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Abstract
Among hydrodynamically unstable flows, the amplifier-flows are characterized by their large

amplification potential in presence of external noise. Since amplifiers do not have an intrinsic

dynamics, a chosen forcing can be applied to eventually control the downstream evolution of

such flows. With this aim, we intend to analyse the flow control in amplifier-flows, common

examples being the flow in a backward facing step and the free surface capillary jet. We begin

by analysing the flow control applied over a three-dimensional spanwise-modulating back-

ward facing step. With the objective of reducing the lower recirculation length, we look for

small amplitude optimal controls either by blowing/suction or by applying a wall deformation.

A similar approach is then applied for the free surface axisymmetric capillary jet. The analysis

is simplified by using the one-dimensional equations of Eggers & Dupont (J. Fluid Mech., vol.

262, 1994, 205-221) which describe the flow using only the radius of the jet and its velocity as

functions of the jet axial coordinate and time. We concentrate on two jet variations, one has a

parallel base flow and the other has a spatially varying base flow due to the stretching effect

of gravity. A local stability analysis is sufficient for analysing parallel base flows, whereas the

spatially varying jets are analysed in the global framework. Further, we perform numerical

simulations with the target of finding the optimal forcing which minimizes the intact jet

length, also referred to as the breakup length. Unlike the parallel jets, the optimal forcing

frequency for the spatially varying jet is dependent on the forcing amplitude. Similar results

are then captured through the global resolvent analysis by introducing the forcing amplitude

in the linear resolvent framework. Using a similar linear stability approach we then analyse

the special case of silicone-in-silica jets inspired by the experimental results of Gumennik et

al. (Nat. Commun., vol. 4, 2013, 2216). Based on the reformulated one-dimensional equations,

we predict numerically the drop size as a function of given fibre feed speed, which is found to

be in close accordance with the experimental results.

Finally, we explore experimentally the physical dynamics of drops rising in an external medium

in a Hele-Shaw cell due to buoyancy. We specifically analyse the relation between the drop

velocity and the mean film thickness magnitude around the drop. We present complete film

thickness maps for these drops which highlight the ‘catamaran’ like shape often observed for

similar drops in pressure driven flows inside the Hele-Shaw cell.

Key words: amplifier flows, backward facing step, hydrodynamic instability, Rayleigh-Plateau

instability, Eggers & Dupont equation, jet breakup, optimal forcing, resolvent analysis,

droplet dynamics in Hele-Shaw.
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Résumé
Au sein de la classe des écoulements instables, les écoulements amplificateurs de bruits sont

caractérisés par leur fort potentiel d’amplification en réponse à un bruit extérieur. Dans la me-

sure où ces amplificateurs n’ont pas de dynamique propre, un forçage choisi est susceptible de

contrôler l’évolution spatiale et temporelle de l’écoupement. Deux exemples nous permettent

dans cette thèse d’appliquer cette stratégie de contrôle d’écoulements amplificateurs : l’écou-

pement au dessus une marche descendante et le jet capillaire. Dans un premier temps, nous

analysons l’écoulement de marche descendante tridimensionnelle modulée transversalement.

Dans la perspective de diminuer l’étendue de la zone de recirculation, nous recherchons un

contrôle optimal de faible amplitude par injection/aspiration de fluide ou bien en appliquant

une déformation à la paroi.

Une approche similaire est ensuite appliquée au cas d’un jet capillaire axisymétrique. L’analyse

est ici simplifiée grâce à l’utilisation des équations unidimensionnelles d’Eggers & Dupont

(J. Fluid Mech., vol. 262, 1994, 205-221) qui décrivent l’écoulement en utilisant le rayon lo-

cal du jet et la vitesse comme des fonctions de l’espace et du temps. Deux variations sont

analysées en détail : une première consiste en un jet doté d’un écoulement de base parallèle,

et la deuxième d’un jet dont l’écoulement de base varie dans l’espace du fait de l’étirement

induit par la pesanteur. Une analyse de stabilité locale est suffisante pour analyser l’écou-

lement de base parallèle. Pour l’écoulement de base dépendant de l’espace, en revanche,

une analyse de stabilité globale est requise. Par la réalisation de simulations numériques,

nous avons déterminé le forçage optimal permettant de minimiser la longueur du jet avant

pincement. Au contraire des jets parallèles, les jets étirés par la pesanteur ont une fréquence

de forçage optimale qui dépend de l’amplitude de ce forçage. Ces résultats de simulation sont

retrouvés par analyse globale par fonction de transfert, en introduisant l’amplitude de for-

çage dans la résolvante linéaire. Esn utilisant une analyse de stabilité linéaire analogue, nous

analysons finalement le cas particulier des jets "silicone-in-silica" inspirés par les résultats

expérimentaux de Gumennik et al. (Nat. Commun., vol. 4, 2013, 2216). En adaptant les équa-

tions unidimensionnelles utilisées prédemment, nous parvenons à prédire numériquement la

taille des gouttes en fonction du débit d’injection de la fibre et obtenons un très bon accord

avec les résultats expérimentaux.

Enfin, nous étudions expérimentalement la dynamique de gouttes confinées dans une cellule

de Hele-Shaw remplie d’un fluide moins dense. Ces gouttes, en mouillage nul, remontent la

cellule sous l’effet de la pesanteur. Nous analysons en particulier la relation entre la topologie
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du film de lubrification et la vitesse de la goutte. Le film de lubrification adopte une structure

de type ‘catamaran’, en accord avec des précédentes observations pour des gouttes soumises à

un gradient de pression.

Mots clés : écoulements amplificateurs de bruit, marche descendante, instabilité hydro-

dynamique, instabilité de Rayleigh-Plateau, équation d’Eggers & Dupont, éclatement de

jet capillaire, forçage optimal, analyse par fonction de transfert, dynamique de gouttes en

cellule de Hele-Shaw
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Zusammenfassung
Unter allen hydrodynamisch instabilen Strömungen zeichnet sich die Verstärker-Strömung

durch ihr großes Potential zu verstärken aus. Da Verstörker keine intrinsische Dynamik haben,

wird die Wahl einer Kraft möglich, um die Strömungsentwicklung stromabwärts zu steuern. Zu

dem Zweck die Strömungssteuerung zu analysieren, nehmen wir Bezug auf geläufige Beispiele

wie die Strömung über eine rückwärtsgerichteten Stufe und eines Kapillarstrahls mit freier

Oberfläche. Wir beginnen mit der Analyse der Steuerung einer Strömung über eine dreidimen-

sionale rückwärtsgerichtete Stufe, die in Spannweitenrichtung moduliert ist. Mit dem Ziel die

Länge der unteren Rezirkulationszone zu reduzieren, untersuchen wir die optimale Steuerung

mit kleinen Amplituden, entweder durch Schub/Sog oder durch Deformation der Wand.

Einähnlicher Ansatz wird auch für die Untersuchung des achsensymmetrischen Kapillarstrahls

mit freier Oberfläche gewählt. Die Analyse wird vereinfacht durch die eindimensionalen Glei-

chungen von Eggers & Dupont (J. Fluid Mech., vol. 262, 1994, 205-221), deren Beschreibung

der Strömung lediglich auf dem Strahlradius sowie seiner Geschwindigkeit als Funktion von

Axialkoordinate und Zeit basiert. Wir beschränken uns auf zwei Strahlvarianten, eine mit

paralleler Basisströmung und eine andere mit räumlich variierender Basisströmung, die eine

Abnahme des Strahlradius durch Schwerkraft beschreibt. Eine lokale Stabilitätsanalyse ist eine

hinreichende Untersuchung für parallele Basisströmungen, während ein räumlich variieren-

der Strahl eine globale Analyse verlangt. Des Weiteren machen wir numerische Simulationen

mit dem Ziel eine optimale Steuerungskraft zu finden, welche die intakte Strahllänge mini-

miert, bzw. Die benötigte Länge für die Zerteilung des Strahls. Im Gegensatz zum parallelen

Strahl ist die Frequenz der optimalen Steuerungskraft von der Steuerungsamplitude abhängig.

ähnliche Ergebnisse bekommt man durch globale Analysen mittels Resolventen, wenn man

die Steuerungsamplitude in der Resolventen berücksichtigt. Mit Hilfe eines ähnlichen linea-

ren Stabilitätsansatzes untersuchen wir dann den Spezialfall eines Silikonstrahls in Silikagel,

motiviert durch die Experimente von Gumennik et al. (Nat. Commun., vol. 4, 2013, 2216).

Basierend auf den umformulierten eindimensionalen Gleichungen machen wir numerische

Vorhersagen zu der Tropfengröße als Funktion von gegebener Einführgeschwindigkeit der

Faser, welche mit den experimentellen Ergebnissen übereinstimmen.

Letztendlich untersuchen wir experimentell die Aufstiegsdynamik eines Tropfens durch den

Auftrieb in einem externen Medium innerhalb einer Hele-Shaw-Zelle. Wir untersuchen spezi-

fisch die Beziehung zwischen der Tropfengeschwindigkeit und der Magnitude der mittleren

Filmdicke um den Tropfen. Für diese Tropfen erstellen wir vollständige Karten von Filmdicken,
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welche insbesondere jene ‘Katamaran’-artige Tropfenform zeigen, die häufig bei ähnlichen

Tropfen in druckgetriebenen Strömungen einer Hele-Shaw-Zelle zu beobachten sind.

Stichwörter: Verstärker-Strömung, rückwärtsgerichtete Stufe, hydrodynamische Instabili-

tät, Rayleigh-Plateau Instabilität, Eggers & Dupont Gleichung, Strahlzerteilung, optimale

Steuerungskraft, Analyse mittels Resolventen, Tropfendynamik in Hele-Shaw
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1 Introduction

1.1 Jets: In nature and everyday life

Jets, defined as streams of fluid having almost a columnar shape, have captivated our interest

both for their practical use and for their intricate breakup mechanism. They exist in varying

length scales, from nature to everyday life. In nature, the formation of Pele’s hair is a stunning

example of highly viscous jets created during a volcanic eruption (see figure 3.1(a)). Named

after the Hawaiian goddess of volcanoes, Pele’s hair are thin strands of volcanic glass formed

in the air during the fountaining of the molten lava. A single viscous strand with a diameter

of less than 0.5 mm, can extend up to a length of 2m (Shimozuru 1994; Eggers & Villermaux

2008). Such viscous filaments are also seen to elongate and stabilize in presence of gravity, as

in the case of honey dripping from a spoon under its own weight (see figure 3.1(b)), where the

highly thin jet can exceed lengths of 10 m (Javadi, Eggers, Bonn, Habibi & Ribe, 2013).

In contrast, if the gravitational force is opposite to the flow direction, it tends to amplify

the preexisting destabilising effect in a jet, eventually accelerating its breakup into drops.

This behaviour is evident in the case of an Archerfish, which hunts by spitting a water jet

(sometimes as long as 3 m) at their prey (figure 3.1(c)). Surprisingly while doing so, they have a

good estimate of the refractive index of air-water, the degree of bending of the jet due to gravity,

and particularly the presence of the Rayleigh-Plateau instability, which breaks the water jet

into several small drops as a consequence of the surface tension forces (Vailati, Zinnato &

Cerbino, 2012).

At the microscale level, an everyday yet elegant application of the jets is in the use of ink-jet

printer where highly thin jets are ejected to eventually breakup into drops of fixed size (figure

3.1(e)). Recently, the ink-jet technology has moved far beyond its original purpose in printing,

for example to print integrated circuits, microarrays in biotechnology and to make optical

elements (Basaran, 2002; Williams, 2006; Eggers & Villermaux, 2008) (see figure 3.1(f)-(i)).

In most of these processes which require a specific drop size, the breakup process is so-

phisticated to tune, especially due to first, the presence of satellite drops which leads to a

1
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(a)

(g)(f)(e)

(c)(b)

(h)

(i)

(d)

Figure 1.1 – (a) A spotted archerfish (Toxotes chatareus) spitting at a spider (taken
from https://www.warrenphotographic.co.uk). (b) Viscous honey falling from a spoon.
(Eggers & Villermaux, 2008) (c) Pele’s hair, with the hand lens as a scale (taken from
https://en.wikipedia.org). (d) Several jets of water falling from a shower head. (e) Drops
emerging from a bank of ink-jet nozzles. The drop heads are 50µm and the tails width is
less than 10µm (10 times thinner than a human hair) (Eggers & Villermaux, 2008) Credit:
Steve Hoath, Cambridge Engineering Department, Ink-jet Research Centre investigating the
performance of ink-jet printers. (f) Integrated circuits printed using ink jets. (g) Piezoelectric
drop-on-demand array printhead prototype. (h) Drug laden microspheres, 50µm in diameter,
produced using ink-jet technology. (i) Tip of a 500µm optical fibre bundle with active elements
printed at its tip ((f)-(i) taken from www.microfab.com).

bimodal size distribution and second, the fabrication limit of the nozzle geometry which

restricts the minimum drop size (Eggers & Villermaux, 2008). To overcome this limitation,

the nature of external forcing plays a vital role as has been seen in the presence of an electric

field (Basaran 2002; Wijshoff 2010; Basaran, Gao & Bhat 2013), thermal field or presence of

outer flow (Williams, 2006; Gumennik, Wei, Lestoquoy, Stolyarov, Jia, Rekemeyer, Smith, Liang,

Grena, Johnson et al., 2013), amplitude of initial perturbation (Pimbley & Lee 1977; Hilbing
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& Heister 1996), as well as the presence of higher harmonics (Eggers, 1997; Chaudhary &

Maxworthy, 1980; Xing, Boguslawski, Soucemarianadin, Atten & Attané, 1996; Barbet, Atten

& Soucemarianadin, 1997; Driessen, Sleutel, Dijksman, Jeurissen & Lohse, 2014). A small

modulation can thus, greatly impact the drop size distribution.

The subtle behaviour of these jets in presence of an external forcing motivates the clear

comprehension of the underlying flow dynamics. In particular, how the time independent

base flow looks like, the nature of forcing introduced, the response of the base flow in presence

of the applied forcing and most crucially the optimal control that can be imparted on these

flows using a selective forcing.

1.2 Linear stability theory

The classical linear stability analysis has proven to be a suitable tool to assess the stability

of the steady base flow in presence of small perturbations. Depending on the degree of non

parallelism of the base flow, the evolution of these infinitesimal perturbations is studied

using either a local or a global approach. In either case, based on the stability analysis, base

flows can be characterised as amplifiers (which are extremely sensitive to external noise) or

oscillators (which have a dominant intrinsic dynamics resulting in self-sustained oscillations).

A brief discussion of the local/global stability analysis methods and their respective domain of

applicability is discussed in the following sections.

1.2.1 Local stability analysis

In view of the subsequent discussions, we describe a flow q(y, z, t), the time independent

base state of which is given by qb(y, z). Here z and y are the streamwise and cross-stream

directions, respectively, and t denotes the time (note that for axisymmetric flows, y is replaced

by r -the radial co-ordinate). A parallel or a weakly nonparallel base flow is defined as one

in which the length scale over which the base flow varies in z is much larger than the length

scale of the local perturbation (Schmid & Henningson, 2001; Chomaz, 2005; Charru, 2011).

For parallel flows, qb is a function of y only. The local stability framework is suitable for such

base flows, wherein the space and time evolution of small perturbations can be analysed.

Applying an infinitesimal perturbation of magnitude ε¿ 1, the system of governing equations

are decomposed around the base flow as follows:

q(y, z, t ) = qb(y)+εq′(y, z, t ), (1.1)

where the perturbations are explored using the normal mode expansion of the form,

q′(y, z, t ) = q̃(y)e i (kz−ωt ), (1.2)

3
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consisting of a complex wavenumber k, frequencyω and eigenmode q̃. If the applied infinitesi-

mal perturbation decays to zero at infinite times, the flow returns to its base flow configuration

and is deemed as locally stable. For the unstable case, where the disturbances do not die, the

flow can be further characterised as absolutely unstable or convectively unstable depending

upon the competition between the local dynamics and the flow advection (Bers, 1975; Huerre

& Monkewitz, 1985).

Analytically, expanding the flow around the base flow, imposing the fluctuations in the form

(1.2) and extracting terms of the order of ε results in the formulation of the linearized equations

expressed as,

M [C ,k,ω]q̃(y) = 0, (1.3)

where M denotes the linear operator and C is any dimensionless control parameter defining

the flow (such as Reynolds, Ohnesorge, to name a few). The existence of a non trivial solution

to (1.3) requires the non-invertibility of M which constrains k and ω to satisfy the dispersion

relation

∆(ω,k,C ) = 0. (1.4)

The solution of the dispersion relation is solved by considering either k ∈ R or ω ∈ R, or

considering both as complex (k,ω) ∈C, which determines the stability of the base flow.

The selection of real k ∈R and complex ω ∈C, defines the so-called temporal stability analysis

which examines the temporal evolution of the perturbation in presence of a real spatial forcing.

However, defining k ∈C and ω ∈R refers to the spatial stability analysis where we look for the

spatial evolution of the perturbation in response to the real forcing frequency.

Contrary to the temporal stability analysis, the spatial analysis can be ill posed if we operate in

a regime where the flow is naturally unstable. In such cases, the domain of applicability for

the spatial stability analysis can be conveniently determined through the absolute/convective

stability analysis which considers both (k,ω) ∈C, a study referred to as the spatio-temporal

stability analysis.

Temporal stability analysis

In the temporal stability analysis the growth of fluctuations in time is analysed. In this frame-

work, the dispersion relation (1.4) is solved for complex ω ∈C and real k ∈R. For the modal

decomposition of the form e i (kz−ωt ), the growth rate of the perturbation is solely decided by

the (positive) imaginary part of ω. The flow is deemed as linearly unstable if the temporal

growth rate ωi > 0.

Absolute/convective stability analysis

In addition to ω ∈ C, if we now generalise k ∈ C the stability for parallel base flows can be

4
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(a) (b)

(c) (d)

Figure 1.2 – (a)-(b) Impulse response of two wavepackets. Both cases are unstable, but (a)
is absolutely unstable as the perturbation grows exponentially in the laboratory frame and
(b) is convectively unstable as the perturbation decreases with time while moving away from
the disturbance source (taken from Brun et al. (2015). (c) Dripping-related to the absolutely
unstable regime and (d) jetting-related to the convectively unstable regime, seen in co-flowing
jets (original figure modified from Utada et al. (2007)).

analysed in the spatio-temporal framework which includes the effect of advection speed of the

jet on its stability properties. In this framework, we define the impulse response of a system

to a localised perturbation which generates a wave packet growing in space and time. In the

laboratory framework, the spatio-temporal behaviour of the wave packet can be described

in terms of the complex absolute wave number k0 and the corresponding complex absolute

frequency ω0 =ω(k0). The complex pair (k0,ω0) is defined using the saddle point condition

also called the Briggs-Bers zero-group velocity criterion, together with the dispersion relation

dω

dk
(ω0,k0) = 0, ∆(ω0,k0,C ) = 0. (1.5)

The temporal evolution of the wave packet is then conveniently determined through the

imaginary part ω0,i . For ω0,i > 0 the system is absolutely unstable since the disturbance grows

fast enough to invade entire domain in the laboratory frame without having sufficient time to

travel downstream, as shown in figure 1.2(a). The coflowing jet (figure 1.2(c)) in the dripping

regime is an example of an absolutely unstable system, where the imposed perturbations

magnify instantaneously initiating a breakup close to the nozzle.

However, for ω0,i < 0 the system is convectively unstable as the localised perturbations are

allowed to convect downstream before they grow in the laboratory framework as shown in

figure 1.2(b). The presence of high flow advection forces the applied disturbance to travel

downstream as it continuously grows in space. The advantage of the convectively unstable

flows is that the base flow, close to the localised impulse, returns to its innate features once

the perturbation has travelled downstream. Examples can be seen in coflow jets (figure 1.2(d))

5
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(a) (b)

(c) (d)

Figure 1.3 – (a) The flow around a cylinder at Re = 140 (figure modified from Van Dyke 1982)
representing an oscillator flow. (b) An example of amplifier flow-the turbulent jet (figure
modified from Van Dyke 1982). (c) Power spectral density function extracted from a signal in
the cylinder wake, which shows a clear peak in the frequency selection (obtained from Pier
2002). (d) Power spectral density function extracted from a signal in a turbulent jet in presence
of external noise, which shows a larger response for a preferred region of noise (obtained from
Barré et al. 2006).

in the jetting regime, where the initial perturbation travels downstream while amplifying and

finally breaking up into drops.

The local convectively unstable flows, for example a turbulent jet (figure 1.3(b)), display

inherently extrinsic dynamics and are considered as noise amplifiers, naturally amplifying

any enforced perturbation (Chomaz, 2005; Schmid, 2007). They are seen to have a preferred

selection for frequency in presence of an external forcing (figure 1.3(d)). Hence the spatial

evolution of such flows is greatly influenced by the nature of the forcing (frequency, amplitude

to name a few), which can be tailored to meet specific downstream flow characteristics.

In comparison, the local absolutely unstable flows, referred as oscillators, display intrinsic dy-

namics and develop self-sustained oscillations (figure 1.3(a)) with a clear peak in the frequency

spectrum (figure 1.3(c)). This behaviour is in contrast to the amplifiers which in absence of

an external forcing, present a broadband frequency spectrum without any specific frequency

selection (Nichols & Lele, 2010). However, in presence of the external noise, the flow is seen to

amplify strongly in a specific frequency band (Huerre & Monkewitz, 1985; Chomaz, Huerre

& Redekopp, 1988; Chomaz, 2005). The choice of a self-excited frequency in the absolute

regime, and its absence in the convective regime was also clearly demonstrated by Sevilla &

Martinez-Bazan (2004), in which the authors analysed the vortex shedding in high Reynolds

number bluff-body wakes.

6



1.2. Linear stability theory

Spatial stability analysis

In the spatial stability analysis, the perturbations are expanded for k ∈C and ω ∈R. Thus the

spatial problem is equivalent to the signalling problem, in which the growth in space of the

response to a sustained harmonically pulsating source at frequency ω is considered. Indeed

performing the spatial stability analysis in such a framework is ill posed for absolutely unstable

base flows which have their own intrinsic dynamics. Thus the spatio-temporal analysis serves

as a foundation, segregating flows which are convectively unstable, and hence suitable for the

spatial analysis.

Following the modal expansion (1.2), the response at a real frequency ω, is expressed as

q′(y, z, t ) = q̂(y)exp
[

i
(
k(ω)z −ωt

)]
, (1.6)

where k ∈C,ω ∈R. Hence the growth rate of the perturbations propagating downstream (in

the positive z direction) is solely determined by −ki . The base flow is deemed unstable to

external perturbations for ki < 0.

However, if the base flow becomes weakly nonparallel, the exact spatial response cannot be

captured using (1.6), since the weak non parallelism of the base flow induces the wavenumber

k to be a function of z as well. The spatial response to external forcing of such weakly non

parallel base flows can then be determined in the weakly non parallel framework (WKBJ) as

discussed in the next section.

Spatial stability analysis for weakly non parallel flows

If the base flow is not parallel but rather varies spatially in the streamwise direction, its non

parallelism can be quantified using the streamwise evolution of the local length scale δ(z) of

the spatially varying flow parameters, for example the velocity, vorticity or the interface for

free surface flows. Then the degree of spatial variation can be expressed through η= dδ/d z.

For η¿ 1, the base flow changes slowly along a gradually varying scale Z = ηz, and at each

location in Z , the flow can be approximated as parallel. In this framework, the spatial stability

(for convectively unstable flows) of the weakly nonparallel base flow can be studied using the

WKBJ formalism introduced by Bender & Orszag (1978), Gaster, Kit & Wygnanski (1985) and

Huerre & Rossi (1998).

In this formalism, the base state and the global response to an external perturbation is ex-

pressed as a function of the slowly varying variable Z as follows:

q′(y, Z , t ) = q̄(y, Z )exp
[

i
( 1

η

∫ Z

0
k(Z ′,ω)d Z ′−ωt

)]
, (1.7)

where the local eigenfunction q̄ is further decomposed using the amplitude function A(Z ),

q̄(y, Z ) ∼ A(Z )q̂(1)(y ; Z )+ηq̂(2)(y ; Z )+·· · . (1.8)

7
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Here k(Z ,ω) is the local complex wavenumber obtained as a solution of the dispersion relation

for a given ω and q̂(y ; Z ) its associated eigenfunction. In addition, A(Z ) designates the

envelope function smoothly connecting the slices of parallel spatial analyses. A methodic

asymptotic expansion followed by the implementation of a compatibility condition finally

leads to the solution of the A(Z ), which results in,

q′(y, z, t ) ∼ A(ηz)q̂(1)(y ; z)exp

(∫ z

0
−ki (z)′dz ′)

)
exp

[
i

(∫ z

0
kr (z ′)dz ′−ωt

)]
. (1.9)

Thus the response at a location z can be captured accurately by (i) including the integral of

the spatial growth rate up to z and (ii) bridging the response at every z using the amplitude

solution.

However, if the degree of spatial variation η≥ 1, the base flow stability can only be investigated

in the global framework, which is discussed in the following section.

1.2.2 Global stability analysis

If the degree of non parallelism η is not negligible, the stability of the base flow can be suitably

analysed using a global framework. The global stability of the base flow depends on the global

interactions of the local flows. For example, a local convectively unstable flow can be globally

stable since the perturbations are convected far downstream. Unlike the local analysis, since

the base flow at the boundaries have to meet certain boundary conditions, or simply since it

varies in the streamwise direction, the perturbations are no longer expressed through a Fourier

transform in the streamwise direction. The base flow is a function of the streamwise direction

z and the perturbed solutions are expanded using the form q′(y, z, t ) = q̄(y, z)e−iωt . Thus the

variation in z completely enters through the eigenfunction q̄. Based on the temporal growth

rate, the base flow is defined as stable for ωi < 0 and unstable for ωi > 0.

The globally stable flows, such as a jet flow (Crow & Champagne, 1971) or the flow across

a two-dimensional backward facing step (up to Re ∼ 1500), behave as amplifiers, posing a

high sensitivity to external forcing (Chomaz, 2005; Schmid, 2007). In contrast, a globally

unstable flow, like the flow behind a cylinder behaves as an oscillator, characterized by a large

enough region of absolute instability and developing self-sustained oscillations. To express

the stability of such flows analytically, the linearized governing equations are reformulated as

an eigenvalue problem of the form:

∂q′

∂t
=L q′ or − iωq̄ =L q̄, (1.10)

whose eigenvalues and eigenfunction express the long term behaviour of the base flow. The

linear operator L contains the information of the linear dynamics. The eigenvalue analysis

results in a dominant eigenvalue ω, whose imaginary part ωi governs the growth rate of the

perturbation, and the eigenfunction q̄(y, z) which describes the structure of the perturbation.

8
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For the unstable flow, the self sustaining oscillating frequency can be expressed through ωr .

However, the eigenvalue analysis fails to predict the nature of response for stable amplifier

flows, which shows a stable spectrum with no unstable eigenvalue. The amplifying potential

of such flows in presence of an external forcing can be adequately studied using a global

resolvent analysis.

The resolvent analysis is applicable only for globally stable flows where the external distur-

bances are not dominated by the intrinsic instability of the base flow. For a stable L , the

method is implemented by introducing the forcing function f(y, z)e−iωt in the linearized

governing equations as follows:

∂q′

∂t
=L q′+ f(y, z)e−iωt . (1.11)

Assuming that the forcing function of frequency ω will yield a response characterized by

the same frequency (which holds true for linear stable systems once the transient has faded

out and the permanent regime has been reached) leads to further simplification of (1.11).

Introducing the resolvent operator R = (iωI+L )−1, where I is the identity matrix, the response

of the base flow in presence of the external forcing can be expressed as,

q̄(y, z,ω) =R(ω)f(y, z). (1.12)

Thus for a given forcing function whose structure is defined by f(y, z), the resolvent operator is

equivalent to a transfer function, formulating the final output of a flow based on this forcing

function and a given input frequency. The resolvent analysis is especially applied with the

aim of finding the optimal forcing structure which leads to the most amplified response. The

optimal forcing and the related response structure are obtained through a singular value

decomposition of the resolvent operator, as described in detail in Farrell & Ioannou (1996),

Schmid (2007) and Garnaud, Lesshafft, Schmid & Huerre (2013) among others.

1.2.3 Link between local and global stability analysis

The degree of spatial variation of the base flow determines the framework for analysing the

flow stability, wherein a local analysis is sufficient for parallel flows (Huerre & Monkewitz,

1990) and the global framework is convenient for the streamwise varying flow (Chomaz, 2005).

However, understanding the link between the two approaches is thought-provoking.

The local stability analysis can be bridged with the global analysis through the outcome of

the saddle point condition, which marks the local transition from an absolutely unstable

flow to a convectively unstable flow. Usually a flow which is local convectively unstable can

be considered globally stable as the local perturbations may travel downstream, returning

the base flow to stable condition. However, a prerequisite for a globally unstable flow is the

existence of local absolute instability in a sufficient large portion of the global domain.

9
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Figure 1.4 – Figure obtained from Augello et al. (2018) which shows the unstable global spec-
trum (ωi > 0) for a coflowing jet in an injector device. The red dots (•) are the solution of the
global stability analysis, while the green star (∗) the saddle point of the corrected dispersion
relation which includes the flattening terms.

For the globally unstable flows, usually the dominant global frequency is coherent with the

absolute local frequency ω0,r obtained by applying the Briggs-Bers zero-group velocity on the

local dispersion relation at the most absolutely unstable streamwise station. More precisely

the dispersion relation has to be plunged into the the complex z domain where an additional

saddle point condition has to be applied (Chomaz et al., 1988; Huerre & Rossi, 1998). However,

such complex z plane analyses can only be applied to quasi-parallel flows in the purely linear

regime, and both base-flow non-parallelism and disturbance nonlinearity cannot be described

within this framework (Chomaz, 2005).

In this direction, Hammond & Redekopp (1997) performed numerically the stability analysis

for the flow across a bluff body for a given inflow condition. The resulting flow which was

globally unstable developed a vortex shedding state at a global frequency of 0.1. They found

that the structure of the global instability modes of a streamwise independent parallel base

flow were equivalent to its local absolute instability modes. The global modes were obtained

by introducing necessary boundary conditions whereas the absolute modes were attained

through the dispersion relation. Moreover, the saddle point condition of the local theory

predicted a frequency selection of 0.1006, quite comparable to the unstable global frequency.

Similar conclusions were drawn by Heaton, Nichols & Schmid (2009), who applied the local-

global theory for the wake across a blunt-edged plate.

Augello, Fani & Gallaire (2018) presented an identical analysis on a one-dimensional system

of coflowing viscous jets in an injector device. They investigated the unstable global modes

(obtained by imposing the Dirichlet boundary conditions both at inlet and outlet), for a z

independent system (see figure 1.4). In the limit of an infinite streamwise extension of the

domain, they found that the absolute mode (obtained from the local analysis and represented

through green star (∗)) does indeed mark a point from which the sequence of global modes

(represented through red dots (•)) emerges. In addition to the growth rate, the most amplified

global mode frequency obtained for the infinite domain, was equivalent to the absolute

frequency obtained from the saddle point condition.

10
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Unlike the globally unstable flows, the stable flows require a different approach to relate it

to the local analysis. The frequency selection seen for globally stable flows can be analysed

through a resolvent analysis wherein the optimal frequency resulting in the most amplified

response can be obtained. To consider a similar response to external forcing, the local spatial

analysis (for parallel flows) or the WKBJ formalism (for the weakly non parallel flows) can be

applied wherein the dispersion relation is solved for a given realω to obtain the complex k. The

response due to a given frequency can then be quantified through the spatial growth rate (−ki ).

In this direction, Viola, Arratia & Gallaire (2016) studied the response of model trailing vortices

subjected to a harmonic forcing. The frequency-selection mechanism was shown to be directly

connected to the local stability properties of the flow, and was simultaneously investigated

by a WKBJ approximation in the framework of weakly non-parallel flows and by the global

resolvent approach. As shown in figure 1.5 they found an excellent agreement between the

two approaches in predicting the overall response amplitude as well as the optimal forcing

producing the most amplified flow.

Figure 1.5 – Figure extracted from Viola et al. (2016). The plot shows the global gains of the
responses excited by forcing at the inlet with the local direct mode. The solid black lines show
the results of WKBJ analysis; the dashed lines correspond to the gains obtained by imposing
unitary amplitude. The results obtained through a global resolvent are shown with circles.

1.3 Amplifier flows studied in this thesis

Globally stable or local convectively unstable base flows, commonly known as amplifier flows,

have gathered a lot of interest owing to their unique flow features. Such flows do not have

any intrinsic dynamics as the perturbations travel downstream without invading the entire

domain, yet in the presence of an external forcing, they exhibit large amplification for a

preferred frequency range; a feature often exploited for practical applications. Moving in this

direction, in the following sections we will do a brief overview of the two canonical examples

of amplifier flows studied in this thesis, (i ) the flow inside a backward facing step and (ii) the

capillary jet.
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1.3.1 Backward facing step

The flow inside a backward facing step (BFS) (as shown in figure 1.6(a)) is a classical example

of noise amplifiers that has been extensively studied theoretically, experimentally and nu-

merically due to its simple geometry, and fundamentally owing to its representation of the

flow seen in several industrial applications, such as airfoils at large attack angle, flows inside

combustors, flows around buildings, industrial ducts and in the cooling of electronic devices,

to name a few. The BFS is a prototype of such applications since it incorporates all the three

major flow features seen in these devices- the flow separation, recirculation and reattachment

- which can drastically alter the device performance.

Theoretically, the large amplification potential of the BFS can be captured by optimal transient

growth analysis, optimal harmonic forcing or by evaluating the response to persisting noise

on the globally stable base flow. The two dimensional (2D) BFS shows stables modes up

to Re ∼ 1500 whereas for the 3D BFS (with an expansion ratio of 0.5), the first unstable

modes start appearing at Re ≈ 750 (Barkley, Gomes & Henderson, 2002; Lanzerstorfer &

Kuhlmann, 2012). For the stable flows within this threshold (Re = 500), Blackburn, Barkley &

Sherwin (2008) analysed the instabilities in the convective regime by computing the optimal

transient growth and by performing direct numerical simulations for white-noise inlet velocity

fluctuations. They concluded that the numerically obtained results showing the presence of 2D

wave packets were related to the optimal disturbances found in the transient growth analysis.

Extensive literature also exists about the calculation of gain due to harmonic forcing ( Åkervik,

Ehrenstein, Gallaire & Henningson, 2008 for a flat plate boundary layer, and Alizard, Cherubini

& Robinet, 2009; Marquet & Sipp, 2010; Dergham, Sipp & Robinet, 2013; Garnaud et al., 2013;

Sipp & Marquet, 2013). Marquet & Sipp (2010) computed the optimal harmonic forcing for a

Figure 1.6 – (a) Profiles of streamwise velocity for Re = 500 at different sections along x and (b)
spatial growth rates from local stability analysis at the corresponding sections in x. The figure
has been taken from Boujo & Gallaire (2015).
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1.3. Amplifier flows studied in this thesis

Figure 1.7 – Local stability analysis for Re = 500 (a) Streamwise evolution of the spatial growth
rate at different frequencies. (b) Region of instability (shaded area) with the maximum insta-
bility region at ω = 0.5. (c) Integral amplification factor (solid line) from local analysis and
optimal harmonic gain from global analysis. The figure has been extracted from Boujo &
Gallaire (2015).

2D BFS at Re = 500 and expansion ratio 0.5, and concluded that the most amplified frequency

fs = 0.075 and the corresponding response structure was inline with the results of Blackburn

et al. (2008).

Applying a similar framework, Boujo & Gallaire (2015) analysed the flow response globally/lo-

cally in a backward facing step at Re = 500, for both inlet/volume-small amplitude harmonic

forcing. The optimal global forcing frequency was close to 0.5. Assuming the flow to be locally

quasi-parallel, they then applied the local spatial theory, at each streamwise location in x as

shown in figure 1.6(a). They found that the spatial growth rate −ki had a decreasing trend

moving downstream in x but had a non monotonic behaviour at certain frequencies (see

figure 1.6(b)). Conversely plotting the growth rate as function of the streamwise direction

for different frequencies (as shown in figure 1.7(a)), they found a local maximum between

x = 9 and 11. Since the perturbations grow spatially only as long as −ki > 0, and then decay,

the resulting amplification factor g (ω) in the flow was obtained by integrating all the spatial

growth rate −ki in the entire domain for each ω as:

g (ω) = exp

(∫
−ki (x,ω)d x

)
. (1.13)

Plotting the region of instability (figure 1.7(b)) or conversely the total gain Gi n,1 = ‖R‖ with

inlet forcing (figure 1.7(c)) as a function of the forcing frequency concluded that the optimal

frequency from the local analysis was in good agreement to the global optimal harmonic gain.
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For practical purposes it makes sense to design control strategies which can for example

enhance mixing, or reduce the aerodynamic drag and vibration. This requires studying the

sensitivity of the amplification mechanisms to small flow modifications. The sensitivity analy-

sis, built on the framework of adjoint based methods, provides maps of sensitivity showing

regions where a chosen quantity is the most affected by small-amplitude flow modifications.

This analysis allows a systematic control design without employing time expensive parametric

studies or without computing the actual flow.

In this context, as discussed in Boujo & Gallaire (2015), similar technique was applied to

study the variation in eigenvalue with respect to flow modification and to steady control to

obtain maps of sensitivity for the vortex shedding behind a cylinder (Hill, 1992). Later, similar

methods were also applied by Bottaro, Corbett & Luchini (2003); Marquet, Sipp & Jacquin

(2008); Meliga, Sipp & Chomaz (2010). An expression of sensitivity of the optimal harmonic

gain due to a given flow modification and steady control was investigated by Brandt, Sipp,

Pralits & Marquet (2011) for Tollmien-Schlichting and lift-up instability mechanisms. More

recently, Boujo, Ehrenstein & Gallaire (2013), using similar methods, computed the sensitivity

maps for a flow past a wall-mounted bump. Their analysis revealed that the sensitivity to

volume control was dependent on the frequency. The sensitivity method was extended

by the same authors for a 2D incompressible flow past a BFS (Boujo & Gallaire, 2015), by

computing the sensitivity amplification for a flow subjected to stochastic forcing rather than

harmonic forcing. Second, to represent more realistic situations, they derived the expression

for sensitivity amplification when the flow is forced at the inlet rather than in the entire

domain.

1.3.2 Capillary jets

Capillary jets, another typical example of amplifier flows, have been studied for almost two cen-

turies owing to their easily observable behaviour. Unlike the BFS, where the downstream flow

is allowed to evolve within the confined walls, the downstream amplification of perturbations

along the free interface jets leads to their breakup into drops.

Commonly referred to as the Rayleigh-Plateau instability, the break up of liquid jets into

drops was historically first analysed by Savart (1833), who concluded that the most unstable

wavelength was almost 10 times the thread radius. For the qualitative observation, Savart

developed a stroboscopic technique which led to the production of images as shown in figure

1.8. Later the experimental work of Plateau (1873) and the theoretical contribution of Rayleigh

(1879), concluded that the physical mechanism leading to the jet breakup resulted from the

dominance of surface tension forces over the viscous and inertial forces. Based on a static

energy analysis of the liquid thread they found the criteria for the cut-off wavenumber. Addi-

tionally the most unstable wavelength, found by studying the jet dynamics, was impressively

similar to Savart’s observation.

However, it was noted that the existence of the jetting regime shown in figure 1.8, which is
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1.3. Amplifier flows studied in this thesis

Figure 1.8 – A figure from Savart (1833) showing the breakup of a liquid jet 6 mm in diameter.
One can clearly notice the successive oscillations of the drops as well as the presence of small
satellite drops in between the main drops.

characterized by a considerably long liquid filament, was linked to the fluid properties and

the imposed flow rate (Clanet & Lasheras, 1999; Ambravaneswaran, Subramani, Phillips &

Basaran, 2004). Applying a very low flow rate resulted into a dripping regime (figure 1.9(a)),

wherein the breakup would be initiated close to the nozzle. As the flow rate was progressively

increased the jet would enter the dripping faucet regime (figure 1.9(b)) in which irregular sized

drops at varying locations were formed. Increasing the flow rate further would finally result

into the transition to the jetting regime (figure 1.9(c)).

Figure 1.9 – The three regimes (a) dripping (b) dripping faucet (c) jetting observed as the inflow
velocity is progressively increased. Figure obtained from Clanet & Lasheras (1999).

Theoretically, the evolution of the jet from the dripping to the jetting regimes marks the

transition from an absolutely unstable to a convectively unstable flow. Leib & Goldstein

(1986) found that there exists a critical flow rate below which the jet is absolutely unstable

thus making it an ill posed problem for spatial analysis. In the convectively unstable regime,

where the jet behaves as an amplifier flow, solving the dispersion relation in the framework of

local stability analysis results in the most dominant wavenumber (Rayleigh mode) with the

largest temporal growth rate. Successive experiments performed by Rutland & Jameson (1971)

and more recently by González & García (2009) were consistent with the theory, where one

could clearly see that the wavenumber imposing the quickest breakup of the jet was in close

approximation of the Rayleigh mode (see figure 1.10).
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Figure 1.10 – Photographs of decaying jet for three different frequencies of excitation. From
top to bottom the wavenumber of excitation is k = 0.075, 0.25 and 0.068. The bottom picture
corresponds to a forcing which is close to the Rayleigh mode. Figure extracted from Rutland &
Jameson (1971).

However, the local stability framework convenient for parallel jets cannot be directly applied

for spatially varying jets. The jet flow depicted in figure 1.11 is an example of a gravitationally

stretched viscous jet in the jetting regime. The stability of a spatially varying jet should ideally

be examined using the global stability analysis and by including the non-parallel effects of the

base flow. On this subject, Sauter & Buggisch (2005) approached the problem theoretically by

defining a linear global mode that correlated with the self sustained oscillations of the falling

jet, observed during the jetting (globally stable) to dripping (globally unstable) transition.

The work of Sauter & Buggisch (2005) was extended by Rubio-Rubio, Sevilla & Gordillo (2013)

experimentally and theoretically by increasing the range of liquid viscosities and nozzle

diameters. They performed the global stability analysis of such spatially varying jets and

confirmed through experiments that the globally observed unstable-stable transition was

related to the changeover from the dripping to jetting regime. Moreover the experimentally

observed dripping frequency was found to be in good agreement with the most unstable

global frequency obtained from the linear analysis.

Figure 1.11 – Globally stable jet of silicone oil of viscosity 50 cSt, injected vertically downwards
through a nozzle of radius 2.5 mm at a constant flow rate of 7ml min−1. Figure obtained from
Rubio-Rubio et al. (2013).

In relation to the spatially varying stable base flow, more recently, Le Dizès & Villermaux (2017)

determined theoretically the jet response in presence of the most amplifying forcing frequency.

Their analysis accounted for both the base state deformation and modification of local insta-

bility dispersion relation as the jet thins in the direction of gravity. Notably, extending the work

of previous authors (Tomotika, 1936; Frankel & Weihs, 1985; Leib & Goldstein, 1986; Frankel &
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1.3. Amplifier flows studied in this thesis

Weihs, 1987; Senchenko & Bohr, 2005; Sauter & Buggisch, 2005; Javadi et al., 2013) they used

the local plane wave decomposition (WKBJ approximation) for their analysis. However, the

gain resulting from a perturbation was computed by considering only the exponential (e)

terms of the WKBJ approximation.

Because of their amplifying nature, the local convectively stable or the globally stable jets have

varied practical applications. Since any applied forcing is intensified downstream resulting in

the production of drops, the different controls for drop formation has drawn extensive interest.

Hilbing & Heister (1996) had performed numerical simulations for very high speed jets to

analyse the nonlinear evolution of the jet resulting into the formation of drops, for different

forcing conditions. They found that increasing the magnitude of the forcing perturbation

decreased the breakup length and changed the shape of the droplet. Notably, for very high

amplitudes, the drops were seen to form a “squashed” shape due to the high velocity fluid

encountering lower velocity fluid which has already exited the nozzle. Known as the “Klystron”

effect, this phenomenon has been documented qualitatively by numerous researchers for very

large forcing amplitudes (Dunne & Cassen, 1956; Harrje & Reardon, 1972; Meier, Klöpper &

Grabitz, 1992).
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Figure 1.12 – Effect of inflow velocity disturbance magnitude at W e = 100 and k = 0.07 for
three different forcing amplitudes (a)6%, (b)4% and (c)2% showing the jet profile before a
main and a satellite drop are released. Figure has been obtained from Hilbing & Heister (1996).

Apart from the conventional methods for controlling the drops size; for example applying

forcing characterized by a combination of frequencies, presence of an outer flow, electric and

magnetic field as discussed in Section 1.1; the existence of a thermal field has also turned out

to play a vital role on drop size control. In this regard, the Rayleigh plateau instability has

been applied in the field of solid structures, where millimetre to nanometer-sized spherical

particles are produced either by thermal drawing of a solid rod (Kaufman, Tao, Shabahang,

Banaei, Deng, Liang, Johnson, Fink & Abouraddy, 2012) or by application of a localised flame.

Gumennik et al. (2013) performed experiments in which a silicone-in-silica rod was fed at

a constant feed speed V f into a region of localized flame, thus melting the rod locally and

allowing its breakup into drops which where later cooled down to obtain solid spheres (see

figure 1.13(a)). They found a clear relationship between the sphere size and the feed velocity

where the size of the sphere was seen to increase with increasing feed speed (see figure 1.13(b)-
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(c)). Thus it can serve as a very convenient process parameter for adjusting the desired particle

size, as opposed to tuning the temperature and/or material properties.

Figure 1.13 – (a) Schematics of the gradual liquefaction technique for producing silicone-in-
silica jets. Drops formed in a 4µm silicone core fibre (scale bar 200 µm) at (b) high feed speed
(90 µm/s) and (c) low feed speed (2µm/s). Images have been taken from Gumennik et al.
(2013).

1.4 Droplet motion in confined microfluidic channels

Several microfluidic techniques serve as qualified tools for research in pharmaceuticals,

biotechnology, material engineering, food science and cosmetic industry, to name a few

(Stone, Stroock & Ajdari, 2004; Weibel, DiLuzio & Whitesides, 2007; Seemann, Brinkmann,

Pfohl & Herminghaus, 2011).

The microfluidic methods involve the controlled production of droplets and have become a

reliable alternative to other classical bulk emulsification methods for generation of monodis-

perse droplets. Owing to the existing control techniques, liquid jets have emerged as a vital

mode for the production of such monodisperse and uniform drops. Thus one of the primary

aspects of this field is to understand the formation of droplets and liquid threads, which excep-

tionally depend on the jet flow rate, fluid properties (see figure 1.14) and the device geometry

(Baroud, Gallaire & Dangla, 2010; Christopher & Anna, 2007). For the co-axial injectors (figure

1.2(c-d)), a firm link could be established between the absolute/convective properties of the

flow and the dripping or jetting nature of the jet (Utada, Lorenceau, Link, Kaplan, Stone &

Weitz, 2005; Utada et al., 2007; Guillot, Colin, Utada & Ajdari, 2007).

In most of the cases, after formation, the droplets flow inside microchannels with round

or square cross-sections where the motion of the drop is predominantly one-dimensional.

However, the presence of rectangular microchannels, with a large width-to-height aspect

ratio, allows for 2D manipulations of the drops, thus reducing by far the structural complexity

of such devices. When the drops are confined only by the upper and lower plates, as in the

case of a Hele-Shaw cell, they acquire a ‘pancake’-like shape and are surrounded by a thin

film of outer liquid (see figure 1.15(a)). Their motion can be controlled through varying fluid

properties or the confinement between the plates. However, one of most fundamental factors

needed for the efficient design of such devices is the accurate prediction of the drop velocity
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Figure 1.14 – (a) Threading (b) jetting and (c) dripping regime formed in a microfluidic device
due to variation in coflow velocity ratio and the viscosity ratio. Modified image obtained from
Cubaud & Mason (2008).

which is coupled to the magnitude of the lubricating film thickness around the drop.

The pioneering work, initiated for a long bubble translating inside a straight cylindrical tube

(Taylor, 1961; Bretherton, 1961) showed the dependence of the bubble velocity on the film

thickness at very low Capillary numbers (C a < 10−3). Contrary to this, a flattened bubble/drop

moving in the Hele-Shaw cell requires further exploration. In this direction, several works

have been recently conducted to investigate the dynamics of a pressure-driven Hele-Shaw

droplet (Huerre, Theodoly, Leshansky, Valignat, Cantat & Jullien, 2015; Reichert, Huerre,

Theodoly, Valignat, Cantat & Jullien, 2018) who studied the shape and velocity of such drops

and observed the so-called “catamaran” droplet shape as shown in figure 1.15(b-c). Such

peculiar interfacial profile was also confirmed through numerical simulations performed by

Ling, Fullana, Popinet & Josserand, 2016; Zhu & Gallaire, 2016. Recently, Keiser, Jaafar, Bico &

Reyssat (2018) conducted experiments to study a sedimenting Hele-Shaw droplet, focusing on

its velocity as a function of confinement, viscosity contrast and the lubrication capacity of the

carrier phase.

Figure 1.15 – Modified image obtained from Reichert et al. (2018). (a) Side view of the droplet
in its frame of reference moving in a Hele-Shaw cell. The grey region marks the domain where
the film thickness is obtained. (b) Numerical topography of the film thickness obtained for
C a = 7.2×10−4 highlighting the catamaran-like shape. (c) Colormap of the film thickness in
x-y plane for the same Capillary number.

19



Chapter 1. Introduction

1.5 Thesis outline

This thesis (funded by FNS project number 200021-159957) mainly involves the study of the

free surface jets characterized as amplifiers. On account of being a canonical example of

amplifier flow, the BFS is considered as a stepping tool to explore the amplification poten-

tial of such systems. Next in the framework of linear stability analysis, the viscous jet and

gravitationally stretched jet are discussed using one-dimensional (1D) lubrication equation.

Further, we present the numerical results performed on the modified 1D equations especially

formulated for the specific case of silicone-in-silica jets (Gumennik et al., 2013). Finally, the

experimental results of the film thickness distribution around a drop, moving due to bouyancy

in a Hele-Shaw cell are presented.

Chapter 2 discusses the flow over a 3D BFS, especially with the aim of exploiting its amplifica-

tion potential to design control strategies, such that the smallest required control amplitude is

capable of influencing the flow features. The optimal control is designed first using steady

spanwise-periodic perturbations. In the second part, we show how the presence of the most

amplified forcing can result in ‘vaccination’ of the stochastic disturbances present in such

flows. This work was done jointly with E. Boujo and E. Yim, who developed the theory. I.

Shukla ran and interpreted the 3D simulations.

Chapter 3 introduces the 1D Eggers & Dupont equations (Eggers & Dupont, 1994). The

simplified lubrication equation is then used in the local stability framework to perform the

stability analysis of parallel viscous jets. Further, the linear results are compared to nonlinear

simulations based on the same 1D equations.

Chapter 4 investigates the stability in the framework of spatially varying jets under the in-

fluence of gravity which behave as amplifiers in the globally stable regime. Precisely, we

explore the receptivity of the jet to external perturbations in this regime, through nonlinear

simulations and resolvent analysis with the aim of finding the optimal forcing which results

in the most amplified disturbance. This chapter also analyses the jet response using the

WKBJ approximation. Finally the response of the jet in presence of stochastic disturbances is

discussed.

Chapter 5 tries to rationalize the particle size observed in the experiments of Gumennik et al.

(2013) as well as its dependency on the feed speed. A simple 1D nonlinear governing equation

for the motion of the silicon-silica interface, using long-wavelength approximations that have

proven very accurate in the study of liquid jets (Eggers & Villermaux, 2008), is used for the

analysis. Due to the failure of the linear stability analysis in such a system, we resort to a

nonlinear stability analysis through numerical simulations of the reduced nonlinear governing

equations, which recover, without any adjustable parameters, the relationship between sphere

size and feed speed. This work was performed in collaboration with P.T. Brun at the very origin

of the study and S. Mowlavi who has established the theoretical foundations of the equations

and performed the stability analysis, together with I. Shukla, who has developed the numerical

model and performed the nonlinear numerical simulations.
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Chapter 6 presents the experimental results of the shape, velocity and lubrication film thick-

ness distribution of a droplet rising in a vertical Hele-Shaw cell. The droplet is surrounded

by a stationary immiscible fluid and moves purely due to buoyancy. A low density difference

between the two mediums helps to operate in a relatively low capillary number regime. The

droplet is shown to exhibit the “catamaran” shape. This study was performed in collaboration

with two former post-docs at LFMI, N. Kofman who helped setting up the experiments and L.

Zhu who ran the 3D simulation. G. Balestra also helped for the theory. I. Shukla has led the

entire study, done all measurements and worked on the interpretations.

Finally in Chapter 7 we present a short conclusion and some future perspectives.
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2.1 Introduction

The flow over a backward facing step (BFS) is a quintessential example of a noise amplifier flow.

Any small perturbation initially applied either decays in time or is progressively convected

downstream of the perturbation source, letting the flow eventually return to its base flow

configuration. In terms of global linear stability properties, the BFS flow for an expansion

ratio of 2 was found globally stable to two-dimensional (2D) perturbations regardless of

the Reynolds number. In contrast, three-dimensional (3D) perturbations periodic in the

spanwise direction first become statically unstable, for Re ≥ 748 (Barkley et al., 2002), where
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the Reynolds number is defined with the maximum incoming velocity Ui n , the kinematic

viscosity ν and the step height h. Despite their asymptotic decay, 2D perturbations can

undergo large amplification in space and time due to non-normal effects (Marquet & Sipp,

2010), in accordance with the locally convectively unstable nature of the flow Boujo, Fani &

Gallaire (2015).

From a practical point of view, the flow over a BFS is of importance since it serves as a prototype

of several non-parallel flows in complex geometries as in airfoils, cavities and diffusers, to

name a few. The BFS geometry facilitates the study of both the flow separation and the flow

reattachment, thus incorporating the two most dominant features of separated flows. While

several techniques based on a practical approach exist for flow control in such geometries,

the application of the theory of optimal flow control to separated flows has only started quite

recently.

Among the empirical flow control approaches, the use of spanwise-periodic structures is

particularly promising. In the context of flow separation, Pujals, Depardon & Cossu (2011)

have demonstrated that using arrays of suitably shaped cylindrical roughness elements, streaks

can be artificially forced on the roof of a generic car model, the so-called Ahmed body, which

suppress the separation around the rear-end. More generally, spanwise wavy modulations

have been recognized, mainly through an iterative trial and error method, as an efficient

method of control in several flow configurations: for flows past bluff bodies to regulate vortex

shedding (Tanner, 1972; Zdravkovich, 1981; Tombazis & Bearman, 1997; Bearman & Owen,

1998; Choi, Jeon & Kim, 2008), for circular cylinders (Ahmed & Bays-Muchmore, 1992; Ahmed,

Khan & Bays-Muchmore, 1993; Lee & Nguyen, 2007; Lam & Lin, 2008; Zhang, Katsuchi, Zhou,

Yamada & Han, 2016), for rectangular cylinders (Lam, Lin, Zou & Liu, 2012) and in airfoils (Lin,

Lam, Zou & Liu, 2013; Serson, Meneghini & Sherwin, 2017), to name a few.

The effectiveness of steady spanwise waviness to control nominally two-dimensional flows

has been rationalized through the generalization of sensitivity analysis (Hill, 1992; Marquet

et al., 2008) to second order. In the case of spanwise-periodic control of 2D flows, the linear

sensitivity indeed vanishes at first order and the leading-order variation eventually depends

quadratically on the 3D control amplitude (Hinch, 1991; Cossu, 2014; Boujo et al., 2015).

This dependence has been already established through the works of Hwang, Kim & Choi

(2013); Del Guercio, Cossu & Pujals (2014a,b,c) and Tammisola, Giannetti, Citro & Juniper

(2014). The control effectiveness relies on two main features: the linear amplification po-

tential of spanwise-periodic disturbances through amplification mechanisms like the lift-up

mechanism, and the quadratic sensitivity of the flow on the resulting flow modifications.

In this study, we use the reattachment length as proxy for the noise amplifying potential of

the separated flow in conjunction with a quadratic sensitivity analysis. The significance of

the reattachment location as an indicator of the flow stability has already been substantiated

through the works of Sinha, Gupta & Oberai (1981) and Armaly, Durst, Pereira & Schönung

(1983). More recently, Boujo & Gallaire (2014b) investigated the link between reattachment
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Figure 2.1 – Sketches of steady spanwise-periodic control (wavenumber β) in a backward
facing step: (a) wall blowing/suction applied on the upper wall and (b) wall deformation
applied on the upstream lower wall.

point and stability properties in separated flows. They found that the reattachment point was

highly sensitive to the control, with its sensitivity map deeply resembling that of the backflow

area and recirculation area. Further, these three sensitivity maps resembled closely that of the

optimal harmonic gain, implying that the flow becomes a weaker amplifier as the recirculation

length decreases, i.e. as the reattachment point moves upstream.

In this direction, we aim to exploit the amplification potential of the stable flow in a 3D BFS

to design optimal control strategies, such that the smallest required control amplitude is

capable of influencing the recirculation strength, here quantified by the recirculation length.

We thereby generalize the framework of Boujo, Fani & Gallaire (2019) designed to optimally

control the nominally 2D growth rate using steady spanwise-periodic perturbations to the

optimal quadratic control of the recirculation length. We derive a second-order sensitivity

tensor, the scalar product of which with any arbitrary control yields the modification in

reattachment location.

The optimization in spanwise-periodic control is applied for a BFS as shown in figure 2.1, with
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an expansion ratio 2. The geometry is bounded by x = [−5 50] and y = [0 2]. The spanwise

width is fixed at z = [0 2π/β] where β is the periodicity of the wall modulation. We aim at

optimizing the reattachment location (see figure 2.3) using optimal wall actuation (figure 2.1a)

and optimal wall deformation (figure 2.1b). The Reynolds number is fixed at 500 throughout

the analysis. This ensures that the flow is stable to the steady 3D instability that occurs at

Re = 748 with spanwise wavenumber β= 0.9 (Barkley et al., 2002).

The paper is organized as follows. Section 2.2 describes the problem formulation, general

expression of the second-order sensitivity tensor with the mean flow correction and the

optimization procedure used to compute the optimal control. The numerical method applied

for the sensitivity analysis and validation of the results are presented in Section 2.3. A brief

discussion on the global stability of the non-modified zeroth-order base flow is shown in

Section 2.4. Finally, the optimal wall actuation and wall deformation for minimizing the lower

reattachment location are discussed in Section 2.5. We summarize and discuss the limitations

of this theory in Section 2.7.

2.2 Problem formulation

2.2.1 Governing equations

We consider a steady 2D base flow Q(x, y) = (U,P )T (x, y) = (U ,V ,P )T (x, y) in a domainΩwith

the boundary Γwhich satisfies the incompressible steady Navier-Stokes equation as

∇·U = 0, N (Q) = 0, inΩ, (2.1)

U = 0, on Γ, (2.2)

where N (Q) ≡ U ·∇U+∇P −Re−1∇2U with the Reynolds number Re defined with the maxi-

mum inlet velocity (plane Poiseuille) and the step height.

If there is a separated region, and a wall defined by y = yw (x) where reattachment occurs, then

the reattachment location xr is characterized by vanishing wall shear stress:

∂Ut

∂n

∣∣∣∣
x=xr ,y=yw (xr )

= 0. (2.3)

For the sake of simplicity, we now focus on the BFS flow: the reattachment location reduces

to ∂yU (xr ,0) = 0 for a horizontal wall y = 0; in addition, the flow separates at xs = 0, so the

recirculation length lc = xr −xs is simply lc = xr . We assume that a 3D steady control of small

amplitude ε is applied on an arbitrary boundary Γc with the actuation velocity Uc (x, y, z)
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(and/or a volume control C(x, y, z)) such that

∇·U = 0, N (Q) = εC inΩ, (2.4)

U = εUc on Γc , (2.5)

U = 0 on Γ\Γc . (2.6)

This 3D control modifies the 2D base flow as:

Q(x, y, z) = Q0(x, y)+εQ1(x, y, z)+ε2Q2(x, y, z)+·· · , (2.7)

where the Qi are solutions of the modified base flow equations at orders ε0, ε1 and ε2:

N (Q0) = 0 inΩ, U0 = 0 on Γ, (2.8)

A0Q1 = (C,0)T inΩ, U1 = Uc on Γc , U1 = 0 on Γ\Γc , (2.9)

A0Q2 = (−U1 ·∇U1,0)T inΩ, U2 = 0 on Γ, (2.10)

and where A0 is the Navier-Stokes operator linearized about the zeroth-order base flow Q0,

A0 =
[

U0 ·∇()+ () ·∇U0 −Re−1∇2() ∇()

∇· () 0

]
. (2.11)

The control and the resulting flow modification alter the reattachment location as

xr (z) = xr 0 +εxr 1(z)+ε2xr 2(z)+·· · . (2.12)

In this expression, xr 0 is the reattachment location of the uncontrolled flow Q0,

∂U0

∂y

∣∣∣∣
x=xr 0,y=0

= 0. (2.13)

Similarly, the first-order variation xr 1(z) is the reattachment location of the first-order flow

modification Q1, characterized implicitly by a vanishing wall shear stress condition,

∂U1

∂y

∣∣∣∣
x=xr 1,y=0,z

= 0, (2.14)

and expressed explicitly as (Boujo & Gallaire, 2014a,b, 2015):

xr 1(z) =− ∂yU1

∂x yU0

∣∣∣∣
x=xr 0,y=0

. (2.15)

The notation xr 1(z) in (2.14)-(2.15) is meant to emphasize that the reattachment line is modu-

lated in the spanwise direction. When the control is harmonic in z, as considered in this study,

it can actually be shown that Q1 and xr 1 are purely harmonic too. As a result, the first-order

variation xr 1(z) has a zero mean. In contrast, the second-order variation xr 2(z) has a non-zero
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mean in general: as detailed in Appendix 2.8.1, it reads

xr 2(z) =
[
− ∂yU2

∂x yU0
+

(
∂yU1

)(
∂x yU1

)(
∂x yU0

)2 −
(
∂xx yU0

)(
∂yU1

)2

2
(
∂x yU0

)3

]
x=xr 0,y=0

(2.16)

= xr 2,I +xr 2,II +xr 2,III. (2.17)

This expression shows that the reattachment location is modified at second order via two

effects: xr 2,I depends linearly on the second-order flow modification Q2, and xr 2,II and xr 2,III

depend quadratically on the first-order flow modification Q1.

2.2.2 Sensitivity of the reattachment length: general expression

We introduce the field SI and the operators SII and SIII such that the second-order variation

xr 2 can be expressed with scalar products,

xr 2(z) = ( SI | U2)+ ( U1 | SIIU1)+ ( U1 | SIIIU1) , (2.18)

where the three terms of the right-hand side correspond to the three terms of (2.16)-(2.17),

respectively,

and ( · | ·) is the Hermitian scalar product in the domainΩ defined as ( a | b) ≡ ∫
Ωa∗bdΩwith

the superscript ∗ indicating complex conjugate. For integration along a boundary Γ, an

angled bracket is used: 〈a | b〉 ≡ ∫
Γa∗bdΓ. Omitting the notation y = 0, one identifies from

(2.16)-(2.17):

SI = −1

∂x yU0(xr 0)
δ(xr 0)ex∂y , (2.19)

SII = 1(
∂x yU0(xr 0)

)2δ(xr 0)
(
ex∂y

)† ⊗ (
ex∂x y

)
, (2.20)

SIII =
−∂xx yU0(xr 0)

2
(
∂x yU0(xr 0)

)3δ(xr 0)
(
ex∂y

)† ⊗ (
ex∂y

)
, (2.21)

where δ(x, y) is the 2D Dirac delta function, and the superscript † denotes the adjoint of an

operator defined as ( a | Sb) = (
S†a

∣∣ b
)
. Note that the operators SI, SII and SIII depend only on

U0. From (2.10), Q2 is uniquely determined by Q1, such that the first term of the right-hand

side of (2.18) can be expressed as

xr 2,I =
(

SI | −A−1
0 (U1 ·∇U1)

)= (
A†

0
−1

SI

∣∣∣ −U1 ·∇U1

)
=

(
U†

∣∣∣ −U1 ·∇U1

)
= ( U1 | SI′U1) ,

(2.22)

where we have introduced the 2D adjoint base flow U†(x, y), defined by

A†
0U† = SI, (2.23)
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(a)
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Figure 2.2 – 2D adjoint base flow (a) U † and (b) V †. The dashed lines indicate lower and
upper walls recirculation regions which is delimited by the wall and the separating streamline
(separatrix).

with A†
0 the adjoint Navier-Stokes operator. The adjoint base flow, depicted in figure 2.2,

depends only on U0, and is the same adjoint base flow U† as in Boujo & Gallaire (2014a, 2015)

where it represents the first-order sensitivity of the reattachment location xr to a steady 2D

volume forcing. In the last equality of (2.22), we could introduce the operator SI′ (dependent

on U†) because the expression is quadratic in U1. The second-order variation can therefore

be expressed quadratically in any flow modification U1 via a single operator for second-order

sensitivity to flow modification:

xr 2(z) = (
U1 | S2,U1 U1

)
where S2,U1 = SI′ +SII +SIII. (2.24)

Finally, using (2.9), one can introduce operators for the second-order sensitivity to control,

dependent only on the uncontrolled flow U0, and such that for any control:

xr 2(z) = (
C | S2,CC

)+〈
Uc | S2,Uc Uc

〉
, (2.25)

where

S2,C = PT A†
0,C

−1
S2,U1 A0,C

−1P, (2.26)

and S2,Uc = PT A†
0,Uc

−1
S2,U1 A0,Uc

−1P. (2.27)

Here P is the prolongation matrix that converts the velocity-only space to velocity-pressure

space such that PU = (U,0)T and PT Q = U, and A0,C and A0,Uc are defined by the volume-

control-only and wall-control-only versions of (2.9), respectively:

A0,CQ1 = (C,0)T inΩ, U1 = 0 on Γ, (2.28)

A0,Uc Q1 = 0 inΩ, U1 = Uc on Γc , U1 = 0 on Γ\Γc . (2.29)
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2.2.3 Simplification: spanwise-harmonic control

Let us now assume a spanwise-harmonic control of the form

Uc (x, y, z) =

 Ũc (x, y)cos(βz)

Ṽc (x, y)cos(βz)

W̃c (x, y)sin(βz)

 , C(x, y, z) =

 C̃x (x, y)cos(βz)

C̃y (x, y)cos(βz)

C̃z (x, y)sin(βz)

 . (2.30)

The first-order flow modification is also spanwise-harmonic, of same wavenumber β:

Q1(x, y, z) =


Ũ1(x, y)cos(βz)

Ṽ1(x, y)cos(βz)

W̃1(x, y)sin(βz)

P̃1(x, y)cos(βz)

 . (2.31)

The quadratic term −U1 · ∇U1 in (2.10) is then the sum of 2D terms (spanwise invariant

terms, i.e. of wavenumber 0) and 3D terms (of wavenumber 2β), which we denote f2D (x, y)+
f3D (x, y, z). As a result, the second-order flow modification has the same form: Q2D

2 (x, y)+
Q3D

2 (x, y, z). Similarly, the second and third terms in (2.16)-(2.17) and (2.18) have the same

form too, and finally the second-order reattachment location modification reads

xr 2(z) = x2D
r 2 +x3D

r 2 (z) (2.32)

where

x2D
r 2 =

[
−∂yU 2D

2

∂x yU0
+

(
∂yŨ1

)(
∂x yŨ1

)
2
(
∂x yU0

)2 −
(
∂xx yU0

)(
∂yŨ1

)2

4
(
∂x yU0

)3

]
x=xr 0,y=0

(2.33)

= x2D
r 2,I +x2D

r 2,II +x2D
r 2,III. (2.34)

Because x3D
r 2 (z) is harmonic of zero mean, we now focus on the spanwise-invariant component

x2D
r 2 . Its expression can be simplified, taking advantage of the specific form (2.30) of the control:

x2D
r 2 =

(
C̃

∣∣ S̃2,C̃C̃
)
+

〈
Ũc

∣∣ S̃2,Ũc
Ũc

〉
, (2.35)

where S̃2,C̃ and S̃2,Ũc
are spanwise-invariant versions of the second-order sensitivity operators

(2.26)-(2.27) (see detailed expressions in Appendix 2.8.2).

Figure 2.3(a) visualizes the 3D flow modification with spanwise-periodic control. Here the

control is applied only on the upstream part (x < 0) of the lower wall, with amplitude ε= 0.003

(see figure 2.8 for the actuation vector). As shown in the sketch of Fig. 2.3(b), the reattachment

location xr (z) is decomposed into zeroth-order xr 0 (uncontrolled), first-order xr 1(z) (of zero

mean), and second-order xr 2. As mentioned earlier, the second-order component is further

divided into a zero-mean 3D part x3D
r 2 (z) and a mean 2D part x2D

r 2 . Therefore, the spanwise-
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2.2. Problem formulation

(a)
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0
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Figure 2.3 – (a) An example of 3D DNS base flow modified by a wall blowing/suction control
(using the same control as in figure 2.8 with ε = 0.003). The streamlines starts at (x, y) =
(−5,1.05) at different spanwise positions in z. The shaded contour indicates the zero x-
velocity U = 0 iso-surface at lower wall (another recirculation bubble on the upper wall exists
but is not shown here). The thick red line indicates the lower reattachment location (∂yU = 0).
(b) Decomposition of the reattachment location xr into zero xr 0, first xr 1 and second xr 2 order
components. The spanwise averaged reattachment location is xr = xr 0 +ε2x2D

r 2 .

averaged reattachment location is

xr = xr 0 +ε2x2D
r 2 , (2.36)

which is our control interest. The second-order variation x2D
r 2 is now referred to as mean

correction.

2.2.4 Optimal spanwise-periodic control

In this section, we show the optimal control for the reattachment location. The formulation

is similar to Boujo et al. (2019) except that the matrices are all real in this case while in the

study of Boujo et al. (2019) it was complex since they were dealing with the unstable flow with

complex eigenvalues. Hence, we only introduce the procedure briefly on the optimization

of the mean correction by the boundary control Ũc only since the derivation for a volume

control C̃ is similar.
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Chapter 2. Linear and nonlinear optimal control for flows in backward facing step

Optimal spanwise-periodic wall actuation

The optimal control is now defined to find the maximum/minimum singular value of the

sensitivity operator S̃2,Ũc
. For minimizing the reattachment location (mean correction) by

actuating the wall boundaries, the optimization is

min
||Ũ=1||

(
x2D

r 2

)= min
〈Ũc

∣∣∣1
2

(
S̃2,Ũc

+ S̃T
2,Ũc

)
Ũc 〉

〈Ũc
∣∣Ũc 〉

= 1

2
λmin

(
S̃2,Ũc

+ S̃T
2,Ũc

)
, (2.37)

which indicates that the smallest eigenvalue in equation (2.37) is the mean correction and the

actuation vector is the corresponding singular vector.

Optimal spanwise-periodic wall deformation

For the sake of open loop control, deforming the geometry can be more interesting than a

steady wall velocity actuation. Hence, one can deduce the wall deformation using the wall

velocity actuation (Boujo et al., 2019). At all rigid wall boundaries, the velocity should vanish

and it is the same for when the wall is deformed with a small deformation εy1 and with the

Taylor expansion,

U(y0 +εy1) = U0(y0 +εy1)+εU1(y0 +εy1)+·· ·
= U0(y0)+ε[y1∂y U0(y0)+U1(y0)

]+·· · = 0. (2.38)

This reads the relation between streamwise velocity component Ũc and the wall deformation

y1 as

Ũ1(y0) =−y1
∂U0(y0)

∂y
= Ũc . (2.39)

Then, the mean correction x2D
r 2 can now be expressed with the small wall deformation y1 as

xr 2 = 〈Ũc |S̃2,Ũc
Ũc〉 = 〈−∂yU0(y0)ỹ1|− S̃2,Ũc

∂yU0(y0)ỹ1〉
= 〈ỹ1|M†S̃2,Ũc

Mỹ1〉 = 〈ỹ1|S̃2,ỹ1 ỹ1〉 , (2.40)

where M is the weighting matrix with the wall shear −∂yU0(y0). Finally, the optimization with

the unit-norm wall deformation y1 reads

min
||ỹ1=1||

(
x2D

r 2

)= min
〈ỹ1

∣∣∣1
2

(
S̃2,ỹ1 + S̃T

2,ỹ1

)
ỹ1 〉

〈ỹ1
∣∣ỹ1 〉

= 1

2
λmin

(
S̃2,ỹ1 + S̃T

2,ỹ1

)
. (2.41)
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2.3. Numerical method

2.3 Numerical method

2.3.1 Linear analysis

The sensitivity analysis and the optimization have been conducted using the method described

by (Boujo & Gallaire, 2014a, 2015; Boujo et al., 2019). The problem is discretized with a finite

element method using FreeFem++ (Hecht, 2012) with P2 and P1 Taylor-Hood elements for

velocity and pressure, respectively. The typical number of elements is 1.57×105 with clustered

mesh near the reattachment point yielding 106 degrees of freedom. The uncontrolled base

flow (2.8) is obtained by the Newton method. Eigenvalues are solved with a restarted Arnoldi

method.

At the inlet (x =−5), a Poiseuille flow condition is given with the scaled maximum velocity

1 and the pressure free outlet condition is applied at the outlet (x = 50). For Re = 500, the

reattachment location for lower wall is 10.87. With mesh density, the reattachment point

varies little from 10.88 (crude mesh, 4.5×104 no. elements) to 10.87 (finest mesh, 1.65×105

no. elements).

2.3.2 Three-dimensional DNS

Direct numerical simulations (DNS) are also carried out for validation of the theory and using

the open-source code NEK5000(Fischer, Lottes & Kerkemeier, 2008). This massively parallel

code is based on the spectral element method where spatial domain is discretized using

hexahedral elements. The unknown parameters are obtained using N th-order Lagrange poly-

nomial interpolants, based on the Gauss-Lobatto-Legendre quadrature points in each spectral

element with N ≥ 6. A third order backward differentiation formula (BDF3) is employed for

time discretization. For the spatial discretization, the diffusive terms are treated implicitly

whereas the convective terms are estimated using a third order explicit extrapolation formula

(EXT3). Since the explicit extrapolations of the convective terms in the BDF3-EXT3 scheme

enforce a restriction on the time step for iterative stability (Karniadakis, Israeli & Orszag, 1991),

we chose the time step such as to have a Courant number CFL ≈ 0.5.

The computational domain and the boundary conditions are in accordance with the specifi-

cations of the backward facing step used in the sensitivity analysis. Additionally, we impose

periodic boundary conditions in the spanwise direction where the spanwise width captures

only one period z = [0 2π/β] for the purpose of validation. Certain cases employing optimal

spanwise modulation required the analysis of a double period domain with z = [0 4π/β]. The

domain is discretized using a structured multiblock grid consisting of 36200 and 72400 spectral

elements for maximum spanwise width of 2π/β and 4π/β, respectively.
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Chapter 2. Linear and nonlinear optimal control for flows in backward facing step

2.4 Stability properties of the zeroth-order base flow

In this section, we shall investigate the characteristics of the non-modified zeroth-order

base flow. For a backward facing step, the flow separates and reattaches and a recirculation

bubble exists between these two points. The backward facing step with an expansion ratio 2

(total height/step height) at Re = 500, there exist two recirculation bubbles: one on the lower

wall developing rear of the step x = [0 10.87]y=0 and the other one on upper wall between

x = [8.7 17.5]y=2. In this section, we show some linear characteristics of the zeroth-order base

flow.

2.4.1 Global stability

First, we investigate the eigenvalues of the system as well as the optimal response to the 3D

perturbation of the 2D base flow. We assume a normal mode perturbation with the complex

eigenvalue λ and spanwise periodicity β0 as q′ = q̂(x, y)exp(λt + iβ0z). Note that we use a

subscript 0 to indicate the eigenmode wavenumber which should be distinguished from the

control wavenumber β. Then, we solve a generalized eigenvalue problem of linear equation

around the uncontrolled 2D base flow,

λq̂ = Ã0q̂, (2.42)

with vanishing boundary conditions at the walls. The leading eigenvalues for Re = 500 are

shown in figure 2.4 as a function of the spanwise wavenumber β0. For the purpose of compari-

son later with the gain, the leading growth rate is plotted as an inverse of the absolute value

of λ. All the leading eigenvalues have negative growth rate, i.e. decaying perturbation, and

zero frequency except for β0 = 0.4 and β0 = 0.5. There exists two local maximums (β0 = 0.1

and β0 = 1) and one local minimum (β0 = 0.5), it decreases monotonically for β0 > 1. This

result is very much in line with the study of Barkley et al. (2002) for Re = 450. They showed

that 3D global instability emerges when Reynolds number is higher than Re = 748. Some

selected global modes of streamwise velocity Û1 are shown in figures 2.5 for β0 = 0.1,0.5 and

1. For β0 = 0.1, the mode is localized x = 10 which is near the lower reattachment and upper

separation points. For β0 = 0.5, the mode is focused on x > 10 while it is localized x < 10 for

β0 = 1.

2.4.2 Optimal 3D steady forcing

For such a stable flow, it is interesting to investigate what kind of external disturbance amplifies

the system most. Here we consider in particular a steady spanwise-harmonic steady forcing

f = f̂(x, y)exp(iβz) acting on the wall boundaries Γ, and resulting linearly in a steady spanwise-

periodic response q = q̂(x, y)exp(iβz) via

Ã0q̂ = B f f̂, (2.43)
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2.4. Stability properties of the zeroth-order base flow

where B f limits active forcing regions to the walls. The linear amplification efficiency can be

measured with a linear gain, for instance as the ratio of the norms of the forcing velocity and

response velocity:

G = ||q̂||
||̂f||

. (2.44)

This ratio can be maximized: the linear optimal gain is given by the largest singular value of the

resolvent operator and the optimal forcing vector is the associated singular vector (see details

in Garnaud et al., 2013; Boujo & Gallaire, 2015). The optimal gain with the steady wall actuation

is shown in figure 2.4. The optimal gain takes the similar qualitative behavior to the inverse of

the absolute eigenvalue of the global mode. The maximum gain is G = 326 with β= 0.1 which

corresponds to the least stable global mode with the same value of β0. Similarly, β = 0.5 is

the local minimum and the second local maximum is located at β= 0.8 slightly lower than

the global eigenvalue. The response behaves as the shortest distance of the forcing frequency

to the eigenvalue of the system. This result demonstrates the ε-pseudospectral property

(Trefethen, Trefethen, Reddy & Driscoll, 1993; Schmid, 2007). Some selected responses Û1 are

depicted in figure 2.6. Indeed, for β= 0.1 and 1, the responses are similar to the corresponding

eivgenvectors. For β= 0.5, however, the response is slightly different from the global mode

since the least stable global mode has a non-zero frequency while the considered response is

steady.
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1 |λ
|
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Figure 2.4 – Leading eigenvalues represented as inverse of distance from the origin 1/|λ| and
optimal gain G as a function of spanwise wavenumber β (β0) for Re = 500. The filled circles
indicate zero frequency (λi = 0) and empty circles are for non-zero frequency.

35



Chapter 2. Linear and nonlinear optimal control for flows in backward facing step
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Figure 2.5 – Streamwise velocity of the least stable global modes for (a) β0 = 0.1, (b) β0 = 0.5
and (c) β0 = 1. In (a) and (c) Û1 is represented (steady eigenmode) while in (b) its real part
Re(Û1) is shown (unsteady eigenmode).
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Figure 2.6 – Streamwise velocity (real part Re(Û1)) of the optimal response to steady forcing
for (a) β= 0.1, (b) β= 0.5 and (c) β= 1.
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2.5 Results: optimal control for lower reattachment location

2.5.1 Optimal wall actuation

Figure 2.7a shows the optimal mean correction x2D
r 2 as a function of β for different wall actua-

tion scenarios: actuation on upper wall with only wall normal velocity Ṽc and on the upstream

lower wall with Ṽc or with the wall tangential velocity Ũc . Note that the 3D velocity controls can

be retrieved as (Uc ,Vc ,Wc )(x, y, z) = (Ũc (x, y)cos(βz),Ṽc (x, y)cos(βz),W̃c (x, y)sin(βz)). The

wall restriction has been implemented by modifying the prolongation matrix P.

The wall normal control (0,Vc ,0) on upper wall has the minimum at β= 0.6 while actuating

the upstream lower wall is most efficient at β= 1. However, wall tangential actuation Uc on

upstream lower wall has a negligible impact on the reattachment length with the minimum

x2D
r 2 = −103 at β = 1.1 which is 60 times smaller than the wall normal control. This holds

for other types of wall controls (not shown) that actuating on the wall normal velocity Ṽc is

generally more efficient than actuating wall tangential parts both Ũc and W̃c . The detailed

individual contributions of the terms I, II and III in (2.34) for the mean correction are shown

in figure 2.7b,c. for upper wall, Ṽc and upstream lower wall, Ṽc , respectively. In both cases, the

term I, which is a linear function of the second-order flow modification, contributes the most

on the mean correction while the terms II and III, who depend quadratically to the first-order

flow modification, have negligible or counteracting influences on the mean correction. The

control vectors for the upper wall for β= 0.6 and upstream lower wall for β= 1 are shown in

figure 2.8. The control has the maximum actuation velocity at x ' 6 for upper wall control and

for upstream lower wall, it is located at x = 0 where the flow separates due to the step corner.

The linear gain due to the control is shown in figure 2.9a for the two types of wall controls.

The gain is estimated as the ratio between the response ||Ũ1|| and the control ||Ũc ||. Since

||Ũc || = 1, the gain is simply the amplitude of the response G2 = (Ũ1|Ũ1). The linear gains for

maximizing G from (2.44) for the corresponding restricted walls are also shown in the same

figure. The control induced gain is close to the optimal gain and their response vectors Ũ1

(not shown) are also very similar to each other. This indicates that the recirculation length xr

has close relation to the amplification potential of the system as reported by Boujo & Gallaire

(2014b).

Figure 2.9b now shows the spanwise averaged reattachment length xr computed from 3D

DNS along with the sensitivity prediction for the reattachment location x2D
r = x0 +ε2x2D

r 2 as a

function of actuation amplitude ε for the upstream lower wall control case. The agreement

is very good until the actuation amplitude ε' 0.001 after which it starts to differ due to the

strong nonlinear effect. For ε = 0.001, one can conclude that 0.1% actuation reduces the

reattachment location by 0.55% (upstream lower wall control) which is about 5.5 times of the

control amplitudes.
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Figure 2.7 – (a) Optimal mean correction x2D
r 2 control by wall blowing/suction to minimize

the mean reattachment length xr as a function of spanwise wavenumber β for actuation
on different walls. The individual contributions of the terms I, II and III in (2.34) (their 2D
components) on the total mean correction are detailed in (b) for upper wall, Ṽc and (c) for
upstream lower wall, Ṽc controls.
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Figure 2.8 – Optimal control (0,Ṽc ,0) (a) on the upper wall for β= 0.6 and (b) on the upstream
lower wall for β= 1.
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Figure 2.9 – (a) Linear gain G for steady spanwise-periodic wall blowing/suction: control Ṽc

minimizing xr (solid lines) and control f̂ maximizing G (dashed lines). (b) The mean reattach-
ment length xr as a function of the control amplitude for upstream lower wall actuation for
β= 1 and Re = 500. Line: sensitivity prediction, symbols: 3D DNS simulation.
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2.5. Results: optimal control for lower reattachment location
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Figure 2.10 – (a) Effect of the optimal upstream lower wall deformation as a function of
spanwise wavenumber β. (b) 3D visualization of upstream lower wall deformation y1 and (c)
2D view ỹ1 where y1 = ỹ1 cos(βz).

2.5.2 Optimal wall deformation

Here, we investigate the optimal wall deformation for minimizing the lower reattachment

point. For simplicity, we focus only on the upstream lower wall deformation. The wall

deformation is computed using (2.39). We also applied a smoothing filter on y1 near the step

corner since ∂yU0 goes to infinity at the step corner which is defined as Fw = 1/(exp(2Ck (x +
xS))+1) where Ck = 250 and xS = 0.02. Figure 2.10 shows the optimal control x2D

r 2 as a function

of β. The most effective spanwise wavenumber is β= 1.1, similar to the wall actuation case.

However, the efficiency is much lower than the velocity control. The minimum x2D
r 2 is about

15 times less efficient than using the wall blowing/suction on the upstream lower wall. This is

due to the fact that the wall deformation is a function of wall tangential velocity Ũc (weighted

with ∂yU0) which has only a small contribution to x2D
r 2 compared to the wall normal control

Ṽc as shown in figure 2.7. Although less effective, the wall deformation on the upstream lower

wall still results the mean correction about x2D
r 2 =−3.7×103 for β= 1.1.

Figure 2.10b,c show the example of wall deformation y1 and 2D component ỹ1 which relates

y1 = ỹ1 cos(βz). As shown, the wall deformation is the maximum just before the step where

the flow separates. The 3D DNS result of the mean reattachment location as a function of

deformation amplitude is shown in figure 2.11a. A good agreement has been found until

ε = 0.0075. At this point, the mean reattachment location is decreased to 10.7. It can be

interpreted that 0.75% of wall deformation leads 1.5% mean correction. For higher amplitude

of deformation (ε> 0.01), the mean reattachment location departs from the prediction curve.

Figure 2.11b shows xr as a function of β for a fixed deformation amplitude ε= 0.005. Generally,

the prediction and 3D DNS show good agreement across different spanwise wavenumber β

with the maximum error for β= 1.1 as |xr DN S −x2D
r |/xr DN S ' 0.002.

For a larger deformation amplitude ε= 0.015, the flow becomes unstable. Figure 2.12 shows
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Figure 2.11 – Effect of the optimal wall deformation on the mean reattachment point (a) as a
function of ε for fixed β= 1.1 and (b) as a function of β for fixed ε= 0.005.

an instant flow field with iso-values of spanwise velocity W =±0.03. Because the zero order

base flow has no W component, the instant W velocity field can be approximated as velocity

perturbation. The perturbation develops just after the step and contaminates the flow around

x = [5 40]. From top view (figure 2.12b), we see that clear mode separation in z at the nodal

points of sin(βz). From the side view (figure 2.12c), the perturbation forms chevron patterns.

The perturbation oscillates in time with a fundamental frequency ω= 0.55 (St = 0.088). Boujo

et al. (2015) had reported the destabilizing effect on spanwise periodic control on parallel

shear flow. They showed that both the fundamental β and sub-harmonic β/2 modes can be

excited due to the sub-harmonic resonance mechanism (Herbert, 1988; Hwang et al., 2013).

However, in our DNS with the double spanwise domain size (z = [0 4π/β]) whose minimum

spanwise-wavenumber is β/2, the perturbation does not show any β/2 sub-harmonic mode.

Instead, only harmonics of nβ (n = 1,2,3...) exist and it can be seen from the top view (figure

2.12b).

2.6 Discussion

Although the optimization procedure finds the most efficient spanwise-periodic control, the

effect on the mean recirculation length appears relatively small. In light of this observation, it

is worth comparing the optimal 2D and 3D blowing/suction. One can show that the optimal

2D wall control is equal to the sensitivity to 2D wall control, given by the adjoint stress at

the wall
(
P †I+Re−1∇U†

)
n, where (U†,P †) is the adjoint base flow (see Sec. 2.2.2) and n the

outward unit normal vector (Boujo & Gallaire, 2014a,b, 2015). Since the tangential component

is generally much smaller than the normal one, we simply consider the sensitivity to 2D normal

actuation as the optimal control (0,Vc ). Figure 2.13 compares the 3D control optimized on

the upstream lower wall (β = 1) to its 2D counterpart, both normalized to norm 1. The

linear response δU to the 2D control is largest and positive near the lower reattachment

point, resulting in a positive wall shear stress ∂yδU at that location, as expected if xr is to

be minimized. Via the spanwise-periodic first-order flow modification U1 (not shown), the
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Figure 2.12 – Iso-contours for instantaneous spanwise velocity field W =±0.03 for upstream
lower wall deformation with the amplitude ε= 0.015: (a) oblique view, (b) top view and (c)
side view.

optimal 3D control induces a mean second-order flow modification U2D
2 that is qualitatively

similar to δU, resulting in a positive wall shear stress ∂yU 2D
2 , and therefore a negative xr 2,I (we

do not investigate xr 2,II and xr 2,III since they are much smaller, as shown in Fig. 2.7). Fig. 2.14

shows the same quantities optimized on the upper wall (β = 0.6 for the 3D control), and

again a qualitatively similar wall shear stress. Although U2D
2 is much larger than δU, it must

be kept in mind that 2D and 3D controls of the same amplitude ε yield a 2D modification

that scales linearly and a 3D modification that scales quadratically, respectively, i.e. like εδU

and ε2U2D
2 . Spanwise-periodic controls should therefore become more efficient for large

enough amplitudes, as previously observed for flow stabilization (Del Guercio et al., 2014a,b,c;

Boujo et al., 2015), and as shown in Fig. 2.15. In practice it may happen that, as the control

amplitude increases, the actual efficiency is limited by deviation from the sensitivity prediction

(Sec. 2.5.1) or by the flow becoming unstable (Sec. 2.5.2). This can be tested on a case-by-case

basis, once promising control candidates have been identified. In this respect, the concept

of second-order sensitivity and the associated optimization method allow for a systematic

exploration of the best candidates for spanwise-periodic control.

2.7 Conclusion

Initially motivated by the link between recirculation length and stability properties in sepa-

rated amplifier flows, we have focused on the mean reattachment location as an indicator for
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Chapter 2. Linear and nonlinear optimal control for flows in backward facing step

Figure 2.13 – (a) Optimal 2D and 3D (β = 1) vertical controls on the upstream lower wall.
(b) Leading-order mean flow modifications (streamwise component). (c) Corresponding wall
shear stress on the lower wall.

the noise amplifying potential in a 3D backward facing step of expansion ratio 2 and fixed

Reynolds number Re = 500. In this context, our goal was to control the reattachment location

on the BFS lower wall with optimal spanwise-periodic control (steady wall blowing/suction or

wall deformation) based on the second-order sensitivity analysis introduced by Boujo et al.

(2019) for the linear stability properties of the circular cylinder flow.

A second-order sensitivity tensor for the reattachment location has been derived, such that

modification of the reattachment location is obtained as a scalar product of this tensor and

any arbitrary control. For the specific case of spanwise-harmonic control, the sensitivity

tensor was then further simplified, i.e. made independent of z. When the control is spanwise

harmonic, the first-order reattachment modification takes the same periodicity with zero

mean value, while the second-order modification has a non-zero mean value. Thereby, we

have looked for optimal controls that minimize the second-order mean correction.

For wall blowing/suction, we have shown that tangential control has a negligible influence

while normal control is the most effective. The optimal wavenumber β depends on the

control location: β = 0.6 is optimal when controlling on the upper wall, and β = 1 when

42



2.7. Conclusion

Figure 2.14 – (a) Optimal 2D and 3D (β= 0.6) vertical controls on the upper wall. (b) Leading-
order mean flow modifications (streamwise component). (c) Corresponding wall shear stress
on the lower wall.
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Figure 2.15 – Effect on the reattachment location xr of the optimal vertical 2D control and
optimal vertical 3D control (β= 1) of amplitude ε, on the upstream lower wall.

controlling on the upstream lower wall control. The linear gain for this actuation resembles

the optimal gain for 3D steady forcing, indicating that the amplification potential of the BFS is
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indeed linked to the recirculation length, as also observed by Boujo & Gallaire (2014b). Direct

numerical simulations have validated the quadratic behaviour of the mean reattachment

length modification. The sensitivity prediction is valid until a control amplitude ε' 0.001; for

larger amplitudes, 3D DNS results start to deviate from the quadratic prediction.

The optimal wall deformation has also been studied. We have focused on deformation of

the upstream lower wall, with a constraint that restricts the wall deformation to be null at

the step corner. This wall control is generally less effective than wall blowing/suction and

its optimal wavenumber is slightly shifted to β = 1.1. DNS validation has shown that the

sensitivity prediction is valid until a deformation amplitude ε' 0.008; beyond this amplitude,

strong non-linearity appeared and destabilized the flow.

Finally, the optimal 3D spanwise-periodic control was compared with the optimal 2D control.

The resulting wall shear stress (which is directly linked to the modification of the reattachment

location) is two or three orders of magnitude larger for 3D controls than for 2D ones. Since 2D

and 3D controls depend linearly and quadratically on the control amplitude, respectively, the

3D control is more efficient for large enough control amplitude. In order to determine which

of the two controls is best at which amplitude, additional studies are required once the optimal

3D control has been identified. This limitation can be tackled if the mean flow modification is

taken into account in the optimization, for instance with a semi-linear approach (Mantič-Lugo,

C., Arratia & Gallaire, 2014; Meliga, Boujo & Gallaire, 2016).

We have not investigated the stability of the controlled flow in a systematic way. It may well be

that the first-order flow modification, although it induces no mean variation of xr , alters the

flow stability. Clarifying whether this is the case or not would be possible, for a given control,

using linear stability analysis (Floquet or 3D global), or non-linear DNS.

2.8 Appendix

2.8.1 Appendix: Second-order reattachment location modification

Recall the definition of the reattachment location (Boujo & Gallaire, 2014a,b, 2015):

xr =
∫ ∞

0
H

(−∂yU (x,0)
)

dx, (2.45)

where H is the Heaviside function such that H(θ < 0) = 0 and H(θ > 0) = 1. This expression

yields indeed the reattachment location since the wall shear stress ∂yU (x,0) is negative in the

recirculation region. Hereafter, we omit y = 0 for brevity. Substituting

U =U0 +εU1 +ε2U2 +O
(
ε3) (2.46)
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into (2.45), one obtains:

xr =
∫ ∞

0
H

[−∂yU0 −ε∂yU1 −ε2∂yU2 +O
(
ε3)] dx

=
∫ ∞

0

{
H

(−∂yU0
)− [

ε∂yU1 +ε2∂yU2 +O
(
ε3)]H ′ (−∂yU0

)+ 1

2

[
ε∂yU1 +O

(
ε2)]2

H ′′ (−∂yU0
)}

dx

=
∫ ∞

0
H

(−∂yU0
)

dx

−ε
∫ ∞

0

(
∂yU1

)
H ′ (−∂yU0

)
dx

+ε2
∫ ∞

0

{(−∂yU2
)

H ′ (−∂yU0
)+ 1

2

(
∂yU1

)2 H ′′ (−∂yU0
)}

dx +O
(
ε3) . (2.47)

The zeroth-order term is the reattachment location xr 0 of the uncontrolled flow. The first-

order term xr 1 is linear in U1 and is therefore zero when averaging over z. The second-order

term contains derivatives of H , that can be obtained defining G(x) = H
(−∂yU (x,0)

)= H(θ)

and using the relations

G ′(x) = d(H(θ))

dx
= dH

dθ

dθ

dx
=−H ′(θ)∂x yU , (2.48)

G ′′(x) = d

dx

(−H ′(θ)∂x yU
)

=−H ′(θ)
d

dx

(
∂x yU

)− d
(
H ′(θ)

)
dx

∂x yU

=−H ′(θ)∂xx yU − d2H

dθ

dθ

dx
∂x yU

=−H ′(θ)∂xx yU +H ′′(θ)
(
∂x yU

)2 , (2.49)

which yields

H ′(θ) =−G ′(x)

∂x yU
= δ(x −xr )

∂x yU
, (2.50)

H ′′(θ) = 1(
∂x yU

)2

(
H ′(θ)∂xx yU +G ′′(x)

)= 1(
∂x yU

)2

(
δ(x −xr )

∂x yU
∂xx yU −δ′(x −xr )

)
,

(2.51)
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with δ(x) the Dirac delta function. The second-order term thus becomes:

xr 2 =
∫ ∞

0

{(−∂yU2
)

H ′(θ0)+ 1

2

(
∂yU1

)2 H ′′(θ0)

}
dx

=
∫ ∞

0

{(−∂yU2
) δ(x −xr )

∂x yU0
+ 1

2

(
∂yU1

)2(
∂x yU0

)2

(
δ(x −xr )

∂x yU0
∂xx yU0 −δ′(x −xr )

)}
dx

=− ∂yU2(xr 0)

∂x yU0(xr 0)
+ 1

2

(
∂yU1

)2(
∂x yU0

)2

∂xx yU0

∂x yU0

∣∣∣∣∣
xr 0

+ 1

2

d

dx

[ (
∂yU1

)2(
∂x yU0)

)2

]
xr 0

= − ∂yU2

∂x yU0

∣∣∣∣
xr 0

+
(
∂yU1

)(
∂x yU1

)(
∂x yU0

)2

∣∣∣∣∣
xr 0

−
(
∂xx yU0

)(
∂yU1

)2

2
(
∂x yU0

)3

∣∣∣∣∣
xr 0

. (2.52)

2.8.2 Appendix: Simplification of the sensitivity operators

With a spanwise-periodic control of the form

Uc (x, y, z) =

 Ũc (x, y)cos(βz)

Ṽc (x, y)cos(βz)

W̃c (x, y)sin(βz)

 , C(x, y, z) =

 C̃x (x, y)cos(βz)

C̃y (x, y)cos(βz)

C̃z (x, y)sin(βz)

 , (2.53)

the 1st-order flow modification is of the form

Q1(x, y, z) =


Ũ1(x, y)cos(βz)

Ṽ1(x, y)cos(βz)

W̃1(x, y)sin(βz)

P̃1(x, y)cos(βz)

 . (2.54)

Let us consider the first term xr 2,I in (2.16)-(2.18). Given the form of Q1, the right-hand side

−U1 ·∇U1 of (2.10) is the sum of 2D and 3D terms:

f2D (x, y) =−1

2

 (Ũ1∂x + Ṽ1∂y −βW̃1)Ũ1

(Ũ1∂x + Ṽ1∂y −βW̃1)Ṽ1

0

 , (2.55)

f3D (x, y, z) =−1

2

 (Ũ1∂x + Ṽ1∂y +βW̃1)Ũ1 cos(2βz)

(Ũ1∂x + Ṽ1∂y +βW̃1)Ṽ1 cos(2βz)

(Ũ1∂x + Ṽ1∂y +βW̃1)W̃1 sin(2βz)

 . (2.56)

The spanwise-harmonic forcing f3D (x, y, z) induces a 3D spanwise-harmonic response Q3D
2 (x, y, z)

that yields a zero-mean variation x3D
r 2,I(z). By contrast, the 2D forcing term f2D (x, y) induces
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the 2D response

Q2D
2 (x, y) =


U 2D

2 (x, y)

V 2D
2 (x, y)

0

P 2D
2 (x, y)

 (2.57)

that yields a non-zero mean x2D
r 2,I. Recalling (2.22), one can therefore write

x2D
r 2,I =

(
U†

∣∣∣ f2D
)

(2.58)

=−1

2

Ï
U †(Ũ1∂x + Ṽ1∂y −βW̃1)Ũ1 +V †(Ũ1∂x + Ṽ1∂y −βW̃1)Ṽ1 (2.59)

=−1

2

Ï
Ũ1(U †∂xŨ1 +V †∂xṼ1 −βW̃1U †)+ Ṽ1(U †∂yŨ1 +V †∂y Ṽ1 −βW̃1V †) (2.60)

= (
Ũ1

∣∣ S̃I′Ũ1
)

, (2.61)

where the simplified second-order sensitivity operator

S̃I′ =−1

2

 U †∂x V †∂x 0

U †∂y V †∂y 0

−βU † −βV † 0

 (2.62)

can be seen formally as a 2D restriction of the operator U† ·∇()T .

Let us now consider the second and third terms xr 2,II and xr 2,III in (2.16)-(2.18). Given (2.54),

it is straightforward to show that

x2D
r 2,II =

(
Ũ1

∣∣ S̃IIŨ1
)

, x2D
r 2,III =

(
Ũ1

∣∣ S̃IIIŨ1
)

, (2.63)

where the simplified second-order sensitivity operators are

S̃II = 1

2
(
∂x yU0(xr 0)

)2δ(xr 0)
(
ex∂y

)† ⊗ (
ex∂x y

)
, (2.64)

S̃III =
−∂xx yU0(xr 0)

4
(
∂x yU0(xr 0)

)3δ(xr 0)
(
ex∂y

)† ⊗ (
ex∂y

)
, (2.65)

Finally, the mean second-order variation is

x2D
r 2 =

(
Ũ1

∣∣ S̃2,Ũ1
Ũ1

)
where S̃2,Ũ1

= S̃I′ + S̃II + S̃III, (2.66)
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and the second-order sensitivities to control defined by (2.35) read

S̃2,C̃ = PT Ã†
0,C̃

−1
S̃2,Ũ1

Ã0,C̃
−1

P (volume-forcing-only Ã0,C̃), (2.67)

S̃2,Ũc
= PT Ã†

0,Ũc

−1
S̃2,Ũ1

Ã0,Ũc

−1
P (wall-forcing-only Ã0,Ũc

), (2.68)

with

Ã0 =


U0∂x +V0∂y +∂xU0 − D̃ ∂yU0 0 ∂x

∂xV0 U0∂x +V0∂y +∂yV0 − D̃ 0 ∂y

0 0 U0∂x +V0∂y − D̃ −β
∂x ∂y β 0

 ,

(2.69)

D̃ = Re−1(∂xx +∂y y −β2). (2.70)
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2.9 Part II : Vaccination as a control strategy

The work presented in the previous sections discussed the implementation method of small

amplitude active-passive controls on a backward facing step (BFS) flow to regulate the down-

stream evolution of the perturbations. However, in realistic situations, the flow is influenced

by the presence of naturally occurring external disturbances (white noise) present at the

geometry inlet. For flows up to Re = 748 in a BFS, the high amplification potential of the stable

flow greatly magnifies the downstream evolution of these disturbances (Barkley et al., 2002).

In this context, the response of such amplifier flows to ‘white noise’ has been analysed by

Mantič-Lugo & Gallaire (2016) where the gain G(An), expressed as the ratio of the amplitude

of the response to white noise level An , was obtained, as shown in figure 2.16. From this

figure, we observe that the gain decreases as An increases and eventually saturates to a

small value for larger white noise levels. However, for the white noise level An < 0.005 the

gain is still sufficiently high. Hence, to control the response of the BFS flow in presence
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Figure 2.16 – Gain as a function of white noise level. The plot has been reproduced from
Mantič-Lugo & Gallaire (2016).

of inlet white noise, we propose the method of vaccination (a term due to C. Cossu in a

private communication) wherein we aim to vaccinate the flow against natural disturbances,

by introducing a specific disturbance which decreases the overall stochastic response. Indeed

the choice of the controlling disturbance and its amplitude are the crucial criteria that govern

the overall flow stability.

Since the idea is to introduce a forcing which once naturally grown is capable of suppressing

the further development of the more uncontrollable instabilities, we employ the optimal

harmonic volume forcing obtained for a BFS at Re = 500 and retrieved through the work of

Marquet & Sipp (2010) and Mantič-Lugo & Gallaire (2016). As seen in figure 2.17, the optimal

dimensionless forcing frequency is concentrated at St = 0.075, where St = fH z h/Ui n denotes

the Strouhal number resulting in the amplification of the flow to 7400. The optimal forcing

F and its response u′, in the streamwise direction for the given configuration, are shown in

figure 2.18 where we observe that the forcing is mainly concentrated in the upstream wall in
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Figure 2.17 – Gain as a function of forcing frequency expressed in terms of the Strouhal
number. The optimal frequency Stopt = 0.075, is represented by the red cross. The data has
been reproduced based on the work of Mantič-Lugo & Gallaire (2016).

Figure 2.18 – (a) Optimal volume forcing at St = 0.075 and (b) the resulting response, both
represented for the streamwise direction. Results have been reproduced from Mantič-Lugo &
Gallaire (2016)

the proximity of the step and the maximum response is obtained further downstream.

Thus, with the defined forcing structure, we are only left with optimizing the control amplitude

which achieves the best overall vaccination.

2.9.1 Numerical method

We begin our analysis by considering a BFS of the same configuration as shown in figure

2.1 without any spanwise modulations and with Re = 500. To replicate physical systems, we

introduce a band-limited white noise by filtering the digital random signal with a band limiting

frequency f = 1. We formulate this physical perturbation in a similar way as in Mantič-Lugo &

Gallaire (2016). The noise is normalised to have zero mean, unit variance and unit power, with

a constant value for power spectral density (PSD). Finally we impose this filtered white noise

as an inlet velocity condition (at x =−5), and the pressure free outlet condition is applied at

the outlet (x = 50). The modelled white noise has a fixed level of An = 0.02.
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Figure 2.19 – Gain as a function of the frequency for three different control amplitudes Ac . The
control amplitude Ac = 0 refers to the flow in absence of any control.

The three dimensional problem is discretized with a finite element method using FreeFem++

(Hecht, 2012) using P2 and P1 Taylor-Hood elements such that [U ,V ,W,P ] = [P2,P2,P2,P1].

The typical number of elements is 3.78×104 with clustered mesh near the reattachment point

yielding 7.7×104 degrees of freedom. The base flow is obtained by the Newton method.

2.9.2 Results and discussion

To control the incoming disturbances, we exploit the existing amplification potential of the BFS

in a vaccination strategy by exciting the flow periodically using the optimal harmonic volume

forcing obtained from figure 2.17 and 2.18a. Hence, with the fixed noise level at An = 0.02, and

the fixed control structure at St = 0.075, the control amplitude Ac is systematically increased

from 5×10−5 to 0.5, to see its impact on the stochastic response. The overall energy response

over the entire domain for fixed control amplitude Ac and as a function of frequency f is

obtained as,

Eres( f ) =
∫
Ω

u′2( f )+ v ′2( f )dΩ, (2.71)

where u′( f ) and v ′( f ) are the x and y velocity perturbation components obtained using the

pwelch function in MATLAB. Using equation (2.71), the gain for Ac in terms of the frequency

is expressed as,

G(Ac , f ) =
√

Eres( f )

An
, (2.72)
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where Eres varies as the control amplitude Ac is changed. In figure 2.19, we show the compari-

son of the gain spectrum for Ac = 0.05 and 0.5 with the uncontrolled state Ac = 0. Compared

to the uncontrolled state, in presence of the control Ac = 0.05, we observe that the gain spec-

trum decreases overall except at the control frequency and its harmonics. Thus the control

vaccinates most of the natural disturbances at the expense of a higher response at the control

frequency (and its harmonics). For a larger amplitude of 0.5, the response is seen to be excited

additionally at the sub-harmonics, which enhances the overall gain spectrum. Thus the gain

envelope obtained for the two different control amplitudes drives one to evaluate the optimal

control amplitude resulting in the most efficient vaccination. For this purpose we use the total

gain defined within the band limiting signal and expressed as,

Gtot(Ac ) =
∫ 1

0
Gain(Ac , f )d f , (2.73)

as a scale for comparison. Figure 2.21 shows the total gain Gtot obtained from equation (2.73)

as a function of different control amplitudes, where we see that Gtot increases as Ac increases.

However, the gain expression (2.73) also includes the energy of the response at the particular

control frequency St = 0.075 and its harmonics, which are the major contributors of the gain

as seen in figure 2.19. Thus, we reformulate the gain by assuming a small frequency gap

δ f =±0.002 around the control frequency 0.075 and its harmonics, from which we exclude the

contribution of the response on Gtot (as illustrated in figure 2.20). In the first case we exclude

the energy response Eres only around the particular control frequency 0.075 (shown in red in

figure 2.20) and in the second case we remove Eres around all the harmonics of the control

frequency including at f = 0.075 (shown in black in figure 2.20).
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Figure 2.20 – Energy response as a function of frequency for a fixed noise level An = 0.02 and
control amplitude Ac = 0.05. The red dashed curves represents the response by excluding the
one present at fopt whereas excluding the response at all the harmonics results in obtaining
the response shown in black. δ f denotes the frequency gap centred around the harmonics
within which the energy response is excluded in both the situations.
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2.9. Part II : Vaccination as a control strategy

The resulting gain is presented through the red and blue curves respectively in figure 2.21,

where we see that removing the response contribution at the control frequency reduces drasti-

cally Gtot for all control amplitudes. Compared to the gain in presence of an uncontrolled flow

(as shown in figure 2.16), the presence of control results in a much lower amplification for most

the naturally amplified frequencies. We further conclude that for the given flow conditions,

Ac = 0.05 is the most effective control amplitude, imposing the most efficient vaccination

against the natural disturbances. Comparing the gain spectrum for the uncontrolled state at

Ac = 0 to the one in presence of the most effective amplitude Ac = 0.05 (see figure 2.19), we

also state that the vaccination strategy is especially suitable if the final aim is to reduce the

stochastic gain over a low frequency band below the optimal control frequency, in other words

for St < 0.075. Finally we confirm the robustness of the vaccination method by performing a

similar analysis for a smaller white noise level An = 0.005 which has a gain of ≈ 100 in absence

of any control (see figure 2.16). However, applying a control with the optimal amplitude

Ac = 0.05, lowers the gain by an order of 65% as shown with the blue curve in figure 2.22.

10-5 10-4 10-3 10-2 10-1 100
10

20

30

40

50

60

70

80

90

100

110

0 1 2 3
10-3

37
38
39

Figure 2.21 – Total gain Gtot (in black), expressed as a function of control amplitudes Ac for
fixed noise level of An = 0.02. The curve in red represents the gain after removing the energy
response at St = 0.075, and in blue after removing the response at all the harmonics of the
control frequency along with the particular frequency itself.
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Figure 2.22 – Total gain Gtot (in black), expressed as a function of control amplitudes Ac for
fixed noise level of An = 0.005. The curve in red represents the gain after removing the energy
response at St = 0.075, and in blue after removing the response at all the harmonics of the
control frequency along with the particular frequency itself.
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3 Capillary jet stability analysis using
the one-dimensional Eggers & Dupont
equations

3.1 Introduction

Rooted on the study of numerous plasma instabilities (Briggs, 1964; Bers, 1983) and the pi-

oneering work of Huerre & Monkewitz (1990), the classical linear stability theory has been

proven to be a relevant tool to analyse fluid instabilities in presence of infinitesimal per-

turbations. Based on the space and time evolution of these perturbations, the flows can

be categorised either as linearly stable or unstable. A stable base flow is defined as one in

which the small perturbations either decay in space or time close to the source or are con-

vected downstream away from the source of disturbance, letting the base flow return back to

quietness.

Analytically, the stability of such base flows can be carried out in a local or a global framework,

depending on the degree of streamwise variation of the base flow (Schmid & Henningson,

2001; Chomaz, 2005; Charru, 2011). A parallel or weakly nonparallel base flow can be studied

using the local framework, wherein the Briggs-Bers zero-group criterion is applied to find

the transition from absolutely to convectively unstable flows. The global analysis, however,

simply defines the flow stability based on the temporal growth rate of the perturbation. A local

convectively unstable base flow can be globally stable since the perturbations are advected

away from their source. On the contrary, a flow which is locally absolutely unstable at all

streamwise locations results into a globally unstable flow (Huerre & Monkewitz, 1990).

The globally stable or locally convectively unstable flow are often associated to an amplifier

flow, for example the flow along a backward facing step for sufficiently low Reynolds numbers

or a jet in the jetting regime. Such flows are extremely sensitive to external noise, naturally

amplifying any applied perturbation (Chomaz, 2005; Schmid, 2007). However, for the liquid

jet with a free interface, the incoming disturbance is convected downstream, culminating
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into its breakup into drops, a feature that cannot be captured in every aspect through the

linear theory. Especially, the interface shape close to the breakup location and the presence of

satellite drops can only be described through nonlinear simulations. However, close to the

breakup, the interface of the jet becomes zero locally, thus making the nonlinear simulations

extremely costly.

To avoid the use of such expensive three-dimensional simulations, Eggers & Dupont (1994),

Brenner, Shi & Nagel (1994) and García & Castellanos (1994) were among the first (see Eggers

& Villermaux (2008) for a historical perspective) to provide a reduced one-dimensional (1D)

form of the Navier-Stokes equation for the axisymmetric jet with a free interface. García &

Castellanos (1994) developed not only the leading order but also several higher-order 1D

approximations of the Navier-Stokes equations. Eggers & Dupont (1994) especially considered

a detailed comparison of the reduced one-dimensional equations and the experiments. Since

then, the accuracy of the 1D Eggers & Dupont equations has since been established by several

authors numerically and experimentally (Ambravaneswaran, Phillips & Basaran, 2000; Ambra-

vaneswaran, Wilkes & Basaran, 2002; Yildirim, Xu & Basaran, 2005; Subramani, Yeoh, Suryo,

Xu, Ambravaneswaran & Basaran, 2006; van Hoeve, Gekle, Snoeijer, Versluis, Brenner & Lohse,

2010). Eggers & Villermaux (2008) provide a meticulous overview of the 1D model comparing

its results to the solution of the full Navier-Stokes equations.

Since the main aim of the thesis is to analyse the response of an axisymmetric jet to externally

applied forcing, a reduced 1D set of equations served as a crucial base to the analysis, especially

in the interest of capturing satellite drops, the interface shape and length before the jet breakup.

Thus in this chapter, we give a brief overview of the 1D Eggers & Dupont equations in Section

3.2, which is largely inspired by the publication of the same authors. Further through the

local stability analysis, we classify the criteria for transition from an absolutely unstable to a

convectively unstable flow in Section 3.3.2. We then formulate a numerical scheme to carry out

nonlinear simulations of the 1D Eggers & Dupont equations in Section 3.4.2. The validation of

the numerical scheme is presented in Section 3.4.3 and some future perspectives to the use of

these equations are discussed in Section 3.5.

3.2 The Eggers & Dupont equations

We consider an axisymmetric column of fluid with density ρ, dynamic viscosity µ and surface

tension γ as shown in figure 3.1. The surrounding medium is considered evanescent and is

neglected. At the nozzle outlet, the jet has a radius of h0 and velocity of U . In the axisymmetric

co-ordinates (r, z) the incompressible Navier-Stokes equation for the flow of the jet reads as,

∂t u+ (u ·∇)u =− 1

ρ
∇p + µ

ρ
∆u+ g , (3.1)
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h(z, t) z

r

zponozzle

2h0

Figure 3.1 – Flow domain and notations used for the governing equations.

where the velocity u = uez + ver and the pressure p are flow variables. The acceleration due to

gravity g points in the positive z direction. The continuity equation for the flow reads,

∇·u = 0. (3.2)

We now introduce the height function h(z, t ) which describes the surface of the cylindrical jet.

The free jet interface moves at the same velocity as the fluid and hence applying the kinematic

boundary condition we obtain,

∂t h +u∂z h = v
∣∣∣
r=h

. (3.3)

The dynamic boundary condition at the free interface gives,

σ ·n
∣∣∣
r=h

=−γC n, (3.4)

where the stress tensor σ is expressed as,

σ=−pI+µ(∇u+∇uT), (3.5)

and the unit normal vector n to the interface, pointing towards the inert surrounding medium

is defined as,

n = (−∂z h,1)√
1+∂z h

. (3.6)

Finally the mean curvature C, defined as C =−∇·n, is expressed in cylindrical co-ordinates as

C = 1

h(1+h′2)1/2
− h′′

(1+h′2)3/2
, (3.7)

where the prime denotes the derivation with respect to z. Thus, the interface h(z, t ) is coupled

to the governing equations (3.1-3.2) through the kinematic (3.3) and dynamic (3.4) boundary

conditions applied at the free surface.

The assumption of the typical radial length scale of the liquid jet being much smaller compared

to its longitudinal length scale, allowed Eggers & Dupont (1994) to use the long-wavelength
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approach for characterizing the jet flow. They expanded the velocity and pressure fields in

Taylor series around the axis of the jet r = 0,

u(r, z, t ) = u0(z, t )+u2(z, t )r 2 + ..., (3.8a)

v(r, z, t ) =−1

2
u0

′(z, t )− 1

4
u2

′(z, t )r 3 − ..., (3.8b)

p(r, z, t ) = p0(z, t )+p2(z, t )r 2 + ... (3.8c)

In equation (3.8a), the longitudinal velocity is described by the uniform flow velocity u0 in

addition to some second order correction terms. The transversal velocity (3.8b), is conveniently

formulated by inserting (3.8a) into the continuity equation (3.2). The above formulations

are inserted in the momentum (3.1) and continuity (3.2) equations. Finally the normal and

tangential forces at the interface r = h (defined explicitly in Eggers & Dupont, 1994) help in

reducing the system of governing equations to a one-dimensional (1D) form, expressed as,

∂u0

∂t
=−u0

∂u0

∂z
− γ

ρ

∂C

∂z
+ 3µ

ρ

[
2

h

∂h

∂z

∂u0

∂z
+ ∂2u0

∂z2

]
+ g . (3.9)

At the leading order the kinematic boundary condition (3.3) reduces to,

∂h

∂t
=−u0

∂h

∂z
− 1

2

∂u0

∂z
h. (3.10)

The leading-order one-dimensional mass (3.10) and momentum (3.9) equations are coupled

together and are henceforth referred to as the 1D Eggers & Dupont equations. Note that at the

leading order, the velocity at the jet interface is approximated by u0, which is the uniform flow

velocity at r = 0. Hereafter, in all the equations we replace u0 ≡ u.

In absence of gravitational force, the dimensionless form of the equations, obtained by choos-

ing h = h̃h0 and u = ũh0/τi , where h0 is the nozzle radius, τi =
√
ρh3

0/γ is the inertial time

scale, ignoring the tilde are written as,

∂h

∂t
=− 1

2h

∂

∂z
(h2u), (3.11a)

∂u

∂t
=−u

∂u

∂z
− ∂p

∂z
+3Oh

(
2

h

∂h

∂z

∂u

∂z
+ ∂2u

∂z2

)
, (3.11b)

where, p is the nondimensional pressure obtained by introducing the a pressure scale γ/h2
0.

The system of equations (3.11) are governed by the dimensionless number Ohnesorge Oh =
µ
/√

ργh0 expressed as the ratio of the viscous forces to inertial and surface tension forces. A

high Oh stabilises the jet by decreasing the instability growth rate.

Using the associated characteristic velocity (h0
/
τi ), the non-dimensional boundary conditions

for the jet at nozzle inlet are reduced to h(0, t ) = 1 and u(0, t ) =p
We, where, We represents the

Weber number We = ρh0U 2
/
γ, and it measures the ratio between the kinetic energy and the

surface energy.
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3.3. Linear stability analysis of viscous jets

The steady state form of the continuity equation (3.11a) gives the relation between the steady

state shape hb and velocity ub as,

h2
bub =Q =p

We, (3.12)

where the expression on the right hand side is obtained from the flow condition at the nozzle

exit. Hence the steady state velocity is simply expressed as
p

We/h2
b . Since the base state of

the 1D Eggers & Dupont equations for viscous jet is unaffected by any external body forces,

we consider it to be a cylinder of constant radius hb = 1 with the corresponding velocity

ub =p
W e.

3.3 Linear stability analysis of viscous jets

The linear stability analysis of purely parallel jets, can be analysed in the local framework by

estimating the growth of small perturbations about the base state. In the case of a homoge-

neous base flow, a Fourier transform is applied which naturally introduces perturbations of

the form e i (kz−ωt ), where k denotes the spatial wavenumber and ω the temporal frequency.

Thus considering the normal mode perturbations, the flow variables h(z, t) and u(z, t) are

decomposed as:

h(z, t ) = hb +εĥe i (kz−ωt ), (3.13a)

u(z, t ) = ub +εûe i (kz−ωt ), (3.13b)

where the perturbation amplitude ε ¿ 1, and ĥ, û are the eigenmodes. Additionally, for

the sake of streamlining the results of the linear analysis with that of the numerical analysis

presented in section 3.4, we further replace h2 by a. Hence the perturbation ĥ = 2â.

In general, the wavenumber and the frequency are both complex, (k,ω) ∈C. The selection of

real k ∈R and complex ω ∈C, defines the so-called temporal stability analysis which examines

the temporal evolution of the perturbation in presence of a real spatial forcing. However,

defining k ∈C and ω ∈ R refers to the spatial stability analysis where we look for the spatial

evolution of the perturbation in response to the real forcing frequency.

Contrary to the temporal stability analysis, the spatial analysis can be ill posed if we operate

in a regime where the flow is naturally unstable. In such cases, the net response of the flow

is usually influenced by the natural unforced growth, an aspect which can be captured by

considering both (k,ω) ∈C, a study referred to as the spatio-temporal stability analysis. This

analysis defines the flow as convectively unstable or absolutely unstable, the latter being

related to the ill disposed problem for analysing the spatial stability.

The stability analysis for each of the above mentioned three cases can be studied by formalizing

the dispersion relation which couples ω and k. Inserting the modal decomposition (3.13) into
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equation (3.11) and linearising about (ab ,ub) leads to the dispersion relation,

ω=p
Wek − 3i Ohk2

2
± i

√
k2 −k4

2
+ 9Oh2k4

4
. (3.14)

The dispersion relation (3.14) can be solved for the relevant stability analyses by considering

either k ∈R or ω ∈R; or considering both as complex (k,ω) ∈C.

3.3.1 Temporal stability analysis

If we are interested in the temporal response of small spatial perturbations imposed on the

jet, we use the temporal stability approach wherein the dispersion relation (3.14) is solved for

complex ω ∈C for a given real k ∈R. For the flow to be linearly unstable, the imaginary ωi > 0

for a given k. Imposing this condition in equation (3.14), we obtain analytically the cutoff

wavenumber kcut = 1 beyond which the flow is always stable, for all values of Oh and We.

Within the cutoff regime, we then look for the maximum wavenumber kmax which leads to the

most amplified temporal evolution ωi,max by plotting the temporal growth rate as a function

of the wavenumber for different Oh and We as shown in figure 3.2. Figure 3.2(a) shows that
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Figure 3.2 – (a) and (b) show ωi and ωr as a function of wavenumber for different Oh and at
constant We. (c) and (d) show the same for different We and at constant Oh. In either case, •
denotes the maximum ωi and the related ωr .
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both the wavenumber kmax which produces the maximum temporal growth rate and the

resulting ωi,max, decreases as Oh increases, thereby showing that the stability of the parallel jet

intensifies due to the viscous effects. Contrary to this, the advection speed of the jet, denoted

by We does not govern the temporal growth rate as shown in figure 3.2(c) and only modifies

the respective ωr .

The simplistic dispersion relation for the parallel jet allows to derive an analytical expression

for kmax as follows:

kmax =
√

1

2+3
p

2Oh
. (3.15)

For a purely inviscid jet, the above expression further simplifies to give kmax = 0.71.

3.3.2 Absolute-convective stability analysis

In addition to ω ∈ C if we now generalise k ∈ C, the stability for parallel base flows can be

analysed in the spatio-temporal framework, which includes the effect of advection speed

of the jet on its stability properties. In this framework, we define the impulse response of a

system to a localised perturbation which generates a wave packet growing in space and time.

The spatio-temporal behaviour of the wave packet can be described in terms of the complex

absolute wave number k0 and the corresponding complex absolute frequency ω0 = ω(k0)

whose imaginary part ω0,i will determine the temporal evolution of the wave packet. For

ω0,i > 0 the system is absolutely unstable since the disturbance grows fast enough to invade

entire domain in the laboratory frame and for ω0,i < 0 the system is convectively unstable

as the localised perturbations are allowed to convect downstream before they grow in the

laboratory framework. The complex pair (k0,ω0) is defined using the saddle point condition

or the Briggs-Bers zero-group velocity criterion, together with the dispersion relation

dω

dk
(ω0,k0) = 0, D(ω0,k0) = 0, (3.16)

where D represents the dispersion relation, and,

∂ω

∂k
=p

We−3i Ohk ± i
1−2k2 + (3Ohk)2√
2(1−k2)+ (3Ohk)2

. (3.17)

Equation (3.16) identifies the critical dimensionless speed Wecrit , for a fixed Oh , which signifies

the saddle points of the jet for an absolute to convective instability transition as shown in

figure 3.3 with the full and dashed lines. The full and dashed curves are obtained numerically

starting from either a low or a high Oh number, respectively, which physically correspond to a

relatively inviscid or inertialess jet. For both a pure inviscid or in contrast an inertialess jet, the

dispersion relation can be simplified further to obtain the absolute to convective transition

criteria. In the limit Oh → 0, this criteria is retrieved as We = 4 and for Oh →∞, it is expressed
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Figure 3.3 – The plot shows the absolute-convective transition (represented by full (in blue)
and dashed (in black) lines) for viscous jets.

as
p

WeOh = 1/3 (Augello, 2015). For simplicity, we express the latter criteria in the form of a

straight line with a slope of (9Oh3)−1 as shown in figure 3.3. We observe that the viscous jet

saddle points are in accordance with these values at low and high Oh limits. Note here that the

expression
p

WeOh can be simplified as the Capillary number, C a =µU /γ, which compares

the advection speed with the relevant capillary wave speed in the viscous-dominated regime.

For the intermediate values of Oh we obtain two saddle points, thus giving two distinct

values of the absolute-convective transition criteria. Each saddle point corresponds to one of

the inviscid or inertialess limits, but we could not clarify which was the relevant one in the

intermediate Oh range.

3.3.3 Spatial stability analysis

Figure 3.3 identifies the absolutely unstable regime, where the spatial stability analysis due to

external harmonic forcing is ill posed. Indeed the forced response at a given real frequency ω

will be mixed with the naturally growing wave packet which will invade the entire domain. In

contrast, the spatial stability analysis is well posed in the convectively stable regime where the

response is primarily dominated by the forced response.

However, the spatial stability problem is not as straightforward as the temporal stability

problem owing to the existence of several spatial branches as presented in Guerrero, González

& García (2016). As in the given case, the solution of the dispersion relation (3.14) for k ∈ C
iand ω ∈ R, results in four roots of k. Moreover, the classification of the dominant k wave
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Figure 3.4 – (a) The four k branches shown in four different colours, obtained as a solution of
the dispersion relation for complex ω for a jet defined by Oh = 0.3 and We = 1.75. The arrows
represent the direction of movement of the waves for increasing values of ωi . (b) Growth
rate (−ki ) plotted as a function of the frequency for the four k branches for ωi = 0 with the
dominant k branch represented in black.

requires the identification of the propagation direction of these waves which can be precisely

done as described below.

The dispersion relation (3.14) is first solved for a given range of complex ω by adding an

artificial imaginary part γ>ωi,max (Gallaire & Brun, 2017). The solution consists of upstream

(referred as k−) and downstream (denoted by k+) propagating branches. To identify these

branches, we successively lower the artificial γ to 0, unless a saddle point appears at ω0,i > 0

if the flow is absolutely unstable. This helps to separate the branches into the upper ki > 0

and lower ki < 0 planes, as shown in figure 3.5(a) with the two k+ branches denoted by the

black and green colour and the two k− waves by the red and blue colour. For a downstream

propagating k+ branch damped in space, the associated ki > 0.

Next to identify the most amplified downstream propagating wavenumber, we plot the spatial

growth rate −ki as a function of the real forcing frequency ω as shown in figure 3.5(b) from

where we conclude that the branch in black has a growth rate which is positive and has

a preferential maximum growth rate for a given frequency. Hence we chose the k wave

corresponding to this −ki branch as the relevant wavenumber for all frequencies whose

growth rate −ki determines the spatial stability. The base flow is considered linearly unstable

if −ki > 0.

Further to see the dependence of Oh and We number on −ki , we plot the spatial growth rate

as a function of forcing frequency as shown in figure 3.5(a) and 3.5(c). Higher the Oh and We,

more stable is the base flow and lower is the spatial growth rate as seen from the plots. The
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Figure 3.5 – (a) and (b) show −ki and kr as a function of real frequency for different Oh and at
constant We. (c) and (d) show the same for different We and at constant Oh. In either case,
denotes the maximum −ki and the related kr .

optimal forcing ωopt resulting in the maximal −ki decreases as Oh increases (see figure 3.5(a))

however we see an opposite trend for the We in figure 3.5(c) where higher the advection, higher

is the ωopt . Nevertheless, the resulting kr obtained at ωopt are independent of the variation in

We as seen in figure 3.5(d)).

Spatial gain

Representing the eigenmode [a,u] by q̂, for a known k branch the spatial response at a real ω

can be expressed as,

q′(z, t ) = q̂(z)exp

[
i

(∫ z

0
k(z ′)dz ′−ωt

)]
. (3.18)

Thus the response q′ at a given z incorporates all the k waves up to z. For the parallel base

flow the expression (3.18) further simplifies to

q′(z, t ) = q̂z=0 exp

[
i

(
kz −ωt

)]
. (3.19)
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Figure 3.6 – Comparison of gain and ωopt obtained from the spatial analysis for two different
domain sizes L = 25 and L = 50 for a jet characterized by Oh = 0.3 and We = 1.75.

The amplitude of the overall response in a domain of size L, at ω can be expressed using the

L2 norm for complex variables, expressed as

∥∥q′∥∥=
∥∥∥∥∫ L

0
q̂z=0 exp(ikz)dz

∥∥∥∥ . (3.20)

While doing the above, the eigenmode at every location in z including the nozzle exit is

normalized to have an amplitude of 1. This implies that the amplitude of the forcing at

the inlet is
∥∥ f

∥∥ = 1. Classically, the amplification due to a given forcing at frequency ω can

be expressed through the gain, which is defined as the ratio between the amplitude of the

response and the amplitude of the input forcing:

G(ω,L) =
∥∥q′∥∥∥∥ f

∥∥ . (3.21)

In particular it is of interest to determine the largest amplification factor,

Gmax(ωopt ,L) = max

∥∥∥∥∫ L

0
q̂z=0 exp(ik(ω)z)dz

∥∥∥∥ . (3.22)

This allows us to determine the optimal forcing frequency ωopt producing the maximal gain.

We apply the above formulation for a jet flow characterized by Oh = 0.3 and We = 1.75 which

exists in the convectively unstable regime (as denoted by the green cross in figure 3.3). Figure

3.6 shows the spatial gain as a function of forcing frequency for two arbitrary domain sizes

L = 25 and 50, where the gain is seen to increase with an increases in L. However, irrespective

of the domain size, the optimal forcing frequency ωopt = 0.75, which is in accordance with the

one obtained for the maximum spatial growth rate −ki (refer figure 3.5(c)).
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3.4 Nonlinear simulations

For the parallel jets, the local stability analysis is limited to the prediction of the most unstable

forcing. Often, the external forcing does not result in the breakup of fixed sized drops, rather

the regular sized drops are followed by much smaller ‘satellite drops’. Thus, to unravel the true

interface evolution, including the shape close to the breakup point where the interface height

h approaches to a zero value, we need a nonlinear analysis that captures the exact response of

the jet.

We perform such nonlinear simulations by slightly modifying the nonlinear governing equa-

tions (3.11). The numerical scheme and its validation with the results of van Hoeve et al. (2010),

are presented in the following sections. Finally the nonlinear model is used to evaluate the jet

response to different external forcing and the optimal forcing hence obtained is compared to

the prediction of the local analysis.

3.4.1 Governing equations

In order to remove the singularity in expression (3.11b) for the pressure, when h(z, t ) → 0, we

define the interface height h(z, t) in terms of function a(z, t) where a = h2. The governing

equations (3.11) thus transform into,

∂a

∂t
=− ∂

∂z
(au), (3.23a)

∂u

∂t
=−u

∂u

∂z
− ∂p

∂z
+3Oh

(
∂

∂z

(
a
∂u

∂z

) 1

a

)
, (3.23b)

p =


(
2− ∂2a

∂z2

)
a +

(
∂a
∂z

)2

2
(

1
4

(
∂a
∂z

)2
+a

) 3
2

 . (3.23c)

The base state solution for the jet interface ab = h2
b . In absence of external forcing, the jet inlet

is defined by ab(0, t) = 1 and ub(0, t) =p
We. The nonlinear governing equations are closed

with periodic boundary conditions.

3.4.2 Numerical scheme

The governing equations (4.7) are first discretized in space, after which the resulting ordinary

differential equations (ODE) are integrated in time. Diffusion terms are evaluated using

second-order finite differences, with a central scheme for intermediate nodes and a forward

or backward scheme for boundary nodes. Advection terms are obtained using a weighted

upwind scheme inspired by Spalding (1972) hybrid difference scheme. Unlike the latter, which

approximates the convective derivative using a combination of central and upwind schemes,

we evaluate the derivative based on a combination of forward and backward finite differences.
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An advection term d A/d z is evaluated at node i as(
d A

d z

)
i
=β

(
d A

d z

)
i ,b

+ (1−β)

(
d A

d z

)
i , f

, (3.24)

where indices b and f refer to the backward and forward finite difference schemes, and β is

a weight coefficient that depends on the local value of velocity u at node i together with a

parameter α,

β= tanh(αui )+1

2
. (3.25)

For the entire work presented in this thesis, the numerical stability was always ensured by using

a 10-point stencil. Thus, the backward difference term relies on a stencil that spans nodes

i −5 to i +4, and the forward difference term employs nodes i −4 to i +5. For large enough

downstream or upstream velocities, β will tend to 1 or 0 respectively; hence (5.29) reduces

to a regular upwind difference scheme. For smaller velocity magnitudes in between, (5.29)

produces a weighted combination of backward and forward differences. In our simulations,

we chooseα= 50 so that the transition between the backward and forward difference schemes

mostly occurs when |u| < 0.05. Finally, advection terms at nodes close to the boundary are

evaluated based on the values of the closest 9 adjoining nodes.

After obtaining all spatial derivatives, the resulting ODEs are integrated using the MATLAB

solver ode23tb, which implements a trapezoidal rule and backward differentiation formula

known as TR-BDF2 (Bank, Coughran, Fichtner, Grosse, Rose & Smith, 1985), and uses a variable

time step to reduce the overall simulation time.

The numerical domain L is taken sufficiently large to capture the breakup of the jet. The

jet interface is initialized by a semicircle of whose radius is of length one and the velocity is

kept constant at
p

We. For the remaining part of the domain the interface and its velocity is

initialized to zero.

At every time step, the solution is evaluated for three conditions: (i) Pinch-off (breakup): It is

defined as when the value of a passes below a threshold value of 10−5. The corresponding time

tpo is saved and the position of the jet tip is updated as Ntip = Npo, where Npo is the pinch-off

location. The solution for a and u beyond Ntip is set to zero. For subsequent time steps,

Ntip has two possibilities – it can either advance or recede, which requires the following two

conditions. (ii) Advancing jet: The values of a at nodes Ntip −1 and Ntip are extrapolated to find

a at Ntip +1. If the extrapolated value is larger than a predefined value of 5·10−3, the parameter

Ntip is incremented by 1, and a and u at the new Ntip are assigned values extrapolated from its

previous two neighbours. (iii) Receding jet: If the value of a at Ntip falls below a predefined

value of 10−3, a and u at Ntip are set to zero and the parameter Ntip is reduced by 1. These

three conditions enable the numerical integration of the governing equations in a way that

captures accurately the breakup of the jet and the motion of the tip.
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Figure 3.7 – Numerical solutions of the governing equations (4.7) for a jet in an inert medium
with Oh = 0.1 and We = 8.7 (a) Results from our numerical scheme described in Section 3.4.2
and (b) experimentally-validated numerical results of van Hoeve et al. (2010). The red bar
corresponds to a length scale of 200µm.

3.4.3 Numerical scheme validation

In this section, we show the validation of our numerical scheme described in the previous

section for the simulations of reduced 1D Eggers & Dupont (1994) equations represented by

the equation (4.7). For the purpose of validation, we use the numerical data of van Hoeve

et al. (2010) which are described for micro-jets of initial radius h0 = 18.5µm with density

ρ = 1098kg/m3, viscosity η = 3.65mPa.s, and surface tension γ = 67.9mN/m. The jet is

injected at a constant flow rate Q = 0.35mL/min, corresponding to an initial jet velocity

U0 = Q/(πh2
0) = 5.4m/s. The flow can thus be described by the dimensionless numbers

Oh = 0.1 and We = 8.7.

To initiate jet breakup in their numerical simulations, a harmonic modulation of the dimen-

sional nozzle radius is applied as follows:

h(z = 0, t ) = h0 +δsin2πnt , (3.26)

with δ/h0 ≈ 0.005 the forcing amplitude, and n the driving frequency. The latter is selected to

match the optimum wavelength λopt for jet breakup, that is, n =U0/λopt . To ensure a constant

flow rate Q through the nozzle, the dimensional velocity is modulated correspondingly as

u0(z = 0, t ) = h2
0U0

[h(z = 0, t )]2 . (3.27)

The amplitude of the wave imparted by the forcing at the nozzle grows until it equals the
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radius of the jet. Pinch-off or jet breakup is then defined as when the minimum width of the

jet is below a predefined value set to 10−3h0.

In our numerical simulations, we compute solutions to the governing equations (4.7) with the

same harmonic forcing and flow parameters as in van Hoeve et al. (2010). A hemispherical

droplet described by h = (h0
2−z2)1/2 is used as initial condition for the shape of the jet, the tip

of which is therefore initially at z = h0. The velocity is initialized to u0 everywhere along the jet.

A fixed number of grid points, corresponding to a discretization size d z = 0.05, is uniformly

distributed throughout the entire domain. The final validation is presented in Figure 3.7,

which shows comparison of the time series of the dynamics of jet breakup obtained from our

numerical scheme and the numerical results from van Hoeve et al. (2010).

The jet breakup is characterized by the break up period ∆Tpo and the breakup length lc . In the

permanent regime, when the breakup of the jet occurs at the same location along the the axial

direction, we define lc as the stable length of the jet between the nozzle exit and the breakup

location. In this regime ∆Tpo is expressed as the time between two consecutive breakups at

the breakup location.

For both figures, the evolution of the jet shape is shown at time intervals of 2µs. Our numerical

model predicts a ∆Tpo = 25µs and a lc = 856µm. The results of van Hoeve et al. (2010), have a

∆Tpo ≈ 26−30µs and a lc ≈ 800µm. The error in breakup length between the two codes can be

explained by the difference in grid size. Overall, figure 3.7 shows a good agreement between

both results and validates our numerical scheme.

3.4.4 Simulation results

Forced simulations

For the validation of the numerical scheme at Oh = 0.1 and We = 8.7, we imposed an inlet dis-

turbance both in shape and velocity, at a frequency which was deduced from the wavenumber.

To analyse if indeed this forcing frequency was the optimal one to produce maximum amplifi-

cation, we carried out further nonlinear simulations close to the imposed forcing frequency.

The strength of a given perturbation was determined on the basis of the stable jet intact length

before the breakup lc , obtained when the jet flow enters a permanent regime. Performing

the simulations for two different forcing amplitudes ε= 0.005 and 0.001 as shown in figure

3.8(b), we observe that the optimal frequency ωopt = 2.06, producing the shortest lc . The ωopt

is independent of the forcing amplitude and is in close agreement with the results of spatial

analysis shown in figure 3.5(a). However, smaller the forcing amplitude, larger the value of lc ,

due to the decreasing amplifying potential of the flow.

Next, we carried out similar simulations for another convective case Oh = 0.3 and We = 1.75,

but with a slightly modified forcing. We modelled the external forcing on the jet by perturbing
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only the inlet velocity using a forcing of the form,

u f (0, t ) = IR(εe iωt ) = εcos(ωt ). (3.28)

Thus, in presence of the forcing, the boundary conditions at the inlet were modified to a(0, t ) =
1 and u(0, t) = p

We +u f . We performed the simulations for different forcing amplitudes

ε = [10−2 10−5], each of which resulted in the same optimal forcing frequency ωopt = 0.78

(refer figure 3.8(a)). The spatial analysis performed for a similar case as shown in figure 3.5(b),

gives ωopt = 0.75, close to the one obtained from the nonlinear simulations.

Free regime

If the external forcing is removed and the jet is allowed to flow naturally, we observe a dis-

ordered breakup mechanism especially if the base flows lies in the convective regime. This

feature is closely related to the freely flowing amplifier flows which do not have an inherent

frequency selection and behave erratically in absence of an external forcing. Contrary to this,

for a jet that lies in the absolutely unstable regime, for example at Oh = 3.33 and We = 0.01 (as

marked with the magenta cross in figure 3.5), we would expect that the perturbations grow lo-

cally without travelling downstream to cause breakups. Performing numerical simulations for

the same conditions, as shown as in figure 3.9, we observe that the breakup is not immediate,

rather the jet interface shows a resistance to breakup while continuously amplifying close to

the nozzle. In fact, the interface continuously bulges to reach radius 8 times the order of the

nozzle radius at the end of dimensionless time t = 1000.

Anticipating that a faster breakup of the jet could be obtained by initiating the jet with a
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Figure 3.8 – Nonlinear simulations performed for different forcing amplitudes ε and for base
flows characterized by (a)Oh = 0.3 and We = 1.75 and (b)Oh = 0.1 and We = 8.7, showing the
breakup length as a function of the forcing frequency.
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Figure 3.9 – Jet interface evolution as function of time for We = 0.01 and Oh = 3.33. The red bar
corresponds to a radial length scale of 5 dimensionless units.
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Figure 3.10 – (a) Pinch-off time tpo as a function of Oh for a fixed We = 10−3. (b) Interface shape
at t = 2500 for three different jet flows characterized by fixed We = 10−3.

cylinder of constant radius h0, instead of a tip of radius h0 which needs long time to propagate

and form a jet, we run simulations with the new initial state defined over a domain size L = 50,

for We = 10−3 and varying Oh numbers between 3.2 to 64. The high Oh allows one to cross

over into the convective regime. We observed that in all the cases there was a breakup initiated

in the cylindrical jet, the time tpo of which is represented in figure 3.10(a) as a function of

the Oh number. Larger the Oh number, higher the viscosity of the jet and larger was the time

needed to cause the first breakup. Post breakup in the cylindrical base state, the tip of the jet

continued to bulge till the end of the maximum simulation time (t = 2500), similar to the case

shown in figure 3.9, without any further breakups. In figure 3.10(b), we show the final shape at

t = 2500 for three different Oh numbers where we see that the neck part of the jet close to the

nozzle exit is seen to elongate as the Oh is increased. Thus, the bulging behaviour seen in the

jet cannot be inferred purely on the basis of absolute/convective unstable flows, since it is also

evident for very high Oh numbers. Rather, this peculiar behaviour can be attributed to the

small inertia regime (We = 10−3) where all the jets between Oh = [3.2 64] are characterized.
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3.5 Conclusion

The main aim of this chapter was to introduce the 1D Eggers & Dupont equations, and the

numerical tool employed to analyse the jet using these equations. In the subsequent chapters

4 and 5, we will modify the described governing equations and the numerical scheme slightly

to capture the interface dynamics for jets stretched by gravity and for silicone in silica jets.

We also performed the local stability analysis on these reduced one-dimensional equations.

The absolute-convective stability analysis categorized the stability of the jet based on the

Wecrit number whereas the temporal and spatial stability analysis predicted the maximum

wavenumber and the optimal frequency (ωopt), respectively, that produces the maximum

amplification for a given jet. To analyse the nonlinear governing equations, we then introduced

the numerical scheme and the validation of the same using the results of van Hoeve et al.

(2010), where the validation was found to be satisfactory. The validated numerical code was

further used to obtain numerically the ωopt resulting in the shortest breakup length. The ωopt

was found to be independent of the forcing amplitude.

Finally we performed simulations in a very low We regime, where the jet interface was seen

to continuously bulge to have diameters much larger compared to the nozzle radius. Indeed

such a behaviour cannot be speculated from the linear stability analysis, which is only valid

when the perturbation wavelength is of the order of the radial length scale. The simulation

time was kept sufficiently long to observe the evolution of low inertia jets. Running these

simulations for exorbitantly long times or introducing a large amplitude nozzle forcing, could

possibly result in capturing the jet breakup. We believe that for the selected simulation time,

the low inertia jet is not capable of pinching because the inlet flux is continuously distributed

in the radial direction without rapidly elongating the jet in the axial direction.
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4 Amplitude dependent preferred mode
of an axisymmetric single phase
gravity-driven falling viscous jet

Remark This chapter is largely inspired by the publication Frequency selection in a gravita-

tionally stretched capillary jet in the jetting regime

Isha Shukla1 and François Gallaire1

1Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne,

Lausanne, CH-1015, Switzerland

Submitted in Journal of Fluid Mechanics

A capillary jet falling under the effect of gravity continuously stretches while thinning down-

stream. We report here the effect of external periodic forcing on such a spatially varying jet

in the jetting regime. Surprisingly, the optimal forcing frequency producing the most un-

stable jet is found to be highly dependent on the forcing amplitude. Taking benefit of the

one-dimensional Eggers & Dupont (J. Fluid Mech., vol. 262, 1994, 205-221) equations, we

investigate the case through nonlinear simulations and linear stability analysis. In the local

framework the WKBJ formalism, established for weakly non-parallel flows, fails to capture the

nonlinear simulation results quantitatively. However in the global framework, the resolvent

analysis supplemented by a simple approximation of the required response norm inducing

breakup, is shown to correctly predict the optimal forcing frequency at a given forcing ampli-

tude and the resulting jet breakup length. The results of the resolvent analysis are found to be

in good agreement with those of the nonlinear simulations.
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4.1 Introduction

Pele’s hair, which are thin strands of volcanic glass formed in the air during the fountaining

of the molten lava, is an impressive example of the stretching ability of highly viscous fluids.

Named after Pele, the Hawaiian goddess of volcanoes, a single strand with a diameter of less

than 0.5 mm, can extend up to a length of 2m (Shimozuru 1994; Eggers & Villermaux 2008). If

such viscous strands are pinned at one end, as in the case of honey dripping from a spoon

under its own weight, gravity acts as the stretching tool for the viscous fluid producing very

thin and stable liquid threads (Senchenko & Bohr, 2005; Javadi et al., 2013). The cross-section

of such threads varies continually, as the jet accelerates downstream in the direction of gravity,

before breaking into drops.

Physically, the breakup of the jet into drops begins with the excitation of a temporally or

spatially amplifying suitable mode due to weak external disturbances. In practice, this weak

agitation is usually imposed by controlled harmonic perturbation, either from within or at

the outlet of the nozzle, to generate spatially amplifying waves leading to jet breakup. In this

direction, the primary objective of this paper is to evaluate the response of an incompressible

jet falling in presence of gravity, to externally imposed harmonic perturbations characterized

by a fixed frequency and amplitude, and to find the optimal forcing which generates the most

amplified response.

The external forcing is vital in the production of controlled micron-sized droplets, a feature

essential to several application as in inkjet printers (Basaran 2002; Wijshoff 2010; Basaran

et al. 2013), pharmaceuticals (Bennett, Brown, Zeman, Hu, Scheuch & Sommerer, 2002) and

powder technology (van Deventer, Houben & Koldeweij, 2013), to name a few. In view of the

limitations linked to the fabrication of such small droplets, most of the devices used for the

drops production depend on the generation of highly thin liquid threads whose diameters are

several orders smaller than the nozzle diameter. Some common methods for producing such

threads use tangential electrical stresses (in electrospinning devices, Doshi & Reneker 1995;

Loscertales, Barrero, Guerrero, Cortijo, Marquez & Ganan-Calvo 2002), using outer co-flows

(Marín, Campo-Cortés & Gordillo, 2009) or a rotating spinerett (in fibre spinning applications

(Pearson & Matovich, 1969)). Rubio-Rubio et al. (2013) showed an alternative method for

producing highly elongated jets through the use of gravity, in which the mass conservation of

the liquid jet forces its thinning as the liquid accelerates downstream.

The breakup of a liquid thread into drops, governed by the relative strength of the surface

tension effect over the viscous and the inertial effects, was first explained by Plateau (1873) and

Rayleigh (1879) for a uniform column of fluid. What adds complexity to the well understood

viscous jet breakup mechanism is the presence of gravity which significantly stretches the base

flow shape. The stability of the such spatially varying gravity jets should ideally be examined

using the global stability analysis and by including the non-parallel effects of the base flow.

A similar difficulty linked to the non-parallel nature of the flow results from the adaptation

of the flow from a wall bounded flow within the nozzle to a free jet (Sevilla, 2011). Turning
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back to falling jets stretched by gravity, Sauter & Buggisch (2005) were the first to approach the

problem theoretically by defining a linear global mode that correlated with the self sustained

oscillations of the falling jet, observed during the jetting (globally stable) to dripping (globally

unstable) transition. The work of Sauter & Buggisch (2005) was extended by Rubio-Rubio

et al. (2013) experimentally and theoretically by increasing the range of liquid viscosities and

nozzle diameters. Additionally they retained the entire expression of the curvature term for

the formulation of their stability analysis, a feature that helped them to accurately predict the

critical flow rate for the stability transition and the oscillating mode compared to the previous

author. However, none of these studies predicted the jet stable length as a function of the flow

rate and fluid properties, a question which was pursued by Javadi et al. (2013) experimentally

and theoretically.

More recently, Le Dizès & Villermaux (2017) determined theoretically the stable jet length,

wavelength at breakup and resulting drop size due to the most dangerous perturbation applied

either at nozzle exit or affecting the jet all along its length for different jet viscosities. Their

analysis accounted for both the base state deformation and modification of local instability

dispersion relation as the jet thins in the direction of gravity. Notably, extending the work

of previous authors (Tomotika, 1936; Frankel & Weihs, 1985; Leib & Goldstein, 1986; Frankel

& Weihs, 1987; Senchenko & Bohr, 2005; Sauter & Buggisch, 2005; Javadi et al., 2013) they

used the local plane wave decomposition (WKBJ approximation) for their analysis. However,

the gain resulting from a perturbation was computed by considering only the exponential

(e) terms of the WKBJ approximation. Additionally, an ad hoc spatial gain of e7, of the linear

perturbations was assumed to be sufficient for breakup. Thus the level of noise was considered

fixed for all the theoretical analysis.

In this paper, we go beyond the global stability analysis of the gravity jets, and always operate

in the stable regime where the jet behaves inherently as an amplifier. Precisely, we look at the

receptivity of the jet to external perturbations in this regime, through nonlinear simulations

and resolvent analysis with the aim of finding the optimal forcing which results in the most

amplified disturbance. Unlike Le Dizès & Villermaux (2017), we consider an external forcing

characterized by different amplitudes. Our analysis exemplifies the effect of forcing amplitude

on the breakup length and the optimal forcing frequency. We also investigate the jet response

using the WKBJ approximation and assess its validity for the spatially varying gravity jet. Our

entire study is based on the slender-jet approximation (Eggers & Dupont, 1994) of the Navier-

Stokes equation for an axisymmetric jet. The reduced one dimensional (1D) model has turned

out to be extremely valuable for realistic representation of jets (Ambravaneswaran et al. 2002;

van Hoeve et al. 2010) by accurately capturing the jet interface close to the breakup as well

as the formation of ‘satellite’ drops. During the final stage of this work, we became aware of

the work of (Lizzi, 2016) who has compared a resolvent analysis to experimental results and

also revealed the dependance of the optimal frequency and breakup length as a function of

time-harmonic forcing or noise amplitude.

The paper is structured as follows. Section 4.2 describes the governing equations. Section

75



Chapter 4. Amplitude dependent preferred mode of an axisymmetric single phase
gravity-driven falling viscous jet

4.3 discusses the nonlinear simulations where the results are detailed in Section 4.3.2. The

local stability analysis of the gravity jet is performed in Section 4.4 where we compare the

jet response using stability analysis in Section 4.4.2 and the WKBJ formulation in Section

4.4.3. We then operate in the global framework in Section 4.5 where the significance of the

resolvent analysis is elucidated in Section 4.5.2. We show that the reformulated resolvent

analysis is self sufficient in predicting the optimal forcing frequency and the breakup length as

obtained through the nonlinear simulations. Finally, we apply a white noise disturbance on

the jet inlet to explore its behaviour in comparison to the expected response to the optimal

forcing in Section 4.6. The conclusion and some perspectives related to the present work are

summarized in Section 4.7.

4.2 Mathematical formulation

We consider an axisymmetric viscous jet falling vertically from a nozzle under the effect of

gravity g . At the nozzle outlet, the jet has a fixed radius h̄0 and velocity ū0. The surrounding

medium is considered evanescent and is neglected. The density, dynamic viscosity and surface

tension of the jet are denoted by ρ, µ and γ, respectively.

The behaviour of the jet is analysed using the leading-order one-dimensional mass and

momentum equations, derived by Eggers & Dupont (1994). The dimensionless form of the

equations, obtained by chosing h̄0 as the characteristic length scale, the inertial time τi =√
ρh̄3

0/γ as the characteristic time scale and γ/h̃2
0 as the pressure scale, are written as,

∂h

∂t
=− 1

2h

∂

∂z
(h2u), (4.1a)
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where, the dimensionless pressure p(z, t ) is expressed as,
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In equation (4.1), h(z, t) and u(z, t) represent the height of the jet interface and the velocity

at the axial distance z. The system of equations (4.1) are governed by the dimensionless

numbers Ohnesorge (Ohin) and Bond (Boin) defined at the inlet. Ohnesorge, expressed as

Ohin =µ/√
ργh̄0, relates the viscous forces to inertial and surface tension forces. The Bond

(Eötvös) number denoted by Boin = ρg h̄2
0

/
γ, measures the strength of the surface tension

forces to body forces. A high Ohin or Boin leads to a stabilised jet interface.

Using the associated characteristic velocity h̄0/τi , the non-dimensional boundary conditions
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for the jet at nozzle inlet are reduced to:

h(0, t ) = 1, (4.3a)

u(0, t ) =
√

Wein. (4.3b)

Here, Wein represents the Weber number defined at the nozzle inlet, Wein = ρh̄0ū2
0

/
γ, and it

measures the ratio between the kinetic energy and the surface energy.

The steady state form of the continuity equation (4.1a) gives the relation between the steady

state shape hb and velocity ub as,

h2
bub =Q =

√
Wein. (4.4)

Here Q is the dimensionless flow rate, obtained from the nozzle conditions. This gives ub =p
Wein/h2

b . Using the relation (4.4), the steady state momentum equation (4.1b) reduces to,

2Q2h′
b −h5

bC′+6QOhin(hbh′
b

2 −h2
bh′′

b)+h5
bBoin = 0, (4.5)

where derivatives are with respect to z and C is the jet interfacial curvature, expressed as,

−h2
bC′ = h′

b

[1+ (h′
b)2]1/2

+ hbh′
bh′′

b +h2
bh′′′

b

[1+ (h′
b)2]3/2

− 3h2
bh′

b(h′′
b)2

[1+ (h′
b)2]5/2

. (4.6)

For the fixed nozzle inlet, equation (4.5) is subject to boundary condition hb = 1 at z = 0.

Two more boundary conditions are needed to well define this differential problem of order

three. However, exempting the jet tip from the base flow calculation gives us the liberty to

impose a constant slope (h′
b = 0) and curvature (h′′

b = 0) at the exit of the jet. It should be noted

that the boundary conditions applied at the jet exit should be treated as a way to close the

differential problem rather than depicting physical boundary conditions. We made sure that

these boundary conditions did not impact the overall base state solution by computing the

solution over a large enough domain where the base state solution naturally converges to a

solution with h′
b = 0 and h′′

b = 0.

4.3 Nonlinear simulations

The strength of a nonlinear simulation lies in its ability of capturing the exact response of

the jet interface, including the shape close to the breakup point where the interface height h

approaches to a zero value. Often, the external forcing does not result in the breakup of fixed

sized drops, rather the regular sized drops are followed by much smaller ‘satellite drops’.

Keeping this in view, we analyze the response of the jet in presence of an external forcing. We

aim at finding the optimal forcing which results in the most unstable jet. The breakup length,

which is the length of the stable jet between the nozzle and the breakup point, is chosen as the

quantifier to compare the effect of different forcing, with the optimal forcing resulting in the
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shortest possible breakup length.

We begin with the description of the modified nonlinear governing equations used for the

simulations followed by the numerical results based on the scheme presented in Section

3.4.2 of Chapter 3. Finally we present the comparison of breakup characteristics of the jet for

different inlet forcing.

4.3.1 Governing equations

In order to remove the singularity in expression (4.2) for the pressure, when h(z, t) → 0, we

define the interface height h(z, t) in terms of function a(z, t) where a = h2. The governing

equations (4.1) thus transform into,

∂a

∂t
=− ∂

∂z
(au), (4.7a)

∂u

∂t
=−u

∂u

∂z
− ∂p

∂z
+3Ohin

(
∂

∂z

(
a
∂u

∂z

) 1

a

)
+Boin, (4.7b)

p =


(
2− ∂2a

∂z2

)
a +

(
∂a
∂z

)2

2
(

1
4

(
∂a
∂z

)2
+a

) 3
2

 . (4.7c)

The base state solution for the jet interface (ab = h2
b) is obtained by solving equation (4.5). We

model the external forcing on the jet by perturbing only the inlet velocity using a forcing of the

form,

u f (0, t ) = IR(εe iωt ), (4.8)

where ε represents the amplitude of the forcing andω represents the angular forcing frequency.

In presence of the forcing, the boundary conditions at the inlet are modified to a(0, t ) = 1 and

u(0, t ) =p
Wein+u f . No boundary conditions are defined at the other extremity of the domain

close to the tip. Nonetheless, a special treatment is applied for the tip (refer Section 3.4.2 of

Chapter 3 for details).

4.3.2 Nonlinear simulations results

Using the numerical scheme presented in Section 3.4.2 of Chapter 3, nonlinear simulations

were performed for a jet governed by equation (4.7) for fixed inlet characteristics: Ohin = 0.3,

Wein = 1.75 and Boin = 0.1. The numerical domain L is taken sufficiently large to capture the

breakup of the jet. The jet interface is initialized by the solution of (4.5) obtained numerically

with the MATLAB bvp4c solver. The validation of the numerically obtained base state solution

is presented in Appendix 4.8.1. It should be noted that the steady state is implemented only

for a part of the numerical domain and the interface is initialized to 0 for the remaining part.

The axial span of the base state solution does not affect the quasi-steady jet characteristics,
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Figure 4.1 – The plot shows the jet intact shape along the axial direction z for a gravity jet
defined by Ohin = 0.3, Boin = 0.1 and Wein = 1.75 and perturbed by different inlet forcing
frequencies ω and forcing amplitudes ε = 10−2 and ε = 10−4. For clarity, only the shape
corresponding to the shortest breakup length for every frequency is plotted. The jets of two
different colors represent the shape at approximately the same forcing frequency but different
forcing amplitudes ε. We see that for ε = 10−2, the the breakup length is the minimum for
ω= 1.38 and for ε= 10−4 for ω= 1.68. The box in red shows the zoomed image of the jet close
to a breakup highlighting the existence of a satellite and a main drop. The zoomed image has
radial h and axial z dimensions drawn to the same scale each representing a dimensionless
size of 6. The red bar in both the plots represents a dimensionless radial length scale of 2,
which is also the size of the dimensionless nozzle diameter.

which are the focal point of our numerical analysis. A validation for the same is presented in

Appendix 4.8.2.

The jet inlet velocity is subjected to time harmonic forcing of the form given by equation (4.8)

with a fixed amplitude ε and for forcing frequency ω= [0.4−3.2]

The simulations were run for a sufficiently long time to enter a permanent regime wherein

the jet breaks up at regular intervals of time and at fixed axial location. In the quasi-steady

regime, the breakup period ∆Tpo is defined as the time difference between two consecutive

breakups or pinch-offs and the breakup length lc as the stable length of the jet between the

nozzle and the pinch-off location. We use lc as the quantifier to determine the stability of

the jet to external forcing such that the most amplified disturbance caused by the optimal

frequency ωopt will compel the jet to have the shortest possible breakup length.

We begin our analysis for fixed amplitudes ε = 10−2 and ε = 10−4. The response of the jet

due to different forcing frequency ω in the permanent regime for the two above mentioned

amplitudes can be seen in figure 4.1. Jets enforced by the same disturbance amplitude at

the inlet are represented by the same colour. For visual clarity we plot the response only for

certain frequencies and for the jet shape pertaining to the shortest breakup length. First,

figure 4.1 clearly shows the existence of a main drop and a satellite drop for all the frequencies.

Second, for ε= 10−2 we conclude that the optimal forcing frequency is ωopt = 1.38 because

it manifests the jet to have the shortest lc . Third, and most strikingly, we notice that for a
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lower forcing amplitude of ε= 10−4, the optimal forcing increases to ωopt = 1.68. Finally, at all

forcing frequencies, the breakup length for jet with ε= 10−4 is always larger than for ε= 10−2.

To investigate further the breakup characteristics for the amplitudes ε= 10−2 and ε= 10−4 due

to ωopt , we plot the interface evolution in the permanent regime as shown in figure 4.2(a) and

figure 4.2(c), where regular sized main drop formation is followed by the release of a satellite

drop. For both the amplitudes, we see a distinct difference between the main and satellite

drop radius.

Figure 4.2 – Breakup characteristics for a gravity jet defined by Ohin = 0.3, Boin = 0.1 and
Wein = 1.75 and perturbed withωopt . Subplots (a) and (b) correspond to a forcing with ε= 10−2

and ωopt = 1.38. Subplots (c) and (d) refer to a forcing with ε= 10−4 and ωopt = 1.68. Subplots
(a) and (c) elaborate the interface profile at the time of breakup with the existence of a satellite
drop after the main drop is released. The main and satellite drop radius for both the cases
have been highlighted. The axial and radial dimensions of (a) and (c) represent the same
length scale. The breakup period ∆Tpo is represented in (b) and (d). The black triangle refers
to the ∆Tpo between the consecutive drops and the blue circle represents the one between
two consecutive main (or satellite) drops. The breakup frequency ωpo is equal to 1.38 and 1.68
in (b) and (d) respectively.

The breakup period∆Tpo resulting from the forcing imposed in figure 4.2a and 4.2c are plotted

in figure 4.2b and 4.2d, respectively, where the black triangle represent the ∆Tpo obtained for

two consecutive pinch-offs whereas the blue circles denote ∆Tpo obtained for two consecutive

pinch-offs of the same group, that is to say between two consecutive main (or satellite) drops.

From the figure we conclude that even though the breakup period is the same for the group of
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main and satellite drops (as shown by blue circles) the time of formation of a satellite drop

does not lie exactly midway between the time of formation of the main drops and vice versa.

This results in obtaining two oscillating breakup periods (as shown by the black triangles). We

further observe that the frequency of breakup (ωpo = 2π/∆Tpo) obtained using the breakup

period for consecutive main (or satellite) drops responds to the externally applied forcing at

the jet inlet with ωpo = 1.38 and 1.68 for ε= 10−2 and 10−4, respectively.

Finally, for the constant flow rate of the jet, the breakup period related to the consecutive

pinchoff’s is used for obtaining the drop radius for the satellite and main drops. We notice

that at the optimal forcing frequency, the main drop radius Rm decreases from 1.62 to 1.48

dimensionless units as ε reduces from 10−2 to 10−4. On the contrary, the satellite drop radius

Rs increases from 0.78 to 1.08 dimensionless units for ε = 10−2 and ε = 10−4 respectively.

The longer intact jet length obtained for lower forcing amplitude ε= 10−4 results in a larger

downstream velocity close to the tip due to the presence of gravity. Eventually, it results in the

formations of highly stretched satellite drops in comparison to the ones obtained for lower

amplitude of ε= 10−2 as seen in figure 4.2a and 4.2c.
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Figure 4.3 – The plot shows the breakup length lc as a function of forcing frequency ω for a
gravity jet defined by Ohin = 0.3, Boin = 0.1 and Wein = 1.75. Each curve is indicative of a fixed
forcing amplitude ε. For a fixed ε, the optimal forcing frequency related to the shortest lc is
represented by a red cross. We observe that the optimal frequency increases as ε decreases
and does not appear to saturate even for lower amplitudes of 10−8. The black circles represent
the data from numerical simulations.
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We now return to the most salient feature observed in figure 4.1, where the optimal forcing

frequency ωopt increased with a decrease in forcing amplitude. To explore if this effect existed

for smaller amplitudes, we simulated the same system for different forcing amplitudes ε=
[10−2 −10−8], and plotted the breakup length lc as a function of the forcing frequency ω as

shown in figure 4.3, where the optimal forcing frequency for a fixed ε, is marked with a red

cross. The results show an increase in lc and ωopt as ε decreases. The increase in breakup

length is obvious due to the decreasing destabilizing strength of the forcing amplitude. The

increase in optimal forcing frequency, however, is the most interesting observation drawn

from the numerical results, since it is expected to saturate for small enough forcing amplitudes.

We believe that the increase in ωopt as ε decreases from 10−2 to 10−8 is a consequence of

the stretched base state due to gravity, which results in the downstream stretching of the

perturbation wavelength initiated at the nozzle. As the forcing amplitude decreases, the stable

jet length lc increases and so does the stretching close to the jet tip. Thus to compensate for

the larger stretching, the breakup potential of the forcing is sustained by increasing the forcing

frequency.

To conclude, the numerical simulations confirm the dependence of the ωopt on the forcing

amplitude, a factor generally neglected for linear stability analysis as long as ε¿ 1. The trend

also constitutes a major difference from a jet with no gravity effect (Boin = 0), where ωopt is

independent of ε (refer Section 3.4.4 of Chapter 3, figure 3.8(a)). Finally, we confirm that the

preferred-mode analysis carried out for the jet is solely due to the effect of external forcing.

The tip of the jet does not induce any self-sustained breakups (for details refer Appendix 4.8.3).

4.4 Local stability analysis

The linear stability theory is applicable for small forcing amplitudes (ε¿ 1) and does not take

into account its absolute value, a parameter that has already been shown in Section 4.3.2 to

influence the optimal forcing frequency. Nevertheless, we proceed to analyse the stability of a

gravity jet using the local stability tool where the dispersion relation for purely viscous jets

(Boin = 0) is used as a basis for obtaining the absolute/convective instability transition criteria

in Section 4.4.1. The dispersion relation for parallel jets is suitably modified to include the

spatial variation of the gravitationally stretched base flow and the spatial stability of the jet is

performed in Section 4.4.2. Since the base state is spatially evolving, we extend our stability

analysis using the WKBJ formulation in Section 4.4.3. The optimal forcing frequency deduced

from the WKBJ analysis is in close proximity of the ωopt obtained from the global resolvent

analysis which will be discussed in Section 4.5.2.

4.4.1 Local stability analysis for spatially varying jets

The saddle point analysis applied on the local dispersion relation (3.14) for parallel jets,

described in Section 3.3.2 of Chapter 3, results in obtaining the Wecrit , the criteria that marks

the transition from absolutely unstable flows to convectively unstable flows, as shown in figure
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Figure 4.4 – The plot shows the absolute-convective transition (represented by full and dashed
lines) for viscous jets (Boin = 0). The local variation in Ohz and Wez for three jets with different
Wein (constant Ohin = 0.3, Boin = 0.1, L = 50) are plotted with markers where the red cross for
each represents the inlet condition at z = 0. The distance between consecutive markers for
the same jet represents an axial gap of 10 units.

4.4 with the full and dashed lines. Extending the formalism for parallel jets to spatially varying

jets, we derive the dispersion relation for the coupled equations (4.1), governing the growth of

small perturbations about the base state. Considering the normal mode expansion, the flow

variables h(z, t ) and u(z, t ) are decomposed as:

h(z, t ) = hb(z)+εĥ(z)e i(kz−ωt ), (4.9a)

u(z, t ) = ub(z)+εû(z)e i(kz−ωt ), (4.9b)

where ε¿ 1, with ĥ and û as functions of z. k and ω are respectively the dimensionless spatial

wavenumber and the temporal frequency, which may both be complex. Similarly, for the

variable representing the square of interface, a(z, t ) is decomposed as,

a(z, t ) = ab +εâe i(kz−ωt ), (4.10)

where ab = h2
b and â = 2hbĥ. Inserting the above expansion into equation (4.1), linearizing

about (hb ,ub), and replacing h2 → a, will lead to a linearized system of equations which can be

formulated as an eigenvalue problem with the eigenmodes represented by q̂(z) = [â(z), û(z)].

In presence of gravity, the steady state solution is not homogeneous. To express the local

stability of a gravity jet, we introduce the terms Ohz and Wez, which are the local dimensionless
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Figure 4.5 – The plot shows the stretching (or necking) close to the nozzle, of the base flow due
to the presence of gravity for a jet with Ohin = 0.3, Boin = 0.1 and three different Wein. Clearly,
the effect of gravity is prominent for the jet with the smallest Wein.

numbers at an axial distance of z from the nozzle, expressed as,

Ohz = Ohin

√
hb(0)

hb(z)
, (4.11a)

Wez = hb(z)u
2
b (z). (4.11b)

We then plot their values along the entire axial domain L above the absolute-convective tran-

sition curve in figure 4.4. The variation in local Ohz and Wez along the jet defined within a

domain size L = 50, for Ohin = 0.3 and Boin = 0.1 and for three different inlet Weber numbers,

Wein = [1.75,0.25,0.002] are represented by the markers in figure 4.4. The gap between con-

secutive markers is representative of an axial interval of 10 units. In each case, the red cross

represents the inlet of the jet whose base state is shown in figure 4.5. We remind the reader that

the case with Wein = 1.75 corresponds to the jet whose numerical analysis has been presented

in Section 4.3.2.

For Wein = 1.75 and 0.002, the entire jet exists in the convective and absolute region, respec-

tively. For intermediate Wein = 0.25, there exists a small pocket of absolute instability close to

the nozzle, after which the local parameters modify along the downstream direction resulting

in the transfer of the jet into a convectively unstable regime.

The parameter Boin indirectly decides the instability of the jet by affecting the base state

solution. Since the Boin is constant, its relative strength for the stretching of the jet interface

depends on the corresponding value of Wein, with the effect being more pronounced for lower

values of Wein as shown in figure 4.5.

Next, for the spatially varying base flow, we perform the stability analysis in a local framework

wherein the system is considered uniform at each axial location. The modified dispersion

relation, which now includes the spatially varying base flow solution and eigenmode q̂(z) is
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given by,

ω2−2ub(z)ωk +
(

1

2
√

ab(z)
+ub(z)2+3iOhzω

)
k2−3iOhzub(z)k3−

√
ab(z)

2
k4 = 0. (4.12)

For the convectively unstable jet (Wein = 1.75), the solution of the dispersion relation (4.12)

for a given range of complex ω (with ωi > 0) results in obtaining four spatial branches which

are expressed as the roots of the fourth-order polynomial (4.12). The solution consists of

upstream (referred as k−) and downstream (denoted by k+) propagating branches. To identify

these branches, we successively add an artificial ωi so as to separate the branches into the

upper ki > 0 and lower ki < 0 planes. For a downstream propagating k+ branch damped

in space, the associated ki > 0. Based on this analysis, we obtain two downstream and two

upstream propagating waves for the dispersion relation (4.12). The k branches for the localized

dimensionless numbers at the nozzle inlet (z = 0) and domain end (z = 50) are shown in figure

4.6(a) and 4.6(b) respectively with the two k+ branches denoted by the black and green colour

and the two k− waves by the red and blue colour. The presence of two k+ and k− waves is not

specific to the present jet characteristics but rather exists for all the tested cases in the range of

Ohin = [0.1 10], Wein = [0.8 10], Boin = [0 1] for L = 50.
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Figure 4.6 – The four k branches shown in four different colours, obtained as a solution of the
dispersion relation for complexω and for increasing values ofωi for a jet defined by Ohin = 0.3,
Boin = 0.1 and Wein = 1.75, at (a) the nozzle outlet z = 0 and (b) the jet exit z = L = 50. The
arrows represent the direction of movement of the waves for increasing values of ωi .

4.4.2 Spatial stability analysis

Since the base flow with Wein = 1.75 exists in the convectively unstable regime (see figure 4.4),

we then proceed to analyse the base flow using the spatial stability framework, wherein the

spatial growth rate for the imposed real frequency determines the flow stability.

Given the polynomial nature of the dispersion relation, there are four spatial waves. We have
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verified that two of them are k+, downstream propagating, waves while the remaining two are

k−, upstream propagating, waves (see figure 4.6). For a more detailed account on the nature of

spatial waves in capillary jets, depending on the flow model, the reader is referred to Guerrero

et al. (2016).

Among the four k waves, only one of the k+ waves is seen to be amplified. To obtain this

dominant k wave we plot the spatial growth rate −ki as a function of the real forcing frequency

ω at nozzle inlet. As shown in figure 4.7(a), among the four k branches, only the branch

denoted in black has a growth rate which is positive in its propagation direction. We chose

the k wave corresponding to this amplified k+ branch as the dominant wavenumber for all

frequencies. The relevant k(z) branches are then obtained for different z along the jet as shown

in figure 4.7(b) and 4.7(d) by imposing the spatially dependent base flow and Ohz in equation

(4.12). figure 4.7(b) shows that the most amplified frequency shifts to higher values as one

travels away from the nozzle. The associated eigenmode q̂(z) also changes as one progresses

downstream. Imposing
∥∥q̂

∥∥= 1 at every axial location as the normalisation condition, together

with âi = 0 to set the phase, we see in figure 4.7(c) the evolution of the locus of the real and

imaginary parts of the remaining degrees of freedom ûr and ûi as z increases (remember

that û2
r + û2

i + â2
r = 1). While this locus is difficult to interpret from a physical point of view, it

highlights the change of the eigenmode along the jet axis in such nonparallel gravity driven

jets.

The knowledge of the dominant k wave obtained for a given ω allows us to evaluate the

response due to different forcing frequencies imposed on the base flow, conveniently expressed

as

q′(z, t ) = q̂(ω, z)exp

[
i

(∫ z

0
k(ω, z ′)d z ′−ωt

)]
. (4.13)

The overall response norm defined in a domain size L is then given as,

Gs(ω,L) =
∥∥∥∥∫ L

0
q̂(ω, z)exp

[
i

(∫ z

0
k(ω, z ′)d z ′−ωt

)]∥∥∥∥ . (4.14)

This allows us to determine the optimal forcing frequency ωopt which results in the maximal

gain,

Gs,max(L) = max
ω

[Gs(ω,L)], (4.15)

attained at a frequency ωopt . Figure 4.8 (in dotted lines) shows the spatial gain as a function of

forcing frequency for two arbitrary domain sizes L = 50 and 60. We notice that ωopt shifts from

1.16 to 1.21 as we increase the domain size.
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Figure 4.7 – (a) Growth rate (−ki ) for a jet defined by Ohin = 0.3, Boin = 0.1 and Wein = 1.75,
plotted as a function of the frequency for the four k branches at the nozzle exit with the
dominant k branch represented in black. (b) Represents the growth rate corresponding to
the dominant k branch at different axial locations; (inset) shows the variation in dominant
eigenmode û moving downstream away from the nozzle.

4.4.3 Weakly nonparallel stability analysis (WKBJ)

In order to further incorporate the non-parallelism of the base flow, we extend our spatial

analysis by including the WKBJ formalism introduced by Gaster et al. (1985) and Huerre &

Rossi (1998) for a spatial mixing layer and applied by Viola et al. (2016) for swirling flows.

In this framework, we introduce a slow streamwise scale Z , which relates to the fast scale z as

Z = ηz, where η¿ 1 is a measure of the weak non-parallelism. The new base flow depends

only on Z and the global response to inlet forcing takes the modulated wave form:

q′(Z , t ) ∼ A(Z )q̂(Z )exp

[
i

(
1

η

∫ Z

0
k(ω, Z ′)d Z ′−ωt

)]
, (4.16)

where q̂(ω, Z ) is the local eigenmode and k(ω, Z ) the local wavenumber at section Z and

a fixed forcing frequency ω. The amplitude function A(Z ) acts as an envelope, smoothly

connecting the progressive slices of the parallel spatial analysis. At each axial location, we

impose q̂H · q̂ = 1, where (·)H is the transconjugate. As described in Appendix 4.8.7, imposing

an asymptotic expansion and a compatibility condition, the local stability analysis is retrieved
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Figure 4.8 – Comparison of the total gain G at different frequencies ω from the resolvent
analysis and the spatial analysis for domain sizes (a)L = 50 and (b)L = 60 and for the jet
defined by Ohin = 0.3, Boin = 0.1 and Wein = 1.75. The resolvent gain is computed by using
the transfer function and the direct mode obtained from the spatial analysis. All the theories
predict a shift in ωopt as L is increased.

at zeroth-order in η, while at first order in η the following amplitude equation is obtained:

M(Z )
dA(Z )

dZ
+N (Z )A(Z ) = 0, (4.17)

whose solution is given as

A(Z ) = A0 exp

(
−

∫ Z

0

N (Z ′)
M(Z ′)

dZ ′
)
. (4.18)

The functions M(Z ) and N (Z ) are defined in Appendix 4.8.7. The amplitude at the inlet is

set as, A(0) = 1 which simplifies the forcing expression at the inlet to q′(0) = q̂(0). Finally we

express the total spatial gain at first order as:

G2
Amp(ω,L) =

∫ z

0
AH (z ′)A(z ′)

(
q̂H (z ′) · q̂(z ′)

)(
e

∫ z′
0 −2ki (z ′′)dz ′′)

dz ′

q̂H (0) · q̂(0)
. (4.19)

The global gain of the response due to the forcing frequency, for fixed domain sizes, is reported

in figure 4.8, where ωopt = 1.24 and 1.30 for L = 50 and 60, respectively. The WKBJ approxi-

mation greatly modifies the gain and shifts the optimal forcing frequency predicted from the

spatial analysis which excludes the amplitude equation. However, to truly assess the validity

of the amplitude equation one needs to analyse the base flow in the global framework using

the resolvent analysis, which will be the focus of our discussion in the next section.

88



4.5. Global stability analysis

4.5 Global stability analysis

Unlike the local stability analysis, the global stability framework allows taking into considera-

tion the axially varying base state due to the stretching effect of gravity. In this framework, we

first evaluate the inherent global stability of the base flow in Section 4.5.1. We next perform a

resolvent analysis in Section 4.5.2 on the globally stable base flow to evaluate its response in

presence of a given perturbation.

4.5.1 Global stability

Since the base flow is spatially varying, the perturbations imposed on it are no longer seeked

in the form of Fourier modes but are expanded in the form:

h(z, t ) = hb(z)+εh̃(z)eλt , (4.20a)

u(z, t ) = ub(z)+εũ(z)eλt , (4.20b)

where ε¿ 1 and h̃(z), ũ(z) are the global stability modes related to the complex growth-rate λ.

Substituting expressions (4.20) in equations (4.1) and linearising around the base state (hb ,ub)

results in the general eigenvalue problem of the form

λII

[
h̃

ũ

]
= M

[
h̃

ũ

]
, (4.21)

with boundary conditions h̃(0, t) = 0 and ũ(0, t) = 0. We do not impose any boundary con-

ditions at the end of domain z = L since it is not possible a priori to distinguish between

amplifying perturbations and transient disturbances. This will occur in any problem that

involves an ‘active system’ and can support amplifying waves (Briggs (1964) and Leib & Gold-

stein (1986)). The global stability analysis presented in Rubio-Rubio et al. (2013) does not

impose any boundary conditions for z = L since the numerical method naturally converges to

the most regular asymptotic solution of the base flow equation (4.5) and eigenvalue problem

(4.21), as z →∞. Nonetheless, we checked that the dominant eigenvalue and eigenmode were

unaffected by the presence of Neumann boundary condition at z = L, namely dũ
d z (L) = 0.

The complete expressions for the linear operator M can be found in Appendix 4.8.5. The

solution of equation (4.21) results into a set of eigenmodes (h̃, ũ), whose growth rate and

frequency are given by the real (λr ) and imaginary (λi ) parts of the related eigenvalue. A base

state is stable to self induced oscillations provided λr < 0.

To solve the eigenvalue problem, the Chebyshev collocation method is used for obtaining

the differential operators. Derivatives with respect to z are calculated using the standard

Chebyshev differentiation matrices. Denoting the non dimensional physical domain as L, the

domain is mapped into the interval −16 y 6 1 by using the transformation z = [(L/2)×(y+1)].

A validation of the global scheme with the results of Rubio-Rubio et al. (2013) is presented in
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Figure 4.9 – (a),(c)Eigenvalue spectrum λ obtained for three different nodes N1 = 100, N2 = 125
and N3 = 150 and (b),(d)the real and imaginary parts of the leading eigenfunction h̃, for
Ohin = 0.3, Boin = 0.1, L = 50 and evaluated for two different values of inlet Weber. (a),(b)
Corresponds to Wein = 0.25 where the leading eigenvalue has an eigenfrequency λi = 0.55
(c),(d) Corresponds to Wein = 1.75 with λi = 1.97. For both the Weber numbers, the entire
spectrum has a λr < 0 rendering the system to be globally stable.

Appendix 4.8.6.

For the three cases of jets described in figure 4.5, with L = 50, Ohin = 0.3, Boin = 0.1 and three

different values of Wein a global stability analysis is carried out using different resolutions

(N1 = 100, N2 = 125, N3 = 150) to exclude spurious eigenvalues. The eigenvalue spectrum for

Wein = 0.25,1.75 and 0.002, are represented in figure 4.9(a), 4.9(c) and 4.10 respectively. The

dominant eigenvalues have λr < 0 (for Wein = 0.25 and 1.75) and λr > 0 (for Wein = 0.0025)

thus representing globally stable and unstable jets, respectively. Note however, that the local

stability analysis of the globally stable flow with Wein = 0.25 predicts the jet to have a small

‘pocket’ of absolute instability close to the nozzle.

Eigenmodes corresponding to the dominant eigenvalues are presented in the accompanying

figure. We note that the dominant eigenmode, as represented in 4.9(b), 4.9(d) and 4.10, has

an amplitude that grows downstream. Figure 4.10(b) also shows that the wavelength grows

downstream. This is a consequence of the fluid acceleration caused by gravity (Tomotika,

1936 and Rubio-Rubio et al., 2013) and can be interpreted from figure 4.7(d) where kr is seen

to decrease with increasing z for a fixed forcing frequency ω. Further we see that close to
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Figure 4.10 – (a) Eigenvalue spectrum λ obtained for three different nodes N1 = 100, N2 = 125
and N3 = 150 and (b) the real and imaginary parts of the leading eigenfunction h̄, for Ohin = 0.3,
Boin = 0.1, Wein = 0.002 and L = 50. We note that the leading eigenvalue has a positive growth
rate λr > 0 thus rendering the system to be globally unstable.

the outlet, the eigenmodes evolve at a much larger length scale compared to that related to

the variations in steady state jet, thus strengthening the argument that weakly non parallel

stability analysis should be used with care for predicting the global stability of the gravity jet.

4.5.2 Global resolvent

Analysing the linear response of the base state for an external harmonic forcing at frequency

ω is only well defined if the linear operator is stable or in other words the base state is stable,

where the imposed perturbations are allowed to travel downstream before spreading in the

entire domain under consideration. Else the algebraically amplified solution is superimposed

by the unforced naturally growing exponential mode. Keeping this in mind, in this section we

present the resolvent analysis for the stable gravity jet (Wein = 1.75). To compare our results

with the nonlinear simulations of Section 4.3, we impose similar inlet forcing conditions and

approximate the gain predicted by the resolvent analysis in terms of the forcing amplitude.

Problem formulation

The external force f is modelled as an incoming perturbation in the form of an unsteady up-

stream boundary condition of the 1D Eggers & Dupont equation (4.1). The resulting linearised

equation is represented as,

II∂t[s] = M[s]+Bf f , (4.22)

where as in the eigenvalue problem (4.21) s = [h,u], II represents the identity matrix, M the

linear operator (detailed in Appendix 4.8.5) and Bf the operator which expresses the effect of

the inlet forcing onto the bulk equation. Considering a time-harmonic forcing, f = f̃ exp(−iωt ),

results in an asymptotic flow response s = s̃exp(−iωt ) at the same frequency. Here s̃ = [h̃, ũ].
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Imposing these transformations in (4.22) we obtain,

−(M + iωII)s̃ = Bf f̃ . (4.23)

Equation (4.23) is subjected to two inlet and two outlet boundary conditions. The solution

forced only in u at the nozzle satisfies h̃ = 0 and ũ = 1, while for the one that is forced in both

h and u, h̃ and ũ can be chosen arbitrarily. We use the former when comparing the results

with the nonlinear simulations (where the forcing was applied using the form (4.8)) whereas

the latter when comparing to the spatial and WKBJ analysis of Section 4.4.2 and 4.4.3.

Based on the results of the local and global analysis at Wein = 1.75, the convective instability of

the flow ensures that at the outlet any existing k+ branch, obtained from the spatial analysis,

will be transmitted downstream. Since the relevant k+(ω,L) branch for a given ω and at

z = L can be obtained from the local analysis of Section 4.4.2, we impose for the solution of

the equation (4.23) at z = L the spatial response, specifically, h̃(L) = ĥ exp(ikL) and ũ(L) =
û exp(ikL), k being the unique root of the dispersion relation corresponding to a donwstream

amplified wavenumber. It should be noted that for active systems, such as the jet falling under

the influence of gravity, it is not possible a priori to impose unique boundary conditions at

the outlet. Thus, substitution of the resolvent response by the spatial response at the outlet

should be treated as an approach to close the differential problem of equation (4.23) rather

than depicting the physical boundary conditions. To ensure that these boundary conditions

do not affect the final response over a given domain size L, we impose them for a domain size

L′ > L, such that the response for all the frequencies over L is independent of the imposed

boundary condition.

Finally we express the magnitude of the response s̃ due to the externally applied forcing in

terms of the gain G , with the maximum gain expressed as,

G2
max(L) = max

ω

‖s̃‖2

‖ f̃ ‖2 = max
ω

∥∥(M + iωII)−1Bf f̃
∥∥2

‖ f̃ ‖2 , (4.24)

attained at ωopt . To measure the amplitude of the response and the forcing, we define Q and

Q f as the weight matrices of the discretised energy norm (‖s̃‖2 = s†Qs) and the forcing norm

(‖ f̃ ‖2 = f †Q f f ), respectively, obtained for the Chebyshev space on the physical domain L

which is mapped into the interval −16 y 6 1 by using the transformation z = [(L/2)× (y +1)].

Qf is a 2N ×2N matrix enabling us to distinguish forcing on u only or on both components

u and h. Following the optimization method using singular value decomposition (SVD)

described in Marquet & Sipp (2010) and Garnaud et al. (2013), we then express the optimal

gain using the following eigenvalue problem,

Q−1
f B†

f (M + iωII)−1†Q†(M + iωII)−1Bf f̃ =λf̃ , (4.25)

whose leading eigenvalue solution λ gives G2
max and the associated eigenmode solution f̃

yields the optimal normalised forcing amplitude in (h,u) to be applied at the inlet.
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Since the linear analysis is based on small perturbations, the exact amplitude of the pertur-

bation is unaccounted for in the expression (4.24). For the resolvent analysis we then define

Gh,fu as the gain in h from a solution forced only in u and Gq,fq as the gain in q for a solution

forced in q , where q = [a,u]. The two expressions for the gain: Gh,fu and Gq,fq are formulated

to replicate the forcing and gain definitions in the nonlinear simulations (Section 4.3) and the

spatial analysis (Section 4.4.2 and 4.4.3), respectively.

Looking for the gain in Gq,fq requires the inclusion of additional operators P and H which

express q in terms of s, and are given by,

q̃ = Ps̃, (4.26a)

f̃q = H f̃ . (4.26b)

The operator H modifies the imposed boundary conditions in terms of ã, whereas the operator

P adequately expresses the response in ã in terms of h̃ such that ã = 2hbh̃. Additionally, to

have an explicit comparison with the spatial analysis, we apply a forcing at inlet which is

obtained as the eigenmode solution of the spatial problem in Section 4.4.2. Thus,

f̃q = q̂(z = 0). (4.27)

The gain for the imposed forcing is then obtained as,

G2
q,fq(ω) =

∥∥q̃
∥∥2

‖ f̃q‖2 =
∥∥P(M + iωII)−1Bf H−1 f̃q

∥∥2

‖ f̃q‖2
. (4.28)

Note however that even though this formalism allows a direct comparison with the spatial

analysis, the gain Gq,fq(ω) does not represent the maximum optimal gain since we do not

impose the optimisation of the inlet forcing vector using an SVD formalism as was done in

(4.25). Figure 4.11 demonstrates the difference between the gain and ωopt computed using

the direct mode from spatial analysis (in black) and through an optimisation problem which

solves for the optimal mode (in blue). Indeed the resolvent gain based on the optimised mode

is much larger in magnitude.

Results: Comparison with spatial stability analysis

To replicate the type of forcing and the expression of gain used in the spatial analysis in Section

4.4.2 and 4.4.3, we impose the eigenmode solution at the nozzle exit obtained from the spatial

analysis as the forcing vector in the resolvent analysis. The resulting gain Gq,fq for two different

fixed domain sizes L = 50 and L = 60 are shown in Fig. 4.8. We observe from the figure that

the inclusion of the amplitude equation in evaluating the spatial response by far improves

the estimation of the true gain obtained from the resolvent analysis. Moreover the predicted

ωopt producing the largest Gq,fq from the WKBJ analysis is in close agreement with that of

the resolvent analysis. The response norm obtained using the different approaches agrees
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Figure 4.11 – Comparison of the total gain at different frequencies from the resolvent analysis
for domain sizes (a) L = 50 and (b) L = 60 and for the jet defined by Ohin = 0.3, Boin = 0.1 and
Wein = 1.75. The gain computed by applying the transfer function on the direct eigenmode
from the spatial analysis is shown in black and the maximal optimal gain computed through
the singular value decomposition analysis is shown in blue.

qualitatively (see Fig. 4.21). Its non-monotonic behaviour at ω= 1.5 (see Fig. 4.21(c-d)) is well

captured and is in accordance with the work presented in Lizzi (2016). However, the difference

in gain between the three methods originates as a result of the quantitative disparity in the

response obtained at different frequencies. The divergence between the spatial and resolvent

analysis is due to the stretching effect of gravity on the base flow. For a parallel base flow, the

results obtained from both the methods are found to be identical (as shown in Appendix 4.8.4,

Fig. 4.20).

Results: Comparison with nonlinear simulations

We compare the resolvent analysis with the nonlinear simulations of Section 4.3.2. Classically,

the optimal forcing frequencyωopt resulting in the maximum gain, can be deduced by plotting

the gain Gh,fu as a function of ω for a fixed domain size L. For capillary jets however, the

domain size over which the perturbation grows cannot be fixed a priori. It is merely an

outcome of the analysis which should compare well with the value of lc measured in the

nonlinear simulations.

In order to circumvent this lack of consistency and in absence of the knowledge of lc , we first

plot Gh,fu as a function of increasing domain sizes L and for fixed ω as shown in figure 4.12(a)

where the gain Gh,fu(ω,L) is computed for ω= [1−2.5] with ∆ω= 0.01 and for L = [10−240]

with ∆L = 10. This results in a bundle of constant frequency curves, intersecting each other

at different locations in L. In figure 4.12(a) we now define the dominant frequency at a given

L as the frequency with the maximum gain at L. A close examination reveals that there is
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a continuous transition in the dominant frequency as one moves along increasing domain

sizes. This is shown in figure 4.12(b) where for clarity we plot only the envelope Gopt(L) of the

dominant frequency for all values of L. Gopt(L) is attained for ωopt(L).
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Figure 4.12 – (a) Resolvent gain computed for h̃ with a forcing applied only in u for different
values of domain sizes for a jet defined by Ohin = 0.3, Boin = 0.1 and Wein = 1.75. Each curve is
representative of a constant frequency. (b) The dominant frequency envelope as a function of
the domain size L. The gain represented by 102,104 and 106 is related to forcing amplitudes
ε= 10−2,10−4 and 10−6 respectively. A horizontal projection from the respective gain on the
frequency envelope yields the ωopt and a vertical projection from the ωopt on L determines
the breakup length lc .

As discussed previously, L represents the breakup location along the jet where the nonlinear

effects appear. Broadly speaking, nonlinearity enters the system when a small perturbation ε

gives rise to a response of the order of 1, which suggests to approximate lc by the value of L at

which

Gopt(lc ) ≈ 1

ε
. (4.29)

In other words, the gain at the breakup location L = lc should be equal to 1/ε. Using equation

(4.29), we locate the gain in figure 4.12(b) for different forcing amplitudes ε= [10−2 −10−6]. At

the given value of Gh,fu, a horizontal projection on the dominant frequency envelope will then

decide the optimal forcing frequency for the given ε. Finally, a vertical projection on L from
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the intersection point on the dominant frequency envelope will provide the relevant breakup

length lc for the forcing amplitude ε. Extracting the results from figure 4.12(b), we compare the

optimal forcing frequency and the breakup length for different ε with the nonlinear solutions

of Section 4.3.2 in figure 4.13. The close agreement between the two approaches shows the

strength of the resolvent analysis in predicting the ωopt and lc especially without any prior

information from the nonlinear simulations. In figure 4.13 the small difference in values in

the two methods can likely be attributed to ad-hoc definition of the required threshold for

nonlinear effects to kick in and breakup to occur.
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Figure 4.13 – Comparison of breakup characteristics obtained from the nonlinear simulations
(figure 4.3) and the resolvent analysis (figure 4.12) for a jet defined by Ohin = 0.3, Boin = 0.1
and Wein = 1.75 for (a) the optimal forcing frequency ωopt and (b) the breakup length lc at
different inverse forcing amplitudes 1/ε.

4.6 Response to white noise

Up to now, we were only interested in the response of the jet to an external disturbance

characterised by a constant forcing frequency. However, in reality the external disturbance

is more likely to be composed of a broadband frequency rather than being harmonic. Thus,

to model this physical perturbation we carry out nonlinear simulations consistent with the

scheme presented in Section 4.3 by exciting the jet at the nozzle by a white noise ξ(t ) defined

in the time interval [0 T ] and formulated in a similar way as in Mantič-Lugo & Gallaire (2016).

The white noise signal ξ(t ) is characterised by a constant power spectral density (PSD) Sξξ(ω) =
|ξ̂(ω)|2 where ξ̂(ω) is the Fourier transform of ξ(t ) and has an infinite power P defined as,

P = 1

T

∫ T

0
|ξT (t )|2d t = 1

π

∫ ∞

0
|ξ̂|2dω=σ2, (4.30)

where σ is the variance. Even though a pure white noise has infinite power (as Sξξ(ω) > 0),

physical systems are usually characterized by a band-limited white noise. We thus filter the

digital random signal ξd (t) with a band limiting frequency ωb/2π = 1 to obtain the band
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Figure 4.14 – (a) White noise signal with unit power, comparing a signal without filter and
filtered using a band limiting frequencyωb/2π. (b) Power spectral density comparison of these
two signals with their theoretical value. The PSD is estimated using a Welch method in Matlab.

limited white noise ξb(t) as shown in figure 4.14. For ξd (t) the Nyquist frequency is set by

ωN /2π which depends on the time step (δt) of the signal, such that ωN /2π = 1/2δt . Here

we chose δt = 0.01. The noise ξb(t ) is normalised to have zero mean, unit variance and unit

power, with a constant value for PSD, where 2|ξ̂b |2 = 2π/ωb which completely depends on

the band limiting frequency. Finally we impose this filtered white noise as an inlet velocity

condition for the jet defined by Ohin = 0.3, Boin = 0.1 and Wein = 1.75 and governed by the

equations (4.7) by replacing the boundary condition (4.8) with,

du

d t

∣∣∣∣
(0,t )

= εξb(t ), (4.31)

where ε is the amplitude of the white noise signal. The forcing is applied at two different

amplitudes ε = 10−2 and 10−4 and for large times (T = 2000) so as to achieve results which

are time independent. For the MATLAB solver ode23tb with varying step size, the maximum

time step size is set as δt and white noise for intermediate time steps is obtained through

interpolation.

At every pinch off on the jet, we note the breakup length lc , the pinch off period ∆Tpo and the

drop radius Rdrop at the time of breakup. The distribution of the breakup characteristics is

shown as as a histogram in figure 4.15 and 4.16 and compared with the expected response of

the jet in presence of the pure ωopt(ε), which corresponds to ωopt = 1.38 and 1.65 for ε= 10−2

and 10−4, respectively. The breakup characteristics for ωopt have been discussed in figure 4.2

and are depicted by red bars in figure 4.15 and 4.16.

The drop size distribution shown in figure 4.15(a) highlights the two distribution peaks concen-

trated around ≈ 0.9 and ≈ 1.65, representing the group of satellite and main drops respectively.

This behaviour also exists for smaller ε= 10−4 where the radius is aggregated at ≈ 1.05 and

≈ 1.45. The results for the main drop size are coherent to the ones obtained in the presence

of pure optimal forcing where Rdrop = 1.62 and 1.45 for ε= 10−2 and 10−4, respectively. Thus
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Figure 4.15 – Comparison of the normalised frequency of the drop radius Rdrop for jet defined
by Ohin = 0.3, Boin = 0.1 and Wein = 1.75 and being forced at amplitude (a) ε= 10−2 and (b)
ε= 10−4 by their respective optimal forcing frequency ωopt (in red bars) and white noise (in
cyan bars). For both the amplitudes, the white noise data is concentrated around two main
drop sizes, representatives of the main and satellite drops. The most frequent drops sizes are
Rdrop = 1.65 and 1.45 for ε = 10−2 and 10−4 respectively. These values are close to the ones
predicted by the nonlinear simulations of figure 4.2 where the main drop size was predicted to
be 1.62 and 1.48 for ε= 10−2 and 10−4 respectively.

even in the presence of the white noise, the response of the jet is dominated by its expected

behaviour at ωopt .

Unlike the drop radius, the peak of the distribution of breakup length obtained by imposing

the white noise is not in close agreement with that of the optimal forcing. Yet, in figure 4.16(a)

and (b), we clearly see that the distribution spectrum shifts to large values of breakup length

as ε is decreased, a behaviour similar to the one predicted by ωopt where lc increases from

≈ 50 to ≈ 125 as ε is decreased. Similar conclusions can be drawn for the comparison of ∆Tpo

between white noise forcing and forcing with ωopt from 4.16(c) and (d) where we plot the

breakup period between two consecutive drops.

4.7 Conclusion and perspectives

In this work, we inspect the response of a spatially varying gravitationally stretched jet sub-

jected to an inlet velocity perturbation. The forcing is characterised through the frequency

and the amplitude, the latter playing a major role in the determination of the optimal forcing

frequency. The results of the numerical simulations performed on the nonlinear 1D Eggers

& Dupont equations shows an increase in optimal forcing frequency and the breakup length

as the forcing amplitude is decreased. We found that the amplitude dependent preferred

mode is a characteristic of gravity driven jets only. A pure capillary jet, base state of which is

independent of gravity-induced stretching, does not sustain such a behaviour. In such cases,

decreasing the forcing amplitude only resulted in an increase of the breakup length with the

optimal frequency remaining fixed at all amplitudes.

The linear stability theory characterised the jet flow used for nonlinear simulations as locally

unstable and globally stable. Based on the absolute-convective transition criteria, we analysed
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Figure 4.16 – (a)-(b) refer to the comparison of the normalised frequency of the breakup length
lc and (c)-(d) refer to the comparison of the normalised frequency of the breakup period
∆Tpo, each for a jet defined by Ohin = 0.3, Boin = 0.1 and Wein = 1.75. (a), (c) are subjected
to a forcing amplitude ε = 10−2 and (b), (d) to ε = 10−4. The data in red corresponds to the
optimal forcing frequency ωopt and in cyan to the white noise. The most frequent white noise
breakup length is close to the lc prediction in presence of the ωopt . For ε= 10−2 and 10−4, the
peak breakup period ∆Tpo = 2.45 and 1.35, respectively and is in close proximity to the results
obtained from the nonlinear simulations of figure 4.2.

the local stability at each section along the axial direction. The solution of the dispersion

relation and the subsequent analysis for the downstream propagating spatial waves helped in

confirming the predominant wave to be used for the zeroth order spatial gain expression. The

strong non-parallelism of the base flow close to the nozzle motivated the incorporation of the

WKBJ framework which markedly improved the prediction of the optimal forcing frequency in

comparison to the resolvent analysis. However the spatial gain was still observed to be lower

than the resolvent. As suggested by Le Dizès & Villermaux (2017), using advanced stability

tools (Schmid, 2007) which accounts for non-parallel effects and non-modal growth leads to

an estimation of a more realistic spatial response.

This task was tackled using a resolvent analysis which accurately captured the linear response

of stable jets in presence of an external forcing. Assuming a simple global amplitude breakup

threshold criterion, the linear resolvent analysis becomes capable in predicting both the

breakup length and the optimal forcing frequency given the amplitude of the forcing. The

results of the nonlinear simulations and the resolvent for different forcing amplitudes are

quantitatively comparable, thus underlining the importance of the resolvent analysis. Besides

forcing the jet inlet with a fixed frequency, we also studied the response to a white noise, to

analyse its natural response to a distributed forcing frequency range. Surprisingly, even in the

presence of the white noise, the dominant response of the jet is close to the one seen from the
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optimal frequency at that amplitude.

In presence of the external forcing, a dominant feature seen from the nonlinear simulations is

the formation of a main and a satellite drop at the time of breakup. Nevertheless, to properly

examine the consequence of the forcing amplitude on the final drop size, there is a need to

enhance the nonlinear model by including the physics of drop coalescence and disintegration

as done by Driessen & Jeurissen (2011). Post breakup, the state of the jet after the pinch-off

should be inferred from the system before the breakup. Additionally, the choice for drop

curvature is of paramount importance since a given breakup can possess variety of drops

shapes-each on different length scales (Kowalewski, 1996).

On a different note, if the final aim is to eliminate the presence of satellite drops, the forcing

should be modified such that it leads to the selective production of equisized drops. In this

direction the work of Chaudhary & Redekopp (1980), who controlled satellite drops by forcing

the jet with a suitable harmonic added to the fundamental; and Driessen et al. (2014), who

controlled the size of the droplet breaking off from a parallel jet by imposing a superposition

of two Rayleigh-Plateau-unstable modes on the jet, could serve as the basis for formulating a

theory for the spatially varying gravity jets.
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4.8 Appendix

4.8.1 Numerical base state solution validation

In this appendix, we show the validation of our numerically obtained base state solution of

the governing equations (4.5) with the experimental results of Rubio-Rubio et al. (2013) for

three different jet flows. The MATLAB bvp4c solver along with the boundary conditions stated

in Section 4.2 accurately captures the stretching (necking) close to the nozzle due to the effect

of Boin.
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Rubio-Rubio et al.-experimental
1D Eggers & Dupont-numerical
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-2

0

2
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Figure 4.17 – Comparison of the steady state solution with results from Rubio-Rubio et al.
(2013) for (a) Ohin = 2.117, Wein = 2.62×10−2, Boin = 0.71(b) Ohin = 0.4799, Wein = 6.06×10−3,
Boin = 1.81 and (c) Ohin = 0.7238, Wein = 1.85×10−3, Boin = 5.53.

4.8.2 Effect of initial condition on breakup characteristics

This section demonstrates the effect on breakup characteristics due to different initial condi-

tions of the jet. Using the scheme described in Section 3.4.2 we perform numerical solutions

for a jet with Ohin = 0.3, Wein = 1.75, and Boin = 0.1 excited with a forcing of amplitude ε= 10−2

and frequency ω= 0.8. In the first case, the jet is initialized as a circular tip of radius 1 (figure

4.18(a)) and in the second case with the base state solution obtained by solving equation (4.5)

defined for an axial length of 100 (figure 4.18(b)). In both the cases the numerical domain is

considered large enough to capture all the breakups. As shown in figure 4.18, both the jets

with different initial conditions have different transient dynamics upto t = 55 (tip) and t = 40

(base state) after which they enter the permanent regime. In this regime, the breakup length lc
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and period ∆Tpo are identical as shown in subplots (c) and (d), respectively. It is thus safe to

conclude that in the permanent regime the jet breakup is independent of the initial base state

solution.

Figure 4.18 – Time-sequence plot of a simulation with Ohin = 0.3, Wein = 1.75, Boin = 0.1
excited with a forcing of amplitude ε= 10−2 and frequency ω= 0.8 and initialized (a) as a tip
(b) using the base state solution. Comparison of the breakup length and period for both the
cases is presented in (c) and (d), respectively.

4.8.3 Effect of jet tip on breakup mechanism

In this section we show that the jet tip at the time of breakup does not influence the pinchoff

dynamics and that the breakup is not self sustaining. For comparison we use a jet with

Ohin = 0.3, Wein = 1.75, Boin = 0.1 (refer figure 4.19). In the first case (black circles), we do

not impose any forcing on the jet inlet to analyse its natural breakup characteristics. In the

second case (blue diamonds), we apply a forcing of amplitude ε= 10−3 and frequency ω= 2 at

the inlet velocity. In the third case, we initialize the jet with the same forcing frequency and

amplitude, but stop the forcing and let the jet evolve freely when the permanent regime is

reached.

In figure 4.19, the forcing is stopped at t = 90, which corresponds to the 36th breakup. Com-

paring the breakup dynamics of the interrupted forced jet to a jet with constant or no forcing

at all, we conclude that the breakup length is no longer constant but keeps on increasing and

finally evolves similarly to a no forced jet.

This suggests that the pinch-off mechanism is not self sufficient to maintain the breakup of
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Figure 4.19 – (a) Breakup length lc and (b) time of pinchoff tpo, plotted for a jet with Ohin = 0.3,
Wein = 1.75, Boin = 0.1. The blue diamonds represent constant excitation of the inlet velocity
with a forcing of amplitude ε = 10−3 and frequency ω = 2. The black circles indicate a jet
without any forcing and hence we observe an irregular breakup pattern. The red cross indicates
a jet with constant forcing (ε= 10−3, ω= 2), where the excitation is stopped around t = 90.

the jet in the permanent regime and that continuous breakup can be sustained only in the

presence of an external forcing, supporting our argument that the pinch-off has no influence

on the jet’s dynamics afterward.

4.8.4 Comparison between resolvent and spatial analyses

Figure 4.20 shows the comparison of gain, in absence of gravity, as function of forcing fre-

quency using spatial and resolvent analysis for two different domain sizes. For convenience

we also plot the resolvent gain Gh,fu expressed in terms of the forcing applied for the nonlinear

simulations. We note that all the curves, irrespective of the domain size, predict the same

optimal forcing frequency ωopt = 0.74−0.76, a value close to the nonlinear prediction of figure

3.8(a) seen in Section 3.4.4 of Chapter 3. Moreover, unlike the situation with Bo = 0.1, we no-

tice that in the absence of gravity the magnitude of the gain at all frequencies is well captured

by the spatial analysis.
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Figure 4.20 – Comparison of gain and ωopt obtained from the resolvent analysis and spatial
analysis for two different domain sizes (a) L = 25 and (b) L = 50 for a jet in absence of gravity
and characterized by Oh = 0.3 and We = 1.75. Irrespective of the domain size and the method
employed, the ωopt lies between [0.74 0.75].
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Figure 4.21 – Resolvent and spatial response (|a| and |u|) of the jet characterized by Ohin = 0.3,
Wein = 1.75 and Boin = 0.1 at (a)-(b) ω= 1 and (c)-(d) ω= 1.5 with a domain size L = 50.
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4.8.5 Linear operator for eigenvalue problem

For the eigenvalue problem related to the global stability in Section 4.5.1, the matrix M is

expressed as

M =
[

M11 M12

M21 M22

]
, (4.32)

where the expressions M11, M12, M21 and M22 denote the following differential equations:

M11 =− Q

h2
b

D + Qh′
b

h3
b

II, (4.33a)

M12 =−hb

2
D −h′

bII, (4.33b)

M21 =
4∑

k=1
s2k−1Tk −12Ohi n Q

(h′2
b

h2
b

+ h′′
b

hb

)
D, (4.33c)

M22 = 3Ohi n

(
D2 + 2h′

b

hbD

)
− Q

h2
b

D + 2Qh′
b

h3
b

II. (4.33d)

In the group of equations (4.33), II is the identity operator, Dn ≡ d n/d zn , s(z) = [1+ (h′
b)2]−1/2

and

T1 = 1

r 2
b

D − 2r ′
b

r 3
b

II, (4.34a)

T2 = D3 + h′
b

hb
D2 −

[ (h′
b)2

h2
b

+ h′′
b

hb

]
D − r h′

bh′′
b

h2
b

II, (4.34b)

T3 =−6h′
bh′′

bD2 −3
[ (h′

b)2h′′
b

hb
+ (h′′

b)2 −h′
bh′′′

b

]
D, (4.34c)

T4 = 15(h′′
b)2(h′

b)2D. (4.34d)

4.8.6 Global stability validation

In this section, we present the validation of the numerical scheme used for the global stability

analysis presented in Section 4.5.1. The validation is done against the results of Rubio-Rubio

et al. (2013) where the stability analysis is based on the same 1D Eggers & Dupont (1994)

equations but made dimensionless using different characteristic length and time scales. The

results of Rubio-Rubio et al. (2013) are based on dimensionless numbers Wein, Boin and

Kapitza(Γ). For the purpose of comparison we obtain the equivalent Ohin expressed as

Ohin = Γ

3Boin
0.25 . (4.35)

For the eigenvalue problem, a non dimensional domain length L = 120 is considered. For

obtaining the dominant eigenvalue, the solution was computed for different values of N lying
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between [150 250]. Figure 4.22 shows the validation of the eigenvalue spectrum with N = 200,

steady state and dominant eigenfunction for Γ= 5.83 and Boin = 1.8 and two different values

of Wein. The results obtained from the present model are in good coherence with that obtained

from Rubio-Rubio et al. (2013). Comparing figure 4.22(a) and (b), we can observe there is

critical Weber number Weinc, for which the jet becomes marginally unstable as the real part of

the leading eigenvalue is slightly positive. For the given values of Boin and Ohin, the Weinc is

therefore equal to 3×10−3. If the Ohnesorge number is fixed and the bond number is varied,

we can get the corresponding Weinc for each value of Boin. Figure 4.23 represents the curve for

the Weinc, below which the jet becomes linearly unstable. The results are compared to those

obtained from Rubio-Rubio et al. (2013).
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Figure 4.22 – Eigenvalue spectrum λ, steady state shape of the jet hb , and the real and imagi-
nary parts of leading eigenfunction, h̃ for Ohin = 1.68, Boin = 1.81 and (a) Wein = 8×10−3 (b)
Wein = 3×10−3. Results in bl ack are from Rubio-Rubio et al. (2013) and in r ed are from the
present stability model.
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Figure 4.23 – Comparison of critical Weber number, Wec.

4.8.7 WKBJ formulation for axisymmetric 1D Eggers & Dupont equations

Linearized equations

Considering linear perturbations (a′,u′) in jet interface and velocity around the base flow

(ab ,ub), the linearized system of equations is written as:

∂a′

∂t
=(−A1 − A2D1)a′+ (−A3 − A4D1)u′, (4.36a)

∂u′

∂t
=(−B1 −B2D1 −B3D2 −B4D3)a′+ (−B1 −B2D1 −B3D2)u′. (4.36b)

where Di with i = 1..3 are the differential operators with respect to z. Equation (4.36) can be

reformed as

[q̇′] = K [q′], (4.37)

where

[q′] =
[

a′

u′

]
, K =

[
−A1 − A2D1 −A3 − A4D1

−B1 −B2D1 −B3D2 −B4D3 −B5 −B6D1 −B7D2

]
, (4.38)

where the coefficients A1..4 are given as,

A1 =ub
′(z), (4.39a)

A2 =ub(z), (4.39b)

A3 =ab
′(z), (4.39c)

A4 =ab(z), (4.39d)
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and B1..7 are expressed as,

B1 =
15

(−2ab
′(z)3 −4ab(z)ab

′(z)+ab
′(z)3

(−ab
′′(z)

)+ab(z)ab
′(z)ab

′′(z)2
)

16S7/2

− 3
(
2ab(z)ab

(3)(z)−8ab
′(z)+ab

′(z)ab
′′(z)2 −2ab

′(z)ab
′′(z)

)
8S5/2

+ ab
(3)(z)

2S3/2
− 3

(
Ohi n ab

′(z)ub
′(z)

)
ab(z)2 , (4.40a)

B2 =
15

(−2ab
′(z)4 −4ab(z)ab

′(z)2 +ab
′(z)4

(−ab
′′(z)

)+ab(z)ab
′(z)2ab

′′(z)2
)

32S7/2

− 3
(
ab(z)ab

′′(z)2 −8ab
′(z)2 +ab(z)ab

(3)(z)ab
′(z)−4ab

′(z)2ab
′′(z)−4ab(z)

)
8S5/2

− (ab
′′(z)+2)

2S3/2

+ 3Ohub
′(z)

ab(z)
, (4.40b)

B3 =
3
(
ab

′(z)3 −2ab(z)ab
′(z)ab

′′(z)
)

8S5/2
−−ab

′(z)

2S3/2
, (4.40c)

B4 =ab(z)

2S3/2
, (4.40d)

B5 =−ub
′(z), (4.40e)

B6 =3Ohi n ab
′(z)

ab(z)
−ub(z), (4.40f)

B7 =3Oh. (4.40g)

In the above equation S replaces the term 1
4 ab

′(z)2 +ab(z).

Linearized equation expressed in terms of slow variable

For the WKB ananlysis, we then introduce the spatial scales. The fast spatial scale z is replaced

by the slow scale Z , such that Z = ηz. The base flow is now expressed as a function of Z

such that ab(Z ) and ub(Z ). Let us consider the following normal mode expansion for the

perturbation:

q′(Z , t ) = q̂(Z )exp
[

i
( 1

η

∫ Z

0
k(Z ′,ω)d Z ′−ωt

)]
. (4.41)

108



4.8. Appendix

Injecting the transformations (4.42a-d) into (4.36), the linearized equations on a weakly non-

parallel baseflow equations are expressed through equations (4.43)-(4.44),

∂

∂t
→−iω,

∂

∂z
→ ik +η ∂

∂Z
,

∂2

∂z2 →−k2 + iη

(
∂k

∂Z
+2k

∂

∂Z

)
+η2 ∂2

∂Z 2 ,

∂3

∂z3 →−ik3 −3ηk

(
∂k

∂Z
+k

∂

∂Z

)
+η2

(
3i
∂k

∂Z

∂

∂Z
+3ik

∂2

∂Z 2 + i
∂2k

∂Z 2

)
+η3 ∂3

∂Z 3 . (4.42a-d)

where the continuity equation converts to:

(−iω+ ikub)â + (ikab)û =−η
[
∂

∂Z
(abû +ub â)

]
, (4.43)

and the momentum equation transforms as,

iωû =−η∂ub

∂Z
û −

(
ub −η

3Oh

ab

∂ab

∂Z

)(
η
∂

∂Z
+ ik

)
û

+3Oh

(
−k2 +ηi

(
∂k

∂Z
+2k

∂

∂Z

)
+η2 ∂2

∂Z 2

)
û −

(
η

3

4a5/2
b

∂ab

∂Z

)
â

+
(

1

2a3/2
b

+ 3ηOh

ab

∂ub

∂Z

)(
η
∂

∂Z
+ ik

)
â

− η

2a3/2
b

∂ab

∂Z

(
−k2 +ηi

(
∂k

∂Z
+2k

∂

∂Z

)
+η2 ∂2

∂Z 2

)
â

+ 1

2a1/2
b

(
− ik3 −3ηk

(
∂k

∂Z
+k

∂

∂Z

)
+O (η2)

)
â

(4.44)

Defining q̂(1) = [â(1) û(1)] and q̂(2) = [â(2) û(2)], we now consider the asymptotic expansion:

q̂ ∼ A(Z )q̂(1)(Z )+ηq̂(2)(Z )+·· · , (4.45)

and inject it into the governing equations (4.43)-(4.44) to obtain the local stability problem at

η0 and η1.
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Order η0 : At zeroth-order in η, the local stability problem is retrieved:

(−iω+ ikub)︸ ︷︷ ︸
L11

â(1) + (ikab)︸ ︷︷ ︸
L12

û(1) = 0, (4.46a)

− ik

2a3/2
b

(1−k2ab)︸ ︷︷ ︸
L21

â(1) + (− iω+ ikub +3Ohk2)︸ ︷︷ ︸
L22

û(1) = 0. (4.46b)

The system of equations represented by (4.46) can be reframed using the linear operator L,

such that

L[q̂(1)] = 0, where the linear operator L =
[

L11 L12

L21 L22

]
. (4.47)

Substituting expression for û(1) from (4.46)a into (4.46)b, we finally obtain:(
−ω2 +2ubωk +

(
− 1

2
p

ab
−u2

b −3iOhω
)
k2 +3iOhubk3 +

p
ab

2
k4

)
â(1) = 0, (4.48)

the solution of which gives the four roots of k for a given ω. The relevant k branch is tracked

as discussed in Section 4.4. For a given ω and a predetermined k, the solution of the linear

problem (4.47) gives the response q̂(1), a parameter needed to solve the local stability problem

at η1.

Order η1 : At first order we obtain,

L[q̂(2)] = Q[Aq̂(1)], (4.49)

where operator Q can be split into two parts:

Q[Aq̂(1)] = R[q̂(1)]
dA

dZ
+S[q̂(1)]A. (4.50)

Operator R is expressed as:

R =
 −ub −ab(

1−3k2ab

2a3/2
b

)
(6iOhk −ub)

 , (4.51)

and S is defined as,

S =
(

s11 s12

s21 s22

)
,
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where the individual parameters are expressed as:

s11 =−∂ub

∂Z
−ub

∂

∂Z
,

s12 =−∂ab

∂Z
−ab

∂

∂Z
,

s21 = 3iOhk

ab

∂ub

∂Z
− 1

4a5/2
b

(
(3−2k2ab)

∂ab

∂Z
+6ka2

b

∂k

∂Z
+2ab(−1+3k2ab)

∂

∂Z

)
,

s22 = 3iOh

(
k

ab

∂ab

∂Z
+ ∂k

∂Z
+2k

∂

∂Z

)
−ub

∂

∂Z
− ∂ub

∂Z
.

As explained in Huerre & Rossi, 1998; Viola et al., 2016, in order to have solutions of the inhomo-

geneous equation L[q̂(2)] = Q[Aq̂(1)], the forcing term Q should be in the image of the operator

L. This implies that Q should be orthogonal to the corresponding adjoint eigenfunction q̃(1) of

the adjoint operator L̃, with respect to the defined inner product,

R[q̂(1)]q̃(1) dA

dZ︸ ︷︷ ︸
M(Z )

+S[q̂(1)]q̃(1) A︸ ︷︷ ︸
N (Z )

= L[q̂(2)]q̃(1) = q̂(2)L̃[q̃(1)] = 0. (4.53)

This leads to the amplitude equation,

M(Z )
dA

dZ
+N (Z )A = 0, (4.54)

solving which we obtain the amplitude solution A(Z ) which should then be expressed in terms

of the fast length scale z. Finally, at first order, the response if given by,

q′(z) ∼ A(ηz)q̂(1)(z)exp

(∫ z

0
−ki (z)′dz ′)

)
exp

[
i

(∫ z

0
kr (z ′)dz ′−ωt

)]
. (4.55)
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Harnessing fluidic instabilities to produce structures with robust and regular properties has

recently emerged as a new fabrication paradigm. This is exemplified in the work of Gumennik

et al. [Nat. Comm. 4:2216, DOI: 10.1038/ncomms3216, (2013)], in which the authors fabricate

silicon spheres by feeding a silicon-in-silica co-axial fiber into a flame. Following the localized

melting of the silicon, a capillary instability of the silicon-silica interface induces the forma-

tion of uniform silicon spheres. Here, we try to unravel the physical mechanisms at play in
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selecting the size of these particles, which was notably observed by Gumennik et al. to vary

monotonically with the speed at which the fiber is fed into the flame. Using a simplified model

derived from standard long-wavelength approximations, we show that linear stability analysis

strikingly fails at predicting the selected particle size. Nonetheless, nonlinear simulations

of the simplified model do recover the particle size observed in experiments, without any

adjustable parameters. This shows that the formation of the silicon spheres in this system is

an intrinsically nonlinear process that has little in common with the loss of stability of the

underlying base flow solution.

5.1 Introduction

Mechanical instabilities in engineered structures have historically been perceived as failure

mechanisms. As such, an enduring motivation for their study has been the desire to avoid

them. Recently, however, we have started to witness a paradigm shift wherein structural

instabilities are instead sought after due to their natural ability to produce regular patterns

that would be difficult or costly to achieve otherwise (Reis, 2015). Interestingly, this philosophy

has been applied for a long time in fluid mechanics, in particular in the field of inkjet printing.

First introduced commercially by Siemens in 1951, continuous inkjet printers have long relied

on the Rayleigh-Plateau instability (Plateau, 1873; Rayleigh, 1878) to break a liquid jet emerging

from a high-pressure reservoir into a multitude of uniformly-sized droplets, some of which

are subsequently deflected towards the substrate by means of an electrostatic field (Martin,

Hoath & Hutchings, 2008).

Returning to solid structures, recent utilization of the solid-liquid phase transition inherent

to a wide range of materials has opened new doors by enabling the harnessing of fluidic

instabilities, such as the aforementioned Rayleigh-Plateau instability, in order to produce

solid structures with robust and regular properties (Gallaire & Brun, 2017). In a seminal

contribution, Kaufman et al. (2012) first adopted this idea and devised a scalable and efficient

instability-mediated fabrication process for millimeter to nanometer-sized spherical particles

(Rotello, 2004). The procedure begins with thermal drawing of a co-axial rod into a long

and thin fiber consisting of a solid core encased in a cladding of a different material. The

fiber is then exposed to a uniform heat source, inducing melting of the core and softening of

the outer cladding. This, in turn, triggers a Rayleigh-Plateau instability of the core-cladding

interface, which results in global break-up of the continuous core into a regular string of

spherical particles. These particles are finally solidified upon cooling of the fiber and released

by dissolving the cladding.

For certain materials with very high viscosity contrast ratios, such as silicon-in-silica, the

above method would produce large particles relatively to the size of the inner core, restricting

the smallest attainable sphere diameter. In order to overcome this limitation, Gumennik et al.

(2013) developed a variant of the method, where instead of being uniformly heated, the fiber

is fed at a given velocity into a spatially localized flame. In this way, melting of the inner silicon
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30S ilicon spheres have been the subject of recent investigations
in a broad range of fields spanning mechanics1,
biotechnology2, photonics3 and green energy4. A variety

of bottom-up5–7 and top-down4,8,9 methods have been developed
to address the need for Si spheres ranging in size from the nm to
mm scale. However, to date, no single fabrication methodology
exists that is simultaneously scalable in size and quantity over the
full spectrum of radii. Recent breakthroughs10–13 in harnessing
fluidic instabilities14,15 for nanofabrication define a promising
direction towards new and scalable methods, but are currently
restricted because of the isothermal profile: For example, in cases
involving high viscosity-contrast materials systems14–16 such as
Silicon-in-Silica, the isothermal break-up condition15 would
dictate a large break-up wavelength lT and correspondingly
large particles.

Here we report on a method for producing Si spheres in a Silica
fibre17 in which capillary break-up is controlled by an axial
thermal gradient and a controlled feed speed. In our process, the
fibre is fed into a spatially localized flame at a controlled rate, so
that melting of the Silicon occurs at a fixed location in space,
beyond which a molten Si cylinder cladded by softened Silica
develops. Capillary instability causes the core to break-up into a
sphere in order to reduce its surface energy. A close analogy is the
use of flow rate to control droplet formation in dripping
faucets18,19. By continuously feeding the fibre into the flame a
string of particles emerges, the size of which is below that of an
isothermal process and approaches the fundamental diameter limit.

Results
Challenges in entering the micron-pitch break-up regime. The
generation of submicron Silicon spheres via a fluid instability
mechanism requires very small core diameters to begin with, as

the size of the sphere cannot be smaller than
ffiffiffiffi
3p
2

3
q

D (correspon-

dent to wavelength pD —the wavelength equal to the core cir-
cumference), where D is the diameter of the core. To generate
small cores a multistep process is developed: A 2-mm thick Si rod
clad by an 8 mm thick Silica tube is thermally drawn to a Si-core
size of 130mm and redrawn to achieve a core size of 4 mm (see
Methods, Supplementary Figs S1 and S2 for details), as shown in
Fig. 1a. The resulting twice-drawn fibre is redrawn under high
tension in a hydrogen flame. A relatively fast feed speed
(3 mm min! 1) and relatively slow draw speed (15 mm min! 1)
scales the fibre by a factor of

ffiffiffi
5
p

while keeping the Si-core intact
and without inducing any cracking. This step (Fig. 1b) can be
repeated multiple times until the desired Si-core diameter is
obtained (see Methods, Supplementary Fig. S3 for details).
Starting with a 4-mm Si-core fibre, a triple rescaling leads to a
continuous Si-core fibre with a diameter of (340±15) nm.

In the isothermal regime, perturbations to an infinitely long
cylinder of diameter D develop into periodic break-up, resulting
in a chain of spheres14. In the treatment of this problem by
Tomotika15, an instability growth rate s(l) is associated with each
perturbation wavelength l 2 ½pD ;1#, the wavelength lT with the
fastest growth rate sets the observed break-up period. lT depends
on the materials’ viscosity ratio, and thus should vary with the
chosen temperature. However, for any temperature above the Si
melting (1,414 !C) this ratio remains in the 108–1012 range,
resulting in lT44pD (see Supplementary Figs S4 and S5 for
details).

What will happen if the cylinder is neither infinite nor
uniformly heated, but instead is dynamically fed into a flame
causing the cylinder to melt? We argue that under this condition,
droplet formation will occur at the cylinder tip, and that spheres
will break off it with a period that is set by the feed speed. If this

speed is slow enough, much smaller spheres than those obtained
via uniform heating are expected to be formed. Based on this
insight, we developed a process in which the fibre is fed through
the hot spot of a hydrogen/oxygen flame at a constant speed vf. As
predicted, we observed that Si spheres break off of the fibre core
one by one at regular intervals, as shown in Fig. 1c,d, respectively
(see Supplementary Movie 1 for detailed representation of the
process). Figure 2a–c show, for a 4-mm Si-core fibre, how slower
feed speeds successfully induce the formation of smaller Si
spheres. A simple dimensional analysis can account for this
scaling of the observed ‘dominant’ break-up period ld with vf.
Indeed, for a given feed speed and in steady state, spheres detach
from the Si-core at a fixed location in space: the pinch-off point
x ¼ xp. As schematically depicted in Fig. 2d (where x ¼ 0
corresponds to the Si melting front), the Si/Silica interfacial
tension gp at x ¼ xp drives the core pinching with a characteristic
velocity up % gp=mSiO2

p , where mSiO2
p is the local Silica viscosity

(see Methods for details). Therefore, ld is the length of Silicon fed
during the time D =2up needed for the core to pinch-off, and we
can thus write ld % vf ðD mSiO2

p =2gpÞ. This expression seemingly
implies a linear scaling of ld with vf, but in reality, xp depends on
the feed speed: as vf is increased, pinch-off occurs deeper into the
flame, where the higher temperature in turn yields faster pinching
speeds. This explains the sub-linear trend of ld(vf) displayed in
Fig. 2c. Importantly, with the new technique, the control over vf
provides an additional independent knob for tuning the break-up
period much more practical than varying the temperature to
change the viscosity contrast. This novel control enables, as
illustrated in Fig. 2c for this particular example, to reduce the
break-up period by a factor of 2 by varying vf, which in turns
reduces the spheres diameter by 20%.

Polymer coating

vd

vf

vf

Silica
cladding

Figure 1 | Fabrication Process. (a) Schematic representation and
experimental results of a redrawn Si-core fibre. (Left scale bar—100mm,
Inset—5mm). (b) Schematics of a high-tension redraw process that allows,
upon repeated application, continuous reduction of the Si-core towards the
deep submicron regime. (c) Schematics of our gradual liquefaction
technique. (d) Photograph of a typical break-up experiment of 4mm Si-core
fiber under pure hydrogen flow of 0.8 l m! 1 and vf of 10mm s! 1 (scale bar,
5 mm). the break-up period is 1.2 mm and the resulting sphere size is 31mm.
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(c)

Figure 5.1 – Experimental results from Gumennik et al. (2013) on the production of silicon
particles by feeding a silicon-in-silica co-axial fiber with a 2µm core radius into a localized
flame, triggering melting of the core and Rayleigh-Plateau instability of the silicon-silica
interface. (a,b) The circles display the mean break-up period (a) and resulting sphere diameter
(b) as a function of the feed speed. The bars show the standard deviation of the data, 10-
fold magnified for the break-up period and 1000-fold magnified for the sphere diameter. (c)
Photograph of a typical experiment, reproduced from Gumennik et al. (2013). The scale bar
corresponds to 5mm.

occurs locally and the formation of the spheres is dynamically coupled with the feed speed.

Figure 5.1(a,b) reports the break-up period (a) and corresponding sphere diameter (b) that

they obtained using silicon-in-silica fibers with a 2µm core radius and different feed speed

values. The circles show the average of the data while the bars show the 10-fold and 1000-fold

magnified standard deviation of the break-up period and sphere diameter, respectively. Not

only are the particle sizes reportedly smaller than achievable under an isothermal process, but

there is also a clear and robust relationship between particle size and feed speed. The latter

can therefore serve as a very convenient process parameter for adjusting the desired particle

size, as opposed to tuning the temperature and/or material properties. Figure 5.1(c) shows a

photograph of a typical experiment from Gumennik et al. (2013).

In this article, we try to rationalize the particle size observed in the experiments of Gumennik

et al. (2013) as well as its dependency on the feed speed. Such understanding of the dominant

physical mechanisms at play in selecting the break-up wavelength would constitute a first step

towards solving the inverse problem of determining the physical parameters and conditions

required to obtain a desired particle size, which is essential to enable practical use of this fabri-
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Chapter 5. Particle size selection in capillary instability of locally heated co-axial fiber

cation technique. We will start by formulating a simple one-dimensional nonlinear governing

equation for the motion of the silicon-silica interface, using long-wavelength approximations

that have proven very accurate in the study of liquid jets (Eggers & Villermaux, 2008). We

will then employ linear stability analysis to try to elucidate the characteristic size of patterns

that arise in this reduced governing equation. This approach is motivated by the similitude

between the system under study, where spheres are formed at the tip of the molten silicon core,

and the production of droplets at the tip of a microfluidic nozzle in a co-flowing ambient liquid

(Cramer, Fischer & Windhab, 2004). In the latter case, stability analysis tools have proven

relevant at predicting the size of the droplets (Cordero, Gallaire & Baroud, 2011), although

the effects of shear at the nozzle (Umbanhowar, Prasad & Weitz, 2000), non-uniformity of

the base flow (Augello et al., 2018), and nonlinearity (Pier, Huerre & Chomaz, 2001) are not

entirely clear yet. As we will see later, however, linear stability analysis ultimately fails in our

case. We therefore resort to a nonlinear stability analysis through numerical simulations of the

reduced nonlinear governing equations, which recover, without any adjustable parameters,

the relationship between sphere size and feed speed observed in figure 5.1. This eventually

shows that the formation of the silicon spheres is an intrinsically nonlinear process, in a

way reminiscent of the dynamics of a slowly dripping faucet which has little to do with the

instability of a hypothetical continuous jet solution.

The paper proceeds as follows. In Section 5.2, we describe the setup of the problem and

derive a reduced one-dimensional model consisting of two coupled nonlinear differential

equations governing the dynamics of the silicon-silica interface. Section 5.3 then relates our

unsuccessful attempts at predicting the particle size using linear stability analysis. Following

this, we turn to numerical simulations of the nonlinear reduced model in Section 5.4, yielding

good agreement with experimental results. Conclusions close the paper in Section 5.5.

5.2 Problem formulation

Let us consider the situation depicted in figure 5.2, which reproduces the experimental setup

of Gumennik et al. (2013). A co-axial fiber made of a silicon core encased in a silica cladding

is fed into a localized flame at a uniform velocity U0. The local increase in temperature due

to the flame causes the silicon core to melt while the silica cladding softens, at which point

a capillary instability of the silicon-silica interface induces break-up of the core into regular

silicon spheres. After the co-axial fiber leaves the flame, the silicon spheres re-solidify while

cooling down and remain trapped within the silica matrix.

In this study, we focus on the instability mechanism leading to the formation of the spherical

particles. We thus restrict our attention to the region where the silicon core is liquefied, which

witnesses temperatures ranging from T = 1414◦C, the melting point of silicon, to T ' 1760◦C

in the heart of the flame. Over this temperature range, the molten silicon core has relatively

constant densityρ1 ' 2500kg/m3 and viscosityµ1 ' 7·10−4 Pa.s. By contrast, the silica cladding

has similar density ρ2 ' ρ1 but much larger viscosity µ2 ' 106 −108 Pa.s, which varies by more
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localized heating
due to the flame

silicon core
⇢1, µ1

silica cladding
⇢2, µ2

feed
speed U0

2h(z, t)

z

r

Figure 5.2 – Problem setup. A co-axial fiber consisting of a silicon core encased in a silica
cladding is fed through a flame at a constant speed, causing the core to melt (pictured by the
transition from gray to yellow color) while the cladding merely softens (pictured by the shift
from darker to lighter brown color). Then, a capillary instability at the silicon-silica interface
induces break-up of the silicon core into regular spheres, which re-solidify and remain trapped
in the silica matrix upon exiting the flame. Note that the colors do not reflect the actual values
of the viscosity.

than two orders of magnitude in this same temperature range. Therefore, the axial thermal

gradient imposed by the flame gives rise to very strong spatial inhomogeneity in the system.

Finally, the interfacial tension between silicon and silica is considered constant at γ= 1.5N/m

Gumennik et al. (2013).

We assume the flow to be axisymmetric and denote with h(z, t ) the position of the silicon/silica

interface. Let ui = ui (r, z, t)ez + vi (r, z, t)er and pi (r, z, t) refer to the velocity and pressure

fields in the molten silicon core (i = 1) and outer silica (i = 2). Before entering the flame, the

system is uniformly advected at velocity u0 =U0ez and the silicon core has constant radius

h0 = 2µm, defining the base state about which perturbations will grow after melting of the

inner silicon. The outer radius of the co-axial fiber is R = 140µm and is assumed to remain

constant throughout the development of the instability.

5.2.1 Equations of motion and boundary conditions

The instability of the silicon-silica interface is driven by capillary forces and counteracted

by inertial and viscous effects from both the silicon core and the silica fiber. Assuming

for a moment that the silicon core is not affected by the outer silica, the time scale over

which the instability is slowed down by inertia and viscosity would respectively be given by

τi ,1 = (ρ1h3
0/γ)1/2 ' 10−7 s and τv,1 = µ1h0/γ ' 10−9 s. The ratio of these time scales, called

the Ohnesorge number Oh = τv,1/τi ,1 ' 10−2, shows that viscous effects in the silicon are

negligible compared with inertial effects. We therefore neglect the viscosity of the silicon and
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Chapter 5. Particle size selection in capillary instability of locally heated co-axial fiber

model the dynamics of the inner jet with the axisymmetric Euler equations,

∂v1

∂t
+ v1

∂v1

∂r
+u1

∂v1

∂z
=− 1

ρ1

∂p1

∂r
, (5.1a)

∂u1

∂t
+ v1

∂u1

∂r
+u1

∂u1

∂z
=− 1

ρ1

∂p1

∂z
. (5.1b)

On the other hand, we describe the dynamics of the outer silica with the full axisymmetric

Navier-Stokes equations,

∂v2

∂t
+ v2

∂v2

∂r
+u2

∂v2

∂z
=− 1

ρ2

∂p2

∂r
+ν2

(
∂2v2

∂r 2 + ∂2v2

∂z2 + 1

r

∂v2

∂r
− v2

r 2

)
, (5.2a)

∂u2

∂t
+ v2

∂u2

∂r
+u2

∂u2

∂z
=− 1

ρ2

∂p2

∂z
+ν2

(
∂2u2

∂r 2 + ∂2u2

∂z2 + 1

r

∂u2

∂r

)
, (5.2b)

where ν2 =µ2/ρ2. Since the outer radius of the fiber is two orders of magnitude larger than

that of the silicon/silica interface, we consider the outer silica to be unbounded hence (5.2)

holds for r > h(z, t) while (5.1) holds for 0 ≤ r < h(z, t). The continuity equation for both

media reads

∂vi

∂r
+ ∂ui

∂z
+ vi

r
= 0, i = 1,2. (5.3)

We are then left with the boundary conditions at the interface r = h(z, t ). The Laplace pressure

due to surface tension imposes a discontinuity of the traction vector

(σ1 −σ2)n|r=h =−γκn. (5.4)

Here, κ is the curvature of the interface,

κ= 1

h(1+h′2)1/2
− h′′

(1+h′2)3/2
, (5.5)

with h′ and h′′ denoting respectively the first and second derivatives of h with respect to z, n

is the outward normal to the interface,

n = −h′ez +er

(1+h′2)1/2
, (5.6)

and σ1,σ2 are respectively the stress tensors in the inner and outer fluids,

σ1 =−p1I , (5.7)

σ2 =−p2I +µ2(∇u2 +∇uT
2 ). (5.8)

The projection of the stress condition (5.4) along the normal direction gives

p1 −p2 + 2µ2

1+h′2

[
∂v2

∂r
+ ∂u2

∂z
h′2 −

(
∂u2

∂r
+ ∂v2

∂z

)
h′

]∣∣∣∣
r=h

= γκ. (5.9)
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The second boundary condition comes from continuity of the normal velocity of the interface

with that of the two fluids

∂h

∂t
+ui

∂h

∂z
= vi

∣∣∣∣
r=h

, i = 1,2, (5.10)

which also ensures continuity of the normal velocity in the fluid across the interface.

5.2.2 Inner silicon core

The dynamics of the inner silicon jet can be simplified using a long-wavelength approximation

that reduces the axisymmetric system to a one-dimensional equation (Eggers & Dupont, 1994;

Eggers & Villermaux, 2008). Exploiting the fact that the radial length scale h0 of the jet is

much smaller than its axial length scale λ∼ 1/k, where k is a typical interface deformation

wavenumber, the velocity and pressure fields can be expanded in Taylor series with respect to

r

u1(r, z, t ) = ū10(z, t )+ ū12(z, t )r 2 + . . . , (5.11a)

v1(r, z, t ) =−1

2
ū′

10(z, t )r − 1

4
ū′

12(z, t )r 3 + . . . , (5.11b)

p1(r, z, t ) = p̄10(z, t )+ p̄12(z, t )r 2 + . . . , (5.11c)

where v1 is chosen to enforce incompressibility of the velocity field. Inserting these expansions

into the axisymmetric Euler equations (5.1a) or (5.1b) and solving at leading order gives

∂ū10

∂t
+ ū10

∂ū10

∂z
=− 1

ρ1

∂p̄10

∂z
, (5.12)

while the kinematic condition (5.10) gives at lowest order

∂h

∂t
+ ū10

∂h

∂z
=−1

2

∂ū10

∂z
h. (5.13)

These are a set of coupled one-dimensional equations for the leading-order inner fluid velocity

ū10 and the interface position h. The pressure p̄10, which couples the dynamics of the inner

silicon core with the outer silica through the normal stress boundary condition (5.9), remains

unknown at this point.

5.2.3 Outer silica cladding

For the outer silica, separation of scales again enables us to simplify the governing equations.

Since the outer radius R of the fiber is much larger than its axial length scale λ∼ 1/k, where

k is a typical interface deformation wavenumber, we neglect variations of the axial velocity

and suppose that it remains equal to its base flow value u2 =U0. In this way, we assume that

perturbations to the interface position only generate a purely radial, expanding or contracting
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perturbed velocity field v2(r, z, t). Furthermore, we will only retain terms with a linear con-

tribution in the perturbation, with the exception of the interface curvature κ. Under these

assumptions, the continuity equation (5.3) becomes

1

r

∂(r v2)

∂r
= 0, (5.14)

and the normal stress boundary condition (5.9) reduces to

p̄10 −p2 +2µ2
∂v2

∂r

∣∣∣∣
r=h

= γκ. (5.15)

The kinematic boundary condition (5.10) at the interface,

∂h

∂t
+U0

∂h

∂z
= v2

∣∣∣∣
r=h

, (5.16)

can be combined with the continuity equation (5.14), integrated in the radial direction, to give

an explicit expression for v2 in terms of the interface deformation,

v2 = h

r

(
∂h

∂t
+U0

∂h

∂z

)
. (5.17)

We now make the assumption that the pressure p2 in the outer silica is approximately constant.

This assumption is justified in Appendix 5.6.1, where we show that solving for p2 using the

momentum equation (5.2a) ultimately leads to a dispersion relation that is virtually indistin-

guishable from that obtained by neglecting p2. Inserting the above expression for v2 into the

normal stress condition (5.15) and setting p2 = cst yields an expression for the leading-order

inner pressure,

p̄10 = γκ+ 2µ2

h

(
∂h

∂t
+U0

∂h

∂z

)
+cst, (5.18)

where the first term is the Laplace pressure jump at the interface, and the second term is the

normal component of the viscous stress in the outer silica at the interface.

5.2.4 Reduced nonlinear governing equations

As a final step, we insert expression (5.18) for p̄10 into the one-dimensional equation (5.12)

describing the dynamics of the inner jet. Combined with (5.13), we arrive at a coupled system

of two nonlinear governing equations for the leading-order inner velocity ū10 and interface

radius h,

∂ū10

∂t
+ ū10

∂ū10

∂z
=− γ

ρ1

∂κ

∂z
− 2

ρ1

∂

∂z

[
µ2

h

(
∂h

∂t
+U0

∂h

∂z

)]
, (5.19a)

∂h

∂t
+ ū10

∂h

∂z
=−1

2

∂ū10

∂z
h, (5.19b)
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with the interface curvature expressed as

κ= 1

h(1+h′2)1/2
− h′′

(1+h′2)3/2
. (5.20)

We remind the reader that µ2(z) is a strongly varying function of z. These two governing

equations constitute a reduced nonlinear model for the motion of the interface in the silicon-

in-silica fiber, and form the starting point of the subsequent analysis.

5.3 Linear stability analysis

In this section, we try to rationalize the droplet size experimentally observed by Gumennik et al.

(2013) using linear stability analysis, which has been successful at elucidating the characteristic

size of patterns arising from a wide range of interfacial instabilities (for a review, see Gallaire

& Brun (2017)). Although the system under study is non-homogeneous due to the strong

axial dependency of the silica viscosity, we perform the stability analysis in a local framework

wherein the system is considered uniform at each axial location.

5.3.1 Dispersion relation

We begin by deriving the dispersion relation describing the local instability characteristics of

the system defined by the coupled set of equations (5.19). This is done by setting the viscosity

of the outer silica to be constant and equal to µ2(z∗), where z∗ is the axial location of interest.

The system (5.19) is then axially uniform and one can find the dispersion relation governing

the growth of small perturbations to (h, ū10) about the base state (h0,U0) by considering the

normal mode expansion

h(z, t ) = h0 +εae i (kz−ωt ), (5.21a)

ū10(z, t ) =U0 +εbe i (kz−ωt ), (5.21b)

where ε¿ 1, k and ω are respectively the perturbation wavenumber and frequency, which

may both be complex, and a and b are complex constants. Inserting the above expansion into

equations (5.19) and linearizing about (h0,U0) leads to the dispersion relation

ρ1h3
0

γ
(ω−U0k)2 + i

µ2h0

γ
(kh0)2(ω−U0k)+ 1

2

[
(kh0)2 − (kh0)4]= 0. (5.22)

Interestingly, the above dispersion relation is identical to that obtained by Eggers & Dupont

(1994) for a jet with density ρ = ρ1 and viscosity µ = µ2/3 in an inert medium. Although

both dispersion relations are obtained using the same long-wavelength approximation, the

similarity is nonetheless surprising given the different forms and origins of the viscous term

appearing in the reduced governing equations.
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Figure 5.3 – Temporal growth rate ωi as a function of the real wavenumber k from the disper-
sion relation (5.22) and its viscous limit (5.23), in (a) linear and (b) logarithmic wavenumber
scales. The most unstable wavenumber predicted by (5.22) is kmax h0 ' 2.40 ·10−4, while for
(5.23) it is kmax = 0.

Before discussing wavelength selection, let us first investigate a possible simplification of the

dispersion relation. Equation (5.22) shows that disturbances are driven by surface tension

(third term) and simultaneously slowed down by inertia from the inner silicon (first term)

and by viscous forces from the outer silica (second term). The time scale associated with the

inertial term is on the order of τi ,1 = (ρ1h3
0/γ)1/2 ' 10−7 s while its viscous counterpart is in the

range τv,2 =µ2h0/γ' 1–102 s depending on the local temperature of the system. The ratio of

these two time scales defines a mixed Ohnesorge number Oh′ = τv,2/τi ,1 ' 107–109 À 1, which

suggests that inertial effects are negligible. We are therefore tempted to set ρ1 = 0, leading to

the dispersion relation

ω=U0k + i
γ

2µ2h0
[1− (kh0)2], (5.23)

which represents the purely viscous limit of (5.22).

5.3.2 Temporal stability

First, we compare the dispersion relations (5.22) and (5.23) on the basis of their temporal

stability predictions. The temporal growth rate of perturbations is given by ωi , the imaginary

part of ω, for real values of k. Figure 5.3 presents ωi – nondimensionalized with the viscous

time scale τv,2 = µ2h0/γ – as a function of the dimensionless wavenumber kh0, for µ2 =
106 Pa.s and all other parameters as given in Section 5.2. This value of µ2 is representative of

the heart of the flame, where the silica viscosity is lowest hence the interface most unstable. It

is therefore not unreasonable to assume that this region will play the largest role in setting

the length scale of the resulting spheres. Results are shown for the dispersion relation (5.22)

together with its viscous limit (5.23), in linear (a) and logarithmic (b) wavenumber scale. Even
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though the agreement between the two dispersion relations is excellent for kh0 > 10−5, the

viscous limit (5.23) predicts that the most amplified wavenumber is kmax = 0. This makes it

ill-posed, since such a wavenumber would correspond to an infinite disturbance wavelength.

On the other hand, (5.22) predicts a maximum growth rate at kmax h0 ' 2.40 ·10−4.

We now investigate the implications of these results for wavelength selection, which in the

temporal framework is dictated by the temporally most unstable wavenumber kmax . Using

h0 = 2µm, the value of kmax predicted by (5.22) corresponds to a wavelength λm = 2π/kmax '
52.4mm – two orders of magnitude larger than the break-up period reported by Gumennik

et al. (2013) over a range of advection velocities U0, see figure 5.1. Furthermore, the temporal

stability predictions for the instability wavelength selected by the system are also insensitive

to the advection velocity U0, contrary to the observations reported in figure 5.1.

5.3.3 Spatio-temporal stability

We now turn to a spatio-temporal stability analysis, which generalizes the previous temporal

analysis by taking into account the effect of the advection velocity U0 of the system on its sta-

bility properties and selected perturbation wavelength. In this framework, one characterizes

the impulse response of the system to a localized perturbation, which generates a coherent

wave packet that will grow in time and space as long as the system is temporally unstable. The

asymptotic spatio-temporal behavior of this wave packet in the laboratory frame will naturally

depend on the advection velocity of the system, and can be described in terms of an absolute

wavenumber k0 and absolute frequency ω0. These are defined by the following saddle point

condition together with the dispersion relation (Huerre & Monkewitz, 1990)

dω

dk
(k0) = 0, ω0 =ω(k0), (5.24)

where both k0 and ω0 are allowed to be complex. The imaginary part ω0i of the absolute

frequency ω0 characterizes the temporal evolution of the impulse response wave packet ob-

served at a fixed spatial location. Its sign therefore determines the spatio-temporal instability

behavior of the system in the laboratory frame. If ω0i > 0, then the system is absolutely unsta-

ble – localized perturbations grow fast enough to overcome system advection and eventually

invade the entire domain. If ω0i < 0, then the system is convectively unstable – localized

perturbations are convected away before they are able to grow in the laboratory frame.

Here, we calculate the absolute wavenumber k0 and frequency ω0 of the silicon-in-silica fiber

using Bers’ pinch point condition Bers (1983), an equivalent set of equations to (5.24) that

avoids the need to express ω as a function of k, and takes the form

∂∆

∂k
(k0,ω0) = 0, ∆(k0,ω0) = 0, (5.25)

where ∆(k,ω) = 0 is the local dispersion relation of the system. We apply the above pinch

point condition to the dispersion relation (5.22). First, we define the dimensionless frequency
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ω̃=ωτv,2 and wavenumber k̃ = kh0, so that (5.22) becomes, in nondimensional form,

∆(k̃,ω̃) = 1

Oh′2 (ω̃−Cak̃)2 + i k̃2(ω̃−Cak̃)+ 1

2
(k̃2 − k̃4) = 0, (5.26)

with Oh′ = µ2/
√
ρ1γh0 the mixed Ohnesorge number defined in Section 5.3.1, and Ca =

µ2U0/γ the capillary number. Then, the first equation in condition (5.25) directly follows as

∂∆

∂k̃
(k̃,ω̃) =−2

Ca

Oh′2 (ω̃−Cak̃)+2i k̃(ω̃−Cak̃)− i Cak̃2 + (k̃ −2k̃3) = 0. (5.27)

As before, the results that we will obtain for given values of Oh′ and Ca must be interpreted

locally, in the sense that they relate to specific axial stations in the system. The axial depen-

dency of the silica viscosity µ2 imparts an axial variation to both Oh′ and Ca. Oh′ decreases

from 109 to about 107 as the fiber enters the flame, independently of the feed speed U0. The

latter, however, affects the range of values of Ca. For feed velocity U0 = 1µm/s, Ca decreases

from 102 to about 1, while for high feed velocity U0 = 100µm/s, Ca correspondingly decreases

from 104 to about 102.

We solve the coupled system of equations (5.26) and (5.27) for Oh′ = 107 and various values

of Ca using a Newton-Raphson iterative scheme with tolerance 10−15 on the L2 norm of the

residual. For each value of Ca, we find that there are two absolute wavenumber and absolute

frequency pairs (k̃0,ω̃0) that solve the pinch point condition. These two solution branches are

shown in figure 5.4(a) by the red lines labelled branch 1 and branch 2, which trace out (in the

direction of the arrow) the locus of absolute wavenumbers k̃0 in the complex k̃-plane as Ca is

increased from 0 to 2. In the same figure, we display for Ca = 0 the contour levels of ω̃i (k̃), the

imaginary part of ω̃ obtained by solving the dispersion relation (5.26) for complex values of k̃.

In accordance with the saddle point condition (5.24), which states that k̃0 is a saddle point

of ω̃i (k̃), we observe that the start points of both red curves coincide with a saddle point of

the dispersion relation. In the case of branch 1, this saddle point actually corresponds to the

temporally most unstable wavenumber kmax identified in the previous section.

Figures 5.4(b)–(e) display the absolute wavenumber k̃0 and absolute frequency ω̃0 pertaining

to branches 1 and 2 as a function of Ca, for Oh′ = 107 and 109. The convective or absolute

instability behavior of the system for specific values of Oh′ and Ca is given by the sign of ω̃0i ,

the imaginary part of the absolute frequency ω̃0. In our case, however, there are two solution

branches that lead to different characterizations. According to branch 1, the system remains

absolutely unstable for Ca between 0 and 2 since ω̃0i is always positive. By contrast, branch

2 indicates a transition from absolute to convective instability with ω̃0i turning negative at

Ca = 1. Since the local spatio-temporal instability behavior of the system is generally dictated

by the saddle point with highest ω̃0i , figure 5.4 suggests that branch 1 is the most relevant one

for all finite values of Ca.

In the context of pattern formation, the distinction between absolute and convective instability

is crucial for wavelength selection (Duprat, Ruyer-Quil, Kalliadasis & Giorgiutti-Dauphiné,
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5.3. Linear stability analysis

Figure 5.4 – Spatio-temporal stability properties of the dispersion relation (5.22). (a) Level
curves of ω̃i as a function of complex k̃ for Ca = 0 and Oh′ = 107, given by (5.26). The red
lines trace out the locus of absolute wavenumbers k̃0 as Ca is increased from 0 to 2, which
is obtained from the coupled system of equations (5.26) and (5.27). There are two solution
branches, denoted here branch 1 and branch 2. (b)–(e) Absolute wavenumber k̃0 and absolute
frequency ω̃0 pertaining to these two solution branches as a function of Ca, for Oh′ = 107 (solid
line) and Oh′ = 109 (dots).

2007; Gallaire & Brun, 2017), even in systems with streamwise-varying properties. Flows

which locally undergo a transition from convective to absolute instability at some downstream

station exhibit a saturated pattern with a well-defined wavelength given by 2πU0/ω0r , where

ω0r is the real part of the local absolute frequencyω0 at the upstream boundary of the absolute

instability region (Pier, Huerre, Chomaz & Couairon, 1998; Pier & Huerre, 2001). Conversely,

flows which are convectively unstable everywhere amplify incoming disturbances as the latter

travel downstream, resulting in a broader distribution of pattern wavelengths. Returning to

our system, we observe that the absolute frequency ω̃0 corresponding to branch 1 is virtually

unchanged as Oh′ and Ca vary, with its real and imaginary parts ω̃0r and ω̃0i being equal to 0

and 0.5, respectively. We have verified that this remains true for values of Ca as large as 104.

This implies that within the operating conditions of the experiments of Gumennik et al. (2013),

the instability is everywhere locally absolute in the region where the inner silicon is liquefied.

As such, the dominant wavelength selected by the system, which is in principle determined

by 2πU0/ω0r , is predicted to be infinite for all values of the feed speed U0. In conclusion, it

becomes clear that the behavior of small interface perturbations – governed by linear stability

analysis – is irrelevant to the length scale of the resulting silicon spheres.
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5.4 Nonlinear stability analysis

In view of the failure of linear stability analysis at predicting the break-up wavelength selected

by the system, we hypothesize that nonlinear effects play a predominant role and we turn

in this section to numerical simulations of the nonlinear governing equations (5.19). From

here on, the inlet will refer to the melting location of the silicon core, which happens when its

temperature increases above T = 1414◦C, the melting point of silicon.

5.4.1 Dimensionless governing equations

In order to nondimensionalize the governing equations (5.19), we select the silicon core inlet

radius h0 as the characteristic length scale and the feed speed U0 as the characteristic velocity

scale. We denote v = ū10/U0 the dimensionless velocity, z̃ = z/h0 the dimensionless axial

coordinate, and t̃ = t/(h0/U0) the dimensionless time. Additionally, in order to remove the

singularity in expression (5.20) for the curvature, we describe the interface radius in terms of

the dimensionless function f = (h/h0)2. Then, the inlet conditions translate as f (z̃ = 0, t̃ ) = 1

and v(z̃ = 0, t̃ ) = 1. The governing equations (5.19) become

We

(
∂v

∂t̃
+ v

∂v

∂z̃

)
=−∂κ̃

∂z̃
− ∂

∂z̃

[
Caz̃

f

(
−∂( f v)

∂z̃
+ ∂ f

∂z̃

)]
, (5.28a)

∂ f

∂t̃
=−∂( f v)

∂z̃
, (5.28b)

κ̃= (2− f ′′) f + f ′2

2( f ′2/4+ f )3/2
, (5.28c)

where We and Caz̃ are respectively the Weber and axially-dependent capillary numbers. Here,

the Weber number, expressed as We = ρ1h0U0
2/γ, measures the relative importance of the

kinetic energy of the silicon core with respect to the silicon-silica interfacial energy. The

axially-dependent capillary number, expressed as Caz̃ = µ2(z̃)U0/γ, compares the viscous

force due to the spatially-varying outer silica viscosity with the silicon-silica surface tension

force. We now proceed, in the next section, to the description of the numerical scheme used

for solving (5.28).

5.4.2 Numerical scheme

The governing equations (5.28) are first discretized in space, after which the resulting ODEs are

integrated in time. Diffusion terms are evaluated using second-order finite differences, with a

central scheme for intermediate nodes and a forward or backward scheme for boundary nodes.

Advection terms are obtained using a weighted upwind scheme inspired by Spalding’s hybrid

difference scheme Spalding (1972). Unlike the latter, which approximates the convective

derivative using a combination of central and upwind schemes, we evaluate the derivative

based on a combination of forward and backward finite differences. An advection term d a/d z
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is evaluated at node i as(
d a

d z

)
i
=β

(
d a

d z

)
i ,b

+ (1−β)

(
d a

d z

)
i , f

, (5.29)

where indices b and f refer to the backward and forward finite difference schemes, and β is

a weight coefficient that depends on the local value of velocity v at node i together with a

parameter α,

β= tanh(αvi )+1

2
. (5.30)

For the range of feed velocities considered in this study, numerical stability was always ensured

by using a 10-point stencil. Thus, the backward difference term relies on a stencil that spans

nodes i−5 to i+4, and the forward difference term employs nodes i−4 to i+5. For large enough

downstream or upstream velocities, β will tend to 1 or 0 respectively; hence (5.29) reduces

to a regular upwind difference scheme. For smaller velocity magnitudes in between, (5.29)

produces a weighted combination of backward and forward differences. In our simulations,

we chooseα= 50 so that the transition between the backward and forward difference schemes

mostly occurs when |v | < 0.05. Finally, advection terms at nodes close to the boundary are

evaluated based on the values of the closest 9 adjoining nodes.

After obtaining all spatial derivatives, the resulting ODEs are integrated using the MATLAB

solver ode23tb, which implements a trapezoidal rule and backward differentiation formula

known as TR-BDF2 (Bank et al., 1985), and uses a variable time step to reduce the overall

simulation time. The jet interface is initialized as a cylinder of constant radius (equal to the

inner core inlet radius h0) and constant velocity (equal to feed speed U0), that is f (z,0) = 1

and v(z,0) = 1. The boundary conditions at the inlet are defined as f (0, t ) = 1 and v(0, t ) = 1.

No boundary conditions are defined at z = L, where L is the size of the spatial domain.

At every time step, the solution is evaluated for three conditions: (i) Pinch-off (break-up): It

is defined as when the value of f passes below a threshold value of 10−5. The corresponding

time Tpo is saved and the position of the jet tip is updated as Nt i p = Npo , where Npo is the

pinch-off location. The solution for f and v beyond Nt i p is set to zero. For subsequent time

steps, Nt i p has two possibilities – it can either advance or recede, which requires the following

two conditions. (ii) Advancing jet: The values of f at nodes Nt i p −1 and Nt i p are extrapolated

to find f at Nt i p +1. If the extrapolated value is larger than a predefined value of 5 ·10−3,

the parameter Nt i p is incremented by 1, and f and v at the new Nt i p are assigned values

extrapolated from its previous two neighbours. (iii) Receding jet: If the value of f at Nt i p

falls below a predefined value of 10−3, f and v at Nt i p are set to zero and the parameter Nt i p

is reduced by 1. These three conditions enable the numerical integration of the governing

equations in a way that captures accurately the break-up of the jet and the motion of the tip.

A validation of the code is presented in Appendix 5.6.2. In the next section, we discuss the

parameter values and domain size that we selected for our numerical simulations, in order to
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Chapter 5. Particle size selection in capillary instability of locally heated co-axial fiber

resemble the experimental conditions of Gumennik et al. (2013).

5.4.3 Numerical domain and parameter values

We first deduce the values of We and Caz̃ corresponding to the operating conditions of Gu-

mennik et al. (2013). In their experiments, a silicon-in-silica co-axial fiber is fed into a flame at

a constant speed U0, which varies between 1 and 100µm/s. Since the flame is located slightly

downstream of the inlet, the temperature of the co-axial fiber changes along its axial direc-

tion. Gumennik et al. (2013) state that the temperature increases over a length of 5mm, from

T = 1414◦C at the inlet, corresponding to the liquefaction point of silicon, to T ' 1760◦C in the

heart of the flame. This affects the temperature-dependent silica viscosity µ2, which becomes

a function of the axial coordinate. Correlating the temperature profile along the axial direction,

shown in figure 5.5(a), with the relationship between silica viscosity and temperature, shown

in figure 5.5(b), the profile of silica viscosity along the axial direction can be obtained in figure
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Figure 5.5 – (a) Axial temperature profile between the liquefaction point of silicon and the
center of the flame. (b) Silica viscosity µ2 as a function of temperature. Both plots are taken
from Gumennik et al. (2013). (c) Silica viscosity profile along the axial direction. (d) Capillary
number Caz̃ as a function of dimensionless axial coordinate, for U0 = 1µm/s and 45µm/s.
The dash-dotted lines indicate the extent of the numerical domain.
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5.5(c). Note that the data in figures 5.5(a)–(b) is from Gumennik et al. (2013). Observe that µ2

decreases by more than two orders of magnitude, from 108 to 106 Pa.s, over a few millimeters.

Based on the physical parameters, the Weber number We lies between 10−11 and 10−13 de-

pending on the feed speed U0, which is computationally out of reach. Nevertheless, we

show in Appendix 5.6.3 that the break-up location and period are We-independent in the

numerically-tractable range 0.005 < We < 0.1. Thus, below a certain limit, the Weber number

can be seen as a numerical artefact which has a negligible influence on the droplet size in

comparison to the capillary number. We henceforth pick We = 0.05 in our simulations, re-

gardless of the feed speed U0. The capillary number Caz̃ inherits the axial dependency of the

silica viscosity µ2(z), and therefore decreases by more than two orders of magnitude along the

fiber. Furthermore, Caz̃ scales linearly with the feed speed U0. For instance, as shown in figure

5.5(d), Caz̃ decreases from 284 to 0.62 for U0 = 1µm/s, while it decreases from 12800 to 27.9

for U0 = 45µm/s.

Finally, we restrict the size of the numerical domain considered in the simulations in order to

render the computational time tractable, as explained in Appendix 5.6.4. Starting from the

domain z̃ ∈ [0,2500] between the melting location of the silicon and the heart of the flame,

we eliminate the region z̃ < 500 in order to avoid high capillary numbers Caz̃ that would

require prohibitively expensive computations. We also ignore the region z̃ > 1500 since the jet

breaks up before then. This leads us to the truncated domain z̃ ∈ [500,1500] pictured in figure

5.5(d), in which we perform all the simulations shown in the next section using We = 0.05 and

U0-dependent Caz̃ profiles, such as those overlaid in the same figure.

5.4.4 Numerical results

Using the numerical scheme described in Section 5.4.2, together with the numerical domain

and parameter values presented in Section 5.4.3, we compute solutions to the nonlinear gov-

erning equations (5.28) for different feed speeds U0. The simulations are run for a sufficiently

long time to enter a quasi-steady regime wherein the jet breaks up at regular intervals of time

and at the same axial location. In this regime, figure 5.6 shows cascade plots of the evolution

of the silicon-silica interface at fixed time intervals and over two consecutive break-up periods,

for two different feed speeds of (a) 10µm/s and (b) 40µm/s. The interface is plotted in terms

of the dimensionless silicon core radius h̃ = h/h0, and the red bar corresponds to a horizontal

length scale of 5 dimensionless units. Note that the jets have very slender profiles – their

dimensionless inlet diameter is equal to 2, whereas they travel over an axial distance of approx-

imately one thousand. Indeed, for U0 = 10µm/s, the tip reaches a maximum dimensionless

axial distance of 880 and the break-up occurs at around 750. With a higher feed speed of

40µm/s, the tip is capable of reaching a distance of 1400 with break-up taking place at around

1100. The magnified plots to the right show the shape of the jet tip right after break-up, with

equal length scale employed for the horizontal and vertical axes.

In the quasi-steady regime, a minimum of eight consecutive break-up (or pinch-off) times Tpo
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Figure 5.6 – Cascade plots of the evolution of the silicon-silica interface for feed speeds
(a) U0 = 10µm/s and (b) U0 = 40µm/s. The dimensionless silicon core radius h̃ = h/h0 is
plotted at fixed time intervals, and the red bar corresponds to a horizontal length scale of 5
dimensionless units. The magnified plots to the right show the shape of the jet tip right after
break-up, with equal length scale for the horizontal and vertical axes.

are saved. These values are then used to calculate the break-up period ∆Tpo , which is defined

as the average time between two consecutive pinch-offs. Figure 5.7 shows the dimensional

break-up period ∆Tpo as a function of the feed speed U0, as well as the dimensional distance

λpo =U0∆Tpo traveled by the fiber over one break-up period. In order to explain the decrease

of ∆Tpo with U0, we recall from figure 5.6 that as U0 increases, the co-axial fiber travels farther

into the domain and closer to the center of the flame. There, the lower silica viscosity results in

enhanced capillary instability of the interface, causing faster jet break-up and hence smaller

break-up periods as reported in figure 5.7(a). The sublinear trend displayed by the distance

traveled λpo in figure 5.7(b) is also explained by the decrease of ∆Tpo with U0. Note that

even though λpo reaches dimensions comparable to the size of the numerical domain, the

break-up always occurs within the latter. This is because part of the mass influx between two

consecutive break-ups contributes to a radial expansion of the silicon core, as seen in figure

5.6.

In order to compare our numerical observations with the experimental results of Gumennik

et al. (2013), we calculate the diameter D of the silicon spheres resulting from the break-up

process using the mass conservation equation

πh2
0λpo = π

6
D3. (5.31)

Figure 5.8 displays the sphere diameter D as a function of the feed speed U0 for our simu-
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Figure 5.7 – (a) Break-up period ∆Tpo and (b) distance travelled by the co-axial fiber over one
break-up period, λpo =U0∆Tpo , as a function of the feed velocity U0.

lations and for the experiments of Gumennik et al. (2013). We observe a good qualitative

agreement between the two sets of data, with the governing equations (5.28) being able to

capture the increase in sphere diameter with feed speed, as well as its saturation at high feed

speeds. Furthermore, the drop diameter predicted by the numerics is roughly comparable in

magnitude to that observed in experiments, which is remarkable given that not a single fitting

parameter has been used in our calculations.

There are different reasons that could explain the discrepancy between our numerical results

and the experiments. First, although the temperature profile that we considered in figure

5.5(a) comes from Gumennik et al. (2013), it was not directly measured from their experiments.

Second, we noted in Appendix 5.6.4 that truncating part of the entrance region out of the

numerical domain results in a significant – albeit unavoidable – error at low feed speeds.

Yet, this error becomes negligible for larger feed speeds, and hence we mostly attribute the

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

Numerical simulations
Gumennik et al. [8]

Figure 5.8 – Mean silicon sphere diameter D as a function of the feed speed U0. Comparison
between our numerical simulations of (5.28) and experimental data by Gumennik et al. (2013).
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discrepancy between the results to the effects of surface tension. The latter is assumed to

be equal to 1.5N/m; however, Gumennik et al. (2013) evaluated this value based on Kroll &

Schulte (2006), in which a range γ= 1.5±0.3N/m is actually given. In fact, we show in Appendix

5.6.5 that surface tension has a non-negligible effect on the sphere size, with the two being

inversely proportional to each other. Additionally, we assumed that the surface tension at the

silicon-silica interface remains constant over the entire temperature range of 1414−1760◦C,

unlike the viscosity of silica. In reality, studies show that the surface tension of silica in air

(Kingery, 1959) and silicon in air (Shishkin & Basin, 2004; Yuan, Mukai, Takagi, Ohtaka, Huang

& Liu, 2002; Hibiya, Nakamura, Mukai, Niu, Imaishi, Nishizawa, Yoda & Koyama, 1998) can

vary between 0.28− 0.3N/m and 0.7− 0.9N/m, respectively, over a temperature range of

1400−1800◦C. Thus, a precise estimation of the surface tension at the silica-silicon interface

could possibly lead to more accurate sphere size predictions.

5.5 Conclusions and perspectives

In this article, we have tried to elucidate the physical mechanisms responsible for selecting

the size of spherical silicon particles in the experimental setup of Gumennik et al. (2013).

Such particles are obtained by feeding a silicon-in-silica co-axial fiber into a flame at a certain

speed, triggering local melting of the silicon and Rayleigh-Plateau instability of the silicon-

silica interface. We first derived a reduced model for the motion of the interface, consisting of

two coupled one-dimensional nonlinear equations (5.19). Then, we analyzed the dynamics

and dominant length scale of the instability that arises in this model using local linear stability

analysis in its temporal and spatio-temporal flavors. Ultimately, however, we reached the

conclusion that such linearized tools fail at predicting the particle size observed experimentally.

Finally, we performed numerical simulations of the reduced nonlinear model. Without any

adjustable parameters, we were able to recover in these simulations the particle size observed

experimentally by Gumennik et al. (2013), as well as its qualitative behavior as the feed speed

of the fiber is changed.

Recalling the failure of the linear stability predictions, the success of the nonlinear analysis

suggests that nonlinear effects play a predominant role in selecting the size of the silicon

spheres. In other words, the break-up wavelength is largely independent of the initial growth

of infinitesimal perturbations to the silicon-silica interface, which is contrary to the behavior

of most pattern-forming systems (Cross & Hohenberg, 1993; Gallaire & Brun, 2017). One might

argue that the strong non-uniformity of the system – imparted by the axial variation of silica

viscosity over more than two orders of magnitude – may explain the failure of local linear

stability analysis. A global stability analysis would take such non-uniformity into account;

however, numerical convergence of the resulting eigenvalue problem will be problematic

due to the extreme variation in silica viscosity. Nonetheless, we are confident that the good

agreement observed between the numerical simulations and the experiments in figure 5.8 is

by and large attributable to the nonlinearity of the viscous term originating from the outer

silica, as opposed to the axial variation of the silica viscosity itself.
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To prove this point, we compared in Appendix 5.6.6 numerical simulations of equations

(5.28) for a silicon-in-silica fiber at constant capillary number with numerical simulations of

equations (5.40) for a jet in an inert medium. Both simulations were performed in the low

Weber number limit We = 0.01, and using Ca = 1 and 1/3 for (5.28) and (5.40), respectively.

In this way, the dispersion relations of both equations are identical – that is, their linear

stability properties are indistinguishable. Even so, we were surprised to observe that their

nonlinear behaviors are markedly different: as shown in figure 5.14, equations (5.28) for the

silicon-in-silica fiber produce regularly-spaced droplets, while equations (5.40) for the jet in

an inert medium lead to the formation of one ever-growing pendant drop. Given that the only

difference between these two sets of equations is the nonlinear form of the viscous term, we

conclude that the length scale of the droplets produced in the silicon-in-silica fiber is really set

by the nonlinearity of the viscous contribution from the outer silica 1. Thus, we hypothesize

that the latter might amount to some kind of body force that pinches off droplets once they

grow big enough, in the same spirit as the dynamics of a dripping faucet (Michael & Williams,

1976; Peregrine, Shoker & Symon, 1990).

5.6 Appendix

5.6.1 Validity of constant outer pressure assumption

In this appendix, we show that solving explicitly for the outer silica pressure – instead of

assuming that it is constant, as in Section 5.2.3 – leads to governing equations with a dispersion

relation that is numerically identical with (5.22). First, we note that under the assumption

that u2 =U0 and keeping only the terms with a linear contribution in the perturbation, the

Navier-Stokes momentum equation (5.2a) reduces to

∂v2

∂t
+U0

∂v2

∂z
=− 1

ρ2

∂p2

∂r
+ν2

(
∂2v2

∂r 2 + ∂2v2

∂z2 + 1

r

∂v2

∂r
− v2

r 2

)
. (5.32)

Next, we insert expression (5.17) for v2 inside (5.32) and, like before, we only retain the terms

with a linear contribution in the perturbation to get

h

r

(
∂2h

∂t 2 +2U0
∂2h

∂t∂z
+U 2

0
∂2h

∂z2
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=− 1

ρ2

∂p2

∂r
+ν2

h

r

∂2

∂z2

(
∂h

∂t
+U0

∂h

∂z

)
. (5.33)

(Here, we would like to point out that the viscous term does not cancel entirely, despite what

is stated in section 3.5.1 of the review by Eggers & Villermaux (2008). This is due to the axial

dependency of the radial velocity field v2(r, z, t ), inherited from the interface height h(z, t ) and

overlooked by the aforementioned authors.) Equation (5.33) can now be integrated along r to

find an expression for the pressure p2, provided one has a suitable boundary condition. The

harmonicity of the pressure field ensures that radial and axial length scales are comparable,

1Although a nonlinear viscous term might sound paradoxical due to the linearity of viscous diffusion, it is worth
remembering that here, it is the geometric nonlinearity of the silicon-silica interface that makes the outer velocity
field – hence the viscous diffusion – a nonlinear function of the interface position.
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which implies that p2 decays exponentially in the radial direction over a length scale λ∼ 1/k

when the interface is deformed by a wavenumber k. Since we are ultimately looking for the

dispersion relation of the system, we thus consider that the pressure vanishes at r = h +1/k

and integrate (5.33) to obtain

p2 = ρ2h

(
∂2h

∂t 2 +2U0
∂2h

∂t∂z
+U 2

0
∂2h

∂z2

)
ln

(
h

r
+ 1

kr

)
−µ2h

∂2

∂z2

(
∂h

∂t
+U0

∂h

∂z

)
ln

(
h

r
+ 1

kr

)
. (5.34)

Finally, we plug the above expression for p2 into the normal stress condition (5.15), which

yields an expression for the leading-order inner pressure,

p̄10 = ρ2h

(
∂2h

∂t 2 +2U0
∂2h

∂t∂z
+U 2

0
∂2h

∂z2

)
ln

(
1+ 1

kh

)
︸ ︷︷ ︸

inertial term from
pressure in outer silica
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(
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∂t
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∂z

)
ln

(
1+ 1
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)
︸ ︷︷ ︸

viscous term from
pressure in outer silica

+ γκ︸︷︷︸
Laplace

pressure jump

+ 2µ2

h

(
∂h

∂t
+U0

∂h

∂z

)
︸ ︷︷ ︸
normal component of
viscous stress in silica

. (5.35)

Compared with the expression (5.18) we obtained earlier, there are here two additional con-

tributions to the inner pressure p̄10. Recalling that the radial length scale h0 of the jet is

much smaller than its axial length scale λ∼ 1/k, we have kh0 ¿ 1 and a dominant balance

comparison between the two viscous contributions gives

viscous term from pressure in silica

normal component of viscous stress in silica
∼ 1

2
ln

(
1+ 1

kh0

)
(kh0)2 ¿ 1. (5.36)

The viscous term inherited from the silica pressure p2 can therefore be neglected in (5.35),

leading to the simplified expression

p̄10 = ρ2h

(
∂2h

∂t 2 +2U0
∂2h

∂t∂z
+U 2

0
∂2h
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)
ln

(
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h

(
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)
. (5.37)

Combining the above expression with (5.12) and (5.13) yields

∂ū10

∂t
+ ū10

∂ū10

∂z
= ρ2h

(
∂2h

∂t 2 +2U0
∂2h
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− 2
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∂
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[
µ2

h

(
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+U0

∂h
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)]
, (5.38a)

∂h

∂t
+ ū10

∂h

∂z
=−1

2

∂ū10

∂z
h, (5.38b)

where κ is given by (5.20), and the log term is new compared with the governing equations

(5.19) obtained earlier by neglecting p2. Note that due to the presence of the wavenumber k

in the log term, equations (5.38) are not governing equations in the true sense. Nonetheless,
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Figure 5.9 – Temporal growth rate ωi as a function of the real wavenumber k from the dis-
persion relations (5.22) and (5.39), in (a) linear and (b) logarithmic wavenumber scale. The
growth rates of both (5.22) and (5.39) are maximum at kmax h0 ' 2.40 ·10−4.

the corresponding dispersion relation is

ρ1h3
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]
(ω−U0k)2

+ i
µ2h0

γ
(kh0)2(ω−U0k)+ 1

2

[
(kh0)2 − (kh0)4]= 0. (5.39)

In figure 5.9, we plot the dispersion relations (5.22) and (5.39) under the same conditions

as in Section 5.3.2. The two dispersion relations are virtually indistinguishable from each

other, and the maximum growth rate happens at kmax h0 ' 2.40 · 10−4 in both cases. This

validates our assumption that p2 is approximately constant – as far as linearized dynamics are

concerned, at least. Indeed, the additional log term appearing in (5.38) is nonlinear and could

possibly affect the nonlinear behavior of the system. Ultimately, though, the good agreement

we have obtained with the results of Gumennik et al. (2013) in figure 5.8 lends confidence to

the constant outer pressure assumption.

5.6.2 Numerical code validation for a jet in an inert medium

We validate our numerical code with simulations of the reduced governing equations obtained

by Eggers & Dupont (1994) for a jet with density ρ and viscosity µ in an inert medium. These

one-dimensional equations are obtained from the same long-wavelength approximation that

we have used to derive the governing equations (5.28) of the silicon-in-silica jet. Written in the

same nondimensional variables f = (h/h0)2 and v = ū10/U0 as in Section 5.4, they take the
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form

We

(
∂v

∂t̃
+ v

∂v

∂z̃

)
=−∂κ̃

∂z̃
+ 3Ca

f

∂

∂z̃

(
f
∂v

∂z̃

)
, (5.40a)

∂ f

∂t̃
=−∂( f v)

∂z̃
, (5.40b)

κ̃= (2− f ′′) f + f ′2

2( f ′2/4+ f )3/2
. (5.40c)

Here, We = ρh0U0
2/γ and Ca = µU0/γ, and z and t refer to the dimensionless axial coordi-

nate and time, respectively. Observe that the only difference between these equations and

equations (5.28) for the silicon-in-silica jet consists in the exact expression of the nonlinear

viscous term (that which contains the capillary number). In (5.40), the viscous term originates

from the axial velocity of the jet, while in (5.28) it is due to the radial velocity of the outer silica.

Nevertheless, as pointed out in Section 5.3.1, the linear dispersion relations associated with

(5.40) and (5.28) are identical, save for a factor 3 multiplying Ca.

As explained in Section 3.4.2 of Chapter 3, we validate our numerical scheme for the governing

equations (5.40) using the results of van Hoeve et al. (2010). The validation is based on the

experimental parameters, which translates to the dimensionless numbers Ca = 0.295 and

We = 8.7. The validated scheme is then applied for the silicone-in-silica jet by replacing the

viscous term only.

5.6.3 Silicon-in-silica fiber with constant capillary number

In this appendix, we perform numerical simulations of the governing equations (5.28) for the

silicon-in-silica co-axial fiber, but using a constant capillary number Ca. Such an assumption

serves as a basis for understanding the behavior of the real system with spatially-varying

capillary number Caz̃ . Specifically, our goal here is two-fold: we show that the Weber number

is a numerical artefact provided We is small enough, and we study the numerical convergence

of our scheme.

We compute the jet break-up characteristics for different values of Ca ∈ [0.1,2] and We ∈
[0.005,0.1]. The simulation time is kept sufficiently large (about 1000 dimensionless time units)

to obtain a quasi-steady regime where drops are formed at regular intervals of time and at the

same distance from the nozzle exit. The domain size is fixed at 50h0 for low capillary numbers

but is progressively increased for higher capillary numbers. Indeed, higher capillary numbers

correspond to increased viscous effects, slowing down the growth of interface perturbations

and resulting in droplets forming further away from the nozzle.

Figure 5.10(a) reports the break-up radius as a function of Ca, for different values of We.

Clearly, the break-up characteristics are We-independent for We ≤ 0.05. Thus, approximating

the break-up characteristics for any We smaller than 0.05 with the corresponding values at

We = 0.05 is a valid assumption, which we extend in Section 5.4 to the case of spatially-varying
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Figure 5.10 – (a) Dimensionless drop radius R/h0 as a function of constant capillary number
Ca, for different values of Weber number We ∈ [0.005,0.1]. (b) Dimensionless break-up length
lc /h0 as a function of constant capillary number for We = 0.05. The break-up dynamics
resembles dripping at low Ca and jetting at higher Ca.

capillary number.

Note, interestingly, that the break-up period follows a non-monotonous trend as Ca is in-

creased from 0.1 to 2. As shown in figure 5.10(b), the break-up occurs further away from the

nozzle as Ca is increased, in a way that is reminiscent of a transition from dripping to jetting

(Utada et al., 2007). It could therefore be possible that the non-monotonicity of the curve in

figure 5.10(a) is related to an absolute to convective instability transition (Guillot et al., 2007).

More research is needed to confirm this assertion, however, and this goes beyond the scope of

this paper.

Finally, a grid size-dependency test was performed for various values of Ca and We = 0.05. It

was observed that the break-up period and hence the drop radius have a weak dependence on
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Figure 5.11 – Drop radius as a function of grid size for Ca = 1.5 and We = 0.05. The results show
a weak dependence of the break-up characteristics on the grid size.
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the grid size, as shown in figure 5.11 for the case Ca = 1.5. As the nondimensional grid size d z̃

is increased from 0.1 to 0.75, the drop radius R decreases by merely 0.39%. Thus, we selected

grid sizes d z̃ comprised between 0.1 and 0.56 for the simulations presented in this appendix,

and between 0.45 and 0.65 for the simulations in Section 5.4.

5.6.4 Selection of a truncated numerical domain

In this appendix, we describe how we select a restricted region of the total physical domain for

the numerical simulations in Section 5.4, in order to balance computational cost and accuracy.

Experimental observations from Gumennik et al. (2013) show that the jet always breaks up

before reaching the heart of the flame. As a starting point, we thus restrict our attention to the

5-mm-long region between the inlet and the heart of the flame, which we denote z̃ ∈ [0,2500].

In addition, we have to alter the entrance location of the numerical domain, due to the fact

that our numerical scheme can only work robustly with capillary numbers Caz̃ below 400.

As seen in figure 5.5(d), for higher values of U0 this limit is clearly exceeded at z̃ = 0. Thus,

with the aim of computing drop characteristics for feed speeds up to U0 = 50µm/s, we decide

to reduce the domain size to z̃ ∈ [500,2500]. In this way, the capillary number at z̃ = 500 for

U0 = 50µm/s is 332, well within the computational limit. Eliminating the region z̃ ∈ [0,500] is

a reasonable approximation since the silica viscosity in this region is large enough that the jet

instability will not grow appreciably. Indeed, for feed speed U0 = 25µm/s, moving the entrance

location from z̃ = 500 to 400 and 200 produces a relative difference in sphere size of 4.4% and

10% while the corresponding computational cost increases 2-fold and 9-fold, respectively.

Finally, we reduce the numerical domain size to z̃ ∈ [500,1500] on the assumption that the silica

viscosity in the region z̃ < 1500 is sufficiently low to capture jet break-up. This assumption
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Figure 5.12 – Break-up location as a function of feed speed U0 for the truncated numerical
domain z̃ ∈ [500,1500]. While the break-up always takes place within the truncated domain,
its location progressively moves downstream and shifts towards the end of the domain as U0

is increased.
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is verified by analyzing the break-up location as a function of the feed speed. Figure 5.12

shows that for feed speeds in the range of 1−45µm/s, the jet breaks up within the truncated

numerical domain z̃ ∈ [500,1500]. Furthermore, we verified that the sphere radius obtained

with feed speeds 1, 10, and 40µm/s did not change between domains z̃ ∈ [500,1500] and

z̃ ∈ [500,1700].

5.6.5 Effect of surface tension on sphere size

Here, we evaluate the effect of surface tension between silicon and silica on particle size, as

predicted by our model. Figure 5.13 shows the predicted sphere diameter for three different

values of the surface tension, all comprised within the error range provided by Kroll & Schulte

(2006). It is observed that the sphere size is inversely proportional to the surface tension. For

example, for a feed speed of 10µm/s, decreasing the surface tension by 20% from γ= 1.5 N/m

to 1.2 N/m increases the predicted sphere diameter by 4.9%, from D = 24.3µm to 25.5µm.

Conversely increasing the surface tension by 20% from γ= 1.5 N/m to 1.8 N/m decreases the

predicted sphere diameter by 4.1%, from D = 24.3µm to 23.3µm. This is not surprising since

a higher value of surface tension implies more driving force for the pinching, hence faster

break-ups that result into smaller drop sizes.
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Figure 5.13 – Effect of surface tension on drop size. Relative errors of 20% in the magnitude of
the surface tension can cause corresponding errors of 4–5% in the drop diameter.

5.6.6 Comparison of nonlinear behaviors of silicon-in-silica fiber at constant cap-
illary number and viscous jet

The purpose of this appendix is to compare the nonlinear behavior of equations (5.28) for

a silicon-in-silica fiber at constant capillary number with that of equations (5.40) for a jet

in an inert medium. We consider the low Weber number limit We = 0.01, and use Ca = 1

and 1/3 for (5.28) and (5.40), respectively, in such a way that the linear dispersion relations

of the two systems are identical; the only difference between them resides in the nonlinear
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form of the viscous term. In (5.28), the viscous term originates from the radial velocity of the

outer silica, while in (5.40) it is due to the axial velocity of the jet. In both cases, we start from

a hemispherical shape h/h0 = (1− z̃2)1/2 and we numerically compute the evolution of the

system over a thousand nondimensional time units, using a spatial grid size d z̃ = 0.04. Figure

5.14 shows the resulting cascade plots of the dimensionless interface radius h̃ = h/h0 at fixed

time intervals for (a) equations (5.28) describing the silicon-in-silica fiber and (b) equations

(5.40) describing the viscous jet.

Surprisingly, equations (5.28) for the silicon-in-silica fiber produce regularly-spaced droplets,

while equations (5.40) for the viscous jet lead to the formation of one ever-growing pendant

drop.

(b)

(a)
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Figure 5.14 – Comparison of the nonlinear behaviors of (a) equations (5.28) for a silicon-
in-silica fiber at We = 0.01 and constant Ca = 1, and (b) equations (5.40) for a jet in an inert
medium at We = 0.01 and Ca = 1/3. The parameter values are chosen such that the two systems
share the same dispersion relation, with their only difference being the nonlinear form of the
viscous term. In both cases, the dimensionless interface radius h̃ = h/h0 is plotted at fixed
time intervals, and the red bar corresponds to a horizontal length scale of 5 dimensionless
units.
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6 Film thickness distribution in gravity-
driven pancake-shaped droplets ris-
ing in a Hele-Shaw cell
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We study here experimentally, numerically and using a lubrication approach; the shape,

velocity and lubrication film thickness distribution of a droplet rising in a vertical Hele-Shaw

cell. The droplet is surrounded by a stationary immiscible fluid and moves purely due to

buoyancy. A low density difference between the two mediums helps to operate in a regime

with capillary number C a lying between 0.03− 0.35, where C a = µoUd /γ is built with the

surrounding oil viscosity µo , the droplet velocity Ud and surface tension γ. The experimental

data shows that in this regime the droplet velocity is not influenced by the thickness of the
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thin lubricating film and the dynamic meniscus. For iso-viscous cases, experimental and

three-dimensional numerical results of the film thickness distribution agree well with each

other. The mean film thickness is well captured by the Aussillous & Quéré (2000) model with

fitting parameters. The droplet also exhibits the “catamaran” shape that has been identified

experimentally for a pressure-driven counterpart (Huerre et al., 2015). This pattern has been

rationalized using a two-dimensional lubrication equation. In particular, we show that this

peculiar film thickness distribution is intrinsically related to the anisotropy of the fluxes

induced by the droplet’s motion.

6.1 Introduction

Transport of droplets and bubbles in confined environments is a common process in engineer-

ing applications, such as microscale heat transfer and cooling using a slug flow (Kandlikar,

2012; Magnini, Pulvirenti & Thome, 2013), enhanced oil recovery based on foam injections

where bubbles move in porous media (Farajzadeh, Andrianov & Zitha, 2009) and microflu-

idic engineering using, droplets as micro-reactors (Song, Chen & Ismagilov, 2006) and cell-

encapsulating micro-compartments (He, Edgar, Jeffries, Lorenz, Shelby & Chiu, 2005), to name

a few. The study of transported droplets in confined dimensions also extends to biological

science where red blood cells traversing passages with non-axisymmetric geometries were

analysed (Halpern & Secomb, 1992).

Pioneering work has been initiated for a long bubble translating inside a straight cylindrical

tube by Taylor (1961) conducting experiments and Bretherton (1961) combining experiments

and asymptotic analysis. The analysis of Bretherton showed that the lubrication equations, at

a very small capillary number C a, were similar to their one-dimensional version assuming

spanwise invariance. He established the famous asymptotic relation between the uniform

film thickness H∞ and the capillary number in the C a < 10−3 regime, namely, H∞/W =
P (3C a)2/3/2, where W is the tube diameter and P a coefficient. The capillary number C a =
µoUd /γ is built with the carrier phase dynamic viscosity µo , the droplet velocity Ud and the

surface tension γ between the two fluids. Aussillous & Quéré (2000) proposed

H∞
W

= 1

2

P (3C a)2/3

1+PQ(3C a)2/3
, (6.1)

as the Taylor’s law including an empirical coefficient Q = 2.5, with the coefficient P inherited

from Bretherton (1961); this law was validated against the experimental data of Taylor (1961)

for C a < 2. The empirical relation was rationalised by incorporating into the analysis of

Bretherton the so-called “tube-fitting”condition, namely, that the bubble-film combination

should fit inside the tube (Klaseboer, Gupta & Manica, 2014). Besides those work considering

the steady translation, Yu, Zhu, Shim, Eggers & Stone (2018) has recently investigated how

the lubrication film evolves between two steady states of a Bretherton bubble by combining

theory, experiments and simulations.
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Contrary to the translating bubble in a capillary tube, a bubble moving in a Hele-Shaw cell (two

closely gapped parallel plates) resembles a flattened pancake. This configuration is relevant

to microfluidic applications (Baroud et al., 2010) where the thickness of the microfluidic

chips is much smaller than their horizontal dimension. Owing to the mathematical similarity

between the governing equations of the depth-averaged Hele-Shaw flow and those of the two-

dimensional (2D) irrotational flow as proved by Stokes (1898) and commented by Lamb (1993),

potential flow theory was adopted to study the motion of a Hele-Shaw bubble theoretically

(Taylor & Saffman, 1959) and numerically (Tanveer, 1986). Based on the stress jump derived

by Bretherton (1961) and Park & Homsy (1984), 2D depth-averaged simulations including the

leading-order effects of the dynamic meniscus were also carried out (Meiburg, 1989).

Motivated by the applications of droplet-based microfluidics, several works have been re-

cently conducted to investigate the dynamics of a pressure-driven Hele-Shaw droplet. Huerre

et al. (2015) and Reichert et al. (2018) performed high-precision experiments using reflection

interference contrast microscopy technique to study the pressure-driven droplets, observing

the so-called “catamaran” droplet shape. Simulations based on a finite volume method (Ling

et al., 2016) and a boundary integral method (BIM) (Zhu & Gallaire, 2016) were carried out,

confirming such a peculiar interfacial feature. It has to be mentioned that the much earlier

work of Burgess & Foster (1990) performing a multi-region asymptotic analysis subtly revealed

this feature for a Hele-Shaw bubble, which was rather unnoticed.

Limited work has been conducted for the gravity-driven droplets in a Hele-Shaw cell. Eri

& Okumura (2011) and Yahashi, Kimoto, & Okumura (2016) studied experimentally such

configurations, trying to build up the scaling laws for the viscous drag friction of the Hele-

Shaw droplets. Recently, Keiser et al. (2018) conducted experiments to study a sedimenting

Hele-Shaw droplet, focusing on its velocity as a function of confinement, viscosity contrast

and the lubrication capacity of the carrier phase.

In this work, we combine experiments, simulations and a lubrication model solved numer-

ically to study the buoyancy-driven translation of a droplet inside a vertical Hele-Shaw cell.

We examine the droplet velocity, film thickness and how they vary with the density and vis-

cosity difference between the droplet and carrier phase. We introduce the experimental

setup in Section 6.2, followed by the experimental results of the droplet mean velocity and

film thickness in Section 6.3.1 and Section 6.3.2 respectively. The comparison between the

three-dimensional (3D) BIM simulations and the experiments is shown in Section 6.3.3. The

lubrication equation employed to model the problem is presented in Section 6.4 where the

numerical solution of the lubrication equation is compared to the 3D simulation results in

Section 6.4.1. The film thickness pattern is rationalised by solving the linearised 2D lubrication

equation, which is presented in Section 6.4.2. We finally summarise our results in Section 6.5

with some discussions.
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6.2 Experimental setup

A vertical Hele-Shaw cell made of two parallel glass plates, separated by a gap W , is filled with

silicone oil of dynamic viscosity 560 mPa s and density 972 kg m−3, measured at 20◦C. An

oil drop is injected into the silicone oil medium from the bottom using a syringe as shown

in figure 6.1(a). The drop moves as a result of buoyancy. The higher the density difference

between the inner and outer medium, the higher the drop velocity Ud . The spanwise and

streamwise cell dimensions are sufficiently large compared to the drop size to avoid any finite

size effects from the lateral walls. On the other hand, the droplet is highly confined in the

wall normal direction. The droplet radius a is always larger than the cell gap W . Given the

compliance of the glass walls, the thickness of which is bounded by our optical measurement

tools, the cell gap W lies in the range of [4.59−4.8] mm and is recorded every time before the

drop injection (see table 6.2).

v
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stage

CCI optical pen

Camera
Syringe

Syringe

Ud

x

z

y

(a) (b)

Figure 6.1 – (a) Schematic of the experimental set-up. (b) Sketch of the problem: a droplet
with density ρi and dynamic viscosity µi moving at velocity Ud in a Hele-Shaw cell of height
W , where the carrier phase has a dynamic viscosity µo and its density ρo > ρi . The in-plane
(x, y) projection shows the drop’s longitudinal and transversal lengths, L and T , respectively.
The out-of-plane (x, z) drop shape shows the thickness H∞ of the uniform thin film and the
minimum thickness Hmi n of the film along the centreline.

The injected oils are tested beforehand to ensure non-wetting conditions for the oil droplet

on the cell plates. The outer silicone oil totally wets the glass plate and forms a thin film of

thickness H , between the drop and the glass’s interface (see figure 6.1(b)), which is measured

using a CCI optical pen (see details in Appendix 6.6.1). The pen is either placed fixed such

that it measures the film thickness only along the centreline L (centreline film thickness) or

is mounted on a linear translational stage to perform lateral scans while the drop moves

longitudinally. With an acquisition frequency of 200-500 Hz, scanning amplitude of 20-30 mm
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and frequency of 2-3 Hz, the obtained experimental data are interpolated in Matlab to obtain

the film thickness maps for the entire drop. Droplet size and velocity determine the optimal

acquisition frequency for the thickness sensor, and the scanning amplitude and frequency for

the linear translational stage.

We observe that for the chosen inner oil volumetric range, the droplet in-plane shape is no

longer a circle but closer to an oval, hence we refer to the drop longitudinal length (along the

direction of gravity) as L and to the transverse length as T , as shown in figure 6.1(b). The drop

motion is captured using a Phantom Miro M310 camera with a Nikon 105 mm macro lens.

The spatio-temporal analysis of the movie ensures uniform drop velocity as the drop moves

along a longitudinal distance of 5L or more.

The drop volume Q is expressed as a pancake of radius a and height W -2H∞, where H∞ is the

mean film thickness. We can simplify Q as πa2W when H∞ ¿W . For the volumetric range

used for the inner oils, we found that the longitudinal and transverse lengths, L and T , scale

as the pancake radius a. The aspect ratio α is expressed as the ratio a/W . Keeping the cell

gap W fixed, data for different aspect ratios are obtained using three different volumes (0.5ml,

1ml, 1.5ml) for each oil.

Six oils with physical properties as mentioned in table 6.1 are used. The surface tension

γ between the inner and outer medium is measured using Teclis tensiometer and the oil

viscosity and density are measured using Anton Paar SVMTM 3000 viscometer. The experiment

is performed at 20◦C-22◦C.

The ratio λ between the dynamic viscosity of the inner and outer phase lies between [0.09−
0.54]. In addition to this range, another set of experiments is performed with λ= 1.01, where

the outer medium is silicone oil (µo = 319 mPa s, ρo = 970.5 kg m−3) and the inner medium is

a mixture of ricin oil and 10% ethanol (µi = 322 mPa s, ρi = 943.3 kg m−3) for three different

drop volumes. The interfacial surface tension between these oils is 4.46 mN m−1. Notations

for physical parameters and their definitions are detailed in table 6.2.

Inner oil µi (mPa s) ρi (kg m−3) γ (mN m−1)

Linseed oil 49 929 2.88
Sunflower oil 69.5 921.5 2.73
Sesame oil 71 919.1 2.64
Olive oil 79.3 913.3 2.55
Peanut oil 83.8 913.3 3.11
Ricin oil (type 1) + 10% ethanol 302 943.1 4.97
Ricin oil (type 2) + 10% ethanol 322 943.3 4.46

Table 6.1 – Dynamic viscosity µi and density ρi of the inner oils. Those of the outer oil are
µo = 560 mPa s and ρo = 972 kg m−3 except for the case of Ricin (type 2) + 10% ethanol for
which the outer oil has µo = 319 mPa s, ρo = 970.5 kg m−3. The interfacial surface tension
between the inner-outer oils is γ. These properties were obtained at a room temperature 20◦C.
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Symbol Definition Expression Working range

W cell gap - 4.59-4.8 mm
Ud drop velocity - 0.4-1.6 mm s−1

Q injected drop volume - 0.44-1.5 ml
a pancake equivalent radius

√
Q/πW 5.8-10.3 mm

α aspect ratio a/W 1.25-2.27
∆ρ density difference |ρi −ρo | 27.3-58.8 kg m−3

µi dynamic viscosity - droplet - 49-322 mPa s
µo dynamic viscosity - outer medium - 319-560 mPa s
γ interfacial surface tension - 2.5-5.0 mN m−1

λ dynamic viscosity ratio µi /µo 0.09-1.01
C a capillary number µoUd /γ 0.03-0.35
Bo Bond number ∆ρg a2/γ 1.8-23.3

Table 6.2 – List of notation, definition and working range.

6.3 Experimental acquisition of the drop characteristics and their

comparison with 3D BIM simulations

6.3.1 Experimental results for drop velocity

Considering the bulk dissipation only, the resulting viscous drag force acting on the drop scales

as Fd ∼ (µi +µo)Udπa2W −1. Unlike Okumura (2018), we consider both the inner and outer

viscosities since they are of the same order. Balancing the total drag force with the buoyancy

force, Fg ∼∆ρgπa2W , we obtain a scaling for the droplet mean velocity as

Ud ∼ ∆ρgW 2

(µi +µo)
, (6.2)

where ∆ρ is the density difference and g = 9.81 m s−2.

Under the assumption of cylindrical penny-shaped wetting drops, a theoretical expression for

the drop velocity can be obtained from Maxworthy (1986), Bush (1997) and Gallaire, Meliga,

Laure & Baroud (2014). Gallaire et al. (2014) deduced the drop velocity in a Hele-Shaw cell,

subjected to both buoyancy and Marangoni flow, using depth-averaged Stokes equations,

called the Brinkman equations. In the absence of Marangoni effect and at leading order, Bush

(1997) and Gallaire et al. (2014) predicted the mean drop velocity as

Ud = ∆ρgW 2

12µo(λ+1)
. (6.3)

Introducing the Bond number Bo (refer table 6.2) we can rewrite equation (6.3) using the
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Figure 6.2 – Experimental dataα2(λ+1)C a versus the Bond number Bo, where C a ∈ [0.03,0.35].
The markers correspond to different viscosity ratios λ of the inner-outer medium. The data
closely fits equation (6.4) represented by the straight line.

aspect ratio α as,

12α2(λ+1)C a = Bo. (6.4)

The experimental data are plotted against the theoretical equation (6.4) in figure 6.2. Following

the trend predicted by equation (6.4), figure 6.2 signifies the dominant forces in play are

buoyancy and viscous drag due to the volume of fluid displaced by the drop. The dissipation

induced in the thin film as well as the one in the dynamic meniscus region are found not

to play a role in the selected parameter range. However it has been observed that for low

C a ranges, the dissipation in the thin film (Keiser et al., 2018) and in the dynamic meniscus

(Reyssat, 2014) have to be taken into account.

6.3.2 Experimental results for film thickness

Film thickness maps were measured for different droplet velocities. Since the thickness sensor

fails to capture the data in presence of high thickness gradient, no data is acquired along the

drop edges, as shown in figure 6.3(d), where the black curve represents the drop in-plane

boundary. For different aspect ratios, qualitatively similar thickness maps were obtained, with

a high film thickness on the front edge, a constant film thickness in the centre and very low

film thickness along the lateral edges of the drop, overall resembling a catamaran-like shape.

The spanwise and streamwise cut made along the film thickness are shown in figure 6.3(b-c).

The centreline film thickness indicated by the streamwise cut at y = 0 (figure 6.3(b)) clearly

shows a monotonically decreasing film thickness pattern, followed by a region of constant

film thickness H∞ which then reaches a minimum value of Hmi n . At the rear of the droplet,

the strong thickness gradient reverses the direction to have an increasing thickness profile

close to the drop receding edge, thus posing technical issues to capture the film thickness.
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Figure 6.3 – Drop characteristics for droplet with λ ∼ 1 moving with mean velocity Ud =
0.64mm/s, C a = 4×10−2 and Bo = 6.2. (a) The blue curve shows the in-plane drop shape
fitting based on equation (6.6) with L/2 = 11.22 mm, T /2 = 10.21 mm and fitting coefficient c =
−7.485×10−6 mm−1. The film thickness in the streamwise and spanwise directions y = 0 and
x = 0 of the drop are shown in (b) and (c) respectively. Figure (b) shows the typical centreline
thickness profile with monotonic decreasing thickness, followed by constant thickness H∞
and ending with the minimum film thickness Hmi n . (c) The film thickness profile along the
spanwise direction highlights the two minima along the lateral edge of the drop at y ∼±7.5
mm which are clearly noticed in (d) where we see the in-plane shape in black and the obtained
film thickness map. The data is missing along the drop boundaries due to the presence of high
thickness gradient that cannot be captured by the thickness sensor.

A similar centreline film thickness profile was obtained for all the droplets with a distinct

value of H∞ and Hmi n . These profiles are very similar to the ones of Bretherton (1961) for

pressure-driven droplets, and as already noted in other works of pancakes (Huerre et al., 2015,

Zhu & Gallaire, 2016 and Reichert et al., 2018). Nondimensionalising the mean and minimum

values along the centreline using the cell gap W and plotting them as a function of C a shows

a saturating trend for higher C a (figure 6.4). The experimental data are fitted based on the

Taylor’s law model (Taylor, 1961; Aussillous & Quéré, 2000), according to which apart from

the static and dynamic meniscus regions, the lubrication film has a constant thickness of H∞
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Figure 6.4 – (a) Dimensionless mean (H∞/W ) and (b) minimum (Hmi n/W ) film thickness,
as a function of Ca. The black curve represents the best fit curve obtained using the Taylor’s
law model with P = 0.544,Q = 2.061 for H∞/W and with P = 0.372,Q = 1.247 for Hmi n/W .
For the mean film thickness, predictions based on the coefficients P,Q from the Taylor’s law
((Aussillous & Quéré, 2000), (Klaseboer et al., 2014) and Zhu & Gallaire (2016)) are also shown.

given as:

H∞
W

= 1

2

P (3C a)2/3

1+PQ(3C a)2/3
, (6.5)

where the coefficients P = 0.544 and Q = 2.061 are obtained from the best fit curve for the

experimental data. The nonlinear equation (6.5) is fitted using the Matlab function sseval

such that the objective function, defined as the sum of squared errors between the real data of

H∞/W and the one predicted by equation (6.5), using any pair of parameters P and Q, is the

minimum. The L2 error norm for H∞/W between the fitted and actual data is 0.02.

The fitting coefficients compare well with Aussillous & Quéré (2000) and Klaseboer et al. (2014),

where the mean film thickness model for bubbles (λ = 0) is based on the Taylor’s law with

coefficient P = 0.643, and Q = 2.5 and 2.79 respectively. Fitting coefficients obtained from a

3D BIM simulation of Zhu & Gallaire (2016) for pressure-driven flows and λ= 1 show the same

order of magnitude as the experimental ones, with P = 0.6 and Q = 1.5.

In figure 6.4(a), we see that our experimental data for mean film thickness are bounded by

the predicted values for the two extreme viscosity ratios of λ= 0 and λ= 1. Comparing the

thickness predictions by Klaseboer et al. (2014) and Zhu & Gallaire (2016) for C a = 0.1 we see

that the thickness variation is 20% as λ increases from 0 to 1. This is consistent with the 18%

(approximately) increase as reported in Martinez & Udell (1990) for pressure-driven drops

in an axisymmetric tube. Further, this variation in thickness reduces to a merely 11% for

C a = 0.05, as λ changes from 0 to 1.
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The same model when used for fitting the minimum film thickness profile Hmi n/W gives

fitting coefficients P = 0.372,Q = 1.247 with an L2 error norm between the fitted and actual

data as 0.025.

Motivated by the qualitative agreement for the mean film thickness value between the ex-

perimental data and the 3D BIM simulations for pressure-driven droplets (figure 6.4(a)), we

perform a 3D BIM simulation using the solver developed in Zhu & Gallaire (2016), suitably

adapted for gravity-driven droplets. Details of the numerical scheme are referred to that paper.

6.3.3 Comparison with 3D simulations

The current numerical simulations only address the cases where the inner and outer viscosities

are the same, namely λ= 1. To realize it experimentally, three different drop volumes, 0.44ml,

1ml and 1.5ml, were injected in the Hele-Shaw cell resulting in C a=0.032, 0.043 and 0.046 with

the corresponding Bo=1.81, 4.04 and 6.2. The error in volume injected decreased from 10% to

3% as we moved from the smallest to the largest drop volume.

The experimental film thickness maps for the chosen C a range show that the precise shape of

the pancake in-plane shape is close to an oval. Hence, the experimental in-plane drop shape

is obtained by fitting the following equation

x2

(L/2)2 + y2

(T /2)2 ecx = 0, (6.6)

on an instantaneous image of the drop where c is a fitting parameter (figure 6.3(a)).

Experimentally, due to large thickness gradient along the drop edges, the CCI sensor fails to

capture the thickness in these regions. Thus the map is obtained for an area smaller than

the in-plane shape of the drop (black curve in figure 6.5). On the contrary, the numerical

simulations are capable of retrieving the complete film thickness map, but for making a

visually effective comparison between the experiments and numerics, only the part of the

numerical result, with the same area as the experimental data, is shown in figure 6.5. It’s

top/bottom half corresponds to the numerical/experimental data. The red dashed curve refers

to the numerical in-plane shape of the drop.

Both the experiments and simulations capture the formation of catamarans at the lateral

transition regions, a uniform film thickness in the centre and a very high film thickness at the

front edge of the drop. The agreement is almost quantitative. The relative error in the uniform

film thickness H∞ for drop volumes 0.44 ml, 1 ml and 1.5 ml, is 5%,3% and 2% with absolute

values as 12 µm, 7 µm and 6 µm, respectively.
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Figure 6.5 – Film thickness map whose top (resp. bottom) half corresponds to the 3D BIM
(resp. experimental) data for three drop volumes (a) 1.5 ml (C a = 0.046,Bo = 6.2), (b) 1 ml
(C a = 0.043,Bo = 4.04) and (c) 0.44 ml (C a = 0.032,Bo = 1.81). The viscosity ratio λ≈ 1. The
experimental and numerical in-plane shapes are represented by black and red dashed curves,
respectively. The numerical results for H∞ along the centreline deviate with the experimental
data by a factor of 2%,3% and 5% for the three cases, respectively.

The numerical solution is further validated by making several streamwise (figure 6.6) and

spanwise (figure 6.7) cuts along the largest drop of volume 1.5 ml. Along the centreline, the

3D BIM simulation captures precisely the lubrication film variation: large film thickness at

front edge, followed by a constant thickness profile, ending in a small oscillation before posing

an increasing trend at the rear edge. There is a good quantitative comparison between the

experiments and numerics, with a slight variation in the film thickness along the advancing

meniscus.

6.4 Analysis of the film thickness pattern

In order to rationalise the film thickness pattern observed in Section 6.3.3, we model hereafter

the problem using a lubrication approach. For simplicity, we formulate the 2D lubrication
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Figure 6.6 – Film thickness cuts made along the streamwise directions at (a) y = 0, (b) y = 2.5
mm, (c) y = 5 mm and (d) y = 7.5 mm, where C a = 0.046,Bo = 6.2. Black dashed lines
represent the experimental results and red lines the numerical predictions. The decrease in
the film thickness towards the lateral edges can be observed by comparing (a) and (d) where
the mean film thickness decreases by around 30% signifying the appearance of catamarans
close to (x, y) ≈ (−4,7.5) mm.

equation assuming the drop dynamic viscosity µi = 0.

6.4.1 Formulating the nonlinear 2D lubrication equation

Applying the long-wavelength assumption (Oron, Davis & Bankoff, 1997) and by neglecting

inertia, the 2D nonlinear lubrication equation (see details in Appendix 6.6.2) for the film

thickness H separating the interface from the wall, in the reference frame moving at the drop

velocity Ud , can be derived. Using the pancake radius a as the characteristic length and a/Ud

as the characteristic time, the dimensionless lubrication equation for the steady profile in the

dimensionless coordinate system x̄, ȳ is written as

∂

∂x̄

[
H̄ 3

(
1

3C a
κ̄x − Bo

3C a

)
− H̄

]
+ ∂

∂ȳ

(
H̄ 3 1

3C a
κ̄y

)
= 0, (6.7)

where κ̄ is the mean curvature of the interface, given by κ̄=∇·n, where the unit normal vector

n on the interface is given by

n =
(−H̄x ,−H̄y ,1

)T√
1+ H̄ 2

x + H̄ 2
y

. (6.8)
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Figure 6.7 – Film thickness variation along the spanwise directions at x = 0, x = ±2.5 mm,
x =±5 mm and x =±7.5 mm, where C a = 0.046,Bo = 6.2. Black dashed lines represent the
experimental results and red lines the numerical results. Transverse cuts enclosed by the
region x = −2.5 mm to x = −5 mm highlight the minima in the lubrication film along the
lateral edges.

Note the anisotropy of the fluxes in equation (6.7): both the buoyancy and the motion in

the x̄ direction do not affect the flux in the ȳ direction, breaking the isotropy induced by the

capillary pressure gradient.

The nonlinear equation (6.7) together with the equation for the interface curvature κ̄ are solved

numerically by the commercial finite element solver COMSOL Multiphysics. The two variables

for this coupled system of partial differential equations are H̄ and κ̄. As boundary conditions

we impose the film thickness H̄ =W /2a and the mean curvature κ̄= κ̄ f ,r at the droplet mid

height. The mean curvature boundary condition in the static meniscus is composed by a

component in the (r̄ ,θ)-plane and a component in the (r̄ , z̄)-plane. In the spirit of Meiburg

(1989) and Nagel (2014), we consider the local capillary number defined with the normal

velocity to the static cap for the mean curvature boundary condition model:

κ̄ f ,r (r̄ ,θ) = 2a

W

(
1+T f ,r (3C a|cosθ|)2/3

1+Z f ,r (3C a|cosθ|)2/3︸ ︷︷ ︸
(r̄ , z̄)-plane

)
+ π

4

1

r̄︸︷︷︸
(r̄ ,θ)-plane

, (6.9)

where the coefficients with subscript f have to be used for θ ∈ [−π/2,π/2] and the ones with

subscript r for θ ∈ [π/2,3π/2], where θ and r̄ are defined as θ = arctan(ȳ/x̄) and r̄ = (x̄2+ ȳ2)1/2,

respectively. The values of the coefficients are T f = 2.285, Tr = −0.5067, Z f = 0.4075 and

Zr = −0.1062. The curvature boundary condition model in the (r̄ , z̄)-plane is inspired by
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Figure 6.8 – (a) Comparison between the solution of the nonlinear lubrication equation
assuming λ= 0 (top half) and that of the 3D BIM simulations assuming λ= 1 (bottom half),
where C a = 4.6×10−2 and Bo = 6.2. (b) Comparison for cuts made along the streamwise
direction A-A and spanwise direction B-B.

the equivalent model of Balestra, Zhu & Gallaire (2018), which has been developed by an

extensive study for the 2D planar Stokes problem. The validity of this model has recently

been corroborated by Atasi, Haut, Dehaeck, Dewandre, Legendre & Scheid (2018) for pancake

bubbles. The correction π/4 for the in-plane curvature 1/r̄ in the (r̄ ,θ)-plane, where r̄ = 1 for

a circular geometry, has been derived asymptotically by Park & Homsy (1984). Note that a

more involved model could be used to describe the out-of-plane curvature ((r̄ , z̄)-plane) in

the lateral transition regions (Burgess & Foster, 1990).

In the present work we extract the pancake shape from the results of the 3D BIM simulations

for λ= 1. As explained in Section 6.3.3, the in-plane boundaries of the deformed pancake in

the (r̄ ,θ)-plane can be well described by equation (6.6).

It has to be stressed that the used lubrication equation should not, a priori, be used in the

static meniscus region close to the boundary, where the interface slope is large. However, we

have found that such an approach gives surprisingly good results if one uses the model for

the static rim curvature (6.9) for the curvature boundary condition (see Balestra (2018) for

a discussion of the axisymmetric case), which directly sets the film thickness profile in that

region. Hence, such an approach can be used to numerically obtain the film thickness profile

over the entire domain, also behind its validity range.

The comparison between the film thickness profile obtained by the solution of the nonlinear

lubrication equation using the model equation (6.9) for the static cap mean curvature κ̄ f ,r (r,θ),

with the one obtained by the 3D BIM simulations, is shown in figure 6.8. One can observe

that both methods predict the formation of catamarans at the lateral transition regions,

a uniform film thickness in the centre and oscillations at the back. In spite of the strong
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assumptions made for this model, the agreement is surprisingly good, even with an iso-

viscous drop (µi = µo). The relative error in the uniform film thickness is of 10% and its

absolute value is 30µm. The thin-film pattern shown by both approaches, as well as by the

experiments, is therefore indeed a robust feature. Supported by this agreement, we investigate

the thin-film pattern using the linearized version of this simple 2D lubrication model, which

is computationally much cheaper than the 3D Stokes simulations.

6.4.2 Qualitative analysis of thickness pattern using the linearized 2D lubrication
equation

The qualitative nature of the film thickness pattern can be inferred by performing a linear

analysis of the 2D lubrication equation (6.7). With the use of the film thickness decomposi-

tion H̄ = H̄∞+εh, where H̄∞ = H∞/a, the linear equation for the first-order film thickness

correction reads:

H̄ 3∞
3C a

(hx̄ x̄ x̄ x̄ +2hx̄ x̄ ȳ ȳ +h ȳ ȳ ȳ ȳ︸ ︷︷ ︸
∆2h

)−
(
1+ H̄ 2∞Bo

C a

)
hx̄ = 0. (6.10)

The film thickness H̄∞ is expressed using the empirical model (6.5) (Taylor (1961), Aussillous

& Quéré (2000) and Balestra et al. (2018)), with P = 0.643 and Q = 2.2.

Equation (6.10) for the film thickness correction around the uniform film thickness H̄∞ can be

solved as a boundary-value problem, as recently conducted by Atasi et al. (2018). In contrast

to the nonlinear solution of Sec. 6.4.1, here we only solve the lubrication equation from the

thin-film region up to the beginning of the dynamic meniscus region. This is equivalent to

looking at the first-order correction of the uniform thin film region due to the matching of the

film thickness in the dynamic meniscus region to a larger value. In the present context, we

impose a film thickness correction h = A and a mean curvature of the order ∆h = 1/A+1/r̄ on

the perimeter, with A as a constant value of 10−3×H̄∞. This boundary condition does not have

to be understood as a rigorous matching approach, but rather as a way to find the structure of

the film thickness profile in the region where it is close to be uniform. A rigorous matching

for the limit C a ¿ 1, can be found in Park & Homsy (1984). The maps of the film thickness

correction h, together with some profiles along the streamwise and spanwise directions, are

shown in figure 6.9.

First, it can be clearly observed that the linear lubrication equation with a perturbed film

thickness and curvature along the domain boundary is able to reproduce the catamaran-like

pattern observed in pancake droplets as seen in Section 6.3.3 and Section 6.4.1. The film

thickness is the smallest in the lateral part of the pancake (see figure 6.9(a)), so that its 3D

shape resembles the hull of a catamaran. Therefore, we can conclude that this pattern is the

generalization of the one-dimensional oscillations found by Bretherton (1961) at the rear of

an axisymmetric bubble for a 2D concave structure, like a pancake droplet, and is intrinsically

related to the anisotropy of the equation.
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Second, the film thickness correction along the streamwise direction x̄ (see figure 6.9(c)) devi-

ates from a uniform profile as expected from Bretherton’s theory (Bretherton, 1961). The film

thickness oscillates at the rear meniscus and increases monotonically at the front meniscus.

Note that the film thickness correction in the uniform film region of a pancake is not vanishing

as the base film thickness H̄∞ is given by equation (6.5), which is an asymptotic estimate for

Bo = 0 but not an exact solution of the lubrication equation with Bo 6= 0. Furthermore, it can

be observed that the more one moves away from ȳ = 0, the more the thickness of the film is

reduced. Therefore, the thickness of the film left by the front meniscus is not uniform.

To better highlight this crucial point, we show in figure 6.9(d) the normalized difference

between the film thickness correction and its value at ȳ = 0. The film thickness decreases as

|ȳ | increases, before increasing again close to the edge to match the boundary condition.

These qualitative observations can be rationalised by simplifying the linear lubrication equa-

tion (6.10) for the different regions of the domain (see figure 6.9(b)). The lubrication equation
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Figure 6.9 – Linear film thickness correction h around the uniform film thickness H̄∞ for a
pancake droplet (a,c,d). The film thickness correction map is shown in (a), the cuts along
the streamwise direction at two different ȳ-locations are plotted in (c) and the normalized
difference of the film thickness correction along the spanwise cut C-C with respect to h0 =
h(ȳ = 0) along this cut is shown in (d), where the law (cosθ)2/3 is indicated by the black dashed
line. A = 10−3 × H̄∞, C a = 4.6×10−2, Bo = 6.2 and α = 2.2. The polar coordinates (r̄ ,θ) are
introduced and the boundaries are highlighted by the grey area in (b).
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6.4. Analysis of the film thickness pattern

(6.10) in polar coordinates can be simplified to

H̄ 3∞
3C a

hr̄ r̄ r̄ r̄ −
(
1+ H̄ 2∞Bo

C a

)(
cosθhr̄ − sinθ

r̄
hθ

)
= 0. (6.11)

For small polar angles θ, the contribution (sinθ/r̄ )hθ, which corresponds to the flux in the

tangential direction, can be neglected so that the linear lubrication equation becomes, after

integration along r̄ :

hr̄ r̄ r̄ = Kp h, (6.12)

with

Kp =
(

3C a

H̄ 3∞
+ 3Bo

H̄∞

)
cosθ, (6.13)

which is the linearised one dimensional equation for the Landau-Levich-Derjaguin-Bretherton

problem (Landau & Levich (1942), Derjaguin (1943) and Bretherton (1961)) in the radial

direction r̄ projected on the streamwise direction. Therefore, we know from the solution of

Bretherton (1961) that the film thickness is oscillating at the rear meniscus and monotonically

increasing at the front one. Focusing for now on Bo = 0, we know that the thickness deposited

by a front meniscus depends on the velocity normal to the interface. In this case, one has

therefore H̄∞ ∼C a2/3
p with C ap =C a cosθ as the local capillary number at a given polar angle

θ. Hence, the film thickness in the central region of the pancake varies like (C a cosθ)2/3.

Similar results have been reported for a pressure-driven red blood cell traversing in a non-

axisymmetric passage (Halpern & Secomb, 1992) and in pancake droplets by Reichert et al.

(2018). Once a given film thickness is set by the front meniscus, the same thickness will be

present over the entire thin film region at the corresponding spanwise location ȳ . The good

agreement between the dependence in (cosθ)2/3 of the film thickness and the profile along

the spanwise direction obtained by resolving the 2D lubrication equation is shown in figure

6.9(d).

Similarly, the oscillations at the rear meniscus depend on the polar angle. For a pancake

droplet, due to the film thickness nonuniformity resulting from the nonuniform deposition at

the front, the wavelength of the oscillations at the back scales as λosc ∼ (C a cosθ)1/3. Given

the 1/3 power-law dependence, the wavelength is almost unchanged, before rapidly reducing

to 0 when θ→±π/2 (see figure 6.9(a)).

It is important to note that a plane cut of the film thickness at a given angle θ does not present

a region of constant film thickness. A pancake droplet cannot be seen just as the collection of

different one-dimensional profiles obtained by the solution to equation (6.12) for different

polar angles θ. In fact, the film thickness at any spanwise location ȳ is set by the front meniscus

at the corresponding polar angle θ and equation (6.12) only indicates the scaling of this film

thickness as well as the oscillations at the back.
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For θ→±π/2, which corresponds to the lateral meniscus region (see figure 6.9(b)), the tangen-

tial flux term (sinθ/r̄ )hθ in equation (6.11) can no longer be neglected. Burgess & Foster (1990)

performed an involved analysis of the lubrication equation in this region for a pancake droplet

at low capillary numbers and found that the local film thickness in the so-called lateral transi-

tion regions scales as C a4/5 rather than as C a2/3. Therefore, for C a ¿ 1, the film thickness in

these lateral regions is much smaller than the one in the other regions. This explains why one

observes catamaran-like structures in the lateral regions of pancake droplets. Note that for the

C a-range considered in the present study, the film thickness in the lateral transition regions is

still sufficiently large so that the viscous dissipation can be neglected also in these regions, as

confirmed by the results of Sec. 6.3. Furthermore, Burgess & Foster (1990) have also shown

that the polar extent of these lateral regions scales as C a1/5, whereas their radial extent scales

as C a2/5 instead of as C a1/3 that one has for the length of rear and front dynamic menisci of

axisymmetric droplets (see also Hodges, Jensen & Rallison (2004)).

6.5 Conclusions and perspectives

We report the velocity, mean film thickness and thickness map for a droplet moving due to

buoyancy in a vertical Hele-Shaw cell. The mean drop velocity compares well with the leading

order velocity expression of Gallaire et al. (2014). This signifies that buoyancy and viscous

drag force are the dominant forces in our experimental parameter range with the viscous

dissipation in the film thickness and in the dynamical meniscus having a negligible effect

on the droplet velocity. On the contrary, the dimensionless mean film thickness data was

dependent on the dimensionless droplet velocity, expressed as C a, and was fitted with the

Taylor’s law model (Aussillous & Quéré, 2000).

We also obtained the complete film thickness maps using a CCI optical pen mounted on a

linear translation stage. Based on a boundary integral method, 3D Stokes equations were

solved. These numerical results for λ= 1 were in very good agreement with our experimental

results. The thickness pattern had a distinct catamaran-like shape as experimentally observed

for pressure-driven flows in Huerre et al. (2015) and Reichert et al. (2018).

To understand the nature of the thickness patterns observed experimentally and numerically,

the problem was approached using a lubrication equation, which was solved as a boundary

value problem, rather than as an initial value problem, as recently conducted by Atasi et al.

(2018). In spite of all the crude assumptions done for developing the model, its nonlinear

solution for the film thickness profile of a pancake bubble compared surprisingly well with

the results of 3D BIM simulations, evidencing the robustness of the thin-film pattern.

In order to unravel the structure of the film thickness profile, we linearized the lubrication

model and solved for the linear thickness corrections around a uniformly-thick film. We have

been able to show that not only the oscillations at the rear meniscus, but also the catamaran-

like pattern can be directly retrieved by solving the linear 2D lubrication equation when

perturbing the film thickness at the boundaries, which mimics the presence of a meniscus of
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Figure 6.10 – As stated by Lamstaes & Eggers (2017), for a planar geometry the drops should
get stuck when W <Wc . Our experiments show that the pancake-shaped drops continue to
move beyond this limitation.

greater film thickness. In particular, the catamaran-like structure results from the anisotropic

flux induced by the motion of the walls with respect to the pancake and the need to match the

film thickness to larger values in the dynamic meniscus region surrounding the region where

the thin film is rather uniform. This pattern is therefore independent of the force driving the

motion. In fact, in totally different contexts, the same pattern is also found in drops levitating

on a moving substrate (Hodges et al., 2004; Lhuissier, Tagawa, Tran & Sun, 2013) as well as

in oleoplaning drops (Daniel, Timonen, Li, Velling & Aizenberg, 2017). In the central part

of the pancake droplet, the thickness left by the front meniscus scales as (C a cosθ)2/3, and

depends therefore on the velocity normal to the interface. This scaling no longer holds in the

lateral transition region, where the component of the flux tangential to the interface becomes

important and the thickness of the film is much smaller, resulting in the formation of the

catamaran-like structure.

Finally, we would like to highlight a contrasting feature seen between drops moving in a

cylindrical tube and that in a Hele-Shaw cell. In cylindrical tubes the main difference between

the pressure-driven and buoyancy-driven bubble motion, as found by Bretherton (1961), is

that buoyant bubbles may remain stuck if the capillary radius is less than 0.918lc , where

the capillary length lc = √
γ/∆ρg . This failure results from the impossibility to match the

static gravity-corrected meniscus shape with the flat thin film region. A similar result was

obtained recently in the planar geometry by Lamstaes & Eggers (2017) with a prefactor of 0.847.

Interestingly enough, we suspect that there is no such bubble arrest in Hele-Shaw cells, as a

consequence of the additional direction which adds a degree of freedom in the curvature. As

shown in figure 6.10, our experimental results show marked drop motion when the half cell

gap is below 0.847lc .
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6.6 Appendix

6.6.1 CCI working principle

We hereby describe the principle of the Confocal Chromatic Imaging technique. An achromatic

lens decomposes the incident white light into a continuum of monochromatic images which

constitutes the measurement range. The light reflected by a sample surface put inside this

range is collected by a beam splitter. A pinhole allows then to block the defocused light that

does not come from the sample surface. Eventually, the spectral repartition of the collected

light is analyzed by a spectrometer. The wavelength of maximum intensity is detected and

the distance value is deduced from a calibration curve. Several reflecting interfaces can be

detected at the same time, allowing thickness measurement of thin transparent layers.

6.6.2 Derivation of two-dimensional nonlinear lubrication equation for pancake
droplets

The derivation of the model equation presented in Section 6.4.2 is briefly outlined hereafter.

Considering the same physical properties for the droplet and the outer medium as outlined in

Section 6.1, and under the assumption of negligible inertia (Oron et al., 1997) with ρi ¿ ρo ,

and µi ¿µo the three dimensional momentum equations reads

0 =− ∂p

∂x
+µo

(∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
−ρo g , (6.14)

0 =− ∂p

∂y
+µo

(∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
, (6.15)

0 =− ∂p

∂z
+µo

(∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
. (6.16)

Using L as the characteristic length scale in x and y direction and the film thickness H as the

characteristic length scale in z direction, the film aspect ratio ε is defined as ε = H/L. The

long wavelength approximation is employed since ε¿ 1. Mass conservation indicates that the

characteristic velocity in z direction (W ) is much smaller than the other two components (U
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in x and V in y direction), W ∼ εU ¿U and W ∼ εV ¿V . The Stokes equation simplifies as

0 =− ∂p

∂x
+µo

∂2u

∂z2 −ρo g , (6.17)

0 =− ∂p

∂y
+µo

∂2v

∂z2 , (6.18)

0 =− ∂p

∂z
. (6.19)

Integrating equation (6.19) in z and applying dynamic boundary conditions yields p = p0−γκ
where κ is the mean curvature of the interface. Integrating equation (6.17) and (6.18) twice in

z and considering u(z = 0) =−Ud and the zero-slip boundary condition v(z = 0) = 0 as well

as the zero-shear-stress interface ∂u(z = H)/∂z = 0 and ∂v(z = H)/∂z = 0 yields the velocity

components:

u = (γκx −∆ρg )

µo

(
H − z

2

)
z −Ud , (6.20)

v =γκy

µo

(
H − z

2

)
z. (6.21)

Since the inner medium density ρi ¿ ρo , we replace ρo by ∆ρ in equation (6.20) where

∆ρ = ρo −ρi represents the density difference between the inner and outer fluid. Integrating

equation (6.20) and (6.21) in z from 0 to H yields the flux in x and y direction as

Qu = H 3

3µo
(γκx −∆ρg )−Ud H , (6.22)

Qv = H 3

3µo
γκy . (6.23)

Finally integrating the continuity equation and applying the Leibniz Integral rule and the

kinematic boundary condition at the interface yield the mass conservation equation expressed

as

∂H

∂t
+ ∂Qu

∂x
+ ∂Qv

∂y
= 0. (6.24)

Introducing equation (6.22) and (6.23) in equation (6.24) finally yields the lubrication equation:

∂H

∂t
+ ∂

∂x

[
H 3

3µo
(γκx︸︷︷︸

I

−∆ρg︸︷︷︸
II

)−Ud H︸ ︷︷ ︸
III

]
+ ∂

∂y

[
H 3

3µo
γκy︸︷︷︸

I

]
= 0. (6.25)

The terms I in the spatial variation of the flux corresponds to the surface tension effects, term

II to the variation due to the buoyancy force and term III accounts for the reference frame

moving with the drop. Note the anisotropy of the fluxes: both the buoyancy and the motion in

the x direction do not affect the flux in the y direction, breaking the isotropy induced by the
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capillary pressure gradient.

Using the pancake radius a as the characteristic length and a/Ud as the characteristic time,

the dimensionless lubrication equation for the steady profile in the dimensionless coordinate

system x̄, ȳ is written as equation (6.7).
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7 Conclusions and perspectives

Since major conclusions were drawn at the end of each chapter, we present here only brief

overview of each chapter with some future perspectives for certain sections.

7.1 Summary

The thesis mainly concentrates on amplifier flows which have a large amplification potential

in presence of external noise. Defining this as the stepping stone, we started our analysis in

chapter 2 with a canonical example of amplifier flows-the backward facing step (BFS). Based

on the theory developed and implemented by Edouard Boujo and Eunok Yim, we carried out

the second order sensitivity analysis of a spanwise modulated BFS. The sensitiveness of the

flow in presence of active and passive controls was analysed. The sensitivity analysis was

aimed at reducing the separation length by anticipating the reattachment point, a feature

which has close resemblance to the total gain in a BFS, owing to the fact that the reattachment

point defines the size of recirculation bubble which in turn controls the flow separation and

hence the flow evolution in the entire domain.

chapter 2 also briefly introduced the method of vaccination, wherein the control in BFS

(without any spanwise control) in presence of incoming noise was investigated through

nonlinear simulations. The control in such flows was employed by using the optimal forcing

which has been already investigated by previous works. By modulating the amplitude of the

control forcing, one could see that the response envelope of the flow in presence of the white

noise was suitably diminished, especially for a certain frequency band below the optimal

forcing frequency.

Drawing the general conclusion from chapter 2 for amplifier flows, where small amplitude

control was seen to cause notable change in flow response, we advanced our study on amplifier

flows by taking the example of free interface capillary jets in chapter 3 and chapter 4. Similar

to the BFS, where we chose a length scale (separation length) as the measure for the response

to external forcing, we chose the breakup length in the case of jets as the basis for comparing
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the effect of different controls.

Chapter 3 laid a foundation for the jet flow analysis using the one-dimensional (1D) Eggers &

Dupont equations. We studied the parallel capillary jets through local analysis and investigated

the flow through simulations based on the complete nonlinear form of 1D Eggers &Dupont

equations. The spatio-temporal analysis performed on the linear equations marked the

transition from an absolutely unstable to a convectively unstable jet, the latter providing a

regime where the spatial instability analysis is well posed. The spatial analysis performed in

this regime resulted in obtaining the most unstable frequency ωopt which caused the largest

spatial growth rate −ki . A comparison was made with the numerical analysis where the

strength of a given forcing was determined by the resulting breakup length. The smallest

breakup length was related to the optimal forcing. The ωopt obtained from the nonlinear

simulations was indeed in accordance with the local spatial stability analysis. Moreover, ωopt

was found to be independent of the forcing amplitude or the domain size.

Using a similar approach, we then proceeded to analyse the effect of external forcing on

capillary jets stretched under the effect of gravity in chapter 4. Since such an analysis can only

be performed for stable jets which are susceptible to external forcing, we began our analysis by

performing the linear stability analysis of the gravitationally stretched jet using both the local

and global framework. The spatial analysis was further extended using the WKBJ formulation.

The effect of the external forcing on the stable jet was first analysed numerically where we

concluded that the ωopt producing the shortest breakup length was a function of the forcing

amplitude ε. Smaller the ε, larger was the ωopt , a result which was in contraction to the one

obtained for parallel jets. A decrease in the forcing amplitude resulted in a larger breakup

length, which would further imply larger downstream stretching of the imposed forcing. Hence

for a forcing to be ‘felt’ at a given downstream station, its frequency had to be increased.

We next reformulated a resolvent analysis so as to represent the forcing type used for the

numerical simulations and expressed the optimal gain using the singular value decomposition

of the resolvent operator. First, by expressing the gain as a function of the domain size in

z at constant forcing frequency and, second by specifying the gain expression in terms of

the forcing amplitude, we could predict not only the ωopt for a given forcing amplitude ε but

also the resulting breakup length as observed from the nonlinear simulations. Finally we

performed simulations in presence of white noise with a fixed noise level. As expected for

amplifier flows, the jet had a preferential response for frequencies defined in a certain range.

More evidently, the preferred frequency range at the given noise level was found to be close to

the one obtained by pure harmonic forcing of the ωopt for the same forcing amplitude.

Using the 1D Eggers & Dupont equation as an inspiration, we then attempted to analyse the

drop size of silicone spheres obtained when a solid silicone-in-silca co-axial fibre is fed into a

flame at a certain speed in chapter 5. The work is based on the experimental work of Gumennik

et al. (2013). The authors found that the size of these particles varied monotonically with the

speed at which the fibre is fed into the flame. To analyse the physical mechanism behind the
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drop size selection, Saviz Mowlavi performed the linear analysis based on a simplified model

derived from standard long-wavelength approximations. Owing to the failure of the linear

stability analysis, we resorted to nonlinear simulations of the simplified model to recover

the particle size seen in experiments. Without any adjustable parameters, the simulations

predicted a drop size at the same order of magnitude as the one observed in the experiments.

Finally, to explore some physical aspects of the drops obtained after the nonlinear breakup of

a jet, we performed experiments in a Hele-Shaw cell to estimate the pancake-shaped drop

velocity and the lubrication film thickness distribution of a droplet rising in a vertical cell

in chapter 6. We found that for the chosen experimental range of parameters, the drop

velocity was independent of the lubrication film thickness and that of the dynamics meniscus.

Additionally the droplet displayed the ‘catamaran’ like film thickness pattern which agreed well

with the three-dimensional numerical results of Lailai Zhu. The pattern was then rationalized

by Gioele Balestra using a two-dimensional lubrication equation.

7.2 Perspectives

In the following sections we present some perspectives for the linear, nonlinear and experi-

mental analysis.

7.2.1 Sensitivity analysis of spatially varying jet

For the spatially varying jet presented in Chapter 4, we found that the optimal forcing fre-

quency was amplitude dependent. However, the analysis was performed only on a fixed case

of stable jet. Even though a similar behaviour is expected for other cases of stable jet, it would

be interesting to generate maps of optimal forcing for varying ranges of flow parameters and

forcing amplitudes. Instead of resorting to computationally expensive numerical simulations,

one can benefit from the resolvent analysis whose validity has already been proven in pre-

dicting the ωopt and the corresponding breakup length lc for a given forcing amplitude ε. The

resolvent framework can be extended to formulate the sensitivity operator which analyses the

sensitiveness of a defined function due to a small change in the applied control.

For instance one can evaluate the sensitiveness of the breakup length lc for a small variation in

forcing amplitude ε or frequencyω close to the optimal forcing. Since we are always interested

in the optimal forcing producing the shortest breakup length, we define the objective function

as the minimum obtainable lc , subject to a given control f . This can be represented as,

min
f

F (lc , f ) subject to ∂t q = L[q]+ f , (7.1)

where L is the linear operator describing the governing equations and the control f = εexp(iωt ).

We define the sensitivity operators: ∇lc,ε and ∇lc,ω, which represent the variation in lc due to a

small variation in forcing amplitude δε and forcing frequency δω, respectively. Mathematically
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expressed as,

∇lc,ε = dF

dε
, (7.2a)

∇lc,ω = dF

dω
, (7.2b)

the sensitivity operator aids in evaluating the net sensitivity of lc for a small variation in ε at

constant ω, expressed as,

δlc,ε = (∇lc,ε,δε). (7.3)

Similarly the sensitivity of the breakup length to a small variation on ω at constant ε can be

expressed as,

δlc,ω = (∇lc,ω,δω). (7.4)

However, similar to the resolvent analysis the sensitivity analysis would also be only partially

representative of the breakup in a jet due to the fact that linear analysis fails to predict the

bimodal drop distribution often observed during the breakup process. The only plausible way

to capture individually the occurrence and the size of the main and satellite drops is through

nonlinear simulations. Thus we next propose some improvements that could be applied in

our current numerical scheme to capture accurately the main and satellite drop formation.

7.2.2 Improvements for numerical scheme for capturing drop dynamics

The numerical scheme implemented in this thesis to analyse the breakup of different types of

jets is limited in its functionality since the information of the drop evolution is lost soon after

the instant of jet breakup. The absence of a drop capturing scheme raises several questions.

For instance one does not know if the main and satellite drops formed at the time of breakup

will coalesce into a single drop or disintegrate into several more while moving downstream.

Moreover the methods which could be employed for controlling satellite drop formation

cannot be verified in absence of a scheme which does not take into account the drop evolution

post breakup. For instance, Hilbing & Heister (1996) studied the main and satellite drop

size variation as the amplitude of the forcing was increased progressively at constant forcing

frequency (see figure 7.1(c)). At low amplitudes, the satellite drop size was found to be much

smaller in comparison to the main drop, a feature which could eventually assist in the merging

of the two drops due to the large disparity in velocity. However, there is no information

regarding the drop size dependence on the forcing amplitude when a spatially varying jet is

forced at its (amplitude dependent) optimal frequency. For example, as shown in figure 7.1(a)

and 7.1(b), if the gravitationally stretched jet is forced at ωopt for the given forcing amplitude,

the difference between the size of satellite and main drop ∆R was seen to increase if the

amplitude was increased. At ε= 10−4, ∆R = 0.4 which increased to ∆R = 0.84 at ε= 10−2. Thus

the complex dependence of the individual drop size on the forcing amplitude compels the
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Figure 7.1 – Main and satellite drop size captured through nonlinear simulations for a spatially
varying jet flow and excited at the (amplitude dependent) optimal forcing frequency at forcing
amplitude (a) ε= 10−4 and (b) ε= 10−2. (c) Main/satellite drop size variation as a function
of forcing amplitude, in a parallel jet being forced at a fixed frequency. Image obtained from
(Hilbing & Heister, 1996).

inclusion of drop capture beyond the breakup location.

In this direction, we propose certain steps which will eventually lead to a better control of

satellite drop formation:

Defining the slope based on drop scale

For spatially varying jets, often the breakup can display a variety of shapes existing on different

length scales (refer figure 7.1(a)-7.1(b)). The current numerical scheme, which only accounts

for the slope of the tip is not sufficient for capturing drop tips with varying curvature, especially

if the pinchoff is similar to figure 7.2(a) or resembling the shape due to Klystron effect when a

high speed jet collides with the ejected drop (refer figure 1.12).

One possible way to implement slopes of varying scales could be by applying a nonuniform

grid. At the time of breakup, the entire jet will be subdivided into several segments having

their own intact length. The grid size should be scaled in accordance with the individual intact

lengths, the smaller the span of the liquid segment, smaller would be the discretisation size.

Additionally, we believe that the stretching extent of a drop pre or post breakup indirectly

depends on the velocity at which it is travelling. Thus this information should be used as a

control while deciding the arbitrary value assigned to the adjacent node to the tip.

167



Chapter 7. Conclusions and perspectives

(a) (b)

Figure 7.2 – (a) Enlargement of the breakup region highlighting the large drop and the creation
of the thin micro-thread, both with highly different slopes. Image obtained from Kowalewski
(1996). (b) Interface solution with the exact solution (solid line) and regularised approxima-
tions (markers). The values of the regularisation radius Rc are 0.5 (·), 0.2 (◦) and 0.01 (4).
Image obtained from Driessen & Jeurissen (2011)

Capturing drop evolution beyond breakup

For simultaneously simulating the intact jet and the drops being ejected from it, inspiration

can be taken from the work of Driessen & Jeurissen (2011) who develop a model to calculate

the flow evolution between consecutive breakups for parallel jets. Indeed the drop evolution

post-breakup requires the information from the system pre-breakup. Since the singularities

are treated by defining the breakup at some predefined arbitrary value, they regularize the

singularity using a small modification of the momentum flux. This regularization sets a lower

limit for the length and time scales. The regularization is performed on the surface tension

term by using the cutoff radius Rc which is the control parameter, chosen to scale with the

spatial step. Thus the exact solution of the non regularized system is reached by refining the

grid (see figure 7.2(b)). Due to the regularization, even when the jet radius approaches zero,

the capillary tension goes to a finite value. This allows the existence of a stable liquid column

between the free floating liquid segments.

Forcing by a combination of frequencies and amplitudes

The successful implementation of the drop capture scheme will finally aid in the analysis of

the satellite drop elimination using different methods. Indeed the forcing amplitude can be of

importance in eliminating the satellite drops but at the cost of producing a drop size which

may be out of bounds for the necessary application. To have simultaneously a precise control

over the drop size and the satellite drops, the jet could be forced at inlet with a combination of

forcing frequencies which are both close to ωopt for that forcing amplitude.

This approach is inspired by the work of Driessen et al. (2014), who demonstrated a novel

method of producing a stream of widely spaced high-velocity droplets by imposing a super-

position of two Rayleigh-Plateau unstable modes on a liquid jet, as shown in figure 7.3. The
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Figure 7.3 – The plots shows the dispersion relation of the Rayleigh-Plateau instability for
an infinite inviscid jet (We À 1, and Oh ¿ 1. χ1 and χ2 represent the different perturbation
wavenumbers induced on the jet where the contours represent their individual radius pertur-
bations. The superposition of the two modes is also shown. Image extracted from Driessen
et al. (2014).

chosen modes had a wavelength close to the most unstable mode. The interference pattern

resulting from the superimposition of the two modes caused local asymmetries in the capillary

tension, which eventually altered the velocity of the initial droplets. Drops with very different

velocities finally resulted in coalescing together and producing a stream of larger drops.

A similar approach can be applied for the spatially varying gravity jets. Unlike Driessen et al.

(2014), the two forcing frequency, chosen around ωopt should have identical growth rates

−ki . However, the spatially varying ωopt and the resulting variation in −ki requires a deeper

analysis of the response in presence of combination frequencies. The decay in growth rate

in presence of a combination frequency is not as straightforward as the method applied by

Driessen et al. (2014) for parallel jets.

Indeed the entire analysis is based on choosing two frequencies which have identical growth

rate. However, one does not know a priori the effect of the gap (between the ωopt and the

individual frequencies) on the final breakup length or the drop size. This could be analysed

both numerically and analytically by formulating a sensitivity operator which looks at the

effect of the frequency gap on the breakup length. Even though the sensitivity analysis cannot

predict the drop size, it would be interesting to find ways of relating the results of the linear

and nonlinear analysis.

7.2.3 Obtaining the limit condition for static drops in Hele-Shaw cell

The conclusion of chapter 6 discusses the difference between the drop motion in a Hele-

Shaw cell in comparison to the one in a cylindrical tube. Unlike the cylindrical tubes where

Bretherton (1961) found that buoyant drops may remain stuck if the capillary radius is less

than 0.918lc , where lc is the capillary length, the drop motion in the Hele-Shaw cell presents
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no such conclusion for our chosen experimental parameters. However, it would be interesting

to investigate the critical flow parameters and its relation with the aspect ratio (drop radius

to cell gap width), which eventually leads to a buoyant drop getting stuck in the Hele-Shaw.

Performing experiments with varying properties could also lead us to see if the limit proposed

by Lamstaes & Eggers (2017) for the drops to get stuck in Hele-Shaw cells, 0.847lc , is valid in

certain flow regimes. In addition, the Hele-Shaw cell-inclination can be used as a scale for

changing the net magnitude of gravitational pull acting on the drop. Although the asymmetry

caused by the inclined cell would set a limit to the maximum drop size, it would allow us to

investigate the relation between the magnitude of gravitational force and the appearance of

the ‘catamaran’ shape.
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