plasma profiles

exhibit a pedestal region—even in L-mode discharges—in which gradients are constant and

a core region, excluding the sawtooth inversion region, in which the logarithmic gradients

are constant. Various numerical studies using the ORB5 code [131, 132] have then tried to

reproduce qualitatively the conclusions of TCV experiments. A set of simulations of ITG

turbulence—even though the considered TCV discharges showed a TEM-dominant regime—

using the same setup as the simulations presented in Section 4.2.2, but with the adiabatic

electron model, were performed. The conclusions of these studies are in qualitative agreement

with the experiments and show that the core/pedestal transport exhibit non-local effects

that seem related to avalanches mediated by ZFs. Also, transport in the core is much stiffer

than in the pedestal if measured as a function of the logarithmic temperature gradient but

not so much if measured as a function of the linear gradient. Finally, it was shown that the

nonlinear critical temperature logarithmic gradient is higher in the pedestal than in the core.

On the other hand, the nonlinear critical temperature linear gradients were observed to be

comparable in the core and the pedestal.

In this section, these numerical studies are extended to a TEM-dominant regime using

the upgraded n = m = 0 hybrid electron model. To this end, the TEM simulation presented in

Section 4.2.2 is used as a reference case, from which a gradient scan is made. Similarly to [131],

different values of κTσ and µTσ are chosen. In this case, the pedestal gradient is increased

by steps of ∼ 20% and the core logarithmic gradient by steps of ∼ 5%. The three simulation

parameters are given in Table 4.2 and the corresponding initial temperature profiles are shown

in Figure 4.14.

Table 4.2 : Summary of the ion and electron gradient parameters used to define the temperature

profiles for the gradient scan. The first run is the reference simulation.

Run # T0i κT i µT i T0e κT e µT e

1 5.0 2.3 6.0 10.0 2.5 10
2 5.8 2.4 7.3 12.6 2.7 12.6
3 7.0 2.6 8.9 15.3 2.8 15.3

Characterization of the core/pedestal transport requires sufficiently long simulations to

obtain a meaningful statistical average. Indeed, the temperature gradients do vary slightly

during the simulation even though we use a Krook operator to maintain them as close as

possible to the initial ones. This is particularly critical when studying stiffness problems

because a small variation in temperature gradient leads to a large variation in the computed

heat power. The time trace of the radially averaged heat diffusivities of the reference case is

shown in Figure 4.15. The heat diffusivities seem to be in a quasi-steady state in t ∈ [2,6] ·
104 [Ω−1

ci ], followed by a slow downward trend which is attributed to the particle losses at the
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Figure 4.14 : Illustration of the ion and electron temperature profiles for the gradient scan. Note that

the radial domain extends up to s = 0 but is not shown here for convenience.

edge. Indeed, during the first half of the run, the density profile quickly relaxes, Figure 4.16. As

it approaches the state of a zero-particle-flux condition, the relaxation speed decreases. On

a long time scale, density losses at the edge become important. We recall that the markers

leaving the radial domain are re-injected back into the plasma with a zero weight, which

corresponds to a particle—and other higher moments—source/sink. During the second half

of the simulation, from t = 6 ·104 [Ω−1
ci ] to t = 1 ·105 [Ω−1

ci ], particles exit at the outer radial edge

and the density loss propagates into the core. Similar conclusions can also be drawn for the

ion density profile. This overall relaxation contributes to a reduction of the transport level.

It is also important to note that with such relaxed profiles, the condition |δ f |¿ f0, required

for the δ f PIC method to operate at a reduced noise level is not ensured. Indeed, in the

simulation presented in Figure 4.16, the difference between the initial density profile and the

final one can be up to 30%. Furthermore, the markers also drift radially into regions of phase

space that were not initially sampled, leading to a sampling dilution. Both of these issues

contribute to a progressive drop in signal-to-noise ratio during the simulation; it approaches a

value of 10 at the end of the run but always stays above it. The density relaxation due to the

radial transport and particle losses at the radial edge, together with the noise issue, make long

simulations in quasi-steady state difficult to carry out. For this reason, all the following results
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Figure 4.15 : Reference simulations: time trace of the effective heat diffusivities radially averaged over

s ∈ [0.7,0.9].
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Figure 4.16 : Time evolution of the electron density profile.
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will be obtained by averaging the quantities over the first temporary quasi-steady state, i.e.

t ∈ [2,6] ·104 [Ω−1
ci ]. Longer quasi-steady simulations could, in principle, be achieved using a

particle source to compensate for the edge losses and using an adaptive f0 method, such as

re-sampling the phase space using the relaxed density profile as it was done in Section 4.3.

The time evolution of the radially averaged effective heat diffusivities is shown in Fig-

ure 4.17. It is interesting to note that in all the cases, the ion heat diffusivity increases to join
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Figure 4.17 : Time traces of radially averaged effective heat diffusivities. The radial average is made in

s ∈ [0.7,0.9]. The simulation number is shown in the top left corner of the plot and the corresponding

gradient values can be found in Table 4.2.

the electron diffusivity level, as already discussed in Section 4.3. As expected, the steeper

the gradients, the higher the heat transport. Indeed, averaging the effective heat diffusivities

over t ∈ [2,6] ·104 [Ω−1
ci ] yields a value of 18.6, 24.0, and 29.0 for the run numbers 1, 2, and 3

respectively, which represents an increase of around 30% and 56% with respect to the reference

simulation.

We now take the time and radial averages of the ion and electron heat powers and plot

them as a function of the time- and radially-averaged logarithmic gradient R/LT and the

normalized linear gradient (1/T (ρV = 1))dT /dρV , Figure 4.18. For the ion heat power (top

plots), similar conclusions as [132] are found. If measured using R/LT , the ion heat transport

is much more stiff in the core than in the pedestal; an increase in power of a factor 2.3 leads to
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Figure 4.18 : Heat power as a function of the temperature logarithmic and linear gradients. Both

the power and the gradients are time averaged over t ∈ [2,6] ·104 [Ω−1
ci ] and radially averaged over

s ∈ [0.65,0.85] in the core and s ∈ [0.90,0.97] in the pedestal. The “stiff” parameter is an indicator of the

stiffness. It represents the slope of the line joining the first and last points of the scan. The powers are

given in units of ni(s = 1)miρsi(s = 1)csi(s = 1).

an increase of around 12% of the logarithmic gradient. On the other hand, if one considers the

linear gradient, transport stiffness is comparable between core and pedestal. Here, an increase

by a factor of ∼2.5 in heat power leads to an increase of around 45% of the linear gradient in

both the core and pedestal. The nonlinear critical logarithmic gradient is much higher in the

pedestal than in the core, while similar nonlinear critical linear gradients are observed for

both regions. Let us now consider the electron heat transport (bottom plots). In this case, both

the core and pedestal seem to have a comparable stiffness if measured with R/LT . It has to

be noted that the critical logarithmic gradient is also higher in the pedestal than in the core.

Finally, similarly to the ion case, both core and pedestal have similar critical linear gradients.

4.5 Summary of the chapter
In this chapter, a correction to the former ORB5 hybrid electron model has been presented.

This new model allows us to run nonlinear simulations of electron modes at a lower numer-

ical cost than the fully kinetic electron model while satisfying the ambipolarity condition,

preserving the GAM frequency, and avoiding the ωH mode. The model has been validated

linearly using Rosenbluth-Hinton tests to evaluate the GAM frequency and the ZF residual.
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The new model has a similar GAM frequency as both adiabatic and fully kinetic models and

they converge toward the same ZF residual. Using nonlinear simulation, the problem of

the ambipolarity condition has been addressed. The new model leads to consistent ion and

electron radial density profiles while the use of the former model resulted in radically different

profiles. Similarly, the difference between the ion and electron particle fluxes is more than 2.5

times smaller using the corrected model. The non-zero difference has been attributed to two

factors. First, the ORB5 diagnostics only diagnose the gyrocenter moments, leaving out the

ion polarization and FLR effects. Second, the corrected model uses an approximation of the

flux-surface average.

A nonlinear simulation using TCV-like parameters with the corrected hybrid electron

model showed that the ion heat transport was radically affected by the inclusion of a partial

kinetic response from passing electrons. Indeed, in this simulation, the heat transport went

from a TEM-dominant regime to an ITG-TEM mixed regime. This was attributed to the

relaxation of the density profiles that lead to the destabilization of low-n modes. Using a

mixing-length argument, it was shown that those modes actually dominate the heat transport.

Further investigations using a diagnostic able to quantitatively estimate the contribution to

the heat/particle flux for each toroidal mode will be done in a future work to confirm those

conclusions. In addition, it is observed that the density relaxation leads to the reduction of the

E ×B shearing rate thus increasing the ion heat transport. The reasons for this reduction are

not understood yet.

A comparison of the zonal properties between the former ORB5 hybrid electron and the

n = m = 0 models is shown. Using the upgraded model, a sharp, long-lived radial structure

appears at the lowest-order mode rational surface q = 1. The presence of such a structure

was attributed to the non-adiabatic response of passing electrons in previous works [133, 134,

135, 136, 137, 54]. Furthermore, it was shown that the zonal radial modulations were created

through nonlinear coupling of non-zonal modes. In our case, only a kinetic response from the

zonal component of the passing electron is accounted for. However, all the passing electrons

are pushed using the electric field consistent with the quasi-neutrality equation. Non-zonal

modes can still induce a zonal response through self-coupling of modes such that m 6= 0.

A future work proposal to confirm this hypothesis is to implement a Fourier diagnostics to

study the interaction between passing electron zonal and non zonal modes. The comparison

between the two hybrid electron models also showed different ωE×B properties. The direction

of propagation of the avalanches is changed and a radial zone of incoherent fluctuations is

created.

Finally, a short characterization of the core/pedestal heat transport is made using a gradi-

ent scan of TEM-dominant simulations. It is shown that the ion heat transport is much more

stiff in the core than in the pedestal region. For the electrons, a comparable stiffness between

the core and pedestal regions is observed and the nonlinear critical temperature logarithmic

gradients are much higher in the pedestal than in the core. Further investigations are still
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needed. Longer simulations could be achieved using a particle source and an adaptive f0

method. This study considered only three different values of gradients in the scan. More data

points could be added, especially around marginal stability. Also, using a fully kinetic electron

model and/or including collisions, which are known to play an important role near the edge,

could allow for more quantitative results. A similar study can be done by doing a power scan

instead of a gradient scan by using flux-driven simulations.
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5 Flux driven simulations

As presented in Chapter 3, the ORB5 code is based on a low-noise δ f PIC approach consisting

of separating the full distribution function f into a constant-in-time background part f0 and

a fluctuating part δ f . The background distribution function is then typically set to be an

equilibrium distribution function feq known analytically and only the fluctuating part of the

distribution function is evolved using numerical particles, so-called markers. In addition to

generating less numerical noise than the standard full PIC method for a similar number of

markers, provided that the ordering |δ f | ¿ f0 is satisfied, this approach allows one to run

so-called temperature gradient-driven (GD) simulations in which the temperature profiles

are kept close to their initial value while the other moments of the total distribution function

are left free to evolve. This is typically done by relaxing the δ f part using a modified Krook

operator effectively acting as an heat-only source/sink.

The main advantage of the GD approach is that it allows one to simulate a plasma having

temperature profiles close to predefined values and at a reduced numerical cost because the

system quickly reaches a quasi-steady state. On the other hand, this approach suffers from

two main problems making comparison with experiments difficult. First, it does not reflect

the experimental situation in which heat fluxes are applied by various localized heat sources.

Second, experimental plasmas are often found to exhibit profile stiffness: above a certain

critical temperature gradient, a small increase of gradient leads to a large increase of heat

flux. This is particularly problematic for GD simulations because a small uncertainty on the

prescribed temperature gradients leads to large uncertainties on the computed heat fluxes,

and thus the effective heat source required for maintaining profiles in GD runs end up being

far from the actual experimental ones, both in their spatial localization and in the level of

injected power.

To avoid these drawbacks, the so-called flux-driven (FD) approach can be used. In FD

simulations, the heat sources and associated fluxes are given as an input and the temperature

profile is left free to relax toward an equilibrium. However, since the profile relaxation is

done over transport time scales, FD simulations are very demanding in terms of numerical

resources, especially for large machines, ρ∗ ¿ 1. Indeed, using a simple random walk model
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for turbulent transport, the transport time scale can be estimated to scale with the square of

the normalized minor radius, ttransp(vth,i/a) ∼ 1/ρ2
∗.

Modern gyrokinetic codes, e.g. GYSELA[24], GT5D[19], GENE[18], and XGC[12] now imple-

ment the FD approach. In this chapter, we present how the ORB5 code has been adapted to

run FD simulations. This begins by a short summary of the heat sources/sinks implemented

in the code followed by a description of the non-conventional “mode switching” consisting of

starting a GD simulation and pursuing it as a FD run. Then, illustrative simulations of ITG and

TEM driven turbulence are presented. Finally, an analysis of the effect of heat sources/sinks

on the distribution function is made and the future outlook is presented.

5.1 Summary of the different heat sources

The key element of temperature GD or FD simulations is the heating operator. It provides the

heat flux necessary to maintain a certain level of turbulence and thus avoid transient decaying

simulations where profiles relax and marginal stability is quickly reached. In ORB5, different

heat sources are implemented, each having different properties in addition to injecting heat.

Let us review the ones used for this study.

5.1.1 Krook operator heat source

The Krook operator, which is primarily used for controlling noise due to marker discreteness,

can effectively act as a heat source, allowing for GD simulation by relaxing the energy moment

of δ f while conserving other moments. As presented in Section 3.1.3.1, the Krook source term

can be written as

SK =−γKδ f +Scorr
K , (5.1)

where the first term on the r.h.s. damps δ f with a rate γK while the second term is a correction

defined by Eq. (3.50) which allows one to control separately the conservation, up to machine

precision, of density, parallel momentum, energy, and zonal flows (ZF) in radial bins. This ap-

proach is very interesting as it offers the possibility to run temperature GD simulations where

only the temperature profile is constrained while the other moments evolve self-consistently

with the gyrokinetic Vlasov-Maxwell system of equations. This is of particular interest for sim-

ulating tokamak discharges in which all the particle fueling occurs at the boundary and where

the zero particle-flux condition is observed in steady-state. However, this implementation of

a heat source based on a modified Krook operator is not suitable for FD simulations as the

resulting injected heat flux cannot be prescribed.
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5.1. Summary of the different heat sources

5.1.2 Fixed heat source

The second heat source, hereby called fixed heat source (FHS) is given by

SFHS = γFHSSr (s)SE (Ek) = γFHSSr (s)
1

T

(
Ek

T
− 3

2

)
fL(n,T,Ek), (5.2)

where Sr (s) is the radial profile of the heat source—read from an external file—and usually

consists of a sum of analytical Gaussian shapes defined by exp
[−(s − spos)2/∆s2

]
, where spos

is the position of the peak and ∆s is the Gaussian standard deviation. The value of the

profile is then linearly interpolated at the particle position. Note that the radial profile Sr(s) is

normalized so that maxs Sr(s) = 1 and the source amplitude is set by the γFHS constant. The

energy-dependent part of the FHS, SE (Ek), is given by the derivative of the local Maxwellian

fL with respect to the temperature, SE ∼ ∂ fL/∂T , which aims at decreasing the number of

sub-thermal particles and increasing the number of supra-thermal particles, Figure 5.1 (a).

Furthermore, SE (Ek) involves an associated Laguerre polynomial of order 1 of the normalized

energy, L1/2
1 (Ek/T ), which ensures that, in the limit of an infinite number of markers, there is

no injection of density or momentum. For example, the conservation of density can be proven

using a simple argument. The density, which is defined as

n =
∫

fLd3v 6= n(T ), (5.3)

does not depend on the temperature. Thus,

0 = ∂n

∂T
=

∫
∂ fL

∂T
d3v =

∫
SE d3v, (5.4)

i.e. as long as the integration is done exactly, the heat source conserves density. Practically,

however, the conservation of density, parallel momentum, and zonal flows is further enforced

in radial bins by a similar conservation scheme as the one used for the Krook noise control,

Eq. (3.50).

Other functional forms of the heat source are possible in Eq. (5.2). For example, the FHS

can be defined to be proportional to the difference between a Maxwellian at the plasma

temperature , fP, and a Maxwellian at the targeted temperature, fT:

S ∝ Sr (s)
(

fP − fT
)

. (5.5)

However, it can be shown that using a first order Taylor series in (TP −TT), both forms are

equivalent [138].

To achieve a statistical steady state, all the injected heat must be consistently dissipated by

some mechanism. In this work, two methods have been tested. First, a heat sink is placed at

the outer radial edge and consists of a negative profile for the FHS, Figure 5.1 (b). Usually, the

123



Chapter 5. Flux driven simulations

−5 0 5

v

0

[A
.U

.]
(a)

Source velocity profile

Sub-thermal
region

0 0.5 sB 1

s

0

[A
.U

.]

(b)

Source radial envelope

Buffer profile

Buffer region

Figure 5.1 : Illustration of the source profiles. (a) Velocity dependence of the fixed heat source. The

particles in the sub-thermal region, grey area, are depleted in favor of those in the supra-thermal region.

(b) Radial envelope of the source. Two methods are available for extracting the heat: either we use a

sink which is the FHS with a negative profile or a buffer (grey area) in which a Krook operator heavily

damps δ f with an amplitude following a polynomial profile (grey dotted line).

amplitude of the sink is determined such that the total injected power is zero, i.e. such that

Ptot = 2π
∫ 2π

0

∫ smax

smin

Jsθ∗ϕ(s,θ∗)Sr (s)dsdθ∗ = 0, (5.6)

where the radial profile of the source Sr (s) is composed of the source and sink. This heat

extraction method already reveals a few drawbacks. First, the heat sink is always active and

with a fixed rate set to evacuate all the injected heat. This may lead to critical situations

where the total distribution function actually becomes negative. This would be typically the

case at the very beginning of a simulation where the turbulence is not yet well established

to transport all the injected heat to the sink. Second, the sink amplitude satisfying Eq. (5.6)

is computed externally, using a grid that does not necessarily correspond to the simulation

grid. The numerical integration errors are then added to the linear interpolation errors in

ORB5 which may lead to a greater error on Eq. (5.6). In other words, a non-zero total heat

flux is injected in the system, which makes it impossible to reach a quasi-steady state. This is

however mitigated by the fact that the error on the total injected power is still relatively small

and its effect is only visible on time scales longer than the typical simulation time.

An alternative solution to the fixed heat sink is to use a buffer region in which all the

perturbations are dissipated. In ORB5, this is obtained by using a Krook operator inspired

from [139]:

SB =−γB(s)δ f , (5.7)
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5.2. Switching from gradient- to flux-driven simulations

where the buffer rate profile γB(s) is zero outside the buffer region and is a normalized fourth

order polynomial, (s − sB)4/(smax − sB)4, inside, ie for sB ≤ s ≤ smax. The boundaries of the

buffer region are set by the sB parameter up to the outer radial edge at smax, Figure 5.1 (b).

This effectively adaptive heat extraction method has the advantage of relaxing the distribution

function to the background distribution function f0 which also ensures that it never becomes

negative. However, the damping rate γB must be set to sufficiently high values to effectively

relax δ f in the narrow buffer region and it may affect the turbulence outside the buffer through

non-local effects.

5.1.3 Adaptive Krook heat source

Finally, a last heating operator has been implemented which consists of a minor modification

of the Krook heat source presented in Section 5.1.1, which was unable to inject an, a priori,

predicted heat power. In this variant, the adaptive Krook heat source, hereby denoted with

the subscript AK, automatically computes the rate required to obtain a certain targeted heat

power PT. For that, the total injected heat power Pin for a Krook heat source with rate γ= 1 is

first computed:

Pin =2π
∫ 2π

0

∫ smax

smin

Jsθ∗ϕ(s,θ∗)SKSr (s)dsdθ∗ (5.8)

=2π
∫ 2π

0

∫ smax

smin

Jsθ∗ϕ(s,θ∗)
(−δ f +Scorr

K

)
Sr (s)dsdθ∗. (5.9)

Note that in this case, a radial profile is provided for the Krook heat source. Then, the required

rate can be easily computed as a rescaling, i.e.

γAK = PT

Pin
, (5.10)

leading to the adaptive Krook heat source term

SAK = [−γAKδ f +Scorr
AK

]
Sr (s). (5.11)

To ensure that the adaptive Krook heat source rate is within acceptable values, it is further-

more ensured that 0 ≤ γAK ≤ γmax, where γmax is the maximum allowed rate and is provided as

an input parameter.

5.2 Switching from gradient- to flux-driven simulations
As a first step towards FD simulations, we adopted a non-conventional approach, hereby

called mode switching. It consists of first starting a GD simulation using the Krook operator

acting as noise control and heat source, i.e. conserving n, v‖, and ZF. The effective heat source

profile associated to the Krook operator is then time-averaged and radially parametrized using
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Chapter 5. Flux driven simulations

a Gaussian shape, which is used as a radial envelope Sr(s) for the heat source. The goal of this

operation is to obtain a localized radial profile—the Krook effective heat source profile may

be non-zero everywhere in the radial domain—in such a way to inject the same level of heat

as with thetime-averaged Krook. For the heat dissipation at the outer edge, either the buffer

or the heat source with a negative Gaussian shape acting as a heat sink can be used. In any

case, only the heat source is mapped, in shape and in amplitude, to the Krook profile. The

dissipation operator—buffer or sink—is placed as close as possible to the outer radial edge

in order to dissipate all the injected heat and allow for the largest source-free region possible

where turbulence can evolve unaffected by the source and heat dissipation mechanism (sink

or buffer). An illustration of this procedure using a heat sink can be found in Figure 5.2. Note
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s

−1.0

−0.5

0.0

0.5

1.0

[A
.U

.]

Mode-switching illustration

Krook time averaged profile

Gaussian mapping

Figure 5.2 : Illustration of the mode-switching approach. The effective heat source profile obtained

from the Krook operator (blue plain line) is mapped using a Gaussian shape (orange dashed line). In

this sketch, the dissipation mechanism is a heat sink consisting of a negative Gaussian shape.

that an exact matching between the Krook heat source profile and the Gaussian mapping is

not expected. The goal is to define a radial envelope for the heat source that is localized and

that allows the source to inject the same total amount of heat as the Krook operator. Once

the radial envelope has been defined, the GD simulation is continued in FD mode using heat

source Eq. (5.2) or Eq. (5.11). For this part of the run, the Krook operator, Eq. (5.1), is only used

as a noise control, i.e. Scorr
K is set up to conserve n, v‖, Ek, and ZF.

The mode-switching method is adopted here for two main reasons. First, we start from

an already defined quasi-steady state and impose the a priori necessary heat flux to keep the

system in this state. This allows the simulation to reach a quasi-steady turbulent state more

quickly as the plasma profile relaxation is minimized. Furthermore, it also allows one to keep

the numerical benefits of the control variate δ f method used in ORB5. Indeed, the condition
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5.2. Switching from gradient- to flux-driven simulations

for this method to effectively reduce the numerical noise is that |δ f |¿ f0 is satisfied. If the

final quasi-steady state obtained in FD mode is far from the equilibrium imposed during the

first GD phase, the amplitude of δ f may become comparable to f0, thus deteriorating the

simulation quality.

The mode-switching approach can nonetheless pose a certain number of problems. First,

the radial heat source profile obtained from the Krook may be totally unrealistic and not at

all localized. In this case, it may be difficult to find a correct mapping that leads to a similar

quasi-steady state as for the GD run. This difficulty would break the main advantage of this

method. Second, during a GD run, the system is somehow artificially forced to stay in a certain

state. Indeed, as the perturbed distribution δ f grows, the Krook operator effect is stronger to

ensure that the total distribution function stays close to the equilibrium defined as input, i.e.

f ∼ f0. This is especially the case during the first moments of the nonlinear phase where large

heat flux bursts are observed. This constraint may lead to a “bifurcation” of the system toward

a state it would never have reached if it had evolved freely. Despite the above mentioned

issues of the mode-switching approach, we think that it is a good candidate to develop the

FD abilities of ORB5 and explore the effects of the heat sources on the plasma distribution

functions. Note, however, that ORB5 is also capable of running full FD simulations without

using a preparatory GD simulation.

5.2.1 Illustration of the mode-switching approach with ITG and TEM driven sim-
ulations

To illustrate the mode-switching method described in the previous section, two test-case

simulations—an ITG- and a TEM-dominant one—are now presented. Note that the TEM-

dominant simulation is the same as the one already shown in Chapter 4 but is recalled here for

convenience. Both cases use the same axisymmetric ideal MHD equilibrium computed by the

CHEASE code and based on TCV shot #43516 parameters [49]. This equilibrium, Figure 4.3,

has an aspect ratio of 3.64, an elongation of 1.44 and a triangularity of 0.20 at the last closed

flux surface. The safety factor profile is quadratic, q(s) = q0 + (qedge −q0)s2, with q0 = 0.78 and

qedge = 3.29. The reference magnetic surface for the normalization is s0 = 1.0, ions play the role

of reference species for the normalization, and ρ∗(s0) = ρi(s0)/a = 1/245. All the simulations

assume a deuterium plasma without impurities.

If not stated otherwise, the ITG-dominated case is defined as follows. The ion temperature

profile is defined by equation

T (ρV ) =
{

min
{
T0,Tped exp

[−κT
(
ρV −ρped

)]}
for ρV ≤ ρped,

T1 −µT · (ρV −1) for ρV > ρped,
(5.12)

with Tped = T1 +µT (1−ρped) which mimics qualitatively the experimental profiles obtained

in [49]. The radial coordinate is given by ρV =
√

V (ψ)/V (ψe) with V (ψ) being the volume

enclosed by the magnetic surface ψ= const and ψe is the value of ψ at the radial outer edge.
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The temperature at the top of the pedestal is given by Tped = T1 +µT (1−ρped). The density

profile definition is based on the same equation and the following parameters are used:

ρped = 0.8, T i
0 = 10, T i

1 = 1, κi
T = 2.3, µi

T = 12, ni
0 = 5, ni

1 = 1, µi
n = 5, κi

n = 3.1, Figure 5.3 (left).

The electrons have the same temperature and density profiles as the ions and are assumed to

have an adiabatic response. Note that the density and temperature profiles chosen for these

simulations are only in qualitative agreement with the experiments. No quantitative agreement

was attempted for this study. The numerical resolution for these runs is Np = 128 ·106 markers

and ∆t = 20[Ω−1
ci ]. The grid resolution is Ns ×Nθ∗ ×Nϕ = 256×512×256. The field-aligned

Fourier filter is set to keep only modes such that 0 ≤ n ≤ 64 and satisfying m = nq(s)±5. Finally,

the Krook rate is set to γK = 1.4 ·10−4 [Ωci], which is about 10% of the maximum linear ITG

growth rate.
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Figure 5.3 : Background density (top row) and temperature (bottom row) profiles for both ITG-

dominated (left column) and TEM-dominated (right column) cases.

Unless stated otherwise, the TEM simulations were carried out with the upgraded hybrid

electron model. The considered ion and electron temperature and density profiles are defined

similarly as the ITG-dominated case with the following parameters: ρped = 0.8, T i
0 = 5, T i

1 = 1,

κi
T = 2.3, µi

T = 6, ni
0 = 5, ni

1 = 1, µi
n = 5, κi

n = 2.3 and T e
0 = 10, T e

1 = 1, κe
T = 2.5, µe

T = 10, ne
0 = 5,

ne
1 = 1, µe

n = 5, κe
n = 2.3, Figure 5.3 (right). Ions and electrons have the same density profile

and different temperature profiles except at the edge where Ti(s0) = Te(s0). The ion to electron

mass ratio is set to mi/me = 200. The numerical resolution for these runs is Np = 256 ·106

markers for each species and∆t = 2[Ω−1
ci ]. The grid resolution is Ns×Nθ∗×Nϕ = 256×512×256.

The field-aligned Fourier filter is set to keep only modes such that 0 ≤ n ≤ 64 and satisfying

m = nq(s)±5. Finally, the Krook rate is set to γK = 4.2 ·10−4 [Ωci] for both species, which is

about 10% of the maximum linear TEM growth rate..
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For both ITG and TEM cases, the FD heat source radial profile is defined using the method-

ology presented in Section 5.2, Figure 5.4.
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Figure 5.4 : Presentation of the source radial profiles obtained from the mapping of the effective GD heat

source due to the Krook operator. In the ITG case, the Krook contribution to the heat source is averaged

over time in t ∈ [2.5,3] ·105[Ω−1
ci ]. In the TEM case, the time average is made over t ∈ [3.5,4] ·104[Ω−1

ci ].

Let us begin by presenting the results for the ITG case. In Figure 5.5, the ion heat diffusivity

is plotted as a function of time for three different cases: a GD-only simulation, a simulation

using the mode-switching approach presented previously, i.e. a continuation of the GD run in

FD using a source which is an analytical mapping of the Krook effective heat source profile

from the GD simulation, and a FD-only run that uses the same source profile. For the FD

simulations, the FHS is used, Eq. (5.2). The vertical dashed line represents the time at which

the switching takes place. Note that the duration of the longest simulations, ∼ 106 [Ω−1
ci ],

corresponds to a typical measured TCV energy confinement time, i.e. ∼ 10 ms [140, 49, 141].

The switching between the GD run and its FD continuation occurs smoothly and the FD

statistical steady state is very close to the GD one. Comparing now the run using the mode

switching technique with the FD-only run, we see that they both converge toward a similar

steady state, on average, with a 7% relative difference which lies in the fluctuation error.

We also note that during the first GD phase, the FD-only run is comparable to the GD run.

Concerning the heat transport properties, beginning the run in GD and switching to FD after

the first bursts does not affect the final steady state compared to a FD-only run.

In Figure 5.6, the time trace of the radially averaged E ×B shearing rate magnitude is

plotted for the three cases presented in the previous paragraph. Here again, the switching
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Figure 5.5 : ITG case. Time trace of the radially averaged ion heat diffusivity in gyro-Bohm units. The

signal is further time averaged using a rolling average with a window of t = 1 ·104[Ω−1
ci ]. The radial

average is made over s ∈ [0.7,0.9]. Three simulations are presented: a GD-only (green/red dashed), a

FD-only (orange), and a simulation using the mode switching that is started as GD and continued FD.

The vertical dashed line at t ∼ 3 ·105[Ω−1
ci ] marks where the switching from GD to FD is made. Note

that the two curved labeled “GD only run” and “GD only extended” are in fact simulations made using

the same input file but with different code versions. Because of the turbulent nature of the problem,

it cannot be expected to obtain the exact same results even tough they are equivalent on a statistical

average.

between GD and FD occurs smoothly. During the GD part of the run, both the GD and the

FD runs are comparable on average. After the switching, the shearing rate levels increase

and they both converge toward a similar steady state. The FD-only run has an averaged

shearing rate magnitude that is systematically ∼ 5% higher than the run using mode switching.

This difference is slightly higher than the fluctuation error. In Figure 5.7 is plotted the radial

profile of the E ×B shearing rate averaged over two different time intervals. The upper figure

shows the radial profile where the time average is taken during the GD part of the run, i.e.

t ∈ [1,3] ·105[Ω−1
ci ], while the lower figure shows the radial profile for the FD part of the run, i.e.

t ∈ [7,9] ·105[Ω−1
ci ]. During the early phase of the simulation, Figure (a), the only difference

between the runs is the heat source. The mode-switched run is heated using the Krook

operator which always adapts to the state of the system while the FD-only run is heated using

the fixed heat source which injects the equivalent heat as the time averaged Krook operator.

Although different instantaneously, the heat sources are similar in shape and amplitude on

average over time. The heat sinks, however, are significantly different for both cases since for

the FD-only run the sink is arbitrarily located near the outer edge with an amplitude such that

all the injected heat is evacuated. This difference induces different developments of the E ×B
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Figure 5.6 : ITG case. Time evolution of the radially averaged E ×B shearing rate magnitude. The radial

average is done over s ∈ [0.7,0.9] and a rolling time average with a window of t = 1 ·104[Ω−1
ci ] is further

applied. Three simulations are presented: a GD-only(green/red dashed), a FD-only (orange), and a

simulation using the mode switching that is started as GD and continued FD. The vertical dashed line

at t ∼ 3 ·105[Ω−1
ci ] marks where the switching from GD to FD is made. Same remark as Figure 5.5 for the

GD curves.

shearing rate’s radial structures. Both runs have similar radial profiles in 0.4 ≤ s ≤ 0.64 and in

the outer part of the domain but the profiles are different in the source/sink-free region of

the domain. During the later times of the simulation, Figure (b), both runs use the same heat

source/sink with the same parameters. The radial profiles of the E ×B shearing rate are similar

in 0.4 ≤ s ≤ 0.78 but differ in the outer region. This is a consequence of the early differences in

the development of the radial structures. It has to be noted that the difference in magnitude

between the two runs observed in Figure 5.6 comes from the different profiles seen in the

outer region.

Similar results are obtained for the TEM-dominant case. In Figures 5.8 and 5.9, the mode

switching is illustrated considering the time evolution of the ion and electron heat diffusivities.

As for the ITG-dominant case presented in the last paragraphs, the transition occurs smoothly

from GD to FD for both species. Up to t = 1 · 105[Ω−1
ci , both simulations converge toward

a similar statistical steady state. Note that during the first GD phase, t < 4 ·104[Ω−1
ci ], both

simulations are identical1.

In Figure 5.10, the E ×B shearing rate magnitude evolution is compared between a purely

GD run and the mode-switched simulation. Before the switching, both runs coincide exactly

1The different instantaneous fluctuations are observed because different version of the code were used to
perform those simulations. Due to the turbulent nature of the system, exact matching cannot be expected even
though both simulations must (and do) converge toward a similar statistical steady state.
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because they are the same—the first part of the mode-switched simulation is a GD run. After

the switching, their evolutions differ but they converge toward a similar time-averaged steady

state with a relative difference of ∼ 6%, which is within the fluctuation error.

A conclusion from the ITG/TEM test cases is that the mode-switching approach is robust.

It gives similar results for the transport properties and zonal flow shearing rates as the FD-only

simulation using the same source. Constraining the system during the early strong bursts does

not affect the final state except for a hysteresis effect observed on the evolution of the E ×B

shearing rate radial structures.

5.3 Heat source effect on the phase space

The FHS used in the previous runs to inject heat into the system inevitably modifies the

distribution function in velocity space. This can create spurious sources/sinks of moments

that affect the simulation results in a non-physical way. By definition, the FHS defined by

Eq. (5.2) does not inject density or parallel momentum. Further conservation properties are

also applied by an ad-hoc correction term that ensures conservation of the perturbed density,

parallel momentum, and ZF in radial bins up to machine precision, Figure 5.11.

In the ITG simulation presented in Section 5.2.1, the adiabatic electron model was used.

No particle transport is thus expected as the perturbed electrostatic potential and perturbed

density are always in phase; the density profiles are therefore intrinsically frozen. However,

whenever the FHS is activated, a long-time evolution of the density is observed, Figure 5.12.

Around s = 0.5, there is a nonphysical loss of density located where the density profile gradi-

ent becomes negative and where the heat source’s radial profile gradient becomes positive.

Surprisingly, this difference in density mainly comes from the f0 contribution that is com-

puted from an integration of the p-weights and which is supposed to be constant in time.

No relevant difference is observed on the δ f contribution. This suggests a deviation of the

marker trajectories from the physical particle trajectories; the heat source only acts on the

marker δ f weights. There is also a small density loss at the outer radial edge but this is due to

the boundary conditions. Indeed, the markers leaving the domain are re-injected with a zero

weight which corresponds to a sink (or source) of moments. Since this ITG run uses adiabatic

electrons and it is verified that the heat source only injects heat, it is worrisome to observe

such a density deviation. In the case of kinetic electron simulations, it becomes difficult to

discriminate between the density variations due to the actual transport and the ones due to

the spurious changes from the heat source.

In ORB5, the radial profile of the background density is computed as a flux-surface average
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Figure 5.11 : Moments injected by the FHS. By construction, this source injects heat and conserves

density, parallel momentum, and ZF on a flux surface. The ad-hoc correction source term ensures this

conservation up to machine precision. The gray area is a cut-off zone in which the heat source is set to

zero artificially.

approximated using a radial binning:

n0(s) ≈ n(si ) = Vtot

Vbin(si )Np

∑

p∈[si ,si+1)
f0(sp )Ωp , (5.13)

Vtot =
∫ smax

smin

ds
∫ 2π

0
dθ∗

∫ 2π

0
dϕ Jsθ∗ϕ(s,θ∗), (5.14)

Vbin(si ) =
∫ si+1

si

ds
∫ 2π

0
dθ∗

∫ 2π

0
dϕ Jsθ∗ϕ(s,θ∗), (5.15)

where the interval [si , si+1) denotes a bin i , Np is the total number of markers, Vtot is the

volume of the torus, and Vbin is the bin volume. For the binning, the background function f0 is

evaluated at the marker gyro-center position. In the computation of the background density,

only the binning part is done using particles; the volumes are computed from the field grid

using a Gauss-Legendre quadrature formula. This suggests that the dip in density is coming

from a phase-space sampling problem which appears through the elemental phase-space

volumesΩp .
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Figure 5.12 : Density radial profile evolution with the FHS turned on for the ITG run with adiabatic

electrons. The heat source radial envelope (black plain line) is placed as a reference to mark the source

position.

To investigate this issue, a 2D diagnostic of the distribution function properties is imple-

mented in ORB5. It allows one to reconstruct the marker properties (weight, elemental phase

space volume, etc.) by binning these properties in the 2D plane (s, v2), where v2 = v2
‖ +µB is

the marker velocity modulus squared. More particularly, we are interested in the evolution of

the volume Vi j of a bin [si , si+1)× [v2
j , v2

j+1) in the velocity space, i.e.

Vi j =
1

Vbin(si )

∫ si+1

si

ds
∫ 2π

0
dθ∗

∫ 2π

0
dϕ

∫

v j≤|v |<v j+1

d3v Jsθ∗ϕ(s,θ∗) =
∫ v j+1

v j

d3v. (5.16)

This equation can be evaluated numerically using a Monte-Carlo (MC) approach:

V MC
i j = Vtot

Np

∑

p∈[si ,si+1)×[v j ,v j+1)
Ωp , (5.17)

or analytically:

V ana
i j = 4π

3

(
v

3
2
j+1 − v

3
2
j

)
. (5.18)

In the following, we start from the reference ITG case presented above. Variants with

different heat source/sink and parameters will also be considered. In Figure 5.13, the sampling

diagnostic results for the reference ITG case are presented. The first row shows the difference

V MC
i j −V ana

i j in the 2D plane (s, v2) and the radial profile of the bin volume compared to its
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analytical value for different velocities at t = 105Ωci. The second row shows the same quantities

at t = 1.5 ·106Ωci. Note that, for the two time snapshots considered, the FHS is activated. The

Figure 5.13 : Evolution of the bin volume in velocity phase space for the reference ITG case. The

left column shows the difference between the numerical estimation and the analytical value while

the right column shows the radial profile of the bin volume in velocity space for different velocity

values. The dashed lines represent the analytical volumes. The velocity scale is normalized with

ṽ2 = [
v/vth(s = 1)

]2. The rows of the plot represent two snapshots of the system at t = 105 [Ω−1
ci ]

(upper) and t = 1.5 ·106 [Ω−1
ci ] (lower). The red dashed line in the 2D plots represents the heat source

position; the amplitude is arbitrary.

2D plots are used to compare the evolution of the sampling. At the beginning of a simulation,

the markers are loaded following a uniform distribution in the radial and in the v2 directions.

In the velocity space, the markers are loaded such that

v2 ≤ v2
max = κ2

v v2
th = κ2

v
Ti

mi
, (5.19)

where κv is an input parameter and is equal to 5 for the simulations presented in this section.

In other words, the limit of initialization in velocity space follows proportionally to the thermal

velocity. The same limit is applied on the analytical values for a better comparison, i.e. V ana
i j = 0

if v2
j > κ2

v Ti/mi. The radial profiles of the volumes in velocity space presented in the right
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column are always taken at ṽ2 = 5, 30, 50, and 200, where ṽ = v/vth(s = 1) is a normalized

velocity, and are compared with the corresponding analytical value in dashed line. The absence

of sampling in certain regions of phase space is shown by the numerical estimation of the

velocity phase space volume going to zero at certain radial positions that depend on the

particular velocity considered. The transition is however continuous due to a radial advection

of the markers. This drift is mainly caused by the fact that, in this region, the distribution

function of the markers is artificially set to zero for velocities greater than the sampling limit

velocity, Eq. (5.19).

Let us now consider the results at the end of the simulation, t = 1.5 ·106 [Ω−1
ci ] (lower row).

Three main sampling deteriorations can be observed. First, at s ≈ 0 and for ṽ2 > 100, there is

an over-estimation of the phase space volume due to markers having drifted radially towards

the magnetic axis. Note that in this region the statistics are usually very poor due to the

small bin volumes. Furthermore, the main differences are at very high velocities where the

particle distribution functions are exponentially close to zero, minimizing the effect of this poor

sampling. The second region where the sampling is affected is near the outer radial edge where

there is also an accumulation of markers near ṽ2 ≈ 25. This is certainly due to the boundary

conditions applied to the leaving markers, i.e. their weight is set to zero and there could be a

marker accumulation near the radial edge. Note that these two regions where the sampling

deteriorates are also observed for GD simulations where no density problem is observed. They

could become problematic at some point but we do not expect them to have a significant

influence on the density loss. Finally, the sampling is clearly affected in the center of the radial

domain where the FHS is active. The error in the marker distribution follows the functional

form of the FHS, i.e. the derivative of the Maxwellian with respect to the temperature, see

Figure 5.1 (a) for an example. The transition between a negative and positive volume difference

is at ṽ2 ≈ 25 which corresponds to the local thermal ion velocity v/vth(s = 0.5) = 1. We recall

that the purpose of the FHS is to heat the plasma by transferring the particles from sub-thermal

to supra-thermal regions. From the marker’s perspective, this corresponds to decreasing the

weight in sub-thermal regions and increasing it in supra-thermal regions. The problem in

evaluating the background density is that when multiplied by f0, Eq. (5.13), which decays

exponentially with the velocity, the region where there is an over sampling—the supra-thermal

region—is under evaluated and does not compensate for the region with an under sampling—

the sub-thermal region—even though the total velocity volume is verified to be conserved.

This is further amplified by the fact that f0 is supposed constant in time and does not follow the

evolution of the temperature. This suggests to use an adaptative- f0 scheme. To further verify

that sampling is indeed the cause of the problem, the same simulation has been done but with

four times more particles, i.e. with 512·106 markers. As can be seen in Figure 5.14, the sampling

problem is mitigated for similar simulation duration. Even though increasing resolution has

apparently solved the sampling problem, the mechanisms that lead to the undersampling

of low velocity regions around the heat source radial position is still not understood and the
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problem may be pushed to later simulation times.

Figure 5.14 : Same as Figure 5.13, but with 512 ·106 markers instead of 128 ·106.

In the previous run, the FHS was placed so that part of it lay in the region where there are

no density and temperature gradients, i.e. where no turbulence develops, and the majority of

it was in the region with logarithmically-constant gradients, see “Source 1” in Figure 5.15 (top).

Another simulation is carried out, in which the FHS position is changed so that the source is

entirely in the region where both density and temperature have no gradients, see “Source 2”

in Figure 5.15 (top). This is done to see the influence of the source in regions where there are

no heat transfer mechanisms. Note that this kind of profile with flat regions mimicking the

sawtooth inversion region is anyway not consistent with the physical model implemented

in ORB5 since no MHD modes are described. The results of the simulations with “Source 2”

are presented in Figure 5.16. Having shifted the heat source into the gradient-free region has

clearly affected the simulation. There is now an overestimation of the phase space volume

at the source location, s ≈ 0.3, and also where the density gradient becomes non zero, s ≈ 0.5.

They both lead to an over estimation of the background density at those positions. From the

previous two simulations, the conclusion is that the gradient-free profiles imposed to mimic

the sawtooth inversion region are incompatible with the FHS as implemented in ORB5.

For the next simulation, the flat-profile is removed and the radial domain is now taken
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Figure 5.15 : Illustration of the heat source radial position for the different runs. The top row shows the

original position, presented in Figure 5.4, corresponding to the GD Krook mapping (Source 1) and the

position in the gradient-free region (Source 2). The bottom plot shows the case of the annular simulation.

The source position is the same as “Source 1” from the top plot and the density and temperature profiles

are adapted so that there is no zero-gradient region. The radial interval s ∈ [0.0,0.2], in grey, is omitted

from the annular simulation. Note that all the profiles are arbitrarily rescaled to fit in the plot.

Figure 5.16 : Similar as Figure 5.13, but for the case of the FHS entirely placed in the region where there

are no density nor temperature gradients (“Source 2” in Figure 5.15).
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to be an annulus ranging from s = 0.2 to s = 1.0, Figure 5.15 (bottom). Homogeneous Dirich-

let boundary conditions are applied for the fields at both radial edges. The results of this

Figure 5.17 : Similar as Figure 5.13, but for the case of an annular radial domain without flat profile

region, Figure 5.15 (lower).

simulation are found in Figure 5.17. The loss of sampling between s = 0.2 and s = 0.3 is due

to the boundary condition applied to the markers leaving the annulus through the inner

radial boundary, similarly to the situation at the outer boundary, s = 1.0. This obviously also

affects the density (and other moments) profile but it was checked that the accumulated sum

of the density loss at s = 0.2 is equal to the missing density near the inner radial edge. In

this simulation, the FHS does not influence the sampling properties nor the density profile,

which confirms the conclusion of the previous experiment that those background density and

temperature profiles containing zero-gradient regions are not compatible with FD simulations

especially for the case of a fixed-in-time f0 background distribution function.

One now wants to study a different heat evacuation mechanism, namely the Krook buffer.

To this end, a similar simulation as the original case is carried out, i.e. the density and temper-

ature profiles are those presented in Figure 5.15 with the “Source 1” radial profile for the heat

source. The heat sink is substituted by the Krook buffer described by Eq. (5.7), which is less

prone to critical issues such as producing negative distribution functions. In this simulation,

the buffer region extends from s = 0.9 to s = 1.0. First, a scan in the buffer rate γB is made

to find a sufficiently high value to absorb the injected power by damping the distribution

fluctuations. To verify the damping efficiency, the density, parallel flows, and kinetic energy

that exit the radial domain at the outer edge are plotted in Figure 5.18 for the different values

of γB. The lowest, non-zero γB value of the scan corresponds to roughly 10 times the value of

the Krook noise control; the buffer is thus strongly damping the perturbations. For reference,

a case without buffer is also shown (γB = 0).

The effect of the buffer on the density and kinetic energy is small for γB = 0.002. For

higher values, there is an effective reduction of all the edge moment losses. Keeping in mind
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Figure 5.18 : Density, parallel flows and kinetic energy exiting the domain per unit time at the outer

radial edge for different values of γB. The diagnostic computes the corresponding moments from the

markers leaving the domain at the outer radial boundary. The buffer region extends from s = 0.9 to

s = 1.0.

that the buffer is damping the perturbed distribution function δ f , which could artificially

change the plasma properties, the aim of this scan is to find a value of γB sufficiently high to

evacuate all the injected heat within the buffer while not affecting too much the turbulence

outside the buffer region. To verify this point, the effective ion heat diffusivity as a function

of time is plotted in Figure 5.19. The radial average of the heat diffusivity is done in such

a way as to exclude the buffer region, i.e. considers s ∈ [0.7,0.9]. As expected, the buffer

affects the transport properties in the core through non-local effects [142]. Indeed, the heat

diffusivities are reduced compared to the reference case (γB = 0) by 20% for γB = 0.002 and

40% for γB = 0.01 and γB = 0.1. These estimations are made based on a time average of the

diffusivities for t ∈ [2,3.5] · 105 [Ω−1
ci ]. There also seems to be a critical value for the buffer

rate above which no significant influence on the core heat transport is observed, as already

pointed out in Ref. [132] for a similar experiment. The main difference between this work and

Ref. [132] is that the buffer considered here also damps the zonal flows. An extension to these

simulations would be to change the buffer to be flow-preserving to see if there is a shift in the

critical value of the buffer rate due to the nonlinear stabilization of the modes by the zonal
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flows. For the remainder of this section, all the simulations where the buffer is used are done
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Figure 5.19 : Effective ion heat diffusivity in gyro-Bohm units versus time. The heat diffusivity is

averaged radially over 0.7 ≤ s ≤ 0.9. The lines show the results with different buffer rates and with the

same buffer region from s = 0.9 to the edge.

with the maximum rate tested in the previous scan, i.e. γB = 0.1.

The effect of the FHS in combination with the buffer on the phase space sampling is

plotted in Figure 5.20. In this simulation, a global value vth corresponding to s = 0 is used

for the marker loading, i.e. for all the radial positions, the markers are loaded up to v2
max =

κ2
v Ti(s = 0)/mi. This is done to make sure that the phase space is homogeneously sampled

throughout the plasma minor radius. Indeed, with the type of temperature profiles that we

use, the velocity sampling limit is typically ∼3 times higher in the core than in the pedestal.

Markers can then drift radially in regions where there is no sampling thus degrading the overall

sampling by “dilution”. The presence of the buffer does not affect the sampling properties

in the edge. The large change of volume that can be observed in the outer part of the radial

domain and for high velocities is due to the marker boundary conditions as for the previous

cases. It is however amplified because of the global loading of the markers. Indeed, particles

with higher velocities have larger radial excursions and thus tend to exit the domain from

deeper within the core plasma. It has been checked that similar observations are obtained

without the buffer.

5.4 Summary of the chapter
In this chapter, the methodology used to carry out FD simulations using the ORB5 code has

been presented. All the tested heat sources and sinks are summarized and different nonlinear

simulations of a TCV-like setup are made to test them.
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Figure 5.20 : Similar as Figure 5.13, but for the case of the FHS with a buffer at the radial edge to

evacuate the injected heat and using the “Source 1” radial profile for the heat source, Figure 5.15.

The so-called fixed heat source is proportional to the derivative of the Maxwellian with

respect to the background temperature. The functional form of this heat source as well as an

ad-hoc correction term to address sampling errors ensure that the FHS only injects heat and

conserves density, parallel momentum, and zonal flows in radial bins up to machine precision.

Flux-driven simulations are made with the FHS using the mode-switching method which

consists of making a FD continuation of a GD run using a fitting of the effective Krook heat

source radial profile from the first GD run as a radial profile for the FHS. It has been tested that

switching occurs smoothly and that the results are consistent with FD-only simulations using

the same radial heating profile. The use of the FHS evidenced a sampling problem leading to

errors in the evaluation of the background density. It is shown that density and temperature

profiles presenting zero-gradient regions are incompatible with FD simulations in ORB5. It is

then concluded that the heat source should not be placed in zero-gradient regions. Indeed,

the absence of a transport mechanisms to evacuate the injected heat and the constant-in-time

background distribution function may be the cause. The cause of the density problem is an

undersampling of the low velocity regions due to a drift in velocity of the markers. However,

the cause of such a drift is still not understood. As a future work, we propose to implement an

adaptive- f0 method.

Two heat sinks are tested. The first consists of a FHS with negative rate, which is set such

that the total injected heat is zero. The second is a buffer region using a simple Krook operator

to damp the perturbed distribution function. The fixed heat sink has a major issue as it does

not ensure the positivity of the total distribution function. Furthermore, it is difficult to make

sure that the injected heat is actually totally evacuated by the sink due to discretization errors.

We think it is safer and more convenient to use a buffer at the outer radial region even if it

slightly affects the core transport due to non-local effects.

Finally, an adaptive Krook heat source is developed. It consists of a Krook heating operator
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automatically adjusting its rate to inject a fixed power. It is a variant of the standard Krook

operator that is used as a heat source for GD simulations but, for which, the input power is not

known a priori since it depends on the value of δ f . A first non conclusive test has been made

but further investigations are left for a future work.
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6.1 Summary
The main goal of this thesis was to enable the ORB5 code for flux-driven simulations in view

of profile stifness investigation and comparison with experiments performed on the TCV

tokamak. In particular, to reproduce numerically the shots presented in [49] and study why

TCV shots with different heating powers presented a core region where temperature and

density profiles exhibit a constant logarithmic gradient and a pedestal region—even in L-

mode—with constant profile gradients. In view of this study, three main objectives have been

defined for this thesis.

Flux-driven driven simulations are very demanding in terms of computational resources,

especially with kinetic electrons required to simulate the TEM-dominant TCV shots. The

first goal of this work consisted in a complete refactoring of the ORB5 code followed by an

optimization procedure to improve the code performance and port it to multicore CPUs,

adding multithreading to the existing MPI parallelization using OpenMP. The refactoring

process consisted of a code cleaning and modularization as well as the implementation of

an automated testing setup that allows for the testing of the whole code in a few minutes.

For the optimization process, we first developed a test bed called PIC_ENGINE that contains

only the key elements of the PIC algorithm. This code has allowed us to quickly and easily

implement various algorithms and parallelization schemes, and make various parameter

scans to determine the optimal configurations. The more promising schemes have then been

implemented in ORB5. As an example, we presented the color scheme, which is an efficient

method for the charge/current deposition step, and which improves the performance by a

factor 2.4 compared to the ORB5 original deposition routine.

The TCV shots presented in [49] are TEM-dominant. To simulate them, a model including

at least a kinetic response of the trapped electrons is required—a model with fully kinetic

electrons can also be used but is generally more expensive in numerical resources. Such a

hybrid model, in which passing electrons have an adiabatic response and trapped electrons are

kinetic, was already implemented in ORB5. However, this model is not valid in the nonlinear

regime. Indeed, it does not satisfy the ambipolarity condition, which also leads to a non-
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conservation of the toroidal momentum. This is because it creates spurious sources/sinks of

particles, energy, and momentum due the (de)trapping processes that are not well described.

A corrected version has been implemented in the code. The main change compared to the

original ORB5 hybrid electron model is that it accounts for a kinetic response from the flux-

surface average of the passing electrons. As a first approximation, a model in which the

flux-surface average is replaced by a Fourier filter retaining only the n = m = 0 contribution

from the passing electrons is implemented. In addition to solving the two main issues of the

original model, this improved version also has a correct description of the GAM frequency and

damping rate. In the nonlinear regime, it was observed that fine structures of the E×B shearing

rate are formed around q = 1 surface. Although not fully understood yet, we suspect that

passing electrons with n 6= 0, which are not taken into account kinetically in the quasineutrality

equation interact with the n = m = 0 contribution through nonlinear coupling. Furthermore,

simulations using TCV parameters have shown a transition from TEM-dominant transport to

an ITG-TEM mix. This was attributed to the density profile relaxation that linearly destabilizes

low-n ion modes and nonlinearly reduces the level of zonal flow shearing rate, thus increasing

ion heat transport.

Finally, a heat source able to inject a fixed amount of power while conserving, up to

machine precision, other moments such as density and parallel momentum has been imple-

mented in ORB5, thus enabling flux-driven simulations. To avoid long simulations of the order

of the profile relaxation time, which are expensive numerically and can be problematic with

respect to the δ f PIC method used in ORB5, we have tested a “mode switching” approach,

which consists of initializing a gradient-driven simulation from which we define an effective

heat source profile that is used as an input for the flux-driven simulation. The simulations

using mode switching have been compared to gradient-driven-only and flux-driven-only runs

and they all showed similar statistical quasi-steady states. It was noted, however, that E ×B

shearing rate structures appearing in the early phase of the gradient-driven run persisted

even in the flux-driven continuation thus slightly modifying transport properties compared

to a flux-driven-only run. The fixed heat source implemented in this work showed density

conservation problems for very long simulations if the order of the confinement time. Indeed,

even though it was checked that no density is injected by the source up to machine preci-

sion, a radially localized non-conservation of density coming from the f0 contribution was

observed. It was attributed to a sampling problem coming from the fact that the fixed heat

source was used in combination with background profiles that are not consistent with the

gyrokinetic model implemented in ORB5. These profiles, inspired by experiments shown in

[49], have a flat region supposed to mimic the sawtooth activity. In this region, we suspect

that accumulation of numerical errors in the marker orbits lead to an under sampling in some

regions of the phase space. It has to be noted that the problem occurred only on the density in

our simulations. However, it may well also appear on higher-order moments for even longer

simulations. Various types of heat sources and sinks have also been tested but none of them
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showed satisfactory conclusions with respect to the sampling problem. Simulations where the

problematic flat regions were artificially removed were also carried out and they showed no

density conservation problem, thus confirming the conclusion that one should avoid injecting

heat power in a region of the plasma where the model used does not include a mechanism for

transporting this heat out of the injection region.

6.2 Outlook
6.2.1 Refactoring and optimization of ORB5
The optimization of the ORB5 code was made in such a way to obtain the best performance

with as little complexity as possible. The main reason for this choice was the portability of the

code between HPC platforms but also between scientists that do not have the same knowledge

in computational sciences. Even though the major parts of the code have been optimized,

there are still a few of them to be further refactored/optimized. For example, the sorting

routine has allowed us to use various algorithms, such as the color scheme, that improve the

code performance. However, it was noted that the sorting cost is, in general, comparable to

the time gain, leading to no significant overall performance improvement. Worse, in some

cases, the sorting cost can even be greater than the overall time gain. More efficient sorting

algorithms or a different approach, in which particles are sorted only when they have actually

moved to another grid cell, may be tested. Also, it has clearly been observed that the optimal

setup heavily depends on various parameters such as the number of clones, subdomains,

OpenMP threads, etc. In order to simplify as much as possible the use of the code, an automatic

performance scheduler can be implemented. It would consist of automatically testing various

parallelization configurations for a few timesteps and then selecting the best one for the rest

of the production run.

The other main future task is the porting of ORB5 to GPUs1. To this end, the diagnostic

routines have to be modularized. Furthermore, the in/output routines used to write diagnostic

data to disk may be parallelized. Indeed, for the moment only one MPI task is writing the

data. This is not problematic as the time spent for writing is negligible compared to the

computational time, but with further optimizations and the porting to GPUs, this writing time

will become an important fraction of the total time.

Finally, concerning the refactoring and testing of the code, two main future lines of action

can be identified. First, the current way of creating checkpoint files for a simulation restart

depends heavily on the parallelization setup and the HPC platforms. This makes impossible

to continue simulations on other machines or with different parallelization, which can lead

to the loss of some runs. To avoid that, the routine creating the checkpoint files should be

changed in order to drop those aforementioned constrains. Second, the current testing setup

runs various scaled-down physically-relevant simulations and checks for changes with the

1At the time of writing, most of the ORB5 code has been ported to GPU [101], in a work carried out as part of
another Ph.D. project
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previous version of the code. Even though it is a very useful warning signal, this testing method

requires someone to analyze the eventual differences and decide if they are expected and

justified or not. Furthermore, when implementing new physics into the code, it can become

difficult to discern the differences coming from the change in physical model or coming from

implementation bugs. To address this issue, more robust tests should be implemented. Going

toward unit-testing, these tests should be able to check independently small portions of the

program and in a univocal way.

6.2.2 Hybrid electron model
The correction to the former hybrid electron model in ORB5 has given satisfactory results with

respect to the linear and nonlinear properties. However, only the version approximating the

flux-surface average by a n = m = 0 Fourier filter was tested nonlinearly. Extended nonlinear

tests for the flux-surface-average version of the corrected model should be carried out.

Further investigation of the formation of the fine radial structures around q = 1 will be

carried out in future work. In particular, we will study how the nonlinear coupling through the

electric field between adiabatic and kinetic passing electrons acts on those radial structures.

Comparison with runs using fully kinetic electrons are also envisaged.

6.2.3 Flux-driven simulations
The flux-driven setup presented in this work showed a non-conservation problem of the

various moments, in particular the density. Even though some understanding of the causes of

this problem was achieved during this work, a complete understanding of what are the exact

causes is still missing. Further investigations are required.

The flux-driven capabilities of ORB5 are limited by the δ f PIC method with constant

background f0. Indeed, the final state of the system must not be too far from the initial one if

one wants to keep the numerical noise as low as possible. This constraint could be lifted by

implementing a δ f PIC method with evolving background schemes [68].

Currently, the heat buffer is placed on the radial outer part of the domain. In and in the

vicinity of this small region, transport properties are artificially affected by the naive Krook

operator used in the buffer. This can make studies of the pedestal profiles difficult. One of

the possible extensions of the code is to artificially extend the radial domain beyond the last

closed flux surface and put all the buffers in this region.

6.2.4 General outlook
The ORB5 code is now fully equipped to make flux-driven simulations using hybrid electrons

relevant for the study of profile stifness as presented in [49]. Various power scans, similar to

the gradient scans presented in [131], can be carried out to study how the background profile

gradients evolve as a function of the heat power input.
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In this appendix, we present the different parallelizations methods we have implemented in

the PIC_ENGINE for the sorting and the charge deposition already briefly presented in Sections

3.3.2.2 and 3.3.2.3, respectively. The algorithms are presented in Fortran-like pseudo-code

that we have intentionally simplified to keep only the relevant information. They may not

work as they are but only the parallelization technique is emphasized here.

A.1 Sorting
We have seen in Algorithm 1 in Section 3.3.2.2 that the counting sort used in the PIC_ENGINE

consists mainly in three loops, two over the particles to create a histogram and put them in

their right place and one over the buckets for the prefix sum. Note that in all versions, the

prefix sum is never parallelized because it takes a negligible time in our application. Here are

the two different methods discussed in this paper:

psort_1: In this method, the first loop is parallelized using OpenMP reduction and the third

loop is done with a OpenMP do loop and atomic directives to avoid race conditions.

Furthermore, in the first loop, the displs array is calculated as the count array of

particles in each bucket. It is then overwritten by the inclusive scan in the second loop.

1 displs (:)=0
2 !$Omp Parallel &
3 !$Omp Private(ind1 ,ind2 ,ind)
4 !$Omp Do Reduction (+: displs)
5 Do i=1,np
6 ! Compute the particle grid -cell
7 ! index
8 indX=Int(part_att(i,dirX)/dx)+1
9 indY=Int(part_att(i,dirY)/dy)+1

10 ind=(indY -1)*nbX+indX
11 ! Create the histogram
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12 displs(ind)=displs(ind)+1
13 End Do
14 !$Omp End Do
15

16 !$Omp Single
17 ! Prefix sum
18 Do i=2,nbX*nbY
19 displs(i)=displs(i)+displs(i-1)
20 End Do
21 !$Omp End Single
22

23 !$Omp Do Private(is)
24 Do i=np ,1,-1
25 ! Compute the particle grid -cell
26 ! index
27 indX=Int(part_att(i,dirX)/dx)+1
28 indY=Int(part_att(i,dirY)/dy)+1
29 ind=(indY -1)*nbX+indX
30 ! Update atomically to avoid race
31 ! conditions
32 !$Omp Atomic Capture
33 is=displs(ind)
34 displs(ind)=displs(ind)-1
35 !$Omp End Atomic
36 part_att_temp(is ,:)=part_att(i,:)
37 End Do
38 !$Omp End Do
39 !$Omp End Parallel

psort_2: The second sorting method is slightly different from the first one. During the first

loop, we compute the index of each particle in the sorted array, and race conditions are

avoided with OpenMP atomic. By doing so, the third loop is trivially parallelized with

OpenMP do loop.

1 !$Omp Parallel &
2 !$Omp Private(is,ind1 ,ind2 ,tmp)
3 !$Omp Do
4 Do i=1,np
5 ! Compute the particle grid -cell
6 ! index
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7 indX=Int(part_att(i,dirX)/dx)+1
8 indY=Int(part_att(i,dirY)/dy)+1
9 ind(i)=(indY -1)*nbX+indX

10 is=ind(i)
11 !$Omp Atomic Capture
12 tmp=counts(is)
13 ! Create the histogram
14 counts(is)=counts(is)+1
15 !$Omp End Atomic
16 indices(i)=tmp
17 End Do
18 !$Omp End Do
19

20 !$Omp Single
21 displs (1)=counts (1)
22 Do i=2,nb1*nb2
23 displs(i)=displs(i-1)+counts(i)
24 End Do
25 !$Omp End Single
26

27 !$Omp Do
28 Do i=1,np
29 is=ind(i)
30 part_att_temp(displs(is)- &
31 & indices(i) ,:)=part_att(i,:)
32 End Do
33 !$Omp End Do
34 !$Omp End Parallel

A.2 Charge assignment
Similarly to the sorting, we present here different charge assignment methods implemented in

the PIC_ENGINE. The four versions of setrho are:

setrho_1: In this first method, we mimic the OpenMP reductionwith an in-house algorithm

inspired by the OpenMP standard [143].

1 !$Omp Parallel &
2 !$Omp Private(tid ,ix,iy,iz,wx,wy ,wz)
3 ! Get the thread number
4 tid=omp_get_thread_num ()
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5

6 !$Omp Do
7 Do ip=1,np
8 ! Compute the particle relative position
9 ix=Int(part_att(ip ,1)-xgrid (0))

10 wx=part_att(ip ,1)-xgrid(ix)
11 ! Do similarly for y and z
12 ...
13

14 ! Deposit the charge according to
15 ! the relative positions
16 rho_loc(ix,iy,iz,tid)= &
17 & rho_loc(ix ,iy,iz,tid)+ &
18 & (1.0-wx)*(1.0-wy)*(1.0-wz)
19 ! Do similarly for the other seven
20 ! grid points
21 ...
22 End Do
23 !$Omp End Do
24

25 ! Perform the reduction
26 !$Omp Do Collapse (3)
27 Do iz=0,nz
28 Do iy=0,ny
29 Do ix=0,nx
30 rho(ix ,iy,iz)= &
31 & Sum(rho_loc(ix,iy,iz ,:))
32 End Do
33 End Do
34 End Do
35 !$Omp End Do
36 !$Omp End Parallel

setrho_2: The second method uses the OpenMP atomic directive to safely update the charge

array.

1 !$Omp Parallel &
2 !$Omp Private(ix,iy,iz ,wx,wy,wz,ip)
3 !$Omp Do
4 Do ip=1,np
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5 ! Compute the particle relative position
6 ix=Int(part_att(ip ,1)-xgrid (0))
7 wx=part_att(ip ,1)-xgrid(ix)
8 ! Do similarly for y and z
9 ...

10

11 ! Deposit the charge according to
12 ! the relative positions
13 !$Omp Atomic Update
14 rho(ix ,iy,iz)=rho(ix,iy,iz)+ &
15 & (1.0-wx)*(1.0-wy)*(1.0-wz)
16 ! Do similarly for the other seven
17 ! grid points
18 ...
19 End Do
20 !$Omp End Do
21 !$Omp End Parallel

setrho_3: Similarly to the first method, we use this time the OpenMP reduction to avoid

race conditions when updating the charge array.

1 !$Omp Parallel Private(ix,iy,iz)
2 !$Omp Do Private(wx,wy,wz,inb ,ic) &
3 !$Omp Reduction (+:rho)
4 Do ip=1,np
5 ! Compute the particle relative position
6 ix=Int(part_att(ip ,1)-xgrid (0))
7 wx=part_att(ip ,1)-xgrid(ix)
8 ! Do similarly for y and z
9 ...

10

11 ! Deposit the charge according to
12 ! the relative positions
13 rho(ix ,iy,iz)=rho(ix,iy,iz)+ &
14 & (1.0-wx)*(1.0-wy)*(1.0-wz)
15 ! Do similarly for the other seven
16 ! grid points
17 ...
18 End Do
19 !$Omp End Do
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20 !$Omp End Parallel

setrho_4: Finally, in this last method we use the finite support of the CIC method. Indeed,

here each particle will only contribute to the eight nearest grid points.

1 !$Omp Do Parallel Collapse (3) &
2 !$Omp Private(ix,iy,iz ,d,ibin) &
3 !$Omp Private(jbin ,wx,wy,wz)
4 Do iz=0,nz
5 Do iy=0,ny
6 Do ix=0,nx
7 d=0.0
8 Do jbin=Max(1,iy),Min(ny,iy+1)
9 Do ibin=Max(1,ix),Min(nx,ix+1)

10 bin=(jbin -1)*nx+ibin
11 Do ip=displs(bin)+1, &
12 & displs(bin+1)
13 wx=part_att(ip ,1)-xgrid(ix)
14 wy=part_att(ip ,2)-ygrid(iy)
15 wz=part_att(ip ,3)-zgrid(iz)
16 d=d+Min(1.0-wx ,1.0+wx)* &
17 & Min(1.0-wy ,1.0+wy)* &
18 & Min(1.0-wz ,1.0+wz)
19 End Do
20 End Do
21 End Do
22 rho(ix,iy,iz) = d
23 End Do
24 End Do
25 End Do
26 !$Omp End Parallel Do
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