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Abstract
This thesis presents a theoretical study of the Heisenberg model on a two dimensional lattice

with asymmetric couplings along x and y directions. By gradually varying the coupling along

y-direction we traverse the 1D, quasi 1D and 2D domains of this model. Primary focus of the

research revolves around exploring the merits and de-merits of the staggered-flux state, a

prototypical disordered resonating valance bond state, as a candidate wavefunction within

this domain. Novel features like the fractionalization of spin-1 ‘magnon’ excitations into

spin-1/2 ‘spinon’ excitations, which qualitatively explain the experimentally observed (π,0)

quantum anomaly, demand further investigation into this novel wave function.

Theoretical framework involving construction of a Gutzwiller projected staggered flux state, a

wavefunction depending on variational parameters, is developed. A numerical method based

on MonteCarlo simulation is used to optimize the variational wave function and calculate the

relevant physical observables. Exploring the gradual evolution of these observables with the

coupling ratio γ= Jy /Jx provides us with a clear picture of the evolution of spin excitations on

this RVB state, as the dimensionality of the model is changed from 1D to 2D.

Keywords: Rectangular Heisenberg anti-ferromagnet, staggered flux, magnons, spinons, res-

onating valance bond, confinement/de-confinement.
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Résumé
Cette thèse présente l’étude théorique du modèle d’Heisenberg appliqué à un réseau deux

dimensionnel avec couplage asymétrique entre l’axe x et y. En faisant varier graduellement

le couplage selon l’axe y, nous traversons les domaines 1D, quasi 1D et 2D de ce modèle.

L’objectif premier de cette étude porte sur les avantages et désavantages de l’état dit de flux

échelonné, un état prototype décrivant les liaisons de valence résonnantes désordonnées, en

tant que fonction d’onde candidate pour ce domaine. De nouvelles propriétés comme la frac-

tionalisation des excitations ‘magnon’ spin-1 en ‘spinon’ spin-1/2, expliquant qualitativement

l’anomalie quantique (π,0) observée expérimentalement, exigent une étude plus profonde de

cette fonction d’onde novatrice.

Le cadre théorique y est développé, impliquant la construction d’un état projeté de Gutz-

willer dit de flux échelonné, une fonction d’onde dépendant de paramètres variationnels. Une

méthode numérique basée sur de la simulation MonteCarlo est utilisée pour optimiser la

fonction d’onde variationnelle et calculer les observables physique pertinentes. L’évolution de

ces observables avec le ratio γ= Jy /Jx nous apporte des renseignements clairs sur l’évolution

des excitations de spin pour cet état de liaison de valence résonnante, à mesure que la dimen-

sionnalité du modèle passe de 1D à 2D.

Mots-clefs : anti-ferromagnétisme rectangulaire d’Heisenberg, flux échelonné, magnons,

spinons, liaison de valence résonnante, confinement, déconfinement
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Abbrevations
ABC Anti periodic boundary condition along x-direction

CDF Cumulative Distribution Function

CFTD Copper Formate Tetra Deuterate ( Ci(DCOO)2·4D2O )

INS Inelastic Neutron Scattering

MBZ Magnetic Brillouin Zone

PBC Periodic boundary condition along x-direction

QSHAF Quantum Square Heisenberg Anti Ferromagnet

QSL Quantum Spin Liquid

RMS Root Mean Square

RVB Resonating Valance Bond

SBGP Gutzwiller Projected Schwinger Boson

SF Gutzwiller Projecte Staggered Flux

SWT Spin Wave Theory

VMC Variational Monte Carlo
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1 Introduction

Ever since the inception of human inquiry and scientific thought, one of the most fundamental

questions scientist and philosophers kept asking themselves was "What is matter made of ?".

More clearly, as reductionists would like to ask "What are the fundamental constituents of

matter and how do they interact ?". Hundreds of years of scientific inquiry has led us through

a multitude of explanations and pictures describing the nature. As mathematical formulations

and physical experiments became sophisticated, so did our understanding of the constituents

of nature. With each discovery the true picture of the universe became more clear.

Today we understand that a significant part of physical matter( apart from dark matter and

dark energy) around us is made up of fields of leptons and quarks with the interactions being

mediated by gauge fields. Three out of the four forces have been unified under the umbrella

of the standard model with gravity still eluding a unified theory. This description involves

the particles being described as quantized fields permeating the physical vacuum and this

duality of particle-wave like behavior is at the heart of modern physics. Although the notion

of fundamental particles of matter is ascribed to quarks and leptons today, quarks do not

exist individually. At low energies they are always found in combinations, preserving certain

symmetries, a phenomenon known as ‘confinement’. A proper theoretical framework to

describe confinement still eludes physicists and mathematicians and hence still remains one

of the millennium problems of this century [Devlin (2002)].

The notion of confinement is not limited to fundamental particles that are investigated in high

energy physics. Condensed matter physics is a branch of physics that deals with condensed

phases of large number of constituent particles, with strong interactions, that could be typically

described in a non-relativistic framework. Within condensed matter physics, there are various

examples of excitations, at model level [Fonseca and Zamolodchikov (2003); Delfino et al.

(1996); Delfino and Mussardo (1998)], that tend to confine/de-confine into other types of

excitations which carry fractional quantum numbers. An important distinction to be made

here, as compared to high energy physics, is the concept of ‘emergence’. The emergent degrees

of freedom are those that are exhibited on a macroscopic scale but are completely invisible on

microscopic level. This is quite contrary to a reductionist notion that a macroscopic system is
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Chapter 1. Introduction

fully understood in terms of its microscopic constituents. Excitations that have their origin in

emergent degrees of freedom are particularly important in condensed matter physics, where

at low energy scales, the intra-nuclear degrees of freedom do not explicitly play a major role in

overall physics.

A key example showing the emergent degrees of freedom is the spin-charge separation in

1D electronic systems [Lieb and Wu (1968)] . Due to the special nature of 1D physics, where

particles have to push its neighbors to move, free movement is not possible. This leads

to all excitations behaving as collective excitations. This dimensional restriction lead to

deconfinement of electronic charge and spin degrees of freedom into ‘holons’ and ‘spinons’

respectively. These excitations along with theoretically predicted ‘orbitons’ [Pen et al. (1997);

van den Brink et al. (1998)] have experimentally been observed [Kim et al. (1996); Schlappa

et al. (2012)]. The main focus of our research work is dedicated to spinons which are fractional

excitations carrying a spin quantum number 1/2. Spinons are the fundamental excitations in

1D nearest neighbor S=1/2 Heisenberg model, which can be exactly solved analytically using

Bethe ansatz [Bethe (1931)]. Normally, in the case of a spin chain of non interacting spins a

∆S = 1 excitation at a particular site corresponds to a flip of s =−1/2 spin to a s = 1/2 state.

But in the case of an interacting chain with Heisenberg coupling between nearest neighbors,

the ∆S = 1 excitation deconfines into freely moving s = 1/2 excitations. The deconfinement

of these fractional spin 1/2 excitations has been theoretically predicted [Müller et al. (1981);

Faddeev and Takhtajan (1981)] and experimentally validated [Tennant et al. (1995); Lake

et al. (2005); Mourigal et al. (2013)]. The existence of these fermionic fractional excitations is

strikingly different from the higher dimensional(unfrustrated) versions of the model where

a transverse excitation induced through a spin flip, manifests itself as a bosonic(hard-core

for quantum S = 1/2 spin) spin s = 1 excitation. The qualitative difference between these

scenarios can be seen by looking at their spin excitation spectrum from Fig(1.1), where the 1D

quantum spin AFM chains exhibits a continuum, the 2D spectrum shows a sharp mode.

The phenomenon of de-confined spin flip is not limited to 1D physics. Frustrated magnetic

2D lattices are one of the most extensively studied systems in the area of quantum magnetism.

Frustration could be of geometric origin(see Fig(1.2a)), for example as in triangular lattices

[Coldea et al. (2001(a)] and kagome lattices [de Vries et al. (2009); Jeong et al. (2011)], or

due to competition from extended couplings, as in compounds with significant next nearest

neighbor hopping amplitude. The interest in these structures is primarily driven by the search

for quantum spin liquid state(QSL) in materials [Balents (2010)]. QSL contain disordered

magnetic configurations till very low temperatures( T = 0 in principle), due competing mag-

netic interactions that lead to massive degeneracy. QSL are expected to play a fundamental

role in understanding high temperature superconductivity through Anderson’s theory of Res-

onating Valance Bond state(RVB) [Anderson et al. (1987)]. This state could be imagined as

a superposition of local and non-local singlet pairs on a lattice. A transverse spin excitation

induced on this state, breaks the singlet into two un-paired up spins. Each of this un paired

spins, can move in the background of the RVB at a minimal energy cost(see Fig(1.2)(b)), and

can be referred to as a ‘spinon’ in this context. QSL are also expected to play a key role in

2



topological quantum computation [Freedman et al. (2003)]. Two dimensional honeycomb

lattices with Kitaev interaction are predicted to host two-dimensional quasi-particles called

anyons [Kitaev (2006)]. Unlike bosons or fermions, anyons attain a complex phase shift upon

exchange. Due to the topological nature of braiding of these quasi-particles, logical gates

(quantum) constructed out of these braids are weakly affected by small perturbations that

tend to decohere qubits. This makes them robust candidates for quantum operations.
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Figure 1.1 – (a)An illustration of possible eigen energy values on a 1D quantum AFM spin
chain (b) Magnon dispersion from linear SWT on a 2D QSHAF, along a selected k-path.(c) Spin
excitation spectrum of CFTD a spin 1/2 Heisenberg AFM chain from Mourigal et. al(2013) (d)
Spin wave dispersion on La2CuO4 the parent compound of a high temperature superconductor
from Coldea et al. (2001b).
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Chapter 1. Introduction

?
(a) (b)

Figure 1.2 – (a) Geometric frustration because of competing Heisnberg interactions on a
trigangular lattice (b) Spinon movement on a QSL background.

Figure 1.3 – Dispersion(top) and Intensity(bottom) corresponding to the INS measurements
on CFTD from Christensen et al. The blue circles correspond to the data and the solid lines
corresponds to the linear spin wave result with J adjusted such that ω(π/2,π/2) matches the
experiment.

Search for spinons in unfrustrated lattices and their characterization is an ongoing challenge.

Weakly coupled spin ladders are shown to host the experimental realization of spinon confine-

ment [Lake et al. (2009)], where at low energies the spinons are confined, and at high energies

the spin the chains are effectively decoupled. A particular interesting case that reinvigorated

our interest towards spinons in 2D in is the (π,0) quantum anomaly observed in the inelastic

neutron scattering(INS) measurements on Cu(DCOO)2·4D2O(CFTD) [Rønnow et al. (2001)].
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The CFTD material being a physical realization of a quantum square lattice anti-ferromagnet

(QSHAF) is expected to host a spin excitation spectrum well accounted by spin wave theory

(SWT)[Bloch (1930); Kubo (1952); Anderson (1952)]. The (π,0) quantum anomaly evidenced

some important deviations from SWT at the high energy/small wavelength part of the excita-

tion spectrum [Rønnow et al. (2001); Christensen et al. (2007)]. It constitutes a 7% downward

dispersion in the magnetic zone boundary compared to SWT as can be seen in Fig(1.3). Also

observed is a subsequent loss of spectral weight at (π,0) symmetry point in the INS data

on CFTD. The spectral weight seems to have been pushed to a continuum at high energies.

Polarized INS measurements on the same compound by Mourigal et al., [Mourigal (2011)]

have indicated that the excitations corresponding to the high-energy continuum could be

spin isotropic in nature. The anomaly has also been found to exist in La2CuO4 [Headings

et al. (2010)]. These observations motivated Dalla Piazza et al., [Dalla Piazza et al. (2014a);

Dalla Piazza (2014b)] to consider a disordered QSL state as a ground state which ended up

qualitatively reproducing most of the observations. By considering a Gutzwiller projected

RVB state, referred to as Staggered Flux state(SF), as a groundstate ansatz they were able to

show that the particle hole excitations induced in this state, exhibit spinon like excitations

at specific q-vectors i.e (π,0). Moreover, the spectrum at these q-vector exhibited a strong

continuum of energies and loss of spectral weight from magnon like mode as observed in case

of CFTD.

Figure 1.4 – Transverse Dynamic structure factor of SF state on a L = 24× 24 lattice from
DallaPiazza et al(2014b).

5



Chapter 1. Introduction

Although the SF wavefunction has the merit of qualitatively explaining the experimental

observations, which are unexplained by SWT, there are a few caveats to this procedure. Firstly,

the SF state has no long range order and hence it cannot be the true ground state of a QSHAF.

This is reflected in the fact that the groundstate energy of this state ESF =−0.638J is higher

than other numerical methods. Green function Monte Carlo for example has a groundstate

energy of −0.664J [Trivedi and Ceperley (1989); Runge (1992); Calandra Buonaura and Sorella

(1998)]. This also can be seen through the unphysical negative energies observed at (π,π)

point in the Transverse dynamic spin structure factor(see Fig(1.4)). To address this issue Dalla

Piazza et al, also worked with a state having long range order obtained through inducing a neel

mean field(SF+N). This state proved to be a better wave function in terms of the ground state

energy being ESF+N =−0.664 a value much closer to the Green function Monte Carlo and also

managed to reproduce the 7% reduction in dispersion along MZB(Fig(1.6)(a)). However, this

state did not exhibit the experimentally observed continuum and the high energy excitations

were gapped from the magnon mode(Fig(1.5)). Also, the intensity loss of magnon peak was

minimal(Fig(1.6(c))). This state also exhibited a exponentially decaying instantaneous spin

correlation function, where one would expect a power-law decay(Fig(1.6(b))). In conclusion

both these states were able to capture complimentary aspects of the excitation spectrum. The

SF state captures the long wavelength/high energy spin rotationally invariant features and the

SF+N state capturing the spin symmetry broken features.

Figure 1.5 – Transverse Dynamic structure factor of SF+N state on a L = 24×24 lattice from
DallaPiazza et al(2014b).
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(a)

(b) (c)

Figure 1.6 – (a) Low energy spin excitation mode from inelastic neutron scattering, and com-
parisions with results of various numerical methods (b) Instantaneous spin-spin correlation
function of SF and SF+N along (1,0) and (1,1) directions. (c)Comparision of INS intensity with
estimates from SWT and SF+N. All figures are from Dalla Piazza et al(2014b)

A particularly interesting feature of the SF state is the fact that although the (π,0) mode

exhibits a continuum(size dependent discrete mode), the mode at other q vectors (π/2,π/2)

for example exhibit a (size independent) sharp mode that retain a magnon like character(see

Fig(1.7)). Calculating a quantity that measures time average of spinon-pair separation, further

shows the contrasting nature of excitations at these q-vectors. The spinon pair separation at

(π,0) is spread out whereas at (π/2,π/2) it is fairly localized(Fig(1.8)). This localized spinon

pair can be interpreted as magnon like excitation. Hence, the SF wavefunction has a unique
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Chapter 1. Introduction

feature of having both confined and deconfined phases of spin excitations.

Figure 1.7 – Transverse dynamic structure factor of the SF state at q = (π,0) and q = (π/2,π/2)
for various system sizes(L), from DallaPiazza et al(2014b).

Figure 1.8 – Spinon pair separation at q = (π,0)(left) and q = (π/2,π/2)(right) for SF+N (top)
and SF (bottom) state, from DallaPiazza et al(2014b).

As mentioned earlier free moving spinons are the fundamental excitations on 1D spin chain.

It would be interesting to see how the excitation spectrum and the behavior of the disordered

8



phase gradually evolves as we move from 1D case to a isotropic 2D case. This has been the

motivation behind extending the methodology of Dalla Piazza et al to Rectangular Quantum

Heisenberg Anti Ferromagnetic (RQHAF) system where by varying γ= Jy /Jx we can explore

the quasi-1D and 2D regimes.

Outline

The outline of the upcoming chapters:

• Theoretical Overview- Starting with the Hubbard model, we briefly present the origins

of Heisenberg interaction in strongly correlated materials. We present an overview of

Jordan Wigner method in the XY model and discuss the 1D Bethe ansatz solution. In

exploring these topics we try to provide an intuitive picture of what ‘spinon’ excitation

corresponds to in each of these contexts. Finally, we have a look at other methods like

Abelian Bosonization and continuous similarity transformation in the context of the

Heisenberg problem. We finish the chapter with a brief discussion on RVB states.

• Spin wave Theory- Before moving to the SF solution, we first explore the spin wave

method on RQHAF. We first diagonalize the linear component of the spin wave Hamil-

tonian to obtain the bare magnon dispersion. We then use a Hartree-Fock mean field

decoupling to calculate the corrections coming from the next order term. Using these

terms we can calculate the renormalized magnon dispersion and the reduction of stag-

gered moment. This method is repeated self-consistently to arrive at a stable solution.

In doing so we explore limits at which the self-consistent solution fails. In the region

where this method is valid, we provide the results corresponding to staggered moment,

groundstate energy, and instantaneous and dynamic transverse spin spin correlation

functions.

• Staggered flux: Groundstate- Heisenberg Hamiltonian in its fermionic form is diago-

nalized using a mean field decoupling. Staggered flux wavefunction corresponds to a

particular choice of mean fields which are motivated from the d-wave RVB state, and is

the exact solution for spins with infinite flavors n →∞. The mean fields contain free

parameters, which become the variational parameters in our method. The groundstate

corresponds to filling the lower band of the diagonalized Hamiltonian. This state has

double occupancies which are projected out using a Gutzwiller projector. The Gutzwiller

projected wavefunction is used as a variational ansatz and by calculating the expectation

value of the (actual)Heisenberg Hamiltonian we find the optimum parameters corre-

sponding to energy minimum. Once we have an optimized wave function we proceed to

calculate the instantaneous spin spin correlation function. Finite size effects and effects

of various boundary conditions are explored to obtain the estimates for L →∞ case. All

9



Chapter 1. Introduction

the numerical computations corresponding to Gutzwiller projection and calculation of

observables is carried out using a Monte Carlo process.

• Staggered flux: Excited state- The transverse excitations are induced as particle hole

excitations on the SF wave function. The Heisenberg Hamiltonian is diagonalized

in the excitation subspace to obtain the eigenenergies and eigenvectors. Transverse

dynamic spin structure factor is estimated through this procedure for L = 24 system

size for various coupling ratios. The results are compared with SWT and Bethe ansatz.

By calculating the overlap of the eigenfunctions with a delocalized spin flip state we

evaluate a quantity referred to as ‘spinon separation’ that will help us to characterize

the nature of the excitations. Finite size effects on dynamic structure factor and spinon

separation are analyzed at high symmetry points.

• Concluding remarks- This chapter puts together all the relevant conclusions derived

from earlier chapters and outlines the key results of our research work.

Chapters 3,4,5 form the main skeleton of this research work. We have made best efforts to

make each chapter self-contained to facilitate being read individually. A brief summary is

provided at the end of each chapter to help the readers to get a gist of the key observations.

10



2 Theoretical Overview

In this chapter we discuss the theoretical origins and the analytical treatment of the Heisenberg

model. We have a look at the complexity of this simple magnetic model and the rich variety

of groundstates it hosts. Starting from the microscopic origin, we gradually proceed to a

discussion on a few analytical methods used in the research works related to this domain,

that will be relevant for discussion in subsequent chapters. We also have a look at the RVB

solutions and their relevance to the Heisenberg model.

Heisenberg Model

Heisenberg exchange interaction is a major type of magnetic interaction in strongly correlated

materials. It is perhaps the most commonly observed magnetic interaction besides the dipole-

dipole interaction. The interaction manifests itself as a simple dot product between the

interacting spins. The most common mechanism by which we obtain a Heisenberg interaction

is the super exchange mechanism in strongly correlated materials. The physics of strongly

correlated materials in the simplest form can be captured by the Hubbard model:

H =−∑
i jσ

ti j c†
iσc jσ︸ ︷︷ ︸

T

+U
∑

i
ni↑ni↓︸ ︷︷ ︸
V

(2.1)

where ti j represents the hopping energy between sites i and j and U corresponds to the

Coulomb repulsion energy, the cost of having two electrons at the same site . It must be noted

that the above model is a single band model, where we assume one state per site. The first

term corresponds to the kinetic energy of the hopping electrons, and the magnitude of ti j

depends on the bonding strength between the orbitals of site i and j . If one considers U = 0

and only nearest neighbor hopping, the Hamiltonian is represented by the kinetic part:

H =−∑
i jσ

tc†
iσc jσ (2.2)

11



Chapter 2. Theoretical Overview

This corresponds to having a electron band of a band width 2t . The excitations correspond to

particle hole excitation in these bands. For small Coulomb repulsion one can introduce the

potential term as a perturbation. In such a scenario the systems are well explained in higher

dimensions by Landau Fermi liquid theory [Landau (1957a,b, 1959)]. The excitations are rather

similar to the free fermions but are dressed with density fluctuations. They acquire an effective

mass m∗ different from the electron mass and also a finite lifetime τ that depends on the

proximity of quasi-particles to Fermi surface. In 1D however, individual motion of excitations

is restricted, which leads to the excitations becoming collective and hence the Fermi liquid

theory does not work in this regime. The region in which t and U have comparable energies is

also a difficult regime to handle and any form of a perturbation theory would generally not

work here.

On the other hand, in materials with a very large Coulomb repulsion energy and a small band

width, one can consider the potential term to be the main Hamiltonian and introduce the

kinetic part as a perturbation. The Coulomb repulsion favors states with one electron per

site at half filling. Introducing the kinetic term as a perturbation, we observe that the first

order corrections vanish due to the fact that the matrix elements between two different singly

occupied states |α〉 and
∣∣β〉

vanishes. This happens because the kinetic term creates a state

with double occupancy which has a zero overlap with a singly occupied state.

〈α|T ∣∣β〉= 0

The matrix elements that are second order in perturbation theory are given by:

H (2)
αβ

= 〈α|H (2)
∣∣β〉=∑

γ

〈α|T ∣∣γ〉〈
γ
∣∣T

∣∣β〉
Eα−Eγ

(2.3)

where the states
∣∣γ〉

have one double occupancy. Hence these states are higher in energy by U .

Both the states T |α〉 and T
∣∣β〉

belong to the subspace of
∣∣γ〉

. Hence the sum over
∣∣γ〉

can be

considered as the identity operator in this subspace. The Hamiltonian becomes:

H (2) =− t 2

U

∑
i jσ

∑
kmσ′

c†
iσc jσc†

kσ′cmσ′ (2.4)

The above hamiltonian will have finite matrix elements in space of singly occupied sites only

if m = i and k = j which leads to the effective Hamiltonian:

H (2) =− t 2

U

∑
i j

∑
σσ′

c†
iσc jσc†

jσ′ciσ′ (2.5)

Considering only the term that corresponds to a specific pair (i , j ) in the above Hamiltonian,

represented by H (2)
i j , we observe that it only acts on the spins at the positions i , j . Within a

12



2.1. Heisenberg Model

subspace
{∣∣α↑↑

〉
,
∣∣α↑↓

〉
,
∣∣α↓↑

〉
,
∣∣α↓↓

〉}
, where only the spins at position i , j are operated on:

H (2)
i j =− t 2

U


0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

 (2.6)

which can be re-written as

H (2)
i j = 2t 2

U




1
4 0 0 0

0 −1
4

1
2 0

0 1
2

1
4 0

0 0 0 −1
4

− 1

4

= 2t 2

U

(
Si ·S j − 1

4

)
(2.7)

Hence the overall second order perturbation term becomes:

H (2) = 4t 2

U

∑
〈i , j〉

(
Si ·S j − 1

4

)
(2.8)

The above exercise shows us how adding a small kinetic term to a large on site Coulomb

repulsion leads to Heisenberg interaction between the spins. In Fig(2.1) we show an illustration

of such process where virtual hoppings that lead to second order perturbation are allowed

when neighboring spins are opposite. When the neighbouring spins are same, the hopping

process is blocked due to the Pauli exclusion principle. In real materials where Coulomb

repulsion is dominant compared to bandwidth, one obtains an insulating phase known as

Mott insulator. As expected most of the mott insulators are Anti-Ferromagnets. This process

by which a Heisenberg interaction evolves to facilitate free motion of electrons is called a

‘super exchange’.

Figure 2.1 – An illustration of super exchange
process where virtual hoppings are allowed for
the neighboring up and down spins(top) and
are forbidden for neighbouring up spins.

U

Pauli
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Fermions on Spin Chain

Before moving to the exact solution of Heisenberg chain, it is instructive to have a look at

a simpler model, the XY model, where the solution can be written in terms of free moving

fermions. The XY Hamiltonian is a special case of the XXZ Hamiltonian:

HX X Z =∑
i

Jx y
(
Sx

i+1 ·Sx
i +S y

i+1 ·S y
i

)+ Jz Sz
i+1 ·Sz

i (2.9)

with Jz = 0. The commutation relations of spin operators is inconvenient to work with. Hence,

we look for a mapping of spin operators to fermionic or bosonic quasi-particles. We start by

defining a completely polarized state as vacuum state.

|0〉 = |↑↑ .... ↑↑〉 (2.10)

Sz
i |0〉 =

1

2
|0〉 (2.11)

The spin flips induced on this state can be considered as quasi-particles. Since we have

quantum spins, we cannot create more than one spin flip on each site. If we use a bosonic

representation of quasi-particles, then we must pay attention to this constraint which is

referred to as a hard-boson mapping. We will deal with this representation in Chapter 3 while

studying spin-wave theory. In this section we use a fermionic representation, where by the

required constraint inherently exists in the form of Pauli exclusion principle. If we consider

the following mapping:

S+
i = c†

i

Sz
i = c†

i ci − 1

2
(2.12)

we observe that it fulfills the local spin commutation relations. However, the spin opera-

tors on different sites do not commute. To solve this issue one can use the Jordan-Wigner

transformation [Jordan and Wigner (1928)].

S+
i = c†

i exp(iπφi )

Sz
i = c†

i ci − 1

2
(2.13)

where φi is th string operator given by:

φi =
i−1∑

m=−∞
c†

mcm (2.14)
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2.2. Fermions on Spin Chain

The XXZ Hamiltonian in this formalism becomes:

HX X Z = Jx y

2

∑
i

[
c†

i+1ci + c†
i ci+1

]
+ Jz

∑
i

(
ni+1 − 1

2

)(
ni − 1

2

)
(2.15)

where ni = c†
i ci . Using a gauge transformation ci → (−1)i ci , the Hamiltonian becomes:

HX X Z =−t
∑

i

[
c†

i+1ci + c†
i ci+1

]
+V

∑
i

(
ni+1 − 1

2

)(
ni − 1

2

)
(2.16)

which describes the spinless fermions hopping with an amplitude t = JX Y /2 subject to a

nearest neighbor repulsion V = Jz . Considering the XY model, with Jz = 0, the Hamiltonian is

quadratic and can be diagonalized in Fourier space:

HX Y = ∑
k
εk c†

k ck

εk = −2t cos(ka) (2.17)

which describes a band of free moving fermions on a chain. Since, the Hamiltonian commutes

with Sz
tot the solutions can be classified into sectors with conserved Sz

tot . The ground state at

half filling case corresponds to Sz
tot = 0, where half of the band is filled. The excitations within

this sector correspond to particle-hole excitations where one destroys a fermion at a specific

k-vector( for e.g k −q) and creates one at a different k-vector(for e.g. k) and the difference (q)

corresponds to the momentum of the excitation.

∣∣k, q
〉 = c†

k ck−q |GS〉 εk−q < εF < εk

|GS〉 = ∏
k1

c†
k1
|0〉 (2.18)

where εk1 ≤ εF . The excitation corresponding to a certain q vector does not have a discrete

number of energies. Instead, we have a continuum of excitation at every q vector. If one has

a look a the real space version of particle hole excitation induced on a Neel ordered state, as

shown in Fig(2.2), we can see that it creates two domain walls that freely propagate on the

chain without costing any energy. These domain walls can be identified as spinons in this

picture.

Gradually increasing longitudinal coupling Jz would lead to an increasing interaction between

spinless fermions and would mix higher order particle-hole excitations. Similar to the case of

1D Hubbard model, perturbatively solving for freely moving fermions with added repulsive

interaction becomes intractable in 1D and requires more sophisticated tools. Using this

simplistic way of visualizing spinons on a chain as domain walls between two domains, we

can also visualize the notion of confinement of spinons. If we consider two coupled XY

15



Chapter 2. Theoretical Overview

Figure 2.2 – A real space representation of
spinon on a neel state on quantum 1D XY spin
chain. The arrows correspond to the spin repre-
sentation and plain-hollow dots represent the
spinless fermion representation. The particle-
hole excitation leads to creating two domain
walls, which on application of the Hamiltonian,
propagate as free quasi particles

Figure 2.3 – Real space representation of con-
fining nature of excitations when two XY spin
chains are coupled. The solid lines represents
quantum spin chains and dashed lines repre-
sent a weak AFM coupling between the chains.
As the domain walls start moving away the mis-
aligned phases lead to the state having high en-
ergy(represented in red) due to interaction in
between the chain. The energy cost is propor-
tional to the separation between the domain
walls.
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2.3. Bethe Ansatz

chains, with AFM interaction for example, separating spinons on one of the Neel aligned

chains leads to a corresponding mis-alignment with the neighboring chain. As can be seen

from Fig(2.3), this leads to the separation of spinons costing an energy proportional to the

distance between them. Although this picture provides us with a visualization of confining

interactions in higher dimensions, it must be noted that this is a very primitive way of looking at

magnetic interactions. In reality, for Heisenberg chains, we have multiple spinons interacting

simultaneously and they cannot be visualized as domain walls between two phases.

Before moving to Heisenberg chains we briefly discuss the boundary conditions these fermions

follow. Given a chain of spins which is connected at the ends, the spins would follow a periodic

boundary condition.

S+
i+N = S+

i

=⇒ c†
i+N exp(iπφi+N ) = c†

i exp(iπφi ) (2.19)

where N is the system size. A look at the string operator shows:

φi+N = φi +
m=i+N∑

m=i
c†

mcm =φi +
m=i+N∑

m=i

(
Sz

m + 1

2

)
=φi +Sz

tot +
N

2
(2.20)

Substituting Sz
tot = 0 we have:

exp(iπφi+N ) = exp(i
Nπ

2
)exp(iπφi ) =

{
exp(iπφi ) if N=4n

−exp(iπφi ) if N=4n+2
(2.21)

This result leads to the following condition on the fermion operators:

c†
i+N =

{
c†

i if N=4n

−c†
i if N=4n+2

(2.22)

Hence, the many body fermion wave-function obey different boundary conditions depending

on whether N /2 is even or odd.

Bethe Ansatz

In this section we explore a few aspects of the exact solution in 1D Heisenberg spin chain

that can be obtained via the Bethe ansatz [Bethe (1931)]. Study of Bethe ansatz is a field in

itself, and hence we will keep our discussion focused only on the basic aspects of the solution

that will be relevant for future discussions. The mathematical formulation in this section is

followed from [Karabach et al. (1997); Fradkin (2013)]. For a more detailed and full treatment

of Bethe ansatz, interested readers can refer to [Faddeev (1982); Lowenstein (1982)].
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Mathematical Structure

We start our discussion through constructing the basis wavefunctions. Since the Heisenberg

Hamiltonian conserves total spin along z-axis, we divide the Hilbert space of wave functions

into sectors of Sz
tot = N /2− r where the states have r down spins. The case r = 0 corresponds

to a ferromagnetic state |F 〉 = |↑↑↑ ... ↑〉. Introducing one spin flip at position n we obtain a

state labeled as follows:

|n〉 = S−
n |F 〉 (2.23)

An eigenvector in this subspace can be written as superposition of all the basis vectors.

∣∣ψ〉= N∑
n=1

a(n) |n〉 (2.24)

If eigenvector |n〉 is an eigenvector of the Heisenberg Hamiltonian then it must satify H
∣∣ψ〉=

E
∣∣ψ〉

which leads to the expression:

2(E −E0) =−J (2a(n)−a(n −1)−a(n +1)) (2.25)

the coefficients a(n) must satisfy the condition a(n +N ) = a(n) if we have periodic boundary

conditions. The choice of coefficients that satisfy above equation are N linearly independent

solutions:

a(n) = e i kn , k = 2π

N
m, m = 0,1,2....N −1. (2.26)

The states obtained by using above coefficients, are nothing but magnons states. Moving on

to case r = 2, we search for solutions of the form:∣∣ψ〉= ∑
1≤n1<n2≤N

a(n1,n2) |n1,n2〉 (2.27)

where |n1,n2〉 = S−
n1

S−
n2
|F 〉. It is tempting to use solutions of the form a(n1,n2) = e i (k1n1+k2n2)

which are superpositions of magnons. It must be noted that solutions of this form would be a

set of N (N +1)/2 over complete, non orthogonal, non stationary states. Since our subspace is

made up of N (N −1)/2 states, and two flipped spins must be on different sites, the superposi-

tion states cannot be form the eigenspace of the Heisenberg Hamiltonian. Starting with an

ansatz where the coefficients are of the form:

a(n1,n2) = A12e i (k1n1+k2n2) + A21e i (k1n2+k2n1) (2.28)
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the condition H
∣∣ψ〉= E

∣∣ψ〉
leads to equations:

2(E −E0) a(n1,n2) = −J (4a(n1,n2)−a(n1 −1,n2)−a(n1,n2 −1)

− a(n1 +1,n2)−a(n1,n2 +1)) for n2 > n1 +1 (2.29a)

2(E −E0) a(n1,n2) = −J (2a(n1,n2)−a(n1 −1)−a(n1,n2 +1)) for n2 = n1 +1(2.29b)

Equation (2.29a) is automatically satisfied by Equation (2.28) with arbitrary A, A′,k1,k2 for

n2 ≥ n +1 provided the energy depends on k1,k2 as follows:

E −E0 =−J
∑

j=1,2
(1−cosk j ) (2.30)

To satisfy Eq(2.29b), which are not automatically satisfied by Eq(2.28) we need N additional

conditions

2a(n1,n1 +1) = a(n1,n2)+a(n1 +1,n2 +1) (2.31)

To satisfy this condition we require that the amplitudes in eq(2.28) satisfy:

A12

A21
= e iθ(k1,k2) =−e i (k1+k2) +1−2e i k1

e i (k1+k2) +1−2e i k2
(2.32)

Hence the coefficients Eq(2.28) would require additional phase factors that lead to :

a(n1,n2) = e i (k1n1+k2n2+ i
2θ(k1,k2)) +e i (k1n2+k2n1+ i

2θ(k2,k1)) (2.33)

The phase factors θ(k1,k2) are related to the wave vectors k1,k2 via the expression

2cot
θ(k1,k2)

2
= cot

k1

2
−cot

k2

2
(2.34)

The requirement of translational invariance would require a(n1,n2) = a(n2,n1 +N ) which

would be satisfied if:

N k1 = 2πλ1 +θ N k2 = 2πλ2 −θ (2.35)

The total wavevector is given by the relation.

k = 2π/N (λ1 +λ2) (2.36)

Where λ1,λ2 ∈ {0,1, ..N −1}. Eq(2.30) and Eq(2.36) look like the energy and momentum of two

superimposed magnons. These magnons are interacting and the interaction is reflected in

the phase shift θ. Before moving to a general case, few remarks need to be made here. As can

be noticed, the choices of λ1,λ2 span a space of N (N +1)/2 (reversal of λ1,λ2 lead to same
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solution). But the Hilbert space of our states is N (N −1)/2 dimensional. It turns out that few

of the solutions, particularly the ones where λ1,λ2 are equal or differ by one, a set of 2N −3

states, do not satisfy Eq(2.34). Only a set of N −3 complex conjugate pairs constructed out of

the 2N −3 pairs satisfy Eq(2.34).

Moving to a general case with r spins flipped the derivation goes exactly analogous to r = 2

case. The wavefunction is expected to have a form∣∣ψ〉= ∑
1<n1<n2....<nr

a(n1,n2...nr ) |n1,n2...nr 〉

Using H
∣∣ψ〉= E

∣∣ψ〉
we obtain the condition:

E −E0

J
a(n1, ...nr ) =−r a(n1, ...nr )+ 1

2

r∑
i=1

(a(...,ni −1, ...)+a(...,ni +1, ...)) (2.37)

for cases where all the down spins are isolated ni +1 < ni+1∀i . For cases with one nearest

neighbour pair nl +1 = nl+1 we obtain the relation:

E −E0

J
a(n1, ...nr ) = −(r −1)a(n1, ...nr )+ 1

2

r∑
i 6=l ,l+1

(a(...,ni −1, ...)+a(...,ni +1, ...))

+ 1

2
(a(...,nl −1,nl +1)+a(...,nl ,nl +2, ...)) (2.38)

To express Eq(2.38) in the same form as Eq(2.37) the additional constraints that need to be

satisfied are:

2a(..nl ,nl +1...) = a(...nl ,nl ...)+a(...,nl +1,nl +1, ...) (2.39)

Considering a generic form of coefficients motivated by Eq(2.28):

a(n1,n2...nr ) =
M !∑
P

AP e i
∑r

a=1 kPa na (2.40)

where P is the set of all permutations of vector {1,2, ...r }. Substituting Eq(2.40) in Eq(2.39) we

obtain:

2
∑
P

AP

[
e i

∑
i 6=l ,l+1 kPi ni

]
e i kPl

nl+i kPl+1
nl+1 = ∑

P
AP

[
e i

∑
i 6=l ,l+1 kPi ni

]
e i kPl

nl+i kPl+1
nl

+ ∑
P

AP

[
e i

∑
i 6=l ,l+1 kPi ni

]
e i kPl

nl+1+i kPl+1
nl+1
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where nl+1 = nl . The term in square brackets can be cancelled out leading to:

2
∑
P

AP e i (kPl
+i kPl+1

)nl e i kPl+1 =∑
P

AP e i (kPl
+kPl+1

)nl +∑
P

AP e i (kPl
+kPl+1

)(nl+1)

This expression can be further re-written as follows:

2
∑
P

AP e i (kPl
+i kPl+1

)nl e i kPl+1 =∑
P

AP e i (kPl
+kPl+1

)nl +∑
P

AP e i (kPl
+kPl+1

)(nl+1)

Which leads to the final condition on coefficients AP :

AP

AP ′
=−e iθ(kPl

,kPl+1
) =− e i (kl+kl+1) +1−2e i kl

e i (kl+kl+1) +1−2e i kl+1
(2.41)

where the permutation P ′ is the same as P except the indices l , l +1 are reversed such that,

kPl = kP ′
l+1

and kP ′
l
= kPl+1 . Using the the same analogy as r = 2 case a the amplitude functions

look like:

AP = e
i
2

∑
1≤a<b≤r θ(kPa ,kPb ) (2.42)

where the phase θ(ki ,k j ) follows the constraint:

2cot
θ(ki ,k j )

2
= cot

ki

2
−cot

k j

2
(2.43)

and translational symmetry condition leads to:

N ki = 2πλi +
∑
j 6=i

θi j (2.44)

where λ ∈ {0,1, ..N −1}. The energy and wave number(momentum) of the state are given by

the equations:

E −E0 = J
r∑

i=1
(1−cos(ki )) (2.45)

k = 2π

N

r∑
i=1

λi (2.46)

The mathematical formulation so far involves wave numbers ki and phase factors θ(ki ,k j ) that

show the physical properties of the magnons created on vacuum state |F 〉. This mathematical

treatment is convenient for a Ferromagnetic interaction. For an Antiferromagnetic Heisenberg

Hamiltonian it would be convenient to start with the groundstate, which corresponds to

r = N /2 magnons induced on |F 〉, as physical vacuum. For mathematical convenience we
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introduce the following notation:

zi = cot
ki

2
φ(zi ) = 2arctan(zi ) =π−ki (2.47)

The function θ(ki ,k j ) then becomes:

θ(ki ,k j ) =πsgn
[
R(zi − z j )

]−φ( zi − z j

2

)
(2.48)

where R(z) refers to real part of z. The first term is added to make θ(ki ,k j ) remain in domain

[−π,π] because the function must satisfy the property θ(ki ,k j ) =−θ(k j ,ki ). Rewriting Eq(2.44)

using the new variable z finally leads to the Bethe equations:

Nφ(zi ) = 2πIi +
∑
j 6=i

φ
( zi − z j

2

)
(2.49)

where {Ii } are called Bethe quantum numbers. The relation between bethe quantum numbers

Ii and the corresponding magnon quantum numbers {λi } is given by:

Ii =
(

N

2
−λi

)
− 1

2

∑
i 6= j

sgn
(
zi − z j

)
(2.50)

Expressions for energy and momenta are given by:

E −E0

J
=

z∑
i=1

(
−2

1+ z2
i

)
(2.51)

k =
r∑

i=1

(
π−φ (zi )

)=πr − 2π

N

r∑
i=1

Ii (2.52)

Eq(2.49) and the corresponding energy and momentum relations Eq(2.51) form the essential

structure of Bethe Ansatz solution. For some particular choices of Bethe quantum numbers Ii

the eigenstates of the Hamiltonian can be constructed. For each choice of Bethe quantum

numbers Ii or magnon quantum numbers λi , Bethe equations Eq(2.49) can be used self-

consistently to derive the energies and momenta for that particular state. Similar solution can

be written for a twisted boundary condition as well, with ψ(L) = e iΦψ(0). This corresponds to

the Bethe equations being modified as:

Nφ(zi ) = 2πIi +Φ+ ∑
j 6=i

φ
( zi − z j

2

)
(2.53)

In our work we will be dealing with an anti-periodic boundary condition that is equivalent to

φ=±π.

22



2.3. Bethe Ansatz

Bethe quantum numbers

Before moving towards determining groundstate and excited state, it is instructive to look at

the domain of the Bethe quantum numbers. The Bethe equations impose a few restriction

on choices of the quantum numbers. First Eq(2.50) shows that the Bethe quantum numbers

must differ only by integers. The quantum numbers Ii can take integer or half integer values.

The values of λ’s are distinct for real solutions, we expect the Bethe quantum numbers to be

distinct. This condition is not actually true and has been shown to breakdown at large system

sizes for r = 2. From the Bethe equation we expect in general that Ii > I j for zi > z j (This

condition has exceptions and was pointed out by Bethe in his original work).

Considering {z1 < z2 < ...zr } to be a solution in r spin flips sector, we try to find upper bound

for Ii by taking zr →∞. This leads to Eq(2.49) becoming:

Nπ = 2πĨmax + (r −1)π

=⇒ Ĩmax = N − r +1

2
(2.54)

Hence, for finite solutions we have Ii < Ĩmax . Similar condition for lower bound yields the

final result |Ii | ≤ Imax where Imax = N−r−1
2 . This is an important result which shows that,

when N − r is odd(even) the Bethe quantum numbers are (half) integers. The total number of

allowed quantum numbers hence is given by 2Imax +1 = N − r . We have to select r quantum

numbers to form a state, hence the total number of states from real solution is given by
(n−r

r

)
.

For r = N /2 spin flips we have only one choice and hence one state. This turns out to be the

ground state. For r = N /2−1, we have N (N +1)/8 choices, these turn out to be the states

corresponding to the triplet states for tranverse S = 1 excitation.

Ground State

As mentioned previously, for the set of r = N /2 real Bethe quantum numbers Ii ’s with con-

straint |Ii | ≤ N−r−1
2 = N−2

4 there is only one choice.

{Ii } =
{−N +2

4
,
−N +6

4
, ....,

N −6

4
,

N −2

4

}
(2.55)

This corresponds to the choice of magnon quantum numbers:

{λi } = {1,3,5, ....N −1} (2.56)

By substituting these quantum numbers, and solving the self-consistency equations we can

calculate the groundstate energy. In Fig(2.4) we show the calculation performed at various

system sizes for different boundary conditions. As can be seen, the ansatz with anti-periodic

boundary condition is higher in energy compared to the one with periodic boundary. As we
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Chapter 2. Theoretical Overview

increase the system size the energies gradually converge towards the expected value at infinite

system size, E(L =∞)/Jx = 0.25− ln(2) represented by the red cross.

0 1

576

1

256

1

144

1

64

-0.460

-0.455

-0.450

-0.445

-0.440

-0.435

-0.430

Figure 2.4 – Groundstate energy vs 1/L2 calculated by solving Bethe self-consistency equations
at different system sizes. Dots(triangles) represent the (anti-)periodic boundary condition.
The red cross mark is the exact value (1/4− ln(2)) at infinite system size.

Transverse Excitations

For inducing a ∆S = 1 excitation we flip one spin down to a spin up, effectively removing

one magnon. Hence we would expect our wave function of transverse excitation to be in

r = N /2−1 sector and the longitudinal excitation to be in the r = N /2 sector. We restrict

ourselves only to the transverse excitation, since the longitudinal and tranverse channels are

degenerate in Heisenberg case due to SU (2) symmetry. Using the same conditions as previous

sections we observe that:

Ii ∈
{
−N

4
,−N

4
+1, ...,

N

4
−1,

N

4

}
(2.57)

We have a set of N /2+1 quantum numbers, from which we have to choose N /2−1 quantum

numbers. This leaves two holes in an otherwise regular array of quantum numbers. These

holes are what we call spinons. Each hole carries a spin 1/2 and two holes cannot be on same

location and hence behave as ‘fermions’.
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2.3. Bethe Ansatz

0
-Ns+2

4

Ns-2

4

Bethe Quantum Numbers Ii

GS

(1,4)

(3,5)

(4,8)

0 Ns-1

Magnon Quantum Numbers λi

Figure 2.5 – Magnon(left) and Bethe (right) quantum numbers for ground state(GS) and excited
states (a,b) where there are two holes at positions a,b.

As can be seen from Fig(2.5) we can see that the excitation spectrum consists of two vacancies

or ‘holes’ in otherwise continuous spectrum of Bethe quantum numbers. This equivalently

translates to magnon quantum numbers shifting from odd- even-odd values. The positions of

the ‘holes’ determine the momenta k̄1, k̄2 of the spinons and the total momentum relative to

the vacuum state is given by q = k̄1 + k̄2. Substituting these quantum numbers and solving

the bethe equation provides us with the energy spectrum of transverse excitations. In Fig(2.6)

we show the transverse excitation spectrum calculated at system size L = 24 for both periodic

Φ= 0 and anti-periodicΦ=±π. In case of anti-periodic boundaryΦ=π andΦ=−π yield two

different solutions that are just related via the symmetry q →π−q . The ‘spinons’ we see here

can be interpreted as quantum solitons. Compared to the kink or boundary wall we observe in

the X Y case, spinons are exponentially decaying kinks. When two solitons collide with each

other they emerge preserving their form, except for a phase shift.

The calculation of groundstate energy, excitation energy and related momenta at any given

size, can be done via numerically solving Bethe equations. However, due to the complicated

form of Bethe wave function calculating the related static or dynamic observables is intractable.

A particular technique that can be used to derive these quantities from the solution of Bethe

equations is ‘Algebraic Bethe Ansatz’ also known as ‘Quantum Inverse Scattering Model’ de-

veloped by the Leningrad school under the leadership of L.D. Faddeev[Faddeev et al. (1980);

Takhtajan and Faddeev (1979); Sklyanin (1982)]. We will not derive the full expressions of alge-

braic Bethe ansatz solution for Heisenberg spin chain here. Instead we take the mathematical

expressions corresponding to the dynamic structure factor from the work [Caux et al. (2005)]

as a comparative benchmark whenever needed.
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Figure 2.6 – Transverse excitation energies at system size L = 24 obtained through Bethe Ansatz.
Black dots correspond to periodic boundary with Φ = 0. Red and Blue dots correspond to
Anti-periodic boundary condition withΦ=π andΦ=−π respectively, which are related via
the symmetry q →π−q .

Other Methods

Although Bethe ansatz provides us with a methodology to exactly solve the Heisenberg model

in 1D it is limited to 1D integrable systems and is not generalizable. In this section we

briefly discuss other analytical and numerical methods used to study the 1D, quasi-1D and 2D

models with Heisenberg or Heisenberg like magnetic interactions. Some of these methods, like

bosonization for example, although are specific to 1D are generalizable to higher dimensions.

Abelian Bosonization

Bosonization is a mathematical technique which is very relevant to studying 1D systems.

A system of interacting fermions in (1+ 1) dimensions can be transformed into a system

of massless non-interacting bosons. The abelian version of this transformation was first

discussed by Bloch [Bloch (1933)] and Tomonaga [Tomonaga (1950)] and was later rediscovered

and better understood in works of [Mattis and H. Lieb (1965); Coleman (1975); Luther and

Peschel (1975); Mandelstam (1975)]. The non-abelian version was developed by Witten [Witten

(1984), Polykov and WiegmannPolyakov and Wiegmann (1984)]. The underlying principle is

that the particle-hole excitations are bosonic in character. This principle however is valid only

in 1D as shown by Tomonaga [Sénéchal (2004)]. Here we discuss the abelian bosonization

in context of the XXZ model and some relevant aspects at the isotropic point Jz = Jx y , the

Heisenberg model. A more detailed mathematical treatment can be found in a excellent book

by Thierry Giamarchi [Giamarchi and Press (2004)].

The starting point of our discussion is the expression Eq(2.15) , where the XXZ Hamiltonian

describes spinless fermions hopping with an amplitude t = Jx y /2 and subject to nearest
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2.4. Other Methods

neighbor repulsion V = Jz . Considering the XY limit, the Hamiltonian yields bands with

energy given by εk = 2t cos(k). To describe the low-energy physics of the XY system, one can

approximate the bands with a massless 1D system. The low energy physics of free moving

fermions in 1D, within the framework of bosonization, can be described by the Hamiltonian

given by:

H = 1

2π

∫
d xvF

(
(∇θ(x))2 + (∇φ(x))2) (2.58)

where vF is the Fermi velocity given by vF = Jx y sin(kF )(kF = π/2) at half filling. The fields

φ(x),θ(x) are linked to the boson operators that describe the density fluctuations via bosoniza-

tion rules. The gradient of these fields are linked to the density of right ρR (x) movers and left

movers ρL(x) via the expressions:

∇φ(x) = −π(
ρR (x)+ρL(x)

)
(2.59)

∇θ(x) = π
(
ρR (x)−ρL(x)

)
(2.60)

which indicates that ∇φ(x) represents the q ∼ 0 component of density fluctuations at a point

x and ∇θ(x) represents the current operator in this 1D model.

The interaction part of the XXZ model within this framework can be written as:

H i nt = Jz

∫
d x

(
1

π2 (1−cos(2kF ))
(∇φ(x)

)2 − 1

(2πα)2 2cos(4φ(x))

)
(2.61)

whereα is a momentum cutoff that regularizes the theory. This finally yields the Hamiltonian:

H =HLL − 2Jz

(2πα)2

∫
d x cos(4φ(x)) (2.62)

where HLL is the Luttinger liquid Hamiltonian:

HLL = 1

2π

∫
d x

(
uK (∇θ(x))2 + u

K
(∇φ(x))2

)
(2.63)

The Luttinger parameters here are given by:

uK = vF = Jx y

u

K
= vF

(
1+ 2Jz

πvF
(1−cos(2kF ))

)
= vF

(
1+ 4Jz

πJx y

)
(2.64)

The Hamiltonian Eq(2.62), looks like a Sine-Gordon Hamiltonian where the cosine term is

related to the umklapp scattering process. It must be noted that above expressions of Luttinger

parameters are valid only in perturbation regime. However, since the exact solution of isotropic

27
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case via Bethe Ansatz is already known, the Luttinger parameters for this isotropic case can be

obtained the analytical expressions of which are given by:

Jz

Jx y
= −cos(πβ2)

1

K
= 2β2

u = 1

1−β2 sin(π(1−β2))
Jx y

2
(2.65)

A few interesting features can be derived from the above analysis. Firstly, the pure XY regime

the umklapp term vanishes, and the low energy physics is described by a Luttinger liquid with

parameter K = 1. From renormalization group arguments it can be shown that for K > 1/2 the

umklapp term is irrelevant and the system flows to a system which is Luttinger liquid like. For

cases K < 1/2 the cosine term is relevant, and the excitations of spin chain develop a gap. Since

this phase is dominated by Jz this state corresponds to ising phase along z-direction. From

the expressions Eq(2.65), we see that the isotropic point is at K = 1/2 a point where the cosine

term is marginal. Using this technique one can further estimate the forms of instantaneous

spin spin correlation functions. In LL region the instantaneous correlation functions are given

by:

〈
Sz (r )Sz (0)

〉 = C1
1

r 2 +C2(−1)r
(

1

r

)2K

〈
S+(r )S−(0)

〉 = C3

(
1

r

)2K+ 1
2K +C4(−1)r

(
1

r

) 1
2K

(2.66)

The correlation function exhibit slower decay close to q ∼ 0 and q ∼ kF points which represent

the near ferromagnetic and near Antiferromagnetic correlations respectively. For the XY case

with K = 1, both the FM and AFM component of longitudinal correlation function decay as

1/x2 but the FM part of transverse component exhibits a faster decay. This indicates that the

system hosts a AFM ordering in plane. The case K > 1 corresponds to attracting fermions that

enhances the FM correlation. The case K < 1 corresponds to repulsion of spinless fermions

that enhances the AFM part of correlation function. At the isotropic case K = 1/2, as expected,

we can see that the transverse and longitudinal components have the same form of correlation

function. Although the AFM part of LL decays as 1/r , the marginal cosine term additionally

yields a logarithmic correction which leads to final expression:

〈
Sα(r )sα(0)

〉=C1
1

r 2 +C2(−1)r
(

1

r

)√
log(r ) (2.67)

This result has been derived using field theory by Affleck [Affleck (1998)] and also checked

via numerical DMRG calculations by Hallberg et al [Hallberg et al. (1995)]. Hence we see that

the abelian bosonization captures many of the essential features of the XXZ model at various
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values of Jz /Jx y . It provides various insights of the physics in the non-perturbative regime

through which the observables for the isotropic case can be estimated. Extending the method

of bosonization to 2D is not a trivial process, although various physical properties can be

estimated. System of n AFM chains with a strong FM interchain coupling, can be considered

as a AFM chain of spins with spin quantum number S = n/2[Timonen and Luther (1985);

Schulz (1986)]. This problem has been solved by Haldane, who found a drastic difference for

even and odd chains, where the even chains corresponding to integer spins show a spin gap

where as the odd chains are gapless [Haldane (1983)], a problem famously known as Haldane

conjecture. Similar logic can be used for AFM coupling where the spins along the rung are

locked in a singlet configuration. This also yields a state where the even number of chains

exhibit a spin gap and odd chains exhibit gapless modes.

The scenario which our work deals with, the coupled spin chains with weak inter-chain

coupling, is a difficult problem to solve using bosonization. One can consider different

bosonic fields on each chain and express the interaction in terms of these bosonic fields.

Based on their analytical forms, irrelevant terms can be dropped. Research works that apply

this method on two leg ladders [Timonen and Luther (1985); Schulz (1986); Strong and Millis

(1992)] and extending this methodology to large number of legs [Cabra et al. (1998); Kim

and Sólyom (1999)] have shown that weakly coupled chains also exhibit the same result as

strongly coupled chains where by even chains have a spin gap and odd chains are gapless.

Extension of this methodology to infinite chains is highly non-trivial and one must look at more

sophisticated methods. Renormalization group arguments on these systems, for example by

[Affleck and Halperin (1996)], have indicated that the longrange order should exist all the way

to γ= 0 and that the correlation functions for half-integer spin cases have a powerlaw decay

indicating a quasi-longrange order. Exact solutions of Heisenberg quantum spin chain with

long-range couplings, known as Haldane-Shastry model [Shastry (1988),Haldane (1988)] are

already available. Wavefunctions motivated by the exact solutions to this model can also be

used as candidate wavefunctions for solving the nearest neighbor isotropic Heisenberg case.

Continuous similarity transformations

In this subsection we discuss a particular methodology that yields a strictly opposing view

to our premise that the high energy features observed in the spectra of CFTD are related to a

disordered RVB state. We refer to the work of [Powalski et al. (2015, 2018)]. in which the (π,0)

quantum anomaly has been attributed to a multi-magnon interactions. To be more precise,

it appears to be related to an attractive interaction that leads to dressed magnons whose

excitation spectrum exhibits a relative shift of spectral weight into a high energy continuum

and a lowering of the single magnon peak, referred to in their work as the ‘roton minimum’.

The procedure starts with expressing the spin operators in terms of magnon excitations using

Dyson Maleev representation.
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S+
i =

p
2S

(
ai −

a†
i ai ai

2S

)
, S−

i =
p

2Sa†
i

S+
j =

p
2S

b†
j −

b†
j b†

j b j

2S

 , S−
j =

p
2Sb j

Sz
i = S −a†

i ai Sz
j =−S +b†

j b j (2.68)

where i , j are different sub-lattices. Dyson Maleev representation has the advantage of having

finite terms, at a cost of the hermitecity of the Hamiltonian unlike the Holstien Primakoff

representation that requires a 1/S expansion. The Hamiltonian under this representation,

upon Fourier tranformation followed by Bogoliubov transformation, can be written in the

following form:

H =HSW +V 0 +V ++V − (2.69)

The first term corresponds to a diagonalized bare magnon term. The term V 0 gives the quartic

correction that conserves number of magnons. The term V +(V −) add(removes) magnons. The

fundamental idea behind the technique used by Powaski et al., is to convert this Hamiltonian

into an effective Hamiltonian that conserves the number of magnons.

He f f =HM +V 0 (2.70)

This is achieved through the use of continuous similarity transformation (CST) a method

based on continuous unitary transformation CUT. The process involves using a flow equation:

∂l H (l ) = [
η(l ),H (l )

]
(2.71)

where l is a continuous variable .The Hamiltonian has same structure as Eq(2.69) but all

coefficients depend on l and at l = 0 one has the original Hamiltonian in Eq(2.69) and at l =∞
the effective Hamiltonian in Eq(2.70). The term η(l ) corresponds to the generator V +(l )−V −(l ).

The commutator in Eq(2.71) generates infinite number of terms and a truncation needs to

be carried out to perform this calculation numerically. Powalski et al used scaling dimension

as their truncation criterion, a criterion typically used to derive the low energy and long

wavelength physics via renormalization group methods. The justification of using this choice

at short wavelength and high energies is related to the fact that the low edge of the (π,0)

anomaly is a single magnon. The high energy continuum at this point is attributed to a three

magnon process, where by two of the magnons are close to the gapless (0,0) point. The

two magnon interaction seem to form a ‘Higgs’ resonance corresponding to a longitudinal
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magnon. Hence the hybridization of three magnon continuum in this picture, should be

strongly influenced by the physics of the long wavelength magnons. The flow equations are

solved for finite system sizes and interpolated to L =∞. In Fig(2.7) we show the result obtained

from [Powalski et al. (2018)] where they compare their results with dynamical structure factor

obtained by [Mourigal (2011)].

Figure 2.7 – Comaparision of Dynamic structure factor data from [Mourigal (2011)] with the
CST result by [Powalski et al. (2018)]. Figure taken from Powalski et al(2018).

Quantum spin liquids

In this section we present a short note on the spin liquid solutions on 1D and 2D systems with

interacting spins. As mentioned in the introduction, quantum spin liquids are configurations

that host massive degeneracy and exhibit a disordered magnetic configuration even at very low

temperatures (T = 0 in principle). Search for QSL in two dimensions is an ongoing challenge

31



Chapter 2. Theoretical Overview

Figure 2.8 – Phase diagram of the J1-J2 model.
Red,green and blue region represent columnar
anti ferromagnet, ferromagnet, and Neel anti-
ferromagnet respectively.Purple region repre-
sents a nematic phase and yellow region is a
spin liquid(Figure taken from [Skoulatos et al.
(2009)]).

and so far no experimental confirmations have been made. Nevertheless the novelty of this

state and its applications to multitude of problems like High Temperature superconductivity,

Majorana modes, quantum computation etc. demands a deeper investigation into these

states.

A primary driving force behind a QSL state is competing magnetic interactions that lead to

frustration. For example in the case of square lattice Heisenberg model, frustration can be

induced via the next nearest neighbor coupling J2. The state with very small J2 has Neel

ordering and the one with large J2 a columnar ordering(or Neel state on two inter-penetrating

square lattices). For a ferromagnetic J1 there is a possible state with ising nematic phase

[Chandra et al. (1990)]. Near the classical frustrated limit J1 = 2J2, however, all the above

mentioned states become unstable. In this regime, there can several possibilities. It can be

a usual paramagnetic state without longrange order and a gap for spin excitations with a

unique groundstate. Another possibility one can think of is a state where the spin correlation

length becomes very short, and the ground state is described in terms of pairs of spins forming

singlets at short distances. These states are called valence bond states. A significant amount of

research work has been done on various types of valance bond states like valance bond crystals,

Resonating valance bond states with long [Anderson et al. (1987)] and short correlations

[Kivelson et al. (1987)] etc. Recent research work by F. Ferrari and F. Becca [Ferrari and Becca

(2018)] suggests that close to the critical point J2/J1 = 0.5 the system transitions from a Neel

state to a gapless Z2 spin liquid state where the dynamic structure factor calculated shows

deconfined spinons in the region 0.48 ≤ J2/J1 ≤ 0.6. The relevance of these RVB states goes

beyond the J1/J2 model and we would like to present a brief description of these states.

The basic building block of a valance bond state is a singlet pair [Anderson (1973)] that can be
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defined as:∣∣i , j
〉= 1p

2

(∣∣↑i↓ j
〉− ∣∣↓i↑ j

〉)
(2.72)

The lattice can be partitioned into all possible sets of pairs. If we assign a singlet to each of

these pairs we can define a valance bond state which is a tensor product of these singlets.

|V B〉 = ∏
pairs

∣∣i , j
〉

(2.73)

It must be noted that each valance bond is odd under exchange of sites and hence a sign

convention must be established while creating each pair. Since each pair is a singlet, the total

spin of system is equal to zero. A typical wave function can be constructed as a superposition

of these states:∣∣ψ〉=∑
P

AP
∏

pairs

∣∣i , j
〉

(2.74)

where AP is the amplitude of a particular partition. Although the valance bond states are

simple to construct in this way, it must be noted that these states are difficult to work with. A

primary reason for this is fact that the valance bond states are not orthogonal and in general

cannot be all linearly independent. Hence they form a set of overcomplete states and not

generally a good choice for expanding a wavefunction. However, if one wants to construct a

variational wave function a popular choice is is the one with factorized amplitude:

A(P ) = ∏
pairs

a(i , j ) (2.75)

such that the total wave function looks like:∣∣ψ〉=∑
P

∏
pairs

a(i , j )
∣∣i , j

〉
(2.76)

If we make a further assumption that the amplitude a(i , j ) is only a function of the distance

between the pairs:

a(i , j ) = a
(∣∣ri − r j

∣∣) (2.77)

This choice corresponds to the state known as a Resonating valance bond state [Anderson

(1973)] in the sense that all the valance bonds between sites with equal separation, have same

amplitude. An extensive study of the Heisenberg model using these states was carried out by

Liang, Ducot and Anderson [Liang et al. (1988)] which showed that the physical properties

of system depend on how fast the function a(x) decays at infinity. Considering a power-law
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ansatz

a(|r |) = c

|r |σ (2.78)

they found that for σ< 5 the state exhibits long range Neel order, and for σ≥ 5 Neel order is

limited to a finite correlation length ξ.

Having constructed the basic form of a RVB state an important question one might ask is

whether any of these solutions are a good approximates to the groundstate of unfrustrated

Heisenberg model. RVB states with short range singlets, have an exponentially decaying spin

spin correlation function and must correspond to a groundstate with a finite gap. On the other

hand RVB states with long range singlets are closer to a Neel state. Numerical evidence suggest

RVB states with sufficiently long range singlets is actually a good approximation to the Neel

state [Liang et al. (1988)].

Having constructed the RVB states one might want to have a look at the spin excitations on

these states. As mentioned in Chapter 1, a ∆S = 1 excitation excites a singlet into a triplet

|↑↑〉 and each of these up spins propagating in the RVB background at minimal cost can be

termed as ‘spinons’. A particular challenge while dealing with spinons is the satisfaction of

the no double occupancy constraint when the spinons propagate from one site to another.

In case of situations other than half filling one can use the slave-boson approach that lead to

RVB theories of [Baskaran et al. (1987)](BZA phase) and [Ruckenstein et al. (1987)]. Basic idea

behind this approach is that one considers a constraint:

b†(x)b(x)+ f †
α(x) fα(x) = 1 (2.79)

where the boson operator b† creates a charge carrying particle called ‘holon’ and the fermion

operator f †
α creates a fermion with flavour α. One could also define the holons to be fermions

and ‘spinons’ to be bosons. In case of half filling, the number of holons is zero. In our research

work, we use a gutzwiller projector to satisfy the no double occupancy constraint.

In seeking solutions for quantum Heisenberg spin systems a popular methodology is to

extned the exact solutions found in a) Large S systems b) SU(n) groups with large n. The

first method usually involves some form of spin wave theory which works extremely well

in case of classical spins. We would like to discuss a few aspects of the solution of second

type found by Marston et al.[Marston and Affleck (1989)], to SU(n) group in large n limit. By

studying a SU(n) generalization of Hubbard-Heisenberg model they were able to show that

the exact solutions is a dimerized phase in one dimension. In two dimension they found two

solutions to be possible candidates, a Peierls phase at exact Heisenberg case and a flux phase

for slightly larger t or biquadratic spin terms. Concerning the generalization of SU(n) solution

for n = 2, in one dimension dimerized phase is not stable and one might require next nearst

neigbour coupling to stabilize it. The true ground state must be a gapless phase as required by

Lieb-Schultz-Mattis theorem [Lieb et al. (1961)]. In two dimensions, numerical calculations

with Gutzwiller projected states suggested that the flux phase might be a better approximation
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to the ground state as it has better energy than the Peierls phase. This flux phase shall become

the starting point in our work, where instead of a π flux alternating between plaquettes, we

consider a arbitrary flux as a variational parameter in constructing our state. In doing so

we work with a state that is refered to as the Staggered flux wave function and a Gutzwiller

projected version of this state (referred to as SF) shall be used as the groundtate ansatz in our

work.
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3 Spin Wave Theory

Spin wave theory is by far one of the most successful theories that can accurately explain the

spin excitation spectrum of materials with non-frustrated Heisenberg interactions in dimen-

sions D > 1. Although there are some limitations in its applicability to quantum spins S = 1/2

particularly in lower dimensions, its simplicity makes it an attractive candidate for initial anal-

ysis of excitation spectra of various materials. As mentioned in the previous chapters, strict

deviations from the spin-wave result ((π,0) quantum anomaly) are the motivation behind

searching for alternate methods to describe a the square lattice Heisenberg model. As we move

towards 1D case through the rectangular model, it is natural to assume that these deviations

would get stronger and the applicability of spin wave result becomes weaker. Nevertheless, it is

instructive to use this theory to analyze the RQHAF, to understand its limitations. Furthermore,

it could serve as a bench mark against which the staggered flux solution in the subsequent

chapters could be compared.

Mathematical Framework

In this chapter we use the spin wave theory to derive groundstate energy, instantaneous and

dynamic spin-spin correlation functions of RQHAF. The outline of the procedure is as follows:

1) The spin operators are expanded using the Holstien-Primakoff transformation, and the

series is truncated to include only terms quartic in boson creation and annihilation operators.

2) The linear terms are used to derive the bare values of the observables, and subsequently the

fourth order terms are converted to second order using a mean field method. The contribution

from the quartic terms provides us with renormalized values for observables.

3) Since a mean field method is used, the renormalization procedure is carried out self-

consistently to obtain a stable solution. The limitations of the theory would be related to the

stability of this self-consistent procedure.
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4) Once we have a regime where our spin wave solution is valid we proceed to calculate

the groundstate energy, staggered magnetization, and instantaneous and transverse dynamic

spin-spin correlation functions.

Operator Expansion

Spin wave theory starts with assuming an ordered state, i.e a Neel state in our case, and

introducing fluctuations as ∆S = 1 magnon excitations on it. We assume our Neel state to be

ordered along the z-direction. To simplify the formalism we introduce a staggered rotation to

make the magnetic ordering ferromagnetic:

Sx
i = e iQ·Ri Ŝx

i

S y
i = Ŝ y

i

Sz
i = e iQ·Ri Ŝz

i (3.1)

where Q = (π,π) and Ri is the position vector (scaled with the lattice constant). A dot product

between two spins Si and Si+τ separated by vector τ becomes:

Si ·Si+τ = (2ετ−1) Ŝz
i Ŝz

i+τ+
1

2

[
ετ

(
Ŝ+

i Ŝ−
i+τ+ Ŝ−

i Ŝ+
i+τ

)− ε̄τ (
Ŝ+

i Ŝ+
i+τ+ Ŝ−

i Ŝ−
i+τ

)]
(3.2)

with

ετ = 1+e iQ·τ

2
ε̄τ = 1−e iQ·τ

2

A local spin flip at site i is induced through bosonic creation(annihilation) operators a†
i (ai )

via the Holstien-Primakoff tranformation [Holstein and Primakoff (1940)] given by:

Ŝz
i = S −a†

i ai

Ŝ+
i =

√
2S − n̂i ai

Ŝ−
i = a†

i

√
2S − n̂i (3.3)

where n̂i = a†
i ai . The terms under the square root can be expanded using a binomial expan-

sion:

√
2S − n̂i =

p
2S

∞∑
k=0

1

2k k !

(−n̂i

2S

)k

(3.4)

Under the assumption n̂i < 2S this expression can be sufficiently truncated at some finite and

small k. For classical spins i.e large S values this condition is sufficiently satisfied. However,

for a quantum spin S = 1/2 the series can be truncated only if 〈n̂i 〉 < 1. This equivalent to the

‘hard-core’ boson condition that requires that the average number of bosons on a single site
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cannot be more than one. Assuming a hard core boson condition we substitute Eq(3.4) in

Eq(3.2) to obtain:

Si ·Si+τ = S2
[

(Si ·Si+τ)(0) + 1

S
(Si ·Si+τ)(1) + 1

S2 (Si ·Si+τ)(2) +O

(
1

S3

)]
(3.5)

where

(Si ·Si+τ)(0) = (2ετ−1) (3.6)

(Si ·Si+τ)(1) =− (2ετ−1)
(
a†

i ai +a†
i+τai+τ

)
+ετ

(
ai a†

i+τ+a†
i ai+τ

)
+ε̄τ

(
a†

i a†
i+τ+ai ai+τ

)
(3.7)

(Si ·Si+τ)(2) = (2ετ−1)ni ni+τ− ετ

4

(
ni ai a†

i+τ+ai a†
i+τni+τ+a†

i ni ai+τ+a†
i ni+τai+τ

)
+ ε̄

4

(
ni ai ai+τ+ai ni+τai+τ+a†

i ni a†
i+τ+a†

i a†
i+τni+τ

)
(3.8)

In our present work, we consider the terms only till the order 1/S2 in square brackets of Eq(3.5).

Linear Terms

The zero order term is nothing but the Neel state energy. The first order term, which is

quadratic in boson operators, is the quantized manifestation of fluctuations away from Neel

state. Using the following Fourier transform:

ai = 1p
N

∑
q

e i q·Ri aq

a†
i = 1p

N

∑
q

e−i q·Ri a†
q

Summation over the quadratic part over all lattice sites turns out to be:

∑
i

(Si ·Si+τ)(1) =∑
k

Aτ
k a†

k ak +
1

2
Bτ

k

(
a†

k a†
−k +ak a−k

)
(3.9)

where:

Aτ
k = (1−2ετ)+2ετ cos(k ·τ)

Bτ
k = −2ε̄τ cos(k ·τ) (3.10)
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The final contribution of these terms to Heisenberg Hamiltonian is given by:

H (2)
SW =∑

k
Ak a†

k ak +
1

2
Bk

(
a†

k a†
−k +ak a−k

)
(3.11)

where

Ak =∑
τ

JτS Aτ
k Bk =∑

τ
JτSBτ

k (3.12)

Apart from containing a diagonalized part, the Hamiltonian Eq(3.11) contains non-diagonal

(a†a†) and (aa) like terms. To diagonalize Eq(3.11), we utilize a Bogoliubov transformation.

Defining the following quasi particle operators:

bk = uk ak + vk a†
−k (3.13)

the diagonalized Hamiltonian is expected to have the following form:

H (2)
SW =∑

k
ωk b†

k bk +
∑
k

1

2
ωk −

1

2

∑
k

Ak (3.14)

The first term corresponds to bosonic excitations and the second and third term reflect the

zero-point energy of the vacuum state. Eq(3.14) must satify:[
H (2)

SW ,bk

]
=−ωk bk (3.15)

which leads to the eigenvalue problem:(
Ak −Bk

Bk −Ak

)(
uk

vk

)
=ωk

(
uk

vk

)
(3.16)

Solving the eigenvalue problem leads to :

ωk =
√

A2
k −B 2

k (3.17)

with

uk =
√

1

2

(
Ak

ωk
+1

)
, vk = sign(Bk )

√
1

2

(
Ak

ωk
−1

)
(3.18)

For case of rectangular lattice the bare magnon energy is given by:

ω(kx ,ky ) =
√(

Jx + Jy
)2 − (

Jx coskx + Jy cosky
)2 (3.19)

Before moving to further, it is instructive to look at some symmetries in coefficients uk , vk .

Both of them are real and have inversion symmetry uk = u−k , vk = v−k . Apart from inversion
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symmetry they also exhibit the symmetry, uk±Q = uk and vk±Q =−vk .

First Quantum Correction

In this section we treat the first correction containing terms quartic in fermion operators

which is given by Eq(3.8). These terms represent the magnon-magnon interactions. To convert

them into quadratic form, first we divide the product of a pair of boson operators A,B as

below:

AB = AB+ : AB : (3.20)

where AB is called the contraction and : AB : is called the normal ordering. Using Wick’s

theorem, a product of four operators A,B ,C ,D can be written as:

ABC D = : ABC D : + ∑
pai r s

AB : C D : + ∑
pai r s

AB C D

ABC D = : ABC D : + ∑
pai r s

AB(C D −C D)+ ∑
pai r s

AB C D

ABC D = : ABC D : + ∑
pai r s

ABC D − ∑
pai r s

AB C D (3.21)

The first term has zero expectation value for ground state and hence ignored. Here we make

an assumption where the pair-wise contraction AB is replaced by a mean field 〈AB〉. This

is analogous to Hartree-Fock method in quantum many body problem. If the mean field

is derived through an iterative process it is called ‘Self-consistent’ mean field method. The

second term contributes to the dispersion spectrum and the third term contributes to the

ground state energy. We first define the following mean fields:

n =
〈

a†
i ai

〉
δ = 〈ai ai 〉 =

〈
a†

i a†
i

〉
tτ =

〈
a†

i ai+τ
〉
=

〈
ai a†

i+τ
〉

∆τ = 〈ai ai+τ〉 =
〈

a†
i a†

i+τ
〉

Using these mean fields one could decouple the quartic bosonic terms to quadratic form. For

example considering quartic part of the first term in Eq(3.8):

∑
i

ni ni+τ = ∑
i

a†
i ai a†

i+τai+τ

= ∑
i

[
n

(
a†

i ai +a†
i+τai+τ

)
+∆τ

(
ai ai+τ+a†

i a†
i+τ

)
+ tτ

(
ai a†

i+τ+a†
i ai+τ

)]
(3.22)
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Using the fourier transform of the bosonic operators:

∑
i

ni ni+τ = ∑
k

[
2(n + tτ cos(k ·τ)) a†

k ak +∆τ cos(k ·τ)
(
a†

q a†
−q +aq a−q

)]
(3.23)

This expression looks similar to Eq(3.9). Adding all the contributions from Eq(3.8) we obtain:

∑
i

(Si ·Si+τ)(2) =∑
k

d Aτ
k a†

k ak +
1

2
dBτ

k

(
a†

k a†
−k +ak a−k

)
(3.24)

where

d Aτ
k = 2ετ (1−cos(k ·τ)) (n − tτ)+2ε̄τ

(
∆τ−n +

(
δ

2
− tτ

)
cos(k ·τ)

)
dBτ

k = 2ετ

((
∆τ− δ

2

)
cos(k ·τ)− ∆τ

2

)
+2ε̄τ

(
tτ
2
+ (n −∆τ)cos(k ·τ)

)
(3.25)

Adding these terms to the bare Hamiltonian would provide us with an expression similar to

Eq(3.11) with modified amplitudes:

A′
k = Ak +d Ak B ′

k = Bk +dBk (3.26)

where

d Ak =∑
τ

Jτd Aτ
k dBk =∑

τ
JτdBτ

k (3.27)

Calculating the mean fields from the groundstate of diagonalized Hamiltonian Eq(3.14) we

obtain:

n = 1

N

∑
k

v2
k = 1

(2π)2

∫ 2π

0
dkx

∫ 2π

0
dky v2

k

δ = − 1

N

∑
k

uk vk =− 1

(2π)2

∫ 2π

0
dkx

∫ 2π

0
dky uk vk

tτ = 1

N

∑
k

cos(k ·τ)v2
k = 1

(2π)2

∫ 2π

0
dkx

∫ 2π

0
dky cos(k ·τ)v2

k

∆τ = − 1

N

∑
k

cos(k ·τ)uk vk =− 1

(2π)2

∫ 2π

0
dkx

∫ 2π

0
dky cos(k ·τ)uk vk (3.28)

Using the symmetry uk±Q = uk and vk±Q =−vk , we observe integrals of the term δ evaluates

to zero. Since we have only nearest neighbor interactions with τ= êx , êy , we observe that the
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terms tτ also vanish. Hence the terms in Eq(3.25) can be simplified as:

d Aτ
k = 2(∆τ−n)

dBτ
k = 2(n −∆τ)cos(k ·τ) (3.29)

By calculating the mean fields we can estimate the corrections d Ak ,dBk and calculate the

renormalized dispersion from which we can obtain the new estimates for the mean fields. This

process can be done self-consistently until we achieve required accuracy. However, there are a

few challenges pertaining to carrying out this procedure on rectangular Heisenberg systems,

particularly at low couplings.

Instability at low Coupling

Taking a look at the mean field n that gives average number of bosons on a site:

n = 1

(2π)d

∫
d d k v2

k = 1

(2π)d

∫
d d k

1

2

(
Ak

ωk
−1

)
(3.30)

where d is the dimension. In 1D case this mean field becomes:

n = 1

2π

∫ π

0
dk

(
1√

1−cos2(k)
−1

)
(3.31)

The integrand diverges at k = 0. Rewriting the integral as follows:

n =
∫ π

δ

dk

2π

(
1√

1−cos2(k)
−1

)
+

∫ δ

0

dk

2π

(
1√

1−cos2(k)
−1

)
(3.32)

where δ is a small number. The first part of the integral is finite and can be numerically

evaluated The second term at small k can be expanded as follows:

∫ δ

0

dk

2π

(p
2

k
−1

)
=

p
2

2π
logk

∣∣∣∣∣
δ

0

− δ

2π
(3.33)

Hence we observe that the mean field has a logarithmic divergence and has no finite value.

Hence, even at zero temperature the 1D chain does not exhibit a long range order. The quan-

tum fluctuations are strong enough to destroy the longrange order and hence the groundstate

is a disordered phase. When we move into 2D case with a square lattice carrying out the same

procedure will lead to the second term being( cutoff is a circle around (0,0)):

∫ δ

0
dk

∫ 2π

0
dφ

k

(2π)2

(p
2

k
−1

)
=

p
2δ

2π
− δ2

4π
(3.34)
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which is finite and vanishes as δ→ 0. Hence 2D case hosts long range order at least at T = 0.

In rectangular lattices, reducing the coupling Jy towards zero, gradually brings us towards

a case where the divergence at k = 0 plays a significant role and hence the estimate of n

becomes increasingly large. In applying the self-consistency criterion, apart from the stability

of the mean fields, we must pay attention to the constraints on our mean fields. Previously

we have mentioned the hard core boson constarint ni < 1. Apart from this we have a much

stronger constraint n < 1/2, which comes from the fact that as n gets close to 1/2 the staggered

magnetization
〈

(−1)i Sz
i

〉 = 1/2−n goes to zero. If n > 1/2 then our initial assumption of

ordered state ( FM lattice Ŝi ordered along +z direction with reduced moment) fails. In the

subsequent sections we provide a more clear argument for this constraint.

Correlation functions

To estimate the static and dynamic correlation functions we have to establish their mathe-

matical forms. Following the same procedure as in previous sections we obtain the following

forms for correlation functions.

〈
Sx

i ·Sx
i+τ

〉 = e iQ·Ri

2
(1−2n) (∆τ+ tτ)〈

S y
i ·S y

i+τ
〉 = 1

2
(1−2n) (tτ−∆τ)〈

Sz
i ·Sz

i+τ
〉 = e iQ·Ri

(
1

4
−n +n2 +∆2

τ+ t 2
τ

)
(3.35)

We have used the fact that δ= 0 in our case while deriving the above equations. At τ= 0 we

have tτ = n,∆τ = 0 which leads to the result
〈

Sx
i ·Sx

i+τ
〉= 〈

S y
i ·S y

i+τ
〉= n/2−n2 and

〈
Sz

i ·Sz
i+τ

〉=
1/4−n +2n2 leading to

〈
S2

i

〉= 1/4 which is different from the expected result
〈

S2
i

〉= 3/4. This

is due to the fact that the operators for Sx
i and S y

i are truncated and to first order, carry only

the contributions from the fluctuations away from Neel state. As one would expect a non

negative value for
〈

Sx
i

2〉 we obtain the constraint n < 1/2. At finite τ, from above expressions,

it is clear that the x and z components of the correlation functions are staggered. Although it

is not clearly evident from above expressions, applying the symmetry k → k +Q in Eq(3.28),

we observe that on even sublattice ∆τ = 0 and on odd sublattice tτ = 0. This renders the x and

y components of the correlation function to be equal, as expected.

The Dynamic(transverse) spin correlation function on other hand is given by the equation:

S+−(q,ω) =∑
λ

〈0〉S+
q |λ〉〈λ|S−

q |0〉δ(ω+EGS −Eλ) (3.36)

where |0〉 is the ground state i.e the vacuum state of operators b,b† and |λ〉 are all possible

intermediate states. In principle they contain both single magnon and multi-magnon contri-

butions. In this work we only consider the contribution of the states corresponding to single
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magnon excitations, |λ〉 = b†
k |0〉. Substituting this result and performing a few mathematical

calculations leads to the final expression

S+−(q,ω) = 2(1−n)(uk + vk )2δ(ω+EGS −Eλ) (3.37)

where the factor (1−n) comes from the quantum corrections.

Results

In this section we present the results corresponding to our self-consistent mean field calcula-

tions. Values of the mean fields have been determined by using numerical integration. While

performing the numerical integration we assume a finite cutoff δ=π/1000 around the points

(0,0) and (π,π) where ωk = 0. We assume that the contribution from the omitted part to be

minimal which may not be true very close to Jy = 0.
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Figure 3.1 – Values of Meanfield n vs iterations for various γ in a self-consistent calculation.
The dashed line indicates the limit corresponding to the constraint n < 1/2.

For the moment, we focus our attention on the fulfillment of the self consistency criterion

and the constraint n < 1/2. In Fig(3.1) we show the value of mean field n for the first 25

iterations in the self consistency calculation. As one can see within a few steps, we achieve

a good convergence for values Jy /Jx ≥ 0.138. However for Jy /Jx < 0.138 we observe the self-

consistency criterion failing and the value of n going beyond 1/2. Jy /Jx = 0.138 appears to be

the limiting value where Linear spin-wave theory with first order correction works. This also

happens to be close to 0.1356, the value proposed by [Miyazaki et al. (1995)] using Schwinger

boson mean field technique. However this by no means is a proof that long range order is

destroyed at this coupling. This might just be the effect of mean field wavefunction and this

has been expressed by Miyazaki et al. as well. In Fig(3.2) we show the final values of mean
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fields obtained using the self-consistency procedure. In Fig(3.2)(a), we show the staggered

magnetization given by
〈

e iQ·R Sz
i (R)

〉= 1/2−n. The staggered magnetization has a reduced

value 0.304 at symmetric case which gradually goes to 0 around γ= 0.138. We also show the

values of functions ∆τ for τ= êx , êy which represents the nearest neighbor (staggered)spin-

spin correlation function(xx and yy components to first order) as can be seen from Eq(3.35).

The nearest-neigbor correlation(till first order) decreases in y-direction while it increases in x

direction as we decrease γ.
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Figure 3.2 – (a)Staggered magnetization and the (b) mean field ∆τ for τ= x(êx ), y(êy ) repre-
sented with blue and red dots respectively vs coupling ratio γ.
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⨯ SBGP
● SWT
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Figure 3.3 – Ground state energy obtained from spin wave theory(SWT) and a comparison
with Gutzwiller projected Schwinger boson result from Miyazaki et al.

The ground state energy can be estimated via the nearest neighbor spin-spin correlation

function expressions in Eq(3.35) using the expression.

EGS = ∑
τ

Jτ 〈0|Si+τSi |0〉

= ∑
τ

Jτ

[(
−1

4

)
+ (n −∆τ)− (n −∆τ)2

]
(3.38)

where we use the expressions from Eq(3.35) and we substitute tτ = 0 for nearest neighbors.

The first term in square brackets is the energy fom Neel term. Through some mathematical

calculations it can be shown that the second term, if considered to first order, is exactly equal

to the zero point energy in Eq(3.14). The third term provides the next order corrections to

this zero-point energy. In Fig(3.3) we show the groundstate energies for γ ≥ 0.2 obtained

from this procedure. We compare this result with the results from Miyazaki et al, where they

use Gutzwiller projected ordered state as ground state ansatz. The excitations induced in

their work are Schwinger bosons, and the Gutzwiller projector is used to impose the hard

core boson condition. The result obtained from our self-consistent procedure seems to have

better groundstate estimates compared to their work. Moreover our groundstate estimate in

symmetric case γ = 1 is -0.6704 J which is better than the current best numerical estimate

-0.6692 J obtained via Greens function Monte Carlo by [Trivedi and Ceperley (1989); Runge

(1992); Calandra Buonaura and Sorella (1998)]. However, since we use a mean field method

and our Hamiltonian is not exact(is truncated), there is a possibility that our groundstate

wavefunction might over estimate the ground state energy.

A look at the instantaneous spin-spin correlation function shows us that the functions exhibit

a power-law decay(at least at long distances) in the xx and y y components. In Fig(3.4(a))
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we show the Log-Log plot of the correlation function along x-direction at selected γ values.

Fitting these functions with power law decay at large x values shows that they decay as Ax /xex

with ex ∼ 1(= 1.04). Hence, we plot the function xS(xx)(x) in Fig(3.4(b)), which shows that

the correlation functions at large x are more or less constant. The amplitude of the decay

however does not follow a monotonous relation with γ. Initially we observe an increase in

the amplitude with decreasing γ. However, at γ= 0.2 we observe a sudden decrease in overall

correlation function. One can see the origin of this effect if we look at the expressions of

correlation functions given in Eq(3.35) along with the symmetry arguments that lead to:

〈
Sx

i ·Sx
i+τ

〉={
1
2 (1−2n)tτ τ ∈ E

−1
2 (1−2n)∆τ τ ∈O

(3.39)

1 2 5 10

0.1

0.05

0.01
0.2 0.5

0.8 1

(a)

2 4 6 8 10 12

0.08

0.10

0.2 0.5

0.8 1

(b)

1 2 5 10

0.1

0.05

0.01

0.2 0.5

0.8 1

(c)

2 4 6 8 10 12
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.2 0.5

0.8 1

(d)

Figure 3.4 – Spin-spin correlation function Sxx (r )(left) and the product r Sxx (r )(right) in for
r = x(top) and r = y(bottom) directions for couplings γ = 0.2(red),0.5(green),0.7(blue) and
1(black).

Without the (1−2n) term we would observe a monotonously increasing behaviour of the

correlation function. At γ= 0.2 the increase in tx ,∆x is overpowered by decrease in (1−2n)
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which leads to the observed effect. Moving to y-direction, we observe a similar power-law

decay A/yey with ey ∼ 1 albiet with an amplitude that decreases with decreasing γ. As can be

seen from Fig(3.4(c,d)) we observe an abrupt decrease of the correlation function. This is also

due to the factor (1−2n) in the above equations, which adds to the already decreasing first

order correlation functions ty ,∆y (for even and odd sublattices).

Moving on to the zz component of the correlation function from the expressions in Eq(3.35)

along with the symmetry conditions lead to:

〈
Sz

i ·Sz
i+τ

〉={
1
4 −n +n2 + t 2

τ τ ∈ E

−1
4 +n −n2 −∆2

τ τ ∈O
(3.40)
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Figure 3.5 – Difference between spin spin correlation function Szz (r ) at r = 0 and r =∞ (left)
and the product of this function with z2(right) in x(top) and y(bottom) directions for couplings
γ= 0.2(red),0.5(green),0.7(blue) and 1(black).

The τ independent part (1/2−n)2 reflects the contribution coming from the long range or-

der. Subtracting this part from the staggered correlation function we observe that it given by

{t 2
τ ,∆2

τ} for τ ∈ {E ,O}. Hence it is just the square of the first order component of xx correlation
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Chapter 3. Spin Wave Theory

function and hence follows a power-law decay as can be seen from Fig(3.5(a),(c)), and multi-

plying with x2(y2) in x(y)-direction we observe the functions being constant at large distances.

Fitting a powerlaw function, as expected gives an exponent of ex ,ey 2(= 2.08). The amplitude

increases(decreases) monotonically with decreasing coupling along x(y)-direction.

Once we have the correction terms d Ak and dBk the and the renormalization of bare magnon

energy can be calculated as:

ωk =
√

(Ak +d Ak )2 + (Bk +dBk )2 (3.41)

Zk =
√

(Ak +d Ak )2 + (Bk +dBk )2√
A2

k +B 2
k

(3.42)

0.0

0.5

1.0

1.5

2.0

0.2 0.5

1

(a)

0.0

0.5

1.0

1.5

0.0

0.138

(b)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0.138 0.2

0.5 1

(c)

Figure 3.6 – (a) Renormalized dispersion(bold) and bare(dashed) magnon dispersion at γ=
0.2,0.5,1 indicated by green,red and black. b) Comparison of the limiting case γ= 0.138(blue)
with lower limit of Bethe Ansatz(orange) (chain along x-direction) (c) Renormalization factors
in (a) and (b).
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3.2. Results

In Fig(3.6(a)), we show the calculated spin wave dispersion for values of γ= 0.2,0.5,1 and in

Fig(3.6(b)), we show the dispersion corresponding to the limiting value γ= 0.138 and the lower

limit of Bethe ansatz solution i.e ωk = π
2 sink. The dashed lines indicate the bare dispersion

from linear component and the solid lines show the renormalized dispersion. The spin wave

solutions shows gapless goldstone modes at (0,0) and (π,π) that appear due to spontaneously

broken spin rotational symmetry. As can be observed Fig(3.6(c)) renormalization factors

are not k-dependent for square lattice and has value of Z (q) = 1.158. As we move towards

smaller couplings we progressively see a larger k-dependence and the overall magnitude of

the renormalization also increases. This is a result of increasing quantum fluctuations that

would eventually destabilize the Neel state for 1D case. As can be seen from Fig(3.6(b)), the

limiting case falls a bit short in terms of energy compared to the Bethe ansatz. This is due

to the fact that at the limiting case since n ∼ 0.5, and the next order correction in the spin

wave expansion Eq(3.5) would contribute to higher renormalization. If we assume the lower

limit of Bethe Ansatz as a representation of magnon mode then the renormalization factor is

π/2 = 1.57 a value larger than the renormalization at our limiting case 1.25, and indication

that our truncated Hamiltonian barely captures the full renormalization.

0

5

10

15

20

0.138 0.2

0.5 1

Figure 3.7 – Transverse dynamical spin-spin correlation function, along a selected k-path, for
γ= 0.138,0.2,0.5,1 represented by blue,green,red and black.

Finally, Fig(3.7) shows the evolution of dynamic spin spin correlation functions at various

γ along the selected k-path. As can be seen the structure factor vanishes at (0,0) point, and

diverges at (π,π). The spectral weight at (π,0) symmetry point increases with decreasing

coupling. We additionally added the k-path along (0,π) → (π,π) where we see the correlation

function decreasing at point (0,π) with decreasing γ. This is an expected as the spectral weight

of excitations with momenta along y-direction should get weaker as we move towards 1D.
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Chapter 3. Spin Wave Theory

Summary

Summarizing the spin wave calculations performed on RQHAF for various coupling ratios γ,

we have the following results:

1)The Heisenberg Hamiltonian expanded using Holstien-Primakoff transformation is trun-

cated, to only include terms upto fourth order in bosonic operators. The quadratic compo-

nents lead to linear spin wave theory which yields the bare value of the observables. The

quartic components through a self-consistent mean field method, yield the renormalized

values. This method yields a stable solution, with constraint n < 1/2, only for the coupling

ratios γ≥ 0.138.

2) Calculated ground state energies match(are slightly better than) the result from gutzwiller

projected Schwinger boson wave function by Miyazaki et al. and Green’s function Montecarlo

result at symmetric case γ= 1. However, since we are not working with the true Hamiltonian,

there is a possibility that our results might be overestimated.

3) Transverse components of the instantaneous spin-spin correlation functions 〈Sx Sx〉 exhibit

an power law decay both in x and y directions following the relation ∼ A/r . Along x-direction

the correlation function increases with decreasing coupling, except at γ= 0.2 where the second

order correction seems to lead to a overall decrease in correlation function amplitude. Along

y-direction we observe the amplitude decreasing with decreasing coupling.

4) The longitudinal component of the correlation function 〈Sz Sz〉 contains, in addition to a

power-law decaying part, an added factor related to the long-range order(correlation function

between two infinitely separated points). Subtracting this factor from correlation functions

shows that the resulting expression is just the square of the transverse correlation function(to

first order).

5) The renormalization of the magnon dispersion increases in magnitude as we approach

lower couplings. The q-dependence also increases with decreasing coupling. A look at the

transverse dynamic correlation function shows an increase in spectral weight at (π,0) point

and a decrease at (0,π) as we decrease the coupling which reflects the fact that we approach a

1D case.
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4 Staggered flux:Ground state

In this chapter we explore the Gutzwiller projecte staggered flux variational wavefunction

(denoted as SF) as a ground state approximation on a Rectangular Quantum Heisenberg

AntiFerromagnetic(RQHAF) lattice. By gradually varying the coupling ratio γ = Jy /Jx , we

investigate the evolution of groundstate properties of this wavefunction. As explained in

the introduction, the interest in this state comes primarily from the fact that it exhibits stark

deviations from spin wave theory, which qualitatively explain the observed experimental

effects in square lattices. Furthermore, the wavefunction at specific q vectors that exhibit

these deviations, appear to host de-confined fractional excitations which are 2D analogues

of ‘spinons’. Although this state lacks long-range order and is slightly higher in energy, these

interesting features motivate further investigation into this wavefunction. The interest in a

non ordered quantum spin liquid solution comes also from the fact that in high temperature

super conductors, cuprates for example, upon introducing a small doping the AFM ordering

of the parent compound is destroyed. In this scenario,the Resonating Valance Bond state has

been proposed by Anderson [Anderson et al. (1987); Anderson (1973)] as a prototypical state to

explain High temperature superconductivity, a problem that still lacks a universally accepted

solution.

Mathematical Framework

In this section we introduce the theoretical framework used to construct the SF wavefunction

and the methodology used to calculate the observables. The basic outline of this procedure is

as follows:

1) Heisenberg Hamiltonian is expressed in fermionic form by representing the spin oper-

ators in fermion creation and annihilation operators. Since the Hamiltonian is quartic we use

mean field decoupling, to convert it to a quadratic form.

2) A particular choice of mean fields defines our staggered flux Hamiltonian which upon

diagonalization yields two bands which are gappless at k-points (±π
2 ,±π

2 ). Filling the lower
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Chapter 4. Staggered flux:Ground state

band with up and down spins yields our staggered flux wave function which ends up being

dependent on two variational parameters α and θ( to be defined).

3) Since the staggered flux state hosts double occupancies we introduce a Gutzwiller pro-

jection to project them out. Thus the Gutzwiller projected staggered flux state becomes our

variational ansatz.

4) Once we have a variational ansatz, values of various observables are estimated by cal-

culating the expectation values of the corresponding operators. Calculation of observables on

this Gutzwiller projected state is performed numarically by using a Montecarlo process.

Fermionized Heisenberg Hamiltonian

As described in the previous chapters, in most of the existing formalisms, the diagonalization

of the Heisenberg Hamiltonian is carried out through the introduction of excitations on an

ordered state. These excitations could be bosonic or fermionic depending on the formalism.

Since, the bosonic excitations restrict the possibility of having fractional S = 1/2 excitations,

a natural choice is to turn to a fermionic version of the Hamiltonian. The notion of spinless

fermions seems to be the first choice in this regard, since it provides us with an exact solution

for the XY model in 1D. However, the complexity of string operator renders this to be imprac-

tical. Hence we turn to the simple way of expressing the spin operators via the creation and

annihilation operators of S = 1/2 fermions.

Sk
i = ∑

αα′
c†

iα

(
Sk

i

)
αα′ ciα′ (4.1)

where k ∈ {x, y, z},α ∈ {↑,↓} and
(
Sk

i

)
αα′ corresponds to the matrix elements of the spin operator

Sk
i . Using this operator the Heisenberg Hamiltonian becomes:

H = ∑
〈i , j〉

Ji j
∑
k

∑
1234

c†
iα1

(
Sk

i

)
α1α2

ciα2
c†

iα3

(
Sk

j

)
α3α4

ciα4

= ∑
〈i , j〉

∑
α

Ji j

4

(
niαn jα−niαn j ᾱ+2c†

iαci ᾱc†
j ᾱc jα

)
where niα = c†

iαciα, ᾱ=↑ (↓)

= ∑
〈i , j〉

−Ji j

2

[
ni

(n j

2
−1

)
+∑
αβ

c†
iαc jαc†

jβciβ

]
(4.2)

where sum over 〈〉 implies summation over pairs ,ni =∑
αniα =∑

α c†
iαciα, ᾱ=↑ (↓) if α=↓ (↑)

and in last expression α,β ∈ {↑,↓}. It must be noted that, unlike the Heisenberg Hamiltonian,

the hilbert space of Eq(4.2) contains double occupancies and empty sites. The equivalence

exists only in the subspace corresponding to the states, where we have all the sites occupied by

a single spin. The wavefunctions that diagonalize the Heisenberg Hamiltonian are expected
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4.1. Mathematical Framework

to be in this subspace. The unphysical wavefunctions, not belonging to this subspace, will

be projected out using a Gutzwiller projector. Since the groundstate belongs to the sector

Sz
tot = 0 ,at half filling we have N↓ = N↑ = N /2. A state with an induced tranverse excitation

would belong to the sector Sz
tot = 1 and hence has N↑ = N /2+1, N↓ = N /2−1.

Mean Field decoupling

Starting with the second part of Eq(4.2), we use a mean field decoupling(similar to chapter 3)

to reduce the terms quartic in creation/annihilation operators to a quadratic form .

HMF = −1

2

∑
〈i , j〉

Ji j
∑
αβ

(〈
c†

iαc jα

〉
c†

iβc jβ+
〈

c†
jβc†

iβ

〉
ciαc jα+

〈
c†

iαc†
jβ

〉
ciβc jα

+
〈

ciβc jα

〉
c†

iαc†
jβ+

〈
c†

iαciβ

〉
c jαc†

jβ+
〈

c jαc†
jβ

〉
c†

iαciβ

)
Defining the mean fields with the following notation:

2
〈

c†
iσc jσ

〉
=χi j ,

〈
ci↑c j↓

〉=∆i j ,
〈

c†
iσciσ

〉
= hiσ

The Mean field Hamiltonian becomes,

HMF =∑
α

(
χi j c†

jαciα+εαᾱ∆i j c†
i ᾱc†

jα+hiαc jαc†
jα

)
+h.c. (4.3)

where ε↑↓ =−ε↓↑ = 1. In our formulation we set hiσ = 0 as we are interested in a disordered

state. The choice for the remaining two fields χi j ,∆i j we use is:

χi j =
{

tx e iθi j , θi j = θx (−1)ix+ jy for j = i ± êx

ty e iθi j , θi j = θy (−1)ix+ jy for j = i ± êy
, ∆i j = 0 (4.4)

It can be shown that this choice is related to an asymmetric d-wave RVB ansatz given by:

χi j =
{

χx for j = i ± êx

χy for j = i ± êy
, ∆i j =

{
∆x for j = i ± êx

−∆y for j = i ± êy
(4.5)

via an SU(2) transformation that relates the parameters via the expressions, ti =
√
χ2

i +∆2
i ,

θ0 = tan−1(∆i /χi ) for i=x,y. The d-wave ansatz is inspired by the Bardeen-Cooper-Schrieffer

mean-field [Bardeen et al. (1957)] decoupling of the electron-phonon interaction Hamiltionian,

which is responsible for the conventional super conductivity. The staggered flux on other-

hand, has been introduced by Affleck and Marston for symmetric case [Affleck et al. (1988)],

which turns out to be one of the two exact solutions for SU (n) Hubbard-Heisenberg model in

two dimensions with n →∞ [Marston and Affleck (1989)](see chapter 2). The resulting spin

liquid state is described as the so called π-flux phase with total flux obtained by a fermion

by circulating around a plaquette being π. This choice of flux preserves the time reversal

55



Chapter 4. Staggered flux:Ground state

symmetry. In the work of Dallapiazza et al., the flux parameter is considered to be a variational

parameter, whose optimum value turned out to be θx = θy = 0.075π and hence the name

‘staggered-flux’. This choice breaks time-reversal symmetry . The parameter t on other-hand

sets the energy scale and has no real significance in the symmetric case. In rectangular lattices

however, where we induce an asymmetric staggered flux state, we shall see that the ratio ty /tx

and θ = θx +θy both play a role in deciding the groundstate energy of the wavefunction.

J x

Jy

2 (θ x +θy )- 2 (θ x +θy )2 (θ x +θy )

- 2 (θ x +θy )2 (θ x +θy )- 2 (θ x +θy )

Figure 4.1 – An illustration of staggered flux state with anisotropic couplings, represented as
flux of magnitude 2(θx +θy ) threading the lattice in a staggered manner.

Staggered Flux Hamiltonian

Using the choice of mean fields Eq(4.4), the mean field Hamiltonian Eq (4.3) becomes the

staggered flux hamiltonian:

HSF = ∑
i even,σ

(
− Jx tx

2
e−iθx c†

iσci+xσ−
Jy ty

2
e iθy c†

iσci+yσ+h.c

)
+ ∑

i odd,σ

(
− Jx tx

2
e iθx c†

iσci+xσ−
Jy ty

2
e−iθy c†

iσci+yσ+h.c

)
(4.6)
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4.1. Mathematical Framework

Using the Fourier transform and expressing the creation and annihilation operators on even(e)

and odd(o) sublattices in k space as,

ekσ = ckσ+ ck+Qσp
2

, okσ = ckσ− ck+Qσp
2

, (4.7)

with k ∈ MB Z i.e Magnetic Brillouin zone and Q = (π,π). The staggered Flux Hamiltonian can

be written as:

HSF =−Jx tx
∑
k

(
e†

kσ o†
kσ

)(
0 ∆∗

k

∆k 0

)(
ekσ

okσ

)
(4.8)

where

∆k = 1

2

(
e iθx coskx +αe−iθy cosky

)
(4.9)

where we define α= Jy ty /Jx tx . To diagonalize the Hamiltonian we require a unitary transfor-

mation Ukσ such that:

Ωkσ =U−1
kσ

(
0 ∆∗

k

∆k 0

)
Ukσ (4.10)

is a diagonal matrix. Defining the unitary transformation as:

Ukσ =
(

ukσ− ukσ+
vkσ− vkσ+

)
(4.11)

the diagonalization can be achieved through the following choice:

ukσ− = vkσ+ =
√

1

2
, vkσ− =−u∗

kσ+ = ∆kp
2 |∆k |

(4.12)

which finally leads to a diagonalized hamiltionian:

Ωkσ =
(
−Jx tx |∆k | 0

0 Jx tx |∆k |

)
(4.13)

We have two bands with energies, ω = −Jx tx |∆k | and ω = Jx tx |∆k | which we will shall re-

fer from here on as ′−′ and ′+′ respectively. A look at these bands for selected parameters

from Fig(4.2) shows that the bands are gapless with nodes at
(±π

2 ,±π
2

)
. These k-points are

problematic for numerical calculations, as the phase of ∆k is ill defined at these points. To

circumvent this problem we shall work with different boundary conditions as will be explained

more clearly in later sections. The-quasi particle creation and annihilation operators in the
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diagonalized space, are related to the fermion creation and annihilation operators through:(
dkσ−
dkσ+

)
=

(
ukσ− v∗

kσ−
u∗

kσ+ vkσ+

)(
ekσ

okσ

)
(4.14)

The real space fermion operators are related to the quasi particle operators via the expression:

ciσ =p
2

∑
k∈MB Z

e i kRi
[(
εRi ukσ−+ ε̄Ri vkσ−

)
dkσ−+ (

εRi ukσ++ ε̄Ri vkσ+
)

dkσ+
]

(4.15)

where εRi and ε̄Ri determine if site i is even or odd via:

εRi =
1+e iQRi

2
, ε̄Ri =

1−e iQRi

2
(4.16)

The groundstate of the SF Hamiltonian is obtained by completely filling the lower band with

spin up and spin down quasi-particles:∣∣ψGS
〉= ∏

k∈MB Z
d †

k↑−d †
k↓− |0〉 (4.17)

Since, the quasi particle operators are dependent only on the phase of the function ∆k our

ground state wave function depends only on parameters α,θx and θy . A look at the defini-

tion of the quasi-particle operators shows that the staggered flux ground state, has double

occupancies. In order to get rid of these, we use a Gutzwiller projected state as our variational

ground state.

|GS〉 = PG
∣∣ψGS

〉
(4.18)

Staggered flux as the superposition of singlets

At this point, it is instructive to look at how the SF wave function, looks in the physical space.

The staggered flux state is created through filling the lower band with up and down spins. The

creation operator d †
kσ− is related to the spin creation operators through:

d †
kσ− = u∗

kσ−e†
kσ+ vkσo†

kσ = 1p
2

e†
kσ+

e iφk

p
2

o†
kσ (4.19)

where φk is the phase of function ∆k and depends on the parameters α,θx ,θy . Using these

definitions:

d †
k↑−d †

k↓− = 1

2

[
e†

k↑e†
k↓+e iφk

(
e†

k↑o†
k↓+o†

k↑e†
k↓

)
+e2iφk o†

k↑o†
k↓

]
(4.20)
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4.1. Mathematical Framework

(a) α= 1,θ = 0.15π

(b) α= 0.3,θ = 0.15π

Figure 4.2 – Quasi particle bands of staggered flux Hamiltonian for selected parameters.
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Expanding the first term in square brackets in real space:

e†
k↑e†

k↓ =
1

N

∑
i∈E

∑
j∈E

e−i k·(Ri+R j )c†
i↑c†

j↓ (4.21)

where E represents the even sublattice and O represents the odd sublattice. Since, the terms

corresponding to i = j will be projected out by the Gutzwiller projector considering only the

contribution from i 6= j :

e†
k↑e†

k↓ = 1

N

∑
〈i , j〉∈E

e−i k·(Ri+R j )
(
c†

i↑c†
j↓+ c†

j↑c†
i↓

)
= 1

N

∑
〈i , j〉∈E

e−i k·(Ri+R j )
(
c†

i↑c†
j↓− c†

i↓c†
j↑

)
(4.22)

where
〈

i , j
〉

refers to the pair i , j . As can be seen, the term in parenthesis creates a singlet

on the pair i , j with both i and j belonging to even sublattice. Similarly, one can show that

the other terms in Eq(4.20) each creates singlets in similar fashion (on even-odd,odd-odd

sublattices). Hence the staggered flux state upon Gutzwiller projection, will lead to a state that

is superposition of various singlet configurations as shown in Fig(4.3). While creating each

singlet we have establish a overall sign convention to have a proper sign (for example spins

on bottom right are created first). Once this is done, one does not have to worry about the

sign convention while filling the states as superposition singlets in this manner, because the

singlet creation operator term in parentheses in Eq(4.22) is quadratic in fermion operators an

hence they can be exchanged without changing the overall sign of the wave function.

In Fig(4.3), we show an illustration of this state. The wavefunction
∣∣ψGS

〉
with filled lower

band, as mentioned above, is made up of states that contain double occupancies and empty

sites and singly occupied states that can be written as superposition of pair-wise singlets.

The coefficients of these states are linked to the fourier factors and the phase φk as shown

above. The Gutzwiller projector projects out all the states that are not singly occupied, leaving

us with a linear combination of states made up of superposition of pairwise singlet states.

Although the superposed pairwise singlet states provide us with an intuitive picture, they do

not function as good wavefunction vectors as they are not orthonormal. Nevertheless they

provide us with an intuitive picture of the underlying states and it shall be used while exploring

the spinon separation in next chapter.

60



4.1. Mathematical Framework

PG
∣∣ψGS

〉= PG
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Figure 4.3 – An illustration of staggered flux state as a sum of states made up of superposition
of singlets. The double arrow reprsents the double occupancies and the open circle represents
an empty site. The Gutzwiller projector projects out states that are not singly occupied and
yields a state that is sum of states with superposed singlets occupying all sites.

Boundary Conditions

We come back to the problem associated with the special k points
(±π

2 ,±π
2

)
where the quasi

particle spectrum Fig(4.2) is gapless and the phase of the function ∆k is ill-defined. Since we

work on a finite lattices for our numerical computations where we consider lattices of size L×L

with L being even. If we have periodic boundary condition, our k space is made up of points

( 2πnx
L ,

2πny

L ). For systems of size L = 4n we observe that k-space contains
(
π
2 , π2

)
. To get around

this, one could slightly tilt the k-space that will lead to the nodal points being avoided [Gros

(1989)]. However, this would break some lattice symmetries like four fold rotational symmetry.

Another way of doing this is to consider Anti-periodic boundary conditions. Considering

anti-periodic boundary conditions in direction i leads to following relations wavefunctions

with translational symmetry:

ψk (r +mî ) = e i ki mψ(r )

ψk (r +Lî ) = −ψk (r ) (4.23)
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which leads to the definition of wavevectors:

ki =
(
ni + 1

2

)
2π

L
(4.24)

Hence we have 3 possible choices that we can employ for system sizes L = 4n, anti-periodic in

both directions (ABC − ABC ), anti-periodic in x and periodic in y (ABC −PBC ), periodic in x

and anti-periodic in y (PBC , ABC ). The k-space corresponding to these choices is shown in

Fig(4.4). Similarly, for systems of size L = 4n +2, we have the choices (PBC −PBC ), (PBC −
ABC ), (ABC −PBC ). Ideally a single choice would be enough for our purpose, but as will be

shown in next section, the values of observables at small γ strongly depend on the system

size. Looking at the finite size effects along with different boundary conditions would provide

us with additional information that would be helpful to establish the L →∞ values of the

observables.
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Figure 4.4 – k space corresponding to MBZ for various choices of Boundary conditions for
system size L = 16. The nodal points are indicated by red dots.

Calculation of observables

Once we have established our k-points we can proceed to constructing the staggered flux wave

function. To optimize our groundstate wave function we need to minimize the groundstate
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4.1. Mathematical Framework

energy given by:

EGS = 〈GS|H |GS〉
〈GS |GS〉 =

〈
ψGS

∣∣PGH PG
∣∣ψGS

〉〈
ψGS

∣∣PG
∣∣ψGS

〉 (4.25)

where H is the exact Heisenberg Hamiltonian. This would yield the optimum values for our

variational parameters α,θx ,θy . Once such a state is found we can proceed to calculate the

relevant observables necessary to study the wave function. For this purpose we need a way to

evaluate the expectation values of a given observable O :

〈O〉 = 〈GS|O |GS〉
〈GS |GS〉 =

〈
ψGS

∣∣PGOPG
∣∣ψGS

〉〈
ψGS

∣∣PG
∣∣ψGS

〉 (4.26)

Due to the complexity of the projector, it is difficult to carry out computation in Eq(4.26)

analytically. One can use the Gutzwiller approximation [Gros (1989)]. In our work we try to do

it exactly by defining the Gutzwiller projection on a finite lattice via the operator:

PG =∑
β

∣∣β〉〈
β
∣∣ (4.27)

where the space {
∣∣β〉

} corresponds to the space of singly occupied sites. Due to the enormous

size of this space, carrying out this calculation exactly is not feasible for large system sizes.

Hence we use a numerical method based on Monte Carlo Algorithm [Gros (1989); Foulkes

et al. (2001)] which can be derived as follows. We start by rewriting Eq(4.26) along with the

projector in Eq(4.27), which after a few mathematical steps becomes:

〈O〉 =∑
β

∣∣〈β|ψGS
〉∣∣2∑

β

∣∣〈β|ψGS
〉∣∣2︸ ︷︷ ︸

ρ(β)

(∑
γ

〈
β
∣∣O

∣∣γ〉 〈
γ|ψGS

〉〈
β|ψGS

〉)
︸ ︷︷ ︸

f (β)

(4.28)

where the space {
∣∣γ〉

} = {
∣∣β〉

} . Equation (4.28) has the form of a weighted average where the

weight:

ρ(β) =
∣∣〈β|ψGS

〉∣∣2∑
β

∣∣〈β|ψGS
〉∣∣2 (4.29)

is the normalized probability distribution for the quantity

f (β) =
(∑
γ

〈
β
∣∣O

∣∣γ〉 〈
γ|ψGS

〉〈
β|ψGS

〉)
(4.30)

Hence a numerical estimate for the value of the observable can be obtained by using a Monte

Carlo algorithm. The relevant quantities to be calculated are the overlap functions 〈α|ψGS
〉

,

which are slater determinants due to the fermionic nature of
∣∣ψGS

〉
. The basic definition of our

staggered flux wave function involved three variational parameters α,θx ,θy which enter the
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Chapter 4. Staggered flux:Ground state

matrix elements of the slater determinant matrix through the function ∆k in Eq(4.9). Taking

out the factor e iθy just leads to a phase change of this function that in turn leads to just a

phase change in
∣∣ψGS

〉
. Due to the form of Eq(4.28), overall constant phase change of the any

Slater determinant 〈α|ψGS
〉

does not impact the observable and hence the physics of our

wavefunction depends only on two parameters α and θ = θx +θy .

Yes

No

Yes

No

No

Yes

Yes

No

Figure 4.5 – A flow chart describing the Montecarlo Algorithm used to calculate the numerical
estimates of an observable O. The blue boxes correspond to calculations, red boxes are
conditions and black boxes are regular operations. Nther m and Nmeas are required number of
thermalization steps and required number of measurements.

Montecaro Algoritm

Montecarlo Algorithm or more specifically Metropolis-Hastings algorithm [Hastings (1970);

Metropolis et al. (1953)], involves the use of a Markov chain. At each step a new state
∣∣β〉

is

generated from the current state |α〉, and is added to the chain only if the acceptance ratio

ρ(β)/ρ(α) is greater than a randomly generated number r ∈ [0,1). The states we work with

are single occupancy states and each new state is derived by exchanging a pair of randomly

selected nearest neighbor spins that are pointing in opposite directions. In Fig(4.5), we show

the flow chart of our algorithm. We start with a randomly generated state and start constructing

our markov chain based on previously mentioned criteria. To avoid the bias that might be

caused by a randomly chosen state far away from the equilibrium, we thermalize our state for

Nther m steps. After this we start calculating the value of f (β) that shall be averaged at the end.

Measurement of f (β) is made at every L2 steps to make the samples independent. After we

have sufficient statistics Nmeas , we average the values of f (β) to obtain the numerical estimate

of 〈O〉. It must be noted that, although calculation of f (β) seems to require the summation

over the full space of singly occupied states {
∣∣γ〉

}, the observables we evaluate i.e groundstate

energy and instantaneous spin spin correlation function, have only few states in {
∣∣γ〉

} such

that
〈
β
∣∣O

∣∣γ〉
is finite. Major part of the computation revolves around estimating the overlaps

〈α ∣∣ψGS
〉

. Details on the procedure in estimating this quantity, the computational complexity
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4.2. Results

and resulting statistical errors can be found in the Appendices.

Results

In this section we present the results corresponding to the optimization of variational parame-

ters, calculation of the groundstate energy and instantaneous spin-spin correlation functions.

Since we perform our calculations on finite system sizes, we also have a close look at the

finite size effects on our calculations. Only the figures and data relevant for the discussion are

provided here. Additional figures are provided in the Appendices.

Optimization of parameters

As established in our theoretical framework, the staggered flux wave function and the related

observables depend on two variational parameters α,θ. Hence our first step is to accurately

estimate the values of these parameters as a function of γ. For this purpose we compute

the Energy maps E(α,θ) on a finite grid in α and θ space. We start with the symmetric case

γ = 1 at system size L = 8 to establish the location of the Energy minimum. Once this is

known, we progressively proceed towards smaller coupling ratio in steps of 0.1 till we reach

γ = 0.1. The region of (α,θ) space upon which the computations are performed, is chosen

from previous calculations. At every step we make sure that the Energy minimum is well

contained in the computed region. The Energy maps corresponding to γ = 0.1,0.5,0.2,0.1

are provided in Fig(4.6) which capture the essential features of energy dependence on the

parameters. Firstly, we observe well defined minima in all the energy maps. At the symmetric

case γ= 1, as expected we observe the energy minima at α= 1 and the corresponding θ at

0.15π coinciding with the work of Dalla Piazza et al. Close to the symmetric case we observe the

energy strongly depending of variational parameters as shown by the clear minima. However,

as we go towards smaller coupling ratio, we observe a weak dependence of energy with the

variational parameters, particularly θ. This is not surprising, since as we approach 1D the flux

in a closed loop is an ill-defined parameter. Since our data is subject to numerical errors, to

have a proper estimate of the variational parameters, we fit the lower part of energy minima

with a second degree polynomial in α,θ and use the minima of the polynomial. The fitting

function is given by:

E(α,θ) = a(θ−θ0)2 +b(θ−θ0)(α−α0)+ c(α−α0)2 +EGS (4.31)

where (θ0,α0) is the location of the parabolic minimum and EGS is the energy at this minimum.

More details on this fitting procedure are presented in the Appendices.
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Figure 4.6 – Ground state Energy maps of systems with size L=8 for various coupling ratios.
The white contours(dot) indicate the points corresponding to same energy(minima).

Finite size effects

A particular concern while working on small system sizes are the finite size effects. The

resulting values of variational parameters and energy would make sense only if the solution

is stable with respect to different system sizes or converges while increasing the size. If the

solution converges to some value as we increase system size, we should reliably be able to

estimate the groundstate energies at L =∞ limit. A particular technique that is useful to us

in this regards is the use of different boundary conditions. Since the effect of the boundary

becomes irrelevant as one approaches L =∞, by looking at results from different boundary

conditions one can get additional piece of information about the limiting values.

All the computations carried out for L = 8, were repeated for different boundary conditions

and for different system sizes L = 12,16,20,24. Due to computational time limitations these

calculations were performed with smaller grid sizes, making sure at each step that the minima
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4.2. Results

is well contained within the grid. The resulting energies are presented in Fig(4.7a). Our initial

calculations showed us that the effects of boundary conditions are dominant only at small

coupling ratios. Moreover they appear to be depending only on the Boundary condition along

the strong coupling direction. Hence we present the data corresponding to only two choices

of boundary conditions (ABC − ABC ) and (PBC − ABC ), which we refer to from here on as

ABC and PBC indicating the boundary condition along x-direction. We also present the

energy corresponding to Bethe ansatz solutions obtained by solving the Bethe self consistency

equations at various system sizes. As can be seen the 1D Bethe ansatz solution, at finite

system sizes, also has different energies for periodic and anti-periodic boundary conditions

which progressively converge towards the L =∞ value. This is the same situation we observe

for staggered flux solutions where we observe that the energy difference between different

boundary conditions decreases with increase in system size. This difference, as mentioned

before, is dominant at small coupling ratios and progressively gets smaller as we move towards

symmetric case.

So far we have considered only system sizes of the type L = 4n. To have a complete picture,

we extend our analysis to system sizes of type 4n +2. As noted before for these systems the

possible boundary conditions are (PBC −PBC ), (ABC −PBC ), (PBC − ABC ). Similar to the

case of L = 4n we consider only two boundary conditions (PBC−PBC ), (ABC−PBC ) and refer

to them as PBC and ABC denoting the boundary condition along strong coupling direction.

It must be noted here that, due to computational time constraints, unlike the optimization

of variational parameters for L = 4n systems, the paramters for L = 4n + 2 were obtained

through an interpolation of L = 4n data. The result of these calculations are shown in Fig(4.7b).

Comparing with 1D Bethe ansatz solutions, a particular interesting feature that we observe

here is that for system sizes of type L = 4n, there is a reversal of energies with respect to the

boundary conditions i.e Bethe ansatz energies of PBC boundary conditions are closer to the

ABC boundary conditions of Staggered-flux state and vice-versa. For system sizes of type

4n +2 we observe equivalence of boundary conditions. This effect seems to be related to the

fermionic nature of our wavefunction. Within the formalism of Bethe ansatz solution the

wavefunction vectors are made up of spin flips induced on a FM state. Since they are bosonic

in nature one does not consider the order in which these spin flips are induced. However,

if one considers a fermionic spin flip instead(Jordan Wigner for example), the phase factor

attained by shifting the lattice by single unit will not be the same as the phase factor of Bethe

ansatz solution. It will have a sign difference induced through the sign convention which is

given by (−1)L/2−1. Hence, for L = 4n we have an additional sign (−1) and for L = 4n +2 we

have equivalence with Bethe ansatz. This is exactly what we observe in Fig(4.7) and relates to

the discussion from fermions on XY model from chapter 2.
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Figure 4.7 – Ground state energies for various system sizes of form L = 4n(a) and L = 4n +2(b),
for various coupling ratios, along with the corresponding fits. The dots (triangles) corre-
spond to the boundary condition ABC(PBC). Red, Green, Blue and Black correspond to
γ= 0.1,0.2,0.5,1 respectively and Orange corresponds to Bethe ansatz. The energies corre-
sponding to γ= 0.2,0.5,0.1 are offset by −0.013,0.02,0.15 respectively for better visualization.

Assuming that the energy values converge at large system sizes, we fit the data with an expres-

sion algebraic in inverse system size. Unfortunately, a similar scaling could not be observed

in the variational parameters. This is partly due to the fact that the variational parameters

were extracted by fitting the energy maps with a second order equation in (α,θ) space given by

Eq(4.31). This procedure is susceptible not only from the errors corresponding to the fitting,

but also from the fact that the energy maps do not contain an exactly parabolic minima like

the fit function used. As can be seen from Fig(4.8), although we could not see an exact scaling

relation, we observe a qualitative convergence of the variational parameters, with increasing

system size.

68



4.2. Results

γ = 1

γ = 0.5

γ= 0.2

γ = 0.1

10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

(a)

10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b)

Figure 4.8 – Optimized variational parameters α and θ for system sizes L = 4n. Similar to
Fig(4.7) the dots (triangles) correspond to the boundary condition ABC(PBC). Red, Green, Blue
and Black correspond to γ= 0.1,0.2,0.5,1 respectively. For better visibility the parameter θ
corresponding to γ= 0.1,0.5,1 are offset by 0.1π,0.16π,0.21π respectively
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Optimized Parameters

Here we have a closer look at the final results from our optimization procedure and Finite size

analysis. In Fig(4.9)(at L=24) we show the evolution of groundstate energy and in Fig(4.10)

corresponding variational parameters (at L = 24), with the coupling ratio. As the coupling ratio

γ is reduced, as expected we observe that the ground state energy progressively increases and

approaches the value corresponding to the Bethe ansatz. For a comparison we present the

data corresponding to the Gutzwiller projected Schwinger boson wave functions calculation

by Miyazaki et al Miyazaki et al. (1995). and the self-consistent spin wave result from chapter

3.
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Figure 4.9 – (a) A comparison of groundstate energy at L=24 from our staggered flux wave
function (SF), Gutzwiller projected Schwinger boson wavefunction from Miyazaki et. al(SBGP),
and Linear spin wave theory(LSWT) from chapter 3. The solution corresponding to Bethe
ansatz is indicated by blue dot. (b) Difference between energies from SF and SBGP results.
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The comparison of ground state energies shows that close to the symmetric case, the disor-

dered staggered flux state is worse compared to the ordered state. But as we move progressively

towards γ= 0 we observe the difference gets smaller. In work of Miyazaki et al., it has been

mentioned that below γ= 0.1356 they have a disordered state. Hence it comes as no surprise

that we have almost the same energy as their work. We cannot calculate the ground state

energy at exact 1D case γ= 0 using our procedure. Nevertheless, we could consider a small

finite value of α= 0.05, and fix γ= 0 on this wavefunction to calculate the nearest estimate.

This is the same procedure used by Miyazaki et al. to obtain an estimate of E (γ= 0) =−0.4337.

Using this procedure we end up getting a value E(γ= 0) =−0.4436 a result much closer to the

exact Bethe ansatz value at L = 24 of E(γ= 0) =−0.4445.
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Figure 4.10 – (a)Optimized variational parameter α and the mean field ratio ty /tx vs γ. (b)
Optimized variational parameter θ vs γ. All above parameters correspond to the system size
L=24

Moving to the variational parameters, we observe that the staggered flux parameter θ appears
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to increase slightly as we move towards smaller coupling ratio. However, it must be noted that

the energy is weakly dependent on θ at small coupling ratios and hence the estimates of θ at

smaller coupling ratios is not strictly reliable. On the other hand the parameter α decreases

with γ. This is logical since α = Jy ty /Jx tx , but the surprising aspect is that the ratio ty /tx

increases as we decrease the coupling ratio. The physical significance of this result is still not

clear to us. In Table 4.1, we present the optimized values of α and θ for system size L = 24, and

the corresponding ground state energy. These are the values used in Fig(4.10). We also present

the values of L =∞ estimates obtained from the algebraic fit in Figure 4.7.

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ(in π) 0.186 0.184 0.177 0.172 0.167 0.162 0.157 0.156 0.154 0.154

α 0.166 0.319 0.448 0.560 0.659 0.74 0.820 0.885 0.944 1

E(L = 24) -0.446 -0.453 -0.466 -0.482 -0.502 -0.525 -0.550 -0.578 -0.607 -0.639

E(L =∞) -0.4450 -0.4530 -0.4654 -0.4819 -0.5018 -0.5246 -0.5501 -0.5778 -0.6074 -0.6385

Table 4.1 – Optimized variational parameters and corresponding Energy at L = 24. and esti-
mates at L =∞ for different values of γ

Instantaneous spin correlation

The instantaneous spin spin correlation function is an important observable that can be

derived from the ground state wave function. A spin-spin correlation function estimates

how the value of a spin measurement at position R and time t influences a subsequent

measurement at positions R + r and time t . Instantaneous spin spin correlation function is

the static component of this function with t = 0. At zero temperature T = 0 it is calculated as:

Sαα(r ) = 1

N

∑
R

〈GS|Sα(R + r )Sα(R) |GS〉
〈GS| GS〉 (4.32)

where α ∈ x, y, z. Since we are working on a system with AFM coupling Jx , Jy > 0 we expect

a staggered correlation function. Hence for convenience we work a staggered version of the

correlation function.

Sαα = e iQ·r Sαα (4.33)

As shown in the previous chapter, spin wave theory exhibits a power law decay of spin-spin

correlation functions. This exactly what is observed in the staggered flux state in the symmetric

case from the work of Bastien et al., and is also one of the positive features of the staggered flux

state compared to a (Neel)state with broken symmetry. Since our state has SU(2) symmetry the

components Sxx (r ),S y y (r ),Szz (r ) should be equal at a given r . This is exactly what we observe

and additionally we also observe that the transverse components have smaller statistical errors

compared to longitudinal component(see appendix on error analysis). Hence we present

the data corresponding to Sxx (r ) = 〈Sx (r )Sx (0)〉 only. Also, we restrict our discussion to the
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correlation function along x and y directions, which capture the relevant aspects on a 2D

lattice.

1 2 5 10

10-2

0.02

0.05

0.1 0.2

0.5 1

(a)

1 2 5 10 20

0.5

10-1

10-2

16X16

32X16

48X16

(b)

Figure 4.11 – a) Instantaneous spin correlation function, along x-direction along with fits cor-
responding to power-law decay Ax /xex , for system size L = 24 at γ= 1,0.5,0.2,0.1 represented
with Black,Blue,Green and Red. b) Instantaneous spin correlation function along x-direction
at γ = 0.1 for rectangular system sizes Lx ×16 with Lx = 16,32,48 indicated by Red, Green
and Blue. For better visualization, the correlation functions for Lx = 16,32 in (b) have been
multiplied by

p
e,e to offset. In both figures, triangles represent ABC boundary conditions

and dot represent PBC boundary conditions. For Fig(a) solid line corresponds to the ABC
boundary condition and dashed lines corresponds to the PBC boundary condition.
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In Fig(4.11a) we show the correlation functions along the strong coupling (x) direction for

both ABC(triangles) and PBC(circles). We observe that as we decrease the coupling ratio γ,

the correlation function keeps exhibiting a power law decay. The decay exponent appears to

be decreasing with a decreasing coupling ratio. Similar to the ground state energies, one can

observe a difference between the PBC and ABC cases. The difference appears to be dominating

at small coupling ratios. To see if this is just a finite size effect we need to increase the system

size. Unfortunately, due to computational limitations we could only go till L = 28. To get

around this, we perform additional calculations where we consider a rectangular system size

Lx ×Ly , where we limit the size of our system in y direction to Ly = 16. This allows us to

increase the system size in x-direction Lx . In Fig(4.11(b)) we show the correlation function at

γ= 0.1 for Lx = 16,32,48, and as one can see the difference between both boundary conditions

becomes smaller at large system sizes.

1 2 5 10 20

0.15

0.05

0.02

0.01

DMRG

Figure 4.12 – Instantaneous spin correlation function close to 1D.The solid line corresponds
to the analytic expression provided by Hallberg et al by fitting the DMRG data. Black dots
correspond to optimized case for γ= 0.1. Blue and red dots correspond to α= 0.05,0.1 with
θ = 0.175π.

As mentioned in chapter 2 the bosonization technique shows that the mathematical form

of the correlation function for 1D case at infinite system size and large r is known to be

decaying algebraically with a logarithmic correction C
r

p
lnr . From field theory the value of

the coefficient is obtained as 1/(2π)3/2. Unfortunately, this expression does not work well

at small r . Hence, for a comparison at 1D we look for other numerical methods involving

finite system sizes. The research work we use is the result by Hallberg et al, where they use

numerical renormalization group methods(currently called DMRG) to derive the correlation

function at finite system sizes. They provide a analytic expression that fits the numerical data

obtained at L = 20. We use this expression as a benchmark for the comparison at 1D limit.

Since our method does not work at γ= 0 we compare the coupling ratios very close this limit.
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4.2. Results

A particular difficulty with making this comparison is the fact that, as we go closer to γ= 0,

the energy maps become extremely flat. Hence, estimating the optimum values of α and θ

becomes challenging. Since, we observe that the physical properties are weakly dependent on

θ, instead of optimizing we fix θ = 0.175π and calculate correlation functions at very small α.

As can be seen from Fig(4.12), the calculated correlation functions are gradually converging

towards the DMRG result as we go towards smaller coupling ratios. Although the value of

anisotropy γ corresponding to α is not known, if we assume α > γ (as observed at almost

all coupling ratios) is satisfied close to 1D limit then we can safely assume that we are at a

coupling ratio γ< 0.05.

1 2 5 10
10-3

10-2

0.05

0.10

0.5 1

(a)

1 2 5 10
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10-2

10-1

0.1 0.2

(b)

Figure 4.13 – a)Instantaneous spin correlation function along y-direction, along with fits
corresponding to power-law decay Ay /xey , for system sizes L = 24 at γ = 1,0.5 represented
with Blue,Green and Red. b) For Fig(a) solid line corresponds to the ABC boundary condition
and dashed lines corresponds to the PBC boundary condition.
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Moving on to the y-direction, as can be seen from Fig(4.13a) at large γ we observe that the

correlation functions continue have a power-law decay but the decay exponent increases only

slightly with decreasing γ(see Table(4.2)). At low coupling ratios however, for ABC boundary

conditions we observe a exponential decay, as can be seen in Fig(4.13b). However, for PBC

boundary conditions we observe a power-law decay. To evaluate if this is just a finite size effect,

similar to the case of x-direction, we calculate the correlation function for rectangular system

sizes fixing Ly = 16. Increasing system size in x-direction, we observe that the correlation

functions gradually converge indicating that the exponential decay was just a finite size effect.

This particular observation throws into question the exponential decay observed in staggered

flux state with Neel field SF +N in work of DallaPiazza et. al. One must revisit this state and

perform a detailed finite size analysis to see if the observed exponential decay is only a Finite

size effect.

2 3 6

10-2

10-5

10-9

16X16

32X16

48X16

Figure 4.14 – Instantaneous spin correlation function along y-direction at γ= 0.1 for rectangu-
lar system sizes Lx ×16 with Lx = 16,32,48 indicated by Red, Green and Blue. In both figures,
triangles represent ABC boundary conditions and dot represent PBC. boundary conditions.

In table, we present our estimates of decay exponents. For γ> 0.6, where the boundary effects

are minimal,they are obtained by fitting L = 24 data with expressions bx /eex and by /eey along

x and y-directions respectively. For coupling ratios γ≤ 0.6 we fit the data obtained from the

largest rectangular system size which we could achieve i.e. Lx ×Ly = 56×16, where we observe

the boundary effects to be minimal.

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ex 1.16 1.26 1.33 1.39 1.42 1.45 1.48 1.50 1.50 1.50

ey 1.72 1.63 1.61 1.59 1.56 1.54 1.51 1.50 1.50 1.50

Table 4.2 – Decay exponents obtained for different γ.
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4.3. Summary

Summary

1) Heisenberg Hamiltonian of RQHAF, in its fermionic form is diagonalized by using a mean

field decoupling. A particular choice of these mean fields yields us the staggered flux wave-

function, which can be obtained by filling the lower band of the diagonalized Hamiltonian.

Staggered flux state contains double occupancies, and hence cannot be considered as true

physical groundstate. Hence, a Gutzwiller projection of this state is considered to be the

ground state. This wavefunction is parameterized by two parameters α,θ. The parameters are

optimized through numerical evaluation, where the calculation of observables is carried out

through a Montecarlo process. To avoid nodal points (π/2,π/2), we consider various boundary

conditions.

2) Energy maps on the (α,θ) space at L = 8 reveal clearly visible energy minima. At large

coupling ratios we see the energy strongly depending on parameters and hence the minima

being well defined. At small coupling ratios the energy minima are extremely flat, particularly

in θ space. To find the exact position of minima, the lower part of energy maps are fitted with

second order polynomial in α,θ. This procedure is repeated with various system sizes with

different boundary conditions.

3) Finite size calculations show that the energies and parameters are strongly dependent

on system size L only at small coupling ratios. This is not surprising as Bethe ansatz also shows

similar finite size dependence. Calculations for system sizes L = 4n, show that the results

for different boundary conditions (along strong coupling direction) converge as we increase

system size. Using this, we estimate the L →∞ values of energy. A peculiar observation is the

similarity between Bethe ansatz solution with anti-periodic boundary condition and staggered

flux solution with periodic boundary condition(and vice versa). This is reversed for systems of

sizes L = 4n +2. This is related to the fact that our wavefunction is made up of fermions. Scal-

ing relations for optimized parameters, similar to groundstate energy, could not be obtained

to determine the L →∞ value of these parameters. Nevertheless, a qualitative convergence is

observed. A look at the optimized parameters at L = 24, reveals that the parameter θ increases

slightly as we move towards smaller coupling ratios. As expected parameter α decreases as we

move towards smaller coupling ratios, but surprisingly the ratio ty /tx increases. The origin of

this is still not clear.

4)The instantaneous spin correlation(xx component) function along x-direction shows power-

law behavior. It is observed that the correlation function for small coupling ratios at large

distances depends strongly on boundary conditions. Since our computational capacity is

limited, to determine accurate form of correlation function at large system sizes and small

coupling ratios, we consider rectangular system sizes Lx ×Ly with Ly = 16 and Lx going upto

Lx = 56. We observe the boundary effects becoming minimal as we increase Lx . By fitting the

correlation function with a power-law decay we estimate the decay exponents. Contrary to

the spin wave case, where(along x-direction) we observe decay exponent of ex = 1(∼ 1.04)( for
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all γ, we observe that the decay exponent decreases with decreasing γ.

5)The instantaneous spin correlation function along y-direction exhibited a power-law decay

at large coupling ratios. At small coupling ratios, it showed an exponential decay for Anti-

periodic boundary conditions and a power-law decay for periodic. Similar to previous case,

working with rectangular system sizes with large Lx we were able to show that the correlation

function converges to a power law decay. Fitting the correlation function with power-law

decay shows that the decay exponent increases with decreasing γ, opposite of the result in

x-direction. This is also different from the spin wave result where the correlation function had

same exponent ey = 1(∼ 1.04) and a decreasing amplitude with decreasing γ.
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5 Staggered flux:Excited State

In this chapter we study the transverse spin excitations induced on a staggered flux ansatz on

a RQHAF. Transverse ∆S = 1 excitation is constructed from the Gutzwiller projected state, as a

particle-hole excitations on the optimized wave function derived in chapter 4. By studying the

dynamic spin structure factor as function of coupling ratios γ= Jy /Jx , we analyze the gradual

evolution of the spin excitations on this RVB state. As mentioned in work of [Dalla Piazza et al.

(2014a); Dalla Piazza (2014b)], the excitation spectrum in the symmetric (square lattice) case,

manages to capture various qualitative features of the observed (π,0) quantum anomaly(see

chapter 1). However, it also hosts some un-physical features that make this state un-fit to be

the true ground state of the 2D Heisenberg model, particularly at long wavelengths. The most

notable feature is the un-physical negative energies observed at (π,π), which is a result of

our assumed ground state lacking long-range order. A staggered flux state with induced Neel

field, on the other hand, has a Goldstone mode at (π,π) point and a good groundstate energy.

However, it does not manage to capture all the features of the (π,0) anomaly.

Repairing the staggered flux wave function by artificially inducing long range correlations

should be possible. Methods like Jastrow factor optimization [Jastrow (1955)] have been

proposed for this purpose, but they require optimization of a large number of variational

parameters. Repairing the staggered flux wave function, although is a top priority, is not

the focus of our research work. We carry on our analysis assuming this imperfect state to

be the ground state, and focus our attention to the high energy features of the excitation

spectrum, which the staggered flux state manages to capture qualitatively. We hope that a

future research work to induce long wavelength correlations would be carried out, that would

lead to a more reliable wave function. As mentioned in chapter 2, different explanations for the

(π,0) quantum anomaly are available in literature, notably the work of [Powalski et al. (2015,

2018)] using continuous similarity transformations on spin wave induced states. Although

these research works bring into question the validity of a deconfined spinon excitations in

2D, they do not entirely exclude the possibility that a staggered flux state with sufficiently

long range correlations could be a good approximation to the ground state of the 2D model.

In such a scenario, multi-magnon and deconfined spinon excitations might serve as two
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Chapter 5. Staggered flux:Excited State

different pictures of the same spin excitation spectrum. Other works that are inclined towards

a deconfined spinon picture also exist in the literature [Shao et al. (2017); Ghioldi et al. (2016)].

Other research works involving the use of a Gutzwiller projected states with long range order

also exist. A recent work by F. Ferrari and F. Becca [Ferrari and Becca (2018)] deals with RQHAF

using a Gutzwiller projected fermionic wave function along with a AFM parameter ∆AF which

is zero at γ= 0 and has a finite value as soon as Jy is turned on. This wavefunction in principle

should be equivalent to SF +N wave function used by Dalla Piazza et al. and exhibits an

excitation spectrum quite similar to their work at symmetry point γ= 1.

This research work, although motivated from the explanation of the (π,0) quantum anomaly,

does not anchor itself towards explaining the experimental features or deriving the exact

numerical values of a RQHAF. It instead focuses on the novel aspect of the staggered flux

state, notably the spinon excitations and their evolution as we traverse the 1D to 2D regime by

varying γ. All the numerical results provided here describe the qualitative aspects of the spin

spectra of the staggered flux state.

Mathematical Framework

In this section we provide the mathematical framework used for calculating the dynamical

quantities corresponding to our wave function. The basic outline of this procedure is as

follows:

1) A vector space of particle-hole excitation states
∣∣k, q

〉
, is created by destroying a down

spin at k −q in the lower band of SF state and creating a up spin at k in the upper band of the

SF state.

2) A transverse spin excitation of momentum q induced on the SF state, can be expressed

as a linear combination of the particle-hole states
∣∣k, q

〉
. The coefficients can be calculated

from the relation between the quasi-particle fermion operators γ†
k ,γk and original fermionic

operators c†
k ,ck from Eq(4.15) from chapter 4.

3) To obtain the excitation spectrum at a specific q vector, the Heisenberg Hamiltonian can

be diagonalized in the excitation subspace {
∣∣k1, q

〉
,
∣∣k2, q

〉
...

∣∣kn , q
〉

}. Since the particle-hole

states
∣∣k, q

〉
are not orthogonal we have to solve a generalized eigenvalue problem.

4) The numerical quantities that need to be evaluated are the matrix elements H q
kk ′ of the

Hamiltonian and the matrix elements Oq
kk ′ of the overlap matrix. A numerical Monte Carlo

method, similar to chapter4, is developed to evaluate this quantities that are subject to

Gutzwiller projection.

5) Once we have estimated the matrix elements of the Hamiltionian and the overlap ma-

trix, we carry out a generalized diagonalization of the Hamiltonian to derive the eigenvalues
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5.1. Mathematical Framework

and eigenvectors. These quantities shall further be used to calculate the dynamical quantities.

Transverse dynamic spin structure factor

Our main focus would be on calculating the dynamic spin structure factor, a quantity of high

relevance in quantum magnetism. Being related to one of the simplest dynamical quantities,

the spin-spin correlation function in time and space, the dynamical structure factor is the key

quantity measured in inelastic neutron scattering experiments. Its mathematical form is given

by:

Sαβ(q,ω) =
∫

d t
∑
R,r

e i qr+iωt
〈

SαR+r (t )SβR (0)
〉

(5.1)

Transverse dynamic spin structure factor (TDSF) corresponds to (α,β) = (x, x) and longitudi-

nal dynamical structure factor corresponds to (α,β) = (z, z). Since we work on a disordered

state (SU(2) symmetric), the longitudinal structure factor is expected to be the same as the

transverse component. Hence, in this work we focus only on the TDSF in our work. For

mathematical convenience, we work with the S−+(q,ω) which is just twice the xx component.

For Performing a few elementary calculations at T = 0 this quantity can be re-written as:

S−+(q,ω) =∑
λ

∣∣∣〈λ|S+
q |GS〉

∣∣∣2
δ (ω−Eλ+EGS) (5.2)

where {|λ〉} are the eigenstates of the excitation subspace. It must be noted that the eigenstates

|λ〉 must be complete i.e |λ〉〈λ| = 1 where 1 is the identity matrix in the Hilbert space of

transverse excitation subspace, which is larger than single particle-hole excitation space. One

has to include multiple particle-hole excitations to have the complete Hilbert space. In this

work we assume that multiple particle-hole excitations have a very small contribution to TDSF

and we restrict ourselves to the single particle hole excitations. This claim might be challenged,

given that at 1D two-spinon excitations capture only 73% of the excitation spectrum [Karbach

et al. (1997)] and including four spinon terms capture 98% of the excitation spectrum [Caux

and Hagemans (2006)]. But carrying out calculations to multiple particle-hole excitations is

numerically intractable. Hence, we concern ourselves only with single particle excitations

(one magnon or two spinon).

Transverse Excitation Subspace

We start by defining an excitation with momentum q as:∣∣q〉= S+
q PD=0

∣∣ψGS
〉

(5.3)
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In terms of fermionic operators S+
q can be written as

S+
q =∑

k
c†

k↑ck−q↓ (5.4)

Using Eq(4.15) (from chapter 4) this can be converted in terms of the quasi particle operators

as: ∣∣q〉= PD=0
∑
k
φ

q
k d †

k↑+dk−q↓−
∣∣ψGS

〉
(5.5)

where we have used the fact that
[

S+
q ,PD=0

]
= 0. k implies that k has been folded into magnetic

brillouin zone. The coefficients φq
k are given by

φ
q
k = u∗

k↑+uk−q↓−+ v∗
k↑+vk−q↓− (5.6)

Hence, the excited state becomes a linear combination of particle-hole excitation states

defined as:∣∣k, q
〉= PD=0d †

k↑+dk−q↓−
∣∣ψGS

〉
(5.7)

In Fig(5.1) we show an illustration of a particle-hole excitation on an un projected staggered

flux state. The bands are represented by their density of states which is evaluated as D(ω) =∑
k∈MB Z D(ω,k) at parametersα= 1,0.3 and θ = 0.15π. Since

∣∣k, q
〉

are the vectors of excitation

subspace, the excitation eigenstates |λ〉 = ∣∣n, q
〉

can be written as:∣∣n, q
〉=∑

k
φ

q
kn

∣∣k, q
〉

(5.8)

The coefficients φq
kn have to be determined by diagonalizing the Hamiltonian in the excitation

subspace. If the states
∣∣n, q

〉
are eigenstate of the Hamiltonian they must satisfy the condition:

〈
n, q

∣∣H ∣∣n, q
〉 = E q

n
〈

n, q
∣∣ n, q

〉
(5.9)〈

n′, q
∣∣ n, q

〉 = δnn′ (5.10)

This leads to the generalized eigen value problem:

∑
k,k ′

φ
q
k ′n

∗
H q

k ′kφ
q
kn = E q

n

∑
kk ′
φ

q
k ′n

∗
Oq

k ′kφ
q
kn , (5.11)

where

H q
kk ′ = 〈

k, q
∣∣H ∣∣k ′, q

〉
Oq

kk ′ = 〈
k, q

∣∣ k ′, q
〉

(5.12)
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The dynamical quantities that we want to estimate depend entirely on the eigenvaues E q
n

and eigenvectors
∣∣n, q

〉
. Hence we need to device a numerical methodology to estimate the

matrix elements in Eq(5.12). Although the equations Eq(5.12) do not have the same form as

calculation of a given observable on the groundstate (Eq(4.26) in chapter 4), it will be shown

in the subsequent sections on how to apply a Monte Carlo process to calculate this quantity.

Monte Carlo Method

Similar to the case of ground state, the Gutzwiller projector is constructed using the single

particle states {|α〉} except that, compared to ground state, the states |α〉 have (N +1)/2 up

spins and (N −1)/2 downspins. The matrix elements in Eq(5.12) can be written as:

H q
kk ′ =

∑
αβ

〈
k, q

∣∣ α〉〈α|H ∣∣β〉〈
β
∣∣ k ′, q

〉
(5.13)

This equation can be rewritten as:

H q
kk ′〈

k, q
∣∣ k, q

〉 =∑
α

∣∣〈k, q
∣∣ α〉∣∣2〈

k, q
∣∣ k, q

〉︸ ︷︷ ︸
ρ(α)

∑
β

〈α|H ∣∣β〉 〈
β
∣∣ k ′, q

〉
〈α| k, q

〉︸ ︷︷ ︸
f (α)

(5.14)

If we construct a Monte Carlo process following the above equation, then we obtain the matrix

elements H q
kk ′ along with a k dependent factor

〈
k, q

∣∣ k, q
〉

. If one wants to calculate all the

matrix elements H q
kk ′ then one can to pick an arbitrary state

∣∣k0, q
〉

and rewrite the above

equation as:

H q
kk ′〈

k0, q
∣∣ k0, q

〉 =∑
α

∣∣〈k0, q
∣∣ α〉∣∣2〈

k0, q
∣∣ k0, q

〉︸ ︷︷ ︸
ρ(α)

∑
β

〈
k, q

∣∣ α〉〈
k0, q

∣∣ α〉 〈α|H ∣∣β〉 〈
β
∣∣ k ′, q

〉
〈α| k0, q

〉︸ ︷︷ ︸
f (α)

(5.15)

This formulation is unstable due to the fact that if 〈α| k0, q
〉→ 0 then f (β) →∞. This would

render the Monte Carlo sampling impossible. To solve this Li and Yang [Li and Yang (2010)]

introduced a re-weighting technique where the matrix elements are re-define as weighted

sum:

H q
k,k ′

Wq
=∑

α

Wq (α)

Wq︸ ︷︷ ︸
ρ(α)

∑
β

〈
k, q

∣∣ α〉〈α|H ∣∣β〉〈
β
∣∣ k ′, q

〉
Wq (α)︸ ︷︷ ︸

f (α)

(5.16)
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2

2
0.02 0.04 0.06

(a) α= 1,θ = 0.15π

0.01 0.02 0.03

(b) α= 0.3,θ = 0.15π

Figure 5.1 – Transverse spin excitation represented as particle-hole pair excitation. Bands
corresponding to staggered flux state with selected parameters α = 1,θ = 0.15π(a) and α =
0.3,θ = 0.15π(b). A spin ↓(blue) is taken from lower band flipped, and filled in upper band as
a ↑(orange). The density of states is calculated as D(ω) =∑

k∈MB Z D(ω,k) and the density of
states corresponding to ↑(↓) is represented on negative(positive) x-axis.
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where

Wq (α) = ∑
k

∣∣〈α| k, q
〉∣∣2 (5.17)

Wq = ∑
α

Wq (α) (5.18)

Similarly, to calculate the elements Oq
kk ′ in the overlap matrix we have the equation:

Oq
k,k ′

Wq
=∑

α

Wq (α)

Wq︸ ︷︷ ︸
ρ(α)

〈
k, q

∣∣ α〉〈α| k ′, q
〉

Wq (α)︸ ︷︷ ︸
f (α)

(5.19)

To numerically estimate of the matrix elements, we can follow the same procedure as devel-

oped for the ground state. Analogous to calculating the amplitude |〈α |GS〉|2 in the groundstate,

we have to calculate the weight Wq (α) = ∑
k

∣∣〈α| k, q
〉∣∣2 over the entire space k ∈ MBZ. The

details on the algorithm to efficiently calculate this quantity and the associated computational

difficulty are provided in the Appendices.

Dynamical structure factor

Once we manage to calculate the matrix elements in Eq(5.12), we are in a position to evaluate

the dynamical structure factor. We have to make the following substitutions in Eq(5.2):

|λ〉 = ∣∣n, q
〉

(5.20)

S+
q |GS〉 = ∣∣q〉

(5.21)

and the dynamical structure factor becomes:

S−+(q,ω) =∑
n

∣∣〈n, q
∣∣ q

〉∣∣2
δ

(
ω−E q

n +EGS
)

(5.22)

Expanding
∣∣n, q

〉
and

∣∣q〉
using Eq(5.5) and Eq(5.7) we obtain:

S−+(q,ω)

Wq
2 =∑

n

∣∣∣∣∣∑
kk ′
φ

q
kn

∗Oq
kk ′

Wq
φ

q
k ′

∣∣∣∣∣
2

δ
(
ω−E q

n +EGS
)

(5.23)

As we can see, our formalism explicitly contains the q-dependent normalization weight W 2
q .

This makes comparison of the structure factor across various q values challenging. Here utilize

the fact that the sum rules over dynamical structure factor is related to the instantaneous
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structure factor via:∫
dωS−+(q,ω) =

〈
S−

q S+
q

〉
(5.24)

Using the property:

∑
nk
φ

q
nk1

∗
Ok2k

∗φq
nk = δk1k2 (5.25)

we can get:

∫
dω

S−+(q,ω)

W 2
q

= ∑
n

∣∣∣∣∣∑
kk ′
φ

q
kn

∗Oq
kk ′

Wq
φ

q
k ′

∣∣∣∣∣
2

〈
S−

q S+
q

〉
W 2

q
= ∑

kk ′
φ

q
k

Oq
kk ′

Wq
φ

q
k ′ =

〈
S−

q S+
q

〉
Ωq

(5.26)

The quantity
〈

S−
q S+

q

〉
Ωq

can be estimated from the matrix elements is Oq
kk ′/W q that we actually

calculate in our Monte Carlo process. We also know the value of instantaneous spin-spin

correlation function
〈

S−
q S+

q

〉
from the Groundstate calculations. Hence the relation:

Wq =

√√√√√√
〈

S−
q S+

q

〉
〈

S−
q S+

q

〉
Ωq

(5.27)

gives us the q-dependent scaling factor Wq .

Spinon pair separation distribution

Apart from calculating the dynamic structure factor, the knowledge of eigenenergies and eigen

vectors of the Hamiltonian in the particle-hole basis can be used to further scrutinize the

nature of the observed excitations. A particularly important distinction to be made here is if

the excitations are ’magnon’ like or ’spinon’ like. We understand magnons as Fourier sums of

localized spin flips on an ordered lattices, and spinons as delocalized ’solitions’ moving freely

on a Heisenberg chain or de-localized boundaries on a XY-chain. As explained in chapter

1, ’spinons’ on RVB state (transverse excitation) can be understood as two up spins from a

broken singlet that move on the spin liquid background. Hence, to quantify the nature of

an excitation, one must evaluate the degree of delocalization of the induced spin flip on the

corresponding eigenvector. We use the methodology developed in [Dalla Piazza et al. (2014a);

Dalla Piazza (2014b)] for this purpose. We start by defining a de-localized spin flip in the real
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space given by:

|R,r 〉 = PG c†
R+r↑cR↓

∣∣ψGS
〉

(5.28)

where we annihilate a down spin at position R and create an up-spin at position R + r on the

lattice. Here we define r as the spinon-pair separation distribution. It must be noted that,

unlike a localized spin flip S+
i , the delocalized spin flip does not commute with the Gutzwiller

projector (except when r = 0). Hence, it can only be applied on the unprojected staggered

flux wave function. The physical interpretation of this state shall be explained soon. Since,

we are working on a translational invariant system it would be convenient to work in crystal

momentum space. Hence we define the following state:∣∣r, q
〉= PG

∑
R

e i qR c†
R+r↑cR↓

∣∣ψGS
〉

(5.29)

which can be understood as a spinon pair seperated by r and propagating with momentum q .

In this representation a localized spin flip S+
q is nothing but a local transvers spinon pair with

zero speration.

PG S+
q

∣∣ψGS
〉= ∣∣0, q

〉
(5.30)

By expanding the fermion operators in quasi particle operators via Eq(4.15), we can relate the

spinon pair wave function to the particle-hole excitations through the equations:

∣∣r, q
〉=∑

k
φ

q
k (r )

∣∣k, q
〉

(5.31)

where

φ
q
k (r ) = e i kr

[
εr

(
u∗

k↑+uk−q↓−+ v∗
k↑+vk−q↓−

)
+εr

(
v∗

k↑+uk−q↓−+u∗
k↑+vk−q↓−

)]
(5.32)

and

εr = 1

2

(
e iQ·r +1

)
, εr = 1

2

(
e iQ·r−−1

)
(5.33)

It can be seen that the space {
{∣∣r, q

〉}
} has twice the number of states that the particle-hole

basis
{∣∣k, q

〉}
has, and hence cannot be a basis of the excitation subspace. This happens

because the definition of
∣∣r, q

〉
in eq(5.31) is not inversion symmetric (r →−r ). One could

work with a symmetric definition:

∣∣r, q
〉′ = 1p

2

(∣∣r, q
〉+ ∣∣−r, q

〉)
(5.34)
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The new basis
{∣∣r, q

〉′} can form a basis in projected particle-hole excitation space where r is

considered only in the positive half plane(rx > 0 for example). We nonetheless work with the

basis
{∣∣r, q

〉}
as we observe that the results are essentially the same for both formulations.

Having defined the delocalized spin-flip state
∣∣r, q

〉
we now turn to establish the quantities one

could calculate using these states . First we have to define what a ’magnon’ like state would

look like in our formulations. Similar to case of ordered lattices we can imagine a magnon to

be the Fourier sum of localized spin flips induced on the ground state. Considering the same

interpretation, we have:∑
R

e i qRi S+
Ri
|GS〉 = ∣∣r = 0, q

〉
(5.35)

which indicates that a ’magnon’ in our context is nothing but a spinon pair with zero separation.

The overlap of this state with an eigenstate measures how much the eigenstate is magnon like.

Hence, to determine the nature of the excitation, we are interested in the quantity:

P q (r,n) = ∣∣〈r, q
∣∣ n, q

〉∣∣2 (5.36)

Since there are about L2/2 eigen energies at each q vector, we would like a quantity that can

characterize overall spectrum at a given q vector. The choice used by Dalla Piazza et al in their

work is:

ρ̃q (r ) =∑
n

∣∣〈r, q
∣∣ n, q

〉〈
n, q

∣∣ r = 0, q
〉∣∣2 (5.37)

which is normalized such that
∑

r ρ̃
q (r ) = 1. The weight

∣∣〈n, q
∣∣ r = 0, q

〉∣∣2 is nothing but the

contribution of the mode
∣∣n, q

〉
to the dynamic structure factor. Hence, the contribution of

each eigen state is weighted according to its intensity. The interest in this quantity also comes

from the fact that it represents the time averaged spinon pair separation distribution. This

comes from the fact that a local spin flip S+
q caused by by probing a neutron for instance,

delocalizes into extended spinons, the dynamics of which are given by:

ρ̃q (r, t ) =
∣∣∣〈r, q

∣∣e−iH t
∣∣r = 0, q

〉∣∣∣2
(5.38)

Resolving the time evolution operator by introducing the eigenstate propagator
∣∣n, q

〉〈
n, q

∣∣
we observe that :

lim
T→∞

1

T

∫ T

0
ρ̃q (r, t ) = lim

T→∞
1

T

∫ T

0

∣∣∣∣∑
n

〈
r, q

∣∣ n, q
〉〈

n, q
∣∣ r = 0, q

〉
e−i En t

∣∣∣∣2

(5.39)

= ∑
n

∣∣〈r, q
∣∣ n, q

〉〈
n, q

∣∣ r = 0, q
〉∣∣2 = ρ̃q (r ) (5.40)

Hence the quantity ρq (r ) can be interpreted as the time-averaged spinon pair separation dis-
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tribution of the spin -flip state
∣∣r = 0, q

〉
. ρq (r ) is the quantity we are interested in, and by com-

paring this quantity as a function of r one can evaluate the degree of spinon de-localization.

Since, we are comparing the spinon pair separation distribution for different r we feel that it is

more appropriate to calculate the overlap with normalized states
∣∣r, q

〉
/
√〈

r, q
∣∣ r, q

〉
. Hence

we redefine our spinon pair separation distribution density as:

ρq (r ) =∑
n

∣∣〈r, q
∣∣ n, q

〉〈
n, q

∣∣ r = 0, q
〉∣∣2〈

r, q
∣∣ r, q

〉 (5.41)

This is the final quantity we evaluate at various q for systems of different γ to characterize the

nature of excitations. It must be noted here that a delocalized spin flip is not a quantized ob-

servable. Hence the notion of normalization does not have a solid reasoning and is completely

an optional exercise.

Real space picture

Similar to the chapter 4, where we expressed the groundstate as a superposition of singlets,

within the same picture, it is instructive to have a look at the what a delocalized spin flip state

in Eq(5.28) and its overlap with eigenstates in Eq(5.36) correspond to. We start by looking at

the state corresponding to a ‘localized spin’ flip induced at position i on the groundstate. In

Fig(5.2) we show an illustration of such a state. The spin flip breaks the singlets seperated by

τi , into a |↑↑〉 state where the up spins are separated by τi and we refer to them as individual

‘spinons’. The coefficients Am , An corresponding to τm ,τn depend on the ground state wave

function. We can work with a translational invariant version of this state that is induced

through S+
q , but for simplicity lets stick to the position representation.
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S+
i PG

∣∣ψGS
〉= S+

i


..+ Am

τm

i

+ ...+ An

τn

i

+ ..



=


..+ Am

τm

i

+ ...+ An

τn

i

+ ..


Figure 5.2 – An illustration of a localized transverse spin excitation S+

i induced at position i on
the staggered flux ground state. The spin-liquid background is represented by blue dots.

Once a pair of spinons is created on a RVB background, they are free to move. The energy

cost of the movement is dictated by the Heisenberg interaction. Each eigenvector of the

Heisenberg Hamiltonian in the space of the Gutzwiller projected particle hole excitations, with

a conserved energy and momentum, corresponds to a stable configuration of these separated

spinons with a different RVB background and amplitudes. In Fig(5.3), we show an illustration

of an eigen-state
∣∣n, q

〉
. Here as well, we ignore the translational symmetry of the system for

illustrative purposes. The coefficients Km are decided by the dynamics of the Hamiltonian.

∣∣n, q
〉=


..+Km

τm

i

+ ...+Kn

τn

i

+ ..



Figure 5.3 – An illustration of eigen-state
∣∣n, q

〉
in particle-hole basis. To distinguish from a

transverse excitation in Fig(5.2) the spin-liquid singlet background is represented by purple
dots.
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On the other hand if we have a look at a delocalized spin flip of separation τm , as can be seen

from Fig(5.4), upon Gutzwiller projector we have a state where the spinons are separated by the

specific vector τm . It originates from the part of the unprojected staggered flux wave function,

that had a single double occupancy. Hence, the quantity 〈i ,τm | n, q
〉

or its translational

invariant Fourier component
〈
τm , q

∣∣ n, q
〉

‘roughly’ estimates the contribution coming from a

specific separation τm . We emphasize that it is a ’rough’ estimate because the state |i ,τm〉 has a

finite overlap with states having different spinon separation τn 6= τm , on account of the singlet

background being non orthogonal. Since the RVB wavefunctions are non-orthogonal they

are not a convenient representation to establish specific observables that would accurately

determine the spinon-separation. Nevertheless, as shall be seen in subsequent sections the

spinon separation distribution defined in Eq(5.41) adequately captures the qualitative features

of a magnon to spinon transition. This exercise is provided only for illustrative purposes

to motivate the utility of a delocalized spin flip state in estimating the spinon separation

distribution.

|i ,τm〉 = PG c†
i+τm↑ci↓


∑
m

Am

τm

i

+∑
m

Dm

τm

i

+ ..



= Dm

τm

i

Figure 5.4 – An illustration of delocalized spin flip induced on the Staggered flux state. After
Gutzwiller projection, the delocalized spin flip yields a state with two up spins (spinons) on an
RVB background. This state was derived from a state that contained a single double occupancy
and a empty site in the staggered flux state.

Results

In this section, we present the results from numerical calculations on the excited state with

induced transverse ∆S = 1 excitations. Due to computational limitations we cannot carry
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Figure 5.5 – The path in k-space along which the dynamical quantities are calculated.

out the calculations over the entire k-space. Hence, we perform our computations along the

selected k-path (π/2,π/2) → (π,0) → (π,π) → (0,0) → (π,0) and (0,π) → (π,π) as illustrated in

Fig(5.5). In the symmetric case the path (π,0) → (π,π) is same as (0,π) → (π,π) due to mirror

symmetry via the plane (1,1). In the asymmetric case however these two paths have different

features. In all the upcoming figures where data the is plotted along this k-path, the points

(π,0) and (0,π) have been seperated by an empty region to avoid confusion.

As mentioned in previous sections, the eigen energies are derived by diagonalizing the Heisen-

berg Hamiltonian in the excitation subspace via Eq(5.11). Its intensity is related to the overlap

of the corresponding eigenvector with a state that has S+
q excitation induced on the ground

state (S+
q |GS〉). The dimension of the subspace for a given q vector is L2/2, the number of k

points in the MBZ. Hence we have L2/2 energies at every q vector. We start by looking at the

Density of states along the selected k-path which is given by:

D(q,ω) = ∑
n
δ(ω−E q

n +EGS)

' ∑
n

1p
2πσ2

exp

[
−1

2

(
ω−E q

n +EGS

σ

)]
(5.42)

where the delta function here, and in all the subsequent plots, has been approximated by a

Gaussian function with a variance of σ= 0.1Jx . Starting from the symmetric case, as can be

seen from Fig(5.6)(a), we have a continuous distribution of energies all the way up to 10Jx (and

slightly beyond). At (π,π) and (0,0) we observe the un-physical negative energies. As we

decrease the coupling ratio γ we observe that the upper bound of the energy distribution is

lowered. At coupling ratio γ= 0.1, however, this trend is broken and we observe the energies

being distributed all the way up to 10Jx and a large number of eigenstates with negative

energies all over the q space. This particularly concerning feature turned out just to be a

finite size effect (linked to the boundary condition), as the corresponding density of states
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for a periodic boundary condition(PBC-ABC) in Fig(5.7), shows a well contained energy

distribution. It must be noted that the eigen energies in themselves are not the representation

of the dynamical features, and one has to have a look at the spectral weight (or intensity) and

as will be shown in later sections, most of the high energy modes do not carry any spectral

weight.
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(c) γ= 0.5
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(d) γ= 0.1

Figure 5.6 – Density of states D(q,ω) as defined in Eq(5.42) at different γ values for Anti-
periodic boundary condition.

93



Chapter 5. Staggered flux:Excited State

10-2

10-1

100

101

102

(a) γ= 1
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(d) γ= 0.1

Figure 5.7 – Density of states D(q,ω) as defined in Eq(5.42) at different γ values for Periodic
boundary conditions.

Quasi-1D

To have a clear picture close to 1D, apart from the coupling ratios γ= 0.1−1 in steps of 0.1,

we performed additional calculations for TDSF at L = 24 and γ = 0.05,0.15. We start our

discussion by having a look at the lowest coupling ratio in our analysis γ= 0.05. At system size

L = 24, we compare the q-sector in the x-direction (at ky = 0) with the corresponding result

from the Bethe ansatz. The eigen energies and corresponding q-vectors can be calculated via

solving the Bethe self-consistentcy equations as described in chapter 2. These are the two

spinon contributions. To estimate the TDSF for Bethe ansatz we use Algebraic Bethe ansatz

with mathematical expressions taken from the work of [Caux et al. (2005)].
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10-3

10-2

10-1

100

Figure 5.8 – TDSF at γ = 0 from Algebraic Bethe ansatz(with PBC) (left) and γ = 0.05(right)
obtained from the simulation of the staggered flux state(with ABC).The structure factor from
Algebraic Bethe ansatz has been normalized such that

∫ dk
N

∫
dω S−+(q,ω) = 1

2 .

As can be seen from Fig(5.8), we observe that the excitation spectra at γ= 0.05 closely resemble

the 1D TDSF calculated from Algebraic Bethe ansatz. The overall spectrum is slightly higher

in energy owing to a finite γ. A few observable features include, a small visible continuum

evolving particularly close to kx = 0 and a small loss in spectral weight in the low energy mode

near kx =π. These features are more clearly visible in Fig(5.10).

Fig(5.9) shows the full spectrum along the selected k path for γ= 0.05,0.1,0.15,0.2 which we

refer to as the ’quasi-1D’ region. At γ = 0,15,0.2 we also show the renormalized spin wave

spectrum obtained from chapter 3. We observe a gradual evolution of the structure factor

as we increase the coupling ratio. Except for the low energy mode, the structure factor along

the y direction (π,0) → (π,π) is almost dispersion less indicating that the high energy modes

are roughly 1D. We also observe that the low energy mode in this direction gradually evolves

towards the unphysical negative energy at (π,π), previously observed in the symmetric case.

Restricting ourselves to the spectrum along the x direction i.e kx = 0 →π for ky = 0, we observe

that at q-points kx ∼ 0,π the spectral weight is redistributed to higher energies where as at

other q-points we observe the high energy modes gradually losing the spectral weight. These

effects are clearly visible in Fig(5.10) where we show the evolution of energy cuts at fixed qx
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values qx =π/12,π/2,π for qy = 0 with increasing γ. We also plot the corresponding energy

cuts at γ= 0 obtained from algebraic Bethe ansatz. Also shown(right column) are the energy

cuts at same qx points but with qy =π.
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(a) γ= 0.05
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(d) γ= 0.2

Figure 5.9 – TDSF of staggered flux state (with ABC)for different gamma values γ =
0.05,0.1,0.15,0.2 corresponding to the quasi-1D region. At γ = 0.15,0.2 the black line rep-
resents the self-consistent spin wave result obtained from chapter 3.
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(a) q = (π/12,0)
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(d) q = (π/2,π)

-1 0 1 2 3 4 5
0

5

10

15

20

25

30

0.2

0.15

0.1

0.05

0.

(e) q = (π,0)
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Figure 5.10 – TDSF of staggered flux state ( with ABC) at k-points kx =π/6(top), π/2(middle),
π(bottom) at qy = 0(left),π(right) for γ= 0.05,0.1,0.15,0.2, corresponding to quasi-1D region.

The main focus of our research revolves around the distinction between magnon and spinon

features in the excitation spectrum. Magnon excitations are characterized by sharp modes

where as spinons exhibit a continuum. Since we expect our excitation spectrum to evolve

from a continuum to sharp modes as we increase γ, one feature we can focus on is the

gain/loss of the spectral weight from the peak with highest intensity. This of course underlies

an assumption that the peak with the highest intensity becomes the magnon mode. Looking

at Fig(5.10), at least at small coupling ratios, this appears to be a valid assumption. The peak
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with highest intensity is also the one with lowest energy (also the closest to the spin wave

estimate at γ= 0.15,0.2).
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Figure 5.11 – Proportion of spectral weight in the low energy mode as defined in Eq(5.43)
vs q points along x-direction qx = 0 → π for qy = 0(top),π(bottom), for coupling ratios γ =
0.05,0.1,0.15,0.2 corresponding to the quasi-1D region for ABC.

To accurately quantify the gain/loss in spectral weight we first define a quantity that calculates

the proportion of spectral weight in the lowest energy mode

Rγ(qx ) =
∑
ω0−δ<ωn<ω0+δ S−+(qx ,ωn)∑

n S−+(qx ,ωn)
(5.43)

where ω0 is the energy corresponding to the eigenvector with highest intensity and we include

the intensities of eigenvector with energies in a neighborhood of δ = 0.1J around ω0. In

Fig(5.11a) we plot this ratio at ky = 0 as a function of kx in the quasi-1D region. We also plot

the values obtained from algebraic Bethe ansatz. The proportion of spectral weight of the low

energy mode gradually decreases as we move from qx = 0 to qx =π. This is a obvious result
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as proportion of continuum gets larger as we move towards q =π in the 1D solution, and we

expect to see similar pattern at small coupling ratios. On the other hand the trend of evolution

shows that close to qx = π/2 proportion of spectral weight in the low energy peak starts to

increase indicating that the excitations around this point start to become more magnon like.

The points around qx = 0,π, however, exhibit a larger proportion of spectral weight being

shifted into the high energy peaks as we increase coupling ratio. The trend at qx = π is not

surprising as we expect to see this continuum evolving towards the (π,0) anomaly. The trend

near qx = 0, however is a new observation and as shall be seen while analyzing the spinon

separation we observe similar features. At qy = π we observe a quite different pattern. The

points close to qx = 0 exhibit a similar trend and a greater shift of spectral weight from low

energy mode to high energies. This is expected as it would gradually evolve into the (0,π)

anomaly. The point qx =π/2 exhibits a similar pattern as well, with low energy peaks gaining

spectral weight. However, qx =π shows an increase in spectral weight of the low energy peak

quite different from the observation at (0,0). It must be remembered that q = (π,π) is the point

where we observe the unphysical negative energies and our wavefunction fails. Hence we do

not pay serious attention to the trend at this point.

10-3

10-2

10-1

100

Figure 5.12 – TDSF at γ= 0 from Algebraic Bethe ansatz(with ABC) (left) and γ= 0.05(right)
obtained from the simulation of the staggered flux state(with PBC). The structure factor from
Algebraic Bethe ansatz has been normalized such that

∫ dk
N

∫
dω S−+(q,ω) = 1

2 .

So far, for the analysis at small coupling ratios, we have made the comparison of Bethe ansatz

with periodic boundary condition, and staggered flux with Anti-periodic boundary condition

which we have seen to be equivalent from chapter 4. From chapter 4, we also know that

the staggered flux with periodic boundary condition is comparable to the Bethe ansatz with

Anti-periodic boundary conditions. Assuming this equivalence, we perform a similar analysis
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as above, in case of the periodic boundary. The results are shown in Fig(5.12),Fig(5.13) and

Fig(5.14). The lowest coupling ratio γ= 0.05 as shown in Fig(5.12) has a TDSF quite similar to

the Bethe ansatz with ABC. It even captures the feature where lowest energy mode is slightly

shifted away from qx =π. All the major features mentioned in the ABC case are also seen in

the PBC case.
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Figure 5.13 – TDSF of staggered flux state with PBC for different gamma values γ =
0.05,0.1,0.15,0.2 corresponding to the quasi-1D region. At γ = 0.15,0.2 the black line rep-
resents the self-consistent spin wave result obtained from chapter 3.
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Figure 5.14 – Proportion of spectral weight in the low energy mode as defined in Eq(5.43)
vs q points along x-direction qx = 0 → π for qy = 0(top),π(bottom), for coupling ratios γ =
0.05,0.1,0.15,0.2 corresponding to the quasi-1D region for PBC.

Rectangular lattice

Moving on to larger coupling ratios, we proceed to calculate the structure factor for coupling

ratios γ= 0.3−1 in steps of 0.1 for both boundary conditions. In Fig (5.15) we show the data

corresponding to coupling ratios γ= 0.3,0.5,0.8,1 for staggered flux with ABC. We observe that

the gap between the main magnon like peak and the high energy modes gradually increases

as we move towards the symmetric case. This happens everywhere in the q space, except near

the (π,0) and (0,π) symmetry points, where the high energy modes lie closer to the magnon

peak. We also observe that the spectral weight of the high energy modes gradually decreases

with increase in coupling ratio. Also, we see a good agreement between the re-normalized spin

wave dispersion (from chapter 3) and the lowest energy mode. Sizable deviations are observed

near (π,0) point, where the continuum of excitations still exhibits a significant spectral weight

and the (π,π) zone where the negative energies are observed. As mentioned previously the
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(π,π) anomaly is linked to the fact that our assumed groundstate ansatz is not be the exact

ground state. The feature observed at (π,0) or (0,π) is rather interesting where we observe a

significant departure from the ordinary spin wave result. This is the exact feature, which in

the symmetric case, Dalla Piazza et al linked to the experimentally observed continuum from

the experiments of Ronnow et al. The extension of the Staggered flux solution to rectangular

lattices provides us with a smooth gradual evolution of the transverse structure factor from

isotropic(γ= 1) to 1D(γ= 0) case. We also present the structure factor corresponding to the

periodic boundary condition in Fig(5.16), which shows similar features as its anti-periodic

counterpart with a few minor deviations, that shall become clear in finite size analysis.
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Figure 5.15 – TDSF of staggered flux state( with ABC) for different gamma values γ =
0.3,0.5,0.8,1. The self consistent spin-wave result from chapter 3 is indicated by the black line.
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Figure 5.16 – TDSF of staggered flux state (with PBC) for different gamma values γ =
0.3,0.5,0.8,1. The self consistent spin-wave result from chapter 3 is indicated by the black line.

Finite size analysis

Since we work on finite system sizes, the expected continuum at higher energies appears as a

set of discrete modes. Hence, it is instructive to observe the gradual evolution of the TDSF

with increasing system size. Unlike the case of the groundstate energy, through the finite size

analysis, we do not aim to estimate a converging L =∞ values of a single observable. Instead,

we look for the trend where by we observe additional modes as we increase the system size L,

which eventually is expected to become a continuum of excitations. We also have a look at

both PBC and ABC boundary conditions to look for convergence in the low energy peak. Due

to computational limitations we performed our calculations only at high symmetry points

(π,0),(0,π) and (π/2,π/2) which should be able to capture the overall trend of the spectrum.

The highest system size we work with is L = 28.
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Figure 5.17 – Evolution of TDSF for γ= 1, at q-points (π,0)(a),(0,π)(b) and (π/2,π/2)(c) as we
increase system size. The solid line represents ABC and dashed line represents the PBC.The
dashed vertical line indicates the energy of the self-consistent spin wave result from chapter 3
along with a 7% reduction at (π,0) and (0,π).

Starting with the symmetric case γ= 1 in Fig(5.17), we observe that the spectrum at (π,0) and

(0,π) is very similar for ABC boundary condition (solid lines) (ignoring statistical errors). For

PBC (dashed lines) boundary condition (PBC-ABC), however, we see a different spectrum

compared to ABC for (π,0) but not for (0,π). As we increase system size we gradually observe

additional modes at high energies for both boundary conditions. This is quite different from

the point (π/2,π/2) where we observe essentially only a single mode for all system sizes. For

comparison, we also show the energy corresponding to the spin wave theory (from chapter

3) indicated by the dashed line, along with the expected 7% energy reduction at (π,0) and

(0,π). As can be seen, the lowest peak of (π,0) and (0,π) modes at ABC approach the expected

value at L = 12 but undergoes further reduction at higher system size. It also starts losing the

spectral weight and the next peak gains spectral weight. This effect was noted by Dalla Piazza

et al. as well, and they propose that following the trend as we move to higher system sizes

the first peak should lose all the spectral weight and the second peak should approach the

expected result. Thanks to the PBC result we have a further validity of this proposal as the

PBC result does not show this peak reversal and the low energy peak is reasonably close to

the expected result. Hence, the low energy peak observed in ABC case is just an effect of the

boundary condition and is expected to vanish as the system size increases.
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Moving to smaller coupling ratios we continue to observe a similar pattern, where number of

additional modes at high energies increases with system size. At γ= 0.5 (Fig 5.18), for example

both ABC and PBC spectra show that the (π,0) and (0,π) modes exhibit more and more high

energy modes and the (π/2,π/2) still exhibits a single peak and a very good convergence

between ABC and PBC results. Contrary to the γ= 1 case, both ABC and PBC spectra show

different spectra at (π,0) compared to (0,π). This is not a surprising result as we are in

an asymmetric situation and (π,0) and (0,π) are expected to exhibit different spectra. The

surprising aspect is the difference between ABC and PBC spectra at each of these points. Along

(π,0), for example, the ABC spectrum and PBC spectrum both show similar effect as γ= 1. At

(0,π), however, we do not see a similar spectrum, as observed at γ = 1. The PBC spectrum

undergoes the same transition as the γ= 1 case. The ABC spectrum on the other hand does

not show the peak reversal like the PBC counterpart. We cannot conclusively say if the ABC

spectrum is just lagging behind in terms of the peak reversal compared to the PBC result, but

the general trend seems to suggest this.
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Figure 5.18 – Evolution of TDSF(solid lines) for γ = 0.5, at q-points (π,0)(a),(0,π)(b) and
(π/2,π/2)(c) as we increase system size. The solid line represents ABC and dashed line repre-
sents the PBC.The dashed vertical line indicates the energy of the self-consistent spin wave
result from chapter 3.

In case of γ= 0.1 as shown in Fig(5.19), we progressively see more and more energies at large

system size and low energy mode getting closer at (π,0) an expected trend that is similar to

what Bethe ansatz shows. At (0,π) we see a single mode that gets slightly closer to zero energy
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as we increase the system size. The trend seen in the intensity is the consequence of the effect

we saw in Chapter 4, where the ABC chains exhibited weak correlations compared to PBC

chains at small system sizes which progressively get stronger large system size. The (π/2,π/2)

has a small continuum apart from a sharp mode indicating the emergence of spinons.
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Figure 5.19 – Evolution of TDSF(solid lines) for γ = 0.1, at q-points (π,0)(a),(0,π)(b) and
(π/2,π/2)(c) as we increase system size. The solid line represents ABC and dashed line repre-
sents the PBC.
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In Fig(5.20) and Fig(5.21), we show the evolution of TDSF at (π,0),(0,π) and (π/2,π/2) for

ABC and PBC, as we decrease γ at L = 28. At point (π,0) we see the low energy mode and the

subsequent continuum moving to higher energies. If we ignore the lowest energy mode in

the ABC that is expected to vanish at large system size, we see that the magnon like mode has

around half of the total spectral weight at this q point for all γ, indicating that the continuum

does not loose any spectral weight and just moves to higher energies. The overall intensity

of the spectrum is decreasing as we increase the coupling ratio γ. This just reflects the shift

of the spectral weight from a predominantly one dimensional spectrum at γ ∼ 0 to a two

dimensional spectrum at γ∼ 1 and qualitatively similar to the result from SWT. As expected we

see an inverse effect at the (0,π) point, where the overall intensity of the spectrum increases

with increase in γ. Along with the gain in overall spectral weight, we gradually see a larger

continuum as well. At the point (π/2,π/2) apart from the low energy mode, we see a small

additional mode near γ = 0.1 which initially moves towards higher energies, but gradually

looses spectral weight, making the spectrum magnon like.
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Figure 5.20 – Evolution of TDSF of staggered flux state (with ABC) with γ, for system size L = 28,
at q-points (π,0)(left), (0,π)(center) and (π/2,π/2)(right)
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Figure 5.21 – Evolution of TDSF of staggered flux state (with PBC) with γ, for system size L = 28,
at q-points (π,0)(left), (0,π)(center) and (π/2,π/2)(right)

Spinon pair separation

As mentioned in the theoretical framework, the quantity we estimate to understand the nature

of excitations is the spinon-separation distribution given by:

ρq (r ) = 1

ρ
q
0

∑
n

∣∣〈r, q
∣∣ n, q

〉〈
n, q

∣∣ 0, q
〉∣∣2〈

r, q
∣∣ r, q

〉 (5.44)

where ρ0 represents the normalization on a grid of rx ,ry ∈ {[−L/2,L/2] , [−L/2,L/2]} such that:

∑
r
ρq (r ) = 1 (5.45)

Compared to work of Dalla Piazza et al, this parameter has been normalized at each r ( through

denominator
〈

r, q
∣∣ r, q

〉
, not to be confused with normalization on a grid ρq

0 ). Starting with

the symmetric case, in Fig (5.22) we show the map of ρq (r ) at two points (π,0) and (π/2,π/2).

As can be seen, the spinon pair separation distribution is more localized near the (π/2,π/2)

compared to the (π,0) point an indication of the more ’magnon’ like character of the excitations

at (π/2,π/2) and ’spinon’ like character of (π,0) excitations where the continuum is observed.

108



5.2. Results

We also show the un-normalized distribution in Fig (5.22)(c,d). In the reminder of this section,

we present the results corresponding to the normalized distributions.
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Figure 5.22 – Spinon pair separation distribution on a 24× 24 grid in position space at q-
points (π,0)(left) and (π/2,π/2) (right). The normalized value is plotted in top row and the
un-normalized quantity, presented in Dalla Piazza et al. is plotted in the bottom row.

A look at ρq (r ) for different boundary conditions also shows a few interesting features. As

observed while calculating the instantaneous correlation function in chapter 4, for small

coupling ratios, the PBC exhibited the chains to be strongly coupled compared to the ABC .

This effect is evident in Fig(5.23) where we plot the spinon separation distribution ρq (r ) at

γ= 0.1 for two points (π,0) and (π/2,π/2). As can be seen, the distribution is fairly localized in

y-direction for ABC compared to the PBC.
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Figure 5.23 – Spinon pair separation distribution on a 24× 24 grid in position space at q-
points (π,0)(left) and (π/2,π/2) (right). Top row corresponds to Anti-periodic and bottom
corresponds to a system with periodic boundary.

To compare at various q we need a single quantity that parameterizes the distribution ρq (r ).

An obvious choice would be the root mean square (RMS) spinon separation given by:

M(q) =
√∑

r
ρq (r ) (5.46)

In Fig(5.24) we show the RMS spinon separation along the selected k-path for γ= 1,0.8,0.3,0.1

for both boundary conditions. Starting with the symmetric case, γ= 1, we observe that the

RMS separation has peaks around the high symmetry points (π,0), (0,π), (π/2,π,2). At (0,0),

due to lack of finite intensity in TDSF, we could not estimate the spinon separation. The

increase of spinon separation at (π,0), (0,π) is not surprising as it was already mentioned in

the work of Dalla Piazza et. al. The surprising aspect is the large spinon separation around

(0,0) which is almost the same or greater than the RMS spinon separation at (π,0). This effect

could be visualized in parallel to the comparison of TDSF at small coupling ratio with Bethe
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ansatz in Fig(5.11), where spectral loss in the low energy peak was observed both at qx = 0

and qx =π points. The spinon separation also exhibits a peak at (π,π), but we abstain from

discussing this q-pont, since the TDSF exhibits unphysical negative energies here.
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Figure 5.24 – Root mean square separation as defined in Eq(5.46) at various γ values. Anti-
periodic boundary condition is represented by blue dots and Periodic boundary is represented
by red dots.

As we move towards smaller coupling ratios we observe that the spinon separation at other q-

points slowly starts moving towards the peak value. The spinon separation at γ= 0.1 is almost

constant. This is not surprising since we expect the spinons to be well separated on average

as we move towards 1D. This result provides validity for our notion of confined/de-confined

spinon states existing at different q-points in the staggered flux solution. Comparison of

results at different boundary conditions shows that there exists some difference between ABC

and PBC results and the difference gets larger particularly at small coupling ratios. This is
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Figure 5.25 – Spinon separation at three neighboring q points
(π/6,π)(left),(π/4,π)(middle),(π/3,π)(right) for system with coupling ratio γ= 0.1. Top row
corresponds to Anti Periodic boundary condition, and bottom corresponds to periodic
boundary. The value at the boundary alternates between finite and zero(< 10−4) as we move
from one point to other which leads to the zig-zag pattern in RMS value. The trend is reversed
for periodic boundary condition.

expected, since for finite system size we already observed the small coupling ratios to have

significant difference between different boundary conditions. A peculiar feature of the RMS

plot is the zig-zag like behavior observed at various places ( for example (0,π) → (π,π)). This

is related to the r at the boundary which has significant contribution to the RMS value, and

which hosts large spinon separation at at some alternating q-points as can be observed in

Fig(5.25)(a). What is more interesting is that pattern along qy = 0 →π for qx = 0 follows the

same pattern for both boundary conditions, but for qx =π we observe a reversal of the zig-zag

pattern Fig(5.25)(b).

Although RMS spinon separation captures the essence of the magnon/spinon behavior at

various q-values, in terms of magnitude(due to limited system size) it does not show a drastic

difference between symmetric case and near-1D case. It is also heavily influenced by the r

points at the boundary. For these reasons, we have a look at a different measure of the spinon

separation which is the cumulative distribution function (CDF) of ρq (r ) in a disk of radius

r = L/2 which is given by:

Rq (r ) = ∑
|r ′|≤r

ρ̄q (r ′) (5.47)
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where ρ̄q (r ′) is ρq (r ) normalized such that:∑
|r ′|≤L/2

ρ̄q (r ′) = 1 (5.48)
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Figure 5.26 – CDF of spinon separation at q points (π/2,π/2)(black), (π,0)(blue), (0,π)(red),
(π/12,π/12)(green) for γ= 1(top-left), γ= 0.8(top-right), γ= 0.3(bottom-left), γ= 0.1(bottom-
right) for a system with ABC.

A look at Fig (5.26) shows the CDF at high symmetry points. Since we cannot calculate spinon

separation exactly at (0,0), we instead have a look at the closest point in the (1,1) direction i.e

(π/12,π/12). The comparison across various γ show that the points (π,0), (0,π), (π/12,π/12)

have a more or less a linear CDF indicating that spread of the spinon-separation is nearly

constant for any given r or that given a spinon at r = 0 probability of finding a spinon at

distance r is proportional to 1/r . At (π/2,π/2) however, the distribution transitions from a

linear dependance on r for γ = 0.1 to a more localized distribution for γ = 1 which clearly

evidences a more magnon like behavior at this point as we increase the coupling ratio. Similar

effects are seen in PBC as well (Fig(5.27)).
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Figure 5.27 – CDF of spinon separation at q points (π/2,π/2)(black),
(π,0)(blue),(0,π)(red),(π/12,π/12)(green) for γ= 1(top-left), γ= 0.8(top-right), γ= 0.3(bottom-
left), γ= 0.1(bottom-right) for a system with PBC.

The CDF of spinon separation shows the distinguishing features of spinon and magnon like

behavior of spin excitations more clearly (compared to RMS). Although differences between

different boundary conditions do exist, indicating the dependence on finite size, these differ-

ences are rather small and qualitatively do not impact the conclusions drawn. However, the

validity of these conclusions should extend to L →∞ and should not be just a artifact of small

system sizes. To ensure that the conclusions drawn extend to infinite system sizes, we analyze

the data corresponding to different system sizes at high symmetry points previously calculated.

In Fig(5.28) we show the CDF at (π,0) for different system sizes at different coupling ratios. As

can be seen the distribution remains linear at all system sizes and all coupling ratios indicating

that the spin excitations retain their ’spinon’ like behavior at all coupling ratios even at large

system sizes. A look at (0,π) symmetry point, in Fig(5.29), shows a linear behavior at high

coupling ratios and a slightly localized behavior at small coupling ratios for all system sizes.

The spinon separation at (π/2,π/2) on other hand, as shown in Fig(5.30) has a linear behavior

at γ= 0.1 which progressively becomes localized at γ= 1 and this happens at all system sizes.
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5.2. Results

In Fig(5.31),Fig(5.32),Fig(5.32) we show the corresponding data for PBC boundary conditions

where we observe similar features as the ABC case.
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Figure 5.28 – CDF of spinon separation at (π,0) for various system sizes L = 8,12,16,20,24,28
represented by red,blue,green,black,brown and magenta respectively. Top-left(right) cor-
responds to γ = 1(0.8) and bottom-left(right) corresponds to γ = 0.3(0.1). The system has
ABC.
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Figure 5.29 – CDF of spinon separation at (0,π) for various system sizes L = 8,12,16,20,24,28
represented by red,blue,green,black,brown and magenta respectively. Top-left(right) cor-
responds to γ = 1(0.8) and bottom-left(right) corresponds to γ = 0.3(0.1). The system has
ABC.
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Figure 5.30 – CDF of spinon separation at (π/2,π/2) for various system sizes L =
8,12,16,20,24,28 represented by red,blue,green,black,brown and magenta respectively. Top-
left(right) corresponds to γ= 1(0.8) and bottom-left(right) corresponds to γ= 0.3(0.1). The
system has ABC.
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Figure 5.31 – CDF of spinon separation at (π,0) for various system sizes L = 8,12,16,20,24,28
represented by red,blue,green,black,brown and magenta respectively. Top-left(right) cor-
responds to γ = 1(0.8) and bottom-left(right) corresponds to γ = 0.3(0.1). The system has
PBC.
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Figure 5.32 – CDF of spinon separation at (0,π) for various system sizes L = 8,12,16,20,24,28
represented by red,blue,green,black,brown and magenta respectively. Top-left(right) cor-
responds to γ = 1(0.8) and bottom-left(right) corresponds to γ = 0.3(0.1). The system has
PBC.
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Figure 5.33 – CDF of spinon separation at (π/2,π/2) for various system sizes L =
8,12,16,20,24,28 represented by red,blue,green,black,brown and magenta respectively. Top-
left(right) corresponds to γ= 1(0.8) and bottom-left(right) corresponds to γ= 0.3(0.1). The
system has PBC.

Summary

The previous sections were dedicated to elaborating various features of the Transverse dynam-

ical spin structure factor on a Rectangular Heisenberg system, by comparing it with Bethe

ansatz at small coupling ratios and spin wave theory elsewhere. We also had a look at the

nature of the spin excitations by calculating the evolution of spinon separation with γ. These

analysis were extended to different system sizes at high-symmetry points to study the finite

size effects. Here we outline the main observations and conclusions derived through our

analysis.

1) A comparison of TDSF along (0,0) → (π,0) at γ= 0.05 (with ABC) with the γ= 0 estimate

from Algebraic Bethe ansatz shows a good equivalence between both the spectra (Fig(5.8))

with the energies at γ= 0.05 being slightly shifted. A similar comparison of staggered flux state

with PBC and Bethe ansatz with ABC shows similar equivalence.

2) Assuming the physics to be marginally one dimensional, we compare the evolution of

the spectral weight in the low energy mode as we increase the coupling ratio γ from 0.05 to

0.2. We observe that close to points (π,0), (0,π) and (0,0), the low energy peak looses spectral

weight which is transferred to the high energy excitations (Fig(5.11)). Simultaneously these

points in our spinon-separation analysis start to show a large RMS spinon separation, indi-
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5.3. Summary

cating that the excitations close to these symmetry points preserve a ‘spinon’ like behavior.

At points close to (π/2,0) and (π/2,π) we see the low energy mode gaining spectral weight

and gradually evolving towards a ‘magnon’ like excitation. The same effect is observed in

corresponding spinon separation analysis. The (π,π) symmetry point on other hand starts to

show un-physical negative energies from γ= 0.1, which we shall ignore in our further analysis.

3) As we move towards higher coupling ratios, we observe the high energy modes gradu-

ally loosing spectral weight everywhere except at (π,0) and (0,π),(Fig(5.15)) which continue to

show a significant number of contributing high energy modes. This gradual evolution suggests

that the 2D version of ’spinons’ on an RVB state are linked to the corresponding 1D analogues.

A comparison of low energy modes with the self-consistent spin wave result, shows a good

agreement in most of the k-space except at the (π,0) and (0,π) points where we observe a

sharp dip and loss of peak intensity into high energy modes. Similar effects are observed for

PBC case as well (Fig(5.16)).

4) To observe the finite size effects on our calculations, we calculate the TDSF at high symmetry

points (π,0), (0,π) and (π/2,π/2) for system sizes L = 8,12,16,20,24,28. At (π,0), for all cou-

pling ratios, we progressively observe large number of modes as we increase the system size

indicating that the high energy modes will gradually become a continuum. A comparison with

the spin wave result at γ= 1 (Fig(5.17)) shows that the low energy mode that closely matches

with the spin wave estimate at small system sizes, actually loses spectral weight and exhibits a

much larger reduction than the expected 7% reduction. The second peak subsequently gains

spectral weight and moves closer to the expected result. Dalla Piazza et al. have speculated

that this eventually becomes the magnon like peak at larger system sizes. By looking at the

corresponding PBC result at (π,0) we were able to conclude that this is indeed true, and the

low energy mode observed in ABC case is just a finite size effect. We continue to observe this

effect at (π,0) for smaller coupling ratios as well.

5) At (0,π) in the symmetric case, we see same spectra for both boundary conditions which

show the low energy mode loosing spectral weight. At low coupling ratios, for example

γ= 0.5(Fig(5.18)), we see only the PBC showing this effect strongly whereas the ABC shows a

weaker trend. At (π/2,π/2), for large coupling ratios we observe a sharp peak that matches

well with the spin wave result. At low coupling ratios, for e.g. γ= 0.1 in Fig(5.19), we observe

small additional peaks at(π/2,π/2) indicating that the spin excitations slowly become ’spinon’

like. A look at the spectrum at high symmetry points at L = 28 in Fig(5.20) and Fig(5.21), shows

the (π,0) mode gradually losing spectral weight and (0,π) mode gradually gaining spectral

weight as we increase γ. Both points continue to show significant high energy excitations at

large γ containing around 50% spectral weight at all couplings. The spectrum at (π/2,π/2)

shows a small additional peak at small coupling ratios, which subsequently moves to higher

energies and loses spectral weight as γ is increased.

6) So far, from TDSF data, we have speculated that the sharp modes are magnon like and
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the modes with continuum are spinon like. To put this picture on a stronger footing, for an

excitation with momentum q , we evaluate the spinon separation on a real space grid. In the

symmetric case as already noted by Dalla Piazza et al. the spinon separation is localized at

(π/2,π/2) and spread out in position space at (π,0) (Fig(5.22)). A look at the evolution of RMS

separation with coupling ratio (Fig(5.24)) shows that, small coupling ratios we have more

or less a constant RMS spinon separation, gradually exhibits a decreasing RMS separation

with increasing γ at all q-points except in regions close to (π,0),(0,π) and (0,0). A look at

the CDF of spinon separation (Fig(5.26)) also shows the same effect, where the CDF behaves

linearly with distance for all coupling ratios at (π,0) and (π/12,π/12), but the CDF at (π/2,π/2)

gradually evolves from a linear at γ= 0.1 to being localized at γ= 1. The spinon like behavior

of excitations near (π,0) and (0,π) is not a new result, but the spinon like behavior close to

(0,0) is a new observation.

7) The spinon-magnon like behavior of excitations should extend to large system sizes as

well and should not be a artifact of a finite size calculation. Hence, we analyze the CDF at

symmetry points (0,π),(π,0) and (π/2,π/2) as we increase system size, that shows that the

(π,0) symmetry point (Fig(5.28)) continues to show a linear behavior with distance, for all

system sizes and all coupling ratios. The (π/2,π/2) (Fig(5.30)) shows a gradual localization as

we increase the coupling ratio which happens at all system sizes. The PBC data also shows

the same features (Fig(5.31), Fig(5.32), Fig(5.33)). Thus at infinite system size we expect the

spinons at (0,π) and (π,0) to be widely distributed on the lattice, where as the spinons at

(π/2,π/2) gradually get localized with increasing γ as we move from 1D to 2D.
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6 Conclusion

Our interest in the SF state on RQHAF began with a prospect of being able to study the

evolution of its physics as the dimensionality of the system passes through quasi-1D towards

a 2D regime. The underlying motivation was the fractionalization of ‘magnon’ excitations into

‘spinons’, particularly in an unfrustrated system. Mermin-Wagner theorem allows for breaking

of continuous symmetry in 2D systems only at T = 0, and as pleathora of experimental,

theoretical and numerical evidence suggests, the groundstate of a 2D AFM Heisenberg systems

appears to be a state with a broken symmetry the Neel state. As seen in the example of coupled

XY chains, conventional wisdom would dictate that in cases where there is a ordered state,

finding free spinons would be improbable and hence one needs frustration to acquire a

quantum spin liquid state, where the spinons would be able to propagate freely. The merit

of the SF state on a square lattice was related to its capability to qualitatively explain the

experimentally observed (π,0) quantum anomaly. New research work involving continuous

similarity transformation provide an alternate view point, where the quantum anomaly can

be explained within the framework of multi-magnon excitations. Given all these arguments,

one might wonder on why we consider a disordered state on an unfrustrated system, which

is known not to be the groundstate, and study spinons on such a state. But the spirit of

research and scientific enquiry lies in exploring all the possibilities, despite a few caveats here

and there. This is necessary to create a wholesome picture of the underlying physics behind

these systems. The novelity of a spin liquid state, fractionalization and their possible role in

explaining High Tc superconductivity and their relevance to topological quantum computing

motivate a requirement for a deeper understanding into these states.

As we move forward in this research work a few relevant questions we ask ourselves were:

1) Is the (π,0) quantum anomaly fully explained by the SF state ?

2) Are the fractional excitations termed as ‘spinons’, that qualitatively reproduced the (π,0)

quantum anomaly in 2D, linked to the 1D spinons found through the Bethe ansatz solution ?
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3) If a link is found, is it a gradual evolution ? or does there exist a phase transition or a

crossover ?

4) Could a disordered RVB solutions or RVB solutions with sufficiently long range correla-

tions, be a better ground state for the 2D model at T = 0 compared to a symmetry broken state ?

5) What happens to spinons on SF state as we turn on and increase the coupling along y

direction ?

Considering the first question, one of the de-merits of the SF state, in the work of Dalla Piazza

et al., was that the zone boundary dispersion of the SF state was too pronounced. Through a

finite size analysis Dalla Piazza et al. speculated that the low energy peak of the TDSF at (π,0),

that is gradually seen to be loosing weight, would disappear at infinite system size. In this

scenaro the subsequent peak would become the low edge of the continuum, which would be

in agreement with the experimental observation. In this thesis, by using different boundary

conditions, we were able to show that this is indeed the case and the low energy peak is just an

artefact of the anti-periodic boundary condition. This result shows the utility of using different

boundary conditions when we are working with Finite size systems.

Moving on to the second and third questions, it appears that the 2D ‘spinons’ are gradually

linked to their 1D counterparts. The qualitative equivalence of the γ = 0.05 TDSF with the

Bethe Ansatz solution for both boundary conditions, and the observed evolution of the excita-

tion spectrum without any striking anomaly seems to indicate that the evolution is gradual.

The self-consistent spin wave theory result indicates that below γ= 0.138 the long-range order

vanishes, a result that coincides with the work of Miyazaki et al. Consequently we observe a

good agreement between the SF groundstate energy and the Gutzwiller projected Schwinger

boson result by Miyazaki et al., both of which are disordered states. However, this is not an

indication that Neel order would vanish around this region particularly given that we observe

unphysical negative energies at (π,π) all the way down to γ= 0.05. Hence it cannot be conclu-

sively said from our data, if there exists a crossover region. One must have a more detailed

look around γ= 0.1−0.2 region to see if the SF state shows signatures of a possible crossover.

As far as the much debated fourth question goes, unfortunately we do not have a conclu-

sive answer. Continued existence of the negative energy at (π,π) point all the way down to

γ= 0.05 seems to indicate that the true ground state might have long range order all the way

down to (except at) γ= 0. Although the SF state shows a power-law decay of the correlation

functions the decay exponent is higher than the spin wave result. This indicates that if at

all there is a RVB state that could be the groundstate of the 2D model without breaking the

continuous symmetry, it needs to have larger correlations than the SF state. Hence, we believe

that the answer lies in experimenting with a SF state with artificially induced long range corre-

lations. We believe that this would repair the long wavelength and low energy discrepancies

observed in our work, without qualitatively changing the high energy short wavelength aspects.
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Coming to the last question, although spinons are confined in the symmetry broken state,

like the Neel state, explicit symmetry breaking does not seem to be a necessary condition for

confinement of spinons into ‘magnons’. It must be noted here that, since we work at finite

system sizes, it is hard to classify an exactly confined/de-confined phases. Hence, when we

say confined(de-confined) it means that the excitations are strongly(weakly) confined. In the

quasi-1D regime, we saw the points away from (π,0), (0,π), (0,0) gradually becoming magnon

like as we increase γ. This is indicated by the gradual shift of spectral weight of the continuum,

towards a single peak. The points close to (π,0), (0,π), (0,0) on the other show a gradual loss of

spectral weight from the low energy mode. Parallelly the decrease of spinon-pair seperation at

all the k-points except near (π,0), (0,π), (0,0) with increase of coupling ratio γ all the way till

the symmetric case, indicates confinement occuring even without the Neel order. The points

close to (π,0), (0,π), (0,0) continue to show significant spinon-pair seperation. The existence

of fractional excitations at (π,0) and (0,π) is not a new result. The large spinon seperation at

(close to) (0,0) is a new observation not noticed by Dalla Piazza et al. Due to the lack of proper

density of states and the proximity to long wavelengths, it is doubtful if this feature, if at all

exists, could be captured by an experiment.

This discussion provides the concluding arguments from our research work. We hope that it

motivates further research into Gutzwiller projected states and makes a small contribution to

the field of quantum magnetism.
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A Simulation details

Metropolis MonteCarlo

As discussed in chapter 4, the core process of our simulation is a Metropolis MonteCarlo

Algorithm [Metropolis et al. (1953)], where a Markov chain is created in the single particle

basis. The Metropois Monte Carlo is a numerical method we use to provide an estimated for a

weighted average Q of a quantity f (α) subject to a probability distribution ρ(α):

Q =∑
α
ρ(α) f (α) (A.1)

where α parameterizes a space too large to be included in a finite numerical calculation.

It provides a simple way to estimate Q by summing contributions f (α) where α states are

generated through a random walk following a probability distribution ρ(α). The construction

of a Markov chain involves defining a proposal function P (α′|αn) that generates a state
∣∣α′〉

given a state |αn〉 at the n’th step of the Montecarlo process. We can then move on to define

the acceptance ratio or the transition probability:

A(α′|αn) = Max

[
1,

P (αn |α′)ρ(α′)
P (α′|αn)ρ(αn)

]
(A.2)

Once we have chosen a proposal function and defined the acceptance ratio a random walk is

generated as follows:

Step 1: A new state
∣∣α′〉 is generated by the proposal function P (α′|α\).

Step 2: A random number r ∈ [0,1) is drawn and if r < A(α′|α) then the new state is accepted

such that |αn+1〉 =
∣∣α′〉. Else the new state is rejected such that |αn+1〉 = |αn〉.

Step 3: Go back to step 1.

The conditional probability in this random walk becomes:

P (αn +1|αn) =
{

A(αn+1|αn)P (αn+1|αn) |αn+1〉 6= |αn〉
1−∑

α′ A(α′|αn)P (α′|αn) |αn+1〉 = |αn〉
(A.3)
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which satisfies the condition of detailed balance(or time reversibility):

P (α′|α)ρ(α) = P (α|α′)ρ(α) (A.4)

that guarantees that the sample states |αn〉 drawn in our random walk satisfy a steady proba-

bility distribution ρ(α). We have a great freedom in choosing the proposal function P (α′|α).

To keep things simple the proposal function we use to generate a new state in a single par-

ticle basis is to randomly pick a spin and then randomly pick its neighbor and generate

a new state by exchanging the spins if they are anti-aligned. This renders the proposal

density to be symmetric P (α′|α) = P (α|α′) rendering our acceptance ratio to simply be

A(α′|α) = Max([1,ρ(α′)/ρ(α)]). To be able to estimate the uncertainty in the values of our

measured observables, one runs into a difficulty that our samples are not sufficiently random

on a Markov chain. To get around this we make measurement at sufficiently spaced intervals

(L2 where L is the system size).

Overlap Amplitudes

As described in earlier section, the primary quantity of concern to us is the overlap amplitude

ρ(α) = ∣∣〈α ∣∣ψ〉∣∣2 where
∣∣ψ〉 = ∣∣ψGS

〉
for ground state and

∣∣ψ〉 = ∣∣k, q
〉

in the case of excited

state. The wave function
∣∣ψ〉

is created via filling particles in the momentum space where as

the single particle basis |α〉 is in the position basis. Since we are dealing with fermions and our

wave function needs to be anti-symmetric with respect to exchange of particles, the overlap

〈α ∣∣ψ〉
must be calculated as a slater determinant. We first start by defining a general single

particle wave function written in terms of single particle basis:

|α〉 = |R1,σ1〉⊗ |R2,σ2〉⊗ ... |RN ,σN 〉 Ri 6= R j∀i , j (A.5)

where Ri is the position of spin σn . It must be noted that while deriving a new state α′ from

this state, the fermionic sign convention must be included. In the same spirit we construct the

staggered flux wave function, that must be antisymmetrized with respect to exchange of two

spins. This state can be represented as a slater determinant:

∣∣ψ〉= 1p
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|k1,σ1,b1〉 |k2,σ1,b2〉 . . . . . . |kn ,σ1,bn〉
|k1,σ2,b1〉 |k2,σ2,b2〉 . . . . . . |kn ,σ2,bn〉

...
...

...
...

...
...

...
...

...
...

|k1,σn ,b1〉 |k2,σn ,b2〉 . . . . . . |kn ,σn ,bn〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.6)

where bn is the band index of the k point kn . We can ignore the normalization value 1/
p

N !

since we only require the ratios between different overlap amplitude. Hence within our
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construction the overlap amplitudes become:

〈α ∣∣ψ〉= Deti j 〈Ri ,σi
∣∣k j ,σ j ,b j

〉
(A.7)

where 〈Ri ,σi
∣∣k j ,σ j ,b j

〉
is the single particle amplitude. Since Sz

tot is a good quantum number,

the determinant can be further split into two components as:

〈α|ψ〉= Deti↑ j↑
〈

Ri↑,↑∣∣ k j↑,↑,b j↑
〉

Deti↓ j↓
〈

Ri↓,↓∣∣ k j↓,↑,b j↓
〉

(A.8)

Determinant Update Algorithms

Calculating determinant of a N × N matrix has a complexity of O (N 3). In our calculation

each new state |αn+1〉 is derived from a previous state |αn〉 in our Markov chain. Since, the

previous amplitude 〈αn
∣∣ψ〉

is already known we can reduce the complexity of the problem by

updating the previously calculated amplitude with respect to the changes introduced. To do

this, first we must understand what each operation while generating a new state does to the

slater determinant. In our Markov chain a new state |αn+1〉 is generated via exchanging two

randomly selected neighboring spins if they are anti-aligned. This is equivalent to change of

a single column each in the slater determinant matrix of the up spin and down spin. If one

remembers the formula for calculating the inverse of a matrix:

A−1 = 1

Det(A)
co f (A)T (A.9)

where the i , j element of the cofactor matrix is nothing but the determinant of a matrix

obtained by removing the row i and column j of matrix A. Using these considerations one

can show that:

Det(A′)
Det(A)

=∑
j

A′
k j A−1

j k (A.10)

where the matrix A′ is obtained by changing the column k of matrix A. A similar formula for

the update of the inverse matrix (A′−1) can also be obtained in the same spirit. Thus we reduce

a calculation of complexity O (N 3) to a O (N ) complexity. A general case of obtaining these

update formulas is as follows. Assume A is a N ×N matrix, U a N ×m matrix and V a m ×N

matrix. If a rank-m modification of matrix A is defined as:

A′ = A+UV (A.11)

The resulting updates for the determinant and inverse are given by[Brookes (2011)]:

Det(A′) = Det(A)Det
(
Im×m +V A−1U

)
(A.12)

127



Appendix A. Simulation details

(
A′)−1 = A−1 − A−1U

(
Im×m +V A−1U

)−1
V A−1 (A.13)

where it is assumed that the term in parenthesis is invertible. Using this method, we would like

to construct a general algorithm that would work for a simultaneous update of mr rows and

mc columns. The reason for this will become clear in the next section. We start by defining the

matrices of new rows and columns as R and C that are matrices of dimensions mr ×N and

N ×mc . We let r1,r2, ...rmr to be the indices of rows to be changed and c1,c2, ...cmc the indices

of columns to be changed. Also we define the unit column column vectors êi where only non

zero element is (êi )i = 1. Using this construction, one can show that the following U and V

define a simultaneous change of the ri th rows and c j th columns of A by i th rows of R and j th

rows of columns of C:

U =
(

C ′ Er

)
(A.14)

V =
(

Ec

R ′

)
(A.15)

with Er and Ec defined as:

Er =
(

êr1 êr2 . . . êrmr

)
(A.16)

Ec =
(

êc1 êc2 . . . êcmc

)T
(A.17)

and R ′,C ′ defined as

C ′ = (
1−Er E T

r

)(
C − AE T

c

)
(A.18)

R ′ = R −E T
r A (A.19)

The matrix K = Im×m +V A−1U ,where m = mr +mc has the block form:

K =

 Ec A−1C −Ec A−1Er E T
r C +Ec A−1Er E T

r AE T
c Ec A−1Er

R A−1C −R A−1Er E T
r C −RE T

c +R A−1Er E T
r AE T

c R A−1Er

 (A.20)

Let us analyze the computational complexity of calculating each block assuming mr << N

and mc << N which implies that major calculations are related to multiplication of N ×N

matrices. Starting with the upper left block of dimensionality mc ×mc , we see that it requires a

multiplication of two N ×N matrices, which requires O (N ) operations. The lower left block of

mr ×mc elements involves multiplication of three N ×N matrices, which has computational

complexity of O (N 2). The top right block does not have any large matrix multiplication and
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hence requires O (N 0) operations. The bottom right block has multiplication of two N ×N

matrices, that require O (N ) operations. Hence in total the evaluation of this matrix has O (N 2)

complexity. When there are no row changes or no column changes, the above formulas will be

simplified yielding:

K = Ec A−1C for no row changes (A.21)

K = R A−1Er for no column changes (A.22)

which are of complexity O (N ). Once we have the K matrix the determinant update can be

obtained From Eq(A.12). The calculation of inverse of K does not cost much(assuming mr ,mc

to be very small), however the update of the inverse matrix through Eq(A.13) would require

additional multiplication of two N × N matrices that requires an additional O operations.

Hence, in total to evaluate determinant and inverse update, the above algorithm yields a worst

case O (N 2) computations in the case of only rows or only column updates

Computational detalis

In this section we provide the details on the basic structure of the algorithms used, and

the computational cost at each step. Starting with the groundstate calculation, the stag-

gered flux is initialized with given variational parameters. A random single particle state is

generated(through a random seed) and the overlap amplitude is calculated. This implies

calculating the determinant and inverse of the overlap matrix a step that typically requires

O (N 3) steps(through LU decomposition and Gauss-Jordan elimination). If the overlap ampli-

tude is too small, a new state is initialized and this process is repeated a few times until we

have a random initial state, that has a finite overlap amplitude. Once such a initial state is

found new states in the Markov chain are generated by exchanging randomly selected spins.

At each step the determinant is updated and if the state is selected the inverse matrix is also

updated. Since exchanging two spins merely corresponds to changing a single column of the

slater determinant matrix, thanks to the algorithm developed in previous section, this step

typically requires O (N ) for determinant update and O (N 2) for inverse matrix update. Hence

each random step in total has a complexity O (N 2).

The Hamiltonian operator has sum over 2N pairs and since it has off diagonal elements

that exchange spins on neighboring sites, the complexity of computation of energy on each

pair is O (N ), which makes the total complexity to be O (N ). The instantaneous longitudinal

correlation function is diagonal and the computation of correlation on each pair does not cost

much. However, since it has a double sum which involves N 2/2 pairs, the overall complexity

of calculating instantaneous longitudinal correlation function is O (N 2). The instantaneous

transverse correlation function, apart from having a double sum has also off-diagonal terms.

Hence it has a computational complexity of O (N 3). To eliminate the bias from a initial random

state that could be far away from equilibrium, we carryout sufficient thermalization steps
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before starting the measurements. Dalla Piazza et. al. showed that a good equilibrium is

reached within 20L2 steps. However, to be on the safe side we carry out a 200L2 thermaliza-

tion steps since they do not cost much. To make the samples sufficiently independent, the

measurements are made once every L2 steps.

Moving on to the excited state simulation, at the beginning of each simulation the particle-

hole excitation states
∣∣k, q

〉
are initialized. The quantity we need to calculate at each random

step is W (α) =∑
k

∣∣〈α ∣∣k, q
〉∣∣2. Hence one might think that for a given |α〉 we need to evaluate

〈α ∣∣k, q
〉

with all the k values. This is not required since given a particular slater determinant

〈α ∣∣k, q
〉

, a slater determinant corresponding to a different k ′ i.e 〈α ∣∣k ′, q
〉

could be obtained

by exchanging the particle at k to k ′. This corresponds to just a column change in a slater

determinant matrix. Also, given a slater determinant 〈α ∣∣k, q
〉

calculating
〈
β

∣∣k ′, q
〉

just re-

quires considering the simultaneous row and column changes for which the algorithm in

previous section has been built. Having all these considerations in mind, following the similar

logic as the ground state calculations we can see that the random steps have O (N 2), and the

measurement of transverse structure factor has O (N 3) complexity. Similar to groundstate

calculations, we carry out thermalization for 200L2 steps.

So far, we have discussed the scaling of computational effort required with system size in each

of the above simulations. We would also like to provide a few details on the real time compu-

tational cost and necessary statistics for this overall project. As Dalla Piazza et al mentioned

in their work, a million measurements should suffice to minimize the statistical error. We

started with this estimate and carried out our calculations of groundstate optimization and

instantaneous structure factor calculation (with ABC) for coupling ratios γ= 0.1−1 in steps

of 0.1. We also carried out the TDSF calculations at few coupling ratios γ= 0.1,0.2,0.5 with

a million statistics for each individual simulation. However, as we realized that we need to

consider effects of alternate boundary conditions as well, we decided to reduce the statistics

to 0.25×106 measurements due to computational limitations. This corresponds to a certain

trade off of statistical error which we shall discuss in the next section. Providing individual

computational costs of each run for different types of observations, system sizes, couplings,

boundary conditions etc would be cumbersome. Hence we provide the total estimate of our

computational cost for this project that accounted for more than 2.5×106 cpu hours. Almost

all of this computation has been performed on a local Quantum Wolf cluster that has of 320

cpus. This amounts to about nearly 8000 hours of cluster utilization over a period of 2 and a

half years of handling this project.
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B Error Analysis

Since most of our results are derived from a simulation of a Monte Carlo process the discussion

would be incomplete without a detailed analysis of the possible numerical errors. There are

two kinds of errors that creep into the final results that we obtain from our analysis. The first

kind are related to the statistical errors coming from the limited sampling of the measurement

of observables. The second kind are the fitting errors related to fits performed to derive

numerical estimates from the simulation data.

Statistical Errors

Starting with the groundstate observables ground state energy and instantaneous spin spin

correlation function, we estimate a single observable for every simulation. Hence the nu-

merical error in this context is simply the standard error corresponding to the sampling. For

example, if N measurements are made for estimating an observable O then the expectation

value of this observable is given by:

〈O〉 = 1

N −1

∑
N

ON (B.1)

where ON is the N’th measurement. The variance of this measurement is:

σ2
O = 1

N −1

∑
N

(ON −〈O〉)2 (B.2)

The standard error is given by

E(O) = σOp
N

(B.3)

Most of our simulations are performed on 320 computer nodes with 3000 measurements on

each node ( 106 statistics). However, storing a million numbers per each simulation would

cost a lot of memory. Hence the algorithms are designed to evaluate the average on each node
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which in the end gives us 320 samples. To obtain the standard error corresponding to our

sampling, we use the binning procedure where the sample space is divided into N bins and

the mean of each bin is taken to be the representative observation of that bin. Considering

each bin as a single sample, we evaluate the standard error as function of number of bins.

In Fig(B.1), we plot the standard deviation and the standard error of a randomly selected

groundstate energy measurement,as function of number of bins. As can be seen, for a large

number of bins we observe approximately constant standard error which is in the range of

1.4×10−5. For almost all of the ground state measurements our standard error is in the range

of 10−4−10−5. Hence the first three digits after the decimal point are accurate and the fourt

digit can have a small error corresponding to the uncertainity in subsequent digits.

0 50 100 150 200 250 300

5
1

Figure B.1 – Standard deviation and standard error vs number of bins of a randomly selected
simulation of groundstate energy measurement.

A second quantity that we measure from the ground state wave function is the instantaneous

spin spin correlation. We expect 〈Sx (r )Sx (0)〉 to be the same as 〈Sz (r )Sz (0)〉 because of the

SU (2) symmetry of our wave function. We observe that this to be satisfied in almost all the data

sets. A few exceptions were noticed while calculating the correlation function in y-direction

at extremely low couplings. In this region, the numerical values of the correlation function

are of the order 10−5 and it was found that the statistical errors were quite large in the zz

component of the correlation function but not the xx component. In Fig(B.2) we plot the

correltion function at α= 0.1 for ABC boundary conditions. As can be seen in x-direction the

xx and zz components coincide where as in y-direction the zz component is slightly shifted

with large standard error.
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Figure B.2 – Instantaneous spin spin correlation function along with the standard error along
x(left) and y directions(right) for simulation at α= 0.1. The blue color corresponds to the xx
component(m = x) and the red color corresponds to the zz component (m = z)

A hint of why this is happening could be understood by having a look at the expression we use

to calculate an observable of our Gutzwiller projected state:

〈O〉 =∑
β

∣∣〈β|ψGS
〉∣∣2∑

β

∣∣〈β|ψGS
〉∣∣2︸ ︷︷ ︸

ρ(β)

(∑
γ

〈
β
∣∣O

∣∣γ〉 〈
γ|ψGS

〉〈
β|ψGS

〉)
︸ ︷︷ ︸

f (β)

(B.4)

When O = Sz (r )Sz (0) the function f (β) has constant values +1/4 or −1/4 depending on

whether the spin at r in
∣∣β〉

is aligned or anti-aligned with respect to spin at r = 0. When

O = §+(r )S−(0) (relating to xx component) we have f (β) depends not only on state
∣∣β〉

but also

on the state
∣∣γ〉=O

∣∣β〉
. Hence, calculation of the xx component involves a larger subspace

of the single particle basis compared to the zz state. This is the reason why xx component

exhibits a better statistical convergence for the limited statistics we have.

Moving on to the excited state calculations, determining the statistical errors is highly non-

trivial. This is due to the fact that the measurements we make while simulating the excited

states are the matrix elements H q
kk ′ and the final quantity we try to calculate is linked to the

eigenvalues and eigenvectors of this matrix. The propagation of errors from matrix elements

to eigenvector and eigenvalues, cannot be estimated without the knowledge of the actual

matrix. Instead we just have a look at the TDSF samples at q = (π,0) and γ= 0.5 obtained via

binning the matrix data into N = 5 bins. In Fig(B.3) we show the resulting spectra( convoluted

by gaussians of 0.1Jx ), where the data from individual bins has been plotted in black lines and

the average in Red. This data set contained a million observations which have been grouped

into bins of 0.2 million. The overall error in x direction seems to be in the order of 0.1Jx . Hence

by taking 0.25 million statistics in most of our data sets we are sacrificing an accuracy in the

range of 0.1Jx
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Figure B.3 – TDSF simulation of a randomly selected data set with 106 statistics binned into
N = 5 bins. The black lines represent the TDSF from each bin, and the red line is the average.

Fitting Errors

In this section we disucss the fitting procedures used for estimating various numerical esti-

mates obtained in the thesis, and the corresponding error estimates. We start our discussion

with the fitting of Energymaps from section(4.2.1), where the lower part of the energy maps

E(θ,α) is fit with a function biquadratic in α and θ to estimate the position of the optimum

parameters corresponding to the energy minimum. The function is given by:

E(α,θ) = a(θ−θ0)2 +b(θ−θ0)(α−α0)+ c(α−α0)2 +EGS (B.5)

This function has six free parameters a,b,c,d ,θ0,α0. Fitting routine from Mathematica ‘Non-

LinearModelFit" has been used for fitting the energy minima with this function. Apart from

the values of the ‘Best fit parameters’ we also obtain the corresponding standard error of these

estimates. A particular problem encountered while fitting the discrete data, particularly at low

couplings, is that if we consider only the points closest to the minimum energy the numerical

errors and the lack of curvature could make the fit unstable. On the other hand if we consider

points farther away as well, then they might infulence the fit leading to wrong estimates of the

minima. One solution to this problem is to give more weight to the points closer to the minima.
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Figure B.4 – Fitted parameters α0,θ0,Emi n of the energy maps at γ= 0.5 and L=16 along with
their fitting errors as a function of number of points(in ascending order of their energy) close
to global minima used for fitting.

Another solution is to start the fit with a few points lowest in energy, and progressively add

more and more points. Once we have included all the points we can pick out the fit parameters

that are estimated from lowest number of points, but also with a reasonably small standard

error. We choose the later procedure.

For an illustration in Fig(B.4) we show the result of such a process at γ = 0.5 for L = 16. As

can be seen, the ground state energy estimate has a very small standard error. The parameter

α0 exhibits large standard error when only few points are taken and subsequentyly shows

small standard error when lowest 20 points are taken. We select the optimum parameters and

groundstate energy here, which is indicated by the dashed line. Similar procedure is repeated

for all coupling ratios at different system sizes. Although standard error can be estimated in

this fashion, it does not provide us with overall uncertanity of our optimal parameters. This is

due to the fact that the function E q(B.5) assumes a parabolic minima, whereas the minima

of our energy maps are not necessarily parabolic. Hence we cannot directly determine the

numerical accuracy of the extracted optimal parameters with out a more detailed mapping of
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the groundstate energy.
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C Additional figures

Only figures that capture the relevant conclusions, have been presented in the main part of

the thesis. Here we present the additional figures for completeness.

Energy maps

-0.600

-0.575

-0.550

-0.525

-0.500

(a) γ= 0.9

-0.575

-0.550

-0.525

-0.500

-0.475

-0.450

(b) γ= 0.8

-0.54

-0.52

-0.50

(c) γ= 0.7

-0.52

-0.50

-0.48

-0.46

(d) γ= 0.6

-0.48

-0.47

-0.46

-0.45

-0.44

(e) γ= 0.4

-0.47

-0.46

-0.45

-0.44

-0.43

(f) γ= 0.3

Figure C.1 – Ground state Energy maps of systems with size L=8 for various coupling ratios.
The white contours(dot) indicate the points corresponding to same energy(minima).
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Density of States (ABC)
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Figure C.2 – Density of states D(q,ω) as defined in Eq(5.42) at different γ values for anti-
periodic boundary condition.

Density of States (PBC)
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Figure C.3 – Density of states D(q,ω) as defined in Eq(5.42) at different γ values for periodic
boundary condition.
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TDSF (ABC)
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Figure C.4 – TDSF of staggered flux state (with ABC)for different γ values. The black line
represents the self-consistent spin wave result obtained from chapter 3.
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TDSF (PBC)
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Figure C.5 – TDSF of staggered flux state (with PBC)for different γ values. The black line
represents the self-consistent spin wave result obtained from chapter 3.
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TDSF at different system sizes
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Figure C.6 – Evolution of TDSF for γ = 0.9(top) and γ = 0.8(bottom), at q-points
(π,0)(left),(0,π)(center) and (π/2,π/2)(right) as we increase system size. The solid line repre-
sents ABC and dashed line represents the PBC.The dashed vertical line indicates the energy of
the self-consistent spin wave result from chapter 3.
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Figure C.7 – Evolution of TDSF for γ = 0.7(top) and γ = 0.6(bottom), at q-points
(π,0)(left),(0,π)(center) and (π/2,π/2)(right) as we increase system size. The solid line repre-
sents ABC and dashed line represents the PBC.The dashed vertical line indicates the energy of
the self-consistent spin wave result from chapter 3.
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Figure C.8 – Evolution of TDSF for γ = 0.4(top) and γ = 0.3(bottom), at q-points
(π,0)(left),(0,π)(center) and (π/2,π/2)(right) as we increase system size. The solid line repre-
sents ABC and dashed line represents the PBC.The dashed vertical line indicates the energy of
the self-consistent spin wave result from chapter 3.
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Figure C.9 – Evolution of TDSF for γ= 0.2(top), at q-points (π,0)(a),(0,π)(b) and (π/2,π/2)(c)
as we increase system size. The solid line represents ABC and dashed line represents the
PBC.The dashed vertical line indicates the energy of the self-consistent spin wave result from
chapter 3.
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RMS of spinon separation
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Figure C.10 – Root mean square separation as defined in Eq(5.46) at various γ values. Anti-
periodic boundary condition is represented by blue dots and Periodic boundary is represented
by red dots.
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CDF of spinon separation at L=24 (ABC)
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Figure C.11 – CDF of spinon separation at q points (π/2,π/2)(black), (π,0)(blue), (0,π)(red),
(π/12,π/12)(green) for different.
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CDF of spinon separation at L=24 (PBC)
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Figure C.12 – CDF of spinon separation at q points (π/2,π/2)(black), (π,0)(blue), (0,π)(red),
(π/12,π/12)(green) for different.
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Appendix C. Additional figures

CDF of spinon separation at different system sizes with ABC at q =
(π,0)
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Figure C.13 – CDF of spinon separation at (π,0) for various system sizes L = 8,12,16,20,24,28
represented by red,blue,green,black,brown and magenta respectively. The system has ABC.
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CDF of spinon separation at different system sizes with ABC at q =
(0,π)
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Figure C.14 – CDF of spinon separation at (0,π) for various system sizes L = 8,12,16,20,24,28
represented by red,blue,green,black,brown and magenta respectively. The system has ABC.
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Appendix C. Additional figures

CDF of spinon separation at different system sizes with ABC at q =
(π/2,π/2)
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Figure C.15 – CDF of spinon separation at (π/2,π/2) for various system sizes L =
8,12,16,20,24,28 represented by red,blue,green,black,brown and magenta respectively. The
system has ABC.
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CDF of spinon separation at different system sizes with PBC at q =
(π,0)
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Figure C.16 – CDF of spinon separation at (π,0) for various system sizes L = 8,12,16,20,24,28
represented by red,blue,green,black,brown and magenta respectively. The system has PBC.
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Appendix C. Additional figures

CDF of spinon separation at different system sizes with PBC at q =
(0,π)
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Figure C.17 – CDF of spinon separation at (0,π) for various system sizes L = 8,12,16,20,24,28
represented by red,blue,green,black,brown and magenta respectively. The system has PBC.
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CDF of spinon separation at different system sizes with PBC at q =
(π/2,π/2)
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Figure C.18 – CDF of spinon separation at (π/2,π/2) for various system sizes L =
8,12,16,20,24,28 represented by red,blue,green,black,brown and magenta respectively. The
system has PBC.
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Appendix C. Additional figures

Finite size effects on RMS spinon separation for ABC
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Figure C.19 – Evolution of RMS spinon separation with system size for ABC(top) and
PBC(bottom) at q points (π,0)(left),(0,π)(center) and (π/2,π/2)(right).
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