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Abstract

Current online applications, such as search engines, social networks, or file sharing services,

execute across a distributed network of machines. They provide non-stop services to their

users despite failures in the underlying network. To achieve such a high level of reliability,

these applications rely on a simple technique: replication. Briefly, there are copies of the

application on multiple machines, such that no specific machine represents a single point

of failure. Under this apparent simplicity, however, reliability comes at a steep price. This is

because replication entails certain side-effects (e.g., overheads or costs, inconsistencies, or

tradeoffs) which often lead to inefficient designs and want for better performance.

The high-level problem we study in this dissertation is that of obtaining good performance in

replicated systems. We seek to reduce—and when irreducible, hide—the effects of replication.

We approach this problem from three fronts, as follows.

First, we look at State Machine Replication (SMR). This is a classic technique for achieving

strong consistency in replicated systems. Similar to other techniques for strong consistency,

SMR brings a substantial performance overhead. Additionally, this overhead gets worse with

growing system size: There is a performance decay as an SMR system gets larger. We shed

light on this issue by deploying five SMR systems on up to 100 replicas and reporting on their

performance decay. Towards mitigating this issue, we introduce Carousel, an SMR system

based on a ring overlay network which can alleviate performance decay.

Second, we discuss a technique for hiding the cost of strong consistency. Given the high

overhead of accessing data with strong consistency, we propose that applications combine

multiple consistency models. We introduce programming support for doing so, through an

abstraction called Correctables. In conjunction with a speculation-based technique, we show

how Correctables can lower the latency for strongly-consistent operations.

Third, we propose a technique to bypass SMR (and avoid its costs) in a concrete replicated

application. We focus on the problem of implementing token transfer applications (e.g., on-

line payments). We introduce the abstraction of exclusive token accounts, or Exa, supporting

asynchronous transfers. We also design and build Astro, a system implementing the Exa ab-

straction. This system departs from classic consensus-based solutions (i.e., SMR), and relies

instead on a broadcast primitive, a more efficient and tractable building block.
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Résumé

Les applications en ligne modernes, comme les moteurs de recherche, les réseaux sociaux ou

les services de partage des données, utilisent un réseau distribué de machines. Ils assurent

un service sans interruption pour leur utilisateurs malgré la présence de failles dans le réseau.

Pour fournir un tel niveau de fiabilité, ces applications comptent sur une technique assez

simple : la réplication. En bref, il y a des copies de l’application sur plusieurs machines,

de sorte qu’aucune machine ne soit un point critique du réseau. Malgré cette simplicité

apparente, néanmoins, la fiabilité représente un énorme coût. La réplication des données

engendre des problèmes (coûts additionnels, incohérences, ou compromis à trouver), dont

la résolution repose souvent sur des méthodes peu efficaces.

De façon général, la problème abordé dans cette thèse est la conception de systèmes répartis

fiables et efficaces. Notre but c’est de réduire—ou, si n’est pas possible, de masquer—les

conséquences indésirables de la réplication. Nous traiterons ce problème sur trois niveaux.

Premièrement, nous considérons la réplication des états des machines (State Machine Re-

plication, SMR), une technique classique pour la copie de données avec un haut niveau de

cohérence (strong consistency). Comme d’autres techniques similaires, SMR implique une

réduction considérable des performances. Pire, les performance sont d’autant plus détériorée

que la taille du système est grande : la performance de la SMR décroît au fur et à mesure que

système croît. Dans cette thèse, nous déploierons cinq systèmes SMR sur jusqu’à cent copies

pour analyser le déclin de la performance. En vue de rectifier ce problème, nous introduirons

Carousel, un système SMR qui s’appuie sur un réseau avec une topologie en anneau.

Deuxièmement, nous présenterons une technique pour cacher les coûts de la réplication.

Étant donné les coûts élevés d’accès aux données répliquées avec une garantie d’un haut ni-

veau de cohérence, nous proposerons l’utilisation des plusieurs niveaux de cohérence par les

applications réparties. Nous introduirons le support de programmation pour accomplir cela,

avec une abstraction appelée Correctables. À l’aide d’une technique par spéculation, nous

montrerons comment Correctables peut diminuer les délais d’accès aux données répliquées.

Troisièmement, nous proposerons une technique pour contourner l’utilisation de SMR (et de

ses hauts coûts) dans une application répartie. Nous nous arrêterons sur le problème d’implé-

menter les applications fondées sur des tokens (comme le paiement en ligne). Nous introdui-

rons une abstraction des comptes exclusivement dédiés à l’utilisation de tokens, appelée Exa,

xi



Résumé

qui permet des transferts asynchrones des tokens entre les utilisateurs. Nous proposerons

aussi la conception du système Astro, qui implémente cette abstraction Exa. Ce système est

different de ses prédécesseurs qui s’appuient sur le consensus (i.e., SMR), parce qu’il utilise

une technique de diffusion de messages plus efficace et plus simple.

Mots clés : réplication, abstraction, consistance, efficacité, systèmes répartis de données,

réplication des machines aux états, spéculation, consensus, diffusion, transferts des tokens.
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Introduction

The Master said:

One who would study for three years

Without thought of reward

Would be hard indeed to find

— Confucius, translated by A. Waley [Wal00, Book VIII]

Distributed systems are the backbone of modern society. Whether we are doing groceries,

enrolling in a college, or bypassing traffic jams on our way to work, most of our activities

somewhere along the line involve a distributed system. This technology both empowers

and simplifies our life. Relying on this technology, however, can also burden us in uniquely

modern ways. For instance, a source of anxiety in modern life has to do with the possibility

of losing our precious data—financial, medical, or legal documents—or even worse, being

robbed of our privacy—relating to confidential records such as photographs or conversations.

One of the main merits of distributed systems is their reliability. This high-level property

simply states that a system as a whole has no single point of failure, and can withstand a

wide array of faults. Even if computers constantly crash and churn, our data survives. Even if

attackers gain control over a node in a distributed system, they can inflict limited damage.

Replication is the basic technique behind reliable distributed systems. Under a replicated

design, the algorithms controlling our data, as well as the data itself, have multiple copies.

Each copy is called a replica and resides in a different location. Often, the replicas of a system

are spread across different regions of the globe. A replicated system can thus overcome single

points of failure via redundancy. A serious problem such as a natural disaster may affect

a replica and wipe out the corresponding data at a specific location; nevertheless, another

replica in the system can assume the responsibilities of the affected replica.

Replication, however, does not come for free. Under a replicated design, the basic challenge is

to keep each replica in the system consistent with the others. A replication protocol achieves

this task, often called a coordination protocol. Informally, such a protocol seeks to maintain

an identical state across all replicas, regardless of the application workload which constantly

modifies this state, regardless of machine or network failures, or other such interference. From

1



Introduction

the perspective of a user, replication protocols seek to effectively hide the existence of mul-

tiple copies—masking inconsistencies, failures, delays—and provide the illusion of a single,

reliable machine. If the replication protocol achieves this, we say that the protocol ensures

strong consistency guarantees.

In the absence of a replication protocol to ensure strong consistency, users may observe

anomalous application behavior. For instance, an e-mail client might display different ver-

sions of an inbox, depending on which replica that client connects to. One of the replicas

might maintain the up-to-date version of inbox, with all the recently received e-mails, while

another replica maintains a stale version of this inbox. Ideally, the client should always display

the most fresh version of the inbox, by reading from the up-to-date replica. But what if the

connection to this replica is extremely slow—then should the client display the correct inbox

(i.e., achieve strong consistency) despite unusual delays? Or would it be more expedient to

provide a fast response and display the stale (i.e., inconsistent) inbox?

Thesis Context

The e-mail application we highlight above is a prime example of a central dilemma in repli-

cated systems: Choosing between a consistent (but slow) and an inconsistent (but usually

faster) response. Indeed, seminal results in the research literature establish that there are

inherent costs associated with replication [AW94, LSP82, Lam83, MA06], and that some coor-

dination problems are even impossible to solve under certain conditions [BT85, Bre12, FLP85,

GL02]. Generally speaking, these results mark the existence of a tradeoff between consistency

and performance in replicated systems, as described in the e-mail example.

At a high-level, throughout this thesis we study closely this consistency versus performance

tradeoff. Our goal is to make replication protocols more efficient, in an attempt to lower the

user-perceived cost of replication. To do so, we study both replication protocols (seeking to

understand their limitations and boost their performance), as well as the application-level

requirements (seeking to exploit application semantics and offer support for specific tasks).

Thesis Roadmap

In broad strokes, this dissertation spans across four parts, as follows.

Part I—Preliminaries

In this first part of the dissertation we cover essential background work on replication proto-

cols (Chapter 1). We also describe earlier approaches towards achieving efficient replication.

We conclude this part with a brief thesis statement and our contributions (Chapter 2).
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Part II—On the Performance Decay of State Machine Replication

In the second part of this dissertation we focus on a classic approach for building reliable dis-

tributed systems, called State Machine Replication (SMR). This is a general-purpose solution

for achieving strong consistency in a broad range of applications. Owing to its generality, SMR

is among the most intensely studied approaches to replication.

In the context of SMR, we study how the degree of replication (i.e., system size) impacts

performance. More precisely, we evaluate five SMR systems, including state-of-the-art imple-

mentations such as ZooKeeper or etcd. SMR systems such as these typically execute at small

size, e.g., using three replicas. The assumption is that their performance decays sharply as

their size increases. There is not much experimental evidence of this decay, however.

We deploy the SMR systems on up to 100 replicas and find that they exhibit performance

decay with increasing replication degree, confirming prior observations at smaller scale. We

notice, however, that we can partially mitigate this decay. Concretely, our study includes

two research prototypes meant to explore the limits of SMR performance, namely ChainR

and Carousel. These two employ efficient dissemination overlays (based on chain and ring

overlays, respectively) which can curb performance decay. (Chapter 3). Our hope is that these

results motivate further research on the performance decay of SMR.

In this part we also present the rationale behind different design choices in the Carousel SMR

system (Chapter 4), and then conclude with a discussion (Chapter 5).

Part III—Supporting Efficient Access to Replicated Data

In the third part of the dissertation we propose a solution for tackling the tension between con-

sistency and performance. Given the inherent costs of each individual consistency model (i.e.,

the overheads of strong consistency, or the anomalies of weak consistency), we propose that

applications combine multiple consistency models. For supporting this task, we introduce

the Correctables abstraction. The central feature of this abstraction is that it provides efficient

access to multiple consistency levels for every operation. Correctables hide the implementa-

tion details for achieving different levels of consistency and the resulting complexity, allowing

programmers to focus on balancing consistency with performance in their applications.

We exploit an observation that appears repeatedly in practical workloads, namely that that

weakly-consistent versions of data tend to be often correct (i.e., consistent) in fact. Using the

Correctables abstraction, we show how an application can speculate on weakly-consistent

data towards hiding the latency of strong consistency (Chapter 6).
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Part IV—Supporting Efficient Token Transfers

In the fourth part of the dissertation we turn our attention to token-based applications (e.g.,

implementing online payments). These applications typically build on SMR, and conse-

quently inherit the overheads associated with this technique, including performance decay

(as studied in Part II). We propose to bypass SMR (and avoid its costs) by describing the

exclusive token account—or Exa—abstraction. This abstraction supports efficient implemen-

tations of token transfers. Concretely, Exa allows to eschew the need for imposing a total order

across all transfers in the system (i.e., using SMR). This translates into an implementation

that is simpler and more efficient than SMR-based solutions.

The Exa abstraction models a container for tokens (e.g., a wallet). The defining characteristic

of an Exa object is that it has a single owner, and this owner is the only one allowed to spend

money (i.e., initiate transfers) from that object. Owing to this exclusive-ownership property,

Exa permits weak ordering of transfers, avoiding consensus. We design and build Astro, a

system implementing the Exa abstraction. Compared to a baseline based on SMR, Astro is

simpler, more robust to asynchrony or faults, and offers better performance (Chapter 7).

Conclusions and Appendix

In the concluding chapter of this dissertation we give a brief review of our contributions,

discuss limitations of our techniques, as well as future work (Conclusions).

This dissertation also contains an appendix. We provide supplementary details for the Carousel

system (Appendix A) as well as for the Astro system (Appendix B).
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1 Background

My intention is to confuse you with only one thing at a time.

— Joe Armstrong [Arm13]

In this chapter we cover background notions on reliable distributed systems, with a focus

on replication. This chapter spans two sections, as follows. First, we discuss basic concepts,

presenting concrete approaches to replication as well as their applications (§1.1). Second, we

look at replicated systems from a performance standpoint, describing techniques for improv-

ing their efficiency (§1.2).

1.1 Replication in Distributed Systems

To mask failures, reliable distributed systems rely on the idea of quorums. These are subsets

of system replicas which have the property that any two such subsets intersect in at least one

correct replica [Gif79]. A correct replica is one which does not crash (nor is compromised

by an adversary, depending on the system model). A quorum typically comprises a fraction

of the whole system. Even if some replicas fail, it is assumed that sufficiently many replicas

remain alive (and non-compromised) such that a quorum of them is responsive.

Intuitively, the intersection property of quorums helps ensure safety, while their responsive

nature is important for liveness [AS85, Lam77]. By safety we understand that the responses we

obtain from a replicated system are in some sense correct (for example, an e-mail client should

not display outdated appointments) and by liveness we mean that this system eventually re-

sponds (the e-mail client is guaranteed to connect). This abstraction of quorums is essential to

providing fault-tolerance, and underlies most of the approaches and techniques we consider

in this dissertation. Depending on the system model and assumptions, there are different

flavors of quorum systems, providing different safety and liveness properties [BVF+12, MR97].
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State Machine Replication. One of the most popular approaches to building reliable dis-

tributed systems is State Machine Replication [Sch90]. With SMR, the replicas of a system first

agree on the order of incoming operations (e.g., client requests), and then execute these oper-

ations in the chosen order. For reaching agreement on the order of operations, the replicas in

SMR employ a consensus algorithm.

There are various algorithms for implementing consensus, but at a high-level they all achieve

the same goal, namely: output a single decision (i.e., the next operation to execute) among

multiple concurrent proposals [CGR07, HKJR10, Lam03]. As we explained earlier, to mask

faulty nodes consensus algorithms also rely on an underlying construction of quorum sys-

tems.

Being a general-purpose technique, SMR lends itself to a broad range of applications. For in-

stance, this approach found adoption in various cluster systems, for implementing distributed

lock services [Bur06] or other high-level abstractions [MMN+04]. In the context of wide-area

systems, SMR can be used to build distributed key-value storage systems [GBKA11] or other

applications [MJM08].

SMR ensures strong consistency, or linearizability [HW90]. As we mentioned earlier, this

means that SMR hides from the application any side-effects of replication (such as faults or

inconsistencies). This approach is able to withstand both simple crash failures, and even

arbitrary, i.e., Byzantine, faults [LSP82]. As the topic of Byzantine failures represents a central

concern in this thesis, we go into more details below.

Byzantine Fault-Tolerance. In the Byzantine fault model, a fraction of replicas may suffer

from arbitrary faults. For instance, a faulty replica may even exhibit adversarial behavior

towards the rest of the system. This behavior may arise as a consequence of software bugs,

network interference, or malicious participants. Byzantine fault-tolerant (BFT) replication is

an approach that seeks to secure against this broad class of faults.

There are reasons to believe that BFT systems impose larger overheads compared to crash

fault-tolerant (CFT) systems [LVC+16]. Consequently, there is a long line of work on making

BFT replication more efficient. The goal is to mitigate the performance penalties of BFT

replication and make this technique more appealing [BSA14, Cas01, GAG+19, KAD+07, PP13].

Notwithstanding these efforts and their success, the practical need for BFT replication has

been repeatedly debated in the past [BCvR09, CFJS12, CWA+09, HKJR10, WKR+13].

A relatively recent use-case for BFT replication is in the implementation of decentralized appli-

cations where participants are mutually distrustful of each other. Informally, these are called

digital trust applications. Examples are cryptocurrencies [Nak08], secure storage [Woo15], or

decentralized computing [HMW]. The rise in popularity of these applications can be mostly

attributed to the success of the Bitcoin cryptocurrency (i.e., token transfer system) [Nak08].
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Nakamoto’s Bitcoin protocol, introduced in a 2008 white paper, implements a token transfer

system without any central authority [Nak08]. Since then, many alternatives to Bitcoin came

to prominence, e.g., Ethereum [Woo15], ByzCoin [KJG+16], Hyperledger Fabric [ABB+18], Ten-

dermint [Ten19], or HotStuff [YMR+18]. Each of these alternatives brings novel approaches to

implementing decentralized transfers, and some go beyond transfers, offering a more general

interface in the form of smart contracts [Sza97]. Regardless of their novelty, most solutions in

the sphere of digital trust applications employ consensus-based algorithms.

Despite a growing body of literature for implementing various types of digital trust applica-

tions, token transfer remains a central research topic and one of the most tenable represen-

tative of a digital trust system [Cou19, Mal18]. In Part IV of this dissertation we focus on this

very type of application, presenting an abstraction that supports efficient token transfers.

We note that systems implementing digital trust can be broken down in two categories, de-

pending on their assumption. Some are designed for a permissioned model, i.e., a private

environment where all participants know each other. Others are for a permissionless model,

i.e., a public setting allowing open participation. Throughout this thesis, we are interested in

systems for the permissioned setting.

Replicated Data Types. Many distributed applications build upon specific types of objects,

e.g., locks, storage, or queues. For instance, commercial websites can model their shopping

cart as an instance of a read-write register (i.e., key-value storage) [DHJ+07]. Another example

is that of a ticket shop where unsold tickets can be modeled as a replicated queue. Upon

buying a ticket, each customer dequeues an element from this replicated object.

As we argued earlier, SMR supports the building of arbitrary replicated services, including

replicated data types such as registers or queues. Protocols for SMR, however, can be less

efficient than protocols for replicating a specific object, hence the need for direct support

of replicated data types. This is just one example of a technique for gaining efficiency in a

replicated system, and we expand on this discussion in the following section.

1.2 Techniques for Efficient Replication

Building on a specific data type in a distributed application can be seen as a form of exploiting

application semantics. This is a classic technique for extracting more performance in repli-

cated systems. We now expand on the discussion of this technique, and then explore two

others, specifically: sharding and tweaking the system model.

Exploiting Application Semantics. Adopting a replicated data type—instead of a general-

purpose solution based on SMR—is desirable not only from the standpoint of performance,

but also for bypassing some fundamental limitations of SMR. For instance, the FLP impos-
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sibility result applies to SMR (or, equivalently, to any consensus algorithm) and states the

following: Absent any synchrony assumption, it is not possible for nodes in a distributed

system to reach consensus if even one node can fail [FLP85]. In other words, SMR implemen-

tations are impossible in certain systems, such as asynchronous networks. This stands in

contrast with atomic read-write register algorithms, for instance, which are possible in such a

model [ABND95].

Even if specific data types permit more efficient implementations than SMR, and even bypass

certain impossibility results, algorithms for replicated objects experience their own trade-

offs. For instance, the CAP theorem applies to replicated storage. This result asserts that

access to a replicated storage system can not guarantee both availability and strong consis-

tency in the presence of network partitions [Bre12]. In light of this result, many applications

opt for weak consistency models as an effective technique for the ability to guarantee high-

availability [DHJ+07]. Not only that, but in exchange for weak consistency, better performance

and simpler solutions are often possible [ABK+15, LFKA11].

Roughly speaking, the weaker an abstraction is, the more efficient an implementation tends

to be possible in practice. Therefore, applications which simply do not require strong ab-

stractions (such as SMR for achieving strong consistency) frequently build on weaker ones.

The same principle—exploiting application semantics—is at play. An interesting example of

this can be found in applications that exploit commutativity. More precisely, certain applica-

tions allow relaxing of coordination requirements, i.e., ordering of operations in the system,

if their operations commute [BR92, CKZ+15, Her90]. CRDTs [SPBZ11] or RADTs [RJKL11] are

examples of this technique in practice.

One important challenge that appears when adopting weak abstractions is that programming

(i.e., application-level logic) can become more difficult. The CAP theorem and other similar

formulations [Aba12, AW94, MAD11, GGG+18, TPK+13] bring into focus the various tradeoffs

and the resulting complexity of programming with replicated objects when considering dif-

ferent consistency models. In Part III of this dissertation, we will broach this subject in more

detail: We revisit the topic of efficient access to replicated objects, and present an abstraction

that supports programming under different consistency models.

Sharding. To mask a certain number F of faulty replicas, SMR systems for the crash-fault

asynchronous model typically require N = 2F +1 total replicas. Every operation that enters

the system executes on a quorum of at least F +1 replicas before responding to the client. In a

similar vein, BFT systems typically employ quorums of 2F +1 replicas in a system of N = 3F +1

nodes. For instance, to tolerate 3 Byzantine faults, such a system requires 10 replicas, and

each operation must be accepted by at least 7 replicas.

The bounds on system and quorum sizes spawn from the need to guarantee the quorum

properties we mentioned earlier in the beginning of this chapter. This degree of replication

applies not only to SMR, but to any algorithm seeking to ensure strong consistency. For
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applications where the state is very large (e.g., distributed transactional databases), or where

it is desirable to accommodate a large number of participants, this high degree of replication

can pose a bottleneck. It is typically assumed that some replicated systems (in particular SMR)

experience a sharp performance decay with increasing system size. Consequently, typical use-

cases of SMR employ this technique using a minimal number of replicas, typically three or

five nodes; indeed, in Part II of this dissertation we study the matter of performance decay

(specifically for SMR) in more detail.

Sharding is a classic technique in distributed systems, allowing to parallelize the processing

of client operations, and hence go beyond the full replication model. For instance, a sharded

SMR solution can allow separate groups of replicas to handle operations on disjoint partitions

of the application state [BPR14, CDG+08, GBKA11].

Tweaking the System Model. Beside sharding, another method that enables reliable dis-

tributed systems to grow to large scales without incurring significant performance decay is

to switch to a system model with probabilistic guarantees. There is a growing body that does

so, in the context of consensus or other replication algorithms. In exchange for an arbitrarily

small probability of breaking certain properties, these solutions can accommodate a large

number of participants. This technique of adopting probabilistic guarantees found adoption

in many use-cases, e.g., in replicated storage systems [BVF+12, MRWW01], in protocols for

cryptocurrencies [EGSVR16, GHM+17, KKJG+17, Nak08], as well as in group communication

systems [GKPS16].

Other system model tweaks that can yield more efficient designs in reliable distributed sys-

tems include synchrony assumptions [Ten19, VRS04] or hardware-assisted solutions [ISAV16].

While these systems offer interesting design choices, throughout this dissertation we are inter-

ested in replicated systems that offer deterministic guarantees, and designed for commodity

networks.
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2 Overview

2.1 Thesis Statement

In this dissertation we study techniques for reducing the costs of replication in reliable dis-

tributed systems. These costs can take various forms, e.g., inconsistencies (if using certain

weak consistency models), overheads in terms of latency or throughput or performance de-

cay with increasing system size (if using strong consistency), etc. The challenge is to provide

applications with strong consistency guarantees without incurring substantial penalties on

their performance. We approach this challenge from both a low-level perspective (studying

building blocks and primitives directly) and a high-level perspective (seeking to understand

the precise requirements of applications and exploit their semantics).

2.2 Thesis Contributions

This thesis comprises three high-level contributions [GHSV19, GKM+18, GPS16].

1. We take steps to further our understanding of SMR performance decay due to increasing

system sizes. As a concrete approach towards mitigating SMR performance decay, we

introduce the Carousel SMR system.

2. We introduce Correctables, an abstraction supporting efficient access to replicated ob-

jects. This abstraction simplifies and enables low-latency operations on replicated data.

3. We present Exa, an abstraction supporting efficient transfer operations for token-based

applications, by eschewing the need for a consensus (i.e., SMR) algorithm. We also

design, implement, and evaluate Astro, a system implementing the Exa abstraction.
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3 Observing the Performance Decay of
State Machine Replication

What is in the end to be shrunk

must first be stretched.

— Arthur Waley [Wal13, Ch. XXXVI]

In this chapter we seek to discover how the size—i.e., the degree of replication—of SMR sys-

tems affects their performance. We deploy five SMR systems on a wide-area network, and we

report on how their performance decays with increasing system size for up to 100 replicas.

Our focus is mostly on throughput, but we cover latency as well.

We draw two high-level observations. (1) We notice that, informally, SMR throughput decays

as a function of system size. An interesting pattern appears, however: This decay is initially

sharp (consistent with studies at smaller scale), but as each system grows beyond a few tens

of replicas, the decay dampens. In other words, the decay rate is exponential. (2) We observe

that SMR systems based on chain or ring overlays can escape the exponential decay rate: We

can characterize their performance as decaying at a linear, slow rate.

3.1 Introduction

As we discussed earlier (§1.1), State Machine Replication (SMR) is a classic approach to build-

ing distributed systems that are reliable and guarantee strong consistency [Sch90]. While

this approach lends itself to a broad range of applications, it is interesting to note than most

deployments of SMR are in small system sizes, e.g., three or five replicas for the crash-tolerant

case [ABB+18, CDE+13, Bur06, HKJR10].

According to distributed systems folklore, SMR is too expensive if deployed on more than a

handful of replicas [BP16, CML+06, GKPS16, HKJR10]. Indeed, there is a tradeoff between per-

formance and fault-tolerance, and some performance decay is inherent in SMR [AEMGG+05].

As an SMR system grows in size, it is capable to tolerate more faults—but performance does

not grow accordingly. In fact, performance typically decays with increasing system size. This
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is because the system replicas (or more precisely, a quorum of replicas) must agree on ev-

ery operation. Hence, as the number of replicas increases, the cost for reaching agreement

increases as well.

A few workarounds exist to deal with SMR performance decay. First, some systems employ

SMR to a limited degree. They ensure strong consistency for only a small, critical subset of the

system state (e.g., metadata or configuration), while the rest of the system has a scalable de-

sign under weaker guarantees [ADW10, GGL03, QAB+13]. The critical part of the system builds

on mature SMR systems such as ZooKeeper [HKJR10], etcd [Etc19a, Ong14], Consul [MPS93],

or Boxwood [MMN+04].

A second workaround is sharding [GBKA11, ALvRV13]. In this case, the service state is broken

down into disjoint shards, each shard running as a separate SMR cluster [BP16, CDE+13].

Additional mechanism for cross-shard coordination, such as 2PC [BBC+11], ensures that the

whole system behaves consistently. Yet a third workaround consists in abandoning strong

consistency, so as to eschew SMR altogether [Bre12, Vog09].

Briefly, the purpose of these workarounds is to avoid executing SMR at a larger scale. Conse-

quently, SMR systems have almost never been deployed, in practice, on more than a few repli-

cas, typically three to five [CDE+13]. So today there is not much empirical evidence of SMR

throughput decay as system size grows. For instance, we do not know how ZooKeeper [HKJR10]

or PBFT [CL02] perform with, say, 100 replicas.

This question—of SMR performance decay in practice—is not only of academic interest. For

example, SMR protocols are important in decentralized services, standing at the heart of

digital trust applications (e.g., distributed ledgers) in permissioned environments [ABB+18,

SBV18]. For these applications, SMR protocols are expected to run on at least a few tens of

replicas [CDE+16, Vuk15]. Another example is in a sharded design: Under Byzantine fault-

tolerant models, shards should not be too small, otherwise an adversary may easily compro-

mise the system. In this case, it is critical that each shard comprises tens or hundreds of

replicas [KKJG+17, GKPS16]. But SMR systems struggle from the “SMR does not scale” stigma

and the lack of experiments with increasing system size.

In this chapter we address the void in the literature by deploying and observing how the size

of an SMR system impacts its performance. Our primary goal is to obtain empirical evidence

of how SMR performance decays in practice at larger size. We deploy and evaluate five SMR

systems on up to 100 replicas and report on our results.

The first three systems we study are well-known SMR implementations: ZooKeeper [HKJR10]

and etcd [Etc19a], which are crash fault-tolerant (CFT), and BFT-Smart [BSA14], which is

Byzantine fault-tolerant (BFT). Consistently with previous observations [BP16, CML+06,

HKJR10], we observe that their throughput decays sharply at small scale. The interesting

part is that this trend of sharp decay does not persist. Throughput decay dampens as systems

get larger, so overall their throughput follows an exponential decay rate.
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ZooKeeper, etcd, and BFT-Smart execute most efficiently—obtain best performance—when

deployed at their smallest size, i.e., running on 3 replicas (4 for BFT-Smart). Throughput drops

to 50% of its best value at 11 replicas. When running on 50 replicas, the throughput decays to

almost 10%. On 100 replicas the throughput drops to roughly 6% of its best value. In absolute

numbers, these systems sustain 300 to 500 tps (transactions per second) at 100 replicas on

modest hardware in a public cloud platform. The average latency is below 3.5s, while the 99th

percentile is 6.5s, even for the BFT system.

These three systems are hardened SMR implementations and we choose them for their matu-

rity. We complement the performance observations with a stability study. Briefly, we seek to

understand whether these systems are capable to function despite faults at large scale. More

precisely, we inject a fault in their primary (i.e., leader) replica and evaluate their ability to

recover. We find that ZooKeeper recovers excellently (in a few seconds), indicating that this

system can perform predictably at scale, for instance to implement a replicated system across

hundreds of nodes. The other two systems are slower to recover or have difficulties doing so

at 100 replicas.

The fourth system we investigate is ChainR, based on chain replication [VRS04]. This system

is throughput-optimized, so it helps us delineate the ideal case, namely, a throughput upper

bound. When growing from 3 to 100 replicas, throughput in ChainR decays very slowly, from

15k tps to 11k tps (i.e., to 73% of its best value). If we place replicas carefully on the wide-area

network so as to minimize chain traversal time, ChainR exhibits below 3 seconds latency.

It can be misleading, however, to praise chain replication as the ideal SMR protocol. ChainR

does not suffer from performance decay as severely as others, indeed—but only in graceful

executions (i.e., failure-free and synchronous network). In non-graceful runs, throughput

drops to zero. This protocol sacrifices availability, because it must reconfigure (pausing ex-

ecution) to remove any faulty replica [VRS04]. This system relies on a synchronous model

with fail-stop faults, a strong assumption. Worse still, a single straggler can drag down the

performance of the system, since the chain is only as efficient as its weakest link.

The fifth SMR system we study employs a ring overlay, a generalization of chain overlays. We

call this system Carousel, and we design it ourselves. In contrast to ChainR, this system does

not pause execution for reconfiguration, maintaining availability despite asynchrony or faults.

Unlike prior solutions, Carousel does not rely on reconfiguration [VRS04, VRHS12] nor a clas-

sic broadcast mode [AGK+15, Kne12] for masking faults or asynchrony. Doing so would incur

downtime and hurt performance. Instead, we take the following approach: Each replica keeps

fallback (i.e., redundant) connections to other replicas. When faulty replicas prevent (or slow

down) progress, a correct replica can activate its fallback path(s) to restore progress and main-

tain availability. The goal of this simple mechanism in Carousel is to selectively bypass faults

or stragglers on the ring topology (preserving good throughput).

In a 106-replica system, Carousel sustains 6k tps when there are no faults, and throughput
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decays to 55% of its best value. If F = 21 replicas manifest malicious behavior, then throughput

reaches 4k tps (48% decay). Since Carousel and ChainR are research prototypes, we do not

evaluate their stability, which we leave for future work.

To summarize, in this chapter we investigate how performance decays in SMR systems as we

increase their size. We deploy five SMR systems using at least 100 replicas in a geo-replicated

network. We observe that, indeed, throughput decays in these systems as a function of system

size, but this decay dampens. Our experiments with chain- and ring-replication show that

there are ways to mitigate throughput decay in SMR, informing future designs.

We organize the rest of this chapter as follows. We first provide more background on SMR, in-

cluding the systems under our study (§3.2), and then discuss our methodology for evaluating

these systems (§3.3). Next, we present our observation on the performance decay of five SMR

systems (§3.4), and conclude (§5.2). We take a rather unconventional approach of presenting

first our observations on Carousel (in §3.4), and only in the subsequent chapter discussing its

design (Chapter 4).

3.2 Background

SMR systems often employ a modular design. In Paxos terminology, for instance, there is a

distinction between proposers, acceptors, and learners (or observers) [VRSS15]. Proposers

and acceptors handle the agreement protocol, while learners execute operations. Throughout

this chapter we are interested in the agreement protocol.

While execution can dominate the latency and cost in SMR systems [YMV+03], this step is not

subject to performance decay. The agreement protocol is the one that typically encounters

inefficiencies as systems get larger. As we mentioned, certain applications require agreement

to execute on tens or hundreds of replicas, e.g., for decentralized services, or to ensure that

shards are resilient against a Byzantine adversary [CDE+16, KKJG+17, GKPS16, Vuk15].

When increasing the size of an SMR system, some performance degradation is unavoidable.

This is inherent to replicated systems that ensure strong consistency, because a higher degree

of replication (i.e., fault-tolerance) entails a bigger overhead to agree on each client operation.

But how does performance decay—in a linear manner? Or does the decay worsen or does it

lessen when system size increases?

Both throughput and latency are vital measures of performance, and it is well known that

these two are at odds with each other in SMR systems [Lam03]. Our interest is on throughput

decay, but we also cover latency results.

3.2.1 SMR Systems in Our Study

Our study covers five SMR protocols.
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ZooKeeper. This system is based on ZAB, an atomic broadcast algorithm [JRS11], and is im-

plemented in Java. We study ZooKeeper rather than ZAB directly, as ZAB is tightly integrated

inside the ZooKeeper system.

etcd. This system is implemented in Go and is based on the Raft consensus algorithm [Ong14].

ZAB and Raft share many design points [Ong14], and given their similarities, we expect that

ZooKeeper and etcd exhibit similar performance decay in practice. Both of these systems are

actively maintained and widely used in production. They have found adoption in cluster and

multi-datacenter (WAN) networks alike [Etc19c, AGTK15, BJS11, Fou12].

BFT-Smart. The third system we study is implemented in Java and provides BFT guaran-

tees [BSA14]. BFT-Smart is actively used and has been maintained by a team of developers

for over eight years, being a default choice for prototyping research algorithms in several

groups [Bft19a, LVC+16, PLL+15]. This system is patterned after the seminal PBFT consensus

algorithm of Castro and Liskov [CL02].

ZooKeeper, etcd, and BFT-Smart employ a leader-centric design [BMSS12, Ong14], i.e., they

rely on the leader replica to carry most of the burden in the agreement protocol. Specifically,

the leader does not only establish a total-order across operations, but also disseminates (via

broadcast) those operations to all replicas. Typically, the network overlay has the shape of a

star, with the leader in the center. This design simplifies the SMR algorithm [Ong14]. The dis-

advantage is that the leader replica (its CPU or bandwidth) can become the bottleneck [JRS11].

We choose these three systems for their maturity: These are production-ready (ZooKeeper

and etcd) or seasoned implementations (BFT-Smart). We also study the stability of these three

systems, i.e., executions where the leader replica crashes. Prototypes, like the next two sys-

tems we consider, may deliver better performance, but often do so without vital production-

relevant features which, once implemented, can hamper performance.

The fourth and fifth SMR systems we wrote ourselves: ChainR, our prototype of chain repli-

cation [VRS04], and Carousel, a ring-based replication protocol with BFT guarantees. Both

are written in Go. Chain replication, and in particular its ring-based variants, are provably

throughput-optimal in uniform networks [GLPQ10, JMPSP17]. In contrast to leader-centric

protocols, these systems avoid the bottleneck at the leader. This is because the network over-

lay is more efficient, balancing the burden of dissemination across system replicas.

ChainR. We use this system as a baseline, to obtain an ideal upper bound—and what other

SMR systems could aim for—in terms of both absolute throughput and throughput decay. We

faithfully implement the common-case with pipelining and batching [Ong14, SS12, VRS04].

ChainR works in a fail-stop model, i.e., assumes synchrony to mask crash faults [VRS04], un-

like the other four systems we study. Mechanisms to make chain- or ring-based systems fault-

tolerant include an external reconfiguration module, or a special recovery mode [AGK+15,

ALvRV13, Kne12, VRHS12]. Such mechanisms degrade availability, as even simple crashes put
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the system in a degraded mode, possibly for extended periods of time.

Carousel. This system represents our effort in designing a BFT protocol optimized for through-

put, which can withstand sub-optimal conditions (e.g., faults, asynchrony) and hence offer

improved availability. We briefly describe Carousel below, and additionally dedicate a full

chapter for more details (Chapter 4).

Carousel is an asynchronous ring-based SMR system. When a fault occurs in Carousel, we

mask this by temporarily increasing the fanout at a particular replica. This is in contrast to

prior ring- or chain-based designs, which resort to a recovery mode or reconfiguration.

Every replica in Carousel has a default fanout of 1, i.e., it forwards everything it receives to

its immediate successor on ring. In the worst case, F consecutive replicas on the ring can be

faulty. In this case, the predecessor of all these nodes (a correct replica) increases its fanout

to F +1, bypassing all F faults. This way, the successor of these faulty nodes still receives all

updates propagating on the ring, and progress is not interrupted. The system throughput

deteriorates when this happens, but not as badly as that of broadcast-based solutions, where

one of the replicas—the leader—has a fanout of 2F +1 (or 3F +1 for BFT) [CL02, HKJR10].

3.3 Methodology

We now discuss the testbed for our study (§3.3.1), details of the workload (§3.3.2), as well as

the workload suite we use to conduct experiments (§3.3.3).

3.3.1 Testbeds

We consider as testbed the SoftLayer public cloud platform spanning multiple datacenters [Sof].

We use virtual machines (VMs) equipped with 2 (virtual) CPU cores and 4GB RAM. We use

low spec-ed VMs to gain insight in SMR performance on commodity hardware. In all our tests

we place each client and replica in a separate VM. This separation avoids unnecessary noise

in our results, which would happen if there was contention for local resources.

Network. The bandwidth available between different nodes, either clients or replicas, is set

at 100Mbps. Latencies in SoftLayer range from under 10ms to almost 200ms, depending on

distance. We consider nine regions of North, Central, and South America. We use ping to

measure the inter-regional latencies (which are symmetric), and present our results in Ta-

ble 3.1.

Node placement. As Table 3.1 illustrates, there is a large disparity in cross-regional latencies.

Consequently, replica and client placement across regions can impact performance. By de-

fault, we always place all clients in Washington. Spreading clients randomly has no benefit,

and would introduce unnecessary variability in the results. For ZooKeeper, etcd, and BFT-

Smart, we place replicas randomly across the nine regions.
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MON TOR DAL SEA SJC HOU MEX SAO
WDC 15 22 31 56 60 39 56 115
MON 9 38 61 64 43 63 123
TOR 30 53 56 37 55 124
DAL 40 36 8 25 143
SEA 18 48 65 174
SJC 44 56 195
HOU 30 136
MEX 167

Table 3.1 – Round-trip latencies (msec) between regions in SoftLayer. The regions are:
Washington (WDC), Montreal (MON), Toronto (TOR), Dallas (DAL), Seattle (SEA), San Jose

(SJC), Houston (HOU), Mexico (MEX), and Sao Paolo (SAO).

Replica placement is particularly important for chain- or ring-based systems. For instance, in

ChainR, client requests propagate from one replica to another, starting from the head of the

chain until it reaches the tail; the tail responds to clients. If we distribute replicas randomly,

then requests will pass back and forth between regions, accumulating latencies on the order of

seconds or worse. Random replica placement in ChainR is unreasonable. Instead, successive

nodes in the chain should be clustered in the same region, and the jumps across regions

should be minimized, i.e., the latency for traversing the chain should be minimal.

We take a simple approach to replica placement for ChainR and Carousel. We start with Wash-

ington, and then traverse the continent from East to West and North to South—i.e., counter-

clockwise—as follows: (1) Washington, (2) Montreal, (3) Toronto, (4) Dallas, (5) Seattle, (6) San

Jose, (7) Houston, (8) Mexico, and (9) Sao Paolo. Each region hosts a random number of repli-

cas between 8 and 12. Note that placing clients in Washington does not give any advantage to

ChainR and Carousel, since each client request has to traverse the whole network.

While this is not the optimal method to place replicas, it is simple and yields surprisingly

good results (§3.4.1). More complex alternatives exist to our heuristic-based solution. Indeed,

optimizing placement in geo-replicated settings is useful not only in cases such as ours, but

also to minimize service costs or optimize other metrics [WBP+13].

Operating system and software. All machines in our study run Ubuntu 14.04.1x64. For

Apache ZooKeeper, we use v3.4.5 [Zoo14]. We install etcd v2.3.7 directly from its reposi-

tory [Etc19b]. For BFT-Smart we use v1.2 [Bft19b].

3.3.2 Workload Characteristics

The goal of our workload is to stress the central part of SMR systems, their agreement algo-

rithm. In practice, this algorithm is also in charge of replicating the request payload (i.e.,

blocks of transactions) to all replicas. Clients send requests of 250 bytes, inspired from a Bit-

coin workload which is typically considered when the peak throughput is discussed [CDE+16].

23



Chapter 3. Observing the Performance Decay of State Machine Replication

Requests are opaque values which replicas do not interpret. The execution step consists of

simply storing the payload of each request in memory. We omit having an explicit execu-

tion step which is application-dependent. This step is often embarrassingly parallel, and

optimizations at this level are orthogonal to our observations [ADP18, KWQ+12].

Local Handling of Requests. The component which handles requests differs slightly among

the systems we consider. For instance, ZooKeeper and etcd ensure persistent storage of re-

quests by writing them to a file system, whereas the other systems do not have a persistence

layer. To ensure a fair comparison, we mount a tmpfs filesystem and configure ZooKeeper

and etcd to write requests to this device. In BFT-Smart we handle requests via a callback,

which appends every request to an in-memory linked list. ChainR and Carousel simply log

each request to an in-memory array (i.e., Go slice).

Batching. We do not optimize the batching configuration. This is because different system

sizes usually require different batch sizes to optimize throughput [MXC+16]. Moreover, batch-

ing is often an implementation detail hidden from users, e.g., etcd hardcodes the batch size

to 1MB [Etc19d]. Similarly, batching in ZooKeeper is not configurable; this system processes

requests individually, and batching seems to be handled entirely at the underlying network

layer (Netty). In BFT-Smart we use batches of 400, the default. In ChainR and Carousel we

are more conservative, allowing up to 10 requests per batch, since these systems are already

throughput-optimized at their network overlay level.

It is well-known that batching affects the absolute throughput of a system. We are primar-

ily interested, however, by the throughput decay function of SMR systems. We do not seek

to maximize absolute throughput. Prior work has shown that batching does not affect the

throughput decay, e.g., in BFT SMR systems [CML+06, §6]. In light of this, we expect that the

throughput decay in each system evolves independently of batch size.

3.3.3 Workload Suite

Our workload suite has two parts. We use (1) a workload generator that creates requests and

handles the communication between clients and each SMR service. We also use (2) a set of

scripts to coordinate the workload across all clients and control the service-side (e.g., restart

between subsequent experiments). The workload generator differs across SMR systems, since

each system has a different API. The coordinating side is common to all systems.

The main components of the workload generator are a client-side library, which abstracts

over the target system, and a thread pool, e.g., using the multiprocessing.Pool package in

Python, or java.util.concurrent.Executors in Java. The pool comprises parallel work-

load generators in each client machine. For ZooKeeper, etcd, ChainR, and Carousel, the

workload generator is a Python script. BFT-Smart is bundled with a Java client-side library;

accordingly, for this system, we write the workload generator in Java.

As mentioned earlier, we place all client nodes in Washington. We use 10 VMs, each hosting
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a client. Each client runs the workload generator instantiated with a predefined thread pool

size. Depending on the target system and its size, we use between 10 and 180 threads per

client to saturate the system and reach peak throughput. Beside the number of threads, the

workload generator accepts a few other parameters, notably: IP and port of a system replica

(this is the leader in ZooKeeper, etcd, or BFT-Smart; the head of the chain for ChainR; or a

random replica for Carousel); the experiment duration (30 seconds by default); or the size of

a request (250 bytes in our case).

It is important that clients synchronize their actions. For instance, client threads should

coordinate to start simultaneously. Also, we restart and clean-up the service of each system

after each experiment, and we also gather statistics and logs. The scripts for achieving this

are common among all systems. We use GNU parallel [T+11] and ssh to coordinate the

actions of all the clients. To control the service-side, we use the Upstart infrastructure [Ups].

3.4 Empirical Study

We now present our observations on the performance decay of five SMR protocols. We break

this section in two parts: performance (§3.4.1) and stability results (§3.4.2).

As mentioned before, we use 10 clients, each running multiple workload threads. Upon con-

necting to a system replica, clients allow for a 20 seconds respite to ensure all connections

establish correctly. Then all client threads begin the same workload. Each execution runs for

30 seconds (excluding a warm-up and cool-down time of 15 seconds each) and each point

in the performance results is the average of 3 executions. For stability experiments we use

executions of 60 seconds, with a maximum of up to 120 seconds.

3.4.1 Performance of SMR at 100+ Replicas

We first discuss throughput and then latency. For throughput, we report on the peak value,

i.e., throughput when the system begins to saturate, before latency surges. We compute this

as the sum of the throughput across all 10 clients. We also plot the standard deviation, though

often this is negligible and not visible in plots.

When reporting latency, we give the average value at peak throughput, as observed by one

of the clients. Since all clients reside in Washington and connect to the same replica, they

experience similar latencies. The exception to this is in Carousel, where clients connect to

random replicas of the system; to be fair, we present the latency of a client connecting to a

replica in Washington.
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Figure 3.1 – Throughput decay for five SMR systems on a public wide-area cloud platform.
For enhanced visibility, we use separate graphs for each system. We also indicate actual

throughput values alongside data points. Notice the different axes.
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Throughput

Figure 3.1 presents our observations on the throughput decay in five SMR systems, as we

increase their size. For readability, we also indicate throughput values on most data points.

We start discussing the three mature systems—ZooKeeper, etcd, and BFT-Smart. For ZooKeeper

and etcd, which are CFT, we start from a minimum of 3 replicas and then grow each system in

increments of 4 until we reach 101 replicas. For BFT-Smart, we start from 4 replicas—the min-

imum configuration which offers fault-tolerance in a BFT system—and we use increments of

6 replicas up to N = 100. Since we use different increments and start from different system

sizes, the x-axes in Figure 3.1 differ slightly across these systems. In terms of fault thresholds,

F = bN−1
2 c = 50 for CFT systems, and F = bN−1

3 c = 33 for BFT-Smart.

Roughly speaking, the throughput in ZooKeeper, etcd, and BFT-Smart is inversely propor-

tional to system size N (first three rows in Figure 3.1). Analytically the slopes approximate a

O(1/N ) function. As we mentioned, these three systems are leader-centric: The leader replica

poses a bottleneck by having to disseminate operations to all N nodes. This bottleneck in

SMR is well-known [AGK+15, KAD+07, MXC+16], and prior studies reveal this sharp decline

in throughput at smaller system sizes [BSA14, CML+06, HKJR10]. If this initial trend would

continue, then throughput would quickly decay. What happens, however, is that the trend

tapers off. Notably from 20 replicas onward, throughput decays more and more gracefully.

If we look at the throughput function beyond a few tens of replicas, we notice that it follows an

exponential decay rate. The sharpest decline is at small system sizes (consistent with earlier

observations [CML+06, HKJR10]) but as each system grows, the decay lessens.

We give several intuitions behind the exponential throughput decay rate. First, the higher

the throughput of a system is, the more expensive it is to maintain that throughput with a

growing system size. For instance, if the throughput is 380 tps (transactions per second) at

N = 95 replicas and we grow the system by 1 replica, the leader has to send roughly w ·380

additional messages (where w is typically 2 or 3, denoting the number of protocol phases). If

throughput is 5K tps at N = 3 and we add 1 additional replica, the leader has to send roughly

w ·5K additional messages to sustain the same throughput.

Throughput decay dampens as we grow each system because every additional replica incurs

an amount of work depending on the current system size. Adding a replica when N = 3 is

more costly than adding a replica when N = 100, given that there are some fixed processing

overheads at the leader which get amortized with system size (e.g., message serialization). We

also note that in a larger system there are more tasks (such as broadcast) executing in parallel.

Finally and most importantly perhaps, throughput saturates at higher latencies when the

systems are larger (see §3.4.1), since the processing pipeline depends on more replicas. In

other words, as each system grows, there is a tendency to trade latency for throughput.

We observe that absolute throughput numbers at 100 replicas are in the same ballpark for
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these three SMR systems, ranging from 311 to 490 tps. As a side note, this is 45− 70x the

current peak theoretical throughput of Bitcoin, suggesting that we can use SMR effectively in

mid-sized blockchains, e.g., 100 replicas. If we extrapolate from our observation on the decay

rate, it follows that these systems can match Bitcoin peak throughput at about 4500−6700

replicas. This is an interesting observation, as the Bitcoin network has about the same size

(circa late 2016 [CDE+16]). We interpret this as a simple coincidence, however.

Interestingly, BFT-Smart almost matches the performance of its CFT counterparts. This sug-

gests that BFT SMR protocols decay (in terms of throughput) not much quickly than CFT

protocols, regardless of typical quadratic communication complexity of BFT. All three sys-

tems show relatively stable performance, and consequently the standard deviations bars are

often imperceptible in our plots.

ChainR. We deploy ChainR using the node placement heuristic presented earlier (§3.3.1). The

throughput evolution results for this system are in the fourth row of Figure 3.1; please note the

y-axis range. As expected, ChainR preserves its throughput very well with increasing system

size [AGK+15]. So long as the system stays uniform—i.e., without reducing replica computing

performance or bandwidth—the throughput degrades very slowly and at a linear rate. At

N = 101, the system sustains 73% of the throughput it can deliver when N = 3. This is not

entirely surprising, as adding replicas to ChainR does not increase the load on any single node

(in the first order of approximation), including the leader (i.e., the head replica).

To conclude, chain replication maintains throughput exceptionally well. This system, how-

ever, sacrifices availability in the face of faults or asynchrony. Additionally, the chain is as

efficient as its weakest link. Indeed, we repeatedly encountered in our experiments cases with

zero throughput. Most often, this happened due to a replica crashing, but also in a few cases

due to misconfiguration of a successor, therefore leaving the tail node unreachable.

Carousel. This ring-based system can maintain availability despite faulty (or straggler) nodes.

Accordingly, we have two measurements: (1) a common case showing the throughput during

well-behaved executions, and (2) a sub-optimal (faulty) case when F faults manifest. Since

Carousel tolerates up to one-fifth faulty replicas [MA06], we set F = 21.

The faulty replicas occupy successive positions on the ring topology, and collaboratively they

aim to create a bottleneck in the system. They do so by activating fallback paths on the ring

structure. Concretely, they request from the same correct replica—the target—to accept traffic

from each of them and pass that traffic forward on the ring. The target is the successor of the

last faulty node. To make matters worse, the target is also the leader replica (we call this the

sequencer, described in §4.1.1). We note that faulty replicas might as well stop propagating

updates; but this has a lesser impact on throughput, as the target node would need not process

the messages from all faulty nodes. This scenario is among the worst that can happen in terms

of throughput degradation to Carousel, barring a full-fledged DDoS attack or a crashed leader

(in the latter case progress would halt in any leader-based SMR algorithm).

28



3.4. Empirical Study

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4  7  1
0

 1
3

 1
6

 1
9

 2
2

 2
5

 2
8

 3
1

 3
4

 3
7

 4
0

 4
3

 4
6

 4
9

 5
2

 5
5

 5
8

 6
1

 6
4

 6
7

 7
0

 7
3

 7
6

 7
9

 8
2

 8
5

 8
8

 9
1

 9
4

 9
7

 1
0
0

 1
0
3

L
a
te

n
c
y
 a

t 
p
e
a
k
 t
h
ro

u
g
h
p
u
t

 (
m

s
e
c
)

System size (number of replicas)

ZooKeeper
etcd

BFT-Smart
chainr

Carousel

Figure 3.2 – Average latencies (at peak throughput) for experiments with SMR systems.

The results are in the fifth row of Figure 3.1. The throughput decays similarly in the good and

faulty cases; in absolute numbers there is a difference of ∼3k tps at every system size. An-

other way to look at it is that faulty nodes cause on average 30% loss in throughput. Carousel

degrades less gracefully than ChainR, as it includes additional BFT mechanism (§4.1.1). Nev-

ertheless, the decay rate in Carousel follows a linear rate, and comes within 60% of ChainR

throughput (which we regard as ideal, assuming fault-free executions). In contrast to leader-

centric solutions, the chain- and ring-replication systems avoid the bottleneck at the leader

and, as expected, exhibit less throughput decay, having more efficient dissemination overlays.

Latency

We present the latency results at peak throughput for all five systems in Figure 3.2. At small

scale, CFT systems (ZooKeeper and etcd) exhibit latencies on the order of tens of milliseconds.

In contrast, BFT-Smart entails an additional phase (round-trip) in the agreement protocol

for every request, which translates into higher latencies. (Batching helps compensate for this

additional phase in terms of throughput.)

We remark on the high latency of ChainR. This is to be expected, since this system trades

throughput for latency, but it is also amplified by an implementation detail. Specifically, each

client runs an HTTP server, waiting for replies from the tail (a distant replica in Sao Paolo).

The server is based on the cherrypy framework (written in Python, and unoptimized). At low

load, the latency in ChainR is similar to Carousel. But in ChainR clients create a larger volume

of requests to saturate the system and also run the HTTP server, elevating the load and latency

on each client. (In fact, in an earlier version of ChainR, clients were the bottleneck.)

The average latency across all SMR systems does not surpass 3.5 seconds. We only include

the latency for the good case of Carousel, but even in the faulty case, latency does not exceed

3.2s. In terms of 99th percentiles, the worst cases are 6.5s for BFT-Smart (N = 100), and 6s for

the faulty-case of Carousel (N = 107).
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3.4.2 Stability experiments

Our goal here is to evaluate if mature SMR systems recover efficiently from a serious fault

when running at large scale. Concretely, we crash the leader replica (triggering the leader-

change protocol) and measure the impact this has on throughput. We cover ZooKeeper, etcd,

and BFT-Smart; the other systems (ChainR and Carousel) have no recovery implemented.
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Figure 3.3 – Stability experiments where we crash the primary (i.e., leader), testing the
leader-change protocol for ZooKeeper and etcd (N = 101), as well as for BFT-Smart (N = 100).

When the leader in an SMR system crashes, this kicks off an election algorithm to choose a

new leader. We study the stability of this algorithm—whether it works at scale and how much

time it requires. These tests are rather about the code maturity in these systems rather than

their algorithmic advantages. Our results are in Figure 3.3, describing two runs: (1) a healthy

case, and (2) a case where we crash the leader (i.e., primary). During the first 20s clients simply

wait, and then they start their workload; we crash the leader 20s later. The point where we

crash the leader is obvious, around 40s, as the throughput drops instantly to zero.

ZooKeeper has consistently the fastest recovery. The throughput reaches its peak within just a

few seconds after the leader crashes, consistent with earlier findings at smaller scale [SRMJ12].

This system has an optimization so that the new leader is a replica with the most up-to-date

state, which partly accounts for fast recovery [Ong14]. In etcd recovery is slower: It can take

30



3.4. Empirical Study

up to 40 seconds for throughput to return to its peak. The election mechanism in etcd is

similar to that of ZooKeeper [Ong14], and the heartbeat parameters of these two systems are

similar as well (1 and 2 seconds, respectively). The difference in stability between ZooKeeper

and etcd can also stem from an engineering aspect, as the former system has a more stable

codebase (started in 2007) compared with the latter system (started in 2013).

For BFT-Smart, we allowed the system up to 120 seconds to recover but throughput remained

0. We also tried with smaller sizes, and found that N = 88 is the largest size where BFT-Smart

manages to recover, after roughly 10s. Finally, we remark that we were able to reproduce all

these behaviors across multiple (at least 3) runs, so these are not outlying cases.
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4 Carousel: Mitigating Throughput De-
cay in State Machine Replication

and all alone

a drop in a waterfall dropping

falls into an eternal flow

— Vlado Škafar [Šk15]

In this chapter we present the Carousel SMR system. We first describe the common-case pro-

tocol (§4.1), and then discuss the reconfiguration algorithm (§4.2). We defer the correctness

discussion of Carousel to the appendix of this dissertation (Appendix A).

An interesting design aspect of Carousel is how the ring overlay masks faults. We achieve this

by keeping redundant paths on the ring overlay, thus ensuring availability despite faults or

asynchrony. We believe of equal interest is also the agreement protocol of Carousel, which is

essentially the FaB consensus algorithm of Martin and Alvisi [MA06] adapted to a ring overlay.

We choose to pattern the agreement protocol of Carousel after FaB due to the interesting

tradeoff this offers. FaB reduces the latency of BFT agreement from three steps to two [MA06].

This is appealing in our ring-based topology, because each step entails a complete traversal

of the ring. Fewer traversals means higher throughput, lower latency, and a simpler protocol.

This benefit comes to the detriment of resilience, however: The system needs larger quorums

to tolerate faults. Carousel assumes N = 5F +1 replicas, whereas optimal BFT systems tolerate

one-third faults, i.e., N = 3F +1 [CL02]. As in prior solutions, our agreement protocol relies

on the existence of a sequencer (i.e., a leader) assigning sequence numbers to operations.

4.1 Carousel Common-Case Protocol

Figure 4.1 shows an overview of Carousel in a system of N = 6 replicas. The replicas, labeled

from 0 to 5, are organized in a ring overlay. Note that each replica in this overlay has a certain

successor and predecessor replica. One of the replicas (node 0) is the sequencer. By default,

broadcast messages disseminate throughout the whole system from one replica to its imme-
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Figure 4.1 – Overview of Carousel in a system of 6 replicas. Clients interact with the system
via a thin API. Underlying this API, there is a reliable broadcast scheme executing along a ring

overlay network. In this overlay, each replica has a successor and predecessor. There is a
specific replica which carries the role of a sequencer (replica 0 here).

diate successor. Additionally, fallback (redundant) paths exist, to ensure availability.

The interface of Carousel is log-based: Each replica exposes a simple API allowing clients to

read from a totally-ordered log, and to Append new entries to this log. Under this API, all

replicas implement a reliable broadcast primitive providing high throughput and availability.

We discuss the Append operation first (§4.1.1), and then the reliable broadcast layer (§4.1.2).

4.1.1 Append Operation

To add an entry e to the totally-ordered log, clients invoke Append(e) at any replica i . The

operation proceeds in two logical phases, as follows.

1. Data—Replica i broadcasts entry e to all correct replicas using the RingBroadcast prim-

itive of the underlying broadcast layer.

2. Agreement—A BFT agreement protocol executes. The sequencer proposes a sequence

number (i.e., a log position) for entry e, and correct replicas confirm this proposal. Af-

ter executing the agreement phase for this entry, replica i notifies the client that the

operation succeeded.

Listing 4.1 shows the implementation of the Append operation. First, replica i broadcasts a

〈DATA,e〉 message, as shown on line 2. This corresponds to the first logical phase of the Append

operation. We say that this broadcast message is of type data and has payload e. As this

message disseminates throughout the system, each correct replica triggers the RingDeliver

callback to deliver the data message (line 4 of Listing 4.1).
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1 func Append(e):
2 RingBroadcast(〈DATA, e〉) // Disseminates a data message with payload ’e’

4 callback RingDeliver(id, 〈type, payload〉):
5 if (type == DATA):
6 pending[id].entry = payload
7 proposeAgreementMsg(id, payload) // Executes ONLY at sequencer

8 else if (type == AGREEMENT):
9 handleAgreementMsg(payload) // The payload is a triplet

11 // Executes ONLY at the sequencer

12 func proposeAgreementMsg(id, e):
13 hash = Hash(nextSeqNr . id . e)
14 // Disseminate the agreement message

15 RingBroadcast(〈AGREEMENT, nextSeqNr++, id, hash〉)

17 func handleAgreementMsg(sn, id, hash):
18 validate(sn, id, hash) || return
19 pending[id].sn = sn
20 pending[id].hash = hash
21 pending[id].confirmations++
22 // Disseminate our own confirmation for this sequence number

23 RingBroadcast(〈AGREEMENT, sn, id, hash〉)
24 if (pending[id].confirmations == 4F+1):
25 addToStableLog(id)

Listing 4.1 – A high-level algorithm describing the Append operation in Carousel.

The delivery callback always provides two arguments: (1) an identifier id, and (2) the actual

message. The underlying broadcast layer assigns the id, which uniquely identifies the associ-

ated message. We discuss identifiers in further detail later, but suffice to say that an identifier

is a pair denoting the replica which sent the corresponding message plus a logical timestamp

for that replica (§4.1.2). The actual message, in this case, is a data message with payload en-

try e. Upon delivery of any data message, each correct replica stores this entry in a pending

set. Note that this set is indexed by the assigned id (line 6).

The agreement phase starts when the sequencer replica delivers the data message with e.

After saving e in the pending set, the sequencer also proposes a sequence number for e by

broadcasting a 〈AGREEMENT, sn, i d ,hash〉 message (line 7 and lines 12–15). It would be waste-

ful (in terms of bandwidth) to include the whole entry in this agreement message; instead,

the sequencer simply pairs the entry id with a monotonically increasing sequence number

sn (called nextSeqNr on line 15). The hash in the agreement message is computed on the

concatenation of the assigned sequence number, the entry id, and the entry e itself.
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Figure 4.2 – The unfolding of an Append(e) operation in Carousel. The client contacts replica
4, which broadcasts a data message to all replicas. Once this message reaches the sequencer

(node 0), this replica broadcasts an agreement message. Thereafter, all replicas broadcast
their own agreement message. The entry e becomes stable once a replica observes at least

4F +1 = 5 matching agreement messages for that entry.

Each replica delivers the agreement message of the sequencer trough the same RingDeliver

callback of the broadcast layer. After any replica j delivers the agreement message, then j

broadcasts its own agreement message with the same triplet (sn, id, hash), as described on

line 23. Prior to doing so, replica j validates the hash and saves the assigned sequence number

and hash in the pending log (lines 17–20).

The validation step (line 18) refers to several important checks: that the hash correctly matches

the sequence number sn, identifier id, and entry content; that this id has no other proposal for

a prior sequence number; that each number sn in an agreement message has a correspond-

ing proposal for that sn from the sequencer replica; and that different agreement messages

confirming the same sn originate from distinct replicas.

We say that a replica commits on log entry e after it gathers sufficient (4F+1) confirmations for

that entry. The entry then becomes stable at that replica (line 25). By the reliability of the Ring-

Broadcast dissemination primitive, if the sequencer is correct and proposes a valid sn, then

the entry eventually becomes stable at all correct replicas. As proved in prior work [MA06],

this protocol has optimal resilience for two-step BFT agreement, i.e., N = 5F +1 is the smallest

system size to tolerate F faults with two-step agreement.

Informally, as the initial agreement message (from the sequencer) propagates on the ring, it

produces a snowball effect: Each replica delivering this message broadcasts its own agreement

message, confirming the proposed sequence number. Figure 4.2 depicts this intuition.
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4.1.2 Reliable Broadcast in a Ring Overlay

In a conventional ring-based broadcast, each replica i expects its predecessor i -1 to forward

each message which i -1 delivers [GLPQ10, JMPSP17]. Messages travel from every replica to

that replica’s successor. Intuitively, this scheme is throughput-optimal because it balances

the burden of data dissemination across all replicas [GLPQ10]; the downside, however, is that

asynchrony (or fault) at any replica can affect availability by impeding progress.

To maintain high-throughput dissemination across the ring overlay despite asynchrony or

faults, in Carousel we strengthen the ring so that each replica connects with F +1 total pre-

decessors. A replica has one default connection—with the immediate predecessor—and up

to F fallback connections—with increasingly distant predecessors. The topology we obtain

is essentially an F -connected graph. This graph ensures connectedness (availability) despite

up to F faults.

In Figure 4.1 for instance, replica 4 should obtain from replica 3 all messages circulating in the

system. If replica 3 disrupts dissemination and drops messages, however, then replica 4 can

activate the fallback connection to replica 2. By default, communication on this fallback path

is restricted to brief messages called state vectors, which replica 2 periodically sends directly

to replica 4.

More generally, replica i expects a state vector from all F of its fallback predecessors, i.e.,

from replicas i -2, i -3, .... A state vector is a concise representation of all messages delivered by

the corresponding fallback replica. If replica i notices that its immediate predecessor i -1 is

omitting messages (and that the state on fallback replica i -2 is steadily growing), then i sends

a 〈ACTIVATE, svi 〉 message directly to replica i -2, where svi is the state vector of replica i .

Replica i -2 interprets the activate message by sending to replica i all messages which i -2 has

delivered and are not part of state vector svi . Thereafter, replica i -2 continues sending to i any

new messages it delivers. In the meantime, replica i -2 also continues forwarding messages as

usual to its immediate successor replica i -1. In case replica i -1 restarts acting correctly and

forwards messages to i , then replica i can send a 〈DEACTIVATE〉 message to i -2.

Alternatively, replica i can request individual pieces of the state from i -2, e.g., in case replica

i -1 is selectively withholding messages from i . Since every replica has F +1 total connections,

Carousel can tolerate up to F faults, regardless whether these faults are successive on the ring

or dispersed across the system. This mechanism based on fallback connections is strictly to

improve availability (i.e., delivery of broadcast messages) relying on timeouts, but does not

affect the safety of the protocol (Appendix A.1).

The state vector svi at some replica i is a vector of timestamps with one element per replica.

The element on position j denotes the latest message broadcast by replica j which replica

i delivered. Concretely, each such element is a timestamp, i.e., a logical counter attached to

any message which a replica sends upon invoking RingBroadcast. For instance, whenever
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replica j calls RingBroadcast(m), the broadcast layer tags message m with a unique id, in the

form of a pair { j , t s}, where j denotes the sender replica and t s is a monotonically increasing

timestamp specific to replica j . 1 As we explained earlier, the id also plays an important role

in the Append operation (§4.1.1).

When replica i delivers message m with id { j , t s} from replica j via the RingDeliver callback,

replica i updates its state vector svi to reflect timestamp t s for position j. Status vectors are

inspired from vector clocks [Fid88, Mat88]. The notable difference to vector clocks is that

a replica does not increment its own timestamp when delivering or forwarding a message:

This timestamp increments only when a replica sends a new message—typically a data or a

agreement message—by invoking RingBroadcast. With state vectors, our goal is not to track

causality or impose an order [GLPQ10], but to ensure no messages are lost (i.e., reliability).

One corner-case that can appear in our protocol is when a malicious sender replica attempts

to stir confusion using incorrect timestamps. In particular, such a replica i can attach the

same timestamp to two different messages: m1 with {i , t s1} and m2 with id {i , t s1}. Another

bad pattern is skipping a step in the timestamp by broadcasting first {i , t s1} and then {i , t s3}.

In practice, communication between any two replicas relies on FIFO links (e.g., TCP), so

correct replicas can simply disallow—as a rule—gaps or duplicates in messages they deliver.

FIFO links, however, do not entirely fix the earlier problem. It is possible that some replica

delivers m1 with timestamp t s1, while a different replica delivers m2 for this same timestamp.

But note that this will not cause safety issues. The replicas can only agree on either of m1

or m2: When the sequencer proposes a sequence number for id {i , t s1}, it also includes a

hash of the corresponding message, either m1 or m2. Even if the sequencer is incorrect

and proposes sequence numbers for both m1 and m2 (a poisonous write [MA06]) only one

of these two messages can gather a quorum and become stable. To conclude, timestamps

restrict acceptable behavior and—when coupled with the sender replica’s identity—provide a

unique identifier for all messages circulating in the system, which helps ensure reliability.

4.2 Carousel Reconfiguration

The reconfiguration sub-protocol in Carousel ensures liveness by changing the sequencer

when this replica misbehaves. This protocol is, informally, an adaptation of the FaB [MA06]

recovery mechanism (designed for an individual instance of consensus) to SMR.

4.2.1 Preliminaries

Reconfiguration concerns the agreement algorithm in Carousel. Neither the data phase (of

the Append operation) nor the broadcast layer need to change. We adjust the common-case

1Just like sequence numbers, timestamps are dense [CL02]: This prevents replicas from exhausting the space
of these numbers and makes communication steps more predictable, which simplifies dealing with faulty behav-
ior [AAC+05].
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protocol of §4.1.1 to accommodate reconfiguration as follows:

1. Replicas no longer agree on a sequence number sn for every Append operation. Instead,

each instance of the agreement protocol for a given sequence number is tagged with

a configuration number, so that replicas now agree on a tuple {cn, sn}. In other words,

agreement messages now have the form 〈AGREEMENT, {cn, sn}, i d ,hash〉. The concept

of proposal numbers in FaB [MA06] or that of view numbers in PBFT [CL02] is analogous

to configuration numbers in Carousel; briefly, these serve the purpose of tracking the

number of times the sequencer changes.

2. We modify the hash in agreement messages to also include the configuration number.

3. Our common-case protocol assumes that, for every sequence number sn, a replica

only ever accepts (i.e., gives its vote for) a single agreement message, namely, the first

valid agreement message they deliver for that sn from the sequencer. To account for

configuration numbers, a replica is now allowed to change its mind, and accept another

agreement message if the sequencer changed (i.e., in a different configuration number).

Configuration numbers in Carousel start from 0. In FaB, during a reconfiguration, the new

sequencer is elected using a separate leader election protocol. In Carousel, we do not rely

on a leader election protocol; instead, every time the configuration number increases, the

sequencer role changes deterministically, so that the new sequencer is the successor of the

previous sequencer, in a round robin manner.

We note that the ring-based broadcast algorithm (§4.1.2) that replicas employ during common-

case requires no modification due to reconfiguration. While executing reconfiguration (de-

scribed next), however, replicas do not use the ring-based broadcast primitive. If reconfigura-

tion is executing, this means that the current sequencer is faulty and hence the system is expe-

riencing no progress. For this reason, we can temporarily renounce on the high-throughput

broadcast enabled by the ring topology, and adopt instead a conventional all-to-all broadcast

scheme towards optimizing for latency.

4.2.2 Carousel Reconfiguration Protocol

A correct replica i enters the reconfiguration sub-protocol if any of these two conditions hold:

(1) a timer expires at replica i because the sequencer replica failed to create new agreement

messages or a previous reconfiguration failed to complete in a timely manner; or (2) replica i

observes F +1 other replicas proposing reconfiguration.

To propose a reconfiguration and change the sequencer, replica i broadcasts a 〈RECONF, i ,

cn, P 〉 message. Once it does so, replica i also starts ignoring any messages concerning con-

figuration number cn or lower, and until reconfiguration completes it ignores any messages

except those of type data, reconfiguration, or new-configuration (as we define them below).

Replica i also starts a timer to prevent a stalling reconfiguration.
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The set P in a reconfiguration message contains agreement messages which replica i signed

for all the sequence numbers which are still pending at this replica. In other words, these

are proposals for entries which are not part of the stable log at replica i because this replica

gathered insufficient votes (i.e., less than 4F +1) to mark the corresponding entry as stable.

The successor of the faulty (old) sequencer, namely the replica at position cn′ on the ring,

where cn′ = (cn+1)%N , is set to become sequencer when reconfiguration completes. This

new sequencer waits until it gathers reconfiguration messages from 4F +1 replicas, including

itself, and then broadcasts a 〈NEWCONF, cn+ 1, R〉 message. Here, R represents the set of

4F +1 reconfiguration messages which the new sequencer gathered.

The reconfiguration sub-protocol completes at a replica i when that replica delivers the new-

configuration message. When this happens, replica i starts accepting agreement messages

created by the new sequencer (i.e., the replica at position cn′ on the ring) and expects these

messages to be tagged with configuration number cn+1. After reconfiguration completes,

the new sequencer starts redoing the common-case agreement protocol for every individual

sequence number found in an agreement message in the set R.

For every sequence number sn appearing in R, the new sequencer creates a new agreement

message with the configuration number set to cn+1. When creating these new agreement

messages, for every sequence number sn there are two cases to consider:

1. If there exists an i d that appears in an agreement message of R, such that there is no

i d ′ 6= i d with 2F + 1 agreement messages (with the same sn) in R, then the new se-

quencer chooses this i d to be associated to sn in the new agreement message. The new

sequencer also recomputes the hash as done in the common-case protocol, including

the new configuration number cn+1. In FaB terminology [MA06], we say that the set R

of reconfiguration messages vouches for i d to be associated to sn.

2. Alternatively, it can happen that more than one pair (sn, i d) is vouched for by R (or no

such pair at all). This can occur, for instance, if the previous sequencer was malicious

and proposed for the same sequence number sn multiple different i ds. In this case, the

sequencer can choose to associate sn with any i d that was previously proposed for sn,

and recomputes the hash as done in the common-case.

For every such new agreement message that the new sequencer creates, the common-case

protocol executes as described in §4.1.1, accounting for the configuration number cn+1.
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This chapter comprises a general discussion related to performance decay in SMR and to

Carousel (§5.1), as well as our concluding remarks for this first part of the dissertation (§5.2).

5.1 Discussion

Most popular SMR protocols, including those we study in this chapter, have been designed,

implemented, and evaluated assuming uniform replica and network characteristics [Bur06,

Lam98, Ong14]. In a WAN (or multi-datacenter), uniformity is unlikely. Yet systems in the

spirit of chain- or ring-replication excel in uniform settings [GLPQ10]; such systems, however,

forfeit availability otherwise. For instance, in non-uniform networks if there are stragglers

or asynchrony this impedes progress. Note that such conditions do not affect availability

in leader-centric (i.e., star overlay) protocols. Clearly, SMR protocols face a tangible design

tradeoff between their common-case performance and their availability.

Ideally, SMR systems should achieve a middle-ground between performance (i.e., efficient

dissemination and agreement) and high availability, being capable of graceful degradation in

the face of faults or stragglers. This was one of our goals in Carousel.

We remark on two concrete research directions to help further the goal of reconciling perfor-

mance and availability in SMR. First, it is appealing to combine broadcast with ring-based

protocols in a single system, in the vein of Abstract [AGK+15]. Such a system could provide

higher BFT resilience, namely tolerate F = b(N −1)/3c faults, unlike Carousel where resilience

is F = b(N − 1)/5c. Combining protocols typically yields intricate systems, however, and it

is important to address the resulting complexity [AGK+15]. Second, for predictable behav-

ior, faulty replicas should be detected and evicted from the system in a timely manner. This

is challenging in a Byzantine environment. Past approaches rely on proofs-of-misbehavior

(which are useful for limited kinds of faults [KAD+07]) or on incentives (which tend to be

complex [AAC+05]), so new solutions or practical assumptions are needed.

For the sake of clarity, we omitted cryptographic primitives from the earlier description of
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Carousel. Such a mechanism is orthogonal and is a well-known technique in BFT replica-

tion [CL02, BSA14]. We apply this technique in Carousel as follows: Whenever a replica sends

a message (e.g., a agreement message or a batch of them), it piggybacks a digest of that mes-

sage and a signature of the digest. With regards to garbage collection, we implement a sub-

protocol similar to the classic checkpoint mechanism of PBFT [CL02, §4.4]; this sub-protocol,

however, is out of the scope of this thesis.

Chain- or ring-replication is a well-studied scheme in SMR for avoiding the bottleneck at the

leader. Our baseline, ChainR, is a straightforward implementation of chain replication in the

fail-stop model, shedding light on what is an ideal upper bound of SMR throughput decay in

fault-free executions. In contrast to Carousel, previous approaches assume a model that does

not tolerate Byzantine faults [ANRST05, AFK+09, JMPSP17], or they degrade to a broadcast

algorithm to cope with such faults [AGK+15, Kne12]. Carousel retains the efficient broadcast

overlay based on a ring topology despite Byzantine replicas.

The technique of overlapping groups of chain replication on a ring topology, as employed

in FAWN [AFK+09], is similar to ring-based replication. The insight is similar: Instead of

absorbing all client operations through a single node (a bottleneck), accept operations at

multiple nodes. The most important distinction between FAWN and Carousel lies in the use

of sharding. FAWN shards the application state, each shard mapping to a chain replication

group. As we mentioned earlier, sharding is a common workaround to scale SMR [BP16,

GBKA11, CDE+13]. In Carousel and other systems we study, the goal is full replication. Even

when sharding is employed, our findings are valuable because they apply to the intra-shard

protocol (which is typically an SMR instance).

S-Paxos [BMSS12] decouples request dissemination from request ordering. This relaxes the

load at leader and can increase throughput. We apply this same principle in Carousel, by

separating dissemination (ring-based broadcast for high throughput) from agreement (FaB).

In contrast to Carousel, S-Paxos does not tolerate Byzantine faults.

Building upon a conjecture of Lamport [Lam03], FaB laid the fundamental groundwork for

two-step BFT consensus [MA06]. The agreement algorithm in Carousel is a simplified FaB

protocol (e.g., we use only one type of protocol message, AGREEMENT, for reaching agreement).

But the most important distinction to FaB is that Carousel employs a ring topology in the

common-case, eschewing the throughput bottleneck at the leader. We believe the FaB agree-

ment algorithm combined with efficient broadcast schemes from the chain- or ring-based

families [GLPQ10, JMPSP17, VRS04] deserve more attention.

It was recently uncovered that a version of the FaB protocol is flawed. Namely, that this

protocol version suffers from liveness issues, which can happen when a malicious leader en-

gages in a poisonous write [AGM+17]. This problem, however, only applies specifically to the

parametrized version of FaB [MA06], called PFaB in [AGM+17]. PFaB is not the same protocol

as the one we use in Carousel, hence Carousel is not subject to these liveness problems.
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An important goal in Carousel was simplicity, an often understated property of SMR systems,

and an important obstacle to their practical adoption [Ong14]. A tree overlay could potentially

provide a better latency/throughput tradeoff than a ring, but would do so at significant added

complexity and potential safety issues [AMN+18, KJG+16].

Our stability experiments show that BFT SMR protocols, even as mature as BFT-Smart, are

not as battle-tested as CFT protocols. Indeed, open-source implementations of BFT SMR are

scarce, and the issue of non-fault-tolerant BFT protocols is known [CWA+09]. In fact, it is a

pleasant surprise for us that BFT-Smart is able to go through reconfiguration at 88 replicas

(despite folding at bigger system sizes), and to resume request execution after the leader fails.

An important application of BFT SMR is for permissioned digital trust (e.g., distributed ledger)

applications [ABB+18, SBV18]. In such an application, SMR can serve as an essential com-

ponent ensuring total-order across the operations in the system. There is a growing body of

work dealing with the problem of scaling consensus for these applications, which we cover

briefly below.

A practical way to scale agreement to a large set of nodes is to elect a small committee (or even

a single node), and run the expensive agreement protocol in this committee. The latest in this

line of research is Algorand [GHM+17], which relies on a novel Byzantine consensus proto-

col called B A?. Other notable efforts include HoneyBadger [MXC+16], ByzCoin [KJG+16], or

Bitcoin-NG [EGSVR16]. Most of the research in this area seeks to ensure probabilistic guaran-

tees, whereas throughout this dissertation we consider SMR systems providing deterministic

guarantees.

HoneyBadger and ByzCoin show impressive results in their experiments (throughput of 7k

tps and 1k tps, respectively) while running on 100+ nodes, albeit with large batches (8MB).

Similarly, Algorand exhibits more than a hundred-fold throughput improvement over Bitcoin

(i.e., they achieve ∼700 tps) when scaled to 50,000 participants. A further caveat in these

systems is that they rely on a cryptocurrency. The SMR systems we study, in contrast, are

more generic—being cryptocurrency-free—but also more strict in their trust model—because

they assume a permissioned system where the set of participants is regulated.

A specific step that is common to all SMR protocols is the processing of protocol messages

and executing requests at each replica. Several approaches can optimize this step. These are

all orthogonal to our study, and they generally apply to any SMR system. Examples include

optimistic execution to leverage multi-cores [KWQ+12] or hardware-assisted solutions [PH15],

e.g., to speed costly crypto computations, offloading protocol processing [ISAV16], or using a

trusted module to increase resilience and simplify protocol design [CMSK07].
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5.2 Conclusions

It is commonly believed that SMR throughput degrades sharply as system size grows. The

data supporting this belief is scarce (for up to a couple of tens of nodes), however, and simple

extrapolation cannot tell the whole story. In this chapter we filled in this missing information

by providing empirical observations on how SMR performance decays with system size.

Our experiments covered different design dimensions in SMR systems: three failure models

(asynchronous CFT, fail-stop CFT, and BFT); different failure thresholds; three types of net-

work overlays (star, chain, and ring). The systems are also varying in their implementation

maturity, from production-ready codebases to research prototypes.

We provide two broad takeaways from our performance decay evaluation. First, we noticed

that in leader-centric protocols (i.e., star overlays), the performance decay follows an exponen-

tial decay rate, being very sharp at the beginning and slowing down as systems grow beyond

a few tens of nodes. Second, we saw that chain or ring overlays can mitigate the exponential

decay rate; these systems, however, require additional techniques to remain available and

deal with asynchrony or faults, indicating the next relevant challenges for future work.

For the three mature SMR systems we considered (ZooKeeper, etcd, and BFT-Smart), we

also provided empirical results on their stability with regards to the leader-change protocol.

We found that ZooKeeper can recover very fast from a crashed leader, being the most stable

system we studied.

We believe our observations in this chapter help inform future designs of SMR algorithms.

Our study has several limitations, however, which can be addressed in future work as well.

To fundamentally understand performance decay in SMR, a more comprehensive array of

experiments is necessary, for instance by including a persistence layer on the critical path of

ordering, going beyond 100 replicas, doing evaluation on different platforms, etc. There are

also economic factors at play, since platforms for running these experiments do not come

for free. For instance, our experiments cost on the order of thousands of dollars. It would be

helpful to develop tools, methods, and platforms for lowering these costs.
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6 Incremental Consistency Guarantees

We can often enhance our ability to deal with a problem by adopting a language

that enables us to describe the problem in a different way.

— Abelson and Sussman [AS84]

In this chapter we introduce Correctables, an abstraction that provides support for program-

ming with replicated objects. The goal of this abstraction is to hide most of the complexity

underlying replication, allowing developers to focus on the task of balancing consistency

and performance. To aid developers with this task, Correctables provide incremental consis-

tency guarantees, which capture successive refinements on the result of an ongoing opera-

tion on a replicated object. In short, applications receive both a preliminary—fast, possibly

inconsistent—result, as well as a final—consistent—result that arrives later.

We show how to leverage incremental consistency guarantees by speculating on preliminary

values, trading throughput and bandwidth for improved latency. We experiment with two

popular storage systems (Cassandra and ZooKeeper) on the Amazon EC2 platform, showing

how to hide the latency of strongly consistent operations by up to 40%.

6.1 Introduction

Replication is a crucial technique for achieving performance—i.e., high availability and low

latency—in large-scale applications, as we discussed earlier in this dissertation (§1.1). Tra-

ditionally, strong consistency protocols hide replication and ensure correctness by exposing

a single-copy abstraction over replicated objects [CDE+13, Lam98]. There is a tradeoff, how-

ever, between consistency and performance [Aba12, Bre12, GL02]. In the quest toward more

efficient algorithms and better performance, many systems choose to employ weak consis-

tency models [DHJ+07]. Unfortunately, this choice introduces the possibility of incorrect

(anomalous) behavior in applications.

A common argument in favor of weak consistency is that such anomalous behavior is rare in
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practice. Indeed, studies reveal that on expectation, weakly consistent values are often cor-

rect even with respect to strong consistency [BVF+12, LVA+15]. Applications which primarily

demand performance thus forsake stronger models and resort to weak consistency [ABK+15,

DHJ+07].

There are cases, however, where applications often diverge from correct behavior due to weak

consistency. As an extreme example, an execution of YCSB workload A [CST+10] in Cassan-

dra [LM10] on a small 1K objects dataset can reveal stale values for 25% of weakly consistent

read operations (Figure 6.7 in §6.6). This happens when using the Latest distribution, where

read activity is skewed towards popular items [CST+10]. In other cases, even very rare anoma-

lies are unacceptable (e.g., when handling sensitive data such as user passwords), making

strongly consistent access a necessity. For this class of applications, correctness supersedes

performance, and strong consistency thus takes precedence [CDE+13].

There is also a large class of applications which do not have a single, clear-cut goal (either

performance or correctness). Instead, such applications aim to satisfy both of these conflict-

ing demands. These applications fall in a gray zone, somewhere in-between the two previous

classes, as we highlight in Figure 6.1. Typically, these applications aim to strike an optimal bal-

ance of consistency and performance by employing different consistency models, often at the

granularity of individual operations [BFF+15, CRS+08, KHAK09, LPC+12, TPK+13]. Choosing

the appropriate consistency model, even at this granularity, is hard, and the result is often sub-

optimal, as developers still end up with fixing a certain side of the consistency/performance

tradeoff (and sacrificing the other side).

Moreover, programming in the gray area is difficult, as developers have to juggle different

consistency models in their applications [CRS+08, KHAK09]. If programming with a single

consistency model (such as weak consistency [CDE+13]) is non-trivial, then mixing multiple

models is even harder [LLC+14]. In their struggle to optimize performance with consistency,

developers must go up against the full complexity of the underlying storage stack. This in-

cludes choosing locations (cache or backup or primary replica), dealing with coherence and

cache-bypassing, or selecting quorums. These execution details reflect as a burden on devel-
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Figure 6.1 – Many applications fall into a gray zone, torn between the need for both
performance and correctness.

48



6.1. Introduction

opers, complicate application code, and lead to bugs [Eri13, LVA+15].

Our goal is to help with the programming of applications located in the gray area. We accept as

a fact that no single consistency model is ideal, providing both high performance and strong

consistency (correctness) at the same time [Aba12, GL02]. Our insight is to approach this

ideal in complementary steps, by combining consistency models in a single operation. Briefly,

developers can invoke an operation on a replicated object and obtain multiple, incremental

views on the result, at successive points in time. Each view reflects the operation result un-

der a particular consistency model. Initial (preliminary) views deliver with low latency—but

weak consistency—while stronger guarantees arrive later. We call this approach incremental

consistency guarantees (ICG).

We introduce Correctables, an abstraction which grants developers a clean, consistency-

based interface for accessing replicated objects, clearly separating semantics from execu-

tion details. This abstraction reduces programmer effort by hiding storage-specific proto-

cols, e.g., selecting quorums, locations, or managing coherence. Correctables are based on

Promises [LS88], which are placeholders for a single value that becomes available in the fu-

ture. Correctables generalize Promises by representing not a single, but multiple future values,

corresponding to incremental views on a replicated object.

To the best of our knowledge, our abstraction is the first which enables applications to build

on ICG. As few as two views suffice for ICG to be useful. The advantage of ICG is that ap-

plications can speculate on the preliminary view, hiding the latency of strong consistency,

and thereby improving performance [WCN+09]. Speculating on preliminary responses is

expedient considering that, in many systems, weak consistency provides correct results on

expectation [BVF+12, LVA+15].

Speculation with ICG is applicable to a wide range of scenarios. Consider, for instance, that a

single application-level operation can aggregate multiple—up to hundreds of—storage-level

objects [ABK+15, DB13, LMNR15, Sch15]. Since these objects are often inter-dependent, they

can not always be fetched in parallel. With ICG, the application can use the fast preliminary

view to speculatively prefetch any dependent objects. By the time the final (strongly con-

sistent) view arrives, the prefetching would also finish. If the preliminary result was correct

(matching the final one), then the speculation is deemed successful, reducing the overall

latency of this operation.

Alternatively, ICG can open the door to exploiting application-specific semantics for optimiz-

ing performance. Imagine an application requiring a monotonically increasing counter to

reach some predefined threshold (e.g., number of purchased items in a shop required for a

fidelity discount). If a weakly consistent view of the counter already exceeds this threshold,

the application can proceed without paying the latency price of a strongly consistent view.

The high-level abstraction centered on consistency models, coupled with the performance

benefits of enabling speculation via ICG, are the central contributions of Correctables. We
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evaluate these performance benefits by modifying two well-known storage systems (Cassan-

dra [LM10] and ZooKeeper [HKJR10]). We plug Correctables on top of these, build three

applications (a Twissandra-based microblogging service [Twi19], an ad serving system, and a

ticket selling system), and experiment on Amazon EC2.

Our evaluation first demonstrates that there is a sizable time window between preliminary

and final views, which applications can use for speculation. Second, using YCSB workloads A,

B, and C, we show that we can reduce the latency of strongly consistent operations by up to

40% (from 100ms to 60ms) at little cost (10% bandwidth increase, 6% throughput drop) in the

ad system. The other two applications exhibit similar improvements. Even if the preliminary

result is often inconsistent (25% of accesses), incremental consistency incurs a bandwidth

overhead of only 27%.

In the rest of this chapter, we give an overview of our solution in the context of related

work (§6.2) and present the Correctables interface (§6.3). We show how applications use

Correctables (§6.4), and describe the bindings to various storage stacks (§6.5). We then give a

comprehensive evaluation (§6.6) and conclude (§6.7).

6.2 Overview & Related Work

At a high-level, we address the issue of programming with replicated objects through a novel

abstraction called Correctables. We now present the main concepts behind this abstraction

while contrasting this approach with prior work in this area.

6.2.1 Consistency Choices

There is an abundance of work on consistency models. These range from strong consistency

protocols [JRS11, Lam98, VRS04], some optimized for WAN or a specific environment [CDE+13,

DNN+15, KPF+13, LPK+15, XSK+14, ZSS+15], through intermediary models such as causal

consistency [DIRZ14, LFKA13], to weak consistency [DHJ+07, TTP+95]. As a recent develop-

ment, storage systems offer multiple—i.e., differentiated—consistency guarantees [CRS+08,

KHAK09, PAA+15]. This allows applications in the above-mentioned gray zone to balance

consistency and performance on a per-operation basis: the choice of guarantees depends on

how sensitive the corresponding operation is.

Differentiated guarantees can take the form of SLAs [TPK+13], policies attached to data [KHAK09],

dynamic quorum selection for quorum-based storage systems such as Dynamo [DHJ+07] or

others [LM10, Ria19], or even ad-hoc operation invariants [BFF+15]. In practice, two consis-

tency levels often suffice: weak and strong [App18, Sim19]. Sensitive operations (e.g., account

creation or password checking) use the strong level, while less critical operations (e.g., remove

from basket) use weak guarantees [KHAK09, TPK+13, YV00] to achieve good performance.

For instance, in Gemini [LPC+12], operations are either Blue (fast, weakly consistent) or Red
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(slower, strongly consistent). For sensitive data such as passwords, Facebook uses a separate

linearizable sub-system [LVA+15]. Likewise, Twitter employs strong consistency for “certain

sets of operations” [Sch14], and Google’s Megastore exposes strong guarantees alongside read

operations with “inconsistent” semantics [BBC+11]. Another frequent form of differentiated

guarantees appears when applications bypass caches to ensure correctness for some opera-

tions [ABK+15, NFG+13].

Given this great variety of differentiated guarantees, we surmise that applications can benefit

from mixing consistency models. The notable downside of this approach is that applica-

tion complexity increases [LLC+14]. Developers must orchestrate different storage APIs and

consider the interactions between these protocols [ABK+15, BFF+15, WFZ+11]. Our work sub-

sumes results in this area. We propose to hide different schemes for managing consistency

under a common interface, Correctables, which can abstract over a varying combination of

storage tiers and reduce application complexity. In addition, we introduce the notion of in-

cremental consistency guarantees (ICG), i.e., progressive refinement of the result of a single

operation.

6.2.2 ICG: Incremental Consistency Guarantees

Applications which use strong consistency—either exclusively or for a few operations—do

so to avoid anomalous behavior which is latent in weaker models. Interestingly, recent work

reveals that this anomalous behavior is rare in practice [BVF+12, LVA+15]. There are applica-

tions, however, which cannot afford to expose even those rare anomalies.

For instance, consider a system storing user passwords, and say it has 1% chance of exposing

an inconsistent password. If such a system demands correctness—as it should—then it is

forced to pay the price for strong consistency on every access, even though this is not neces-

sary in 99% of cases. We propose ICG to help applications avert this dilemma, and pay for

correctness only when inconsistencies actually occur.

With ICG, an application can obtain both weakly consistent (called preliminary) and strongly

consistent (called final) results of an operation, one by one, as these become available. While

waiting for the final result, the application can speculatively perform further processing based

on the preliminary—which is correct on expectation. Following our earlier example, this

would help hide the latency of strong consistency for 99% of accesses.

The full latency of strong consistency is only exposed in case of misspeculation, when the pre-

liminary and final values diverge because the preliminary returned inconsistent data [WCN+09].

These are the 1% cases where strong consistency is needed anyway. Speculation through ICG

can lessen the most prominent argument against strong consistency, namely its performance

penalty. With ICG we pay the latency cost of strong consistency only when necessary, regard-

less of how often this is the case.

Speculation is a well-known technique for improving performance. Traditionally, the effects
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Category Synopsis Applications and use cases

Weak
Consistency

Use the weakest, but fastest con-
sistency model, e.g., by using par-
tial quorums, or going to the clos-
est replica or cache. No benefit from
ICG.

Computation on static (BLOBs) content, e.g.,
thumbnail generator for images and videos, ac-
cessing cold data, fraud analysis, disconnected
operations in mobile applications, etc.

Strong
Consis-
tency

Use the strongest available model,
e.g., by going to the primary replica.
Applications require correct results.

Infrastructure services (e.g., load-balancing, ses-
sion stores, configuration and membership man-
agement services), stock tickers, trading applica-
tions, etc.

Incremental
Consis-
tency

Guaran-
tees

(ICG)

Use multiple, incremental models.
Applications benefit from weakly
consistent values (e.g., by speculat-
ing or exposing them), but prefer
correct results.

E-mail, calendar, social network timeline, gro-
cery list, flight search aggregation, online shop-
ping, news reading, browsing, backup, collabo-
rative editing, authentication and authorization,
advertising, online wallets, etc.

Table 6.1 – Different types of applications building on top of replicated objects. Many of
these applications can benefit from ICG. There are also applications, such as in the first two

categories (weak consistency and strong consistency), which require a single consistency
model, inheriting all its advantages as well as drawbacks.

of speculation in a system remain hidden from higher-level applications until the specula-

tion confirms, since the effects can lead to irrevocable actions in the applications [KWQ+12,

MEHL10, NCF05, WCN+09]. Alternatively, it has been shown that leaking speculative effects

to higher layers can be beneficial, especially in user-facing applications, where the effects

can be undone or the application can compensate in case of misspeculation [HC09, LDR08,

LCC+15, PKFF14]. We propose to use eventual consistency as a basis for doing speculative

work, as a novel approach for improving performance in replicated systems. Also, more gen-

erally, we allow the application itself (which knows best), to decide on the speculation bound-

ary [WCF11]—whether to externalize effects of speculation, and later to undo or compensate

these effects, or whether to isolate users from speculative state.

Besides speculation, ICG is useful in other cases as well. For instance, applications can choose

dynamically whether to settle with a preliminary value and forsake the final value altogether.

This is a way to obtain application-specific optimizations, e.g., to enforce tight latency SLAs.

Alternatively, we can expose the preliminary response to users and revise it later when the

final response arrives. This strategy is akin to compensating in case of misspeculation, as

mentioned earlier.

Clearly, not all applications are amenable to exploiting ICG. In Table 6.1 we give a high-level

account on three categories of applications, as follows:

1. Applications which have no additional benefit from strong consistency or ICG;

2. Application which require correct results but are not amenable to speculation; and

3. Applications that can obtain performance without sacrificing correctness via ICG.
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Figure 6.2 – High-level view of Correctables, as an interface to the underlying storage.

6.2.3 Client-side Handling of ICG

To program with ICG, applications need to wait asynchronously for multiple replies to an

operation (where each reply encapsulates a different guarantee on the result) while doing

useful work, i.e., speculate. To the best of our knowledge, no abstraction fulfills these criteria.

To minimize the effort of programming with ICG, we draw inspiration from Promises, seminal

work on handling asynchronous remote procedure calls in distributed systems [LS88].

A Promise is a placeholder for a value that will become available asynchronously in the future.

Given the urgency to handle intricate parallelism and augmenting complexity in applications,

it is not surprising that Promises are becoming standard in many languages [Ins19, Gua19,

Fug15, Eri13]. We extend the binary interface of Promises (a value either present or absent) to

obtain a multi-level abstraction, which incrementally builds up to a final, correct result.

The Observable interface from reactive programming can be seen as a similar generaliza-

tion of Promises. Observables abstract over asynchronous data streams of arbitrary type and

size [Mei12]. Our goal with Correctables, in contrast, is to grant developers access to consis-

tency guarantees on replicated objects in a simple manner. The ProgressivePromise interface

in Netty [Net19b] also generalizes Promises. While it can indicate progress of an operation, a

ProgressivePromise does not expose preliminary results of this operation.

6.3 Correctables

We now discuss the Correctables interface for programming and speculating with replicated

data. Applications use this interface as a library, depicted in Figure 6.2. At the top of this

library sits the application-facing API. The library is connected to the storage stack using a

storage binding—a module encapsulating all storage-system specific interfaces and protocols.

Correctables fulfill two critical functions: (i) translate API calls into storage-specific requests

via a binding, and (ii) orchestrate responses from the binding and deliver them—in an incre-

mental way—to the application, using Correctable objects. Each call to an API method returns

a Correctable which represents the progressively improving result (i.e., a result with ICG).
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6.3.1 From Promises to Correctables

As mentioned earlier, Correctables descend from Promises. To model an asynchronous task,

a Promise starts in the blocked state and transitions to ready when the task completes, trig-

gering any callback associated with this state [LS88]. Promises help with asynchrony, but not

incrementality. To convey incrementality, a Correctables starts in the updating state, where

it remains until the final result becomes available or an error occurs (see Figure 6.3). When

this happens, the Correctable closes with that result (or error), transitioning to the final (or

error) state. Upon each state transition, the corresponding callback triggers. Preliminary

results trigger a same-state transition (from updating to updating). A Correctable can have

callbacks associated with each of its three states. To attach these callbacks, we provide the

setCallbacks method; together with speculate, these two form the two central methods

of a Correctables, which we examine more closely in §6.4.

6.3.2 Decoupling Semantics from Implementation

The Correctables abstraction decouples applications from storage specifics by adopting a thin,

consistency-based interface, centered around consistency levels. This enables developers—

who naturally reason in terms of consistency rather than protocol specifics—to obtain simple

and portable implementations. With Correctables, applications can transparently switch

storage stacks, as long as these stacks support compatible consistency models.

Our API consists of three methods:

1. invokeWeak (operation),

2. invokeStrong (operation), and

3. invoke (operation[, levels]).

The first two allow developers to select either weak or strong consistency for a given operation.

The returned Correctable never transitions from updating to updating state and only closes

with a final value (or error). These two methods follow the traditional practice of providing a

single result which lies at one extreme of the consistency/performance tradeoff.

The third method provides ICG, allowing developers to operate on this tradeoff at run-time,

which makes it especially relevant for applications in the above-mentioned gray area. Instead

close(view)

close(error)

update(newView)

onUpdate  
onError  

onFinal  

(callback)  
(callback)  

(callback)  

UPDATING
ERROR

FINAL

Figure 6.3 – The three states, transitions, and callbacks associated with a Correctable object.
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of a single result (as is the case with the two former methods), invoke provides incremental

updates on the operation result. Optionally, invoke accepts as argument the set of consis-

tency levels which the result should—one after the other—satisfy. If this argument is absent,

invoke provides all available levels. This argument allows some optimizations, e.g., if an

application only requires a subset of the available consistency levels, this parameter informs

a binding to avoid using the extraneous levels; we omit further discussion of this argument

due to space constraints. The available consistency levels depend on the underlying storage

system and binding, which we discuss in more detail in §6.5.

In the next section, we show how to program with Correctables through several representative

use-cases. In code snippets we adopt a Python-inspired pseudocode for readability sake. For

brevity we leave aside error handling, timeouts, or other features inherited from modern

Promises, such as aggregation or monadic-style chaining [Fug15, Eri13, LS88].

6.4 Correctables in Action

This section presents examples of how Correctables can be useful on two main fronts. (1)

Decoupling applications from their storage stacks by providing an abstraction based on con-

sistency levels. (2) Improving application performance by means of ICG, e.g., via speculation

or exploiting application-specific semantics.

6.4.1 Decoupling Applications from Storage

We first discuss a simple case of decoupling, where we illustrate the use the first two functions

in our API, namely invokeWeak and invokeStrong. As discussed in §6.2, many applications

differentiate between weak and strong consistency to balance correctness with performance.

In practice, applications often resort to ad-hoc techniques such as cache-bypassing to achieve

this, which complicates code and leads to errors [ABK+15, Eri13]. Listing 6.1 shows code

from Reddit [Red16], a popular bulletin-board system and a prime example of such code.

Developers have to explicitly handle cache access (lines 6 and 9), make choices based on

presence of items in the cache (line 7), manually bypass the cache (line 8) under specific

conditions, and write duplicate code (line 11).

Instead of explicit cache-bypassing, we can employ invokeWeak and invokeStrong to

substantially simplify the code by replacing ad-hoc abstractions like user_messages and

user_messages_nocache, as Listing 6.2 shows.

Furthermore, we can replace other near-identical functions for differentiated guarantees,

eliminating duplicate logic.1 Cache-coherence and bypassing is completely handled by the

storage-specific binding. This reduces both programmer effort and application complexity.

1Similar pairs of ad-hoc functions exist in Reddit for accessing other objects. Perhaps accidentally, these other
functions contain comments referring to user_messages instead of their specific objects. We interpret this as a
strong indication of “copy-pasting” code, which Correctables would help prevent.
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1 from pylons import app_globals as g # cache access

2 from r2.lib.db import queries # backend access

4 def user_messages(user, update = False):
5 key = messages_key(user._id)
6 trees = g.permacache.get(key)
7 if not trees or update:
8 trees = user_messages_nocache(user)
9 g.permacache.set(key, trees) # cache coherence

10 return trees
11 def user_messages_nocache(user):
12 # Just like user_messages, but avoiding the cache...

Listing 6.1 – Different consistency guarantees in Reddit [Red16], as an example of tight
coupling between applications and storage. Developers must manually handle the cache and

the backend.

1 def user_messages(user, strong = False):
2 key = messages_key(user._id)
3 # coherence handled by invoke* functions in bindings

4 if strong: return invokeStrong(get(key))
5 else: return invokeWeak(get(key))

Listing 6.2 – Reddit code rewritten using Correctables.

The third method in our library is invoke. Correctables are crucial for this method, since

it captures ICG. invoke allows applications to speculate on preliminary values (hiding the

latency of strong consistency), or exploit application-specific semantics, as we show next.

6.4.2 Speculating with Correctables

Many applications are amenable to speculating on preliminary values to reap performance

benefits. To understand how to achieve this, we consider any non-trivial operation in a

distributed application which involves reading data from storage. Using invoke to access

the storage, applications can perform speculation on the preliminary value. If this prelimi-

nary value is confirmed by the final value, then speculation was correct, reducing overall la-

tency [WCN+09]. Examples where speculation applies include password checking or thumb-

nail generation (as mentioned in [TPK+13]), as well as operations for airline seat reserva-

tion [YV00], or web shopping [KHAK09].

Listing 6.3 depicts how this is performed in practice with Correctables. Even though such

speculation can be orchestrated directly by using the onUpdate and onFinal callbacks of a

Correctable object, we provide a convenience method called speculate that captures the

speculation pattern (L2). It takes a speculation function as an argument, applying it to every
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1 invoke(read(...))
2 .speculate(speculationFunc[, abortFunc])
3 .setCallbacks(onFinal = (res) => deliver(res))

Listing 6.3 – Generic speculation with Correctables. The square brackets indicate that
abortFunc function is optional.

1 def fetchAdsByUserId(uid):
2 invoke(getPersonalizedAdsRefs(uid))
3 .speculate(getAds) # fetch & post−process ads

4 .setCallbacks(onFinal = (ads) => deliver(ads))

Listing 6.4 – Example of applying speculation in an advertising system to hide latency of
strong consistency.

new view delivered by the underlying Correctable if this view differs from the previous one.

The speculate method returns a new Correctable object which closes with the return value

of the user-provided speculation function. If the final view matches a preliminary one (which

is the common case), the new Correctable can close immediately when the final view becomes

available, confirming the speculation. Otherwise, it closes only after the speculation function

is (automatically) re-executed with correct input. In the latter case, an optional abort function

is executed, undoing potential side-effects of the preceding speculation. Next, we discuss an

ad serving system as an example application that can benefit from such speculation.

Advertising System. Typically, ads are personalized to user interests. These interests fluc-

tuate frequently, and so ads change accordingly [Kor10]. Given their revenue-based nature,

advertising systems have conflicting requirements, as they aim to reconcile consistency (fresh-

ness of ads) with performance (latency) [CRS+08, CDE+13]. We thus find that they correspond

to our notion of gray area, and are a suitable speculation use-case.

Listing 6.4 shows how we can use ICG while fetching ads. First, we obtain a list of references to

personalized ads using the invoke method (L2). This method returns both a preliminary view

(with weak guarantees) and a final (fresh) view. Using the references in the preliminary view,

we fetch the actual ads content and media, and do any post-processing, such as localization

or personalization (L3). If the final view corresponds to the preliminary, then speculation was

correct, and we can deliver (L4) the ads fast; otherwise, getAds re-executes on the final view,

and we deliver the result later. This application is our first experimental case-study (§6.6.3).

The pattern of fetching objects based on their references—which themselves need to be

fetched first—is widespread. It appears in many applications, such as reading the latest news,

the most recent transactions, the latest updates in a social network, an inventory, the most

pressing items in a to-do list or calendar, and so on. In all these cases, the application needs
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to chase a pointer (reference) to the latest data, while weak consistency can reveal stale val-

ues, which is undesirable. We avoid stale data by reading the references with invoke, and we

mask the latency of the final value by speculatively fetching objects based on the preliminary

reference.

6.4.3 Exploiting Application Semantics

Applications can exploit their specific semantics to leverage the preliminary and the final

values of invoke. For instance, consider the web auction system mentioned by Kraska et

al. [KHAK09], where strong consistency is critical in the last moments of a bid, but is not par-

ticularly helpful in the days before the bid ends, when contention is very low and anomalous

behavior is unlikely. Another example is selling items from a predefined stock of such items. If

a preliminary response suggests that the stock is still big, it is safe to proceed with a purchase.

Otherwise, if the stock is almost empty, it would be better to wait for the arrival of the final

response. This is the case, for instance, for a system selling tickets to an event, which we

describe next.

Selling Tickets for Events. For this application system, we depart from the popular key-

value data type. First, as we want to avoid overselling, we need a stronger abstraction to

serialize access to the ticket stock. Simple read/write objects (without transactional support)

are fundamentally insufficient [Her91]. Second, we want to demonstrate the applicability

of ICG to other data types. We thus model the ticket stock using a queue, which is a simple

object, yet powerful enough to avoid overselling.

Event organizers enqueue tickets and retailers dequeue them. This data type allows us to

serialize access to the shared ticket stock [AMS+07, KHAK09]. We assume, however, that

tickets bear no specific ordering (i.e., there is no seating). Clients are interested in purchasing

some ticket, and it is irrelevant which exact element of the queue is dequeued. We can thus

resort to weak consistency most of the time, and use strong consistency sparingly. We consider

a weakly consistent result of an operation to be the outcome of simulating that operation on

the local state of a single replica (see §6.5.2).

Listing 6.5 shows how we can selectively use strong consistency in this case, based on the

estimated stock size. For each purchase, retailers use invoke with the dequeue operation.

This yields a quick preliminary response, by peeking at the queue tail on the closest replica of

the queue. If the preliminary value indicates that there are many tickets left (e.g., via a ticket

sequence number, denoting the ticket’s position in the queue), which is the common case, the

purchase can succeed without synchronous coordination on dequeue, which completes in

the background. This reduces the latency of most purchase operations. As the queue drains,

e.g. below a predefined threshold of 20 tickets, retailers start waiting for the final results, which

gives atomic semantics on dequeuing, but incurs higher latency. This system represents our

second experimental case study (§6.6.3).
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1 def purchaseTicket(eventID):
2 done = false
3 invoke(dequeue(eventID)).setCallbacks(
4 onUpdate = (weakResult) =>
5 if weakResult.ticketNr > THRESHOLD:
6 done = true # many tickets left, so we can buy

7 confirmPurchase()
8 onFinal = (strongResult) =>
9 if not done:

10 if strongResult is not null:
11 confirmPurchase() # we managed to get a ticket

12 else: display("Sold out. Sorry!"))

Listing 6.5 – Dynamic selection of consistency guarantees in a ticket selling system. If there
are many tickets in the stock, we can safely use weak consistency.

1 invoke(getLatestNews()).setCallbacks(
2 onUpdate = (items) => refreshDisplay(items))

Listing 6.6 – Progressive display of news items using Correctables. The refreshDisplay
function triggers with every update on the news items.

6.4.4 Exposing Data Incrementally

In some cases, it is beneficial to expose even incorrect (stale) data to the user if this data

arrives fast, and amend the output as more fresh data becomes available. Indeed, a quick

approximate result is sometimes better than an overdue reply [DHJ+07, TPK+13]. Many ap-

plications update their output as better results become available. A notable example is flight

search aggregation services [Sky], or generally, applications which exhibit high responsive-

ness by leaking to the user intermediary views on an ongoing operation [LDR08, LCC+15],

e.g., previews to a video or shipment tracking. We can assist the development of this type of

applications, as we describe next.

Smartphone News Reader. Consider a smartphone news reader application for a news ser-

vice replicated with a primary-backup scheme [TPK+13]. Additionally, recently seen news

items are stored in a local phone cache. With ICG provided by Correctables, the application

can be oblivious to storage details. It can use a single logical storage access to fetch the latest

news items, as Listing 6.6 shows. The binding would translate this logical access to three ac-

tual requests: one to the local cache, resolving almost immediately, one to the closest backup

replica, providing a fresher view, and one to a more distant primary (i.e., leader) replica, taking

the longest to return but providing the most up-to-date news stories.
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6.4.5 Discussion: Applicability of ICG

In a majority of use-cases, we observe that two views suffice. Correctables, however, support

arbitrarily many views. Note that this does not add any complexity to the interface and can

be useful, as the news reader application shows.

There are other examples of applications which can benefit from multiple views. A notable

use-case are blockchain-based applications (e.g., Bitcoin [Nak08]), where Correctables can

track transaction confirmations as they accumulate and eventually the transaction becomes

an irrevocable part of the blockchain, i.e., strongly-consistent with high probability. This is a

use-case we also implemented, but omit. In larger quorum systems (e.g., BFT), Correctables

can represent the majority vote as it settles. Search or recommender systems, likewise, can

benefit from exposing multiple intermediary results in subsequent updates.

Intuitively, multiple preliminary views are helpful for applications requiring live updates. On

the one hand, several preliminary values would make the application more interactive and

offer users a finer sense of progress. This is especially important when the final result has

high latency (Bitcoin transactions take tens of minutes). On the other hand, as the replicated

system delivers more preliminary views for an operation, less operations can be sustained and

overall throughput drops. Thus, applications which build on ICG with multiple incremental

views observe a tradeoff between interactivity and throughput. This tradeoff can be observed

even when the system delivers only two views (§6.6.2).

In order to be practical, the cost of generating and exploiting the preliminary values of ICG

must not outweigh their benefits. The cost of generating ICG is captured in the tradeoff we

highlighted above; the cost of exploiting ICG is highly application-dependent. If used for

speculation, the utility of 2+ views depends on how expensive it is to re-do the speculative

work upon misspeculation. This can range from negligible (simply display preliminary views)

to potentially very expensive (prefetch bulky data). Additionally, the utility also depends on

how often misspeculation actually occurs. This depends on the workload characteristics:

workloads with higher write ratios elicit higher rates of inconsistencies, and thus more mis-

speculations (§6.6.2–Divergence).

There are also cases when using ICG is not an option. This is either due to the underlying

storage providing a unique consistency model and lacking caches, or due to application se-

mantics, which can render ICG unnecessary—we give examples of this in the first two rows

of Table 6.1. Correctables, however, are beneficial beyond ICG. This abstraction can hide

the complexity of dealing with storage-specific protocols, e.g., quorum-size selection. The

application code thus becomes portable across different storage systems.
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6.5 Bindings

Our library handles all the instrumentation around Correctables objects. This includes cre-

ation, state transitions, callbacks, and the API inherited from Promises [Fug15, Eri13]. Bind-

ings are storage-specific modules which the library uses to communicate with the storage.

These modules encapsulate everything that is storage system specific, and thus draw the

separating line between consistency models—which Correctables expose—and implementa-

tions of these models. In this section, we describe the binding API, and show how bindings

can facilitate efficient implementation of ICG with server-side support.

6.5.1 Binding API

An instance of our library always uses one specific binding. A binding establishes: (1) the

concrete configuration of the underlying storage stack (e.g., Memcache on top of Cassandra)

together with (2) the consistency levels offered by this stack, and (3) the implementation of any

storage specific protocol (e.g., for coherence, choosing quorums). This allows the library to

act as a client to the storage stack.

When an application calls an API method (§6.3.2), the library immediately returns a Correctables.

In the background, we use the binding API to access the underlying storage. The binding for-

wards responses from the storage through an upcall to the library. The library then updates

(or closes) the associated Correctables, executing the corresponding callback function.

The binding API exposes two methods to the library. First, consistencyLevels() advertises

to the library the supported consistency levels. It simply returns a list of supported consistency

levels, ordered from weakest to strongest. In most implementations, this will probably be a

one-liner returning a statically defined list. The second function is submitOperation(op,
consLevels, callback). The library uses this function to execute operation op on the un-

derlying storage, with consLevels specifying the requested consistency levels. The callback
activates whenever a new view of the result is available. The binding has to implement the

protocol for executing op and invoke callback once for each requested consistency level.

Listing 6.7 shows the implementation of a simple binding for a primary-backup storage, sup-

porting two consistency levels. A more sophisticated binding could access the backup and

primary in parallel, or could provide more than two consistency levels. We designed the bind-

ing API to be as simple as possible; contributors or developers wishing to support a particular

store must implement this API when adding new bindings. We currently provide bindings to

Cassandra and ZooKeeper.

6.5.2 Efficiency and Server-side Support

On a first glance, ICG might seem to evoke large bandwidth and computation overheads.

Indeed, if the invoke method comprises multiple independent single-consistency requests,
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1 def consistencyLevels():
2 return [WEAK, STRONG]

4 def submitOperation(operation, consLevels, callback):
5 if WEAK in consLevels:
6 backupResult = queryClosestBackup(operation)
7 callback(backupResult, WEAK)
8 if STRONG in consLevels:
9 primaryResult = queryPrimary(operation)

10 callback(primaryResult, STRONG)

Listing 6.7 – Simple binding to a storage system with primary-backup replication.

Binding
Request

Replicated 
Storage

Response
(final)

Response
(preliminary)

Weak consistency Strong consistency

Coordination

Figure 6.4 – Simple server support for efficient ICG. The storage system sends a preliminary
response before coordinating. Note that for a single request, the storage provides two

responses.

then storage servers will partly redo their own work. Also, as the weakly and strongly con-

sistent values often coincide, multiple responses are frequently redundant. Such overheads

would reduce the practicality of ICG.

With server-side support, however, we can minimize these overheads. For instance, we can

send a single request to obtain all the incremental views on a replicated object. An effective

way to do this is to hook into the coordination mechanism of consistency protocols. This

mechanism is the core of such protocols, and the provided consistency model and latency

depend on the type of coordination. For example, asynchronous coordination is off the critical

path of client requests and ensures eventually consistent results with low-latency [DHJ+07].

Coordination through an agreement protocol as Paxos [Lam98] yields linearizability [HW90],

but at a higher latency price.

Our basic insight is that we can get a good guess of the result already before coordinating,

based on a replica’s local state. In fact, this same state is being exposed when asynchronous

coordination is employed, and as we already mentioned, this state is consistent on expecta-

tion. The replica can leak a preliminary response—with weak guarantees—to the client prior

to coordination (Figure 6.4). Moreover, we can reduce bandwidth overhead by skipping the

final response if it is the same as the preliminary: a small confirmation message suffices, to

indicate that the preliminary response was correct. Indeed, with such an optimization, ICG

has minor bandwidth overhead (§6.6.2).
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An additional benefit from this approach compared to sending two independent requests

is that it prevents certain types of unexpected outcomes. For instance, strong consistency

might be more stale than weak consistency if responses to two independent requests were

reordered by the WAN [TPK+13]. Using this approach, we modify two popular systems—

Cassandra and ZooKeeper—to provide efficient support for ICG. Other techniques (e.g., mas-

ter leases [CGR07]) or replication schemes (e.g., primary-backup) can provide final views fast,

skipping the preliminary altogether.

Cassandra. Cassandra uses a quorum-gathering protocol for coordination [Gif79]. In our

modified version of Cassandra—called Correctable Cassandra (CC)—the coordinating node

sends a preliminary view after obtaining the first result from any replica. This view has low

latency, obtained either locally (if the coordinator is itself a replica) or from the closest replica.

Our binding to CC supports two consistency levels, weak (involving one replica) and strong

(involving two or more). To minimize bandwidth overhead of invoke, CC uses the confirma-

tion messages optimization we mentioned earlier.

ZooKeeper. To demonstrate the versatility of Correctables, we consider a different data type,

namely replicated queues, which ZooKeeper can easily model [Zoo19]. Our binding supports

operations enqueue and dequeue, with weak and strong consistency semantics, accessible

via invokeWeak and invokeStrong, respectively; invoke supplies both consistency models

incrementally.

The vanilla ZooKeeper implementation (ZK) has strong consistency [HKJR10]. For efficient

ICG, we implement Correctable ZooKeeper (CZK) by adding a fast path to ZK: a replica first

simulates the operation on its local state, returning the preliminary (weak) result. After co-

ordination (via the ZAB protocol [JRS11]), this replica applies the operation and returns the

strong response.

Causal Consistency and Caching. We also implement a binding to abstract over a causally

consistent store complemented by a client-side cache. The invoke function reveals two views:

one from cache (very fast, possibly stale), and another from the causally consistent store. This

binding ensures write-through cache coherence, allows cache-bypassing (invokeStrong) or

direct cache access (invokeWeak), e.g., in case of disconnected operations for mobile appli-

cations [PAA+15]. Given the space constraints we focus on the two other bindings.

6.6 Evaluation

Our evaluation focuses on quantifying the benefits of ICG. Before diving into it, it is important

to note that any potential benefit of ICG is capped by performance gaps among consistency

models. Briefly, if strong consistency has the same performance as weaker models (or the
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difference is negligible) then applications can directly use the stronger model. This is, however,

rarely the case. In practice, there can be sizable differences—up to orders of magnitude—

across models [BDF+13, TPK+13].

We first describe our evaluation methodology, and then show that such optimization poten-

tial indeed exists. We do so by looking at the performance gaps between weak and strong

consistency in quorum-based (Cassandra) and consensus-based (ZooKeeper) systems. We

then quantify the performance gain of using ICG in three case studies: a Twissandra-based

microblogging service [Twi19], an ad serving system, and a ticket selling application.

6.6.1 Methodology

We run all experiments on Amazon’s EC2 with m4.large instances and a replication factor of 3,

with replicas distributed in Frankfurt (FRK), Ireland (IRL), and N. Virginia (VRG). Unless stated

otherwise, to obtain WAN conditions, the client is in IRL and uses the replica in FRK; note that

colocating the client with its contact server (i.e., both in IRL) would play to our advantage, as

it would reduce the latency of preliminary responses and allow a bigger performance gap. We

also experiment with various other client locations in some experiments.

For Cassandra experiments, we compare the baseline Cassandra v2.1.10 (labeled C), with our

modified Correctable Cassandra (CC). We use superscript notation to indicate the specific

quorum size for an execution, e.g., C 1 denotes a client reading from Cassandra with a read

quorum R = 1 (i.e., involving 1 out of 3 replicas). For the ZooKeeper queue, we compare our

modified Correctable ZooKeeper (CZK) against vanilla ZooKeeper (ZK), v3.4.8. The cumulative

implementation effort associated with CC and CZK, including three case studies, is modest,

at roughly 3k L O C Java code.

6.6.2 Potential for Exploiting ICG

To determine the potential of ICG, we examine their behavior in practice. Studies show that

large load on a system and high inter-replica latencies give rise to large performance gaps

among consistency models [BDF+13, TPK+13]. To the best of our knowledge, however, there

are no studies which consider a combination of incremental consistency models in a single

operation. We first investigate this behavior in Cassandra and then in ZooKeeper.

Potential for Exploiting ICG in Cassandra

Cassandra can offer us insights into the basic behavior of ICG in a quorum system. As ex-

plained in §6.5, CC offers two consistency models: weak, which yields the preliminary view

(R = 1), and strong, giving the final view (R = 2 or R = 3, depending on the requested quorum

size). For write operations, we set W = 1. We use microbenchmarks and YCSB [CST+10] to

measure single-request latency and performance under load, respectively. For each CC exper-
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iment, we run three 60-second trials and elide from the results the first and last 15 seconds.

We report on the average and 99th percentile latency, omitting error bars if negligible.

Single-request Latency. We use a microbenchmark consisting of read-only operations on

objects of 100B . We are interested in the performance gap between preliminary and final

views as provided by ICG, and we contrast these with their vanilla counterparts. We thus

compare CC 2 (R ∈ {1,2}) and CC 3 (R ∈ {1,3}) with C 1 (R = 1), C 2 (R = 2), and C 3 (R = 3).

For CC , R has two values: the read quorum size for the preliminary (weak) and for the final

(strong) replies, respectively.
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Figure 6.5 – Single-request latencies in Cassandra for different quorum configurations. A
bigger latency gap means a larger time window available for speculation.

Figure 6.5 shows the results for all these configurations, grouped by their read quorum size.

The average latency of preliminary views—whether it is for CC 2 or CC 3—follows closely the

latency of C 1, which coincides with the 20ms RTT between the client and the coordinator.

Preliminary views reflect the local state on the replica in FRK, having the same consistency as

C 1. Final views of CC 2 and CC 3 follow the trend of the requested quorum size and reflect the

behavior of C 2 and C 3 respectively.

The performance gap between the preliminary and final view for CC 2 is 20ms. The coordina-

tor (FRK) is gathering a quorum of two: itself and the closest replica (IRL). The gap indeed

corresponds to the RTT between these two regions. For CC 3, the gap is much larger: up to

140ms for the 99th percentile, due to the larger distance to reach the third replica (VRG). By

speculating on the preliminary views, applications can hide up to 20ms (or 140ms) of the la-

tency for stronger consistency. In practice, such differences already impact revenue, as users

are highly-sensitive to latency fluctuations [DHJ+07, Ham09].

Performance Under Load. We also study the performance gap using YCSB workloads A

(50:50 read/write ratio), B (95:5 read/write ratio), and C (read-only) [CST+10]. To stress the

systems and obtain WAN conditions, we deploy 3 clients, one per region, with each client

connecting to a remote replica. For brevity, we only report on the results for the client in IRL

and R = {1,2}. Figure 6.6 presents the average latency as a function of throughput. We plot the

evolution of both the preliminary and final views individually.

We observe that CC trades in some throughput due to the load generated on the coordinator,
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Figure 6.6 – Performance of Correctable Cassandra (CC) compared to baseline Cassandra (C).
Note that the measurements for CC 2 have two results, one for the preliminary view and

another for final. These two have the same throughput but different latencies.

which handles ICG. We observe this behavior in all three workloads. This is to be expected,

considering the modifications necessary to implement preliminary replies (§6.5.2). Briefly,

we add another step to every read operation that uses quorums larger than one. This step,

called preliminary flushing, occurs at any coordinator replica serving read operations as soon

as that replica finishes reading the requested data from its local storage—and prior to gath-

ering a quorum from other replicas. This step generates additional load on the coordina-

tor replica, explaining the throughput drop of CC 2 compared to baselines. Related work on

replicated state machines (RSM) suggests an optimization [WCN+09] which resembles our

flushing technique. Perhaps unsurprisingly, the optimized RSM exhibits a similar throughput

drop [WCN+09, §6.2] as we notice in these experiments.

The latency gap between preliminary and final views is the same as the one we observe in the

microbenchmarks. To conclude, our results confirm that the performance gaps while using

ICG are noticeable, and hence there is room for hiding latency.

Divergence. To obtain more insight about the behavior of ICG, we use CC and the YCSB

benchmark to measure how often preliminary values diverge from final results. We achieve

this by using invoke and comparing the preliminary view to the final one. We run this experi-

ment with a small dataset of 1K objects. We aim at obtaining the conditions of a highly-loaded

system where clients are mostly interested in a small (popular) part of the dataset.
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Correctable Cassandra.

Figure 6.7 shows our result for a mix of representative YCSB workloads (A and B) and ac-

cess patterns (Zipfian and Latest) with default settings. Notably, workload A (50:50 read-

/write) under Latest distribution (read activity skewed towards recently updated items) ex-

hibits high divergence, up to 25%. Under such conditions, using R = 1 would yield many

stale results. Indeed, some applications with high write ratios, e.g., notification or session

stores [CST+10, HK11], tend to use R = 2, even though this forces all read operations to pay

the latency price [BVF+12].

In fact, even if less than 1% of accessed objects are inconsistent, these are typically the most

popular (“linchpin” [ABK+15, NFG+13]) objects, being both read- and write-intensive. Such

anomalies have a disproportionate effect at application-level, since they reflect in many more

than 1% application-level operations. Applications with high update ratios as modeled by

workload A, e.g., social networks [CRS+08], can thus benefit from exploiting ICG to avoid

anomalies.

Bandwidth Overhead. In addition to the throughput drop mentioned above, client-replica

bandwidth is the next relevant metric which ICG can impact. Yet, optimizations can cut

the cost of this feature (§6.5.2). We implement such an optimization in CC, whereby a final

view contains only a small confirmation—instead of the full response—if it coincides with the

preliminary view. We note that in all experiments thus far we did not rely on this optimization,

which makes our comparisons with Cassandra conservative.

To obtain a worst-case characterization of the costs of ICG, we consider the scenario where

divergence can be maximal, as this will lessen the amount of bandwidth we can save with our

optimization. Hence, we consider the exact conditions we use in the divergence benchmark,

where we discovered that divergence can rise up to 25%. In this experiment, we measure

the average data transferred (KB) per operation. We contrast three scenarios. First, as base-

line, we use C 1, where clients request a single consistency version using weak reads. The
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other two systems are CC 2 (without optimization) and ∗CC 2 (optimized to reduce bandwidth

overhead).

Figure 6.8 shows our results. As expected, if divergence is very high—notably in workload A—

then many preliminary results are incorrect. This means that final views cannot be replaced

by confirmations, increasing the data cost by up to 27%. Without any optimization, this would

drive the cost up by 77%. Workload B has a smaller write ratio (5%), so a lower divergence and

more optimization potential: we can reduce the overhead from 90% down to 15% (since most

final views are confirmations).

Our experiments prove that ICG have a modest cost in terms of data usage. This cost can be

further reduced through additional techniques (§6.5.2). We remark that our choice of baseline,

C 1, is conservative, because CC 2 offers better guarantees than C 1. A different baseline would

be a system where clients send two requests—one for R = 1 and one for R = 2—and receive two

replies. While such a baseline offers the same properties as CC 2, it would involve bigger data

consumption, putting our system at an advantage.

Potential for Exploiting ICG in ZooKeeper

Latency Gaps. We also measure performance gaps in ZooKeeper queues for various loca-

tions of the leader and the replica which the client (in IRL) connects to. We show the results

for four representative configurations for adding elements to a queue (we discuss dequeuing

in the context of a ticket selling system in §6.6.3). The elements are small, containing an

identifier of up to 20B (e.g., ticket number). Figure 6.9 shows the latency gaps when we use

ICG in Correctable ZooKeeper (CZK) compared to baseline ZooKeeper (ZK).

In all cases, the latency of the preliminary view (containing the name of the assigned znode)

corresponds to the RTT between the client and the contacted replica. This latency ranges

from 2ms (when client and replica are both in IRL), through 20ms (the RTT from IRL to FRK),

up to 83ms (the RTT between IRL and VRG). The most appealing part of this result is perhaps
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the substantial gap which appears when the client and the closest follower are in IRL and the

leader is distant (in VRG), in the third group of results in Figure 6.9.

Bandwidth Overhead. Storing big chunks of data is not ZooKeeper’s main goal. The client-

server bandwidth is usually not dominated by the payload, reducing the benefits of the con-

firmation optimization. For enqueuing, the bandwidth cost thus increases by roughly 50%,

from 270 to 400 bytes/operation. As expected, this corresponds to one additional (prelimi-

nary) response message in addition to the original request and (final) response.

While queues are a common ZooKeeper use-case, a problem appears in standard dequeue

implementations due to message size inflation [Net19a]. Specifically, clients first read the

whole queue and then try to remove the tail element. To evade this problem in CZK, clients

only read the constant-sized tail relevant for dequeuing. Figure 6.10 compares the bandwidth

cost per dequeue operation in CZK and ZK for different queue sizes as we increase the number

of contending threads. While the cost still increases with contention in both cases, in CZK we

make it independent of queue size, which is not the case for ZK. As future work, we plan to

make the dequeue cost also independent of contention using tombstones [SS05].

6.6.3 Case Studies for Exploiting ICG

Given the optimization potential explored so far, we now investigate how to exploit it in the

context of three applications: the Twissandra microblogging service [Twi19], an ad serving

system, and a ticket selling system. The first two build on CC and use speculation. The last

application uses CZK queues.

Speculation Case Studies

For Twissandra, we are interested in get_timeline operation, since this is a central operation

and is amenable to optimization through speculation. This operation proceeds in two-steps:

(1) fetch the timeline (tweet IDs), and then (2) fetch each tweet by its ID. We re-implement this
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Figure 6.11 – Using speculation via ICG to improve latency in the advertising system and in
Twissandra (get_timeline operation). Correctable Cassandra (CC) improves latency by up

to 40% in exchange for a throughput drop of 6%.

function to use invoke on step (1) and leverage the preliminary timeline view to speculatively

execute step (2) by prefetching the tweets. If the final timeline corresponds to the preliminary,

then the prefetch was successful and we can reduce the total latency of the operation. In case

the final timeline view is different, we fetch the tweets again based on their IDs from this final

view.

Our second speculation case study is the ad serving system we describe in §6.4.2. The goal is

to reduce the total latency of fetchAdsByUserId operation without sacrificing consistency,

so we exploit ICG by speculating on preliminary values (Listing 6.4).

For both systems, we adapt their respective operations to use invoke (R = {1,2}) and plug

them in the YCSB framework. We compare these operations using a baseline that uses only

the strongly consistent result (R = 2), and does not leverage speculation. For Twissandra we

use a corpus of 65k tweets [Twe19] spread over 22k user timelines; the ad serving system uses

a dataset of 100k user-profiles and 230k ads, where each profile references between 1 and 40

random ads.

The results are in Figure 6.11. In contrast to our other experiments, we deploy Twissandra

replicas in Virginia, N. California, and Oregon EC2 regions. The goal is to see how performance

gains vary based on deployment scenario. The ads system uses the same configuration as

before. The client is in IRL for both experiments.

We first explain the results for the ads system. As can be seen, these are consistent with our

earlier findings from Cassandra experiments (Figure 6.6). We trade throughput for better

latency. Prior to saturation, we can serve ads with an average latency of 60ms. In the same

conditions, the baseline achieves 100ms average latency (improvement by 40%). In turn, the
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Figure 6.12 – Selling tickets with ZK and CZK. The last 20 tickets incur high latency due to
strong consistency.

throughput drop is most noticeable in workload A, by 18ops/sec (reduced by 6%). The smaller

throughput drop compared to the raw results of Figure 6.6 is explained by the fact that each

fetchAdsByUserId entails two storage accesses. Only the first access, however, uses ICG (to

speculate). The second storage access is hidden inside getAds (Listing 6.4, L3); this is a read

with R = 2, incurring no extra cost.

For Twissandra, we observe a lower throughput and higher latency, as the client is farther from

the coordinator and replicas are also more distant from each other. But otherwise we draw

similar conclusions. Notably, across both of these case-studies, divergence was consistently

under 1%, so the applications encountered very few misspeculations.

Selling Tickets to Events

A second notable use-case of ICG is exploiting application semantics, as we discuss in the

ticket selling system from §6.4.3 (see Listing 6.5). Here we exploit the fact that the position of

a ticket in the queue is irrelevant. Thus, in the common case, we can rely on the preliminary

value. Strong consistency (atomicity), however, becomes critical when ticket retailers are

contending over the last few remaining tickets. Using ICG, we can switch dynamically between

using the preliminary or the final results when the stock becomes low, to avoid overselling.

We consider 4 retailers concurrently serving (dequeuing) tickets from a fixed-size stock of 500

tickets. Retailers are co-located with a CZK follower in FRK, the leader being in IRL. We wait

for the final (atomic, equivalent to ZK) response for the last 20 tickets, otherwise we use the

preliminary one. This is a conservative bound; in our experiments, only the last two tickets

were “revoked” by the final view on average, with a maximum of six.

Figure 6.12 shows individual ticket purchase latencies, averaged over five runs, compared to

latencies with vanilla CZK. As long as there are more than 20 tickets left, we reduce the pur-

chase latency substantially. The high variability of final view latencies is caused by contention

between the retailers, which does not affect preliminary views. We experiment also with larger

ticket stocks (1000), but the queue length has no practical effect on latencies. To support more
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contention (more retailers) in practice, such a ticketing service can scale-out. For instance,

we can shard the ticket stock and instantiate multiple replicated CZK services, each of them

serving a partition of the overall stock, ensuring scalability [Bur06].

6.7 Concluding Remarks

In this chapter we presented Correctables, an abstraction for programming with replicated

objects. The contribution of Correctables is twofold. First, they decouple an application from

its underlying storage stack by drawing a clear boundary between consistency guarantees and

the various methods of achieving them. This reduces developer effort and allows for simpler

and more portable code.

Second, Correctables provide incremental consistency guarantees (ICG), which allow to com-

pose multiple consistency levels within a single operation. With this type of guarantees we

aim to fill a gap in the consistency/performance tradeoff. Namely, applications can make last-

minute decisions about what consistency level to use in an operation while this operation is

executing. This opens the door to new optimizations based on speculation or on concrete,

application-specific semantics.

We evaluated the performance and overhead of ICG, as well as the impact of this novel type

of guarantees on three practical systems: (1) a microblogging service and (2) an ad serving

system, both backed by Cassandra, and (3) a ticket selling system based on ZooKeeper queues.

We modified both Cassandra and ZooKeeper to support ICG with little overhead. We showed

how ICG provided by Correctables bring substantial latency decrease for the price of small

bandwidth overhead and throughput drop.

We believe that Correctables provide a new way to structure the interaction between applica-

tions and their storage by exploiting incrementality. This enables new designs of distributed

systems that access replicated objects more efficiently.
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7 Asynchronous Token Transfers

The form of a building must follow its function.

— Henry Cameron (from Ayn Rand’s The Fountainhead)

In this chapter we focus on token-based applications. The goal is to implement a distributed

system that enables the transfer of tokens (i.e., fungible resources such as digital coins, owner-

ship documents, or payment proofs). This class of applications typically assumes a Byzantine

environment where participants are mutually distrustful. The most popular use-case, by far,

is to enable transfers of coins between system users, i.e., online payments [Nak08].

We propose the abstraction of an exclusive token account, or Exa. This abstraction models

a container for tokens such as a bank account or wallet. The defining characteristic of an

Exa object is that it has a unique owner—one of the users in the system—and this owner is

exclusively allowed to spend tokens from that account. A recent result shows that such an

object can be implemented asynchronously, i.e., without consensus [GKM+18, §2]. Building

on this result, we introduce Astro (Asynchronous Token Transfer Protocol), a system imple-

menting the Exa abstraction. We evaluate Astro in three scenarios (fault-free, crash-fault, and

asynchronous network), showing that it outperforms a consensus-based solution.

7.1 Introduction

There is a growing body of work on implementing digital trust solutions. This means enabling

users—despite their mutual distrust—to coordinate their updates on some shared application

data. In other words, the addressed problem is that of achieving Byzantine fault-tolerant (BFT)

replication [LSP82], covered earlier in this dissertation (§1.1).

Examples of digital trust applications include financial records management, public goods

tracking, and many others [CPVK16, Kem17]. We consider a specific class of digital trust

applications, which we call token-based applications. This class of applications typically allow

users in the system to transfer tokens (i.e., fungible resources) between each other. Intuitively,
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these applications model practical problems such as online payments [Nak08], electronic

voting, land registers, a subset of the functionality of token accounts like ERC20 [VB15], or

registries [But15].

As we described already (§1.1), typical solutions for implementing digital trust rely on a con-

sensus algorithm, seeking to obtain a total order across all operations in the system. Consen-

sus is a central problem in distributed computing, known for its notorious difficulty. Consen-

sus has no deterministic solution in asynchronous systems, such as the wide-area network

(WAN), if just a single participant can fail [FLP85]. Algorithms for solving consensus are tricky

to implement correctly [AGM+17, CV17, CWA+09], and they face tough tradeoffs between

efficiency, security, and scalability [Vuk15].

While solutions such as Hyperledger [ABB+18, SBV18], Bitcoin [Nak08], or Ethereum [Woo15]

prove the feasibility of token-based applications, they also point out their efficiency or scal-

ability problems [Vuk15]. The idea of token-based applications for digital trust is therefore

very appealing, but challenging.

In this chapter we revisit the problem of achieving efficient token transfers, approaching this

from a top-down perspective. Our starting point is a recent result by Guerraoui et al. [GKM+18]

showing that consensus is not necessary for implementing token-based applications. Con-

cretely, this result presents an asset-transfer sequential object type and a corresponding wait-

free implementation, showing that this type has consensus number one [GKM+18, §2].

We build on this high-level idea that token transfers do not require solving consensus. Our goal

is to bypass this building block, and obtain a solution that is more efficient than traditional

ones based on consensus. For doing so, we propose the abstraction of an exclusive token

account, or Exa. An Exa object models the account of a specific user in the system. The

central characteristic of the Exa type is that it has a unique owner and only this owner may

manipulate the Exa object by spending tokens (i.e., transferring) from that account.

We describe a system, called Astro (Asynchronous Token Transfer Protocol), which imple-

ments the Exa abstraction for the Byzantine environment. In Astro we do not impose a total

order across all transfers in the system. Instead, we rely on relaxed ordering guarantees that

can be achieved without resorting to consensus. More precisely, Astro employs a broadcast

primitive with causal ordering guarantees which can be implemented asynchronously.

It has been observed that often the main bottleneck in digital trust systems is their consensus

module [Hea16, SBV18, Vuk15]. Intuitively, a broadcast-based solution should outperform

a consensus-based system. We put this intuition to the test, by evaluating Astro in various

scenarios, including in an asynchronous network, and comparing against a baseline of a

consensus-based token transfer system. This baseline uses BFT-Smart, a state-of-the-art state

machine replication (SMR) protocol [BSA14]. Both Astro and BFT-Smart provide Byzantine

fault-tolerance (BFT), assuming that less than one third of system nodes are Byzantine.
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In our performance evaluation, we conduct experiments on a wide-area network using sys-

tems of up to 100 nodes. Depending on system size, we achieve a throughput improvement

ranging from 1.5x to 6x, while reaching up to 2x lower latency. Compared to consensus-

based implementations, Astro is simpler and it does not depend on synchrony assumptions

for progress.

We organize the rest of this chapter as follows. We start by providing an overview of the

Exa abstraction and how we can avoid total order (§7.2). We then present the algorithms

behind Astro (§7.3), as well as its implementations and evaluation (§7.4). We also discuss the

contributions of this chapter in the context of related work (§7.5), and then conclude (§7.6).

7.2 Overview

The goal of the Exa abstraction is to provide support for efficient implementations of token-

based transfer systems. We now describe this abstraction in more detail and discuss how we

can implement it without employing total order.

7.2.1 The Exa Abstraction

An Exa object has a simple interface, which we describe in Listing 7.1, assuming a concrete

object i. Each Exa object has an owner and an identity. For simplicity sake, we denote by i both

an account (a concrete Exa object) as well as the identity of this object. The state attribute of

the object represents the current amount of tokens, i.e., the balance.

1 // Attribute definitions:

2 owner // Owner identity

3 identity // Object (i.e., account) identity ’i’, immutable

4 state // Retains the current amount (balance) of tokens

6 // Operation definitions:

7 i.transfer(j, x) : returns {true, false}
8 i.getBalance() : returns state
9 i.getOwner() : returns owner

Listing 7.1 – The interface of an Exa object, instance i.

An Exa object i exposes an operation allowing the owner of this account to transfer an amount

x of tokens to another account j (line 7). By convention, we say that this transfer is outgoing

from account i and incoming to account j. A transfer operation succeeds, i.e., returns true,

if and only if the balance on the outgoing account i has at least x tokens; in this case, the

balance of account i diminishes by x and the balance of account j gains x tokens. Otherwise (if

the balance of i is insufficient), the transfer operation fails, i.e., returns false, and the account

balances remain unchanged.
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Each Exa account also exposes operations for checking the current balance of the account

(line 8) and reading the identity of the owner (line 9). Any user in the system may invoke these

two operations, unlike the transfer operation.

7.2.2 Implementing Exa Objects Without Total Order

The central idea behind the Exa abstraction is that solely the owner of an account i may invoke

the transfer operation (i.e., spend tokens) for this account. Given this access control policy

on the transfer operation, the problem of ordering modifications to this replicated object

(which typically boils down to solving consensus) reduces to the simple ordering of messages

broadcast from a designated sender—the owner of the object.

To understand why total order is not necessary with Exa, consider a set of users who transfer

tokens between their accounts. Assume the full replication model: Every user maintains a

copy of the state of every account in the system. Notice that most transfer operations commute,

i.e., different users can apply them in arbitrary order, resulting in the same final state. For

instance, a transfer T1 from the account of Alice to that of Bob commutes with a transfer T2

from Carol’s account to Drake’s account. This is because these two transfers involve different

accounts. In the absence of other transfers, each user can apply T1 and T2 on their state in

different orders, without affecting correctness.

Consider now a more interesting case where two transfers involve the same account. For

example, let us throw into the mix a transfer T0 from Alice to Carol. Assume that Alice issues

T0 before she issues T1. Note that T0 and T1 do not commute, because they involve the

same account—that of Alice—and it is possible that she cannot fulfill both T0 and T1 (due to

insufficient balance). We say that T1 depends on T0, and so T0 should be applied before T1.

Furthermore, suppose that Carol does not have enough tokens in her account to fulfill T2

before she receives transfer T0 from Alice. In this case, transfer T2 depends on T0. Thus, all

users should apply T0 before applying T2, while transfers T1 and T2 still commute. The partial

ordering among these three transfers is in fact given by a causality relationship. In Figure 7.1

we show the scenario with these three transfers and the dependencies between them.

Alice

Bob

Carol

Drake

T2

T0

T1

T0

depends-on
T1 T2

Figure 7.1 – Dependencies among transfer operations in a token-based system. On the
left-hand side there are three transfers among four accounts, and on the right-hand side we

depict the dependencies among these transfers.

Intuitively, the ordering constraint we seek to enforce among transfers is that every outgoing

transfer for an account causally depends on all preceding transfers involving that—and only
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that—account. To enforce this constraint in Astro, each user broadcasts their transfer oper-

ations using a primitive that ensures FIFO ordering across their messages. In other words,

since each account has one owner, then for every account, all users in the system observe all

transfers outgoing from that account in the same order. Additionally, users also specify any

dependencies (i.e., incoming transfers), piggybacked with every transfer they broadcast. In

the next section we discuss this broadcast primitive and how it fits into Astro, as well as the

issue of tracking dependencies.

7.3 Astro System

In this section we focus on the Astro system. Before diving into details, we first discuss some

preliminary notions (§7.3.1). Then we present Astro in full detail (§7.3.2) and briefly cover the

Byzantine FIFO broadcast building block (§7.3.3).

7.3.1 Preliminaries

Astro is essentially a replicated system running at N nodes (i.e., replicas) in an asynchronous

network. We assume that less than N /3 of nodes are Byzantine. This last assumption is

important for securing our broadcast algorithm against Byzantine faults (§7.3.3).

We assume that each node in Astro is the owner of one account. Thus, the state of the system

consists of N Exa objects. Intuitively, this system resembles a peer-to-peer model. We employ

this unification of nodes with accounts for pedagogical reasons, as it makes it easier to reason

about our algorithms. It is simple, however, to extend this model and allow multiple accounts

per node, for instance, by generating multiple logical identities per node, one for for every

owned account. Alternatively, we can introduce a mapping between nodes and accounts; in

fact, this is precisely what we will do in our evaluation (§7.4.2.)

To simplify matters, we use the familiar notation i to identity not only a certain account in

the system, but also the owner of that account, i.e., one of the nodes in the system. Further-

more, in the context of an operation i.transfer(j, x), we denote account i as the spender, while

account j is the beneficiary of the transfer.

As explained, the essential property of an Exa object is that it has a unique owner, and we dis-

allow non-owners from initiating transfers. We assume a permissioned setting (§1.1) where all

nodes know each other, and we identify each node by its public key. Upon initiating a transfer

operation, each node signs the details of this operation before broadcasting to others. Based

on this authentication method, it is straightforward to restrict access by verifying signatures

prior to applying any transfer on an Exa object.
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7.3.2 Astro Algorithms

At a high level, Astro works as follows. To perform a transfer, a node i broadcasts a message

with the transfer arguments, including the outgoing—or spender—account (in this case ac-

count i), the beneficiary account, and the amount of tokens. These arguments match with the

transfer operation in the Exa interface presented earlier (Listing 7.1, line 7).

Recall that a correct node should not apply a transfer T before applying all the dependencies

for T . In particular, transfers outgoing from the same account i do not commute, and thus all

correct nodes must apply these transfers in the same order. This FIFO property is simple to

enforce in practice by relying on sequence numbers. Concretely, our Astro algorithm builds

atop a Byzantine FIFO broadcast primitive, which we cover later (§7.3.3).

By itself, Byzantine FIFO broadcast is not sufficient to obtain the causal ordering guarantees

we seek. Recall there is an additional scenario in which two transfers do not commute (§7.2.2).

Suppose that account i has initially zero balance and receives some tokens in a transfer T1.

Thereafter, account i immediately sends tokens to account j in a transfer T2. If any node

in the system tries to apply T2 before T1, it would consider the former transfer invalid due

to insufficient funds. Thus, transfer T2 depends on T1 and all nodes in the system should

apply T1 before T2. We enforce this ordering by attaching a dependency set to every transfer

operation. Before applying any transfer, we require every node to apply the history attached to

that transfer. For performance reasons, in practice the history attached to a transfer need not

contain other transfers, but merely their identifiers, in a similar vein as vector clocks represent

causal history in a classic causal order broadcast [Fid88, Mat88].

Before proceeding to explain Astro in more detail, we first make a refinement on the system

model, to introduce the abstraction of committees.

Committees. Throughout this chapter so far we assumed the full replication model. In this

model, each node i broadcasts the details of all their transfer operations to the whole system.

This allows every node to replicate all accounts. We describe a more flexible design, which we

call a committee-based model, inspired from partial replication schemes.

In the committee-based model, we associate each account i to a certain set of system nodes.

This set is the committee of i. Intuitively, the committee of an account witnesses all transfers

outgoing from that account and guarantees their correctness. The restriction of less than N /3

of Byzantine nodes we mentioned earlier applies to every committee in the system. (This is

because each committee runs an instance of Byzantine FIFO broadcast.)

This design based on committees is a simple generalization of the full replication model

(where the committee of every account is the whole system). Note that the committees of two

accounts may completely overlap or may be completely disjoint. We introduce this abstrac-

tion of committees to enable a more modular design, open to future extensions. We further
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10 sn[1..N] // Counts how many outgoing transfers have been applied for each account

11 hist[1..N] // List of applied transfers for every account

12 deps // Set of delivered transfers that involve the local account i

13 buffer // Incomplete dependencies

14 com[1..N] // The committee of each account

15 pending // Set of transfers delivered (but not applied)

Listing 7.2 – The state at each node i in Astro.

argue for the value of this separation in a later discussion (§7.5).

Node state. In Listing 7.2 we describe the local state from the perspective of a particular

node i. Each node keeps, for each Exa object j in the system, an integer sequence number sn[j]

reflecting the number of transfers outgoing from account j which the local node i has applied.

Each node in Astro also maintains a list hist[j] of transfers which involve account j and local

node i has applied. We say that a transfer operation involves an account j if that transfer is

either outgoing or incoming on account j.

Each node i maintains a local variable deps, representing dependencies for their own Exa

object. More precisely, this variable is a set of transfers having account i as beneficiary, which

node i has applied since the last successful (outgoing) transfer. The buffer variable temporarily

stores incomplete dependencies before they are ready to be used.

Finally, each node also maintains the committee of each account in the system, as well as

a variable pending, which is a set containing delivered transfers that require validation, i.e.,

have not been validated nor applied yet on the state.

Initiating a transfer of tokens. We sketch the algorithm for this operation in Listing 7.3

below. To transfer tokens, node i first checks the balance of its own account (line 17). If there

is not enough funding, i.e., the balance is insufficient, this operation returns false (line 18).

Otherwise, node i broadcasts to the committee of its account a transfer message m (line 19),

encoding the details of this operation via the broadcast primitive (line 20).

16 func i.transfer(j, x)
17 if (i.getBalance() < x)
18 return false
19 m := 〈TRANSFER, i, j, x, sn[i] + 1, deps〉
20 broadcast(com[i], m) // Broadcast to my committee

21 deps := {} // Reset my dependencies

22 return true

Listing 7.3 – Algorithm for the transfer operation in Astro. Code for account i.
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23 callback deliverBroadcast(j, m)
24 if (i ∉ com[j])
25 return // Drop message if we are not in committee of ’j’

26 pending := pending ∪ {(j, m)}

Listing 7.4 – Byzantine FIFO broadcast callback: Node i delivers a message m broadcast by a
node j.

The message m which node i broadcasts to its committee includes the three basic arguments

of the transfer operation, plus the sequence number for the spender account sn[i], as well

as the accumulated dependencies (line 19). After broadcasting m, node i empties its set of

dependencies, and returns true (line 22).

Delivering and applying a transfer. The nodes in the committee of an account deliver

broadcast messages via a callback from the broadcast primitive. Listing 7.4 presents this

callback. Assume node i delivers a broadcast message m, sent by a node j. Upon delivery,

node i first checks that it belongs to the committee of the sending node j (line 24). If this check

passes, then node i saves message m in the pending set (line 26), for validation. We explain

the validation procedure later.

Applying a valid transfer. The algorithm in Listing 7.5 describes how a node i applies a

transfer operation after that operation passes validation. Assume account j is the spender in

this transfer (line 28). First, node i adds transfer t as well as its dependencies to the history of

Exa object j (line 30). Then node i also updates the sequence number for j (line 31).

27 upon (j, m) ∈ pending and valid(j,m)
28 let m be 〈TRANSFER, j, k, x, n, D〉
29 t := (j, k, x, n)
30 hist[j] := hist[j] ∪ t ∪ D
31 sn[j] := n
32 // Finished applying the transfer

33 proof := 〈PROOF, t, Sign(t)〉 // Prepare a proof message

34 unicast(k, proof) // Inform the beneficiary that it received tokens

Listing 7.5 – Node i (belonging to committee of account j) applies a transfer operation where

account j is the spender and account k is beneficiary.

In Listing 7.5 observe that the beneficiary of transfer t is some account k (line 29). Node k

which owns this Exa object does not necessarily belong to the committee of the spender

account j. Hence node k does not necessarily deliver and apply transfer t on its local state.

The mechanism for informing k that it is the beneficiary of some tokens (in a transfer from

account j) consists of a message which every committee member of spender j unicasts to k.
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We call such a message a proof for transfer t. A proof consists of the transfer details as well

as a signature on the transfer (lines 33–34). We describe next how the beneficiary handles

the delivery of proofs and afterwards we cover the valid procedure for validating transfer

messages.

Handling transfers at the beneficiary. Whenever some account k is the beneficiary of a

certain transfer operation t, the node owning account k expects proofs for this transfer. Every

correct node that applies t sends such a proof to node k. Upon gathering sufficiently many

proofs for transfer t, this transfer becomes a dependency for account k. The set of proofs are

called a certificate for that dependency. Intuitively, a dependency represents some unused

tokens, while the corresponding certificate proves the validity of that dependency.

The algorithm in Listing 7.6 below shows the callback which a node i uses to deliver a proof

message for a transfer t. Notice that the sender of this proof is node j, and assume account k

is the beneficiary of this transfer, while account l is the spender (line 37).

35 callback deliverUnicast(j, proof)
36 let proof be 〈PROOF, t, sig〉
37 let t be (l, k, x, n)
38 if (k = i)
39 and (j ∈ com[l])
40 and checkSig(j, t, sig)
41 buffer[t] := buffer[t] ∪ {j, sig} // Accept correct proof

42 if |buffer[t]| = faultThreshold + 1 // F+1

43 // Gathered sufficient proofs to form a certificate

44 deps := deps ∪ {t, buffer[t]} // Transfer becomes a full−fledged dependency

45 buffer[t] := {}

Listing 7.6 – Handling the delivery of a proof message for a transfer t, sent by node j.

When node i delivers a proof, three verifications are necessary to ensure that the proof is

correct, as described below.

1. The beneficiary account reported in the proof message (labeled k on line 37) should

match the local account i (line 38);

2. The sender j of the proof should be in the committee of the spender l (line 39); and

3. The signature in the proof should correspond to sender j (line 40).

After ensuring that a proof message for transfer t is correct, node i adds this proof to the

buffer set. Note that transfer t is not yet a dependency ready to be used. This buffer set stores

proofs for different transfers temporarily. To become a dependency, a transfer must have
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F +1 matching correct proofs (this is the faultThreshold variable on line 42). Once sufficient

proofs are gathered from different committee members of spender account l, these proofs

form a certificate guaranteeing the correctness of that transfer. Then transfer t becomes a

dependency for the local account i (line 44), ready to be used in later transfers.

Validating a transfer and its dependencies. As explained earlier, before applying a transfer,

each node first validates it via the valid function (line 27). We describe the validity conditions

that a transfer has to fulfill in Listing 7.7.

46 func valid(j, m)
47 let m be 〈TRANSFER, l, k, x, n, D〉
48 return (l = j)
49 and (n = sn[j] + 1)
50 and (checkDeps(j, D))
51 and (computeBalance(j, hist[j] ∪ D) ≥ x)

Listing 7.7 – Validity checks for a transfer message m sent by node j.

To be considered valid, a transfer message m must satisfy four conditions (lines 48–51). The

first condition is that node j (the sender of this transfer message) must be the owner of the

outgoing account, i.e., the spender in this transfer (line 48). Second, any preceding transfers

that node j issued from their account must have been validated (line 49). Third, every declared

dependency for this transfer (and its certificate) must be valid (line 50); we handle this step

in a separate procedure checkDeps, discussed below. Fourth, the balance of Exa object j must

not drop below zero (line 51).

52 func checkDeps(j, D)
53 foreach (t, cert) ∈ D
54 let t be (l, k, x, n)
55 if (|cert| ≤ faultThreshold)
56 or (k != j)
57 return false
58 foreach (s, sig) ∈ cert // Check each proof in the certificate

59 if (s ∉ com[l])
60 or (! checkSig(s, t, sig))
61 return false
62 return true

Listing 7.8 – Verification of dependencies and their certificate.

We use the checkDeps procedure in Listing 7.8 to validate a set D of dependencies. For every

dependency, this procedure does three checks, as follows.
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1. The certificate for that dependency must be sufficiently large, i.e., its size must exceed

a certain threshold, called faultThreshold on line 55.

2. The sender of these dependencies (node j) must be the beneficiary of each dependency,

as checked on line 56.

3. For every dependency, the proofs in the certificate of that dependency must originate

from a committee member (line 59) and must be correctly signed (line 60). Note that

this check assumes that each signature originates from a distinct committee member,

i.e., the set certs disallows multiple proofs from the same sender.

Reading the balance of an account. To obtain the balance of an Exa object, as shown in List-

ing 7.9, we employ a procedure computeBalance. We also use this same procedure in the valid

function (line 51). We omit the internals of this procedure, which computes the current bal-

ance of account i by traversing the history for this Exa object and its current dependencies,

summing up all the incoming transfers and subtracting the outgoing transfers for i.

63 func i.getBalance()
64 return computeBalance(i, hist[i] ∪ deps)

Listing 7.9 – Computing the balance of account i.

For a discussion on the correctness of Astro, we refer the interested reader to Appendix B.1.

7.3.3 Overview of Byzantine FIFO Broadcast

In a nutshell, Byzantine broadcast guarantees that messages broadcast by a correct node

are eventually delivered by every correct node. The FIFO property, in addition, says that if a

correct node broadcasts some message m and then broadcasts another message m’, then no

correct node delivers m’ before delivering m.

We now sketch a simple algorithm for implementing Byzantine FIFO broadcast, inspired

from prior work on a similar primitive called double-echo broadcast [BT85, CGR11]. In this

description we ignore the concept of committees, and adopt a model where messages are

broadcast to all N nodes in the system. We assume the number F of Byzantine nodes is less

than one-third of N . All correct nodes in this algorithm communicate via authenticated links.

At a high-level, this algorithm comprises three phases, as follows:

1. Send—To broadcast a message m, a correct node i attaches a sequence number s to this

message, forming a tuple (m,s). Then node i sends this tuple to all nodes.

2. Echo—Upon receiving the tuple (m,s) from i, every node j sends an echo message of

this tuple to all nodes in the system.
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3. Ready—When a node j gathers a Byzantine quorum of echo messages for the tuple

(m,s), then node j sends a ready message for this tuple to all nodes. Each node delivers

message m after obtaining ready messages from 2F +1 distinct nodes, and after having

delivered all messages from node i that have sequence numbers smaller than s.

The full algorithm for implementing Byzantine FIFO broadcast is out of the scope of this

dissertation, hence we defer it to the appendix (Appendix B.2).

7.4 Experimental Evaluation

In this section we experimentally evaluate Astro, our token transfer system implementing

the Exa abstraction. We first describe the two systems we use in this evaluation, namely (1)

our implementation of Astro, and (2) a transfer system based on consensus (§7.4.1). We then

present our experimental methodology (§7.4.2), and present our results (§7.4.3).

7.4.1 Transfer Systems Under Evaluation

We implement a prototype of Astro in the Go programming language using roughly 1.6K

L O C (lines of code). Our implementation builds on a Byzantine FIFO broadcast primitive

inspired from the Asynchronous Byzantine Agreement (ABA) of Bracha and Toueg [BT85].

Note that it is simple to build Byzantine FIFO broadcast starting from an ABA building block

by relying on sequence numbers [Rei94], which are needed to ensure the FIFO property. We

reuse the sequence numbers of this broadcast layer to tag each transfer from a given node

(the sn variable in broadcast messages, line 19 of Listing 7.3), which helps mildly decrease the

total size of messages in our implementation.

To obtain authenticated links at the Byzantine FIFO broadcast layer, we rely on Message Au-

thentication Codes (MACs) between every pair of nodes, implemented using SHA256. We

employ several standard optimizations in this implementation, such as batching and pipelin-

ing [SS12]. Such optimizations exist as well in our baseline system, which we describe next.

The goal is to compare our implementation against a baseline transfer system that builds on

consensus. We build this baseline on top of BFT-Smart [BSA14]. This is a state-of-the-art im-

plementation of SMR with Byzantine fault-tolerance guarantees. BFT-Smart is currently being

used with success in the digital trust ecosystem, e.g., in the Hyperledger Fabric project [SBV18].

For both our baseline and Astro, we assume the optimal threshold of N = 3F+1 replicas, where

F is the upper bound on the number of replicas that can be Byzantine. Throughout our eval-

uation, we will adopt the SMR terminology and refer to protocol participants as replicas. We

seek to understand how a committee running the Astro algorithm compares with a committee

running BFT-Smart, i.e., the rest of this evaluation will focus on systems consisting of a single

committee of N replicas.
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It is important to note that Astro (implemented on top of broadcast) is significantly simpler

than consensus-based solutions. In general, there is a staggering difference in complexity

between consensus—in particular BFT—and broadcast algorithms. Contrast our 1.6K L O C

implementation, for instance, with libpaxos [Lib18], which is a simple implementation of

Paxos for the crash-only system model. This Paxos codebase stretches over more than 6K L O C

in C (without counting the event-based library on which it relies). At the time of its original

publication, the BFT-Smart implementation counted around 13.5K L O C in Java [BSA14, §III].

Astro is an asynchronous algorithm, meaning that our implementation does not have to rely

inherently on timeouts to ensure liveness. This is in contrast to deterministic consensus-

based solutions. Such solutions have to resort to fine-tuned timeout parameters which can

affect their performance and availability, as our experiments show later (§7.4.4). This is a

well-known aspect that has been reported before [BSA14, CWA+09, DRZ18, MXC+16].

7.4.2 Methodology

We use Amazon EC2 as our experimental platform. Throughout the experiments, we use

commodity-level virtual machines of type t2.medium [Ec218]. We deploy these systems so

that each replica executes on a separate virtual machine. This helps avoid creating any un-

necessary noise in our results, which could arise due to performance interference.

We consider two deployment scenarios:

1. The first scenario is continental, comprising four regions in Europe, namely Frankfurt,

Ireland, London, and Paris.

2. The second scenario we use is global. In this scenario, we use ten regions around

the globe, namely Frankfurt, Ireland, London, N. Virginia, Ohio, Oregon, Singapore,

Canada, Mumbai, and Sydney.

In both scenarios, we deploy the replicas of each of the two systems randomly across the

corresponding regions. The goal of having these two separate scenarios is to evaluate whether

different wide-area deployments affect the behavior of the systems we are evaluating. The

first scenario reflects an inter-banking transfer system, for instance, where participants are

localized in a single geographic region—namely in Europe—while the latter scenario reflects

a deployment where participants are spread around the whole world.

As we have described our system so far, in Astro there is no separate client role, and the work-

load of the system originates directly from every participating node, i.e., replica (§7.3). In

contrast, most SMR implementations, including BFT-Smart, assume a client-server architec-

ture. To be fair towards BFT-Smart, we introduce the role of clients in Astro; these are separate

nodes, each connecting to one of the replicas in the system. Introducing clients allows us to
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obtain an apples-to-apples comparison of latencies and throughput between Astro and the

consensus-based implementation.

In both the global and continental scenarios we deploy up to 15 machines for client processes,

which generate the workload. Each request from a client represents one transfer operation.

A request contains three fields: spender identity, beneficiary identity, and the amount. By

default, all three fields in a transfer operation have random values. The only constraint is

that the spender in a given transfer operation is always an account associated with the replica

where that operation is being invoked. In other words, the replica which handles a transfer is

the owner of the spender (outgoing) account in that transfer.

For simplicity, we place all client machines in Ireland. Spreading clients around the world

does not influence the results of our evaluation. Each client machine hosts a varying number

of client processes. The number of processes varies greatly, depending on each system and

the system size. For instance, to saturate throughput in BFT-Smart at system size N = 4, we

use around 800 client threads; for the same system at N = 100, 30 threads are sufficient to

reach saturation. For Astro, we require more client threads to reach saturation, since this

system is capable of higher throughput.

For throughput, we report on how many transfers each system executes per second. We are

interested in the peak throughput each system can sustain as a function of system size. All of

the experiments we discuss consist of a runtime of 60 seconds, and we present the average

result across 3 runs, eliding a warm-up and a cool-down of 10 seconds each. We also plot the

standard deviation, but often this has negligible values and is not clearly visible in the plots.

In BFT-Smart, each client keeps connections to all replicas. This is a design choice of this

system [BSA14]. For this reason, all BFT-Smart clients experience similar latencies when

executing their workload. The latency we report is the one observed by a random client.

Unlike BFT-Smart (where there is no ownership relation between accounts and replicas), in

Astro each account is uniquely associated to a replica. This is a property of the Exa abstraction,

so it is the owner replica that performs transfers on their respective accounts. It is only for

comparison with BFT-Smart that we add the client layer, creating the situation where replicas

execute transfers “on behalf of the clients”. To stress the system and make all replicas execute

transfers (which is the most realistic scenario), each client connects and submits the whole

workload to some random replica. The performance of Astro remains the same, however,

even if all clients connect to a single replica; we discuss this in further detail later.

7.4.3 Performance Evaluation Results

We first discuss the results for throughput and then show how the two systems compare in

terms of latency. We also show that load-balancing, i.e., the assignment of clients to replicas,

does not impact the performance of Astro.
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Figure 7.2 – Regional scenario (using four regions across Europe, namely Frankfurt, Ireland,
London, and Paris). We report on peak throughput as we increase the number of replicas in

two transfer system implementations, one based on broadcast, and another based on
consensus (i.e., SMR).

Throughput

In Figure 7.2 we present the results for the continental scenario. We depict how throughput

evolves as a function of system size, i.e., for each system size, we plot the peak throughput. We

start from the smallest system size, N = 4, and subsequently add more replicas. We increase

the size of each system in increments of 6, until we reach 100 replicas.

At a small system size, both systems exhibit the highest throughput. The consensus-based

implementation using BFT-Smart sustains over 10K transfers/sec, while Astro reaches almost

13.5K transfers/sec. As we increase the system size, throughput degrades considerably. The

consensus-based system saturates at 334 transfers/sec at N = 100. In contrast, Astro can

sustain 6X higher throughput, being able to apply 2K transfers/sec at a system size of 100

replicas. Notice that these results are in line with our earlier findings on the performance

decay of SMR from Chapter 3, Figure 3.1. This is despite different testbeds, though they have

similar characteristics (EC2 in this case, versus SoftLayer for earlier experiments §3.3.1).

The results for the global scenario are depicted in Figure 7.3. Note that in this scenario the

smallest system size we consider is N = 10. This is because this scenario comprises 10 separate

regions in the world and we want to cover each region with at least one replica. We proceed in

increments of 10, so that at each subsequent iteration we add one additional replica to each

region until we reach 100 total replicas.

Similarly to the continental scenario, throughput degrades considerably with growing system

size. The degradation in BFT-Smart is less sharp than in Astro, but this is partly because the

former system starts from a significantly lower throughput at a small scale.

In this scenario, BFT-Smart exhibits a throughput of 1.5K transfers/sec when deployed on

ten replicas, and it can only reach 242 transfers/sec at the largest system size. Astro sustains

9.4K transfers/sec when deployed on ten replicas. When running on N = 100 replicas, Astro

reaches 357 transfers/sec, which is roughly 50% increase over the consensus-based solution.

In absolute numbers, throughput in the global scenario is significantly smaller than in the
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Figure 7.3 – Global scenario (using ten regions across the globe: Frankfurt, Ireland, London,
N. Virginia, Ohio, Oregon, Singapore, Canada, Mumbai, and Sydney). We report on peak

throughput for two transfer system implementations, namely one based on Byzantine FIFO
broadcast, and another based on consensus (i.e., SMR).

continental case. This is mainly due to the difference in the network bandwidth between the

two configurations. Concretely, the bandwidth available across regions in Europe is typically

3x −5x larger than the bandwidth when crossing from regions in Europe to Southeast Asia.

In terms of throughput, our Astro prototype outperforms the consensus-based solution at

every system size up to 100 replicas. We did not experiment beyond this system size, mainly

due to resource (economical) constraints. We expect, however, that eventually, at a larger

system size the two systems will exhibit similar throughput. Even if Astro is broadcast-based,

this system still relies on quorum-gathering techniques to achieve consistent replication,

and hence the throughput decay in this system follows the same decay as consensus-based

solutions.

A practical deployment of Astro could consist of a certain number of banks, for instance, seek-

ing to build a decentralized inter-bank transfer (or, more generally, asset exchange) system.

If we consider that each participant is an individual bank, then a solution based on our con-

sensusless algorithm can handle, for instance, almost 3K transfers/sec when there are 50

participating banks in the global setting and can handle almost 6K transfers/sec for the same

number of participants in the continental setting. In a nutshell, for systems of moderate size—

up to 100 replicas—Astro is simpler and significantly outperforms consensus-based solutions

for decentralized transfers.

Latency

In Figures 7.4 and 7.5 we depict how latency evolves with respect to throughput in both sys-

tems, for two particular system sizes, namely N = 10 and N = 100, respectively. Note the

different scale of the x-axis across these two figures. These results are for the global scenario

(this is where the two systems are at their worst). We plot both average latency and the 95th

percentile latency.

For the small system size (Figure 7.4), when the workload is light, the consensus-based sys-
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Figure 7.4 – Throughput-latency graph for N = 10, comparing Astro against a
consensus-based solution. The deployment environment is global.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  100
 200

 300
 400

L
a

te
n

c
y
 (

m
s
)

Throughput (transfers/sec)

N = 100

Consensus (average)
Consensus (95 %ile)
Broadcast (average)
Broadcast (95 %ile)

Figure 7.5 – Throughput-latency graph for N = 100, comparing Astro against a
consensus-based solution. The deployment environment is global.

tem has an average latency of roughly 330ms, while the broadcast-based system exhibits on

average 200ms latency. The 95th percentile latencies at low load are similar to the average

latencies for both systems.

We observe that the latency remains almost unchanged when we increase the system size

from N = 10 to N = 100 (Figure 7.5). Concretely, when the systems are not under high load,

the average latency is 350ms for the consensus-based system and 200ms for Astro. This is

unsurprising, however. Recall that the deployment characteristics for these sets of results are

the same—i.e., we use the global deployment—for both the small (N = 10 in Figure 7.4) and

the large system (N = 100 in Figure 7.5). For both system sizes, the replicas are geographically

distributed in 10 regions of the world. The only difference between the two experiments is

the number of replicas at each region. The latencies do not change considerably because

obtaining one response from a particular region takes roughly as much time as obtaining
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Figure 7.6 – Throughput-latency graph for balanced versus single setups in Astro. We use
N = 100 replicas in the global environment.

several responses (in parallel) from that region.

Workload balancing among replicas

In this experiment we examine how the balancing of clients across replicas affects the perfor-

mance in Astro. To do so, we deploy our token transfer system on 100 replicas in the global

environment. We contrast the difference in performance between the following two setups:

1. Balanced: where we assign clients to random replicas across the system. This is the

strategy that we used throughout all experiments so far.

2. Single: where we assign all clients to one single replica.

We study how latency—average and 95th percentile—evolves as a function of throughput.

The results are depicted in Figure 7.6. To enhance visibility, we plot the average latency sep-

arately (in the top graph) from the 95th percentile (which is in the bottom graph). Note that

the y-axis is different across the two pictures, to account for higher 95th percentile latencies.
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Unsurprisingly, in both the balanced and single setups, the throughput saturates at roughly

the same point, around 350 transfers/sec. These numbers are consistent with previous obser-

vations we made (Figures 7.3 and 7.5). Latency is also consistent with previous findings, and

it fluctuates between 200 and 300ms.

We can conclude that inserting transfers in the system (in which only one replica is involved)

does not require a significant overhead compared to the overhead of broadcasting these trans-

fers (in which all replicas are involved). Another insightful way of interpreting this result is

that no single replica in Astro is the bottleneck.

7.4.4 Availability Evaluation Results

We now investigate how these systems react to two problems that can arise in practice, namely

failure (e.g., crash) and asynchrony (network delays) at a replica. We consider the impact of

these issues when they affect a random replica in each system, as well as the case when the

leader is affected in the Consensus-based system. The role of a leader does not exists in Astro.

We study the evolution of throughput within a window of execution of 40 seconds, ignoring

a warm-up period of 20 seconds. For all these experiments, we introduce asynchrony or

failure after 30 seconds elapse. To induce asynchrony, we use the traffic control utility tc with

the network emulator queuing discipline. We always use a delay of 100ms. For instance, to

introduce such a delay on all packets outgoing from interface eth0 at a replica, we use the

following command: tc qdisc change dev eth0 root netem delay 100ms.

We use 10 clients, each running a single thread. The goal is to evaluate these systems below

saturation point. If we introduce failures at saturation, this can lead BFT-Smart to halt or enter

a livelock where the system is unable to do view-changes (i.e. re-elect leader). Moreover, at

saturation point the broadcast-based system can sustain the same throughput independently

of how many replicas accept client operations, as we showed in previous experiments (Fig-

ure 7.6). In other words, stopping a replica at saturation point in Astro should not impact
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throughput, giving an advantage to our system over the Consensus-based solution. We first

report results for N = 49 in the regional configuration. We run these experiments with larger

and smaller systems, but similar observations emerge as the ones we describe below. For

completeness, we also discuss a set of interesting results with a larger system size of N = 100.

In Figure 7.7 we show the how throughput evolves when we introduce a crash-stop failure

at a replica (N = 49). For consensus, this failure has a severe impact on throughput if the

leader is affected (the Consensus-Leader timeline), because the view-change protocol has to

execute. The throughput drops to 0 while this protocol runs, typically a few seconds. For larger

system sizes, this protocol can take longer to execute, as we will show later. When a random

replica fails in the consensus-based system (Consensus-Random), there is a brief decrease

in throughput when all clients and replicas get disconnected from the affected replica, but

thereafter performance recovers.

When we stop a random replica in the broadcast-based system (Broadcast-Random in Fig-

ure 7.7), throughput drops from 270 ops/sec to 250 ops/sec. This accounts for the failed

replica which was handling roughly 20 operations per second from one of the clients. This

decrease is barely visible in the plots.

Figure 7.8 shows how asynchrony impacts the performance in the two systems (N = 49). We

depict two separate executions for the case of consensus when the leader is affected, because

there are two possible outcomes. First, it may happen that throughput decreases and remains

that way; this is the Consensus-Leader-A timeline. Second, the system can go through a view-

change (Consensus-Leader-B) because the leader is too slow or its buffers can overflow and

packets get dropped (inflating the replica-to-replica delay). Clearly, initiating a view-change

is preferable in this case, because the throughput penalty is smaller. There is a well-known

tradeoff, however, in choosing the view-change timeout [CWA+09, MXC+16]: initiating view-

change too aggressively can lead to frequent leader changes even in good conditions, which

can erode performance on the long-run.
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When a random replica is affected with asynchrony in the consensus-based system (Consensus-

Random line in Figure 7.8), performance drops briefly because there is a quorum switch, i.e.,

the affected replica is replaced by a different one in the quorum [AGMS18]. For the broadcast-

based system (the Broadcast-Random timeline), asynchrony affects performance in the same

manner in which a failure does. Concretely, the affected replica no longer sustains the same

amount of client operations, so the overall throughput reduces correspondingly.

We also show results for the case of a larger system size (N = 100) in Figure 7.9. There are

four timelines in this execution, as follows. For the consensus-based solution, we show what

happens when there is either a crash-stop failure or asynchrony at the leader. In the former

case (Consensus-Fail), the view-change protocol kicks in and lasts for roughly 20 seconds,

while throughput stays at zero; this is similar to the Consensus-Leader execution in Figure 7.7.

In the latter case (Consensus-Async), performance degrades and stays that way for as long as

the affected replica remains the leader; this is similar to the Consensus-Leader-A in Figure 7.8.

For the broadcast-based solution we consider the same two issues affecting a random replica.

When either of these issues arises (Broadcast-Fail or Broadcast-Async) throughput is affected

correspondingly with the number of operations that the failed replica is handling (and which

is unable to continue). Being a peer-to-peer system, in Astro there is fate-sharing [Cla88]

between each replica in the system and the account(s) hosted at that replica. For this reason,

when a replica stops, all the associated accounts naturally stop executing operations as well.

We wrap-up this section with two general observations. First, Astro does not suffer from

overall (i.e., global) throughput degradation than can happen in leader-based protocols such

as most consensus algorithms. Second, our system does not need to rely on timeouts for

liveness. Simply put, Astro progresses at the speed of the network. These two advantages are

closely linked, and they both follow from the asynchronous nature of the broadcast protocol

underlying Astro.
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7.5 Discussion & Related Work

We omit several optimizations and limitations from our earlier description of Astro (§7.3). We

discuss these now, while also covering related work.

7.5.1 State Sharding

In our evaluation of Astro all replicas participate (and replicate) every account. In other words,

we employ the full replication model, where all Exa objects use the same committee. This

reflects the same model our baseline BFT-Smart adopts. Given this setup, one important op-

timization that we employ in Astro is that we can skip the step of informing the beneficiary

node for every transfer t, since this node is already part of the committee approving t. Fur-

thermore, we can trim down the representation of dependencies in this setup. Recall that

each dependency in our algorithm consists of transfer details plus a certificate proving the

correctness of that transfer (§7.3.2). Since every node witnesses all transfers, a dependency

can consist of a simple tuple {i, s} pointing to a specific transfer with sequence number s of a

specific Exa object i.

The full replication model entails storing the whole state and this is usually undesirable. A

common alternative is to employ partial replication, often called sharding. Under partial

replication, every user stores some segment of the state which is relevant for that user. The

Astro design is amenable to partial replication, given the committee-based model we adopt.

Concretely, each shard would replicate a subset of all Exa objects, effectively representing

the committee of all these accounts. As an optimization, we imagine that we can satisfy cer-

tain locality constraints, e.g., an Exa object in Europe relying on a committee predominantly

represented in Europe.

A problem that can appear in partial replication has to do with validating operations. In par-

ticular, it may happen that a user is unable to validate an operation if that operation depends

on state which this user does not store locally. This is a well-known problem, both in systems

which employ total order [ABK+15, FP18] as well as in those employing weaker ordering such

as causality [BFG+12]. The purpose of a certificate which a node sends with every depen-

dency is to solve this very issue in Astro. We remark on Corda, which proposes an interesting

partial replication design for a blockchain (i.e., digital trust), allowing a user to resolve and

validate dependencies by downloading any missing state directly from the user involved in

each operation [Hea16, §4.2].

7.5.2 Account State Representation

Bitcoin and other cryptocurrencies do not directly deal with accounts and account balances.

Instead, each outgoing transfer directly references one or more incoming transfers. It is im-

portant that each such incoming transfer is only referenced (i.e., spent) once. A node validates
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new transfers by checking whether referenced transfers have not yet been spent. This is the

unspent transaction output (UTXO) model [Nak08]. Keeping track of every transfer is feasible

for low-throughput systems like Bitcoin, but doing so can be prohibitively expensive in terms

of storage space for systems with higher throughput, because the state would grow very fast.

In Astro we keep track of all transfers and use a naive method of computing account balances

only for simplicity of presentation (line 64 in Listing 7.9). In a practical deployment, the

state of each account (the hist variable) can be represented not as a list of transfers, but as a

simple pair of values: one for the account balance and one for the sequence number of the

last applied outgoing transfer for that account. In this case, validating a dependency would

require a modification, reducing to a check that the sequence number of a dependency is

smaller or equal to the last applied sequence number for that Exa object.

7.5.3 Ordering Constraints

In the digital trust (i.e., blockchain) ecosystem, several efforts exist which avoid building a

totally ordered chain of transfers. The idea is to replace the totally ordered linear structure of

a blockchain with that of a directed acyclic graph (DAG) for structuring the transfers in the

system. Notable systems in this spirit include Vegvisir [KJW+18], or Corda [Hea16]. Even if

these systems use a DAG to replace the classic blockchain, their algorithms still employ con-

sensus. As described, we can also use a DAG to characterize the relation between transfers in

Astro, but our system relies on a broadcast primitive with BFT and FIFO ordering guarantees.

Given the ownership feature of Exa objects, we maintain a per-account sequence of transfers.

Each sequence is ordered individually—by its respective owner—and is loosely coupled with

other sequences through dependencies established by causality.

We can draw a parallel between our Exa abstraction and conflict-free replicated data types

(CRDTs) [SPBZ11]. Similar to a CRDT, in Astro we support concurrent updates on different Exa

objects while preserving consistency. Each account has a unique owner, ruling out the possi-

bility of conflicting operations when owners are correct. This ensures that the state at correct

nodes converges. In the terminology of [SPBZ11], we provide strong eventual consistency.

The ordering we enforce in Astro is similar to one based on explicit causality [BFG+12]. In ex-

plicit causality, the dependency set for an operation are application-dependent. For instance,

in a Twitter-like platform, when a user posts a new reply, the dependency set for this event

can consist of only the original thread for that reply. In a similar vein, in Astro we specify that

each transfer outgoing from an account only depends on previous transfers outgoing from

and incoming to that—and only that—account.

7.5.4 Asynchronous Protocols

The insight that an asynchronous broadcast-style abstraction suffices for transfers appears in

the literature as early as 2002, due to Pedone and Schiper [PS02]. Duan et. al. [DRZ18] intro-
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duce efficient BFT protocols for storage and also build on this insight, as does recent work by

Gupta [Gup16] on financial transfers which is the closest to the work in this chapter. We build

on a recent theoretical result which shows formally that indeed consensus is unnecessary for

transfers [GKM+18]; we exploit this result by proposing an abstraction and a practical system.

An important part of our implementation is the Byzantine FIFO broadcast primitive. This has

its roots in the Asynchronous Byzantine Agreement (ABA) problem, defined by Bracha and

Toueg [BT85]. There are multiple algorithms for implementing Byzantine FIFO broadcast,

with slight variations in their assumptions. From a practical standpoint, an important vari-

ation is between algorithms that are based on digital signatures [MMR97, Rei94], and those

based on authenticated links [Bra87, CGR11]. Intuitively, the former class of algorithms trade

computation for bandwidth (i.e., tend to fare better in bandwidth-hungry environments), and

the latter class of algorithms vice versa.

In our own implementation of the broadcast primitive we use the algorithm based on authen-

ticated links, which appears in several other works, including practical systems [BT85, CGR11,

CP02]. We also experiment with a protocol based on digital signatures, but our preliminary

results show that this exhibits lower performance than the one based on authenticated links.

It would be very interesting to do a thorough investigation on the performance difference

between these two versions of Byzantine broadcast, especially for wide-area deployments.

7.5.5 Extensions

We briefly mention here three interesting directions for future work: reconfiguration, tackling

the permissionless model, and smart contracts.

In its current form, Astro does not allow a dynamic set of nodes. Typically, changing the set

of participants in a distributed system is a delicate operation which has to happen atomi-

cally, i.e., participants have to agree on the configuration [LMZ09]. Typically, reconfigura-

tion mechanisms are implemented using consensus within state machine replication sys-

tems [SRMJ12, BSA14]. In the context of read-write storage systems, it has been shown

that reconfiguration can be done without using consensus under certain failure assump-

tions [AKMS11]. As described in recent work, a transfer system has consensus number one,

similar to read-write storage [GKM+18], so it would be interesting to discover whether token

transfer systems can be reconfigured without consensus.

Throughout this thesis we consider the permissioned model. This implies the assumption

of an access control mechanism, specifying who is allowed to participate in the system.

We assume that this mechanism is external to the system itself. Private protocols, such as

Corda [Hea16] or Hyperledger Fabric [ABB+18] rely on such a mechanism. This control mech-

anism rules out the possibility of Sibyl attacks [Dou02], where a malicious party can take

control over a system by using many identities, toppling the one-third assumption on the

fraction of Byzantine participants. In case of such an attack, the malicious party can engage
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in double-spending, i.e., spend the same tokens more than once.

Decentralized systems for the public, i.e., permissionless, setting are open to the world. They

do not have an explicit access control mechanism and allow anyone to join. Systems which

fall into this category include Bitcoin [Nak08], Ethereum [Woo15], ByzCoin [KJG+16], Algo-

rand [GHM+17]. To prevent malicious parties from overtaking the system, these systems rely

on Sybil-proof techniques, e.g., proof-of-work [Nak08], or proof-of-stake [GHM+17].

To deploy Astro in a public setting, we need to address Sibyl attacks. This is possible using

a Sybil-resistant implementation of Byzantine broadcast, while keeping the basic transfer

algorithms unchanged (§7.3.2). To the best of our knowledge, there is no such implementation

of Byzantine broadcast, however, so we leave this problem open to future research.

Most of the systems we mentioned earlier employ a consensus algorithm [ABB+18, Hea16,

Woo15]. Given the powerful building block of consensus, Ethereum [Woo15] for instance

generalizes the notion of token transfers to that of arbitrary operations on the system state,

known as smart contracts. Our focus in Astro is to obtain an efficient solution for the more

narrow problem of decentralized token transfer. We support certain types of contracts that

are expressive enough to implement several widely-used design patterns, for instance, tokens,

authorizations, or oracles [Btc19, BP17]. Going beyond these, however, requires consensus.

We believe an interesting design is possible by merging our efficient solution based on broad-

cast with a consensus algorithm, employing consensus only for interactions which require

coordination among multiple parties.

7.6 Concluding Remarks

In this chapter we studied the problem of implementing a token transfer system efficiently.

Since the rise of the Bitcoin cryptocurrency, this problem has garnered significant innovation.

Most of the innovation, however, has focused on improving the original solution which Bitcoin

proposed, namely, that of using a consensus mechanism to build a total order across all trans-

actions in the system (often called a blockchain). We took a different approach, proposing the

Exa abstraction that enables an efficient solution without consensus.

We implemented the Exa abstraction in the Astro transfer system. We also compared Astro

with a transfer system based on BFT-Smart, a state-of-the-art SMR system. We observed that

Astro provides performance superior to that of the consensus-based solution. In systems of

up to 100 replicas, regardless of system size, we observed a throughput improvement ranging

from 1.5x to 6x, while achieving a decrease in latency of up to 2x. Astro also offers improved

availability in the presence of failures or asynchrony in the network.
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midway on the path

eternity in all directions

stands

— Vlado Škafar [Šk15]

In this dissertation we studied the topic of efficiency in reliable distributed systems. We

discussed techniques to mitigate the cost (e.g., in terms of performance, inconsistencies, or

inefficiencies) of replication. The goal was to to make replication more transparent to users.

We studied three specific problems.

First, we looked at State Machine Replication (SMR). This is an important technique in dis-

tributed systems, owing to its wide applicability and to its ability to ensure strong consistency

even in the presence of Byzantine failures. We considered the issue of performance decay due

to increasing system size. On this topic, we took steps to further our understanding of this

issue by deploying five SMR systems at a large scale and reporting our observations on their

decay. Our empirical observations show that chain- or ring-based overlays are more efficient

dissemination schemes than leader-centric (i.e., star) schemes.

Overlays based on chain or ring overlays can alleviate performance decay in SMR, though

admittedly they do so at the expense of lowered availability. This is because conventional

systems based on these dissemination schemes forfeit progress in the presence of asynchrony

or faults. We also discussed the design of Carousel, a ring-based system that aims to mitigate

performance decay while preserving availability (Part II).

By exploring the chain- and ring-based overlays we hope to emphasize the importance of

the dissemination layer, as a deciding factor on the efficiency—and performance decay—of

SMR systems. We also hope to motivate further research on other types of overlays, towards

understanding and mitigating the problem of performance decay in SMR.

Second, we studied the consistency versus performance tradeoff in replicated systems. We

approached this problem from a high-level perspective, and described the Correctables ab-

straction for supporting efficient access to replicated data. Concretely, this abstraction hides
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the complexity of replicated data stacks and allows programmers to access incremental consis-

tency guarantees for any operation, allowing them to balance performance with consistency

in their applications (Part III).

The insight behind Correctables is simple: Every consistency model has its own drawbacks

(high overhead, performance decay, inconsistencies), so by combining them we hope to go

beyond their individual tradeoffs. Our discussion on using Correctables is limited because

we focused on certain data types (read-write storage and distributed queues). In the future,

we are interested to see how to the idea of incremental consistency guarantees can apply to

other problems, e.g., in applications such as those for digital trust, in sharded designs, or in

permissionless or other system models.

Third, we turned our attention to the problem of implementing efficient token transfer appli-

cations. Traditionally, these applications build on an expensive building block of consensus

(i.e, SMR) algorithm. We propose the Exa abstraction that allows eschewing the need for

consensus. The Astro system implements this abstraction by building on a broadcast-based

primitive with weak ordering guarantees. This primitive is more efficient and tractable than

solving consensus (Part IV).

The limitations of a broadcast-based primitive and the Exa abstraction, in the context of

digital trust applications, are an open question, especially considering the power of smart

contracts. The Exa abstraction supports extension to a sharded system model, though we did

not give a full description of how to achieve this. We believe the Exa abstraction applied in

a sharded design permits cross-shard coordination without the need for an atomic commit

protocol (e.g., two-phase commit). Such a protocol has been in prior work a significant source

of overheads and safety issues, so we plan to work on a sharded solution based on Exa in the

near future. Beside this extension, in a more broader context, we hope to have motivated a

research agenda that focuses more on the needs of applications (and their precise semantics)

and less on their building blocks.
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We provide additional details on the Carousel SMR system (Chapter 4), concretely a discussion

on the guarantees of this system.

A.1 Safety and Liveness Guarantees for Carousel

Carousel provides the following safety and liveness guarantees.

Safety. We define three safety properties:

1. Only values (i.e., entry i ds) that are proposed by replicas can become stable;

2. Per sequence number, only one value can become stable;

3. The same value cannot become stable at two different sequence numbers.

Liveness. Carousel ensures two liveness properties:

1. At any point in time, if there exists a value proposed by a correct replica which is not

part of the stable log yet, then eventually one value (possibly another one) will become

stable;

2. If there are only a finite number of proposed values, then all of them eventually become

stable.

Below, we argue for the correctness of Carousel.

Theorem 1. Carousel is safe.

Proof. (1) and (2) follow from the safety properties of FaB [MA06].
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(3) This property follows from the fact that correct replicas index values by their identifier

id (see lines 6 and 19 in Listing 4.1), hence these replicas will not participate in voting or

accepting any value that was previously proposed for a different sequence number.

Theorem 2. Carousel is live.

Proof. (1) Assume there is a value v (entry id) which is not part of the stable log yet. Let sn be

the first sequence number for which no value was accepted. If the current sequencer is correct,

then it will propose a unique value for sequence number sn (value v , or another value), and

the replicas will reach agreement on that value.

If the replicas are not able to eventually reach agreement for sequence number sn, this means

that the current sequencer is faulty, and they will trigger a reconfiguration. The new sequencer

might be faulty as well, but after enough reconfigurations (at most F ), a correct sequencer is

chosen. This new sequencer will then propose a unique value for sequence number sn that

will become accepted by all (correct) replicas, and accepted to the stable log.

(2) We apply the first liveness property as many times as there are proposed values. Together

with safety, this ensures that every operation that needs to be ordered eventually becomes

stable.
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This appendix comprises two sections. First, we discuss the guarantees of the Astro system

(Appendix B.1). Second, we provide the pseudocode for the Byzantine FIFO broadcast primi-

tive which is important in implementing Astro (Appendix B.2).

B.1 Safety and Liveness Guarantees for Astro

Our Astro algorithm (§7.3.2) ensures the following properties.

Property 1. Liveness. If a correct node k initiates a transfer and has sufficient balance, then

eventually all correct nodes in the committee of k apply that transfer.

Property 2. Safety. If a correct node i applies transfer T 1 before applying T 2, then no correct

node applies T 2 before T 1, where both transfer T 1 and T 2 have the same spender account k.

We start by proving a helpful lemma.

Lemma 1. Consider any two correct nodes i and j belonging to the committee of some account

k. If the local copy of hist[k] at node i has value h when sequence number sn[k] is n, then hist[k]

at node j also has value h when sequence number sn[k] is n at node j.

Proof. We note that each correct node updates its local variables hist[k] and sn[k] in tandem

(lines 30, 31 in Listing 7.5). This update is performed only when applying a transfer outgoing

from account k. This happens after node k sends a transfer message with the details of the

transfer. We make two key observations.

(i) By the properties of Byzantine FIFO broadcast, no two correct nodes in the committee of k

deliver two different messages for the same sequence number n. In other words, these nodes

observe the same transfer details for a given sequence number (variables t and D on line 30).

(ii) Transfers outgoing from the same account k are always applied in increasing order of their

corresponding sequence number n (see line 49). By applying a transfer we mean executing
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the algorithm in Listing 7.5 (lines 28–34).

Since any two correct nodes i and j in the committee of k perform (i) the same updates to

their local variable hist[k] and (ii) in the same order as given by sn[k], it follows that for the

same value of sn[k], hist[k] has identical value at nodes i and j.

Theorem 3. Astro ensures liveness.

Proof. We start from the observation that the balance of account k at node k is sufficient

when this node starts its transfer. This means that the balance check passes (line 17), so

node k broadcasts a transfer message m with the transfer details (line 20). By the liveness

property of Byzantine FIFO broadcast, all correct nodes in the committee of k eventually

deliver message m. To ensure liveness and guarantee that these nodes apply the transfer of k,

message m must fulfill several validation criteria (lines 48–51) described algorithmically in

the valid function (Listing 7.7). We discuss each validation criteria in turn.

Since node k is correct, then message m is well-formed, meaning that m contains the identity

k of this node (the validation on line 48 passes) as well as the correct monotonically increasing

sequence number n (validation on line 49).

The set of dependencies for this transfer are well-formed. Node k assembled this set by doing

four verification steps. (i) All proofs are for transfers incoming to account k (line 38). (ii), (iii)

For a given transfer outgoing from some account a, all proofs are sent and signed by nodes

that are part of the committee of account a (lines 39 and 40). (iv) Each dependency has at least

faultThreshold + 1 proofs (line 44). Any correct node that delivers message m does the same

four verification steps via function checkDeps: line 56 for verification (i); lines 59, 60 for (ii),

(iii), respectively; and line 55 for step (iv). Since these four steps pass, then checkDeps returns

true and all dependency checks are fulfilled (validation of dependencies on line 50 passes).

The last validation criteria for message m regards the balance check. Recall that the balance

check correctly passed at node k (before this node broadcast transfer message m). Node k

performed this check against hist[k] at a certain sequence number n. By Lemma 1, we know

that the variable hist[k] is identical at two different correct nodes from committee of k for the

same sequence number sn[k] = n. Hence, the balance check also passes at the other correct

nodes in committee of k (validation on line 51 passes).

Since all the validation criteria in the valid function pass, then each correct node in committee

of k eventually applies this transfer.

Theorem 4. Astro ensures safety.

Proof. Observe that if any correct node applies some transfer with spender account k, then

such a node is part of the committee of account k. Both transfers T 1 and T 2 have the same
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spender k. We denote by n1 the sequence number of transfer T 1, and by n2 the sequence

number of transfer T 2.

Assume by contradiction that there exist two correct nodes i and j which apply transfers

T 1 and T 2 in different order. Specifically, node i applies T 1 before T 2 (and node j in the

opposite order). Denote by h the local variable hist[k] at node i for sequence number n1.

This h value is derived from all transfer which node i previously applied involving account k,

including dependencies, but h does not include transfer T 2 (because this was not yet applied

at sequence number n1 at node i).

Now consider node j. By Lemma 1, the local variable hist[k] at node j for sequence number

n1 must also have value h. But recall that we assume node j applies T 2 before T 1. This means

that hist[k] at node j must include transfer T 2, a contradiction.

B.2 Byzantine FIFO Broadcast Algorithm

In Listing B.1 we sketch the pseudocode for implementing Byzantine FIFO broadcast. Re-

call that this algorithm proceeds in three phases, as we described earlier (§7.3.3). We now

reproduce this description to help understand the pseudocode below. Consider a full repli-

cation model, where messages are broadcast to all of the system nodes. As the underlying

communication layer, we assume authenticated links, e.g., based on Message Authentication

Codes (MACs). Whenever we use the function sendToAll, we mean to say that the local node

sends a certain message to all nodes in the system, including itself, via authenticated links

(lines 4, 10, 17, 24).

Recall that the Byzantine FIFO algorithm we use comprises three phases, identified by the

type of protocol messages of that phase, as follows.

1. Send—To initiate a broadcast, any correct node i simply attaches a sequence number s

to its message m (line 3), and then sends this tuple {m, s} to all nodes (line 4).

2. Echo—The first time a node j receives the tuple (m,s) from i, it sends an echo message

for this tuple to all nodes in the system (line 10).

3. Ready—In this last phase of the algorithm, every node waits to gather a Byzantine quo-

rum of echo messages for tuple (m,s) (line 14) and then sends a ready message (line 17).

Alternatively, a node may send a ready message after observing F +1 ready messages

(lines 21 and 24). Any node may deliver message m after gathering 2F + 1 matching

ready messages for m and the given sequence number (line 29).
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1 // Called at replica p to initiate a broadcast.

2 func broadcast(m):
3 m := 〈SEND, myTS[p] + 1, m〉
4 sendToAll(m) // Send to all replicas.

6 // Handle the receiving at replica p of protocol message m from replica q.

7 callback receive(q, m = 〈SEND, ts, m〉): // Handler for SEND messages.

8 if echoSent[q, ts] == false:
9 echoSent[q, ts] := true

10 sendToAll(〈ECHO, q, ts, m〉)

12 callback receive(q, m = 〈ECHO, r, ts, m〉): // Handler for ECHO messages.

13 echoes[r, ts, m] += q
14 if (|echoes[r, ts, m]| ≥ 2F+1) &&
15 (readySent[r, ts, m] == false):
16 readySent[r, ts] := true
17 sendToAll(〈READY, r, ts, m〉)

19 callback receive(q, m = 〈READY, r, ts, m〉): // Handler for READY messages.

20 readys[r, ts, m] += q
21 if (|readys[r, ts, m]| ≥ F+1) &&
22 (readySent[r, ts, m] == false):
23 readySent[r, ts, m] := true
24 sendToAll(〈READY, r, ts, m〉)
25 if (|readys[r, ts, m]| ≥ 2F+1) &&
26 (delivered[r, ts, m] == false) &&
27 (ts == myTS[r] + 1):
28 delivered[r, ts, m] := true
29 trigger deliver(r, m)
30 myTS[r] += 1

Listing B.1 – Pseudocode for Byzantine FIFO broadcast.
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