Abstract

Biofilms are a most successful microbial lifestyle and prevail in a multitude of environmental and engineered settings. Understanding biofilm morphogenesis, that is the structural diversification of biofilms during community assembly, represents a remarkable challenge across spatial and temporal scales. Here, we present an automated biofilm imaging system based on optical coherence tomography (OCT). OCT is an emerging imaging technique in biofilm research. However, the amount of data that currently can be acquired and processed hampers the statistical inference of large scale patterns in biofilm morphology. The automated OCT imaging system allows covering large spatial and extended temporal scales of biofilm growth. It combines a commercially available OCT system with a robotic positioning platform and a suite of software solutions to control the positioning of the OCT scanning probe, as well as the acquisition and processing of 3D biofilm imaging datasets. This setup allows the in situ and non-invasive automated monitoring of biofilm development and may be further developed to couple OCT imaging with macrophotography and microsensor profiling.

Details

Actions