
2019

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Matej PAVLOVIČ

Présentée le 6 septembre 2019

Thèse N° 9605

Scaling Byzantine Fault Tolerance

Prof. A. Ailamaki, présidente du jury
Prof. R. Guerraoui, directeur de thèse
Prof. I. Keidar, rapporteuse
Dr M. Vukolić, rapporteur
Prof. V. Kunčak, rapporteur

à la Faculté informatique et communications
Laboratoire de calcul distribué
Programme doctoral en informatique et communications

Acknowledgements
I would like to thank everybody who helped me in my efforts towards this thesis. My parents

and family who made it possible for me to study and supported me all the way through, all

my friends who helped me stay sane when I was not currently working, and my teachers and

sports trainers who taught me to work hard towards my goals.

In research specifically, I want to thank, in the first place, my supervisor, Prof. Rachid Guer-

raoui, for accepting me as his student, guiding me throughout all my doctoral studies, for

trusting and believing in me and for opening many doors for me. The content of this thesis is

also heavily based on common efforts together with my colleagues and collaborators, who

contributed not only by sharing ideas and insights, but also by hours spent proofreading and

correcting texts, providing feedback and in general by creating a great working environment. I

also wish to thank the members of my jury, Idit Keidar, Marko Vukolic, and Viktor Kuncak, for

their feedback and improvement suggestions.

My doctoral studies were financed by the Swiss National Science Foundation (project 200021_147067).

The possibility to even start working towards a PhD was given to me by the Mondi Austira

Studen Scholarship by fully financing my bachelor’s and master’s studies.

This thesis could not have been written without all those just mentioned.

Lausanne, 25 June 2019

iii

Preface
This thesis contains selected results of research performed during doctoral studies between

September 2013 and March 2019, supervised by Prof. Rachid Guerraoui, at the Distributed

Computing Laboratory of the School of Computer and Communication Sciences at EPFL in

Lausanne, Switzerland. The results presented by this thesis appear in the following works1:

• Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Dragos-Adrian Seredin-

schi. “The Consensus Number of a Cryptocurrency”. PODC 2019.

• Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Dragos-Adrian Seredin-

schi. “Scalable Secure Broadcast”. Under submission.

• Rachid Guerraoui, Anne-Marie Kermarrec, Matej Pavlovic, Dragos-Adrian Seredinschi.

“Atum: Scalable Group Communication Using Volatile Groups”. Middleware 2016.

The following additional publications contain work that is not presented in this thesis, but are

also a result of research performed during the same doctoral studies.

• Oana Balmau, Rachid Guerraoui, Anne-Marie Kermarrec, Alexandre Maurer, Matej

Pavlovič, Willy Zwaenepoel.1 “The Fake News Vaccine”. NETYS 2019.

• Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, Dragos-Adrian Seredin-

schi.1 “AT2: Asynchronous Trustworthy Transfers”. https://arxiv.org/abs/1812.10844,

2018.

• Rachid Guerraoui, Matej Pavlovič, Dragos-Adrian Seredinschi.1 “Blockchain Proto-

cols: The Adversary is in the Details”. Symposium on Foundations and Applications of

Blockchain 2018.

• Matej Pavlovič, Alex Kogan, Virendra J. Marathe, Tim Harris. “Brief Announcement:

Persistent Multi-Word Compare-and-Swap”. PODC 2018.

• Yihe Huang, Matej Pavlovič, Virendra Marathe, Margo Seltzer, Tim Harris, Steve Byan.

“Closing the Performance Gap Between Volatile and Persistent Key-Value Stores Using

Cross-Referencing Logs”. USENIX ATC 2018.

• Rachid Guerraoui, Matej Pavlovič, Dragos-Adrian Seredinschi.1 “Trade-offs in Replicated

Systems”. IEEE Data Engineering Bulletin 39(1) 2016.

v

Preface

• Rachid Guerraoui, Matej Pavlovič, Dragos-Adrian Seredinschi.1 “Incremental Consis-

tency Guarantees for Replicated Objects”. OSDI 2016.

1Author names appear in alphabetical order.

vi

Abstract
Online services are becoming more and more ubiquitous and keep growing in scale. At the

same time, they are required to be highly available, secure, energy-efficient, and to achieve

high performance. To ensure these (and many other) properties, replication and distribution

of these services becomes inevitable. Indeed, today’s online services often involve thousands

of processes running on different machines interconnected by a communication network.

These processes may experience various kinds of failures, from simply crashing to being

compromised by a malicious (Byzantine) adversary. The classic method for dealing with

Byzantine faults is state machine replication (SMR). However, SMR fundamentally relies on a

solution of the consensus problem, which often proves to be a scalability bottleneck.

This dissertation addresses the scalability of Byzantine fault-tolerant systems. We argue that,

for a certain class of applications, consensus either does not need to be solved at all, or only

needs to be solved among a limited number of processes. By circumventing the consensus

problem where solving it is not necessary, we improve the scalability of these applications.

We start by focusing on the particular problem of distributed asset transfer, where digital assets

are being transferred between user accounts—a problem underlying many cryptocurrency

systems, most of which address it using Byzantine fault-tolerant SMR (and thus consensus).

We show that consensus is not required for asset transfer by defining it as a sequential object

type in the shared memory model and proving that it has consensus number 1 in Herlihy’s

hierarchy. We further generalize the asset transfer object type, allowing an account to be

shared by up to k owners. We prove that the consensus number of such an object type is k.

We also discuss the asset transfer problem in the message passing model. We devise a con-

sensusless asset transfer algorithm that relies on a secure broadcast primitive that, unlike

consensus, has fully asynchronous deterministic implementations.

Furthermore, since deterministic implementations of secure broadcast have limited scala-

bility, we propose probabilistic secure broadcast, a variant of secure broadcast where some

properties are allowed to be violated with a bounded probability. We design a highly scalable

randomized algorithm that implements probabilistic secure broadcast with an arbitrarily low

bound on the failure probability.

Finally, we present Atum, a system for scalable group communication in a Byzantine envi-

ronment that supports high churn. Atum achieves scalability by partitioning the system into

groups of logarithmic size, only executing a consensus protocol inside each group.

vii

Preface

Keywords: distributed systems, Byzantine fault tolerance, scalability, replication, consensus,

asset transfer, secure broadcast, randomized algorithms, group communication, peer-to-peer

systems

viii

Zusammenfassung
Online Services sind omnipräsent und werden im immer größeren Ausmaß eingesetzt. Gleich-

zeitig wird von diesen Services hohe Verfügbarkeit, Sicherheit, Energieeffizienz und Leistung

gefordert. Um diese (und viele andere) Eigenschaften zu erreichen, müssen die Services

notwendigerweise repliziert und verteilt sein. Heutige online Services umfassen tatsächlich

tausende Prozesse, die verteilt auf vielen, durch ein Netz kommunizierenden Maschinen

ausgeführt werden. Dabei können die verschiedensten Fehler auftreten, von einfachen Ma-

schinenabstürzen bis zu sogenannten Byzantinischen Fehlern. Eine Standardmethode beim

Bekämpfen Byzantinischer Fehler ist “state machine replication” (SMR). Diese Methode ba-

siert aber grundsätzlich auf dem Lösen des Konsensusproblems, was oft die Skalierbarkeit des

Systems beeinträchtigt.

Diese Dissertation befasst sich mit der Skalierbarkeit von Byzantinisch fehlertoleranten Syste-

men. Wir zeigen, dass für eine Bestimmte Klasse von Anwendungen das Lösen des Konsensus-

problems entweder nur in einer beschränkten Gruppe von Prozessen, oder sogar überhaupt

nicht notwendig ist. Das Vermeiden vom Konsensusproblem wo möglich trägt zur Skalierbar-

keit der entsprechenden Systeme bei.

Wir konzentrieren uns zuerst auf eine spezifische Anwendung—die Überweisung von Gütern

(z.B. Geld) zwischen Benutzerkonten. Dies ist eine Anwendung von vielen Kryptowährungen

und wird meistens mit Hilfe von SMR (und damit Konsensus) implementiert. Wir zeigen, dass

Konsensus hier unnötig ist, indem wir das Überweisungsproblem als ein Objekttyp im Shared

Memory definieren und beweisen, dass in Herlihys Hierarchie seine Konsensusnummer 1 ist.

Wir verallgemeinern diesen Objekttyp, sodass ein Konto bis zu k Eigentümer haben kann, und

wir beweisen dass so ein Objekttyp Konsensusnummer k hat.

Wir stellen auch einen auf Nachrichtenaustausch basierenden Überweisungsalgorithmus vor,

der auf Broadcast beruht und, im Gegensatz zu Konsensus, asynchron und deterministisch

implementiert werden kann.

Da eine deterministische Implementierung der dazu benötigten Broadcastvariante nur einge-

schränkt skalierbar ist, stellen wir eine probabilistische Alternative vor, die zwar eine (beliebig

kleine) Wahrscheinlichkeit von Fehler zuläßt, dafür aber höchst skalierbar ist.

Schließlich präsentieren wir Atum ein, dynamisches, Byzantinisch fehlertolerantes “group

communication system”. Wir erreichen Skalierbarkeit, indem wir das System in (logarithmisch)

kleine Prozessgruppen unterteilen und Konsensus nur innerhalb dieser Gruppen benötigen.

ix

Preface

Schlüsselwörter: verteilte Systeme, Byzantinische Fehlertoleranz, Skalierbarkeit, Replikation,

Konsensus, Güterüberweisung, secure broadcast, Randomisierte Algorithmen, group commu-

nication, peer-to-peer Systeme

x

Contents
Acknowledgements iii

Preface v

Abstract (English/Deutsch) vii

List of figures xiii

List of algorithms xv

1 Introduction 1

2 Asset Transfer in Shared Memory 5

2.1 Introduction . 6

2.2 Shared Memory Model and Asset-Transfer Object Type 8

2.2.1 Shared memory . 8

2.2.2 The asset-transfer object type . 9

2.3 Asset-Transfer Has Consensus Number 1 . 10

2.4 k-Shared Asset-Transfer Has Consensus Number k 13

3 Asset Transfer in Message Passing 21

3.1 Introduction . 21

3.2 Byzantine-Tolerant Asset Transfer . 22

3.3 Asset Transfer Implementation in Byzantine Message Passing 23

3.4 k-shared Asset Transfer in Message Passing . 29

4 Probabilistic Secure Broadcast 33

4.1 Introduction . 33

4.1.1 Samples . 34

4.1.2 Scalable Secure Broadcast . 35

4.2 Model and Assumptions . 37

4.3 Probabilistic broadcast . 38

4.3.1 Definition . 39

4.3.2 Algorithm . 39

4.3.3 Correctness . 41

xi

Contents

4.4 Probabilistic consistent broadcast . 42

4.4.1 Definition . 43

4.4.2 Algorithm . 43

4.4.3 Correctness . 46

4.5 Probabilistic secure broadcast . 47

4.5.1 Definition . 48

4.5.2 Algorithm . 48

4.5.3 Correctness . 52

5 Atum: Scalable Group Communication Using Volatile Groups 57

5.1 Introduction . 57

5.2 Assumptions and Guarantees . 60

5.3 Design . 61

5.3.1 Group layer . 63

5.3.2 Overlay layer . 65

5.3.3 API operations . 67

5.4 Applications . 69

5.4.1 ASub . 69

5.4.2 AShare . 70

5.4.3 AStream . 72

5.5 Deploying Atum . 73

5.5.1 Practical considerations . 73

5.5.2 Atum implementations . 75

5.6 Evaluation . 75

5.6.1 Base evaluation of Atum . 75

5.6.2 Evaluating AShare . 79

5.6.3 Evaluating AStream . 81

5.7 Experiences and Lessons Learned . 81

5.8 Conclusions . 83

6 Related Work 85

6.1 Asset Transfer . 85

6.2 Group Communication . 86

6.2.1 Broadcast abstractions . 87

6.2.2 Gossip . 87

6.2.3 Robust overlay networks . 88

6.2.4 Membership sampling . 88

6.2.5 Storage . 89

7 Conclusions 91

Bibliography 103

xii

List of Figures
3.1 High-level structure of our message-passing implementation of asset transfer.

The upper layer (whose algorithm is depicted in Algorithm 5) uses a secure

broadcast abstraction as a black box. 25

4.1 Layered view of our broadcast abstractions. Starting from authenticated point-

to-point links, we implement secure broadcast using 3 layers of broadcast ab-

stractions. Intuitively, each layer is mainly responsible for guaranteeing one of

secure broadcast’s properties . 36

5.1 Atum’s layered architecture. 62

5.2 An instance of Atum: Vgroups interconnected by an H-graph overlay with two

cycles. 62

5.3 Two vgroups communicate (e.g., gossiping) through a group message, which

consists of multiple inter-node messages. 64

5.4 Guideline with optimal rwl and hc system parameters. 66

5.5 AShare: A feedback loop triggers the randomized replication algorithm repeat-

edly. c is the number of replicas for a file. 71

5.6 Growth speed for systems with up to 1400 nodes. 76

5.7 Maximal tolerated churn rates in systems of size 50,100,200,400 and 800 nodes. 77

5.8 Group communication latency: Comparison between gossip, Atum, and SMR.

We tag with ∗ the systems with 50 faults. 78

5.9 AShare: Read performance (latency per MB). We normalize the result to file size. 79

5.10 AShare: Impact of Byzantine nodes on read latency. Experiment with 50 nodes

(7 Byzantine) and 500 files. 80

5.11 AShare: Impact of Byzantine nodes on read latency. Experiment with 100 nodes

(7 Byzantine) and 1000 files. 80

5.12 AStream: Latency for 1MB/s data stream. 81

5.13 As a system grows faster, the quality of random vgroup composition suffers due

to suppressed exchanges. 82

xiii

List of Algorithms
1 Wait-free implementation of asset-transfer: code for process p 11

2 Wait-free implementation of consensus among k processes using a k-shared

asset-transfer object and read-write registers. Code for process p ∈ {1, . . . ,k}. . . 13

3 Wait-free implementation of a k-shared asset-transfer object using k-consensus

objects. Code for process p. 15

4 Auxiliary functions used by algorithm in Algorithm 3 16

5 Consensusless transfer system based on secure broadcast. Code for process p. 26

6 Erdös-Rényi Gossip . 40

7 Procedure sample . 43

8 Echo Broadcast . 44

9 Ready Broadcast . 49

xv

1 Introduction

More and more tasks are being performed and services are being provided by computer

systems. These tasks are becoming more and more complex and the underlying services

supporting these tasks are being used by an ever-increasing number of entities, be they human

users or other computer systems. Such services are often subject to stringent requirements in

performance, availability, security, energy-efficiency, and others.

For many services regularly used today, it has become unthinkable to be deployed on single

machines. Instead, mostly for performance and availability reasons, many services must be

deployed as distributed systems. These systems often consist of thousands of communicating

processes, possibly distributed all across the planet. If several processes in such a distributed

system deal with the same service state, they must coordinate to keep this state consistent,

even if none of the processes failed. Failures, however, become inevitable in such scenarios

and must be considered the normal case rather than a rare exception. To prevent the service

from becoming unavailable in the event of a failure, it must be replicated, making consistency

even harder to achieve. Fault tolerance of distributed systems is full of challenges and is

therefore still an active area of research.

A particular concern is Byzantine fault tolerance. A Byzantine fault-tolerant distributed system

guarantees correct operation despite arbitrary behavior of some of its processes.1 Unlike a

crash fault, where a process is assumed to either work correctly or stop operating altogether,

there are, strictly speaking, no assumptions whatsoever on the behavior of a Byzantine-faulty

process (even though, in practice, the resources—e.g. computational ones—of Byzantine-

faulty processes are usually assumed not to be unlimited).

A process might deviate from a correct behavior due to various reasons. These reasons

include software bugs, unlikely but possible spontaneous random bit flips in memory chips or

erroneous inputs. Moreover, a process might also misbehave if it becomes compromised by a

malicious adversary whose goal is to subvert the functioning of the system.

1Describing arbitrary behavior by the term Byzantine has been introduced by Lamport et al. in their seminal
paper “The Byzantine Generals Problem” [LSP82].

1

Chapter 1. Introduction

Especially with the rise of Bitcoin [Nak08] and other cryptocurrencies, distributed peer-to-peer

systems with limited or no trust between the participating processes gain on relevance. Such

systems need to both accommodate large numbers of participating processes and be able to

tolerate Byzantine failures of some of them. Thus, unsurprisingly, scalable Byzantine fault

tolerance is regaining attention from the research community.

We focus on the technique of replication, which occurs, in one way or another, in almost

any large-scale distributed system. In particular, we study how replication can be done in a

Byzantine fault-tolerant way that scales to large numbers of processes.

The canonical way of replicating an on-line service is through state machine replication [Lam78,

Sch90]. The service is modeled as a deterministic state machine consisting of a state and a set

of operations that may alter that state. Multiple instances of this (logical) state machine are

deployed on different replicas (physical machines) and a distributed protocol makes sure that

those machines execute the same sequence of operations on the same initial state. To this

end, it is necessary for all replicas to agree on the order in which to execute operations. All op-

erations being deterministic, they produce the same outputs at every replica (generalizations

of this approach exist for replicating even non-deterministic state machines [CSV17]).

State machine replication is an approach that is universal, in the sense that it can be used to

replicate any service that can be modeled as a state machine (which is generally the case).

Many distributed protocols exist for implementing state machine replication in various sce-

narios, putting various assumptions on the possible behavior of processes and on the network

through which the processes communicate. There are standard solutions to state machine

replication both in the context of crash-only faults, as well as in the context of Byzantine faults.

However, universality comes at a cost. This is partly due to the fact that to obtain a total order

of operations, such universal solutions fundamentally require solving the central problem

of distributed computing—the consensus problem. This makes state machine replication

notoriously difficult to implement correctly, even proven impossible under certain conditions

[FLP85, AGK+15]. Making protocols Byzantine fault-tolerant only adds more complexity to an

already challenging task. Working solutions often only scale to a few replicas, their protocol

overhead quickly becoming prohibitive as the number of replicas increases. Efforts to address

this problem, such as Honey Badger BFT [MXC+16], are rather recent.

We examine alternative replication schemes that either avoid state machine replication alto-

gether, or confine it to a part of the system that is only as small as necessary to perform a given

task. Many applications of practical relevance can indeed be replicated without the need for

universal agreement among the replicas.

Our main focus is on the application of distributed asset transfer, also known as a cryptocur-

rency, that has been receiving much attention recently both from academia and from industry.

We show that distributed secure asset transfer (and similar problems) can be solved without

the recourse to agreement and state machine replication. We achieve this by exploiting the fact

2

that only the owner of an asset can transfer it to a new owner. Instead of agreeing on the order

of operations to execute, it is sufficient to broadcast operations in a secure and consistent way

among the replicas.

While broadcasting operations is simpler and cheaper than agreeing on a unique order of

those operations, efficiently scaling it to a large system in a Byzantine fault-prone environment

is a non-trivial task. Using randomization, however, we are able to provide a highly scalable

broadcast algorithm for the price of a fixed failure probability that can be made arbitrarily

small.

Furthermore, we show how to replicate services that are more powerful than asset transfer,

in the sense that they do require agreement at least among certain processes in the system.

We only execute an agreement protocol where absolutely necessary, avoiding the scalability

bottleneck of agreement across the whole system. In order to ensure that a group of processes

can reach agreement, we use randomization to make sure that most of the processes in such a

group are correct with high probability.

The contributions in this thesis are the following.

Asset Transfer and Consensus

• We formally define the asset transfer problem as a shared object in the shared memory

model.

• We prove that asset transfer has consensus number 1 in Herlihy’s consensus hierar-

chy [Her91] by implementing asset transfer in shared memory using an atomic snapshot

object [AAD+93]. This means that solving consensus is not necessary in order to imple-

ment asset transfer.

• We generalize the asset transfer problem by allowing an account to have multiple

owners that can all atomically perform transfers from their shared account. We call this

generalized variant the k-shared asset transfer if each account has at most k owners.

• We prove that k-shared asset transfer has consensus number k in Herlihy’s consensus

hierarchy, meaning that k processes can solve the consensus problem using k-shared ac-

count objects. Our proof is based on reducing k-shared asset transfer to the k-consensus

problem (known for having consensus number k) and vice versa.

• We provide an algorithm that implements asset transfer in the message passing model

using a secure broadcast primitive [BT85a].

• We provide a novel scalable algorithm for secure broadcast that is used for implementing

asset transfer. Relying on randomization, our algorithm allows a certain probability

of failure. However, this probability can be made arbitrary small. In a system of N

3

Chapter 1. Introduction

processes, our algorithm has O(log(n)) per node communication complexity, allowing it

to scale to large system sizes.

Scalable Group Communication Using Volatile Groups

• We introduce the notion of volatile groups—a partitioning of the system in small groups,

only executing an agreement protocol within each group. By randomizing the composi-

tion of the groups even in the presence of high churn (processes leaving and joining),

we make sure that, with high probability, a malicious adversary is unable to subvert any

group by making too many faulty processes join the same group.

• Using these volatile groups, we design Atum, a group communication system for large-

scale, dynamic and Byzantine fault-prone environments.

• We implement two variants of Atum, one for the synchronous and one for the eventually

synchronous system model.

• We evaluate Atum using three applications built on top of it.

4

2 Asset Transfer in Shared Memory

In this chapter we closely examine asset transfer as a stand-alone problem. As a starting point,

we consider asset transfer systems, often implemented by blockchain-based algorithms, such

as Bitcoin. Such systems are often referred to as cryptocurrencies.

As stated in the original paper by Nakamoto [Nak08], at the heart of these systems lies the

problem of preventing any participant from engaging in double-spending, i.e., spending the

same asset more than once. This is usually solved by achieving consensus on the order of

transfers among the participants. We show that consensus is not necessary to prevent double-

spending by defining the asset transfer problem as a concurrent object in the shared memory

model and determining its consensus number.

We first consider the problem as defined by Nakamoto, where only a single process—the

account owner—can withdraw from each account. We prove that the consensus number of an

asset transfer object is 1 by reducing asset transfer to an atomic snapshot object that is known

to have a wait-free implementation in read-write shared memory.

We then consider a more general k-shared asset transfer object where up to k processes

can atomically withdraw from the same account, and show that this object has consensus

number k.

We prove the lower bound by providing a wait-free implementation of consensus in a shared

memory system with k processes equipped with a k-shared asset transfer object. Each process

first announces its proposed value in a dedicated (per-process) register, and then tries to

perform a transfer from a shared account. We choose the initial account balance and the

withdrawn amount such that (1) only one withdrawal is possible and (2) the remaining bal-

ance identifies the withdrawing process. Our upper bound proof, borrowing concepts from

universal constructions, consists of reducing k-shared asset transfer to k-consensus.

5

Chapter 2. Asset Transfer in Shared Memory

2.1 Introduction

In 2008, Satoshi Nakamoto introduced the Bitcoin protocol, implementing an electronic

decentralized asset transfer system, often called a cryptocurrency [Nak08]. Since then, many

alternatives to Bitcoin came to prominence. These include major cryptocurrencies such as

Ethereum [Woo15] or Ripple [RLGS14], as well as systems sparked from research or industry

efforts such as Bitcoin-NG [EGSVR16], Algorand [GHM+17], ByzCoin [KJG+16], Stellar [Maz15],

Hyperledger Fabric [ABB+18], Corda [Hea16], or Solida [AMN+16]. Each alternative brings

novel approaches to implementing decentralized transfers, and sometimes offers a more

general interface (known as smart contracts [Sza97]) than the original protocol proposed

by Nakamoto. They improve over Bitcoin in various aspects, such as performance, energy-

efficiency, or security.

A common theme in these protocols, whether they are for transfers [KKJG+18] or smart con-

tracts [Woo15], is that they usually implement some form of a blockchain—a distributed

ledger where all the transfers in the system are totally ordered. Achieving total order among

multiple inputs (e.g., transfers) is fundamentally a hard task, equivalent to solving consen-

sus [FLP85, HT93]. Consensus, one of the most important problems in distributed computing,

is well-known to be difficult to solve. It has been proven that a deterministic solution in

an asynchronous system does not exist as long as only a single paticipant can fail by crash-

ing. [FLP85]. It is highly non-trivial to devise even partially synchronous consensus algorithms

that work correctly [AGM+17, CV17, CWA+09, AGK+15] and existing solutions face tough

dilemmas between security, energy-efficiency, and performance [AGMS18, BGP89, GPS18,

Vuk15]. Not surprisingly, the consensus module is a major bottleneck in blockchain-based

protocols [Hea16, SBV18, Vuk15]. Numerous solutions have emerged to alleviate this prob-

lem [GAG+18, Hea16]. Typical techniques seek to employ a form of sharding [KKJG+18], for

instance, or to use a committee-based optimization [EGSVR16, GHM+17]. We circumvent this

main bottleneck, yielding new solutions that bypass consensus altogether.

A closer look at Nakamoto’s original paper [Nak08] reveals that the main problem under-

lying a decentralized asset transfer system (i.e., a cryptocurrency) is preventing double-

spending. Double-spending is the event of a malicious participant transferring an asset,

and subsequently (or concurrently) transferring the same asset to a potentially different

destination. Bitcoin and follow-up systems typically assume that total order—and thus

consensus—is vital to preventing double-spending [GKL15]. There seems to be a common

belief, indeed, that a consensus algorithm is essential for implementing decentralized asset

transfers [BMC+15, GPS18, KJW+18, Nak08].

We show that this belief is false by casting the asset transfer problem as a sequential object type

and determining that it has consensus number 1 in Herlihy’s hierarchy [Her91]. (The consensus

number of an object type is the maximal number of processes that can solve consensus using

only read-write shared memory and arbitrarily many objects of this type.)

Intuitively, an asset transfer object consists of accounts whose balances can be read by all

6

2.1. Introduction

processes, and where processes are allowed to transfer assets between accounts. Each account

is associated with an owner process that is the only one allowed to issue transfers withdrawing

from this account. Our result is based on the insight that this association of accounts to unique

owners obviates the need for consensus. It is the owner that decides on the order of transfers

from its own account, without the need to agree with any other process—thus the consensus

number 1. Other processes only validate the owner’s decisions, ensuring that causal relations

across accounts are respected.

In our asset transfer implementation, processes share the performed transfer operations

using atomic snapshot memory [AAD+93]. Each process validates a transfer outgoing from an

account by relating the withdrawn amount with the transfers found in the memory snapshot

that are incoming to that account. At most one withdrawal can be active on a given account at

a time, since we define processes to be sequential and each account has a single owner. It is

thus safe to declare the validated operation as successful and add it in the snapshot memory.

Our result naturally generalizes to the setting in which multiple processes are allowed to

withdraw from the same account. A k-shared asset transfer object allows up to k processes to

execute outgoing transfers from the same account. We prove that such an object has consensus

number k using k-consensus objects [JT92]. This means that k-shared asset transfer allows

for implementing state machine replication (now often referred to as smart contracts) among

the k involved processes.

We show that k-shared asset transfer has consensus number at most k by reducing it to

k-consensus, known to have consensus number k. Our reduction borrows concepts from

universal construction of sequential objects on top of consensus: the k owners of an account

use a sequence of k-consensus objects to agree on the order of outgoing transfers and their

results. We then show that k-shared asset transfer has consensus number at least k by devising

an algorithm where up to k processes solve consensus by transferring distinct amounts from

the same k-shared account in an asset transfer object.

In the k-shared case, our result implies that to execute some form of smart contract involving

k users, consensus is only needed among these k processes and not among all processes in

the system. In particular, should these k processes be faulty, the rest of the accounts will not

be affected.

To summarize, we argue that treating double-spending as a distributed computing prob-

lem and measuring its hardness through the lenses of distributed computing metrics help

understand it and devise better solutions to it.

The rest of this chapter is organized as follows. We first give the formal definition of the shared

memory model and the asset transfer object type (Section 2.2). Then, we show that it has

consensus number 1 (Section 2.3). Finally, we generalize our result by proving that a k-shared

asset transfer object has consensus number k (Section 2.4).

7

Chapter 2. Asset Transfer in Shared Memory

2.2 Shared Memory Model and Asset-Transfer Object Type

We now present the shared memory model (Section 2.2.1) and precisely define the problem of

asset-transfer as a sequential object type (Section 2.2.2).

2.2.1 Shared memory

Processes. We assume a setΠ of N asynchronous processes that communicate by invoking

atomic operations on shared memory objects. Processes are sequential—we assume that a

process never invokes a new operation before obtaining a response from a previous one.

Object types. A sequential object type is defined as a tuple T = (Q, q0,O,R,∆), where Q is

a set of states, q0 ∈ Q is an initial state, O is a set of operations, R is a set of responses and

∆⊆Q ×Π×O ×Q ×R is a relation that associates a state, a process identifier and an operation

to a set of possible new states and corresponding responses. Here we assume that ∆ is total

on the first three elements, i.e., for each state q ∈Q, each process p ∈Π, and each operation

o ∈ O, some transition to a new state is defined, i.e., ∀q ∈ Q, p ∈ Π,o ∈ O : ∃q ′ ∈ Q, r ∈ R:

(q, p,o, q ′,r) ∈∆.

A history is a sequence of invocations and responses, each invocation or response associated

with a process identifier. A sequential history is a history that starts with an invocation and

in which every invocation is immediately followed with a response associated with the same

process. A sequential history (j1,o1), (j1,r1), (j2,o2), (j2,r2), . . ., where∀i ≥ 1, ji ∈Π, oi ∈O, ri ∈
R, is legal with respect to type T = (Q, q0,O,R,∆) if there exists a sequence q1, q2, . . . of states

in Q such that ∀i ≥ 1, (qi−1, ji ,oi , qi ,ri) ∈∆.

Implementations. An implementation of an object type T is a distributed algorithm that, for

each process and invoked operation, prescribes the actions that the process needs to take

to perform it. An execution of an implementation is a sequence of events: invocations and

responses of operations or atomic accesses to shared abstractions. The sequence of events at

every process must respect the algorithm assigned to it.

Failures. Processes are subject to crash failures.1 A process may halt prematurely, in which

case we say that the process is crashed. A process is called faulty if it crashes during the

execution. A process is correct if it is not faulty. All algorithms we present in the shared

memory model are wait-free—every correct process eventually returns from each operation

it invokes, regardless of an arbitrary number of other processes crashing or concurrently

invoking operations.

Linearizability. For each pattern of operation invocations, the execution produces a history,

i.e., the sequence of distinct invocations and responses, labelled with process identifiers and

1The assumption of crash-only filures is temporary—we only use it in the context of shared memory. Later on,
in the message passing context, we consider Byzantine failures.

8

2.2. Shared Memory Model and Asset-Transfer Object Type

unique sequence numbers.

A projection of a history H to process p, denoted H |p is the subsequence of elements of H

labelled with p. An invocation o by a process p is incomplete in H if it is not followed by a

response in H |p. A history is complete if it has no incomplete invocations. A completion of

H is a history H̄ that is identical to H except that every incomplete invocation in H is either

removed or completed by inserting a matching response somewhere after it.

An invocation o1,r1 precedes an invocation o2 in H , denoted o1 ≺H o2, if o1 is complete and

the corresponding response r1 precedes o2 in H . Note that ≺H stipulates a partial order on

invocations in H . A linearizable implementation of T ensures that for every history H it

produces, there exists a completion H̄ and a legal sequential history S such that (1) for all

processes p, H̄ |p = S|p and (2) ≺H⊆≺S .

2.2.2 The asset-transfer object type

Let A be a set of accounts andµ : A → 2Π be an “owner” map that associates each account with

a set of processes that are, intuitively, allowed to debit the account. We define the asset-transfer
object type associated with A and µ as a tuple (Q, q0,O,R,∆), where:

• The set of states Q is the set of all possible maps q : A →N. Intuitively, each state of the

object assigns each account its balance.

• The initialization map q0 : A →N assigns the initial balance to each account.

• Operations and responses of the type are defined as O = {transfer(a,b, x) : a,b ∈A , x ∈
N}∪ {read(a) : a ∈A } and R = {true, false}∪N.

• ∆ is the set of valid state transitions. For a state q ∈ Q, a process p ∈Π, an operation

o ∈O, a response r ∈ R and a new state q ′ ∈Q, the tuple (q, p,o, q ′,r) ∈∆ if and only if

one of the following conditions is satisfied:

– o = transfer(a,b, x)∧p ∈ µ(a) ∧ q(a) ≥ x ∧ ((q ′(a) = q(a)− x ∧ q ′(b) = q(b)+ x ∧
a 6= b)∨ (q ′(a) = q(a)∧ a = b))∧∀c ∈ A \ {a,b} : q ′(c) = q(c) (all other accounts

unchanged) ∧ r = true;

– o = transfer(a,b, x) ∧ (p ∉µ(a) ∨ q(a) < x) ∧ q ′ = q ∧ r = false;

– o = read(a) ∧ q = q ′ ∧ r = q(a).

In other words, operation transfer(a,b, x) invoked by process p succeeds if and only if p is

the owner of the source account a and account a has enough balance, and if it does, x is

transferred from a to the destination account b. A transfer(a,b, x) operation is called outgoing

for a and incoming for b; respectively, the x units are called outgoing for a and incoming for

b. A transfer is successful if its corresponding response is true and failed if its corresponding

9

Chapter 2. Asset Transfer in Shared Memory

response is false. Operation read(a) simply returns the balance of a and leaves the account

balances untouched.

As in Nakamoto’s original paper [Nak08], we assume that an asset-transfer object has at most

one owner per account. Unless stated otherwise, we assume that ∀a ∈A : |µ(a)| ≤ 1. Later we

lift this assumption and consider more general k-shared asset-transfer objects with arbitrary

owner maps µ (Section 2.4). For the sake of simplicity, we also restrict ourselves to transfers

with a single source account and a single destination account. However, the definition (and

implementation) of the asset-transfer object type can trivially be extended to support transfers

with multiple source accounts (all owned by the same process) and multiple destination

accounts.

2.3 Asset-Transfer Has Consensus Number 1

In this section, we discuss the “universality” of the asset-transfer type, showing that it can

be implemented in a wait-free manner using only read-write registers. Thus, the type has

consensus number 1.

Consider an asset-transfer object associated with a set of accounts A and an ownership map

µ where ∀a ∈A , |µ(a)| ≤ 1. We now present our wait-free implementation of this object in the

read-write shared-memory model.

Our implementation of asset-transfer is based on the atomic snapshot object that is known

to have a wait-free implementation in read-write shared memory [AAD+93]. Such an object

consists of entries, each of which is assigned to a single process that can write to it. Moreover,

any process can atomically read the contents of all entries. More precisely, the atomic snapshot

(AS) object is represented as a vector of N shared variables that can be accessed with two

atomic operations: update and snapshot. An update operation modifies the value at a given

position of the vector and a snapshot returns the state of the whole vector.

In our algorithm (described in Figure 1), the N processes share such an atomic snapshot object.

We use the AS object to represent the state of the accounts in the asset-transfer object being

implemented. Every process p is associated with a distinct location in the atomic snapshot

object storing the set of all successful transfer operations executed by p so far. Since each

account is owned by at most one process, all outgoing transfers for an account appear in a

single location of the atomic snapshot (associated with the owner process). We implement the

read and transfer operations as follows.

• To read the balance of an account a, the process simply takes a snapshot S and returns

the initial balance plus the sum of incoming amounts minus the sum of all outgoing

amounts found in all locations of the snapshot. We denote this number by balance(a,S).

As we argue below, the result is guaranteed to be non-negative, i.e., the operation is

correct with respect to the type specification.

10

2.3. Asset-Transfer Has Consensus Number 1

Algorithm 1 Wait-free implementation of asset-transfer: code for process p

Shared variables:
AS, atomic snapshot, initially {⊥}N

Local variables:
opsp ⊆A ×A ×N, initially ;

Upon transfer(a,b, x)
1 S = AS.snapshot()
2 if p ∉µ(a)∨balance(a,S) < x then
3 return false
4 opsp = opsp ∪ {(a,b, x)}
5 AS.update(opsp)
6 return true

Upon read(a)
7 S = AS.snapshot()
8 return balance(a,S)

• To perform transfer(a,b, x), a process p, the owner of a, takes a snapshot S and computes

balance(a,S). If the amount to be transferred does not exceed balance(a,S), we add

the transfer operation to the set of p’s operations in the snapshot object via an update

operation and return true. Otherwise, the operation returns false.

Theorem 1. The asset-transfer object type has a wait-free implementation in the read-write

shared memory model.

Proof. Fix an execution E of the algorithm in Figure 1. Atomic snapshots can be wait-free

implemented in the read-write shared memory model [AAD+93]. As every operation only

involves a finite number of atomic snapshot accesses, every process completes each of the

operations it invokes in a finite number of its own steps.

Let Ops be the set of:

• All invocations of transfer or read in E that returned, and

• All invocations of transfer in E that completed the update operation (line 5).

Let H be the history of E . We define a completion of H and, for each o ∈ Ops, we define a

linearization point as follows:

11

Chapter 2. Asset Transfer in Shared Memory

• If o is a read operation, it linearizes at the linearization point of the snapshot operation

in line 7.

• If o is a transfer operation that returns false, it linearizes at the linearization point of the

snapshot operation in line 1.

• If o is a transfer operation that completed the update operation, it linearizes at the

linearization point of the update operation in line 5. If o is incomplete in H , we complete

it with response true.

Let H̄ be the resulting complete history and let L be the sequence of complete invocations

of H̄ in the order of their linearization points in E . Note that, due to the way we linearize

invocations, the linearization of a prefix of E is a prefix of L.

Now we show that L is legal and, thus, H is linearizable. We proceed by induction, starting

with the empty (trivially legal) prefix of L. Let L` be the legal prefix of the first ` invocations

and op be the (`+1)st operation of L. Let op be invoked by process p. The following cases are

possible:

• op is a read(a): the snapshot taken at the linearization point of op contains all suc-

cessful transfers concerning (incoming to or outgoing from) a in L`. By the induction

hypothesis, the resulting balance is non-negative.

• op is a failed transfer(a,b, x): the snapshot taken at the linearization point of op contains

all successful transfers concerning a in L`. By the induction hypothesis, the resulting

balance is non-negative.

• op is a successful transfer(a,b, x): by the algorithm, before the linearization point of op,

process p took a snapshot. Let Lk , k ≤ `, be the prefix of L` that only contain operations

linearized before the point in time when the snapshot was taken by p.

We observe that Lk includes a subset of all incoming transfers on a and all outgoing

transfers on a in L`. Indeed, as p is the owner of a and only the owner of a can perform

outgoing transfers on a, all outgoing transfers in L` were linearized before the moment

p took the snapshot within op. Thus, balance(a,Lk) ≤ balance(a,L`).2

By the algorithm, as op = transfer(a,b, x) succeeds, we have balance(a,Lk) ≥ x. Thus,

balance(a,L`) ≥ x and the resulting balance in L`+1 is non-negative.

Thus, H is linearizable.

Corollary 1. The asset-transfer object type has consensus number 1.

2 Analogously to balance(a,S) that computes the balance for account a based on the transfers contained in
snapshot S, balance(a,L), if L is a sequence of operations, computes the balance of account a based on all transfers
in L.

12

2.4. k-Shared Asset-Transfer Has Consensus Number k

2.4 k-Shared Asset-Transfer Has Consensus Number k

We now consider the case with an arbitrary owner map µ. We show that an asset-transfer
object’s consensus number is the maximal number of processes sharing an account. More

precisely, the consensus number of an asset-transfer object is maxa∈A (µ(a)).

We say that an asset-transfer object, defined on a set of accounts A with an ownership map µ,

is k-shared iff maxa∈A (µ(a)) = k. In other words, the object is k-shared if µ allows at least one

account to be owned by k processes, and no account is owned by more than k processes.

We show that the consensus number of any k-shared asset-transfer object is k, which general-

izes our result in Corollary 1. We first show that such an object has consensus number at least

k by implementing consensus for k processes using only registers and an instance of k-shared

asset-transfer. We then show that k-shared asset-transfer has consensus number at most k by

reducing it to k-consensus, an object known to have consensus number k [JT92].

Lemma 1. Consensus has a wait-free implementation for k processes in the read-write shared

memory model equipped with a single k-shared asset-transfer object.

Algorithm 2 Wait-free implementation of consensus among k processes using a k-shared
asset-transfer object and read-write registers. Code for process p ∈ {1, . . . ,k}.

Shared variables:
R[i], i ∈ 1, . . . ,k, k registers, initially R[i] =⊥,∀i
AT , k-shared asset-transfer object containing:

– an account a with initial balance 2k
owned by processes 1, . . . ,k

– some account s

Upon propose(v):
1 R[p].wr i te(v)
2 AT.tr ans f er (a, s,2k −p))
3 return R[AT.r ead(a)].r ead()

Proof. The proof consists of providing a wait-free implementation of consensus in a shared

memory system with k processes equipped with a k-shared asset transfer object. Intuitively,

k processes use one shared account to elect one of them whose input value will be decided.

Each process first announces its proposed value in a dedicated (per-process) register, and

then tries to perform a transfer from the shared account. The process successfully performing

a transfer is the elected one, and all processes use the remaining account balance to identify it.

Our algorithm is described in Algorithm 2. Before a process p accesses the shared account

a, p announces its input in a register (line 1). Process p then tries to perform a transfer from

account a to another account. The amount withdrawn this way from account a is chosen

specifically such that:

13

Chapter 2. Asset Transfer in Shared Memory

1. only one transfer operation can ever succeed, and

2. if the transfer succeeds, the remaining balance on a will uniquely identify process p.

To satisfy the above conditions, we initialize the balance of account a to 2k and have each

process p ∈ {1, . . . ,k} transfer 2k −p (line 2). Note that transfer operations invoked by distinct

processes p, q ∈ {1, . . . ,k} have arguments 2k−p and 2k−q , and 2k−p+2k−q ≥ 2k−k+2k−
(k −1) = 2k +1. The initial balance of a is only 2k and no incoming transfers are ever executed.

Therefore, the first transfer operation to be applied to the object succeeds (no transfer tries

to withdraw more then 2k) and the remaining operations will have to fail due to insufficient

balance. When p reaches line 3, at least one transfer must have succeeded:

1. either p’s transfer succeeded, or

2. p’s transfer failed due to insufficient balance, in which case some other process must

have previously succeeded.

Let q be the process whose transfer succeeded. Thus, the balance of account a is 2k−(2k−q) =
q . Since q performed a transfer operation, by the algorithm, q must have previously written

its proposal to the register R[q]. Regardless of whether p = q or p 6= q , reading the balance of

account a returns q and p decides the value of R[q].

To prove that k-shared asset-transfer has consensus number at most k, we reduce k-shared

asset-transfer to k-consensus. A k-consensus object exports a single operation propose that,

the first k times it is invoked in a history, returns the argument of the first invocation. All

subsequent invocations return ⊥. Given that k-consensus is known to have consensus number

exactly k [JT92], a wait-free algorithm implementing k-shared asset-transfer using only regis-

ters and k-consensus objects implies that the consensus number of k-shared asset-transfer is

not more than k.

The algorithm reducing k-shared asset-transfer to k-consensus is given in Algorithm 3 (with

auxiliary functions defined in Algorithm 4). It is a generalization of the single-owner case

(Algorithm 1). It follows a scheme similar to the universal construction of non-deterministic

objects [Her91], where processes explicitly agree not only on the order of the performed

operations, but also on their results (success or failure).

Before presenting a formal correctness argument, we first informally explain the intuition

behind the reduction. In our algorithm, we associate a series of k-consensus objects with every

account a. Up to k owners of a use the k-consensus objects to agree on the order of outgoing

transfers for a. Similarly to the single-owner case (Algorithm 1), the processes publish these

transfers in an atomic snapshot object AS. Every process p uses a distinct entry of AS to store

a set of transfers outoing from accounts p owns.

14

2.4. k-Shared Asset-Transfer Has Consensus Number k

Algorithm 3 Wait-free implementation of a k-shared asset-transfer object using k-consensus
objects. Code for process p.

Shared variables:
AS, atomic snapshot object
for each a ∈A :

Ra[i], i ∈Π, registers, initially [⊥, . . . ,⊥]
kCa[i], i ≥ 0, list of instances of k-consensus objects

Local variables:
hist: a set of completed transfers, initially empty
for each a ∈A :

committeda , initially ;
rounda , initially 0

Upon transfer(a,b, x):
1 if p ∉µ(a) then
2 return false
3 t x = (a,b, x, p,rounda)
4 Ra[p].wr i te(t x)
5 collected = collect(a) \ committeda

6 while t x ∈ collected do
7 req = the oldest transfer in collected
8 prop = proposal(req, AS.snapshot ())
9 decision = kCa[rounda].pr opose(pr op)
10 hist = hist∪ {decision}
11 AS.update(hist)
12 committeda = committeda ∪ {t : decision = (t ,∗)}
13 collected = collected \ committeda

14 rounda = rounda +1
15 if (t x,success) ∈ hist then
16 return true
17 else
18 return false

Upon read(a):
19 return balance(a, AS.snapshot ())

15

Chapter 2. Asset Transfer in Shared Memory

Algorithm 4 Auxiliary functions used by algorithm in Algorithm 3

collect(a):
1 collected =;
2 for all i =Π do
3 if Ra[i].r ead() 6= ⊥ then
4 collected = collected∪ {Ra[i].r ead()}
5 return col l ected

proposal((a,b, q, x),snapshot):
6 if balance(a,snapshot) ≥ x then
7 prop = ((a,b, q, x),success)
8 else
9 prop = ((a,b, q, x),failure)
10 return pr op

balance(a, snapshot):
11 incoming = {t x : t x = (∗, a,∗,∗,∗)∧ (t x,success) ∈ snapshot}
12 outgoing = {t x : t x = (a,∗,∗,∗,∗)∧ (t x,success) ∈ snapshot}
13 return q0(a)+ (∑

(∗,a,x,∗,∗)∈incoming x
)− (∑

(a,∗,x,∗,∗)∈outgoing x
)

However, unlike in the single-owner case, establishing a (per-account) total order of outgoing

transfers is not sufficient to ensure linearizability of k-shared asset-transfer. In the single-

owner case, a process only appends valid transfers (those with sufficient funds) to its account

history (and thus each transfer found in the history can be considered successful). This is

possible, because a single owner p can first check whether a transfer is valid (by taking a

snapshot and checking the balance) and, if so, append the transfer to the published history

of operations on the account (otherwise returning false and forgetting that transfer forever).

This, in turn, is possible, because, in the single-owner case, no other process can decrease

the balance of the account between the moment when p checks the validity of the outgoing

transfer and the moment it appends the transfer to the account history. For shared accounts,

this no longer holds, as co-owners might be concurrently proposing conflicting transfers.

Intuitively, even if the processes sharing a agree the same order of outgoing transfers, they

may still observe a different subset of incoming transfers. In case of concurrent incoming

transfers to a, processes sharing a might observe different balances of a when evaluating the

success / failure of an outgoing transfer. Note that this is not an issue in the case of a single

account per process, where a process only appends successful transfers (those with sufficient

funds) to its account history.

Therefore, every process p stores in its entry of AS a set hist—a subset of all completed

outgoing transfers from accounts that p owns (and thus is allowed to debit) and their results.

Each element in the hist set is represented as ((a,b, x, s,r),result), where a,b, and x are the

respective source account, destination account, and the amount transferred, s is the originator

16

2.4. k-Shared Asset-Transfer Has Consensus Number k

of the transfer, and r is the round in which the transfer was invoked by the originator. The

value of result ∈ {success,failure} indicates whether the transfer succeeds or fails. A transfer

becomes “visible” when any process inserts it in its corresponding entry of AS.

To read the balance of account a, a process takes a snapshot of AS, and then sums the

initial balance q0(a) and amounts of all successful incoming transfers, and subtracts the

amounts of successful outgoing transfers found in AS. We say that a successful transfer t x

is in a snapshot AS (denoted by (t x,success) ∈ AS) if there exists an entry e in AS such that

(t x,success) ∈ AS[e].

To execute a transfer o outgoing from account a, a process p first announces o in a register

Ra that can be written by p and read by any other process (line 4). This enables a “helping”

mechanism needed to ensure wait-freedom to the owners of a [Her91].

Next, p collects the transfers proposed by other owners (line 5) and tries to agree on the order

of the collected transfers and their results using a series of k-consensus objects. For each

account, the agreement on the order of transfer-result pairs proceeds in rounds. Each round is

associated with a k-consensus object which p invokes with a proposal chosen from the set of

collected transfers (line 9). Since each process, in each round, only invokes the k-consensus

object once, no k-consensus object is invoked more than k times and thus each invocation

returns a value (and not ⊥).

A transfer-result pair as a proposal for the next instance of k-consensus is chosen as follows.

Process p picks the “oldest” collected but not yet committed operation (based on the round

number rounda attached to the transfer operation when a process announces it; ties are

broken using process IDs) (line 7). Then p takes a snapshot of AS and checks whether account

a has sufficient balance according to the state represented by the snapshot, and equips the

transfer with a corresponding success / failure flag (line 8). The resulting transfer-result

pair constitutes p’s proposal for the next instance of k-consensus (line 9).

For each round, p inserts the decided-upon transfer-result pair in its hist set (line 10). p keeps

executing rounds of k-consensus until its outgoing transfer o has been decided in some round.

Locally, p keeps track of all transfers that have been agreed upon so far and excludes them

from the set of collected transfers before constructing its proposal in each round.

The currently executed transfer by process p returns as soon as it is decided by a k-consensus

object, the flag of the decided value (success/failure) indicating the transfer’s response (true/false).

Note that every process that keeps proposing transfers to the k-consensus objects will even-

tually learn about o. Moreover, o will eventually become the oldest announced transfer and

thus will be decided in some round. Therefore, p’s transfer operation will always eventually

terminate.

Lemma 2. The k-shared asset-transfer object type has a wait-free implementation in the read-

write shared memory model equipped with k-consensus objects.

17

Chapter 2. Asset Transfer in Shared Memory

Proof. We essentially follow the footpath of the proof of Theorem 1. Fix an execution E of the

algorithm in Figure 3. Let H be the history of E .

To perform a transfer o on an account a, p registers it in Ra[p] (line 4) and then proceeds

through a series of k-consensus objects, each time collecting Ra to learn about the transfers

concurrently proposed by other owners of a. Recall that each k-consensus object is wait-free.

Suppose, by contradiction, that o is registered in Ra but is never decided by any instance of

k-consensus. Eventually, however, o becomes the request with the lowest round number in

Ra and, thus, some instance of k-consensus will be only accessed with o as a proposed value

(line 9). By validity of k-consensus, this instance will return o and, thus, p will be able to

complete o.

Let Ops be the set of all complete operations and all transfer operations o such that some

process completed the update operation (line 11) in E with an argument including o (the

atomic snapshot and k-consensus operation has been linearized). Intuitively, we include in

Ops all operations that took effect, either by returning a response to the user or by affecting

other operations. Recall that every such transfer operation was agreed upon in an instance of

k-consensus, let it be kC o . Therefore, for every such transfer operation o, we can identify the

process qo whose proposal has been decided in that instance.

We now determine a completion of H and, for each o ∈ Ops, we define a linearization point as

follows:

• If o is a read operation, it linearizes at the linearization point of the snapshot operation

(line 19).

• If o is a transfer operation that returns false, it linearizes at the linearization point of the

snapshot operation (line 8) performed by qo just before it invoked kC o .propose().

• If o is a transfer operation that some process included in the update operation (line 11),

it linearizes at the linearization point of the first update operation in H (line 11) that

includes o. Furthermore, if o is incomplete in H , we complete it with response true.

Let H̄ be the resulting complete history and let L be the sequence of complete operations of H̄

in the order of their linearization points in E . Note that, by the way we linearize operations,

the linearization of a prefix of E is a prefix of L. Also, by construction, the linearization point

of an operation belongs to its interval.

Now we show that L is legal and, thus, H is linearizable. We proceed by induction, starting

with the empty (trivially legal) prefix of L. Let L` be the legal prefix of the first ` operation and

op be the (`+1)st operation of L. Let op be invoked by process p. The following cases are

possible:

• op is a read(a): the snapshot taken at op’s linearization point contains all successful

18

2.4. k-Shared Asset-Transfer Has Consensus Number k

transfers concerning a in L`. By the induction hypothesis, the resulting balance is

non-negative.

• op is a failed transfer(a,b, x): the snapshot taken at the linearization point of op contains

all successful transfers concerning a in L`. By the induction hypothesis, the balance

corresponding to this snapshot non-negative. By the algorithm, the balance is less than

x.

• op is a successful transfer(a,b, x). Let Ls , s ≤ `, be the prefix of L` that only contains

operations linearized before the moment of time when qo has taken the snapshot just

before accessing kC o .

As before accessing kC o , q went through all preceding k-consensus objects associated

with a and put the decided values in AS, Ls must include all outgoing transfer oper-

ations for a. Furthermore, Ls includes a subset of all incoming transfers on a. Thus,

balance(a,Lk) ≤ balance(a,L`).

By the algorithm, as op = transfer(a,b, x) succeeds, we have balance(a,Lk) ≥ x. Thus,

balance(a,L`) ≥ x and the resulting balance in L`+1 is non-negative.

Thus, H is linearizable.

Theorem 2. A k-shared asset-transfer object has consensus number k.

Proof. It follows directly from Lemma 1 that k-shared asset-transfer has consensus number at

least k. Moreover, it follows from Lemma 2 that k-shared asset-transfer has consensus number

at most k. Thus, the consensus number of k-shared asset-transfer is exactly k.

19

3 Asset Transfer in Message Passing

In the previous chapter we studied the problem of asset transfer as a concurrent object type in

the shared memory model with crash-only failures. We proved that with consensus number 1,

such a concurrent object occupies the lowest rank of Herlihy’s consensus hierarchy [Her91]

and, consequently, does not require solving the consensus problem in order to be imple-

mented.

In this chapter, we provide analogous results in the message passing model in presence

of a Byzantine adversary. We implement asset transfer without having to solve distributed

consensus, and we provide an intuition on how to generalize our algorithm to the k-shared

case, where k processes sharing an account can solve agreement among themselves.

3.1 Introduction

The shared memory model is well suited for precisely studying theoretical aspects of many

problems and it served us well to understand the relation between asset transfer and consensus.

In practice, it is most useful for describing concurrent processes accessing a shared physical

memory. These processes are mostly either running on different CPU cores of the same

machine, or are distributed across a fast network (usually within a datacenter) where the

exchanged messages are abstracted away and each process indeed deals with an abstraction

of a shared memory.

However, we envision a practical implementation of asset transfer to be deployed as a large-

scale distributed system spanning all across the planet. In such a setting, the message passing

model, where processes communicate by exchanging messages, is better suited. While an

abstraction of shared memory can be (under some additional assumptions) implemented on

top of message passing [ABND95], such an implementation is complex, expensive, and has

limited scalability.

Moreover, our goal is to also achieve Byzantine fault tolerance. While a shared memory

abstraction can be implemented in a message passing system even with the presence of

21

Chapter 3. Asset Transfer in Message Passing

Byzantine processes [GV06, GLV06, GV07, IRRS16], our algorithms presented in the previous

chapter do not directly translate to the Byzantine environment.

We now present a practical implementation of asset transfer in the message passing model

that is tolerant to Byzantine faults. Instead of relying on a shared memory abstraction and

an atomic snapshot object to represent the system state, every process maintains its own

representation of the accounts and their balances. Processes communicate using a secure

broadcast primitive that they use to dissemminate information about the performed transfers.

An important aspect of our approach is that we still avoid solving the consensus problem. The

secure broadcast primitive we use need not provide a total order among messages (containing

transfers in our case). A much weaker per-process ordering, called source order [MR97b], is

sufficient. This order only concerns messages that have been broadcast by the same process.

We leverage the insight that only outgoing transfers from an account need to be totally ordered

with respect to each other. In particular, outgoing transfers from one account do no need

to be ordered with respect to transfers from another account. Since incoming transfers for

an account are commutative, a process can observe them in any order. The only ordering

constraint we enforce is a weak form of causality. This prevents situations where a process,

unaware of an account having received an asset, would observe this asset being further

transferred from this account. Such a weak ordering is, unlike total order, easily achievable

asynchronously.

Analogously to the previous chapter, we discuss a generalization to the k-shared case. We de-

scribe how to adapt our algorithm to implement k-shared asset transfer, under the assumption

that up to k processes are able to solve Byzantine agreement among themselves.

The rest of this chapter is organized as follows. First, we adapt our specification of asset

transfer to the message passing environment (3.2) with Byzantine faults. Next, we present

our consensusless algorithm implementing asset transfer and prove its correctness (3.3).

Finally, we discuss the adaptations that are necessary to generalize our implementation to the

k-shared case (3.4).

3.2 Byzantine-Tolerant Asset Transfer

We now adapt our asset transfer specification for an environment where processes communi-

cate by sending messages over reliable authenticated channels [CGR11], and where up to one

third of the processes can be subject to Byzantine failures.

A process is Byzantine if it deviates from the algorithm it is assigned, either by halting prema-

turely, in which case we say that the process is crashed, or performing actions that are not

prescribed by its algorithm, in which case we say that the process is malicious. Malicious

processes can perform arbitrary actions, except for ones that involve subverting cryptographic

primitives. A process is called faulty if it is either crashed or malicious. A process is correct if it

22

3.3. Asset Transfer Implementation in Byzantine Message Passing

is not faulty and benign if it is not malicious. Note that every correct process is benign, but not

necessarily vice versa.

We only require that the transfer system behaves correctly towards benign processes, regardless

of the behavior of Byzantine ones. Informally, we require that no benign process can be a

victim of a double-spending attack, i.e., every execution appears to benign processes as a

correct sequential execution, respecting the original execution’s real-time ordering [Her91].

In our algorithm, we slightly relax the last requirement—while still preventing double-spending.

We require that successful transfer operations invoked by benign processes constitute a legal

sequential history that preserves the real-time order. A read or a failed transfer operation in-

voked by a benign process p can be “outdated”—it can be based on a stale state of p’s balance.

Informally, one can view the system requirements as linearizability [HW90] for successful

transfers and local sequential consistency [AW94] for failed transfers and reads. One can argue

that this relaxation incurs little impact on the system’s utility, since all incoming transfers are

eventually applied. As progress (liveness) guarantees, we require that every operation invoked

by a correct process eventually completes.

Definition 1 (Correctness of asset-transfer in message passing). Let E be any execution of an

implementation and H be the corresponding history. Let ops(H) denote the set of operations

in H that were executed by correct processes in E. An asset-transfer object in message passing

guarantees that each invocation issued by a correct process is followed by a matching response

in H, and that there exists H̄ , a completion of H, such that:

(1) Let H̄ t denote the sub-history of successful transfers of H̄ performed by correct processes

and ≺t
H̄

be the subset of ≺H̄ restricted to operations in H̄ t . Then there exists a legal

sequential history S such that (a) for every correct process p, H̄ t |p = S|p and (b) ≺t
H̄
⊆≺S .

(2) For every correct process p, there exists a legal sequential history Sp such that:

• ops(H̄) ⊆ ops(Sp), and

• Sp |p = H̄ |p.

Notice that property (2) implies that every update in H that affects the account of a correct

process p is eventually included in p’s “local” history and, therefore, will reflect reads and

transfer operations subsequently performed by p.

3.3 Asset Transfer Implementation in Byzantine Message Passing

We now present our consensusless algorithm that implements asset transfer in a message

passing system subject to Byzantine faults. Instead of consensus, we rely on a secure broadcast

primitive (referred to as “secure reliable multicast” by Malkhi et al. [MMR97, MR97b]) that

is strictly weaker than consensus and has a fully asynchronous implementation. It provides

23

Chapter 3. Asset Transfer in Message Passing

reliable delivery despite Byzantine faults and so-called source order among delivered messages.

The source order property, being even weaker than FIFO, guarantees that messages from

the same source are delivered in the same order by all correct processes. More precisely, the

secure broadcast primitive we use in our implementation (with a standard broadcast/delivery

interface) has the following properties for processes p, q , and r , and messages m and m′

(paraphrasing from [MR97b]):

• Integrity: A benign process delivers a message m from a process p at most once and, if

p is benign, only if p previously broadcast m.

• Agreement: If processes p and q are correct and p delivers m, then q delivers m.

• Validity: If a correct process p broadcasts m, then p delivers m.

• Source order: If p and q are benign and both deliver m from r and m′ from r , then they

do so in the same order.

Figure 3.1 depicts the high-level structure of our algorithm. There are two main modules:

one for tracking dependencies among transfer operations, and one module for securely

broadcasting new transfers.

The secure broadcast module is a classic broadcast abstraction with the properties described

above that has known implementations [MR97b, MMR97]. In the next chapter we present

a probabilistic version of secure broadcast along with a new implementation that vastly

improves scalability for a cost of an (arbitrarily small) failure probability.

Now we focus on the asset transfer algorithm that uses a secure broadcast abstraction as a

black box. This algorithm remains the same regardless of the underlying varinat of secure

broadcast. If using a deterministic implementation of secure broadcast, our algorithm pro-

vides deterministic guarantees. In the other case, we inherit the probabilistic behavior and

the asset transfer algorithm will also be allowed to fail with a certain (still arbitrarily small)

probability.

The intuition behind our algorithm is as follows. To perform a transfer t x, a process p securely

broadcasts a message with the transfer details: the arguments of the transfer operation and

some metadata. The metadata includes a per-process sequence number of t x and references

to the dependencies of t x. The dependencies are transfers incoming to p that must be known

to any process before applying t x.1 These dependencies impose a causal relation between

transfers that must be respected when transfers are being applied. For example, suppose that

process p makes a transfer t x to process q . q , after observing t x, performs another transfer t x ′

to process r . q ’s broadcast message will contain t x ′, a local sequence number, and a reference

to t x. Any process (not only r) will only evaluate the validity of t x ′ after having applied t x. This

approach is similar to using vector clocks for implementing causal order among events [JF88].

1 By applying a transfer t x we understand locally adding t x to a set of transfers considered as executed.

24

3.3. Asset Transfer Implementation in Byzantine Message Passing

asset-transfer

(enforce causal dependencies among transfers)

secure broadcast

(securely disseminate transfers)

broadcast(m) deliver(m)

transfer(a, b, x) read(a)

Figure 3.1 – High-level structure of our message-passing implementation of asset transfer. The
upper layer (whose algorithm is depicted in Algorithm 5) uses a secure broadcast abstraction
as a black box.

To ensure the authenticity of operations—so that no process is able to debit another process’s

account—we assume that processes sign all their messages before broadcasting them. In

practice, similar to Bitcoin and other transfer systems, every process p possesses a public-

private key pair that allows only p to securely initiate transfers from its corresponding account.

For simplicity of presentation, we omit this mechanism in the algorithm pseudocode.

Algorithm 5 describes the full algorithm implementing asset-transfer in a Byzantine-prone

message passing system. Each process p maintains, for each process q , an integer seq[q]

reflecting the number of transfers which process q initiated and which process p has validated

and applied. Process p also maintains, for every process q , an integer rec[q] which reflects

the number of transfers which process q has initiated and process p has delivered (but not

necessarily applied).

Additionally, there is also a set hist[q] of transfers which involve process q . We say that,

intuitively, a transfer operation involves a process q if that transfer is either outgoing or

incoming on the account of q . However, we exclude from this set the transfers incoming for q

that have not yet been referenced by any of q’s outgoing transfers. Thus, a transfer t x from

r to q is inserted into hist[r] immediately after validation (as it is outgoing from r), but we

only insert it into hist[q] when q issues another transfer referencing t x as a dependency. This

small technical detail is important for evaluating the validity of transfers issued by (and thus

outgoing from) q . Consider the case where q is malicious and issues a transfer t x that is not

justified by the referenced dependencies. Consequently, a correct process p will not validate

25

Chapter 3. Asset Transfer in Message Passing

Algorithm 5 Consensusless transfer system based on secure broadcast. Code for process p.

Local variables:
seq[], initially seq[q] = 0, ∀q {Number of validated transfers outgoing from q}
rec[], initially rec[q] = 0, ∀q {Number of delivered transfers from q}
hi st [], initially hi st [q] =;, ∀q {Set of validated transfers outgoing from q and their dependencies}
deps, initially ; {Set of last incoming transfers for account of local process p}
toValidate, initially ; {Set of delivered (but not validated) transfers}
q0[], initially q0[q] = initial balance of q,∀q {Initial account balances}

1 operation transfer(a,b, x) where µ(a) = {p} { Transfer an amount of x from account a to account b }
2 if balance(a,hi st [p]∪deps) < x then
3 return false
4 broadcast([(a,b, x,seq[p]+1),deps])
5 deps =;

6 operation read(a) { Read balance of account a }
7 return balance(a,

⋃
q∈Π

hi st [q])

{ Secure broadcast delivery }
8 upon deliver(q,m) { Executed when p delivers message m from process q }
9 let m be [(q,b, x, s),deps]
10 if s = rec[q]+1 then
11 rec[q] = rec[q]+1
12 toValidate = toValidate∪ {(q,m)}

{ Executed when a transfer delivered from q becomes valid }
13 upon (q, [t ,h]) ∈ toValidate ∧ Valid(q, t ,h)
14 hi st [q] := hi st [q]∪h ∪ {t } { Update the history for the outgoing account }
15 let t be (q,b, x, s)
16 seq[q] = s
17 if b = p then
18 deps = deps∪ {(q,b, x, s)} { This transfer is incoming to account of local process p }
19 if q = p then
20 return true { This transfer is outgoing from account of local process p }

21 function Valid(q, t ,h)
22 let t be (c,d , y, s)
23 return (q = c)
24 and (s = seq[q]+1)
25 and (balance(c,hi st [q]∪h) ≥ y)
26 and (f or al l (a,b, x,r) ∈ h : (a,b, x,r) ∈ hi st [a])

27 function balance(a,h)
28 return initial balance q0[a] plus sum of incoming transfers minus outgoing transfers for account a in h

26

3.3. Asset Transfer Implementation in Byzantine Message Passing

it. If processes were allowed to take into account unreferenced incoming transfers, another

correct process r might validate t x due to additional incoming transfers p is not yet aware of.

Each process p maintains as well a local variable deps. This is a set of transfers incoming for

p that p has applied since the last successful outgoing transfer. Finally, the set toValidate

contains delivered transfers that have been delivered from the underlying broadcast, but not

yet applied.

To perform a transfer operation, process p first checks the balance of its own account, and if

the balance is insufficient, returns false (line 3). Otherwise, process p broadcasts a message

with this operation via the secure broadcast primitive (line 4). This message includes the three

basic arguments of a transfer operation as well as seq[p]+1 and dependencies deps. Each

correct process in the system eventually delivers this message via secure broadcast (line 8).

Note that, given the assumption of no process executing more than one concurrent transfer,

every process waits for delivery of its own message before initiating another broadcast. This

effectively turns the source order property of secure broadcast into FIFO order. Upon delivery,

process p checks this message for well-formedness (lines 9 and 10), and then adds it to the set

of messages pending validation. We explain the validation procedure later.

Once a transfer passes validation (the predicate in line 13 is satisfied), process p applies

this transfer on the local state. Applying a transfer means that process p adds this transfer

along with its dependencies to the history of the outgoing account (line 14). If the transfer is

incoming for local process p, it is also added to deps, the set of current dependencies for p

(line 18). If the transfer is outgoing for p, i.e., it is the currently pending transfer operation

invoked by p, then the response true is returned (line 20).

To perform a read(a) operation for account a, process p simply computes the balance of this

account based on the union of all currently validated transfers (line 7).

Before applying a transfer op from some process q , process p validates op via the Valid

function (lines 21–26). To be valid, op must satisfy four conditions. The first condition is

that process q (the issuer of transfer op) must be the owner of the outgoing account for op

(line 23). Second, any preceding transfers that process q issued must have been validated

(line 24). Third, the balance of account q must not drop below zero (line 25). Finally, every

dependency (a,b, x,r) in h must have been validated and included in the history of a, hist[a].

Lemma 3. In any infinite execution of the algorithm (Figure 5), every operation performed by a

correct process eventually completes.

Proof. A transfer operation that fails or a read operation invoked by a correct process returns

immediately (lines 3 and 7, respectively).

Consider a transfer operation t x invoked by a correct process p that succeeds (i.e., passes the

check in line 2), so p broadcasts a message with the transfer details using secure broadcast

(line 4). By the validity property of secure broadcast, p eventually delivers the message (via

27

Chapter 3. Asset Transfer in Message Passing

the secure broadcast callback, line 8) and adds it to the toValidate set. By the algorithm, this

message includes a set deps of operations (called h, line 9) that involve p’s account. This set

includes transfers that process p delivered and validated after issuing the prior successful

outgoing transfer (or since the initial system time if there is no such transfer) but before issuing

t x (lines 4 and 5).

As process p is correct, it operates on its own account, respects the sequence numbers, and

issues a transfer only if it has enough balance on the account. Thus, when a transfer operation

t x is delivered by p, it must satisfy the first three conditions of the Valid predicate (lines 23–25).

Consider any (a,b, x,r) in h, the dependency set attached by p to the broadcast message

(line 4) and then used as a parameter in function Valid (line 4). By the algorithm, before being

included to the dependency set, (a,b, x,r) must be first validated and added to hist[a] (line 14).

Thus, the fourth validation condition (line 26) also holds.

Hence, p eventually validates t x and completes the operation by returning true in line 20.

Theorem 3. The algorithm in Figure 5 implements an asset-transfer object type.

Proof. Fix an execution E of the algorithm, let H be the corresponding history.

Let V denote the set of all messages that were delivered (line 8) and validated (line 23) at

a correct process in E . By the agreement property of secure broadcast, every message m =
[(q,d , y, s),h] ∈ V is eventually put in hi st [q] (line 14) at each correct process. Now we define

an order ¹⊆ V ×V as follows. For m = [(q,d , y, s),h] ∈ V and m′ = [(r,d ′, y ′, s′),h′] ∈ V , we have

m ¹ m′ if and only if one of the following conditions holds:

• q = r and s < s′,

• (r,d , y, s) ∈ h′, or

• there exists m′′ ∈ V such that m ¹ m′′ and m′′ ¹ m′.

By the source order property of secure broadcast (see Section 3.3), correct processes p and

r deliver messages from any process q in the same order. By the algorithm in Algorithm 5,

a message from q with a sequence number i is added by a correct process to toValidate set

only if the previous message from q added to toValidate had sequence number i −1 (line 10).

Furthermore, a message m = [(q,d , y, s),h] is validated at a correct process only if all messages

in h have been previously validated (line 26). Therefore, ¹ is acyclic and can be extended to a

total order.

Let S be the sequential history constructed from any such total order on messages in V

in which every message m = [(q,d , y, s),h] is replaced with the invocation-response pair

transfer(q,d , y); true.

28

3.4. k-shared Asset Transfer in Message Passing

By the definition of the order ¹, every operation transfer(q,d , y) in S is preceded by a sequence

of transfers ensuring that the balance of q does not drop below y (line 25). In particular,

S includes all outgoing transfers from the account of q performed previously by q itself.

Additionally S may order some incoming transfer to q that did not appear at hi st [q] before

the corresponding (q,d , y, s) has been added to it. But these “unaccounted” operations may

only increase the balance of q and, thus, it is indeed legal to return true.

Furthermore, for each correct process p, ¹ and, thus, S respects the order of successful

transfers issued by p. Thus, the subsequence of successful transfers in H “looks” linearizable to

the correct processes: H , restricted to successful transfers witnessed by the correct processes,

is consistent with a legal sequential history S.

Let p be a correct process in E . Now let Vp denote the set of all messages that were delivered

(line 8) and validated (line 23) at p in E . Let ¹p be the subset of ¹ restricted to the elements

in Vp . Obviously, ¹p is cycle-free and we can again extend it to a total order. Let Sp be the

sequential history built in the same way as S above. Similarly, we can see that Sp is legal

and, by construction, consistent with the local history of all operations of p (including reads

and failed transfers). Moreover, every successful transfer in E performed by a correct process

eventually appears in
⋃

q∈Πhist[q]. Thus, every such transfer is eventually included in Sp .

By Lemma 3, every operation invoked by a correct process eventually completes. Thus, E

indeed satisfies the requirement of an asset-transfer implementation.

3.4 k-shared Asset Transfer in Message Passing

Our message-passing asset-transfer implementation can be naturally extended to the k-shared

case, when some accounts are owned by up to k processes. As we showed in Section 2.4, a

purely asynchronous implementation of a k-shared asset-transfer does not exist, even in the

benign shared-memory environment.

k-shared BFT service. To circumvent this impossibility, we assume that every account is

associated with a Byzantine fault-tolerant state-machine replication service (BFT [CL99]) that

is used by the account’s owners to order their outgoing transfers. More precisely, the transfers

issued by the owners are assigned monotonically increasing sequence numbers.

The service can be implemented by the owners themselves, acting both as clients, submitting

requests, and replicas, reaching agreement on the order in which the requests must be served.

As long as more than two thirds of the owners are correct, the service is safe, in particular, no

sequence number is assigned to more than one transfer. Moreover, under the condition that

the owners can eventually communicate within a bounded message delay, every request sub-

mitted by a correct owner is guaranteed to be eventually assigned a sequence number [CL99].

One can argue that it is much more likely that this assumption of eventual synchrony holds for

a bounded set of owners, rather than for the whole set of system participants. Furthermore,

29

Chapter 3. Asset Transfer in Message Passing

communication complexity of such an implementation is polynomial in k and not in N , the

number of processes.

Account order in secure broadcast. Consider even the case where the threshold of one third

of Byzantine owners is exceeded, where the account may become blocked or, even worse,

compromised. In this case, different owners may be able to issue two different transfers

associated with the same sequence number.

This issue can be mitigated by a slight modification of the classical secure broadcast algo-

rithm [MR97b]. In addition to the properties of Integrity, Validity and Agreement of secure

broadcast, the modified algorithm can implement the property of account order, generalizing

the source order property (Section 3.3). Assume that each broadcast message is equipped with

a sequence number (generated by the BFT service, as we will see below).

• Account order: If a benign process p delivers messages m (with sequence number s)

and m′ (with sequence number s′) such that m and m′ are associated with the same

account and s < s′, then p delivers m before m′.

Informally, the implementation works as follows. The sender sends the message (containing

the account reference and the sequence number) it wants to broadcast to all and waits until

it receives acknowledgements from a quorum of more than two thirds of the processes. A

message with a sequence number s associated with an account a is only acknowledged by a

benign process if the last message associated with a it delivered had sequence number s −1.

Once a quorum is collected, the sender sends the message equipped with the signed quorum

to all and delivers the message. This way, the benign processes deliver the messages associated

with the same account in the same order. If the owners of an account send conflicting messages

for the same sequence number, the account may block. However, and most importantly, even

a compromised account is always prevented from double spending. Liveness of operations on

a compromised account is not guaranteed, but safety and liveness of other operations remains

unaffected.

Putting it all together. The resulting k-shared asset transfer system is a composition of a

collection of BFT services (one per account), the modified secure broadcast protocol (providing

the account-order property), and a slightly modified protocol in Figure 5.

To issue a transfer operation t on an account a it owns, a process p first submits t to the asso-

ciated BFT service to get a sequence number. Assuming that the account is not compromised

and the service is consistent, the transfer receives a unique sequence number s. Note that the

decided tuple (a, t , s) should be signed by a quorum of owners: this will be used by the other

processes in the system to ensure that the sequence number has been indeed agreed upon by

the owners of a. The process executes the protocol in Figure 5, with the only modification that

the sequence number seq is now not computed locally but adopted from the BFT service.

Intuitively, as the transfers associated with a given account are processed by the benign

30

3.4. k-shared Asset Transfer in Message Passing

processes in the same order, the resulting protocol ensures that the history of successful

transfers is linearizable. On the liveness side, the protocol ensures that every transfer on a

non-compromised account is guaranteed to complete.

31

4 Probabilistic Secure Broadcast

Secure broadcast is a powerful primitive that allows a set of processes to agree on a message

from a designated sender, even if some processes are Byzantine. The asset transfer algorithm

described in the previous chapter uses secure broadcast as a black-box component as the only

means of communication between processes. In fact, from the point of view of a process, the

asset transfer algorithm can be seen as a relatively thin wrapper of local computation around

secure broadcast. The implementation of this sub-protocol thus has a strong impact on the

complexity and performance of our asset transfer algorithm.

Classic deterministic secure broadcast protocols build on quorum systems providing inter-

section guarantees, which results in linear per-process communication and computation

complexity, severely limiting the scalability of these protocols.

In this chapter we generalize the secure broadcast abstraction to the probabilistic setting,

allowing each property to be violated with a fixed, arbitrarily small probability. We leverage

these relaxed guarantees in a protocol where we replace quorums with stochastic samples.

Compared to quorums, samples are significantly smaller in size, leading to a more scalable

design. We obtain the first secure broadcast protocol with logarithmic latency, as well as

logarithmic per-process communication and computation complexity.

4.1 Introduction

Broadcast is a popular abstraction in the distributed system toolbox, allowing a process to

transmit messages to a set of processes. Multiple flavors of broadcast have been defined in

the literature, with different safety and liveness guarantees [CGR11, GKKZ11, HT93, MMR97,

PS02]. In this thesis we focus on broadcast that tolerates Byzantine faults. Such broadcast

abstractions are often central building blocks of practical Byzantine fault-tolerant (BFT)

systems in general [CP02, DRZ18], and our asset transfer system in particular. This chapter

tackles the problem of scalability, namely reducing the complexity of secure broadcast, and

seeking good performance despite a large number of participating processes.

33

Chapter 4. Probabilistic Secure Broadcast

The broadcast abstraction mainly discussed in this chapter is slightly different from the one

used to implement asset transfer in Section 3.3. In a nutshell, while our asset transfer algorithm

uses a “multi-shot” version of secure broadcast, where any process may invoke the broadcast

any number of times, we now restrict ourselves to a “single-shot” version, where only a single

process is broadcasting a single message. However, the multi-shot variant of secure broadcast

can be trivially implemented by instantiating multiple instances of the single-shot variant and

using sequence numbers to implement source order. Unless stated otherwise, we refer to the

single-shot version of secure broadcast in this chapter.

In single-shot secure broadcast, a designated sender can broadcast a single message, ensuring

that no two correct processes deliver different messages. This holds despite the presence of a

certain fraction of Byzantine processes, including the sender. Secure broadcast ensures three

guarantees: (1) Validity: if the sender is correct, then its message is delivered by all correct

processes; (2) Consistency: all correct processes that deliver a message should deliver the

same message; (3) Totality: either every correct process delivers a message, or no correct

process does so.

We denote by N the number of processes in the system, and f the fraction of processes that

are Byzantine. Existing algorithms for secure broadcast typically have O(N) per-process com-

munication complexity [BT85b, MMR00, MR97b, Tou84]—they do not scale. The root cause

for this limitation is their use of a quorum system [MR97a, Vuk10], i.e., sets of processes that

are large enough to always intersect in at least one correct process. The size of a quorum

scales linearly with the size of the system [CGR11]. To overcome this limitation, Malkhi et

al. [MRWW01] generalized quorums to the probabilistic setting. In this setting, two random

quorums intersect with a fixed, arbitrarily high probability, allowing the size of each quorum

to be reduced to O(
p

N). Although we are not aware of any secure broadcast algorithm build-

ing on probabilistic quorums, such an algorithm could have a per-process communication

complexity reduced from O(N) to O(
p

N).

4.1.1 Samples

We present a probabilistic secure broadcast algorithm having O(l og N) per-process commu-

nication and computation complexity, as well as broadcast latency. Essentially, we propose

samples as a replacement for quorums. Like a probabilistic quorum, a sample is a randomly

selected set of processes. Unlike quorums, however, samples do not need to intersect. Samples

can be significantly smaller than quorums, as each sample must be large enough only to be

representative of the system with high probability.

A process can use a sample to gather information about the global state of the system. To

do so, we leverage the law of large numbers, trading performance for a fixed, arbitrarily

small probability of the sample being non-representativene (and the obtained information

inaccurate). To get an intuition of the difference between quorums and samples, consider

the emulation of a shared memory in message passing [ABND95]. One writes in a quorum

34

4.1. Introduction

and reads from a quorum to fetch the last value written. Our algorithms are rather in the vein

of "write all, read any". Here we would "write" by disseminating information using a gossip

primitive and "read" by sampling the system to verify that a significant part of it has accepted

the value.

We use samples to estimate the number of processes satisfying a set of yes-or-no properties,

e.g., the number of processes that are ready to deliver a message m. To illustrate the idea,

consider the case where a correct process π queries K randomly selected processes for a

property P . Assume a fraction p of correct processes from the whole system satisfy property P .

Let x be the fraction of positive responses (out of K) that π collects. By the Chernoff bound,

the probability of
∣∣x −p

∣∣≥ f +ε is smaller or equal to exp(−λ(ε)K), where λ quickly increases

with ε. For a large enough sample K , the probability of x differing from p by more than f +ε
can be made exponentially small.

To obtain samples, our algorithms use a sampling oracle, i.e., a black box returning the identity

of a process from the system, picked with uniform probability. Implementing such an oracle is

beyond the scope of this work, but it is straightforward in practice. In a permissioned system

(i.e., one where the set of participating processes is known) sampling reduces to picking with

uniform probability an element from the set of processes. In a permissionless system subject

to Byzantine failures and limited churn, a (nearly) uniform sampling mechanism is available

in literature (Bortnikov et al. [BGK+09]).

4.1.2 Scalable Secure Broadcast

We use samples as the core technique to design Ready Broadcast, a scalable secure broadcast

algorithm. We generalize secure broadcast properties (validity, consistency, and totality, as

mentioned earlier) to the probabilistic setting, allowing each property to be violated with a

fixed, arbitrarily small probability ε. Ready Broadcast has logarithmic latency. For a fixed

security parameter ε, the communication complexity grows logarithmically with N .

The Ready Broadcast itself is, at a high level, structured similarly to Bracha’s deterministic

algorithm [Bra87]—in 3 phases. In Bracha’s broadcast, the first phase simply distributes the

message, the second phase ensures consistency using a Byzantine quorum, and the third

phase implements totality using a feedback loop and a quorum. Each phase involves O(N)

messages—in the first phase only for the sender, in the other phases for every correct process.

We achieve lower per-process complexity O(log(n)) (and thus scalability) by using gossip for

the first phase and samples instead of quorums for the remaining phases.

In Bracha’s broadcast, a process proceeds to the next phase when it received messages from

a quorum of other processes. These messages provide a (deterministic) guarantee that the

system reached a certain state, making it possible for the process to move on to the next

protocol phase. In our case, a proces does not require full assurance that the system reached

the required state for passing to the next phase of the protocol. Instead, the process contents

35

Chapter 4. Probabilistic Secure Broadcast

Figure 4.1 – Layered view of our broadcast abstractions. Starting from authenticated point-to-
point links, we implement secure broadcast using 3 layers of broadcast abstractions. Intuitively,
each layer is mainly responsible for guaranteeing one of secure broadcast’s properties

itself with a sufficiently high probability that this is the case and moves on.

We build probabilistic secure broadcast incrementally from weaker abstractions that we layer

on top of each other as shown in Figure 4.1. Each layer corresponds to one phase of the

broadcast algorithm. At the high level, the layers are as follows.

1. Probabilistic broadcast ensures simple dissemination of messages throughout the

system.

2. Probabilistic consistent broadcast guarantees that, even in the case of a malicious

sender, no two correct processes deliver two different messages (consistency).

3. Probabilistic secure broadcast adds the guarantee of totality—either all correct pro-

cesses deliver a message or none does.

For each abstraction layer, we provide a corresponding implementation.

1. Erdös-Rényi Gossip is a probabilistic broadcast algorithm where each correct pro-

cess relays the broadcast message to a randomly picked gossip sample of neighbors.

This sample is larger than log(N), so the resulting gossip network is connected with

high probability. Erdös-Rényi Gossip is used only for message dissemination. For a

Byzantine sender, it provides no consistency guarantees.

2. Echo Broadcast is a probabilistic consistent broadcast algorithm in which the sender

uses Erdös-Rényi Gossip to disseminate a message to every correct process. As Erdös-

Rényi Gossip does not guarantee consistency, a correct process delivers the message

36

4.2. Model and Assumptions

it received from Erdös-Rényi Gossip only upon receiving confirmation from a large

enough fraction of its randomly selected echo sample. Echo Broadcast is used to de-

liver a consistent message to a subset of the correct processes. If the sender if Byzantine,

however, probabilistic consistent broadcast provides no guarantee on the number of

correct processes delivering the message.

3. Ready Broadcast is a probabilistic secure broadcast algorithm where the sender uses

Echo Broadcast to disseminate a consistent message to a subset of the correct pro-

cesses. Each correct process randomly picks a ready sample and a delivery sample. Upon

receiving a message m from Echo Broadcast, a correct process becomes ready for m.

If enough processes in the ready sample of a correct process π are ready for m, then

π becomes ready for m as well, even if π itself has not delivered m from probabilistic

consistent broadcast. This produces a feedback mechanism that, with high probability,

converges to either only a few or all correct processes being ready for m. Finally, if

enough processes in the delivery sample of a correct process π are ready for m, then

π delivers m. With high probability, either all correct processes deliver m, or no cor-

rect process does. Ready Broadcast implements probabilistic secure broadcast in a

Byzantine setting.

The rest of this chapter, after formally presenting the system model and assumptions, describes

in detail the three abstractions just introduced (probabilistic broadcast, probabilistic con-

sistent broadcast, and probabilistic secure broadcast) and their respective implementations

(Erdös-Rényi Gossip, Echo Broadcast, and Ready Broadcast).

4.2 Model and Assumptions

In this section, we introduce the model underlying our protocols, and state the assumptions

we make on the network as well as on the information available both to correct and Byzantine

processes. We also introduce some useful notation.

We assume the following:

1. (Processes) The setΠ of processes paricipating in the algorithm is fixed. Unless stated

otherwise, we denote by N = |Π| the total number of processes, and refer to the i -th

process as πi ∈Π.

2. (Failures) At most a fraction f of the processes is Byzantine, i.e., subject to arbitrary

failures. Byzantine processes are under the control of the same adversary, and can take

coordinated action.

Unless stated otherwise, we denote by ΠC ⊆ Π the set of correct processes and by

C = |ΠC | =
(
1− f

)
N the number of correct processes.

37

Chapter 4. Probabilistic Secure Broadcast

3. (Links) Any two processes can communicate via reliable, authenticated, point-to-

point links [CGR11].

4. (Asynchrony) Byzantine processes have control over the network scheduling, and can

cause arbitrary but finite delays on any link, including links between pairs of correct

processes.

5. (Anonymity) Byzantine processes cannot determine which correct processes a correct

process is communicating with.

6. (Randomness) Every correct process has direct access to a local, unbiased, independent

source of randomness. The Byzantine adversary does not have access to the output of

the local source of randomness of any correct process.

7. (Sampling) Every correct process has direct access to an oracleΩ that, provided with an

integer n ≤ N , yields the identities of n distinct processes, chosen uniformly at random

fromΠ using the local source of randomness.

Assumption 1 (Processes) is later weakened into an inequality, as we generalize our results

to systems with churn. Assumption 4 (Asynchrony) represents one of the main strengths of

this work: messages can be delayed arbitrarily and maliciously without compromising the

safety properties of any of the algorithms presented in this work. Assumption 5 (Anonymity)

represents the strongest constraint we put on the knowledge of the adversary. We later show

that, without this assumption, an adversary could easily poison the view of the system of

a targeted correct process without having to access the local randomness source of any

correct process. Even against ISP-grade adversaries, Assumption 5 can be implemented in

practice by means of, e.g., onion routing [DMS04] or private messaging [vdHLZZ15] algorithms.

Assumption 7 (Sampling) reduces, in the permissioned case, to randomly sampling an list

of processes available to each process. In a permissionless system subject to Byzantine

failures and limited churn, a (nearly) uniform sampling mechanism is availaible in literature

[BGK+09].

4.3 Probabilistic broadcast

In this section, we introduce the probabilistic broadcast abstraction and its properties. We

then present Erdös-Rényi Gossip, an algorithm that implements probabilistic broadcast,

and discuss its correctness. Here we only provide the high-level intutions behind correctness

arguments. The full formal analysis and correctness proof are included in separate work that

is not part of this thesis [GKM+18].

The probabilistic broadcast abstraction serves the purpose of reliably broadcasting a single

message from a designated correct sender to all correct processes. We use probabilistic

broadcast in the implementation of Echo Broadcast (see Section 4.4) to initially distribute

the message from the designated sender to all correct processes.

38

4.3. Probabilistic broadcast

4.3.1 Definition

Let σ be the dedicated broadcasting process. The probabilistic broadcast interface exports the

following events:

• Request: Broadcast(m): Broadcasts a message m to all processes.

This is only used by σ.

• Indication: Deliver(m): Delivers a message m broadcast by process σ.

For any ε ∈ [0,1], we say that probabilistic broadcast is ε-secure if:

1. No duplication: No correct process delivers more than one message.

2. Integrity: If a correct process delivers a message m, and σ is correct, then m was

previously broadcast by σ.

3. ε-Validity: If σ is correct, and σ broadcasts a message m, then σ eventually delivers m

with probability at least (1−ε).

4. ε-Totality: If a correct process delivers a message, then every correct process eventually

delivers a message with probability at least (1−ε).

4.3.2 Algorithm

Erdös-Rényi Gossip (Algorithm 6) distributes a single message across the system by means

of gossip: upon reception, a correct process relays the message to a set of randomly selected

neighbors. The algorithm depends on one integer parameter, G—the expected gossip sample

size), whose value we discuss in Section 4.3.3.

Initialization Upon initialization, (line 12) every correct process randomly samples a value

Ḡ from a Poisson distribution with expected value G , and uses the sampling oracle Ω to select

Ḡ distinct processes that it will use to initialize its gossip sample G .

Link reciprocation Once its gossip sample is initialized, a correct process sends a GossipSubscribe
message to all the processes in G (line 14). Upon receiving a GossipSubscribe message from

a process π (line 17), a correct process adds π to its own gossip sample (line 22), and sends

back the gossiped message if it has already received it (line 20).

Gossip When broadcasting the message (line 25), a correct designated sender σ signs the

message and sends it to every process in its gossip sample G (line 36). Upon receiving a

39

Chapter 4. Probabilistic Secure Broadcast

Algorithm 6 Erdös-Rényi Gossip
1: Implements:
2: Probabilistic broadcast
3:

4: Parameters:
5: G : expected gossip sample size
6:

7: Local variables:
8: G : gossip sample . Set of expected size G
9: del i ver ed : delivered message, initially ⊥

10:

11: upon Init:
12: G =Ω(Poisson[G]);
13: for all π ∈G do
14: Send (GossipSubscribe) to π
15: end for
16:

17: upon Receive (GossipSubscribe) from π:
18: if del i ver ed 6= ⊥ then
19: (messag e, si g natur e) = del i ver ed ;
20: Send (Gossip, messag e, si g natur e) to π
21: end if
22: G ←G ∪ {π};
23:

24: upon Broadcast(message): . only process σ
25: dispatch(messag e, si g n(messag e));
26:

27: upon Receive (Gossip, message, signature) from π:
28: if ver i f y(σ,messag e, si g natur e) then
29: dispatch(messag e, si g natur e);
30: end if
31:

32: procedure DISPATCH(message, signature)
33: if del i ver ed =⊥ then
34: del i ver ed ← (messag e, si g natur e);
35: for all π ∈G do
36: Send (Gossip, messag e, si g natur e) to π
37: end for
38: trigger Deliver(message)
39: end if
40: end procedure

40

4.3. Probabilistic broadcast

correctly signed message from σ (line 28) for the first time (this is enforced by updating the

value of del i ver ed , line 33), a correct process delivers it (line 38) and forwards it to every

process in its gossip sample (line 36).

4.3.3 Correctness

In this section, we provide the intuitions behind the correctness of Erdös-Rényi Gossip.

No duplication, integrity and validity

Erdös-Rényi Gossip always satisfies no duplication, integrity and validity:

• No duplication: A correct process maintains a del i ver ed variable that it checks and

updates before delivering a message. This prevents any correct process from delivering

more than one message.

• Integrity: Before broadcasting a message, the sender signs that message with its private

key. Before delivering a message m, a correct process verifies m’s signature. Under the

assumption that signatures cannot be forged, this prevents any correct process from

delivering a message that was not previously broadcast by the sender.

• Validity: Upon broadcasting a message, the sender also immediately delivers it. Since

this happens deterministically, and thus Erdös-Rényi Gossip satisfies 0-validity, inde-

pendently from the parameter G .

Totality

Erdös-Rényi Gossip satisfies εt -totality with εt upper-bounded by a function that decays

exponentially with G , and polynomially increases with f .

Indeed, the network of connections established among the correct processes is an undirected

Erdős–Rényi graph, and totality is satisfied if such graph is connected. This allows us to bound

the probability of totality not being satisfied, using a well-known result on the connectivity of

Erdős–Rényi graphs.

Sampling Upon initialization, a correct process randomly selects a sample of other processes

with which it will exchange messages.

Link reciprocation We start by noting that every link is eventually reciprocated by correct

processes, i.e., if a correct processπ is in the sample ofρ, thenρ will eventually be in the sample

of π (this is due to the fact that messages are always eventually delivered, see Assumption 4).

41

Chapter 4. Probabilistic Secure Broadcast

Correct connectedness We consider the sub-graph of connections only between correct

processes. This sub-graph is eventually undirected. If this sub-graph is connected, then

Erdös-Rényi Gossip satisfies totality. This is due to the fact that every message will even-

tually propagate through all the gossip links, reaching every correct process (again, due to

Assumption 4).

Erdős–Rényi graph Any two correct processes have an independent probability of being

connected. This is due to the fact that, upon initialization, the number of elements in a

correct process’ gossip sample is sampled from a Poisson distribution. Poisson distributions

quickly limit to binomial distributions for large systems, and selecting a binomially distributed

number of distinct objects from a set is equivalent to selecting each object with an independent

probability. This proves that the sub-graph of connections between correct processes is an

Erdős–Rényi graph.

Totality Erdős–Rényi graphs are known to display a connectivity phase transition [AO09]:

when the expected number of connections each node has exceeds the logarithm of the number

of nodes, the probability of the graph being connected steeply increases from 0 to 1 (in the

limit of infinitely large systems, this increase becomes a step function). If we choose the

algorithm parameter G sufficiently large (at least logarithmic in the number of processes),

the probability of the sub-graph of correct processes being connected and, consequently, of

Erdös-Rényi Gossip satisfying totality, is close to 1. Even for very large systems, already very

small values for G provide negligible probabilies of violating the connectedness property. With

increasing gossip sample size G , this probability diminishes exponentially.

4.4 Probabilistic consistent broadcast

In this section, we introduce the probabilistic consistent broadcast abstraction and discuss

its properties. We then present Echo Broadcast, an algorithm that implements probabilistic

consistent broadcast, and discuss its correctness. Again, the full formal analysis and correct-

ness proof in [GKM+18].

The probabilistic consistent broadcast abstraction allows a subset of the correct processes

to agree on a single message from a potentially Byzantine designated sender. Compared

to probabilistic broadcast, probabilistic consistent broadcast sacrifices totality in favor of

consistency. This means that, if the sender σ is malicious, it may happen that some, but not

all correct processes deliver the broadcast message. Instead, probabilistic consistent broad-

castguarantees that, even if the sender is Byzantine, no two correct processes deliver different

messages. For a correct sender, probabilistic consistent broadcast behaves as probabilistic

broadcast.

42

4.4. Probabilistic consistent broadcast

4.4.1 Definition

Let σ be the dedicated broadcasting process. The probabilistic consistent broadcast interface

exports the following events:

• Request: Broadcast(m): Broadcasts a message m to all processes. This is only used by σ.

• Indication: Deliver(m): Delivers a message m broadcast by process σ.

For any ε ∈ [0,1], we say that probabilistic consistent broadcast is ε-secure if:

1. No duplication: No correct process delivers more than one message.

2. Integrity: If σ is correct and a correct process delivers a message m, then m was previ-

ously broadcast by σ.

3. ε-Total validity: If σ is correct, and σ broadcasts a message m, every correct process

eventually delivers m with probability at least (1−ε).

4. ε-Consistency: Every correct process that delivers a message delivers the same message

with probability at least (1−ε).

4.4.2 Algorithm

Algorithm 7 Procedure sample

1: procedure SAMPLE(message, size)
2: ψ=;; .ψ is a multiset.
3: for si ze times do
4: ψ←ψ∪Ω(1);
5: end for
6: for all ρ ∈ψ do
7: Send (messag e) to ρ
8: end for
9: return ψ;

10: end procedure

The intuition behind the Ready Broadcast algorithm is that before delivering a message m,

a process p waits until a significant part of the system “promises” to not deliver a message

different from m. To obtain this promise in a scalable way, p takes a uniformly random sample

from all the processes in the system and only asks those to make this promise. A process

makes such a promise by sending an Echo message.

Algorithm 7 defines a S AMPLE procedure that we use both in the implementation of Echo
Broadcast and Ready Broadcast. Procedure S AMPLE (messag e, si ze) usesΩ to pick si ze

43

Chapter 4. Probabilistic Secure Broadcast

Algorithm 8 Echo Broadcast
1: Implements:
2: Probabilistic consistent broadcast
3:

4: Parameters:
5: E : echo sample size
6: Ê : delivery threshold
7:

8: Local variables:
9: E : echo sample (a multiset), initially ;

10: Ẽ : echo subscription set, initially ;
11: echo: echoed message, initially ⊥
12: r epl i es: received echoes, initially {⊥}E

13: del i ver ed : boolean, initially false
14:

15: Shared abstractions:
16: pb: instance of probabilistic broadcast
17:

18: upon Init:
19: E = SAMPLE(EchoSubscribe,E);
20:

21: upon Receive EchoSubscribe from π:
22: if echo 6= ⊥ then
23: (messag e, si g natur e) = echo;
24: Send (Echo, messag e, si g natur e) to π
25: end if
26: Ẽ ← Ẽ ∪ {π};
27:

28: upon Broadcast(message): . only process σ
29: trigger pb.Broadcast(Send, messag e, si g n(messag e));
30:

31: upon pb.Deliver (Send, messag e, si g natur e):
32: if ver i f y(σ,messag e, si g natur e) then
33: echo ← (messag e, si g natur e);
34: for all ρ ∈ Ẽ do
35: Send (Echo, messag e, si g natur e) to ρ
36: end for
37: end if
38:

39: upon Receive (Echo, message, signature) from π:
40: if π ∈ E and r epl i es[π] =⊥ and ver i f y(σ,messag e, si g natur e) then
41: r epl i es[π] ← (messag e, si g natur e);
42: end if
43:

44: upon echo 6= ⊥ and
∣∣{ρ ∈ E | r epl i es[ρ] = echo

}∣∣≥ Ê and del i ver ed = false do
45: del i ver ed ← true;
46: (messag e, si g natur e) = echo;
47: trigger Deliver(messag e);
48:
44

4.4. Probabilistic consistent broadcast

processes with replacement, and sends them messag e. S AMPLE returns a multiset with

selected processes.

Algorithm 8 describes Echo Broadcast, an implementation of probabilistic consistent broad-

cast. Echo Broadcast consistently distributes a single message across the system as follows:

• Initially, we use probabilistic broadcast to distribute potentially conflicting copies of the

broadcast message to every correct process.

• Upon delivering a message m from probabilistic broadcast, a correct process issues an

Echo message for m.

• Upon receiving enough Echoes for the message m it itself Echoed, a correct process

delivers m.

A correct process collects Echo messages from a randomly selected echo sample of size E , and

delivers the message it Echoed upon receiving Ê Echoes for it. We discuss the values of the

two parameters of Echo Broadcast in Section 4.4.3.

Sampling Upon initialization (line 18), a correct process randomly selects an echo sample E

of size E . Samples are selected with replacement by repeatedly calling Ω (Algorithm 7, line 4).

A correct process sends an EchoSubscribe message to all the processes in its echo sample

(Algorithm 7, line 7).

Publish-subscribe Unlike in Bracha’s deterministic algorithm, where a correct process

broadcasts its Echo messages to the whole system, here each process only listens for messages

coming from its echo sample (line 40).

A correct process maintains an echo subscription set Ẽ . Upon receiving an EchoSubscribe
message from a process π, a correct process adds π to Ẽ (line 26). If a correct process re-

ceives an EchoSubscribe message after publishing its Echo message, it also sends back the

previously published message (line 24).

A correct process only sends its Echo messages (line 35) to its echo subscription set.

Echo The designated sender σ initially broadcasts its message using probabilistic broadcast

(line 29). Upon pb.Delivery of a message m (correctly signed by σ) (line 31), a correct process

sends an Echo message for m to all the nodes in its echo subscription set (line 35). Note that

by the properties of probabilistic broadcast, each process only delivers one message from

probabilistic broadcast and thus only ever echoes a single message.

45

Chapter 4. Probabilistic Secure Broadcast

Delivery A correct process π that Echoed a message m delivers m (line 47) upon collecting

at least Ê Echo messages for m (line 44) from the processes in its echo sample. If a process has

been sampled multiple times by π, its echo message accordingly counts multiple times.

4.4.3 Correctness

In this section, we provide the intuitions behind the correctness of Echo Broadcast. For the

probabilistic properties of probabilistic consistent broadcast, correctness of Echo Broadcast
reduces to showing that the probability of failure can be bounded. The bound ε then deter-

mines the probabilistic consistent broadcast’s ε-security.

No duplication and integrity

Echo Broadcast always satisfies no duplication and integrity:

• No duplication: A correct process maintains a delivered variable that it checks and

updates before delivering a message. This prevents any correct process from delivering

more than one message.

• Integrity: Before broadcasting a message, the sender signs that message with its private

key. Before delivering a message m, a correct process verifies m’s signature. Under the

assumption that signatures cannot be forged, this prevents any correct process from

delivering a message that was not previously broadcast by the sender.

Total validity

We start by noting that in our algorithm a correct process will only deliver a message it

Echoed. Thus, if the totality of probabilistic broadcast is compromised, then the total validity

of probabilistic consistent broadcast is compromised as well. However, by the validity and

totality property of probabilistic broadcast, every correct process eventually pb.Delivers the

only message m broadcast by the correct senderσ (σ is correct by the premise of total validity).

By the algorithm, every correct process eventually sends Echo messages for m to its echo

subscription set Ẽ . Therefore, a correct process will deliver m if no more than E − Ê elements

of its sample are Byzantine. The probability of a correct process delivering m is thus equal

to the probability of that process randomly picking at least Ê correct processes for its echo

sample. Under the assumption that samples are selected independently (Assumption 6), we

can compute a lower bound on the probability of every correct process delivering m, i.e., Echo
Broadcast satisfying total validity.

46

4.5. Probabilistic secure broadcast

Consistency

We only provide a high level intuition of the analysis of probabilistic consistent broadcast. The

full analysis is part of separate work [GKM+18].

By the definition of consistency, the goal of the adversary is to have at least two correct pro-

cesses deliver a different message each. Under the assumptions stated in Section 4.2, one

can make (formally provable) claims about the optimal strategy of the Byzantine adversary.

In particular, since the correct processes’ echo samples are uniformly random and secret

(Assumption 6) and the adversary cannot observe which correct processes communicate (As-

sumption 5), it is indistinguishable for the adversary which correct process is which. Therefore,

when the adversary chooses its next action, it has equal probability of success regardless of

which correct process that action targets.

It can also be shown that the optimal adversarial strategy first makes at least one correct

process deliver message m by making randomly picked correct processes pb.Deliver m until

some of them delivers m. Then, it makes all other correct processes pb.Deliver m′ 6= m, hoping

that this will be sufficient for some of them to deliver m′. Provably, no other strategy achieves

a higher probability of the adversary’s success.

Having constrained the optimal adversarial strategy this way, it is possible to derive an up-

per bound on the probability of compromising the consistency of probabilistic consistent

broadcast, as a function of the system size, the fraction of processes assumed to be Byzantine,

and the algorithm parameters (gossip sample size, echo sample size, etc.). Moreover, and

particularly importantly, in order to obtain a constantly low probability of compromising

consistency, the sample sizes (and thus the computation and communication overhead of a

process) only need to be logarithmic in the system size.

4.5 Probabilistic secure broadcast

In this section, we finally introduce the probabilistic secure broadcast abstraction and describe

its properties. We then present Ready Broadcast, an algorithm that implements probabilistic

secure broadcast, and discuss its correctness.

The probabilistic secure broadcast abstraction allows the entire set of correct processes to

agree on a single message from a potentially Byzantine designated sender. Probabilistic secure

broadcast is a strictly stronger abstraction than probabilistic consistent broadcast. While in

the case of a Byzantine sender, probabilistic consistent broadcast only guarantees that every

correct process that delivers a message delivers the same message (consistency), probabilistic

secure broadcast also guarantees that either all correct processes deliver this message or none

of them does (totality).

47

Chapter 4. Probabilistic Secure Broadcast

4.5.1 Definition

Let σ be the dedicated broadcasting process. The probabilistic secure broadcast interface

exports the following events:

• Request: Broadcast(m): Broadcasts a message m to all processes. This is only used by σ.

• Indication: Deliver(m): Delivers a message m broadcast by process σ.

For any ε ∈ [0,1], we say that probabilistic secure broadcast is ε-secure if:

1. No duplication: No correct process delivers more than one message.

2. Integrity: If a correct process delivers a message m, and σ is correct, then m was

previously broadcast by σ.

3. ε-Validity: If σ is correct and σ broadcasts a message m, then σ eventually delivers m

with probability at least (1−ε).

4. ε-Totality: If a correct process delivers a message, then every correct process eventually

delivers a message with probabiity at least (1−ε).

5. ε-Consistency: Every correct process that delivers a message delivers the same message

with probability at least (1−ε).

4.5.2 Algorithm

We design Ready Broadcast as another layer on top of probabilistic consistent broadcast.

The main challenge is to guarantee totality on top of the properties of probabilistic consistent

broadcast. The principal idea is that, similarly to probabilistic broadcast, a correct process

does not deliver a message m received through the underlying layer immediately, but instead

waits for some form of (probabilistic) confirmation. In probabilistic consistent broadcast,

this confirmation says that (with high probability) no other correct process will ever deliver

a message different from m. In probabilistic secure broadcast, a correct process, before

delivering m, needs to wait for the confirmation that (with high probability) all other correct

processes will eventually deliver m.

In order to obtain this confirmation, we use the notion of a process being ready to deliver m.

We employ a mechanism similar to the spreading of a contagious disease that makes sure

that if a critical fraction of the system is ready for m, all correct processes will eventually be

ready for m. A process delivers m when it discovers that this critical fraction has been reached.

To discover in a scalable way whether this critical fraction has been reached, every correct

process takes a representative sample of the whole system and evaluates whether the critical

48

4.5. Probabilistic secure broadcast

Algorithm 9 Ready Broadcast
1: Implements:
2: ProbabilisticSecureBroadcast, instance psb
3:

4: Parameters:
5: R: ready sample size R̂: contagion threshold
6: D : delivery sample size D̂ : delivery threshold
7:

8: Local variables:
9: R̃: ready subscription set, initially ;

10: R: ready sample (a multiset), initially ;
11: D: delivery sample (a multiset), initially ;
12: r ead y : ready set, initially ;
13: r epl i es.r ead y : ready messages from ready sample, initially {;}R

14: r epl i es.del i ver y : ready messages from delivery sample, initially {;}D

15: del i ver ed : boolean, initially false
16:

17: Shared abstractions:
18: pcb: instance of probabilistic consistent broadcast
19:

20: upon Init:
21: R = SAMPLE(ReadySubscribe,R);
22: D = SAMPLE(ReadySubscribe,D);
23:

24: upon Receive (ReadySubscribe) from π:
25: for all (messag e, si g natur e) ∈ r ead y do
26: Send (Ready, messag e, si g natur e) to π
27: end for
28: R̃ ← R̃∪ {π};
29:

30: upon Broadcast(message) . only process σ
31: trigger pcb.Broadcast(Send, messag e, si g n(messag e));
32:

33: upon pcb.Deliver (Send, messag e, si g natur e)::
34: if ver i f y(σ,messag e, si g natur e) then
35: r ead y ← r ead y ∪{

(messag e, si g natur e)
}
;

36: for all ρ ∈ R̃ do
37: Send (Ready, messag e, si g natur e) to ρ
38: end for
39: end if
40:

49

Chapter 4. Probabilistic Secure Broadcast

41: upon Receive (Ready, messag e, si g natur e) from π:
42: if ver i f y(σ,messag e, si g natur e) then
43: r epl y = (messag e, si g natur e);
44: if π ∈R then
45: r epl i es.r ead y[π] ← r epl i es.r ead y[π]∪{

r epl y
}
;

46: end if
47: if π ∈D then
48: r epl i es.del i ver y[π] ← r epl i es.del i ver y[π]∪{

r epl y
}

49: end if
50: end if
51:

52: upon exists messag e such that
|{ρ ∈R | (messag e, si g natur e) ∈ r epl i es.r ead y[ρ]}| ≥ R̂ do

53: r ead y ← r ead y ∪{
(messag e, si g natur e)

}
;

54: for all ρ ∈ R̃ do
55: Send (Ready, messag e, si g natur e) to ρ
56: end for
57:

58: upon exists messag e such that
|{ρ ∈D | (messag e, si g natur e) ∈ r epl i es.del i ver y[ρ]}| ≥ D̂ and del i ver ed = false do

59: del i ver ed ← true;
60: (messag e, si g natur e) = echo;
61: trigger Deliver(messag e)
62:

50

4.5. Probabilistic secure broadcast

fraction of the sample (instead of the whole system) is ready to deliver m. When this occurs,

the process can itself deliver m.

Algorithm 9 lists the complete implementation of Ready Broadcast. For a correct process π

and a message m broadcast by σ, Ready Broadcast securely distributes m across the system

as follows:

• Initially, we use probabilistic consistent broadcast to consistently distribute m to a sub-

set of the correct processes. Note that ifσ is correct, then by total validity of probabilistic

consistent broadcast all correct processes receive m. However, for a faulty σ, this subset

of correct processes might be a proper subset ofΠ.

• A processes π becomes ready for m and consequently issues a Ready message for m

when:

– π receives m directly through probabilistic consistent broadcast, or

– π collects enough (R̂) Ready messages for m from its ready sample.

• π delivers m if m is the first message for which π collected enough (D̂) Ready messages

from its delivery sample.

A correct process collects Ready messages from two randomly selected samples, the ready

sample of size R, and the delivery sample of size D. It issues a Ready message for m upon

collecting R̂ Ready messages for m from its ready sample, and it delivers m upon collecting D̂

Ready messages for m from its delivery sample. The values R, R̂,D,D̂ are parameters of the

algorithm that determine the implementation’s ε-security. In practice, R and D , the respective

ready and delivery sample sizes, determine how many other processes a correct process has

to communicate with. It can be shown (see [GKM+18]) that, for any required ε-security, these

parameters only need to grow logarithmically with the size of the system.

The execution of the protocol procedes in the following phases:

Sampling Upon initialization (line 20), a correct process randomly selects a ready sample

R of size R, and a delivery sample D of size D. Samples are selected with replacement by

repeatedly callingΩ (Algorithm 7, line 4).

Publish-subscribe Like Echo Broadcast, Ready Broadcast uses publish-subscribe to re-

duce its communication complexity. This is achieved by having each correct process send

Readymessages only to its ready subscription set (lines 36 and 54), and accept Readymessages

only from its ready and delivery samples (lines 44 and 47).

51

Chapter 4. Probabilistic Secure Broadcast

Consistent broadcast The designated sender σ initially broadcasts its message using proba-

bilistic consistent broadcast (line 31). Upon pcb.Delivery of a message m (correctly signed by

σ) (line 33), a correct process sends a Ready message for m (line 37) to all the processes in its

ready subscription set.

Contagion Upon collectiong R̂ Ready messages for a message m (line 52), a correct process

sends a Ready message for m (line 55) to all the nodes in its ready subscription set. This

behavior, mimics the spreading of a contagious disease in a population. A process that

becomes ready for m (“infected”), becomes “contagious” itself and may potentially “infect”

other processes, i.e., make them ready for m as well.

Delivery Upon collecting D̂ Ready messages for a message m for the first time, (line 58), a

correct process delivers m (line 61).

4.5.3 Correctness

In this section, we provide an intuitive correctness argument for Ready Broadcast. For the

probabilistic properties of probabilistic secure broadcast, correctness of Ready Broadcast re-

duces to showing that the probability of failure can be bounded. The bound ε then determines

the probabilistic secure broadcast’s ε-security.

No duplication and integrity

Ready Broadcast always satisfies no duplication and integrity:

• No duplication: A correct process maintains a delivered variable that it checks and

updates before delivering a message. This prevents any correct process from delivering

more than one message.

• Integrity: Before broadcasting a message, the sender signs that message with its private

key. Before delivering a message m, a correct process verifies m’s signature. Under the

assumption that signatures cannot be forged, this prevents any correct process from

delivering a message that was not previously broadcast by the sender.

Validity

We obtain an upper bound on the probability of compromising validity by assuming that,

if the total validity of pcb is compromised, then the validity of psb is compromised as well.

This probability comes directly by the ε-security of probabilistic consistent broadcast. When

pcb satisfies total validity and the sender σ is correct (assumed by the premise of the validity

property), then every correct process issues a Ready message for the same message m.

52

4.5. Probabilistic secure broadcast

If σ has at least D̂ correct processes in its delivery sample, it delivers m. Therefore, the

probability of compromising validity is bound by the probability of σ having more than D − D̂

Byzantine processes in its delivery sample. We compute the probability of this happening by

noting that, since each delivery sample is independently picked with replacement, the number

of Byzantine processes in any delivery sample is independently, binomially distributed.

Consistency

The probability of compromising consistency can be upper-bounded by assuming that, if the

consistency of pcb is compromised, then the consistency of psb is compromised as well.

When pcb does satisfy consistency, at most one message m∗ is pcb.Delivered by any correct

process. It is thus easy for the adversary to make some correct process deliver m∗. To achieve

this, it is sufficient that some malicious nodes follow the protocol. We thus assume from now

on that the adversary can always make any correct node deliver m∗.

Therefore, consistency is compromised if and only if at least one correct process delivers a

message m 6= m∗, given that no correct process pcb.Delivers m (we discuss the case where

pcb does satisfy consistency).

We start by noting that, since a correct process can be ready for an arbitrary number of

messages, the propagation of “readiness” for a message m is not affected by the propagation

of another message m′. More precisely, let π be a correct process. If enough processes in π’s

delivery sample are eventually ready both for m and m′, then π can deliver m or m′. Whether

π delivers m or m′ is determined only by the network scheduling of the system (which can be

arbitrary, see Assumption 4).

The probability of m being delivered by any correct process, given that no correct process

pcb.Delivers m, is maximized when every Byzantine process issues a Ready message for m.

Note how a Byzantine process issuing a Ready message for m behaves identically to a correct

process that pcb.Delivered m. One can use a contagion model to compute the probability

of any correct process delivering m. We model the system as a population where π being in

ρ’s ready sample means that π can potentially infect ρ. All Byzantine processes are initially

infected by (i.e., ready for) m.

Given the total number of (correct and malicious) processes that are ready for m at the end of

such a contagion process, one can compute the probability that at least one correct process

can deliver m. Finally, we note that:

• If a correct process can deliver m, then it can deliver any other message m′ 6= m∗ as well.

Since m∗ can already be delivered by every correct process, however, this does not affect

the probability of consistency being compromised.

• If a correct process cannot deliver m, then it cannot deliver any other message m′ 6= m∗.

53

Chapter 4. Probabilistic Secure Broadcast

This is due to the fact that the ready and delivery samples of each correct process are

unchanged when processing m and m′.

Totality

We compute an upper bound on the probability of compromising totality by assuming that, if

the consistency of pcb is compromised, then the totality of psb is compromised as well. When

pcb satisfies consistency, at most one message m∗ is pcb.Delivered by any correct process.

We further bound the probability of compromising totality by assuming that the Byzantine

adversary can arbitrarily cause any correct process to pcb.Deliver m∗. In our algorithm,

whenever a correct process π becomes ready for m∗ as a result of having pcb.Delivered m∗,

zero or more additional correct processes will also become ready for m∗ as a result of having

collected enough Ready messages for m∗. This happens either “directly” for processes which

picked π in their ready sample, or “indirectly” by other processes infected from π issuing their

own ready messages.

By definition, totality is not compromised by m∗ if:

• no correct process delivers m∗ or

• all correct processes deliver m∗.

Consequently, whenever the adversary makes a correct process pcb.Deliver m∗ (potentially

causing other correct processes to become ready for m∗ as well):

• If no correct process delivered m∗, the probability of compromising totality is non-null

only if the Byzantine adversary causes at least one more correct process to pcb.Deliver

m∗.

• If all correct processes delivered m∗, then totality is not compromised by m∗.

The idea behind guaranteeing totality is to use the positive feedback effect in the contagion

process. There is a critical threshold for the number of correct processes, such that:

• If fewer correct processes are ready for m∗, it is very unlikely that many other correct

processes become ready through infection.

• If more correct processes are ready for m∗, it is very likely that all other processes

become ready through infection.

If this threshold is low enough to make it unlikely for any correct process to deliver m∗, totality

is unlikely to be compromised. If the adversary makes too few processes pcb.Deliver m∗ (and

54

4.5. Probabilistic secure broadcast

thus be ready for m∗), no correct process delivers m∗. Once the adversary makes enough

correct processes ready for m∗ to have a non-negligible chance of m∗ being delivered by at

least one correct process, with high probability it will have already triggered an avalanche of

Ready messages making all correct processes deliver m∗.

Precise models and formal proofs of the intuitions stated above, as well as the quantifications

of important probability values and their relation to the algorithm parameters are the subject

of separate work that is not part of this thesis [GKM+18].

55

5 Atum: Scalable Group Communica-
tion Using Volatile Groups

This chapter presents Atum, a Byzantine fault tolerant group communication middleware

for a large, dynamic, and hostile environment. At the heart of Atum lies the novel concept of

volatile groups: small, dynamic groups of nodes, each executing a state machine replication

protocol, organized in a flexible overlay. Using volatile groups, Atum scatters faulty nodes

evenly among groups, and then masks each individual fault inside its group. To broadcast

messages among volatile groups, Atum runs a gossip protocol across the overlay.

Atum can serve as a highly scalable communication layer for an asset transfer implementation

that is also designed to support high node churn. Additionally, in accordance with our result

presented in Section 2.4, since the members of each volatile group can solve consensus,

Atum can be used to implement more powerful abstractions as well. The applicability of

Atum is, however, more general than just a building block of an asset transfer system. In this

chapter, we discuss it as a system in its own right, demonstrating its applicability using various

applications.

We report on our synchronous and asynchronous (eventually synchronous) implementations

of Atum, as well as on three representative applications that we build on top of it: A pub-

lish/subscribe platform, a file sharing service, and a data streaming system. We show that

(a) Atum can grow at an exponential rate beyond 1000 nodes and disseminate messages in

polylogarithmic time (conveying good scalability); (b) it smoothly copes with 18% of nodes

churning every minute; and (c) it is impervious to arbitrary faults, suffering no performance

decay despite 5.8% Byzantine nodes in a system of 850 nodes.

5.1 Introduction

Group communication services (GCSs) are a central theme in systems research [Bir85, CDK+03,

CKV01, KT91, LCM+08]. These services provide the abstraction of a node group, and typically

export operations for joining or leaving the group, as well as broadcasting messages inside

this group. For a node in the group, the GCS acts as a middleware between the application and

57

Chapter 5. Atum: Scalable Group Communication Using Volatile Groups

the underlying communication stack. The application simply sends and receives messages,

while the network topology, low-level communication protocols and the OS networking stack

are abstracted away by the GCS.

A wide range of applications can be built using this abstraction, spanning from infrastruc-

ture services in datacenters [ACMP11, GvR13], to streaming and publish/subscribe engines

in cooperative networks [CDK+03, CDKR02, KRAV03, LCM+08], or intrusion-tolerant over-

lays [CCC+05, JAVR06].

To cope with the needs of modern applications, GCSs need to be scalable, robust, and flex-

ible. Scalability is a primary concern because many applications today involve thousands

of nodes [OGP03] and serve millions of users [ACMP11, VGLN07]. The main indicator of

scalability in a GCS is the cost of its operations, which should ideally be sublinear in system

size.

Given the scale of these systems, faults inevitably occur on a daily basis. Crashed servers and

buggy software with potentially arbitrary behavior are common in practice, both in cooperative

systems (e.g., peer-to-peer) and datacenter services [amab, Dea09, NDO11, OGP03]. For

instance, according to Barroso et al. [BCH13], in a 2000-node system, 10 nodes fail each day.

Clearly, GCSs have to be robust by design.

GCSs also need to be flexible, tolerating a considerable fraction of nodes that join and leave

the system, i.e., churn. Peer-to-peer services are naturally flexible [VGLN07]. For datacenter

services, churn emerges as a consequence of power saving techniques, software updates,

service migration, or failures [BCH13]; cross-datacenter deployment of services tends to

further exacerbate the churn issue.

There are well-known techniques to address individually each of robustness, scalability, and

flexibility. To obtain a robust design, the classic approach is state machine replication [Lam78,

Sch90]: Several replicas of the service work in parallel, agreeing on operations they need to

perform, using some consensus protocol [CL02]. State machine replication (SMR) is powerful

enough to cope even with arbitrary, i.e., Byzantine faults [AMQ13, CL02, KAD+07].

To provide a scalable design, clustering is the common approach. The nodes of the system

are partitioned in multiple groups, each group working independently; the system can grow

by simply adding more groups [BPR14, GBKA11]. To achieve flexibility and handle churn,

join and leave operations should be lightweight and entail small, localized changes to the

system [LCM+08].

A standard approach to attain flexibility in a GCS is through gossip protocols [DGH+88]. With

gossip, each participant periodically exchanges messages with a small, randomized subset of

nodes. Gossip-based schemes disseminate messages efficiently, in logarithmic time and with

logarithmic cost [DGH+88].

It is appealing to combine clustering with SMR and gossip to tackle all of the issues above. At

58

5.1. Introduction

first glance, it seems natural to organize a very large system as a set of reliable groups and

have them communicate through gossip. Unfortunately, this combination poses a major

challenge due to a conflict between robustness and flexibility. Churn induces changes to

the system structure and calls for groups that are highly dynamic in nature, i.e., fluctuate in

number and size. In contrast, (Byzantine-resilient) SMR has opposing requirements, imposing

strict constraints on every group, to keep groups robust and efficient. In particular, to ensure

robustness, SMR requires a bounded fraction of faults in every group [BT85b, DS83]; to achieve

efficiency, it is important to keep groups small in size, as SMR scales poorly due to quadratic

communication complexity [CML+06].

In this chapter, we report on our experiences from designing and building Atum, a novel group

communication middleware that seeks to overcome this challenge. To mitigate the above

conflict, we introduce the notion of volatile groups (vgroups). These are clusters of nodes that

are small (logarithmic in system size), dynamic (changing their composition frequently due

to churn), yet robust (providing the abstraction of a highly available entity). Every vgroup

executes a SMR protocol, confining each faulty node to that vgroup. Among vgroups, we use

two additional protocols: random walk shuffling and logarithmic grouping.

Random walk shuffling ensures that faulty nodes, if any, are dispersed evenly among vgroups.

Whenever a vgroup changes, e.g., due to nodes joining or leaving, Atum uses random walks to

refresh the composition of this vgroup to contain a fresh, uniform sample of nodes from the

whole system. This technique is particularly important for cases when faults accumulate over

time in the same vgroup.1 We thus refresh a vgroup after any node joins or leaves it.

Our logarithmic grouping protocol guarantees in addition that every vgroup has a size that is

logarithmic in the system size. Whenever a vgroup becomes too large or too small, Atum splits

or merges groups, to keep their size logarithmic.

To efficiently disseminate messages among vgroups, we use a gossip protocol. The complexity

of gossip is known to be logarithmic in system size [DGH+88]. In Atum, we address each

gossip to a vgroup of logarithmic size, resulting in an overall polylogarithmic complexity.

We implement two versions of Atum, one using a synchronous SMR algorithm, and one

based on an asynchronous algorithm.2 To illustrate the capabilities of Atum, we build three

applications: ASub, a publish/subscribe service, AShare, a file sharing platform, and AStream,

a data streaming system. Given these two implementations and the three applications, we

report on their deployment over a variety of configurations in a single datacenter, as well as

across multiple datacenters around the globe. We show that Atum: (a) supports an exponential

growth rate, scaling well beyond 1000 nodes, and smoothly copes with 18% of nodes churning

every minute; (b) is robust against arbitrary behavior, coping with 5.8% Byzantine nodes in

1This may happen due to bugs [NDO11, OGP03, WECK07] or join-leave attacks [AS07]; both of these situations
reflect the concentration of faults in the same group.

2Strictly speaking, an asynchronous SMR implementation is impossible [FLP85]. In this context, we call a SMR
implementation asynchronous if it requires synchrony only for liveness (eventual synchrony), like PBFT [CL02].

59

Chapter 5. Atum: Scalable Group Communication Using Volatile Groups

a 850-node system; (c) disseminates messages in polylogarithmic time, incurring a small

overhead compared to classical gossip.

It is important to note that the goal of our work is to explore the feasibility of a general-purpose

GCS – in the same vein as Isis [Bir85], Amoeba [KT91], Transis [DM96], or Horus [VRBM96], but

for large, dynamic, and hostile networks. Our experiences with Atum highlight the numerous

complications that arise in a GCS designed for such an environment (Section 5.7). The

protocols underlying the vgroup abstraction – SMR; group resizing, splitting and merging;

distributed random walks – are challenging by themselves. Combining them engenders further

complexity and trade-offs. We believe, however, that the vgroup abstraction is an appealing

way to go, and we hope our experiences pave the way for new classes of GCSs, each specialized

for their own needs. Note also that we do not argue that the vgroup abstraction (and its

underlying protocols) is a silver bullet, necessary and sufficient for every part of an application

that requires multicasting in a challenging environment. For instance, in our streaming

application, we use Atum to reliably deliver small authentication metadata; to disseminate

the actual stream data at high throughput, we use a separate multicast protocol.

To summarize, the main contributions presented in this chapter are the following:

• We introduce the notion of vgroups – small, dynamic, and robust clusters of nodes. The

companion random walk shuffling and logarithmic grouping techniques ensure that

every vgroup executes SMR efficiently, despite arbitrary faults and churn.

• Using a gossip protocol among vgroups, we design Atum, a GCS for large, dynamic, and

hostile environments.

• We report on the implementation of two versions of Atum and three applications on top

of it.

The remainder of this chapter is structured as follows. In Section 5.2, we describe the as-

sumptions and guarantees of Atum. Section 5.3 and Section 5.4 present Atum’s design and

the three applications we built on top of it, respectively. We move on to discussing some

practical aspects of our synchronous and asynchronous Atum implementations in Section 5.5.

Section 5.6 reports on our extensive experimental evaluation, using the above-mentioned

three applications. We discuss our experiences and lessons learned in Section 5.7. Finally, we

conclude in Section 5.8.

5.2 Assumptions and Guarantees

Atum addresses the problem of group communication in a large network. Despite arbitrary

faults or churn, Atum guarantees the following properties for correct nodes.

• Liveness: If a node requests to join the system, then this node eventually starts to deliver

60

5.3. Design

the messages being broadcast in the system; this captures the liveness of both join and

broadcast operations.

• Safety: If some node delivers a message m from node v , then v previously broadcast m.

Atum uses SMR as a building block (inside every vgroup) and it inherits all assumptions made

by the underlying SMR protocol. This also applies to assumptions related to reconfiguring

the replicated state machine. We assume that a bounded number of nodes are subject to

arbitrary failures such as bugs or crashes, so we consider SMR protocols with Byzantine fault

tolerance guarantees. We also assume that these failures are uncorrelated. Depending on the

target environment, we can use either an asynchronous protocol [CL02], or a synchronous

one [DS83]. Atum itself, however, has a general design and is oblivious to the specifics of this

protocol. As we will discuss later, we experiment with both versions of this protocol.

We model the system as a large, decentralized network, where a significant fraction of nodes

can join and leave (i.e., churn). For liveness, we only expect the network to eventually deliver

messages; this is a valid assumption even in highly unstable networks such as the Internet.

Safety relies on the correctness of the underlying SMR protocol.

We use cryptography (public-key signatures and MACs) to authenticate messages, and assume

that the adversary is computationally bounded and cannot subvert these techniques. We

do not consider Sybil attacks in our model; these can be handled using well-known tech-

niques, such as admission control [Dou02] or social connections [LLK10]. An alternative,

decentralized solution to deter Sybil attacks is to rely on cryptographic proofs of work, as in

Bitcoin [Nak08]. To initialize the process of joining the system, a node also requires one other

node that it trusts and that is already member of the system.

Atum tolerates a limited number of nodes isolated by a network partition, in both the syn-

chronous and asynchronous case. In practice, we treat isolated nodes as faulty, so the bound

on the number of faults also includes partitioned nodes. Aside from the SMR algorithm, a

severe network outage might break liveness, but not safety.

5.3 Design

Atum is a group communication middleware positioned between a distributed application

and the underlying network stack. It has a layered design comprising four layers, as depicted

in Figure 5.1. At the bottom, the node layer handles inter-node communication. We use

standard techniques here – cryptographic algorithms to secure communication, and a network

transport protocol for reliable inter-node message transmission. Since these are orthogonal to

our design, we do not dwell on their details.

At the group layer (Section 5.3.1), Atum partitions nodes into vgroups of logarithmic size. We

ensure the robustness of each vgroup using a state machine replication protocol with BFT

61

Chapter 5. Atum: Scalable Group Communication Using Volatile Groups

APIJoin, Leave,
Bootstrap

Broadcast

Random Walk
Shuffling

Overlay
layer

BFT
State Machine

Replication

Group
layer

Crypto + Network protocols
Node
layer

Application

Atum

Group Messages

Logarithmic
Grouping

H-graph

Gossip

Figure 5.1 – Atum’s layered architecture.

C

B A

D E

F

Volatile group (vgroup)

Byzantine node
Node

Hamiltonian cycle #2 edge
Hamiltonian cycle #1 edge

BFT

Goss
ip

Gossip
State Machine

Replication

Figure 5.2 – An instance of Atum: Vgroups interconnected by an H-graph overlay with two
cycles.

62

5.3. Design

guarantees. For inter-vgroup communication we use special messages, called group messages,

that ensure reliable communication for pairs of vgroups.

The overlay layer (Section 5.3.2) connects vgroups and enables them to communicate. The

network formed by vgroups has the structure of an H-graph [LS03], as Figure 5.2 depicts. At

this layer, the protocols are typically randomized (based on gossip and random walks), and

rely on group messages.

At the topmost layer sits the Atum API. For membership management, we provide bootstrap,

join, and leave operations; for data dissemination, we expose a broadcast operation. In

the remaining parts of this section we describe the interplay between these layers and their

corresponding techniques, including the API operations.

5.3.1 Group layer

The purpose of the group layer is to mask failures of individual nodes and provide the abstrac-

tion of robust vgroups. We partition nodes in vgroups of size g , and apply a BFT SMR protocol

in every vgroup. We design Atum to be agnostic to this underlying protocol, so our system can

support either a synchronous version, which tolerates at most f = b(g −1)/2c faults in every

vgroup [DS83], or an asynchronous version, which has a lower fault-tolerance at f = b(g −1)/3c
faults per vgroup [CL02]. We say that a vgroup is robust if the number of faults in that vgroup

does not exceed f (for any configuration of the vgroup).

Assuming each node in a vgroup has the same constant probability of being faulty (we will

discuss this assumption closely in Section 5.3.2), the size g of a vgroup is critical for ensuring

its robustness. The more nodes a vgroup contains, the higher the probability of being robust.

To get the intuition, consider a synchronous system with 1 failure out of every 20 nodes, i.e.,

with failure probability of 0.05. A vgroup with g = 4 nodes tolerates f = b(4−1)/2c = 1 faults

and fails with probability Pr [X >= 2] = 0.014; the random variable X denotes the number

of failures and follows the binomial distribution X ∼ B(4,0.05). But a 20-node vgroup, with

f = 9, will fail with Pr [X >= 10] = 1.134 ·10−8. Thus, larger vgroups are more desirable from a

robustness perspective. On the other hand, large vgroups entail a bigger overhead of the BFT

protocol, penalizing performance [CML+06]. Efficiency thus requires a smaller g .

At the group layer, there is thus a clear trade-off between robustness (larger g) and performance

(smaller g). Whatever vgroup size we pick, the probability of all vgroups being robust decreases

as the number of vgroups in the system grows. To understand the trade-off, let us denote the

expected system size by n, and the number of vgroups by n/g .3 Consider a growing system. At

one extreme, if vgroup size g is constant, we promote efficiency at the cost of robustness; as the

system grows and accumulates vgroups, the probability of all vgroups being robust diminishes.

At the other extreme, if the number of vgroups n/g is constant, we favor robustness to the

3The expected system size n need not be exact, an estimation suffices. If n is conservative (too large), then the
system trades efficiency for better robustness; and vice versa if n is too small.

63

Chapter 5. Atum: Scalable Group Communication Using Volatile Groups

Hamiltonian cycle edge

Inter-node
messages

Group
message

Figure 5.3 – Two vgroups communicate (e.g., gossiping) through a group message, which
consists of multiple inter-node messages.

detriment of efficiency: Robustness improves as n grows, but the BFT overhead may become

impractical. We argue that a middle-ground between these two extremes is the best option.

Logarithmic grouping. We favor both efficiency and robustness in a controlled manner by

making g and n/g grow slowly, sublinearly in system size. We do so by setting g = k· log(N),

i.e., vgroups have their size logarithmic in the system size; it has previously been shown that

this is a good efficiency/robustness trade-off [AS09, GHK13, Sch05]. The system parameter

k controls the above-mentioned trade-off. With bigger k, robustness increases at the cost of

performance, independently of system size. In practice, we believe k = 4 is a good trade-off:

e.g., in a system with 6% simultaneous arbitrary faults, there is a probability of 0.999 of all

vgroups being robust.

In a dynamic environment, vgroups do not have a fixed size g , but their size fluctuates due to

churn. We introduce two system parameters, gmin and gmax, defined by a system administrator

at startup; these define the minimum and maximum vgroup size, respectively. If a vgroup

grows beyond gmax, then we split that vgroup in two smaller ones. When a vgroup shrinks

below gmin nodes, we merge it with another vgroup. Parameters gmin and gmax depend on g =
k· log(N).4

Group messages. At the group layer, we can view Atum as consisting of a host of robust

vgroups. To achieve coordination among vgroups and implement data dissemination, we

introduce group messages as a simple communication technique for pairs of vgroups. A group

message from vgroup A to vgroup B is a message that all correct nodes in A send to all nodes

in B . A node d in B accepts such a message iff d receives this message from the majority of

nodes in A, which guarantees correctness of the group message.

Group messages are a central building block of Atum. Two vgroups can exchange group mes-

sages only if they know each other’s identities, i.e., nodes in vgroup A know the composition

of vgroup B and vice versa. We illustrate a group message in Figure 5.3.

4The sole purpose of g and k is to better understand Atum’s robustness. It is only gmin and gmax that are used
as configuration parameters in practice.

64

5.3. Design

5.3.2 Overlay layer

At this layer, Atum maintains an overlay network on top of vgroups that enables the use of

group messages – such that vgroups can communicate through gossip. The overlay layer also

manages the composition of every vgroup using random walk shuffling. At this layer, each

pair of connected vgroups informs each other of any composition change.

The overlay has the form of an H-graph [LS03], in which vgroups correspond to vertices and

vgroup connections to edges (see Figure 5.2). An H-graphis a multigraph composed of a

constant number of random Hamiltonian cycles. Each vertex thus has two random neighbors

for each cycle. This structure is sparse (constant degree), well connected, and has a logarithmic

diameter with high probability. Thus, we can apply gossip efficiently on top of this overlay,

because messages can permeate rapidly through the whole network. The sparsity of the overlay

allows Atum to scale, since every vgroup only has to keep track of a limited (constant) number

of neighboring vgroups. A further reason for using this overlay is its decentralized random

structure, which is well suited for efficient vgroup sampling using random walks [LS03].

Gossip. We use gossip along the edges of the H-graph, so any two neighboring vgroups can

gossip using group messages. We use this technique to disseminate application messages

whenever a node invokes a broadcast operation. To transform gossip’s probabilistic delivery

guarantees into deterministic ones, we have each vgroup gossip at least with neighboring

vgroups on a specific cycle of the H-graph.

Random walk shuffling. Like gossip, we also run this protocol along the edges of the overlay.

We use random walk shuffling to handle churn, i.e., join and leave operations. Recall that

at the group layer we assume that each node has the same constant probability of being

faulty (Section 5.3.1). Random walk shuffling guarantees this assumption by assigning joining

nodes to vgroups selected uniformly at random from the whole system. As the name of this

technique suggests, we use random walks to sample vgroups.

A random walk is an iterative process, where a message is repeatedly relayed across the overlay

network. The length of the walks is a system parameter that we denote by rwl. At each step of

the walk, a vgroup sends a group message to another vgroup using a random incident link of

the overlay. After rwl steps, the walk stops at some random vgroup from the network – this

is the vgroup which the random walk selected. Multiple parameters impact the uniformity

of vgroup selection: rwl, n/g (i.e, the number of vgroups in the system), and the density of

the network (given by hc, the number of H-graph cycles). Intuitively, for uniform selection, a

small and dense system needs shorter random walks than a larger, sparser system. In Table 5.1,

we summarize the important parameters of Atum.

In order to find proper combinations of Atum parameters (to obtain uniform random vgroup

selection), we carry out a simulation. The aim is to derive a guideline that shows the relations

between these parameters, so we can properly configure Atum to provide uniform sampling.

65

Chapter 5. Atum: Scalable Group Communication Using Volatile Groups

Param. Description Typical values
hc Number of H-graph cycles. 2, . . . ,12
rwl Length of random walks. 4, . . . ,15
gmax Maximum vgroup size. 8,14,20, . . .
gmin Minimum vgroup size. 0.5 · gmax
k Robustness parameter 3, . . . ,7

Table 5.1 – Atum System parameters.

 5

 7

 9

 11

 13

 15

 2 4 6 8 10 12

R
a

n
d

o
m

 w
a

lk
 l
e

n
g

th
(r

w
l)

Number of H-graph cycles (hc)

of vgroups:
8192
2048

512
128

32
8

Figure 5.4 – Guideline with optimal rwl and hc system parameters.

Figure 5.4 shows the simulation results. We consider the length of the random walk optimal

if Pearson’s χ2 test with a confidence level of 0.99 cannot distinguish the distribution of the

simulated random walks from a truly uniform distribution. The interpretation of this guideline

is straightforward; e.g., in a system of roughly 128 vgroups, we set rwl to 9 and hc to 6.

In Section 5.6.1, we evaluate experimentally the trade-off between rwl and hc.

Even if new nodes join random vgroups, bugs could lead to faulty nodes accumulating in the

same vgroup over time (or an adversary can mount a join-leave attack [AS07]). To counter such

a situation, after a node joins or leaves a vgroup, we refresh the composition of that vgroup

through a shuffling technique: We exchange all nodes of this vgroup with nodes selected

uniformly at random from the whole system. To select a random node from the system,

we first use a random walk to select a vgroup, which in turn picks a random node from its

composition.

Random walk shuffling ensures that the composition of every vgroup is sampled randomly

from the whole system. By keeping vgroups random, we provide a sufficient condition to

ensure their robustness. To also ensure efficiency, logarithmic grouping maintains the size of

each vgroup logarithmic in system size.

The next section discusses in detail the operations Atum exposes at its interface, as well as the

concrete mechanisms used to implement the above concepts such as logarithmic clustering

or random walk shuffling.

66

5.3. Design

5.3.3 API operations

Atum exports four basic operations:

• bootstrap(ownIdentity, params),

• join(contactNode),

• leave(), and

• broadcast(message).

In addition, our system requires the application to provide two callback functions:

• deliver(message), and

• forward(message, neighbor).

In the following, we describe these operations in detail.

bootstrap(ownIdentity, params)

The bootstrap operation creates a new instance of Atum that consists of a single vgroup

containing only one node – the calling node. Trivially, this vgroup is a neighbor to itself on

every cycle of the H-graph. The parameter ownIdentity identifies the calling node. It contains

the network address (IP address and port) that other nodes can use to join this instance of

Atum. The params argument specifies system parameters as we present them in Table 5.1.

join(contactNode)

As in other BFT systems [KBC+00], [RL03], Atum uses a trusted entity to orchestrate the first

contact between a joining node and the system. In Atum, any correct participating node can

take this role; we call such a node a contact node. In practice, the contact node can be a social

connection of the joining node, and it is well-known that, without a centralized admission

control scheme, a trusted entity is a necessary prerequisite for joining an intrusion-proof

system [DLlKA05].

Let c be a contact node belonging to vgroup C . A join operations proceeds as follows. A

joining node j contacts c, which replies with the identities and public keys of nodes in C ; this

is the only step where j needs to trust c. The joining node then sends a request to be added

to the system to all nodes of C . After receiving a join request, the nodes in C execute an SMR

agreement operation [CL02, DS83] to make sure that either all correct nodes of C handle the

67

Chapter 5. Atum: Scalable Group Communication Using Volatile Groups

request or none of them does. This agreement handles the case when j is faulty and sends the

join request only to a subset of C .

After agreeing on the join request, C starts the random walk shuffling protocol by initiating a

random walk. A vgroup D selected by this walk will accommodate j . After the walk finishes,

vgroup C sends a group message with the composition of D to j . In the next step, j contacts all

nodes in D , these nodes agree on j ’s request, update their state, and notify their neighboring

vgroups about the new member j . Since we use SMR inside vgroup D , j synchronizes its state

with D. The state replicated at each node includes information needed to participate in all

protocols, e.g., neighboring vgroup compositions, state of ongoing random walks, or pending

join or leave operations.

After vgroup D receives the new node j , random walk shuffling continues by exchanging all

nodes of D (including j) with random nodes from the whole system. First, D starts a random

walk for each of its nodes to select exchange partners. Let S denote this set of partners. The

next step is exchanging the nodes: (1) each node in D joins the vgroup of its exchange partner,

and (2) the partners in S become members of D .

The last part of the join operation is to check if the size of D exceeds gmax. If it does, we trigger

the logarithmic grouping protocol. This protocol splits the nodes of D into two equally-sized

random subsets – one remains in D , the other forms a new vgroup E . After the split, D starts

one random walk for each cycle of the H-graph. Each vgroup selected by such a random walk

inserts E between itself and its successor on the corresponding cycle of the H-graph.

leave()

With this operation, a node l sends a request to leave the system to all nodes of its vgroup L.

Nodes in L agree on this request, reconfigure to remove l , and inform their neighbors about

the reconfiguration. After l leaves, random walk shuffling refreshes the composition of L the

same way it does after a new node joins. If this group performs a merge (described below), we

defer the shuffling until after merging.

If L shrinks below gmin nodes, we trigger logarithmic grouping to merge L with a random

neighboring vgroup M : All nodes of L join M , and we remove L from the overlay. This removal

leaves a “gap” in each cycle of the H-graph. To close these gaps, the predecessor and successor

of L on each cycle become neighbors; they receive the information about each other from L.

M informs its neighbors about the reconfiguration, shuffles, and splits if necessary.

broadcast(message)

This operation allows a node to broadcast a message to all nodes. A broadcast operation

comprises two phases. In the first phase, the calling node initiates an SMR operation to do

a Byzantine broadcast inside its own vgroup [BSA14, DS83]. In the second phase, Atum uses

68

5.4. Applications

gossip to disseminate the message throughout the overlay.

The second phase is customizable, and the application-provided callback forward drives the

gossip protocol. When a vgroup receives a broadcast message for the first time, Atum delivers

this message by calling deliver. It then calls forward once for each neighbor of that vgroup;

this function decides, by returning true or false, whether to forward a message to a neighbor

on the H-graph or not. The default behavior in Atum is to forward broadcast messages to

random neighbors, akin to gossip protocols [DGH+88].

By modifying the forward callback, an application designer can trade-off between message

latency, throughput, and fairness. For instance, in latency-sensitive applications, Atum can

gossip along all H-graph cycles, flooding the system, to disseminate messages fast. For

throughput, an application can gossip along a single cycle, allowing higher data rates, but

increased latency. We experiment with this callback in the evaluation of our data streaming

application (Section 5.6.3). We note that an unwise choice of forward can break the guarantees

of broadcast, for instance, if this callback specifies to not forward messages to any neighbor.

5.4 Applications

In this section, we illustrate the usage of Atum by designing three applications, which we layer

on top of our GCS. We first describe a simple publish/subscribe service, then a file sharing

system, and finally a data streaming application.

5.4.1 ASub

Publish/subscribe services are an essential component in cooperative networks and data-

center systems alike [CDKR02, EFGK03, GvR13]. ASub is a topic-based publish/subscribe

system which relies entirely on the capabilities and API of Atum. We remark that topic-based

pub/sub is essentially equivalent to group communication, since the programming interfaces

of these two paradigms coincide. The abstraction of a topic matches with the abstraction of

a group, because subscribing to a certain topic involves joining the group dedicated for the

said topic; similarly, publishing an event is analogous to broadcasting a message to a group of

nodes [Bir93].

Given this equivalence between group communication and pub/sub systems, to build ASub

we only need to add a thin layer on top of Atum. Due to space considerations, we do

not dwell on the details of this system. Suffice to say that the operations of ASub map

directly to the Atum API (Section 5.3.3). Thus, we obtain the following pub/sub opera-

tions: create_topic, subscribe, unsubscribe, and publish from Atum’s bootstrap, join,

leave, and broadcast, respectively.

69

Chapter 5. Atum: Scalable Group Communication Using Volatile Groups

5.4.2 AShare

In this file sharing application, Atum plays a central role by providing the messaging and

membership management layer. In AShare, we distinguish between data, i.e., file content,

and metadata, i.e, mapping between files and nodes, file sizes, owners, and file checksums.

AShare relies on two protection mechanisms to ensure data availability and authenticity: a

novel randomized replication scheme to account for high churn, and integrity checks to fight

file corruption.

AShare stores metadata as soft state, keeping a complete copy at each node, inside a structure

called the metadata index.5 Whenever a node wants to update the index, it initiates a broadcast,

informing every node about the update. We use Atum’s broadcast to ensure reliable delivery,

so every node correctly receives the broadcast (Section 5.3.3).

Interface and namespace

To add a file with name f in AShare, the owner u calls 〈PUT,u, f ,c,d〉, where c is the file

content and d is the digest of the content. Conversely, 〈DELETE,u, f 〉 triggers the system to

remove all the replicas of f . When nodes want a specific file, they do a 〈SEARCH,e〉, where e is

the search term, e.g., file or owner name. As a result, SEARCH might yield a file f ′ previously

added by a node u′. To obtain f ′, a node calls 〈GET,u′, f ′〉.

The namespace is similar to that of file sharing networks. Every user has its own flat namespace,

so we identify files by both their owner and their name (u, f); for simplicity, we often omit

the owner u when referring to a file. Users have exclusive write access (PUT and DELETE) to

their own namespace, and read-only access to foreign namespaces (GET or SEARCH). Being

a file sharing network, we do not aim at ensuring privacy, but the partitioned namespace

restricts malicious activities, given the read-only access. Another advantage of the partitioned

namespace is that no updates on the index can ever conflict.

Operations and protection mechanisms

For the sake of availability, AShare replicates every file when the owner calls PUT for that file.

In the first step of this operation, the owner u broadcasts a message with the tuple (u, f ,d),

making the file available for everyone to read. Upon delivery of this message, every node

updates their index to include this new tuple, and then they run a randomized replication

algorithm. This algorithm creates multiple replicas of f at random nodes; AShare aims to

maintain at least ρ replicas per file, where ρ is a system parameter. In practice, ρ should

correspond to a fraction (e.g., 0.1 to 0.3) of the system size. We ensure the availability of every

file as long as at least one correct replica exists for each file. ρ replicas thus protect against

5An alternative is to use a DHT [SMK+01]. This method, however, is fraught with challenges if we want to
tolerate arbitrary faults and churn [YKGK10]. We leave this for future work.

70

5.4. Applications

c = 1
PUT broadcast Randomized

replication

GET
c++

if (c < ρ)

Figure 5.5 – AShare: A feedback loop triggers the randomized replication algorithm repeatedly.
c is the number of replicas for a file.

ρ−1 failures.6

Randomized replication. The basic replication algorithm that every node executes is as

follows. Given a file f , each node consults its index to compute c , the replica count for f ; if c is

smaller than ρ, then every node replicates f with probability ρ−c
n , n being the current system

size. The outcome of the algorithm is that a random sample of nodes nominate themselves to

replicate f , yielding ρ replicas on expectation. To attain ρ copies with certainty, we introduce

a feedback loop that triggers the randomization algorithm repeatedly.

Figure 5.5 depicts the feedback loop. To replicate a file (u, f), a node x simply reads the file

by calling 〈GET,u, f 〉. When GET finishes, x broadcasts the tuple ((u, f), x); this broadcast

informs every node that x now stores a replica of f . Upon delivering this broadcast, all

nodes update their index, and then the feedback loop kicks in: Nodes which do not already

store f execute the randomized replication algorithm once more, using the same basic steps

we described earlier. The feedback loop deactivates when c (the number of replicas for f)

becomes greater or equal to ρ.

During a GET operation, the calling node consults its index to obtain the addresses of all the

nodes which store the target file f . The node needs all these addresses because it performs

a chunked transfer from multiple nodes at a time (not just from the owner). A problematic

situation can appear, however, if some node that stores a replica of this file is faulty and the

replica is not consistent with the original file. To solve this issue, we introduce integrity checks.

Integrity checks. This protection mechanism preserves the safety of the service. It allows a

node to verify if a replica of a file is authentic, and fights against file corruption that can arise

as a result of disk errors [SDG10] or Byzantine faults.

As described earlier, as part of the PUT operation, the owner broadcast a tuple (u, f ,d),

containing file identification and digest. We compute the digest using a SHA-2 collision-

resistant hash function. The nodes store this digest in the index, and then use it to verify data

authenticity.

6A failure in this context means that a node holding a file replica misbehaves (e.g. by corrupting replicas), or
leaves the system.

71

Chapter 5. Atum: Scalable Group Communication Using Volatile Groups

Nodes pull files from each other in chunks, i.e., every file has a predetermined number of

chunks, established by the owner. Chunks are the units of transfer during GET. This scheme

has two benefits: (1) A node can pull file chunks in parallel from all the nodes which replicate

that file; (2) digest computation is faster because it can take advantage of multithreading, by

computing digests for multiple chunks in parallel. If the integrity check for any chunk fails,

then the chunk is pulled from another node. Given this chunked transfer scheme, parameter

d in a PUT operation is actually a set of digests, each corresponding to one of the chunks.

We implement the index as a general key-value store using SQLite [sql]. It is useful both to

resolve file lookups (by checking the files-to-nodes mapping) and to verify the authenticity of

chunks (using digests). If a node detects that its index is corrupted (e.g. due to disk errors or

bugs in auxiliary software such as SQLite), it can leave and rejoin the system to obtain a fresh,

correct copy of the index.

We implement DELETE using a broadcast, which informs every node to update their index

accordingly. If a node stores a replica of the file being deleted, then it also discards the chunks

of this replica. SEARCH is straightforward, since every node has the metadata index; we

implement this operation on top SQLite’s query engine.

5.4.3 AStream

AStream is a streaming application with a two-tier design. Atum represents the first tier, which

reliably disseminates stream authentication (digests) from the source node to other nodes.

The second tier is a lightweight multicast algorithm which disseminates the actual stream

data. Every node uses the digests from the first tier to verify data from the second tier. This

second tier has two modules:

A decentralized algorithm to construct a set of spanning trees, and a push-pull multicast

scheme to propagate data. We consider these modules interesting in their own right, but due

to lack of space we only give a high-level sketch.

Our second tier is inspired from previous solutions on forest-based reliable multicast [CDK+03].

We construct a graph (union of trees) with two important properties: (1) It is rooted in the

source node (i.e., the broadcasting node), and (2) every node – except the root – has at least

one parent which is correct. Intuitively, these two properties ensure that all nodes receive the

data stream from the root correctly.

To build a graph with these properties, we leverage the underlying structure of the Atum

overlay (see Figure 5.2 for an illustration) as follows. First, we use a deterministic function that

every node knows, to pick one of the cycles of the H-graph, denoted w , and a direction d on

that cycle (either left or right). Each node then builds a set of parents of size f +1, chosen

randomly from vgroup V , where V is the neighboring vgroup on cycle w and direction d . The

nodes which are neighbors with the source choose the source as their single parent – forming

the connection to the root. Given the properties of Hamiltonian cycles and the fact that every

72

5.5. Deploying Atum

vgroup has a majority of correct nodes, this ensures that every node has at least one correct

parent, the source node being the root. In addition to this, nodes also select a parent from all

other neighboring vgroups, which they may use as shortcuts, in case they are very far from the

source node on the selected cycle w .

For disseminating the data, we use a simple, redundant scheme. The root first splits the data

in successive chunks, and pushes the first chunk to each of its children. These children, in

turn, push this chunk to their children. The algorithm then switches from a push phase to

a pull phase, as follows: Each child selects the first parent that pushed a valid chunk, and

periodically pulls the subsequent chunks. A node that fails to obtain stream chunks (after

receiving the corresponding digests through Atum) tries pulling from another parent. While it

is simple, this technique ensures delivery of all data, as at least one parent is always correct.

5.5 Deploying Atum

In this section, we discuss some practical aspects of Atum. We then present our two different

implementations of it.

5.5.1 Practical considerations

Message digests. Similar to [CL02], we reduce network bandwidth usage by substituting the

content of some messages with their digest. In Atum, a majority of the nodes in any vgroup

send the entire group message (Section 5.3.2); the remaining nodes only send a digest of the

corresponding message. Since every vgroup has a correct majority of nodes, this strategy

ensures that at least one correct node sends the entire message, so we never need to retransmit

a message.

Random walk communication. When a vgroup G starts a random walk (Section 5.3.2), the

vgroup S selected by this random walk cannot communicate directly with G , because S is a

random vgroup from the system, not necessarily a neighbor of G , and thus might not know

G’s composition. To deal with this issue, random walks comprise a backward phase.

The backward phase of a random walk carries a message from S back to G , relayed by the

same vgroups that initially forwarded the random walk. After the backward phase finishes, G

and S can start communicating directly, as we piggyback their compositions on the relayed

messages.

An alternative solution is what we call random walk certificates. They work as follows. At each

iteration of a random walk, the forwarding vgroup appends a certificate to the message used

to carry out the random walk. This certificate consists of the identity of the chosen neighbor,

signed by the forwarding vgroup. When the walk reaches the selected vgroup, it contains a

chain of certificates, where each vgroup certifies the identity of the next one. The selected

vgroup S can then send a reply directly to the originating vgroup G , with the whole certificate

73

Chapter 5. Atum: Scalable Group Communication Using Volatile Groups

chain appended. This way, G can verify the identity of S by verifying the certificates in the

chain. The advantage of this approach is that a backward phase is not necessary and that

vgroups need not keep state of ongoing random walks. Depending on the length of the random

walk, however, the certificate chain can become bulky in size (which is linear in rwl).

We experiment with both approaches to random walk communication (backward phase and

certificates) in our two implementations. The asynchronous implementation uses random

walk certificates, since they are conceptually simpler, easier to implement, and incur less total

overhead. However, verifying all signatures in a long certificate chain is computationally ex-

pensive. Since certificate verification would make it hard for the synchronous implementation

to meet its timing deadlines, we opt for the backward phase in the synchronous case.

Bulk RNG for random walks. A random walk of length rwl requires that rwl vgroups generate

a random number – each vgroup that forwards the walk to a random neighbor. Distributed

random number generation algorithms, however, are expensive [KHG12]. Thus, we generate

all of the rwl random numbers in bulk at the first iteration of the walk, and we piggyback

these numbers on the random walk messages. At each subsequent iteration of the walk, the

forwarding vgroup uses one of the rwl random numbers.

Intuitively, one could consider a simpler approach of pre-computing random numbers at each

vgroup, and using such a random number pool whenever a random walk needs to be relayed.

Interestingly, this approach turns out to be incorrect. A single Byzantine node could bias the

random decision by repeatedly triggering operations that consume random numbers from

the pool. Thus, to keep our system robust against such an attack, we require that random

numbers are not generated before knowing exactly what to use them for.

Randomized message sending. During early experiments with Atum we noticed that the

problem of throughput collapse can arise [CGL+09]. This can happen when a vgroup has to

send one or multiple large group messages. Typically, the size and number of inter-node mes-

sages in a group message depend on the size of the communicating vgroups (see Figure 5.3).

After the nodes of the sending vgroup generate outgoing messages, they send them in a short

burst to the first node of the destination vgroup, then the second node, and so on. In the worst

case, there is an upsurge of download bandwidth at each destination node, leading to packet

loss.

To address this issue, each sending node randomizes the order of the outgoing messages.

Removing unresponsive nodes. Nodes become unresponsive due to crashes, bugs, network

partitions, etc. We use a mechanism similar to leave to evict unresponsive nodes. To this

end, every node in Atum sends periodic heartbeats to its vgroup peers. If a node fails to send

heartbeats, the other nodes in the vgroup eventually agree to evict this node. Eviction proceeds

in the same way as a leave.

In an asynchronous system, it is impossible to distinguish a failed node from a slow node, so

74

5.6. Evaluation

our heartbeats are coarse-grained, e.g., one every minute. If a node is silent and omits to send

many successive heartbeats, amounting to a predefined period of time, then its peers agree

to evict the silent node. If an evicted node recovers, it can rejoin the system using join. This

eviction scheme does not endanger safety, because we evict nodes at a very slow rate. If an

attacker wants to break the safety of our system by attacking correct nodes, the attacker would

have to mount a persistent barrage of DDoS attacks on many nodes; we believe the resources

needed for such an attack outweigh the benefits.

5.5.2 Atum implementations

As explained in Section 5.3, at the design level we make no explicit choice of which SMR

algorithm to use inside vgroups. In the first implementation, we choose to use a synchronous

algorithm, in particular the Dolev-Strong agreement protocol [DS83] for SMR; synchronous

algorithms are significantly simpler to implement, reason about, and debug, compared to their

asynchronous counterparts [BSA14, CL02]. To see how this choice impacts performance and

to obtain a comprehensive evaluation, we also implement a version of Atum based on the PBFT

asynchronous SMR [CL02], combined with an adaptation of the SMART protocol [LAB+06]

for reconfiguration. We examine the differences between these two implementations in our

evaluation (Section 5.6) and further discuss them in the experiences section (Section 5.7). In

addition, we also implement the three applications described in Section 5.4.

5.6 Evaluation

We report on our experiments with Atum on Amazon’s EC2 cloud. For the synchronous

version (SYNC), we use a single datacenter in Ireland. Due to a high level of redundancy,

intra-datacenter networks are synchronous [SHPG12]; indeed, infrastructure services in data-

centers often rely on synchrony [CDG+08, CLM+08, GGL03]. For WAN experiments, we use

the asynchronous version (ASYNC) because the network is less predictable. We deploy ASYNC

across 8 different regions of the world, located in Europe, Asia, Australia, and America. For

both SYNC and ASYNC, each node runs on a separate virtual machine instance of type micro,

which provides the lowest available CPU and networking performance [amaa].

5.6.1 Base evaluation of Atum

We study here the behavior of the main operations in Atum, so these results pertain to any

application layered on top of Atum. Since Atum implementations are user-space libraries,

we use the ASub application to carry out these base experiments. We deploy both SYNC and

ASYNC and address four important questions: (1) How fast can the Atum system grow? (2)

What continuous churn rate can it sustain? (3) How fast does Atum disseminate messages (a)

in a failure-free scenario (b) and in presence of Byzantine nodes?

75

Chapter 5. Atum: Scalable Group Communication Using Volatile Groups

 0
 200
 400
 600
 800

 1000
 1200
 1400

 500
 1500

 2500
 3500

 4500
 5500

 6500

S
y
s
te

m
 s

iz
e
 N

 (

#
 o

f
n
o
d
e
s
)

Seconds

of nodes:
SYNC:

800
1400

ASYNC:

800
1400

Figure 5.6 – Growth speed for systems with up to 1400 nodes.

System growth speed

We first consider the join throughput; this may reflect, for example, the arrival rate of new

subscribers in ASub. We use different configurations of (hc, rwl), depending on the target

system size, according to our guideline in Figure 5.4. E.g., for a system with 800 nodes in

roughly 120 vgroups, (hc, rwl) = (5,10). For the SYNC system we use rounds of 1 second, and

we evaluate both versions using systems of 800 and 1400 nodes.

As Figure 5.6 shows, if we configure a system for a smaller maximum size, then the system

can grow slightly faster. This is because larger systems require larger values for rwl, which

increases the cost of adding nodes. As the system grows, however, it is able to handle faster

rates of node arrival, resulting in an exponential growth; our flexible overlay allows the sys-

tem to run multiple join operations concurrently, all of which execute within a confined

(randomly selected) part of the network. During these experiments, we do not observe any

scalability bottlenecks. We expect Atum to continue to exhibit this behavior (good scalability

and exponential growth speed) in systems well beyond 1400 nodes, so, in the interest of time

and budget, we choose to not experiment further.

Note the glitch around second 3000. The growth rate drops slightly due to temporary asyn-

chrony, after which many nodes join in a burst and the system continues to grow normally. The

short plateau after the burst is caused by the delay in creating and booting Amazon instances.

Churn tolerance

Next, we provoke continuous churn by constantly removing and re-joining nodes, for systems

of up to 800 nodes. As we show in Figure 5.7, SYNC can churn up to 18% of all nodes every

minute, and ASYNC reaches 22.5%. The nodes have an average session time between 5 and 6

minutes.

76

5.6. Evaluation

 10
 40
 70

 100
 130
 160
 190

50100 200 400 800

C
h

u
rn

 r
a

te
(r

e
-j
o

in
s
/m

in
.)

System size N (# of nodes)

SYNC (rwl=6, hc=8)
SYNC (rwl=11, hc=5)

ASYNC (various)

Figure 5.7 – Maximal tolerated churn rates in systems of size 50,100,200,400 and 800 nodes.

We use SYNC to also evaluate how the choice of overlay parameters affect Atum’s behavior

under churn. The relevant parameters are random walk length (rwl) and number of H-graph

cycles (hc). We use two combinations of (rwl, hc): (6,8) and (11,5). The intuition is that

random walks are heavily used during churn, so we expect that a smaller rwl allows higher

churn rates. Figure 5.7 confirms this intuition. The decrease in rwl does not translate, however,

to a proportional increase of churn rate, because other sub-protocols also affect this rate,

e.g., random number generation or SMR inside vgroups. Since the behavior of ASYNC is less

predictable, this effect, although present, is less prominent for ASYNC, and we use a different

configuration for each system size according to our configuration guideline.

As our configuration guideline (Figure 5.4) shows, if we decrease rwl (y-axis), we have to

increase hc (x-axis) to preserve the random walks’ uniform sampling property. A bigger hc

means that groups have more neighbors, so nodes keep more state, which leads to bulkier

state transfers. Going from hc= 5 to 8, however, turns out to have a smaller impact on the

churn rate than the change of rwl.

Group communication latency

In this experiment, we instantiate a system and then disseminate 800 messages of length 10 to

100 bytes (comparable to Twitter messages). We experiment with system sizes of 200,400, and

800 nodes in a failure-free case. To also evaluate Atum in the presence of faults, we use 800

correct nodes and subsequently add 50 (5.8%) nodes with injected faults.

To simulate arbitrary behavior of Byzantine nodes in SYNC, we modify their algorithm such

that they do not participate in any protocol except: (1) they send heartbeats, to prevent being

evicted from the system (see Section 5.5.1); and (2) they pretend not to receive heartbeats

from correct nodes, and periodically propose to evict all correct nodes from their vgroup. A

Byzantine node has no incentive to send spoofed or corrupted messages while the majority of

the nodes in its vgroup is correct; the recipient of such messages would discard them. To set

the system parameters, we use the configuration guideline (Section 5.3.2), and we use rounds

of 1.5 seconds. For ASYNC, faulty nodes have no incentive to send corrupted messages, and

therefore stay quiet.

77

Chapter 5. Atum: Scalable Group Communication Using Volatile Groups

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 75 76 77
F

ra
c
ti
o

n
 o

f
d

e
liv

e
re

d
m

e
s
s
a

g
e

s

Latency (seconds)

Atum SYNC:
N = 200
N = 400
N = 800
N = 850*

Atum ASYNC:
N = 200
N = 400
N = 800
N = 850*

S.Gossip:
N = 850

S.SMR:

N = 850*

Figure 5.8 – Group communication latency: Comparison between gossip, Atum, and SMR. We
tag with ∗ the systems with 50 faults.

We depict a CDF of the obtained latencies in Figure 5.8. For all scenarios with SYNC, the latency

has an upper bound of 8 rounds (12 seconds). The two phases of broadcast contribute

independently to this latency. Nodes in the same vgroup with the publisher deliver a message

immediately after the first phase, and nodes in other vgroups deliver it in the second phase

(Section 5.3.3). We normalize the results to correspond to the expected latency of the first

phase, which is 4 rounds in these experiments. The actual latency might differ by up to 2

rounds, depending on the size of the publisher’s vgroup. Since faulty nodes do not reach

majority in any vgroup, they do not affect correct nodes. Thus, Atum suffers no performance

decay despite 5.8% faults, and the latency remains unchanged.

Figure 5.8 also shows how SYNC compares with the two approaches it combines: synchronous

SMR and gossip. The first baseline is a simulation of a classic round-based crash tolerant

gossip protocol [DGH+88], with no failures. Every node has a global membership view and in

every round exchanges messages with random nodes. To ensure fair comparison, we set the

fanout of this gossip protocol (i.e., the number of message exchanges per round) to the size of

the view of a Atum node (this is a loose upper bound on the Atum fanout), and rounds to 1.5

second. As Figure 5.8 reveals, the latency penalty in Atum corresponds roughly to the latency of

the SMR protocol in the first phase of broadcast (which is 4 rounds), with minimal additional

overhead. This is the price we pay for Byzantine fault tolerance. The second baseline is the

Byzantine agreement protocol [DS83] that we use to implement SMR in SYNC, when we scale

it out to the whole system. The latency for this protocol is f +1 rounds (1.5 seconds each),

where f is the number of tolerated faults.

Latencies for ASYNC are much lower, since there are no synchronous rounds, and so nodes do

not need to coordinate their steps at a conservative rate. In contrast to SYNC, however, the

tail latency reaches 105.5s, with less than 0.01% notifications delayed by more than 5s. With

ASYNC, a small number of temporarily slow nodes might deliver notifications late, without

affecting other nodes. To compensate for the lower fault tolerance of ASYNC (b(g −1)/3c instead

of b(g −1)/2c), we increase the robustness parameter k to 7, which results in a latency increase

due to larger vgroups.

78

5.6. Evaluation

 0.1

 0.5

 0.9

 1.3

 1.7

2 4 8 16 32 64 128
256

512
1024

2048

L
a

te
n

c
y
 p

e
r

M
B

 (
s
)

File size (MB)

NFS4
Ashare simple

Ashare parallel

Figure 5.9 – AShare: Read performance (latency per MB). We normalize the result to file size.

Failure rates observed in practice are about 0.5% nodes per day in a datacenter, according to

Barroso et al. [BCH13]. In this experiment, we tolerate 5.8% faults thanks to our logarithmic

grouping and random walk shuffling schemes. In fact, the number of faults that Atum tolerates

increases with system size. This is intuitive, given that larger systems imply larger vgroups

(vgroups are roughly logarithmic in system size), so each vgroup can handle more faults.

We obtain the results hitherto using ASub, since this application maps exactly to the group

communication API of Atum. Nevertheless, these results evaluate the basic operations of

Atum, so they apply to all applications built on Atum, including AShare and AStream. In the

following sections, we evaluate particular metrics for these two applications; this evaluation is

orthogonal to the underlying GCS and independent of the group communication performance.

5.6.2 Evaluating AShare

We first evaluate the performance of GET in failure-free runs. This operation is equivalent

with reading an entire file in a typical distributed filesystem, so we use NFS4 as baseline. By

default, NFS4 has no fault-tolerance guarantees and is the standard solution for accessing files

across the network. Results show that we provide comparable performance with NFS4, while

offering stronger guarantees.

Figure 5.9 shows our results. We normalize the read latency to file size, so the y-axis plots

latency/MB, using files from 2MB to 2GB. We consider three cases: (1) NFS4, where a client

reads from a server; (2) AShare simple, where a node GETs files replicated by another node and

the files have a single chunk – this is for fair a comparison with NFS4; and (3) AShare parallel,

where a node reads files replicated by two other nodes and each file has 10 chunks. As we can

see, the normalized read latency decreases as file size increases, because the constant overhead

for transfer initiation (e.g., handshakes, TCP slow-start [APB09]) amortizes as transfer time

grows. While the AShare simple execution can match the performance of NFS4 for larger files,

we observe that the parallel execution outperforms NFS4 by up to 100% for files over 512MB.

We attribute this gain to the use of parallel pulling and multithreaded digest computation.

We also study how Byzantine nodes impact GET latency. A Byzantine node in this scenario

corrupts all the replicas it stores. We analyze the read latency in two scenarios – a 50-node

79

Chapter 5. Atum: Scalable Group Communication Using Volatile Groups

system with 500 files, and a 100-node system with 1000 files. In both scenarios we set ρ = 8, so

each file has a minimum of 8 replicas, and 7 random nodes are Byzantine. Every file consists

of 10 chunks, with a fixed size of 1MB.

 0.2

 0.5

 0.8

 8 10 12 14 16 18 20

L
a
te

n
c
y
 p

e
r

M
B

 (
s
)

Number of file replicas

All replicas correct
1 to 6 faulty replicas

Figure 5.10 – AShare: Impact of Byzantine nodes on read latency. Experiment with 50 nodes (7
Byzantine) and 500 files.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 8 10 12 14 16 18 20

L
a
te

n
c
y
 p

e
r

M
B

 (
s
)

Number of file replicas

All replicas correct
1 to 6 faulty replicas

Figure 5.11 – AShare: Impact of Byzantine nodes on read latency. Experiment with 100 nodes
(7 Byzantine) and 1000 files.

Figure 5.10 conveys AShare’s resilience to corrupted replicas in the 50-node system. For

moderately-replicated files, with 8 or 9 replicas, the read latency increases by up to 3x. This is

expected, given that the majority of the pulled chunks are corrupted and have to be re-pulled

from a correct node. We also observe that the positive effect of having multiple replicas per file

diminishes. In the ideal configuration, the number of chunks equals the number of replicas

of a file, such that each chunk can be pulled from a separate node and verified in parallel. In

this configuration we can strike a balance between storage overhead (replicas count) and read

latency. This can be seen in our results for files with 10 replicas. We draw similar conclusions

from the results of the 100-node experiment in Figure 5.11.

80

5.7. Experiences and Lessons Learned

 0

 200

 400

 600

 800

20 50

L
a
te

n
c
y

 (
m

ill
is

e
c
o
n
d
s
)

System size

Single cycle

700

900
Double cycle

100
200

Figure 5.12 – AStream: Latency for 1MB/s data stream.

We also used the Grid’5000 experimental platform for AShare evaluation, both for the failure-

free and Byzantine scenario. Compared to EC2, we experimented on better machines (Xeon or

Opteron CPUs, more memory) on a network with similar properties. We omit the results for

brevity, as they are consistent with the results on EC2.

5.6.3 Evaluating AStream

To evaluate AStream, we consider a 1MB/s stream, which is an adequate rate for live video.

As discussed in Section 5.3.3, the forward callback allows applications to customize the way

Atum disseminates data in the second phase of broadcast. Specifically, applications like

ASub would favor latency and flood the system by gossiping on all the H-graph cycles. In

AStream, latency is not critical, so we customize the forward callback to use either one (Single)

or two (Double) H-graph cycles. For SYNC, we set the round duration to 1 second. We run

experiments with 20 and 50 nodes. In parallel with the first tier, the second tier transfers the

data as soon as Atum delivers the digests.

In Figure 5.12 we plot the latency of the second tier of AStream. As we show, changing the

forward function has an impact on dissemination. As expected, if we use more cycles to

disseminate metadata, latency decreases. Since we use a lightweight multicast protocol in the

second tier, this has a small impact on latency. For instance, in the 20-node system, Single

scenario, the second tier takes .7 seconds; the total latency is 5.7 seconds with SYNC (which

incurs 5s latency) or 1.7 seconds with ASYNC (which incurs 1s).

5.7 Experiences and Lessons Learned

A big challenge we faced concerns the fundamental trade-off between flexibility and robust-

ness. On the one hand, Atum is designed to be flexible and adapt to high churn with ease: It

resizes, merges and splits vgroups as befitting. On the other hand, to uphold robustness, Atum

is also designed to restrict how vgroups evolve, placing bounds on their size, and composing

them via random sampling. To convey how this trade-off manifests in practice, we strain Atum

81

Chapter 5. Atum: Scalable Group Communication Using Volatile Groups

by joining nodes at an overwhelming rate; this generates many concurrent shuffle operations,

and suppresses some node exchanges, because the chosen exchange partner already partici-

pates in another exchange. In our experiments (Section 5.6.1) we join nodes at a rate of 8% of

the system size each minute. Figure 5.13 shows what happens when we intensify this rate to

20% and 24%: Higher growth rates suppress more node exchanges (penalizing robustness),

but the system grows faster (is more flexible).

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 1000 1500 2000 2500

E
x
c
h
a
n
g

e
c
o
m

p
le

ti
o
n
 r

a
te

Time (seconds) to grow to N=400

8%
20%
24%

Fraction of
completed
exchanges

Join rate:

Figure 5.13 – As a system grows faster, the quality of random vgroup composition suffers due
to suppressed exchanges.

Another hard challenge was the interplay between the SMR algorithm inside vgroups and

the distributed protocols running among vgroups. The two most salient issues here were

the following. First, SMR reconfiguration by itself is a tricky business [BSA14, OO14]. The

shuffle operation in Atum, however, involves multiple vgroups concurrently reconfiguring

by exchanging nodes among themselves. Complications with this include deadlocks, missed

operations, duplicate membership (nodes belonging to two different vgroups), dangling

membership (nodes being left out of a vgroup), or other inconsistencies. Second, the H-graph

overlay we use is decentralized and random, where every node has only a local view; this makes

the split operation particularly intricate because it involves orchestration among multiple

vgroups, on all cycles of the graph.

These challenges compelled us to simplify the implementation at all levels. For this reason, we

initially considered a synchronous SMR [DS83], and implemented SYNC in 20K LOC in C. This

decision is reasonable for highly-redundant networks (such as inside a datacenter availability

zone [SHPG12]), but is not realistic for large, dynamic networks, where the round size has

to be very conservative. Since we wanted a comprehensive evaluation, including on WAN,

we decided to also implement ASYNC, based on asynchronous SMR, i.e., assuming eventual

synchrony [CL02]. This version is more complex, but we used a high-level language (8K LOC

in Python), which helped us deal with the complexity.

As our results show, ASYNC outperforms SYNC. On the other hand, SYNC brings multiple

benefits: It has predictable performance, is simpler to implement and reason about (due to

82

5.8. Conclusions

the round-based model), and is thus less prone to bugs; moreover, SYNC was an important

stepping stone to help us understand the complex interactions in Atum.

5.8 Conclusions

This chapter reports on our experiences with designing and building Atum, a general-purpose

group communication middleware for a large, dynamic, and hostile network. At the heart

of Atum lies the novel concept of volatile groups, i.e., small, dynamic, yet robust clusters of

nodes. Specifically, Atum applies state machine replication at small-scale, inside each vgroup,

and uses gossip to disseminate data among vgroups. We ensure that vgroups are robust

and efficient by employing two techniques, namely random walk shuffling and logarithmic

grouping.

We experimented with two Atum implementations – one synchronous and one asynchronous

(eventually synchronous). We used Atum as a reliable core to build three applications: ASub,

a publish/subscribe service, AShare, a file sharing system, and AStream, a data streaming

platform. Using these applications, we verified experimentally the properties of our system:

Our findings indicate that Atum tolerates arbitrary faults even in a large-scale, high-churn

network.

83

6 Related Work

This chapter reviews selected publications related to the research presented in this dissertation.

We first handle literature focused on the specific problem of transferring digital assets, and

then discuss work that concerns the more general problem of group communication and

some of its applications.

6.1 Asset Transfer

In this section we discuss various solutions of the asset transfer problem (discussed in chap-

ters 2 and 3), both for the private (permissioned) and public (permissionless) setting. Our

high-level solution is suitable for both a private (permissioned) and public (permissionless)

setting, as it builds on high-level abstractions of read-write memory or secure broadcast.

Many systems address the problem of asset transfers, be they for a private or public setting.

In the private case [ABB+18, Hea16, KJW+18], the algorithm assumes the existence of some

explicit (e.g., certificate authority) or implicit (e.g., physical connection to a system) way of

controlling access to the system. This assumption prevents from having to deal with potential

Sybil attacks [Dou02], where an adversary takes control over a system by overwhelming it with

many artificially generated identities that the adversary controls. Distributed systems for the

public environment [AMN+16, DSW16, GHM+17, KKJG+18, Nak08, TR18] can be joined by

anyone. To prevent a malicious adversary from overtaking the system, these systems rely on

proof-of-work [Nak08], proof-of-stake [BGM16], or other techniques designed to protect from

Sybil attacks.

The above-mentioned solutions, whether for the permissionless or the permissioned envi-

ronment, seek to solve consensus. They must inevitably rely on synchrony assumptions or

randomization. By sidestepping consensus, we can provide a deterministic and completely

asynchronous implementation.

It is worth noting that many of those solutions allow for more than just transfers, and support

richer operations on the system state—so-called smart contracts. In this work we focused on

85

Chapter 6. Related Work

the original asset transfer problem, as defined by Nakamoto [Nak08], and we did not address

smart contracts, for certain forms of which consensus is indeed necessary. However, our

approach allows for arbitrary operations, if those operations affect groups of the participants

that can solve consensus among themselves. Potential safety or liveness violations of those

operations (in case this group gets subverted by the adversary) are confined to the group and

do not affect the rest of the system.

In the blockchain ecosystem, much work has been devoted to replacing a totally ordered

transaction ledger by a directed acyclic graph (DAG) representing the relations between

transfers. DAG-based systems include Nano [LeM18], Corda [Hea16], or Vegvisir [KJW+18].

While replacing a linear blockchain by a DAG, these systems still do rely on consensus in some

form.

In our case, the dependencies between transfers can also be represented by a DAG, but we do

not resort to solving consensus to build the DAG, nor do we use the DAG to solve consensus.

More precisely, we can regard each account as having an individual history. Each such history

is managed by the corresponding account owner without depending on a global view of the

system. Histories are loosely coupled through a causality relation established by dependencies

among transfers.

One could also relate our asset transfer object (Section 2.2.2) to conflict-free replicated data

types (CRDTs) [SPBZ11]. As in CRDTs, we keep the state of the object consistent across replicas

while updates are being applied concurrently. Accounts of correct processes never experience

conflicting updates, as only one process—the owner—is allowed to issue operations that

can potentially produce conflicts. This, however, never happens concurrently, as processes

are assumed to be sequential. (For shared accounts, processes have to coordinate before

performing any update.) From the point of view of Shapiro et al. [SPBZ11], the asset transfer

object is strongly eventually consistent.

Pedone and Schiper [PS02] already discussed that transferring assets is possible in an asyn-

chronous way, relying only on broadcast. This insight has also been used by Duan et al. [DRZ18]

in Byzantine tolerant storage protocols. Gupta [Gup16] also presented algorithms for financial

transfers based on ideas similar to the ones underlying our asset transfer protocol and the

broadcast abstraction it uses [MMR97, MR97b]. However, to the best of our knowledge, we

are the first to formally define the asset transfer problem as a shared object type, study its

consensus number, and propose algorithms building on top of standard shared memory /

broadcast abstractions.

6.2 Group Communication

In this section we discuss existing work related to our contributions in broadcast, group

communication and related applications, mostly concerning chapters 4 and 5. We review

some of the work which intersect with our efforts and highlight the differences. The reviewed

86

6.2. Group Communication

work spans multiple research areas, including broadcast abstractions, gossip, robust overlay

networks, membership sampling, and storage systems, which we discuss in the following.

6.2.1 Broadcast abstractions

Our secure broadcast abstraction is based on Bracha’s Byzantine reliable broadcast [Bra87],

both in terms of abstraction and implementation. At both levels, however, we generalize

it. In the abstraction, we introduce the notion of ε-security, allowing some properties to be

violated with probability ε. At the level of implementation, we build on a similar basic idea

as Bracha’s broadcast (referred to as double-echo broadcast in [CGR11]). By leveraging the

possibility of failing with a low probability, we achieve lower complexity and thus higher

scalability compared to Bracha’s original implementation. Intuitively, Atum provides similar

guarantees for each invocation of its broadcast primitive, even though we did not formally

analyze it in terms of ε-security.

The variant of secure broadcast used by our asset transfer algorithm has been referred to

by Malkhi et al. as secure reliable multicast [MMR97, MMR00, MR97b]. Unlike to Byzan-

tine reliable broadcast, it considers multiple senders and multiple messages and provides

some ordering guarantees (expressed either through delivery order [MR97b] or sequence

numbers [MMR97]). The implementations proposed so far either deterministically rely on

quorums, which quickly becomes a bottleneck for bigger system sizes, or lack thorough

analysis in the probabilistic case.

6.2.2 Gossip

Our broadcast solution (both in Ready Broadcast and in Atum) is based on gossip, first in-

troduced by Demers et al. to disseminate updates in replicated databases [DGH+88]. Gossip-

based systems typically exploit randomness to bypass failures and ensure robust dissemina-

tion. In [MMR99], Malkhi et al. studied the diffusion problem in a Byzantine environment,

where a message that is initially known by a small number of source nodes must be dissem-

inated to and accepted by all correct nodes. They proposed a class of direct verification1

protocols that solve the diffusion problem. They proved lower bounds on the dissemination

time of this class of protocols, rendering the protocols impractical at large-scale. Minsky and

Schneider proposed path verification protocols [MS03] for the Byzantine diffusion problem,

generalizing direct verification and circumventing the lower bounds of [MMR99]. However,

the dissemination time of path verification protocols is linear in the number of tolerated

failures. Scalability is thus still limited if the fraction of Byzantine nodes is constant.

FlightPath [LCM+08] is a powerful P2P streaming system. It is robust towards rational and

Byzantine nodes, and it tolerates high churn rates. In FlightPath, the focus is on streaming

data efficiently from a designated source node, using gossip and a centralized tracker. In our

1The term “direct verification” was introduced later by Minsky and Schneider [MS03]

87

Chapter 6. Related Work

work we also leverage gossip; in addition, Atum is a completely decentralized, general-purpose

GCS, it does not rely on a central tracker, and it allows any node to broadcast.

6.2.3 Robust overlay networks

S-Fireflies [DHR07] is an effective self-stabilizing overlay network suitable for data dissemina-

tion. It is robust to Byzantine faults and churn-tolerant. It creates random permutations of

the system nodes and uses them to pick the neighbors for each node. A difference between

S-Fireflies and Atum is that the former relies on global knowledge of all nodes at all times,

meaning that every node of the system is aware of every other node.2

Vicinity [VvS13] is a protocol for constructing and maintaining an overlay network, which

investigates the importance of randomness in large-scale P2P networks. The analysis around

this protocol shows that randomness must be complemented with structure (determinism)

for effective large-scale P2P networks. In Atum, we also leverage non-determinism (shuffling)

alongside determinism (SMR) to scatter faulty nodes and handle churn in volatile groups.

DHTs such as Chord [SMK+01] or Tapestry [ZHS+04] provide O(log N) lookup time and are

commonly used for routing in storage system. DHTs can be adapted to handle Byzantine

faults [CDG+02, FSY05, GFG+09, RLS02], and the problem of churn has also been addressed

in [LYL+06, RGRK04]. Tentative lookup schemes that are both secure and churn-friendly are

given in [YKGK10], where session times as low as 10 minutes are theoretically explored. In

Atum, we focus on general-purpose group communication – instead of lookup – and we use

the novel concept of volatile groups to allow even shorter session times.

6.2.4 Membership sampling

Membership services are an important middleware for data dissemination [FC97, HS00].

These services often rely on the non-determinism of a sampling protocol to obtain random

connections with other peers and ensure low-latency and robust dissemination. In Atum, our

sampling scheme is based on random walks over a well-connected H-graph. Other systems,

such as RaWMS [BYFK08] or the wormhole-based peer sampling service (WPSS) [RDJ13], also

leverage random walks to implement efficient sampling. Brahms [BGK+09] is a Byzantine-

tolerant membership sampling algorithm that tolerates churn. It is based on gossip and

provides a close-to-uniform sample of the processes across the whole system. In contrast with

these systems, Atum provides a complete solution for data dissemination, which also handles

high churn rates and Byzantine failures.

Distributed clustering techniques seek to group the processes of a system into clusters, some-

times called shards or quorums, of size O(log N) [AS09, KLST11, Sch05]. This line of work has

various goals, but similar to our efforts, they also aim for scalable solutions. The overarching

2We also assume global knowledge in one of our applications (AShare, Section 5.4.2), but this assumption is not
inherent in Atum.

88

6.2. Group Communication

principle in clustering techniques is similar to our use of samples: build each cluster in a prov-

ably random manner so that the adversary cannot dominate any single cluster, i.e., contain

Byzantine processes within their cluster. Samples in our solution are private and individual

per-process, in contrast to clusters which are typically public and global for the whole system.

To the best of our knowledge, we are also the first to explore groups of logarithmic size towards

obtaining a highly-scalable secure broadcast algorithm.

6.2.5 Storage

Scatter [GBKA11] is a distributed key-value store with linearizable operations. As Atum, Scatter

also partitions the system into self-organizing, dynamic groups of nodes, and is churn-tolerant.

Scatter focuses on performance and strong consistency at large scale, while in Atum, our main

objective is large-scale BFT. Inside groups, Scatter relies on Paxos; across groups, it achieves

coordination using a 2PC-based protocol. Atum ensures stronger fault-tolerance guarantees

inside groups (by using a BFT agreement [DS83]) and coordinates groups using a scalable

gossip scheme.

BFS [CL02], Farsite [ABC+02], Pond [REG+03], and Rosebud [RL03] are file storage systems

that use PBFT [CL02]. In BFS, the replicas running PBFT also store the data objects, so this

system fully replicates data across all the nodes and cannot scale well. Pond, Rosebud, and

Farsite achieve scalability by separating the BFT mechanism from the storage subsystem.

They use BFT quorums to agree on the operations that are performed, and the storage nodes

perform these operations. The BFT and storage subsystems can scale independently in this

case. Although these four systems assume a dynamic environment, only Rosebud provides

details on this concern.

In Rosebud, a group of BFT replicas agree on the system configuration and monitor all the

nodes in the system; this group periodically – once per epoch – propagates new configurations.

The churn rate in Rosebud thus depends on the length of epochs. This system has an evalua-

tion with epoch duration of a few hours; shorter epochs are possible but are not considered.

Atum can cope with session times in the order of minutes (Section 5.6.1). Unfortunately, we

were not able to find a Rosebud implementation to use for comparison.

89

7 Conclusions

This thesis discussed Byzantine fault-tolerance in the context of large-scale systems, focusing

on specific applications. The common denominator of these applications is their limited

reliance on a solution of the consensus problem. We showed that consensus, often a scalability

bottleneck in practical systems, can either be confined to a small part of the system or avoided

altogether. In particular, we studied the problem of transferring assets between accounts, we

presented a scalable secure broadcast algorithm, and we provided a middleware system for

organizing nodes in an overlay network that masks Byzantine faults and supports high churn.

First, we addressed the the asset transfer problem, where assets are being transferred between

accounts, while each account has a single owner. While many existing solutions to this

problem are based on a solution of consensus at least in some form, and thus fundamentally

rely on either synchrony assumptions or randomization (often both), we proved that asset

transfer can be solved both deterministically and asynchronously at the same time.

To this end, we examined the asset transfer problem in the context of shared memory, provid-

ing its precise formal definition as a sequential object type. We proved that this object type

has consensus number 1 by devising an algorithm implementing asset transfer in read-write

shared memory using an atomic snapshot object (known to be of consensus number 1).

Furthermore, we extended our theoretical result to the case where an account may have

more than one single owner. We proved that a sequential object type that supports multiple

owners per account, each of which is able to atomically transfer money from the account, has

consensus number k, if each account is shared by at most k owners. In practice, this implies

that in a potentially very big system, not all participants need to solve consensus. Instead, it

is sufficient if only the (potentially much smaller) set of co-owners of an account can agree

among themselves.

Next, we studied the the asset transfer problem in the Byzantine message passing model.

We provided a consensusless asset transfer algorithm that is based on a secure broadcast

abstraction with weaker than FIFO ordering guarantees. Our algorithm remains deterministic

91

Chapter 7. Conclusions

and asynchronous, using the secure broadcast primitive as a black box.

However, deterministic implementations of secure broadcast suffer from limited scalability, as

they involve processes communicating with quorums of other processes, leading to at least

linear per-process complexity. We thus also provided a relaxed version of secure broadcast,

called probabilistic secure broadcast, in which some of properties are allowed to be violated

with a bounded probability. Leveraging this relaxed specification allowed us to circumvent

the scalability bottlenecks of deterministic secure broadcast implementations while keeping

the probability of failure arbitrarily small. We devised a randomized algorithm implementing

secure broadcast that, instead of having processes communicate with quorums of other

processes, only communicate with randomly picked samples of processes. A sample being

representative of the whole system, a process can infer the state of the system by only observing

the state of a sample. The main advantage of using samples instead of quorums is that while

quorum sizes are linear in the system size, samples only need to be of logarithmic size.

We also explored the idea of logarithmically sized samples in a very different way in our Atum

system. The overarching goal, however, remains the same—scalability. Atum partitions the

whole system into groups of logarithmic size, the composition of which is sampled uniformly

at random. This ensures, with high probability, that a Byzantine adversary is unable to make

malicious processes over-represented in any of these groups. Executing a Byzantine fault-

tolerant agreement protocol inside each group, Atum masks malicious behavior of faulty nodes

inside each group and thus a group can function as one reliable entity. We achieved scalability

by confining the Byzantine agreement protocol to a small group instead of executing it among

all processes in the system. We demonstrated the usefulness of this system by implementing

three applications that can easily be built on top of Atum: a publish-subscribe system, a file

sharing service, and a data streaming system.

While consensus remains a central problem of distributed computing, in this thesis we argued

that it is, sometimes surprisingly, not necessary to solve consensus in order to implement

many applications of practical relevance. Even in some cases where consensus indeed is

required, it may be only needed in a localized way by a small number of processes, without

interfering with the rest of the system, greatly improving the system’s scalability.

92

Bibliography

[AAD+93] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.

Atomic snapshots of shared memory. Journal of the ACM, 40(4), 1993.

[ABB+18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh

Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula

Stathakopoulou, Marko Vukolic, Sharon Weed Cocco, and Jason Yellick. Hyper-

ledger fabric: a distributed operating system for permissioned blockchains. In

EuroSys, 2018.

[ABC+02] Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,

John R Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer, and Roger P Wat-

tenhofer. FARSITE: Federated, available, and reliable storage for an incompletely

trusted environment. ACM SIGOPS Operating Systems Review, 36(SI), 2002.

[ABND95] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in

message-passing systems. JACM, 42(1), 1995.

[ACMP11] Atul Adya, Gregory Cooper, Daniel Myers, and Michael Piatek. Thialfi: a Client

Notification Service for Internet-Scale Applications. In SOSP, 2011.

[AGK+15] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and

Marko Vukolić. The next 700 bft protocols. ACM Trans. Comput. Syst., 32(4),

January 2015.

[AGM+17] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla, and Jean-

Philippe Martin. Revisiting fast practical byzantine fault tolerance. arXiv preprint

arXiv:1712.01367, 2017.

[AGMS18] Karolos Antoniadis, Rachid Guerraoui, Dahlia Malkhi, and Dragos-Adrian Seredin-

schi. State Machine Replication is More Expensive Than Consensus. In DISC,

2018.

[amaa] https://aws.amazon.com/ec2/instance-types/.

93

Bibliography

[amab] Amazon S3 Availability Event: July 20, 2008. http://status.aws.amazon.com/

s3-20080720.html.

[AMN+16] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman.

Solida: A blockchain protocol based on reconfigurable byzantine consensus.

CoRR, abs/1612.02916, 2016.

[AMQ13] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. Rbft: Redundant

byzantine fault tolerance. In ICDCS, 2013.

[AO09] Daron Acemoglu and Asu Ozdaglar. 6.207/14.15: Networks - lecture 4:

Erdős–rényi graphs and phase transitions. https://economics.mit.edu/files/4622,

2009.

[APB09] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681 (Draft

Standard), September 2009.

[AS07] Baruch Awerbuch and Christian Scheideler. Towards Scalable and Robust Overlay

Networks. IPTPS, 2007.

[AS09] Baruch Awerbuch and Christian Scheideler. Towards a Scalable and Robust DHT.

Theory of Computing Systems, 45(2), 2009.

[AW94] Hagit Attiya and Jennifer L. Welch. Sequential consistency versus linearizability.

ACM TOCS, 12(2), 1994.

[BCH13] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The datacenter as a com-

puter: an introduction to the design of warehouse-scale machines. Synthesis

Lectures on Computer Architecture, 8(3), 2013.

[BGK+09] Edward Bortnikov, Maxim Gurevich, Idit Keidar, Gabriel Kliot, and Alexander

Shraer. Brahms: Byzantine resilient random membership sampling. Computer

Networks, 53(13), 2009. Gossiping in Distributed Systems.

[BGM16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of

work. In International Conference on Financial Cryptography and Data Security.

Springer, 2016.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards Optimal Distributed

Consensus. In FOCS, 1989.

[Bir85] Kenneth P. Birman. Replication and Fault-tolerance in the ISIS System. In SOSP,

1985.

[Bir93] Kenneth P. Birman. The process group approach to reliable distributed comput-

ing. Communications of the ACM, 36, 1993.

94

http://status.aws.amazon.com/s3-20080720.html
http://status.aws.amazon.com/s3-20080720.html
https://economics.mit.edu/files/4622

Bibliography

[BMC+15] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll,

and Edward W. Felten. SoK: Research Perspectives and Challenges for Bitcoin

and Cryptocurrencies. In IEEE S&P, 2015.

[BPR14] Carlos Eduardo Bezerra, Fernando Pedone, and Robbert Van Renesse. Scalable

state-machine replication. In DSN, 2014.

[Bra87] Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput.,

75(2), November 1987.

[BSA14] A. Bessani, J. Sousa, and E.E.P. Alchieri. State Machine Replication for the Masses

with BFT-SMART. In DSN, 2014.

[BT85a] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast proto-

cols. Journal of the ACM, 32(4), 1985.

[BT85b] Gabriel Bracha and Sam Toueg. Asynchronous Consensus and Broadcast Proto-

cols. Journal of the ACM, 32(4), 1985.

[BYFK08] Ziv Bar-Yossef, Roy Friedman, and Gabriel Kliot. RaWMS - Random Walk Based

Lightweight Membership Service for Wireless Ad Hoc Networks. ACM Trans.

Comput. Syst., 26(2), 2008.

[CCC+05] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou,

Lintao Zhang, and Paul Barham. Vigilante: End-to-end Containment of Internet

Worms. In SOSP, 2005.

[CDG+02] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S

Wallach. Secure routing for structured peer-to-peer overlay networks. ACM

SIGOPS Operating Systems Review, 36(SI), 2002.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A

Distributed Storage System for Structured Data. ACM TOCS, 26(2), 2008.

[CDK+03] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony

Rowstron, and Atul Singh. Splitstream: high-bandwidth multicast in cooperative

environments. In ACM SIGOPS Operating Systems Review, volume 37, 2003.

[CDKR02] Miguel Castro, Peter Druschel, A-M Kermarrec, and Antony IT Rowstron. Scribe: A

large-scale and decentralized application-level multicast infrastructure. Selected

Areas in Communications, IEEE Journal on, 20(8), 2002.

[CGL+09] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and Anthony D. Joseph.

Understanding TCP Incast Throughput Collapse in Datacenter Networks. In

WREN, 2009.

95

Bibliography

[CGR11] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Introduction to Reliable

and Secure Distributed Programming. Springer Publishing Company, Incorpo-

rated, 2nd edition, 2011.

[CKV01] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group communication

specifications: A comprehensive study. ACM Comput. Surv., 33(4), 2001.

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceed-

ings of the Third Symposium on Operating Systems Design and Implementation,

OSDI ’99, 1999.

[CL02] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proac-

tive recovery. ACM Transactions on Computer Systems, 20(4), 2002.

[CLM+08] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,

and Andrew Warfield. Remus: High availability via asynchronous virtual machine

replication. In NSDI, 2008.

[CML+06] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba

Shrira. HQ replication: A hybrid quorum protocol for Byzantine fault tolerance.

In OSDI, 2006.

[CP02] Christian Cachin and Jonathan A. Poritz. Secure intrusion-tolerant replication on

the internet. In DSN, 2002.

[CSV17] Christian Cachin, Simon Schubert, and Marko Vukolic. Non-Determinism in

Byzantine Fault-Tolerant Replication. In Panagiota Fatourou, Ernesto Jiménez,

and Fernando Pedone, editors, 20th International Conference on Principles of

Distributed Systems (OPODIS 2016), volume 70 of Leibniz International Proceed-

ings in Informatics (LIPIcs), Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik.

[CV17] Christian Cachin and Marko Vukolić. Blockchains consensus protocols in the

wild. arXiv preprint arXiv:1707.01873, 2017.

[CWA+09] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco

Marchetti. Making Byzantine Fault Tolerant Systems Tolerate Byzantine Faults.

In NSDI, 2009.

[Dea09] Jeff Dean. Designs, lessons and advice from building large distributed systems.

Keynote from LADIS, 2009.

[DGH+88] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott

Shenker, Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry. Epidemic

algorithms for replicated database maintenance. ACM SIGOPS Operating Systems

Review, 22(1), 1988.

96

Bibliography

[DHR07] Danny Dolev, EzraN. Hoch, and Robbert Renesse. Self-stabilizing and byzantine-

tolerant overlay network. In OPODIS, 2007.

[DLlKA05] George Danezis, Chris Lesniewski-laas, M. Frans Kaashoek, and Ross Anderson.

Sybil-resistant dht routing. In In ESORICS. Springer, 2005.

[DM96] Danny Dolev and Dalia Malki. The Transis approach to high availability cluster

communication. Communications of the ACM, 39(4), 1996.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. In Proceedings of the 13th Conference on USENIX Security

Symposium - Volume 13, SSYM’04, Berkeley, CA, USA, 2004. USENIX Association.

[Dou02] John R Douceur. The sybil attack. In IPTPS. Springer, 2002.

[DRZ18] Sisi Duan, Michael K. Reiter, and Haibin Zhang. BEAT: Asynchronous BFT Made

Practical. In CCS, 2018.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine

agreement. SIAM J. Comput., 12(4), 1983.

[DSW16] Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets strong

consistency. In Proceedings of the 17th International Conference on Distributed

Computing and Networking, page 13, 2016.

[EFGK03] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.

The many faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2),

2003.

[EGSVR16] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-

NG: A Scalable Blockchain Protocol. In NSDI, 2016.

[FC97] Christof Fetzer and Flaviu Cristian. A fail-aware membership service. In Reliable

Distributed Systems, 1997.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of

distributed consensus with one faulty process. Journal of the ACM, 32(2), April

1985.

[FSY05] Amos Fiat, Jared Saia, and Maxwell Young. Making Chord Robust to Byzantine

Attacks. Algorithms–ESA, 2005.

[GAG+18] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,

Michael K. Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu.

SBFT: a scalable decentralized trust infrastructure for blockchains. CoRR,

abs/1804.01626, 2018.

97

Bibliography

[GBKA11] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas An-

derson. Scalable consistency in Scatter. In SOSP, 2011.

[GFG+09] Roxana Geambasu, Jarret Falkner, Paul Gardner, Tadayoshi Kohno, Arvind Kr-

ishnamurthy, and Henry M Levy. Experiences building security applications on

DHTs. Technical report, Technical report, UW-CSE-09-09-01, 2009.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System.

In SOSP, 2003.

[GHK13] Rachid Guerraoui, Florian Huc, and Anne-Marie Kermarrec. Highly dynamic

distributed computing with byzantine failures. In PODC, 2013.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

Algorand: Scaling byzantine agreements for cryptocurrencies. In SOSP, 2017.

[GKKZ11] Juan A Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adap-

tively Secure Broadcast, Revisited. In PODC. Citeseer, 2011.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:

Analysis and applications. In Advances in Cryptology - EUROCRYPT 2015, 2015.

[GKM+18] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-

Adria Seredinschi. Asynchronous trustoworthy transfers. arXiv preprint

arXiv:1812.10844, 2018.

[GLV06] Rachid Guerraoui, Ron R. Levy, and Marko Vukolic. Lucky read/write access to

robust atomic storage. In 2006 International Conference on Dependable Systems

and Networks (DSN 2006), 25-28 June 2006, Philadelphia, Pennsylvania, USA,

Proceedings, pages 125–136, 2006.

[GPS18] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. Blockchain

protocols: The adversary is in the details. In Symposium on Foundations and

Applications of Blockchain, 2018.

[Gup16] Saurabh Gupta. A Non-Consensus Based Decentralized Financial Transaction

Processing Model with Support for Efficient Auditing. Master’s thesis, Arizona

State University, USA, 2016.

[GV06] Rachid Guerraoui and Marko Vukolic. How fast can a very robust read be? In Pro-

ceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed

Computing, PODC 2006, Denver, CO, USA, July 23-26, 2006, pages 248–257, 2006.

[GV07] Rachid Guerraoui and Marko Vukolic. Refined quorum systems. In Proceedings of

the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing,

PODC 2007, Portland, Oregon, USA, August 12-15, 2007, pages 119–128, 2007.

98

Bibliography

[GvR13] Haoyan Geng and Robbert van Renesse. Sprinkler - Reliable Broadcast for Geo-

graphically Dispersed Datacenters. In Middleware 2013. 2013.

[Hea16] Mike Hearn. Corda: A distributed ledger. Corda Technical White Paper, 2016.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming

Languages and Systems, 13(1), 1991.

[HS00] Matti A Hiltunen and Richard D Schlichting. The cactus approach to building

configurable middleware services. In Proceedings of the Workshop on Dependable

System Middleware and Group Communication (DSMGC 2000), 2000.

[HT93] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related prob-

lems. In Sape J. Mullender, editor, Distributed Systems, chapter 5. Addison-Wesley,

1993.

[HW90] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condi-

tion for concurrent objects. ACM Transactions on Programming Languages and

Systems (TOPLAS), 12(3), 1990.

[IRRS16] Damien Imbs, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. Read/write

shared memory abstraction on top of asynchronous byzantine message-passing

systems. J. Parallel Distrib. Comput., 93-94, 2016.

[JAVR06] Håvard Johansen, André Allavena, and Robbert Van Renesse. Fireflies: scalable

support for intrusion-tolerant network overlays. ACM SIGOPS Operating Systems

Review, 40(4), 2006.

[JF88] Colin J. Fidge. Timestamps in message-passing systems that preserve partial

ordering. In Proceedings of the 11th Australian Computer Science Conference, 02

1988.

[JT92] Prasad Jayanti and Sam Toueg. Some results on the impossibility, universabil-

ity and decidability of consensus. In International Workshop on Distributed

Algorithms, volume 647 of LNCS. Springer Verlag, 1992.

[KAD+07] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: speculative

byzantine fault tolerance. In SOSP, October 2007.

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,

Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weatherspoon, Westley

Weimer, Chris Wells, and Ben Zhao. Oceanstore: An architecture for global-scale

persistent storage. SIGPLAN Not., 2000.

[KHG12] Aniket Kate, Yizhou Huang, and Ian Goldberg. Distributed key generation in the

wild. IACR Cryptology ePrint Archive, 2012.

99

Bibliography

[KJG+16] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus

Gasser, and Bryan Ford. Enhancing bitcoin security and performance with strong

consistency via collective signing. In USENIX Security, 2016.

[KJW+18] Kolbeinn Karlsson, Weitao Jiang, Stephen Wicker, Danny Adams, Edwin Ma,

Robbert van Renesse, and Hakim Weatherspoon. Vegvisir: A Partition-Tolerant

Blockchain for the Internet-of-Things. In ICDCS, 2018.

[KKJG+18] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa

Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via

sharding. In IEEE S&P, 2018.

[KLST11] Valerie King, Steven Lonargan, Jared Saia, and Amitabh Trehan. Load Balanced

Scalable Byzantine Agreement through Quorum Building, with Full Information.

In International Conference on Distributed Computing and Networking. Springer,

2011.

[KRAV03] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vahdat. Bullet: High

bandwidth data dissemination using an overlay mesh. In SOSP, 2003.

[KT91] M Frans Kaashoek and Andrew S Tanenbaum. Group communication in the

Amoeba distributed operating system. In ICDCS, 1991.

[LAB+06] Jacob R. Lorch, Atul Adya, William J. Bolosky, Ronnie Chaiken, John R. Douceur,

and Jon Howell. The smart way to migrate replicated stateful services. In EuroSys,

2006.

[Lam78] Leslie Lamport. The implementation of reliable distributed multiprocess systems.

Computer Networks, 2, 1978.

[LCM+08] Harry C Li, Allen Clement, Mirco Marchetti, Manos Kapritsos, Luke Robison,

Lorenzo Alvisi, and Mike Dahlin. FlightPath: Obedience vs. Choice in Cooperative

Services. In OSDI, 2008.

[LeM18] Colin LeMahieu. Nano: A feeless distributed cryptocurrency network. Nano

[Online resource]. URL: https://nano. org/en/whitepaper (date of access: 18.01.

2019), 2018.

[LLK10] Chris Lesniewski-Lass and M Frans Kaashoek. Whanau: A sybil-proof distributed

hash table. In NSDI, 2010.

[LS03] Ching Law and Kai-Yeung Siu. Distributed construction of random expander

networks. In INFOCOM, 2003.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals

problem. ACM Trans. Program. Lang. Syst., 4(3), July 1982.

100

Bibliography

[LYL+06] Zhiyu Liu, Ruifeng Yuan, Zhenhua Li, Hongxing Li, and Guihai Chen. Survive

under high churn in structured P2P systems: evaluation and strategy. In ICCS,

2006.

[Maz15] David Mazieres. The stellar consensus protocol: A federated model for internet-

level consensus. Stellar Development Foundation, 2015.

[MMR97] Dahlia Malkhi, Michael Merritt, and Ohad Rodeh. Secure reliable multicast

protocols in a wan. In ICDCS, 1997.

[MMR99] Dahlia Malkhi, Yishay Mansour, and Michael K. Reiter. On diffusing updates in a

byzantine environment. In SRDS, 1999.

[MMR00] Dahlia Malkhi, Michael Merritt, and Ohad Rodeh. Secure reliable multicast

protocols in a wan. Distributed Computing, 13(1), Jan 2000.

[MR97a] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. In Proceedings of

the twenty-ninth annual ACM symposium on Theory of computing. ACM, 1997.

[MR97b] Dahlia Malkhi and Michael K. Reiter. A high-throughput secure reliable multicast

protocol. Journal of Computer Security, 5(2), 1997.

[MRWW01] Dahlia Malkhi, Michael K Reiter, Avishai Wool, and Rebecca N Wright. Probabilis-

tic quorum systems. Inf. Comput., 170(2), November 2001.

[MS03] Yaron M Minsky and Fred B Schneider. Tolerating malicious gossip. Distributed

Computing, 16(1), 2003.

[MXC+16] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey

badger of bft protocols. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 2016.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[NDO11] Edmund B. Nightingale, John R. Douceur, and Vince Orgovan. Cycles, Cells and

Platters: An Empirical Analysis of Hardware Failures on a Million Consumer PCs.

In EuroSys, 2011.

[OGP03] David Oppenheimer, Archana Ganapathi, and David A. Patterson. Why do Inter-

net services fail, and what can be done about it? In USITS, 2003.

[OO14] Diego Ongaro and John Ousterhout. In search of an understandable consensus

algorithm. USENIX ATC, 2014.

[PS02] Fernando Pedone and André Schiper. Handling message semantics with generic

broadcast protocols. Distributed Computing, 15(2), 2002.

101

Bibliography

[RDJ13] Roberto Roverso, Jonathon Dowling, and Mark Jelasity. Through the wormhole:

Low cost, fresh peer sampling for the internet. In Peer-to-Peer Computing (P2P),

2013.

[REG+03] Sean C Rhea, Patrick R Eaton, Dennis Geels, Hakim Weatherspoon, Ben Y Zhao,

and John Kubiatowicz. Pond: The OceanStore prototype. In FAST, volume 3,

2003.

[RGRK04] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling

churn in a DHT. In USENIX, 2004.

[RL03] Rodrigo Rodrigues and Barbara Liskov. Rosebud: A scalable byzantine-fault-

tolerant storage architecture. Technical Report MIT-LCS-TR-932 and MIT-CSAIL-

TR-2003-035, 2003.

[RLGS14] Philip Rapoport, Roman Leal, Patrick Griffin, and Wellingtona Sculley. The Ripple

Protocol, 2014.

[RLS02] Rodrigo Rodrigues, Barbara Liskov, and Liuba Shrira. The design of a robust

peer-to-peer system. In ACM SIGOPS European workshop: beyond the PC - EW10,

2002.

[SBV18] Joao Sousa, Alysson Bessani, and Marko Vukolic. A byzantine fault-tolerant

ordering service for the hyperledger fabric blockchain platform. In DSN, 2018.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state machine

approach: A tutorial. ACM Comput. Surv., 22(4), 1990.

[Sch05] Christian Scheideler. How to Spread Adversarial Nodes? Rotate! In STOC. ACM,

2005.

[SDG10] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. Understanding latent

sector errors and how to protect against them. In FAST, 2010.

[SHPG12] Ankit Singla, Chi-Yao Hong, Lucian Popa, and Philip Brighten Godfrey. Jellyfish:

Networking data centers randomly. In NSDI, 2012.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrish-

nan. Chord: A scalable peer-to-peer lookup service for internet applications. In

SIGCOMM, 2001.

[SPBZ11] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free

replicated data types. In Stabilization, Safety, and Security of Distributed Systems.

Springer, 2011.

[sql] https://www.sqlite.org/.

102

https://www.sqlite.org/

Bibliography

[Sza97] Nick Szabo. Formalizing and securing relationships on public networks. First

Monday, 2(9), 1997.

[Tou84] Sam Toueg. Randomized byzantine agreements. In Proceedings of the Third

Annual ACM Symposium on Principles of Distributed Computing, PODC ’84, New

York, NY, USA, 1984. ACM.

[TR18] Team-Rocket. Snowflake to Avalanche: A Novel Metastable Consensus Protocol

Family for Cryptocurrencies. White Paper, 2018. Revision: 05/16/2018 21:51:26

UTC.

[vdHLZZ15] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela:

Scalable private messaging resistant to traffic analysis. In Proceedings of the 25th

Symposium on Operating Systems Principles, SOSP ’15, New York, NY, USA, 2015.

ACM.

[VGLN07] Long Vu, Indranil Gupta, Jin Liang, and Klara Nahrstedt. Measurement and

modeling of a large-scale overlay for multimedia streaming. In QSHINE, 2007.

[VRBM96] Robbert Van Renesse, Kenneth P Birman, and Silvano Maffeis. Horus: A Flexible

Group Communication System. Communications of the ACM, 39(4), 1996.

[Vuk10] Marko Vukolic. The origin of quorum systems. Bulletin of the EATCS, 101, 2010.

[Vuk15] Marko Vukolić. The Quest for Scalable Blockchain Fabric: Proof-of-work vs. BFT

Replication. In International Workshop on Open Problems in Network Security.

Springer, 2015.

[VvS13] Spyros Voulgaris and Maarten van Steen. Vicinity: A pinch of randomness brings

out the structure. In David Eyers and Karsten Schwan, editors, Middleware, Berlin,

Heidelberg, 2013. Springer Berlin Heidelberg.

[WECK07] Hakim Weatherspoon, Patrick Eaton, Byung-Gon Chun, and John Kubiatowicz.

Antiquity: exploiting a secure log for wide-area distributed storage. ACM SIGOPS

Operating Systems Review, 41(3), 2007.

[Woo15] Gavin Wood. Ethereum: A secure decentralized generalized transaction ledger.

White paper, 2015.

[YKGK10] Maxwell Young, Aniket Kate, Ian Goldberg, and Martin Karsten. Practical Robust

Communication in DHTs Tolerating a Byzantine Adversary. In ICDCS, 2010.

[ZHS+04] Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D Joseph,

and John D Kubiatowicz. Tapestry: A resilient global-scale overlay for service

deployment. IEEE JSAC, 22(1), 2004.

103

Matej Pavlovič
EPFL IC IINFCOM DCL, INR 314 (Bâtiment INR), Station 14, CH-1015 Lausanne, Switzerland

matej.pavlovic@epfl.ch ● +41 76 650 7980 ● https://people.epfl.ch/matej.pavlovic

RESEARCH
INTERESTS

Large-scale dynamic distributed systems, State machine replication, Byzantine fault tolerance,
Blockchain, Distributed storage, Consistency

EDUCATION École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
■ PhD candidate, Computer Science Sep 2013 – Sep 2019

● Advisor: Prof. Rachid Guerraoui
● Thesis title: “Scaling Byzantine Fault Tolerance”

■ Internship on large-scale dynamic distributed BFT systems Oct 2012 – Jul 2013
■ ERASMUS Exchange Sep 2011 – Jun 2012

● Master’s thesis: “Implementation of a Distributed Computation Framework”
● Thesis supervisors: Prof. Rachid Guerraoui (EPFL), Prof. Ulrich Schmid (TU Wien)

Vienna University of Technology (TU Wien), Vienna, Austria Oct 2007 – Jun 2011
■ Master of Science (MSc) in Computer Engineering

● Graduated with distinction, GPA: 1.176 (scale from 1 to 5)
■ Bachelor of Science (BSc) in Computer Engineering

● Graduated with distinction, GPA: 1.383 (scale from 1 to 5)

INTERNSHIP Oracle Labs East, Boston (Burlington), Massachusetts, USA Jun 2017 – Sep 2017
■ Penumbra and Scalable Synchronization Research Group (now Distributed Systems Group)
■ Persistent memory key-value store, persistent multi-word compare-and-swap

CONFERENCE
AND JOURNAL
PUBLICATIONS ■ Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Dragos-Adrian Seredinschi

“The Consensus Number of a Cryptocurrency”
PODC 2019

■ Oana Balmau, Rachid Guerraoui, Anne-Marie Kermarrec, Alexandre Maurer, Matej Pavlovič,
Willy Zwaenepoel
“The Fake News Vaccine”
NETYS 2019

■ Matej Pavlovič, Alex Kogan, Virendra J. Marathe, Tim Harris
“Brief Announcement: Persistent Multi-Word Compare-and-Swap”
PODC 2018.

■ Yihe Huang, Matej Pavlovič, Virendra Marathe, Margo Seltzer, Tim Harris, Steve Byan
“Closing the Performance Gap Between Volatile and Persistent Key-Value Stores Using
Cross-Referencing Logs”
USENIX ATC 2018.

■ Rachid Guerraoui, Matej Pavlovič, Dragos-Adrian Seredinschi
“Blockchain Protocols: The Adversary is in the Details”
Symposium on Foundations and Applications of Blockchain 2018

■ Rachid Guerraoui, Matej Pavlovič, Dragos-Adrian Seredinschi
“Incremental Consistency Guarantees for Replicated Objects”
OSDI 2016

■ Rachid Guerraoui, Anne-Marie Kermarrec, Matej Pavlovič, Dragos-Adrian Seredinschi
“Atum: Scalable Group Communication Using Volatile Groups”
Middleware 2016

■ Rachid Guerraoui, Matej Pavlovič, Dragos-Adrian Seredinschi
“Trade-offs in Replicated Systems”
IEEE Data Engineering Bulletin 39(1) 2016

Matej Pavlovič - matej.pavlovic@epfl.ch - Page 1 of 2

https://www.google.com/maps/place/INR,+Route+J-D.Colladon,+1015+Ecublens,+Switzerland/
mailto:matej.pavlovic@epfl.ch
https://people.epfl.ch/matej.pavlovic
http://www.epfl.ch/
https://people.epfl.ch/rachid.guerraoui
https://people.epfl.ch/rachid.guerraoui
https://ti.tuwien.ac.at/ecs/people/schmid
http://www.tuwien.ac.at/en/
http://www.informatik.tuwien.ac.at/studium/angebot/master/technische-informatik
http://www.informatik.tuwien.ac.at/studium/angebot/bachelor/technische-informatik
https://dl.acm.org/citation.cfm?id=3212783
https://www.usenix.org/conference/atc18/presentation/huang
https://www.usenix.org/conference/atc18/presentation/huang
https://scfab.github.io/2018/assets/papers/fab18_submission_04.pdf
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/guerraoui
https://infoscience.epfl.ch/record/223663/files/a19-guerraoui.pdf
http://sites.computer.org/debull/A16mar/p14.pdf

OTHER
PUBLICATIONS

■ Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, Dragos-Adrian Seredinschi
“AT2: Asynchronous Trustworthy Transfers”
https://arxiv.org/abs/1812.10844, 2018

SKILLS ■ Programming
● Python
● Java
● JavaScript
● C

■ Circuit design in VHDL
■ Microcontroller Programming

AWARDS AND
SCHOLARSHIPS

■ EPFL IC Faculty Award for Teaching Excellence Dec 2017
■ Mondi Austria Student Scholarship Oct 2007 – Aug 2013

● For exceptional achievements in the education so far and extra-curricular activities
● Full coverage of studying and living cost during undergraduate and master’s studies

TEACHING &
MENTORING

TEACHING
■ Distributed Algorithms (CS-451) - master’s class, EPFL Fall 2018
■ Industrial Automation (CS-487) - master’s class, EPFL Spring 2018
■ Information, Computation, Communication (CS-110(b)) - undergrad class, EPFL Fall 2017
■ Industrial automation (CS-487) - master’s class, EPFL Spring 2017
■ Information, Computation, Communication (CS-110(b)) - undergrad class, EPFL Fall 2016
■ Mathématiques générales II (UNIL-108) - undergrad class, UNIL Spring 2016
■ Information, Computation, Communication (CS-110(b)) - undergrad class, EPFL Fall 2015
■ Mathematics II (MATH-186) - undergrad class, UNIL Spring 2015
■ Distributed algorithms (CS-451) - master’s class, EPFL Fall 2014
■ Probabilities and statistics (MATH-232) - undergrad class, EPFL Spring 2014

MENTORING
■ EDIC doctoral project: Zeinab Shmeis - Evaluation of a Scalable Secure Broadcast Protocol
(Fall 2018)

■ Semester project: Iva Najdenova - Improving the Efficiency of a Blockchain Protocol
(Spring 2018)

■ Semester project: Florian Alonso, Dennis van der Bij - Large Scale Gossip Based State Machine
Replication (Spring 2018)

■ Semester project: André Baptista Águas, Artem Shevchenko - Collaborative Blockchain
Reinforcement in Blockchain Systems. (Spring 2017)

■ Semester project: Radmila Popovic - Application of incremental consistency guarantees in a
social network application. (Summer 2016)

■ Master’s thesis: Kenji Relut - Implementation of Incremental Consistency in global-scale storage
systems with Zookeeper’s queue (Spring 2016)

■ Summer internship: Mahammad Valiyev - Implementation of a Byzantine fault tolerant
computation framework (Summer 2015)

■ Semester project: Jean Ashton - Design and implementation of a real-time multiplayer browser
game (Spring 2015)

LANGUAGES ■ Slovak: native language
■ English: fluent (speaking / writing)
■ German: fluent (speaking / writing)
■ French: fluent in speaking, intermediate in writing

EXTRA-
CURRICULAR
ACTIVITIES

■ Judo - 3x national champion, trainer and referee in Slovakia
■ Swing dancing
■ Outdoor activities - ski touring, snowboarding, mountaineering,
rock climbing, mountain biking, cycling

■ Piano

Matej Pavlovič - matej.pavlovic@epfl.ch - Page 2 of 2

https://arxiv.org/abs/1812.10844
https://arxiv.org/abs/1812.10844

Ce document a été imprimé au Centre d’impression EPFL,
imprimerie climatiquement neutre, certifiée myClimate.

	Acknowledgements
	Preface
	Abstract (English/Deutsch)
	List of figures
	List of algorithms
	Introduction
	Asset Transfer in Shared Memory
	Introduction
	Shared Memory Model and Asset-Transfer Object Type
	Shared memory
	The asset-transfer object type

	Asset-Transfer Has Consensus Number 1
	k-Shared Asset-Transfer Has Consensus Number k

	Asset Transfer in Message Passing
	Introduction
	Byzantine-Tolerant Asset Transfer
	Asset Transfer Implementation in Byzantine Message Passing
	k-shared Asset Transfer in Message Passing

	Probabilistic Secure Broadcast
	Introduction
	Samples
	Scalable Secure Broadcast

	Model and Assumptions
	Probabilistic broadcast
	Definition
	Algorithm
	Correctness

	Probabilistic consistent broadcast
	Definition
	Algorithm
	Correctness

	Probabilistic secure broadcast
	Definition
	Algorithm
	Correctness

	Atum: Scalable Group Communication Using Volatile Groups
	Introduction
	Assumptions and Guarantees
	Design
	Group layer
	Overlay layer
	API operations

	Applications
	ASub
	AShare
	AStream

	Deploying Atum
	Practical considerations
	Atum implementations

	Evaluation
	Base evaluation of Atum
	Evaluating AShare
	Evaluating AStream

	Experiences and Lessons Learned
	Conclusions

	Related Work
	Asset Transfer
	Group Communication
	Broadcast abstractions
	Gossip
	Robust overlay networks
	Membership sampling
	Storage

	Conclusions
	Bibliography
	Matej Pavlovič
	Research Interests
	Education
	Internship
	Conference and Journal Publications
	Other Publications
	Skills
	Awards and Scholarships
	Teaching & Mentoring
	Teaching
	Mentoring

	Languages
	Extra- curricular Activities

