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Supplementary Materials 

 

Parameter-free resolution estimation based on decorrelation analysis 

1. Mathematical framework- derivation of the analytical expression of the decorrelation function d(r) 

 

We consider an incoherent imaging apparatus characterized by the ideal transfer function 𝐻(𝑘) of 

frequency support 𝑘𝑡ℎ: 

𝐻(𝑘) = {
1 −

|𝑘|

𝑘𝑡ℎ
|𝑘| < 𝑘𝑡ℎ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (S1) 

 

where 𝑘 =  √𝑘𝑥
2 + 𝑘𝑦

2. We image an idealized point emitter of brightness 𝐴 located on the optical axis. 

During the acquisition, the image is corrupted with pure white noise. The resulting intensity 𝐼(𝑘) is 

expressed in Fourier space, as  

𝐼(𝑘) = 𝐴(1 −
|𝑘|

𝑘𝑡ℎ
)(|𝑘| < 𝑘𝑡ℎ) + 𝑒

𝑖𝜃(𝑘) (S2) 

 

where 𝜃(𝑘) is the random phase of the white noise. 

The decorrelation analysis, i.e. the computation of the partial phase cross-correlation between the original 

image and its normalized version is expressed in Fourier space as 

𝑑(𝑟) =
∬ 𝑅𝑒 {𝐼(𝑘)

𝐼∗(𝑘)
|𝐼(𝑘)|

𝑀(𝑘; 𝑟)} 𝑑𝑘𝑥𝑑𝑘𝑦
∞

−∞

√∬ |𝐼(𝑘)|2𝑑𝑘𝑥𝑑𝑘𝑦
∞

−∞ ∬ |
𝐼(𝑘)
|𝐼(𝑘)|

𝑀(𝑘; 𝑟)|
2

𝑑𝑘𝑥𝑑𝑘𝑦
∞

−∞

 
(S3) 

 

where 𝑀(𝑘; 𝑟) is a binary mask of radius 𝑟. The expression of the partial phase correlation in Fourier space 

allows us to make several general considerations. Using complex arithmetic, the numerator can be 

simplified as 𝐼(𝑘)
𝐼∗(𝑘)

|𝐼(𝑘)|
= |𝐼(𝑘)|, while the denominator is composed of two terms. The first is simply the 

energy of the input image. This number does not depend on 𝑟 and normalizes the function 𝑑(𝑟) between 

0 and 1. Finally, due to the normalization, the last term is equal to the mask |
𝐼(𝑘)

|𝐼(𝑘)|
𝑀(𝑘; 𝑟)|

2
= 𝑀(𝑘; 𝑟). 

Transforming equation S3 to polar coordinates [𝑘𝑥, 𝑘𝑦] => [𝑘𝑟, 𝜃], we obtain 

𝑑(𝑟) =
∫ ∫ |𝐼(𝑘)|𝑀(𝑘; 𝑟)𝑘𝑟𝑑𝑘𝑟𝑑𝜃

1

0

2𝜋

0

√𝐸 ∫ ∫ 𝑀(𝑘; 𝑟)𝑘𝑟𝑑𝑘𝑟𝑑𝜃
1

0

2𝜋

0

 (S4) 
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where 𝐸 stands for the energy of the input image (which is independent over coordinate transform) and 

where we used the Cartesian-Polar transformation 𝑑𝑘𝑥𝑑𝑘𝑦 = 𝑘𝑟𝑑𝑘𝑟𝑑𝜃. 

Using the simplified imaging model introduced above, it is possible to analytically solve the expression for 

𝑑(𝑟) and get a better understanding of how the function depends on the image transfer function. 

We start with the numerator of equation S4 and use the fact that the mask 𝑀(𝑘; 𝑟) is 0 for 𝑘𝑟 > 𝑟. 

∫ ∫ |𝐼(𝑘)|𝑀(𝑘; 𝑟)𝑘𝑟𝑑𝑘𝑟2𝑑𝜃
1

0

2𝜋

0

=  2𝜋∫ |𝐴(1 −
|𝑘|

𝑘𝑡ℎ
) (|𝑘| < 𝑘𝑡ℎ) + 𝑒

𝑖𝜃(𝑘)| 𝑘𝑟𝑑𝑘𝑟

𝑟

0

 (S5) 

 

In order to be able to integrate the noise term 𝑒𝑖𝜃(𝑘) analytically, we make the additional assumption that 

the random phase fluctuations averages out under integration, which allows to approximate the 

expression S5 as the sum of the transfer function and the noise: 

2𝜋∫ |𝐴 (1 −
|𝑘|

𝑘𝑡ℎ
) (|𝑘| < 𝑘𝑡ℎ) + 𝑒

𝑖𝜃(𝑘)| 𝑘𝑟𝑑𝑘𝑟

𝑟

0

 

≈ 2𝜋∫ 𝐴(1 −
|𝑘|

𝑘𝑡ℎ
) (|𝑘| < 𝑘𝑡ℎ)𝑘𝑟𝑑𝑘𝑟 +  𝜋𝑟

2
𝑟

0

 

(S6) 

 

The remaining integration is trivial and we obtain for the numerator of equation S4 

𝑑𝑛𝑢𝑚(𝑟)  ≈

{
 
 

 
 2𝜋𝐴(

𝑟2

2
−

𝑟3

3𝑘𝑡ℎ
) +  𝜋𝑟2 𝑓𝑜𝑟 𝑟 ≤ 𝑘𝑡ℎ

𝜋𝐴

3
𝑘𝑡ℎ
2 +  𝜋𝑟2 𝑓𝑜𝑟 𝑟 > 𝑘𝑡ℎ

 (S7) 

 

Using similar argumentation, we can express the signal energy 𝐸 as  

𝐸 =  𝜋 [
𝐴2𝑘𝑡ℎ

2

6
+
2𝐴𝑘𝑡ℎ

2

3
+ 1] (S8) 

 

and the normalized denominator term of equation S4 as 

∫ ∫ 𝑀(𝑘; 𝑟)𝑘𝑟𝑑𝑘𝑟𝑑𝜃
1

0

2𝜋

0

=  𝜋𝑟2 (S9) 

 

Using equations S7, S8 and S9, we obtain for the  decorrelation function 𝑑(𝑟) (for 𝑟 < 𝑘𝑡ℎ) 

𝑑(𝑟) =
2𝜋𝐴 (

𝑟2

2 −
𝑟3

3𝑘𝑡ℎ
) +  𝜋𝑟2

√𝜋 [
𝐴2𝑘𝑡ℎ

2

6 +
2𝐴𝑘𝑡ℎ

2

3 + 1]𝜋𝑟2

 
(S10) 
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From S10, we clearly see that if 𝐴 ≪ 1 , i.e. the signal is extremely weak compared to the noise , the 

decorrelation function becomes a line with a slope of 1. 

𝑑𝐴≪1(𝑟) ≈
𝜋𝑟2

√𝜋2𝑟2
= 𝑟 (S11) 

 

We find the position of the local maxima by computing the partial derivative of the analytical expression 

of equation S10 with respect to 𝑟. We find  

𝑟𝑚𝑎𝑥 =
3𝑘𝑡ℎ(𝐴 + 1)

4𝐴
 (S12) 

 

We would like to note that the expression S12 is only valid for 𝑟 < 𝑘𝑡ℎ and that 𝑟𝑚𝑎𝑥 = 𝑘𝑡ℎ when 𝐴 = 3. 

For this basic model, an amplitude below 3 will not yield any local maxima. 

This result shows that, as long as the signal is strong enough, there is always a local maximum. Moreover, 

the position of the local maximum is directly connected to the cutoff frequency 𝑘𝑡ℎ. 

Following our mathematical framework, in Figure S1a , we calculate decorrelation function 𝑑(𝑟) with 

(orange, corresponds to equation S10) and without (blue) idealized noise as well as their corresponding 

transfer functions (orange and blue dashed lines). The position of the local maxima of the orange curve 

corresponds exactly to the analytical expression. We observe a deviation from the theoretical model when 

dealing with white noise. The fact that the maximum shifts to a lower frequency (and that its amplitude 

decreases) translates the degradation of the transfer function (the cutoff frequency is no more clearly 

identifiable).  

 

Figure S1: Detailed behavior of decorrelation analysis. (a) Comparison of idealized vs non-ideal noise for the function 𝑑(𝑟) (solid 
lines) and radial average of the Transfer function (dashed line). (b)The plot of d(r) for three different noise statistics. (c) The plot 
of d(r) for aberration-free and aberrated point-spread function. (d) The plot of d(r) for fixed amplitude and varying cutoff. (e) The 
plot of d(r) for fixed cutoff and varying amplitude. (f)The plot of d(r) for various high-pass filtering of the input image.  
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We also show in Figure S1b computation of 𝑑(𝑟) for various noise figures (white noise, Gaussian and 

Poisson). Here, we observe a very interesting feature of the algorithm. Spatially uncorrelated signal 

corresponds to a straight line, independently of the noise statistics. The fact that the functions are not 

equal to 1 for 𝑟 = 1 is due to the fact that their power spectral densities are not perfectly flat. 

We also illustrate in Figure S1c, d and e, how 𝑑(𝑟) evolves as a function of aberrations, the cutoff 

frequency and the Signal-to-Noise ratio. For aberrations, we computed multiple transfer functions with a 

fixed cutoff (𝑘𝑡ℎ = 0.5) and SNR (𝐴 = 10) and increased defocus by adding a circular symmetric 

quadratic phase (𝑒𝑖𝑊𝑟
2
) to the pupil function, with 𝑊 varying between 0 and 100. As expected, increases 

in defocus shifts the position of the maxima to the left. The decrease in the amplitude of the maximum is 

due to a decrease in SNR due to the spread of the point-spread function. A similar effect is seen when 

varying the cutoff frequency (Fig. S1d) from 0.7 to 0.1, where the position of the maximum follows the 

cutoff frequency. Again, the change in amplitude is due to the fact that the total energy of the signal 

decreases with the cutoff while the noise energy remains constant. On the contrary, when keeping the 

cutoff frequency fixed and changing the SNR via the parameter 𝐴, we observe that the position of the 

peak does not change until the signal is too weak to produce a peak. This corresponds to the limit of the 

method. 

Finally, we show how 𝑑(𝑟) behave when the input image is filtered with a high-pass filter (in our case, we 

use a standard inverted Gaussian). As we increase the filtering strength, the position of the maximum 

shifts towards higher-frequencies. At some point we observe that too much signal has been removed from 

the image as no more peaks are observable. By filtering the input image, we are effectively modifying the 

transfer function in order to emphasize the high-frequencies. This provides a unique and robust way of 

estimating the resolution of the image based on the position of the peaks. 

We also notice that our analysis intrinsically produces smooth and noiseless functions, without the need 

to apply any additional smoothing or any kind of fit. This is due to the fact that the function is computed 

by integration over a disk of radius 𝑟. Two neighboring values  𝑑(𝑟) and 𝑑(𝑟 + ∆𝑟) share a large amount 

of information. They are therefore naturally correlated and evolve slowly with respect to 𝑟. 

1.1. Resolution criterion, frequency sampling and error estimation 

So far, we have introduced a way to process an image to extract several curves that exhibit a local 

maximum directly linked to the spatial frequency content of the image. The remaining operation 

consists of selecting the most suitable peak to be our resolution estimator. We consider the two most 

natural choices that are:  the peak corresponding to the highest frequency (𝑘𝑐,𝑚 = max
𝑖=[1,𝑁𝑔]

𝑟𝑖) or the 

peak  corresponding to the highest geometrical mean (𝑘𝑐,𝐺𝑀 = 𝑟𝑖 | max
𝑖=[1,𝑁𝑔]

√𝑟𝑖𝐴𝑖) (giving the same 

amount of weight to the amplitude of the peak, i.e. SNR, and the spatial frequency). 

 We conducted a large study, computing the resolution using both criteria, with a varying sampling of 

𝑑(𝑟)  (𝑁𝑟= [30:100] in steps of 10) and different numbers of high-pass filtering (𝑁𝑔= [10:30] in steps 

of 5). Figure S2a displays the STED image used to show how the resolution estimated from the highest 

frequency (𝑘𝑐,𝑚) changes with respect to Nr and Ng. 
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Figure S2: Resolution estimate and criterion vs 𝑁𝑟 and 𝑁𝑔. (a) STED image used as an example for (b). (b) Estimated resolution of 

(a) as a function of 𝑁𝑟 and  𝑁𝑔, with an average and standard deviation of 113±1.3nm . (c) Resolution estimate average and 

standard deviation for different modalities and the two resolution criteria: geometric mean (orange circles) and highest frequency 
(blue crosses). (Confocal: Fig. 2a, STED: Fig. 2c, WF: Fig. 3a, SIM: Fig. 3c, SOFI3-4: Fig. 4a and PAINT: Fig. 5f). 

Figure S2b shows the resolution estimate using the maximum frequency criterion 𝑟𝑒𝑠 = 2/𝑘𝑐,𝑚, 

where 𝑘𝑐,𝑚 is expressed in [1/um] as a function of 𝑁𝑟  and 𝑁𝑟. Using the geometric mean criterion, we 

measure an average resolution of 113𝑛𝑚 and a precision of ± 1.8𝑛𝑚 (not shown here) and 113 ±

1.3𝑛𝑚 using the maximum frequency (see Fig. S2b). This demonstrates the robustness of the method 

to large changes in processing parameters and the absence of bias introduced by the choice of the 

parameters. Figure S2c shows the same comparison for different imaging modalities presented in the 

main text (Fig. 2-5). Besides for confocal data, there is no significant difference between the estimated 

resolution using the geometric mean (orange circles) or the maximum frequency (blue crosses) 

criteria and the precision is typically ±3𝑛𝑚 or less. The reason why the confocal data has a different 

behavior is linked to the shape of its transfer function and can be directly seen in Figure 2. The 

amplitude of the peaks drops very quickly for a small increase in spatial frequency. This is due to the 

fact that confocal transfer function has a quadratic decrease in amplitude as a function of spatial 

frequency. Therefore, the criterion that includes SNR is more likely to be conservative when 

estimating the resolution. 

Unlike specified otherwise, all resolutions and cutoff frequencies shown in the manuscript are 

calculated using the highest frequency criterion. 

 

 

 

1.2. Algorithm implementation 

The following section describes the implementation of the method. The source code is publicly 

available on github (https://github.com/Ades91/ImDecorr.git) and is currently implemented in 

Matlab (CPU and GPU) and Java (CPU, as an ImageJ plugin, see Section 8). 

I. Pre-processing 

We first compute the mean and subtract it from the image. We then apodize the edges by 

multiplying the image with a cosine window function defined as 

𝑊(𝑥) =  {
cos(𝑘𝑥|𝑥| + 𝜑) |𝑥| ≥ 𝑥𝑚𝑎𝑥 −𝑤

1 |𝑥| < 𝑥𝑚𝑎𝑥 −𝑤
 (S13) 

 

https://github.com/Ades91/ImDecorr.git
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where 𝑥 ∈ [−𝑥𝑚𝑎𝑥 , 𝑥𝑚𝑎𝑥], 𝑥𝑚𝑎𝑥 is half the field of view, 𝑤 is the window length, 𝑘𝑥 =
𝜋

𝑤
 and 

𝜑 =  𝜋 −
𝜋

𝑤
𝑥𝑚𝑎𝑥. High frequency artefacts arising for edge discontinuities are consequently 

minimized. The image is then Fourier transformed and all values for 𝑟 > 1, where 𝑟 is the 

normalized radial frequency, are set to 0. 

 

 

II. Initial decorrelation computation and peak finding 

The initial decorrelation function 𝑑(𝑟) is computed according to equation (1) from main text. 

For speed consideration, the computation is performed in Fourier space as 

𝑑(𝑟) =
∑∑ 𝑅𝑒{𝐼(𝑘𝑥 , 𝑘𝑦)𝑀(𝑟)𝐼𝑛(𝑘𝑥, 𝑘𝑦)

∗
}𝑘𝑥,𝑘𝑦

√∑∑ |𝑀(𝑟)𝐼𝑛(𝑘𝑥, 𝑘𝑦)|
2

𝑘𝑥,𝑘𝑦
∑∑ |𝐼(𝑘𝑥, 𝑘𝑦)|

2
𝑘𝑥,𝑘𝑦

 (S14) 

 

As discussed in the theoretical framework (see Section 1), the function 𝑑(𝑟) has a local 

maximum which we need to locate. This is a very general signal processing task and many 

solutions exist. In our case, the decorrelation function always exhibit a highly specific shape 

where it is equal to 0 for 𝑟 = 0, raises to a certain value based on the SNR and decreases as it 

decorrelates. Using our knowledge of the shape of 𝑑(𝑟), we propose the following strategy 

for determining the local maxima.  

We pick the maximum of 𝑑(𝑟). If the position of the picked maximum is the last value of the 

array, this means that either the tail of 𝑑(𝑟) is larger than the local maximum or there is no 

local maximum. In both cases, we exclude the value from the array and repeat the operation 

with the remaining values. We stop the loop as soon as we find a maximum that is not the 

last element of the array (local maximum exists) or if we run out of values (no local maxima 

at all). By processing a significant amount of simulated and experimental images, we 

concluded that our strategy for localizing the local maximum of any decorrelation function 

was robust enough and that we did not need to implement more sophisticated approach.   

In order to avoid the selection of noisy local maxima (very rarely arising when analyzing post-

processed or poorly sampled images), we also impose that the local maximum should be at 

least 0.001 larger than the smallest value from the position of the maximum to the last value 

of the array. We point out the fact that, unlike the Fourier Ring Correlation or Power Spectral 

Density threshold, it cannot be used to tune the resolution as it works only as a rejection 

criterion and is only useful in very specific situations rather than being mandatory. 

The average image SNR estimate is set as 𝐴0 = 𝑑(𝑟0) and the position of the local maximum 

of 𝑟0 is used as a first guess for the spatial frequency content, useful for the following high-

pass refinement steps (Fig. 1c). 

 

 

III. High-pass filtering and resolution estimation 

In order to find the highest significant frequency, the input image has to be high-pass filtered 

in a smooth way, in order to weaken low frequencies contributions. Here we propose the use 

of Gaussian filtering. In both Matlab and ImageJ implementation, this operation is performed 

in real space (conveniently using B = imgaussfilt(A) for Matlab or the GaussianBlur() class for 



7 
 

ImageJ). This operation could also be implemented in Fourier space for processing speed 

optimization. We obtain the high-pass filtered version of the image 𝐼 as: 

 

𝐼𝐻𝑃(𝑥) = 𝐼(𝑥) − 𝐼𝐿𝑃(𝑥; 𝜎) (S15) 

 

where 𝐼𝐿𝑃(𝑥; 𝜎) is the low-pass version of the image with a 𝜎. 

In the current implementation, we propose to compute 𝑁𝑔 (typically 10) high-pass version of 

the input image with 𝜎𝑖 = 𝑒
𝑖

𝑁𝑔
(log(

2

𝑟0
)−log(0.15))+log(0.15)

 . Each 𝜎 is then exponentially 

distributed between 
2

𝑟0
 (weak high-pass) and 0.15 (very strong high-pass) where 𝑟0 is 

expressed in pixels units. For each high-pass filtered image, a corresponding decorrelation 

function is computed and the local maximum position and amplitude are extracted [𝑟𝑖, 𝐴𝑖]. 

We then get the highest frequency peak and the largest geometric mean from all peaks. 

The 𝜎𝐵 corresponding to the “best” curve is identified for both criterion and the whole 

procedure is repeated with refined high-pass filtering distributed between 

min(𝜎𝐵,𝑔𝑚, 𝜎𝐵,𝑚𝑎𝑥) and max(𝜎𝐵+1,𝑔𝑚, 𝜎𝐵+1,𝑚𝑎𝑥). 

While it is not the fastest implementation (more advanced method could be used to improve 

the convergence and minimize the number of correlations to be computed), it guarantees a 

result in a fixed and reasonable computation time (typical processing speeds are ranging from 

1 to 15 seconds depending on the implementation, the size of the image and the number of 

points 𝑁𝑟  and 𝑁𝑔 used for the computation). 

The image resolution is then defined as 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
2

𝑘𝑐
, where 𝑘𝑐 = max

𝑖=[1,𝑁𝑔]
𝑟𝑖 is expressed 

in [1/um]. 

 

 

2. Simulations 

2.1. Point emitters  

To validate the ability of the proposed analysis in estimating  the resolution and Signal-to-Noise Ratio 

(SNR), we performed additional simulations. The simulated object consists in a random distribution 

of point emitters, contributing incoherently to the image intensity. The image SNR is controlled by the 

amplitude of the incoherent point spread function and the resolution is controlled by the extent of 

the transfer function 𝐻(𝑘). We then compute several images with a cutoff frequency ranging from 0 

to 0.8. The incoherent transfer function 𝐻(𝑘) can be expressed as 

𝐻(𝑘) = {
𝐴(1 −

|𝑘|

𝑘𝑡ℎ
) |𝑘| < 𝑘𝑡ℎ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (S16) 

 

where 𝑘𝑡ℎ is the theoretical cutoff frequency and 𝐴 controls the amplitude of the transfer function. 

The noise level is controlled by Gaussian additive noise of statistic 100+/-2 counts (corresponding to 

averaged dark frames statistics of a Hamamatsu Orca Flash V4.0) and additional Poisson noise. 
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Consequently, we can attribute to each simulated image a theoretical resolution 𝑘𝑡ℎ and a signal to 

noise ratio 𝑆𝑁𝑅 =
µ𝑠𝑖𝑔

𝜎𝑛𝑜𝑖𝑠𝑒
=

<𝐼(𝑥)>−100

2
. We then vary the image resolution over the range 𝑘𝑡ℎ =

 [0,0.8] and the image SNR over 𝑆𝑁𝑅 = [0,500] (via adequate tuning of 𝐴).  

 

Figure S3: Simulations (a) Estimated cutoff frequency vs simulated NA for various image SNR (Orange line: SNR < 0.1, Solid black 
lines: SNR between [0.1 and 0.15], Solid blue line: SNR > 0.15 (average of dashed blue lines), Dashed black line: 1-1 reference 
line). (b) The amplitude of the initial decorrelation function vs simulated image SNR for various normalized cutoff frequency 

Our algorithm exhibits (Fig. S3a) a linear dependency with the simulated cutoff 𝑘𝑡ℎ, with an offset of 

about 10% when the image SNR is above ≈ 0.15. 𝐻(𝑘) drops to 0 at the frequency 𝑘𝑡ℎ. In the case of 

lower SNR, this frequency cannot be reliably estimated. For an image SNR between 0.1 and 0.15, the 

algorithm recovers a lower resolution, which is consistent when considering low SNR images where 

the transfer function is partially embedded in the noise. Images with a SNR smaller than 0.1 do not 

exhibit any peaks in the analysis. 

Fig. S3b shows the amplitude 𝐴0 of the peak of the original decorrelation function without any high-

pass filtering. While the cutoff frequency estimate is independent of the image SNR (in the high SNR 

case), we see that our SNR estimator depends on both the input image SNR and the cutoff frequency. 

This is due to the fact that, in our simulation, we are keeping the amplitude of the transfer function 

𝐻(𝑘) constant as a function of the cutoff frequency 𝑘𝑡ℎ. This means that the signal energy (that is the 

volume under the surface defined by 𝐻(𝑘)) decreases with the cutoff. Since we are keeping the noise 

energy constant, the SNR decreases with reduced cutoff, which is what we observe. A detailed plot of 

the functions is shown in Fig. S1d. 

2.2. The modulation transfer function (MTF) 

One of the important tools by which image resolution is  measured  is the Modulation Transfer 

Function (MTF). This object consists of a series of parallel lines with progressively decreased spacing 

(Fig. S4a-c). As the lines get closer, the line modulation contrast (𝑀 =
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
) drops to 0.  
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Figure S4 : MTF simulations and resolution estimation (a-c) Simulated MTF for 3 different resolutions (Blue line: max. resolution, 
Orange dashed line: FRC resolution, White line: Input resolution), Scale bar: 2um. (d-f) MTF curves extracted from (a-c). (g-i) 
Decorrelation analysis of (a-c) (Magenta line: Radial average of log of abs of the Fourier transform of (a-c), Green line: d0, Gray 
lines: all high-pass version of d, Black dashed line: FRC curve, Vertical blue line: estimated resolution, Orange dashed line: FRC 
resolution, Vertical black line: input resolution). Scale bar: 2um. 

We simulated a widefield image of a dense (about 500 emitters per um2 in average) distribution of 

point emitters forming an MTF pattern. We have a FOV of 20um and started with a period of 460nm 

up to 80nm, decreasing in steps of 10nm. Each period is repeated two times. Each point emitter 

contributes incoherently to the image intensity. We show in Fig. S4 (a-c) three MTF images of varying 

resolution (320, 262 and 222nm, corresponding to a NA of respectively 0.9, 1.1 and 1.3 for a 

wavelength of 576nm). The blue line denotes the estimated resolution and the white line the 

theoretical resolution. The FRC resolution (314, 257 and 218nm), obtained by computing the second 

image in identical conditions, is shown as an orange dashed line and is slightly over-estimating the 

theoretical resolution. We then compute MTF curves (Fig. S4d-f) by averaging along the direction 

perpendicular to the pattern and selecting adequate sub-windows for contrast computation. Again, 

we indicate the estimated resolution (blue line) and the theoretical resolution (black line). Fig. S4(g-i) 

shows the results of the decorrelation analysis. 

 

2.3. Ring and sparse lines structures 
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We also simulated ring structures with an inner diameter ranging from 600 to 200nm and a width of 

30nm. We set the theoretical resolution to be equal to the inner diameter of a ring. Each ring is 

constituted of 1000 molecules, resulting in about 10’000 to 40’000 emitters per um2. We show in 

Figure S5a the resulting image. Interestingly, the ring with an inner diameter equal to the theoretical 

resolution cannot be resolved. This is due to the shape of the structure. The contribution of all the 

emitters actually decreases the contrast of the dip. This means that to be able to resolve a ring, one 

needs to have a resolution of a least two times the inner diameter. To confirm this effect, we show in 

Figure S5d-f sparse line structures with similar spacing as the rings, simulated under the exact same 

conditions. The lines with a spacing equal to the resolution are this time resolved. By computing 

another image, we measure an FRC resolution of 316nm. 

 

Figure S5 : Test objects in simulations.  (a) The simulated intensity of ring structures (inner diameter of 600 to 200nm in steps of 
40nm) with an input resolution of 320nm. (b) The line profile showing the decreases of the contrast in the ring centers. (c) 
Decorrelation analysis with an estimated resolution of 338nm. (d) The simulated intensity of sparse line structures with similar 
spacing and conditions. (e) The line profile showing the decreases of contrast with decreased spacing. (f) Corresponding 
decorrelation analysis with an estimated resolution of 338nms. Scale bar: 2um 

 

2.4. Crossing lines 

Finally, we simulated crossing lines (Fig. S6 a-c) as another structure of interest to quantify the validity 

of our resolution estimator. The structure consists in two 30nm width and 10um long lines crossing 

each other with an angle of 5°. Each line is made of 6000 randomly distributed emitters. With a 

theoretical resolution of 263nm, the algorithm independently estimated a resolution of 275nm, which 

is consistent with all the other simulations and what is expected from the theory. We repeated the 

simulation and changed the input numerical aperture from 0.5 to 1.4 NA (Fig. S6d). The estimated 

resolution (orange curve) follows precisely the theoretical resolution (solid blue curve). We also notice 

that, similar to the results obtained in Section 2.1, the estimated resolution is equal to about 1.1 times 
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the resolution as defined by Abbe. Our resolution estimator does not exhibit any structure dependent 

bias. By computing another image, we measure an FRC resolution of 256nm. 

 

Figure S6: Decorrelation resolution estimation for crossing lines.  (a) The simulated intensity of crossing lines with a theoretical 
resolution of 263nm and an estimated resolution of 275nm. The white and blue vertical lines indicate the position where the 
spacing between the two crossing lines is equal to the theoretical resolution (white line) and the estimated resolution (cyan line). 
(b) Contrast as a function of line spacing (Black line: Theoretical resolution, Blue line: Estimated resolution). (c) Corresponding 
decorrelation analysis with an estimated resolution of 275nm. (d) Resolution estimation for a theoretical NA ranging from 0.5 to 
1.4 (Solid blue line: Theoretical resolution, Orange line: Estimated resolution, Dashed blue line: 110% of theoretical resolution). 
Scale bar: 2um 
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3. GATTAquant nanorulers 

Due to their high reproducibility and nanometric accuracy, DNA origami have been proposed as calibration 

standards for resolution measurement in classical and super-resolution microscopy1.  

 

Figure S7: GATTAquant nanorulers and resolution estimate. (a-c) Confocal imaging. (d-f) STED imaging. (g-l) SIM imaging. (Left 
column) GATTAquant nanorulers images. Nanoruler type is indicated above the image, the number indicates the mark-to-mark 
distance in nm. (Middle column) Corresponding decorrelation analysis and resulting resolution. (Right column) Average (black line) 
lines profiles of 10 (gray lines) individual molecules and modulation contrast M. Image acquisition and sample details are provided 
in Table S2. 
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In order to demonstrate the validity and robustness of our method, we processed several datasets 

nanorulers directly provided by GATTAquant (courtesy of P. Tinnefeld and J. Schmied). Independently of 

the modality, the resolution estimate is in perfect agreement with the samples specifications and 

manually selected line profiles. We see that when the structure is properly resolved, as it is the case for 

confocal, STED and PAINT images, the resolution estimate is significantly smaller than the nanoruler size. 

For the two SIM images, the resolution estimate is much closer to the DNA origami size, which is consistent 

with the line profiles and contrast measurement, where the structure can barely be resolved. 

For the PAINT data (see Fig. S8), we localized 10 molecules, co-aligned them and averaged them to get 

the resolution estimate. Particle-averaging methods widely used in cryo-electron microscopy, have been  

also adopted by researchers using SMLM . For example, several labs, working with hightroughput SMLM 

setups used, particle averging to elucidate labeled protein organization in structures such as of the nuclear 

pore complex2 and centrioles3. We also computed the resolution over the whole field of view and obtained 

a resolution of 32nm using FRC and 45nm using our method. The difference between the particle averaged 

resolution and the whole FOV resolution can be attributed to sub-optimal  co-alignment. 
 

 

Figure S8: GATTAquant nanorulers and resolution estimate for PAINT microscopy. (a) PAINT image of nanoruler (inset: Average of 
10 manually localized and co-aligned molecules). (b) Decorrelation analysis performed on the averaged image. (c) Line profile of 
inset of (a) and modulation contrast M. Image acquisition and sample details are provided in Table S2. 
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4. Bright-field data  

In addition to fluorescence microscopy, our method can also be applied to partially coherent imaging. 

 

Figure S9: Bright field analysis (a-d) Selected slice of a 3D bright field stack of fixed HeLa cell (Inset: corresponding Fourier 
transform and estimated cutoff indicated by white circle). (e) 𝐴0 as a function of the axial position. (f) Estimated cutoff 
frequency as a function of axial position. Scale bar, 5 µm. Image acquisition and sample details are provided in Table S2. 

We processed a bright-field z-stack (50 slices, 200nm axial step size) of a fixed HeLa cell (Fig. S9 a-d)4. We 

see (Fig. S9e) that the SNR is maximal when the cell is in focus and well contrasted. The cutoff frequency 

estimate demonstrates the ability of the method to estimate the spatial frequency content. As we 

approach the focus, the cutoff frequency rises continuously until we reach the coverslip at around -2um. 

As we move through the cell, the resolution stays roughly constant, until it starts to drop at around 1um. 

The cutoff frequency peaks observed at 2 and 3.4um are due to highly scattering vesicles. 
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5. Fluorescent beads resolution 

A typical way to assess the performance of a microscope is to image a single layer of fluorescent 

monodispersed beads. If the beads are sufficiently smaller than the system point-spread function and if 

the beads are well separated, a fit of the beads image can provide a good estimate of the microscope 

resolution in idealized conditions. 

Here we demonstrate how our method performs on a technical sample (Tetraspeck beads, 175 nm). 

Two large z-scan (10microns, steps of 25nm) were acquired (Fig S10, a-d), with 488 and 635nm excitation. 

As it can be seen, most of the beads formed clusters. This sample is therefore not suitable for fitting. Each 

frames were then processed with our algorithm to estimate the cutoff frequency. 

 

Figure S10: Resolution of fluorescent beads. (a-d) Images of Tetraspeck beads excited with 488nm excitation laser line at various 
axial positions. (e) Cutoff frequency estimate as function of the defocus for 488 (magenta) and 635nm (green) excitation. Scale 
bar, 5 µm. Image acquisition and sample details are provided in Table S2. 

Fig. S10e shows how the cutoff frequency evolves through the z-scanning. As expected, the 488 excitation 

leads to an overall better resolution, independently of the z-position. 

We measure the lowest resolution of 332nm with 640nm excitation and 276nm with 488 nm. Considering 

the size of the beads (175nm, which cannot be considered to be an ideal point emitter), the excitation 

wavelength and the objective NA (Nikon super-resolution water immersion 1.27NA), we can approximate 

the expected resolution as 𝑟𝑒𝑠640~ √256
2 + 1752 = 310 𝑛𝑚 and 𝑟𝑒𝑠488~√196

2 + 1752 = 262 𝑛𝑚. 

Both measurements show good agreement with the theoretical value.  

 

We observe the expected resolution is reached, but only on a very narrow 200nm range. The asymmetry 

of the cutoff as a function of z shown in Fig. S10e reflect the asymmetry of the point-spread function. 

Consequently, we propose our method as a practical way to test the performance of an objective lens and 

the alignment of a microscopy setup. 
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6. ImageJ plugin basic manual 

In order to simplify the access to our method, we translated the algorithm in Java and developed an 

ImageJ plugin (publicly available on https://github.com/Ades91/ImDecorr.git; tested for ImageJ 1.48 to 

1.52 and Micromanager 1.4). Fig. S11 shows the current plugin graphical user interface (GUI of Version 

1.1.5). 

 

Figure S11: ImageJ plugin V1.1.5 with default settings 

The operation mode of the plugin is straightforward. Open the image of interest in ImageJ and make sure 

it is the active window. Before running the analysis, it is important to set the image pixel size and units 

(Image -> Properties… -> Unit of length, Pixel width and pixel height). If empty or not defined, the plugin 

will return the resolution in pixel units. Click on compute and once the analysis is done, results are added 

to the main results table. 

The plugin supports multidimensional stacks of any bit depth. If a RGB image is supplied, it will be 

automatically converted to grayscale. The plugin also supports rectangular ROI, which allows to repeat 

the analysis on sub-regions and check the consistency of the estimate over the whole image. 

The settings panel is composed of 4 optional parameters of the computation, specifying the range of 

normalized frequencies where the correlations have to be computed (from Radius min to Radius max), as 

well as the number of points in between (𝑁𝑟, typically 50 points). Finally, 𝑁𝑔 (typically 10) specify the 

number of intermediate high-pass filtering used to find the resolution. These parameters essentially 

determine the speed of the computation. Since all the points of the decorrelation function are 

independent of each other, the computation time is proportional to the total number of points which is 

equal to 𝑁𝑟 ∗ (2 ∗ 𝑁𝑔 + 1). The proposed default value of 𝑁𝑟 = 50 and 𝑁𝑔 = 10 were experimentally 

determined as good compromise for fast but accurate results. 

 

 

 

 

 

 

 

 

https://github.com/Ades91/ImDecorr.git
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We also provide additional processing options in the form of 3 check-boxes: 

Do plot: 

If checked, plot all the computed decorrelation functions and local maxima (example of plot shown in 

Fig. S12).  

Batch stack:  

If checked, process all the frames, slices and channel of the current image. If do plot is also checked, 

all the decorrelation functions for all the images will be plotted. 

Batch folder: 

If checked, the user will be asked to select a folder containing images. All images are then opened, 

processed and the result table is automatically saved in the selected folder as a .csv file. Again, if “do 

plot” is checked, all the decorrelation analysis will be plotted. 

 

Figure S12: ImageJ plot of the analysis showing the non-filtered decorrelation function(black), its local maximum (red triangle), all 
the high-pass versions (color gradient from red (weak filtering) to blue (strong filtering)), all the local maxima (green triangle) and 
the estimated resolution, cutoff frequency kc and SNR A0. The second set of lines (here from ~ 0.15 to 0.52) corresponds to the 
refinement operation where the computation is repeated on a smaller range of 𝑁𝑟 and 𝑁𝑔 for increased robustness. 
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7. Detailed STED plots and additional STED experiments  

Figure S13a shows the evolution of the non-filtered decorrelation function 𝑑0 used for SNR estimation for 

the STED data in Fig. 2e-f. We clearly see that as the frame number increases (magenta to green), the peak 

amplitude drops. If we continued the imaging, the peak would have eventually vanished as the function 

will tend towards a straight line. Figure S13b-f shows the full decorrelation analysis of STED for 5 different 

relative depletion powers for Fig. 2g-h. We see that at 0%, the resolution is that of a normal confocal. As 

we increase the STED power, the resolution improves as expected. We observe no significant 

improvement in resolution between 60 and 80%. The ideal relative STED power is then estimated between 

40 and 60%. 

  

Figure S13: Detailed decorrelation functions for STED. The data corresponds to Figure 2g,h. (a) Non-filtered decorrelation function 
d0 of repeated STED imaging. (b-f) Decorrelation analysis of STED images with varying relative STED power ranging from 0-80% 

In order to further demonstrate the practical use of our algorithm for quick and robust assessment of 

microscopy performances, we acquired and processed several additional STED and confocal data, 

investigating the huge parameter space (STED power, dyes, excitation wavelength, STED delay, etc..) 

associated with any microscopy experiment. We show in Figure S14a how the resolution improves as a 

function of the STED beam intensity for COS7 microtubules labelled with Atto594. We observe that the 

maximum resolution is reached at about 40 to 60% of relative STED power. Further increases in the STED 

power has even a detrimental effect on the resolution. Similar experiments were done with Atto940LS. 

We see (Figure S14b) that the optimal STED power now lies in between 80 to 100% of relative STED power. 

Figure S14c shows representative data of Figure S14b. We show in Figure S14d that the confocal resolution 

estimate does not significantly depend on the pixel size. Another crucial parameter for STED imaging is 

the delay between the excitation and depletion of the fluorophores. An incorrect pulse synchronization 

will result in less efficient depletion and significantly impact the final image resolution.  
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Figure S14 : Additional STED experiments (a) Resolution vs STED power for Atto594 labelling. (b) Resolution vs STED power for 
Atto490LS labelling. (c) Representative STED images for 10, 40 and 80% STED power for the data in (b). (d) Confocal resolution vs 
pixel size for AbberiorStar 635P labelling (short: AbStar635P). (e) Resolution vs added delay between the excitation and STED laser 
pulse for AbberiorStar 635P labelling. (f) Representative STED images for 1600, 1700 and 1800ps STED delay for the data in (e). 
(g) STED resolution for different labelling at 100% STED power. Alexa594 is short for Alexa Fluor 594. (h-i) Representative images 
of STED for different labelling for the data in (g). Image acquisition and sample details are provided in Table S2. 

We show in Figure S14e the resolution as a function of the STED delay and corresponding representative 

data in Figure S14f. We see that an added delay of at least 1800ps is required in order to reach the optimal 

STED regime. 

Finally, we also show in Fig. S14g how the resolution varies as a function of the dye. Fig. S14h and S14i 

show representative images.  

  



20 
 

8. Sectorial resolution estimation 

The proposed method is very flexible and can be easily translated into higher dimensions. In order to 

estimate the sectorial and axial resolution, the shape of the mask has to be adjusted. Fig. S15a shows 

another STED image of the microtubules. The Fourier transform of (a) is shown in Fig. S15b and reveals 

a clear asymmetry of the Fourier spectrum. The dashed white circle represents the resolution 

estimated by our method when applied to the whole image. In order measure the resolution as a 

function of the direction, the shape of the mask as to be adjusted. Fig. S15c indicates how the circular 

mask has to be segmented in order to estimate the sectorial resolution in 8 directions. In this case, a 

total of 8 sectors (S1-S8) are defined and a standard decorrelation analysis is performed for each 

sector. 

Fig. S15d shows the resolution dependent cutoff frequency (dashed white line), correctly measuring 

the anisotropy of the Fourier spectrum.  

 

Figure S15: Sectorial and axial resolution (a) Example image. (b) log of abs of Fourier transform of (a) indicating the average 
resolution as a white dashed circle. (c) Shape of the masks used for the sectorial resolution estimation in 8 directions. (d) Sectorial 
resolution estimate (solid line) and average resolution (dashed circle). (e) Theoretical shape of the 3D mask required in order to 
estimate axial resolution. Scale bar, 5 µm. Image acquisition and sample details are provided in Table S2. 

Fig. S15e illustrates the shape of the mask required for axial resolution estimation. The parameter 𝜑 

is the angle of the cone oriented along the z-direction and defines the trade-off between the 

selectivity of the mask and the noise (small 𝜑 means good selectivity but few data points leading to a 

noisy estimate, large 𝜑 means poor selectivity but more robust estimate). The extension of the 

algorithm to 3D requires to move from polar to spherical coordinate. Another strategy for the 

estimation of z-resolution could be based on the computation, for all x and y position, of a 1D 

decorrelation function along the z-axis. This will result in a 2D image, containing the cutoff frequency 

estimate for each point. A histogram analysis may be used to determine which resolution was the 

most prominent, providing an alternative mean to assess the axial resolution with ideal selectivity of 

the z-resolution. However, this question requires further work, investigating for example the effect of 

a limited number of z-plane. 
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9. Compatible SIM reconstruction 

Due to the sensibility of the method to manipulations of the Fourier space, publicly available SIM 

reconstructions algorithms are not compatible with our method without resulting in biased resolution due 

to Fourier filtering and deconvolution. 

Consequently, we wrote our own SIM reconstruction algorithm (in Matlab) and discuss required features 

for decorrelation compatible SIM reconstruction. 

I. Pre-processing 

We first compute and subtract the mean of all images. We then apodize the edges of the all the raw 

image with a cosine function and add the previously computed mean. High frequency artefacts 

arising for edges discontinuities are consequently minimized. 

 

II. Peak finding 

After specification of the frequency band where the peak should be found, the absolute value of 

the Fourier transform of all the raw images are multiplied with a circular symmetric inverted OTF, 

defined as 

𝑂𝑇𝐹𝑖𝑛𝑣(𝑘) = (
|𝑘|

𝑘𝑐
)(|𝑘| < 𝑘𝑐) (S17) 

 

where 𝑘 =  √𝑘𝑥
2 + 𝑘𝑦

2 is the radial frequency and 𝑘𝑐 is a user defined cutoff frequency. This 

operation attempts to flatten the Fourier space by balancing the effect of the OTF on the peaks 

intensity. Consequently, the 5 largest Fourier pixel within the frequency band are localized and 

clustered. This allows to reliably exclude randomly bright Fourier pixels. The position and phase of 

the peak are then stored. 

 

III. Unmixing 

Using the peaks phase values, an adequate transformation matrix is build and the corresponding 

Fourier components are unmixed pixels per pixels for each angle. 

 

IV. Reconstruction 

For each angle, all the zero order components are averaged to reconstruct the pseudo wide field 

image. This image is then zero-padded in Fourier space and all the other components are translated 

according to their peak position and added together. The resulting Fourier spectrum is then 

reweighted to balance the partial overlap of the Fourier components (otherwise, the Fourier space 

of the SIM image will be plagued with weak edges that might produce significant peaks in the 

decorrelation analysis, preventing any resolution estimate). 

Finally, instead of masking the Fourier space with an apodization filter, that might bias the 

resolution estimate (see Supplementary Material, Section 11), we crop the Fourier space. This 

partially removes the high-frequency noise but without creating any artificial edges. This also have 

the side effect of changing the projected pixel size of the resulting SIM image.  
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10. Deconvolution and post-processing 

In the following section, we discuss and illustrate issues arising when applying various post-processing 

algorithm prior to the decorrelation analysis.  

First we show in Fig. S16a, 3rd order raw SOFI image of microtubule network labelled with Alexa647. The 

Fourier transform is shown in the inset. Fig. S16b shows its corresponding decorrelation function. Fig. S16c 

shows the same image after a basic Fourier filtering operation. In this case, a simple binary mask with a 

normalized radius of 0.6 has been applied. While the image looks almost identical to the original, the 

decorrelation analysis is strongly affected by this artificial operation. It interprets the mask as a transfer 

function. In this very specific case, the mask does not affect the shape of the function near the real cutoff 

frequency so one could circumvent the issue by only computing the curve up to the spatial frequency 0.5 

for example (Radius max. = 0.5 in the case of the imageJ plugin). However, if the mask is closer to the 

cutoff, this simple trick is likely to fail and no resolution estimate could be performed on such image. 

Fig. S16e shows the same image, after Lucy-Richardson deconvolution (Matlab R2017b “deconvlucy”) with 

various input Gaussian PSF FWHM (ranging from 108 to 238nm). The decorrelation analysis shows very 

drastic changes where the resolution goes from 288 to 100 nm. Fig. S16f shows their corresponding 

Fourier transform, where the effect of deconvolution is now clearly visible (10 iterations of LR, psf FWHM 

of 238, 180 and 108nm respectively). Fig. S16g shows the resolution estimate of the same image for 

different FWHM and number of iterations of Lucy-Richardson deconvolution. 

 

Figure S16: Fourier filtering and deconvolution (a) Raw SOFI 3 images and its Fourier transform in inset. (b) Corresponding 
decorrelation analysis. (c) Fourier filtered version of (a) with the used mask in inset. (d) Corresponding decorrelation analysis, 
showing incorrect result due to the artificial intervention. (e) Lucy-Richardson deconvolution using 20 iterations and a FWHM of 
238, 180 and 108nm. (f) Corresponding Fourier transform, showing how the deconvolution modified the frequency spectra and 
the resolution estimate. (g) Resolution estimation for various FWHM and number of iterations of LR deconvolution. Scale bar, 5 
µm. Image acquisition and sample details are provided in Table S2. 

It demonstrates that the resolution can be artificially set to any value. We here have to mention that we 

never recommend to blindly deconvolve an image and that proper deconvolution ideally requires an 

experimentally acquired point-spread function. The purpose of this section is just to demonstrate how 

ANY deconvolution will influence, in general, our method. This means that our algorithm can be used as 

a tool to quantify the deconvolution strength and also to estimate the ideal number of iterations but not 

check the validity of the deconvolution. 
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In addition to Fourier filtering and deconvolution, there are also several sources of artificial high-

frequencies that we came across during the development of the algorithm. This is a non-exhaustive list of 

common practice that may hinder the ability of the algorithm to estimate the resolution:  

 Removing negative values by applying a threshold creates local non-linearity, adding a high-

frequency signal to the image. 

 Background subtraction algorithms (especially morphological operation based such as the rolling-

ball algorithm) are prone to produce high-frequency artefacts. 

 Camera lines artefacts or fixed pattern noise are very-high frequency signals that might lead to 

overestimation of the resolution. The camera pattern should be characterized and used to pre-

normalize the image. 

 Image up-sampling/down-sampling, in real space or via Fourier zero-padding, should be avoided. 

 Small images are more vulnerable to noisy peaks in the decorrelation analysis (256x256 is usually 

large enough). 

 Quantization error when changing the bit-depth of the data may introduce edges all over the 

image, which can result in wrong estimate. The images should be normalized to the full bit-depth 

prior to quantization. 

 

 

11. Single Molecule Localization Microscopy simulations 

 To confirm that our algorithm is also able to estimate the resolution of localization based image, we 

conducted simulations. The simulation consists in a total of 16000 point emitters forming a regular pattern 

of pair of lines with decreasing spacing, starting from 128nm to 8nm (see Fig. S17a). Each line is 400nm 

long and 2nm wide, corresponding to a density of 625’000 molecules per um2. The effect of diffraction 

and of the limited numerical aperture is simulated by convolving the point emitters (represented on an 

oversampled grid with an up-sampled pixel size of 1nm) with an incoherent 2D airy function 

(corresponding to a wide field resolution of 215nm) of integrated intensity 𝐼𝑂𝑁 determining the average 

number of photons per frame and per emitters. The blinking required for the localization of the emitter 

is simulated by a Markovian process where the ON time (number of frames where the molecule emits 

photons), the OFF time (number of frames where the molecule does not emit photons) and the bleaching 

time (number of frames before the molecule is not able to emit photons anymore) all follow an inverse 

exponential law of characteristic time 𝑇𝑂𝑁 = 2, 𝑇𝑂𝐹𝐹 = 1000 and 𝑇𝑏𝑙 = 2000. Therefore, at each frame 

and for a total of 1000 frames, only a sparse subset of emitters contributes to the signal intensity, typical 

for SMLM. The final camera signal is then obtained by adding shot noise and a Gaussian background noise 

(Fig. S17b). The molecules are then localized using ThunderSTORM5 and rendered in Matlab by replacing 

each localization by a Gaussian of standard deviation equal to the localization uncertainty6,7 (Fig. S17c) 

that we compute in Matlab. 

Each pair of lines are then isolated and averaged along their major orientation (Fig. S17d), which allows 

us to compute the contrast between the maximum intensity 𝐼𝑚𝑎𝑥 and the intensity in the dip between 

the two lines 𝐼𝑑𝑖𝑝, defined as 𝑀 =
𝐼𝑚𝑎𝑥−𝐼𝑑𝑖𝑝

𝐼𝑚𝑎𝑥+𝐼𝑑𝑖𝑝
. By repeating this computation for all the sub-structures, we 

are able to compute an effective Modulation Transfer Function (MTF), which provide an objective way to 

determine the resolution of the reconstructed image (Fig. S17e). We see that as the spacing between the 

lines diminishes, the contrast drops almost linearly. We then define the resolution of the image to be the 
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intersection of the MTF with the threshold 0.1, which corresponds to the modulation contrast of two point 

emitters spaced by a distance equal to the resolution as defined by Abbe. We obtain an effective 

resolution of 32nm. 

We then use our algorithm on the reconstructed image (Fig. S17c) and compare its value with the effective 

resolution. Our algorithm estimates a resolution of 36nm (Fig. S17e, green dashed line), which is in perfect 

agreement with the previous simulations (see Section 2). The resolution estimate provided by the FRC 

metric and a threshold of 0.143 predicts a resolution of 27nm, which is more optimistic estimate as it 

corresponds to a contrast of 0, consistent with the literature8. 

 

Figure S17 Simulations of Localization microscopy. (a) Spatial distribution of point emitters forming a series of lines with 
decreasing spacing from 128 to 8nm. (b) Temporal average (wide field) and single-frame of blinking emitters. (c) SMLM 
reconstruction using ThunderSTORM and Matlab; the dashed rectangle indicates the selection of a sub-structure and the arrow 
the direction of averaging. (d) Intensity profile of the sub-structure indicated in (c). (e) Contrast as a function of the line spacing 
for the image shown in (c); vertical black line: Ground truth resolution, green dashed line: decorrelation resolution, magenta 
dashed line: FRC resolution. (f) Ground truth resolution (black line: M=0.1, dashed black line: M=0), decorrelation resolution 
(green line) and FRC resolution (magenta line: 0.143 threshold, dashed magenta line: 3σ) as a function of 𝐼𝑂𝑁 for various 𝑇𝑂𝐹𝐹 
(the lines are showing the mean resolution over 𝑇𝑂𝐹𝐹; stars are showing the data points for the GT res, decorr. res. and FRC res.). 
(g) Ground truth (black line), decorrelation resolution (green line) and FRC resolution (magenta line) as a function of the 
uncertainty threshold. 

We repeated the simulations by varying the number of counts per point spread function (via adequate 

tuning of 𝐼𝑂𝑁) and keeping the background noise constant. For each 𝐼𝑂𝑁, we varied the off-time 𝑇𝑂𝐹𝐹 from 

500 to 1250 in steps of 250, effectively changing the average number of emitters ON per frames from 34 

to 14 and the average number of blinks per emitters from 0.98 to 0.38. For each reconstructed image, we 

then computed (Fig. S17f) the Ground Truth (GT) resolution from the MTF for 𝑀 = 0.1 (solid black line) 

and 𝑀 = 0 (dashed black line), the resolution using the decorrelation analysis (solid green line) and the 

FRC resolution using the 0.143 threshold (solid magenta line) and using the 3σ criterion (dashed magenta 
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line). We see that both methods are able to pick up the resolution improvement due to the higher number 

of photons per psf. However, we also see that our estimate is in good agreement with the ground truth 

resolution estimate, while both FRC criteria overshoots the ground truth resolution with 𝑀 = 0. 

We also show (Fig. S17g) how both algorithm performs as a function of the uncertainty threshold imposed 

on the localization prior to rendering. We filter any localization event with an uncertainty greater than the 

uncertainty threshold. We see from the ground truth resolution that as we remove poorly localized 

events, we indeed improve our ability to resolve the fine structures in the image. Our algorithm is also 

able to pick up this trend. We do however observe a clear difference of behavior when removing more 

than 78% of the total localization. In this case, the FRC resolution jumps to about 100nm while our 

resolution estimate drops below the ground truth resolution. This behavior is due to the difference in how 

the two algorithms try to estimate the resolution. FRC is based on splitting the localization in two 

stochastically independent subsets. If the number of localization is too low, the two images cannot 

correlate and thus the algorithm predicts a deterioration in resolution. On the other hand, the 

decorrelation analysis, which works on a single image will have a completely opposite prediction. All the 

algorithm see is a sparse distribution of very high-frequency Gaussians. The corresponding resolution in 

terms of Fourier space frequency content is therefore over-estimated. 

Finally, FRC resolution estimate has been shown to be sensitive to multiple blinking events as they are 

prone to introduce spurious correlations, which leads to an overestimated resolution9. While it is possible 

to compensate for this effect by estimating the spurious correlation factor 𝑄 from the reweighted 

numerator of the FRC, it is not easily applicable when the blinking statistic is not precisely known. We 

performed simulations with added multiple blinking events. All fluorescent emitters that just turned OFF 

has a certain probability, controlled by the number pMB (probability of multiple blinking), to switch ON 

again. We show in Fig. S18a the log of the histogram of number of blinking events per molecule for 

different pMB. As expected, the larger the probability, the more a molecule is likely to blink during the 

same amount of time (1000 frames). We also show in Fig. S18b the resolution estimation as a function of 

pMB. We see that the FRC resolution (orange line) estimation gets lower with the probability due to 

increasing spurious correlations. In contrast, we see that our estimate (blue line) as well as the ground-

truth resolution estimate (black line) are insensitive to the probability of multiple blinking events. 

 

Figure S18 Resolution estimation vs multiple blinking. (a) Histogram of number of blinking events for three different values of 
probabilities of multiple blinking (pMB) on a logarithmic scale. (b) Ground-truth (black line), decorrelation (blue line) and FRC 
(orange line) resolution as a function of the probability of multiple blinking 
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Table S1: Summary of sample preparation, imaging conditions and buffer used for Figure 1 to 5 

Figure sample sample preparation imaging conditions buffer 

1a 
COS-7 microtubules-
Abberior Star 635P 

COS-7 fixation and labeling, primary anti-
tubulin antibody clone B-5-1-2 ascites fluid 
1:200 dilution (Sigma-Aldrich), secondary 
goat anti-mouse-AbberiorStar635P 0.01 mg 
ml-1 (Abberior) 

Leica TCS SP8 3X, 11.2 μW 634 nm 
illumination laser, 201.5 mW 775 nm 
STED laser, HyD: 645-720 nm, gain 100, 
pixel size 15nm binned 2x, 8x average, 
200 Hz, gate 0.2-12 Mowiol-DABCO 

2a, b 
COS-7 microtubules-
Abberior Star 635P See above 

Leica TCS SP8 3X, 2.25 μW 634nm 
illumination laser, HyD: 645-720nm, gain 
100, pixel size 15nm binned 2x, 200 Hz, 
gate 1-11ns Mowiol-DABCO 

2c, d 
COS-7 microtubules-
Abberior Star 635P See above 

Leica TCS SP8 3X, 11.2 μW 634 nm 
illumination laser, 775 nm 201.5 mW 
STED laser, HyD: 645-720 nm, gain 100, 
pixel size 15 nm binned 2x, 8x average, 
200 Hz, gate 1-11 ns Mowiol-DABCO 

2e, f 
COS-7 microtubules-
Abberior Star 635P 

COS-7 fixation and labeling, primary anti-
tubulin antibody clone B-5-1-2 ascites fluid 
1:200 dilution (Sigma-Aldrich), secondary 
goat anti-mouse-AbberiorStar635P 0.005 mg 
ml-1 (Abberior) 

Leica TCS SP8 3X, 179.2 μW 634 nm, 403 
mW 775 nm STED laser, HyD: 645-720 
nm, gain 100, pixel size 20 nm binned 
2x, 8x average, 200 Hz, gate 0.8-11 ns Mowiol-DABCO 

2g, h 
COS-7 microtubules-
Abberior Star 635P See above 

Leica TCS SP8 3X, 634 nm 89.6-179.2 
μW/22.4 μW illumination laser, 81-403 
mW/0 mW 775nm STED laser, HyD: 645-
720nm, gain 100, pixel size 20 nm 
binned 2x, 8x average, 200 Hz, gate 0.8-
11 ns Mowiol-DABCO 

3a, b 
U2OS cells actin-Atto 
488 

Huser lab, U2OS cells staining with 
phalloidin-Atto488, for details see ref 26 and 
https://www.fairsim.org/ 

GE Healthcare Delta-Vision|OMX v4, 
pseudo widefield average of SIM, for 
details see ref 26 and 
https://www.fairsim.org/  
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3c, d 
U2OS cells actin-Atto 
488 See above 

GE Healthcare Delta-Vision|OMX v4, 
SIM illumination, for details see ref 26 
and https://www.fairsim.org/  

3e-h 

U2OS cells 
mitochondria-
mitotracker 

Sauer lab, U2OS cells mitochondria-
mitotracker, for details see ref 26 
https://www.fairsim.org/ 

Zeiss Elyra S1, SIM illumination, for 
details see ref 26 and 
https://www.fairsim.org/  

4a 
MEF cells paxillin-
mEos2 

Radenovic lab, MEF cells expressing paxillin 
labelled with mEos2, for details see ref 29  

home-built TIRF microscope, for details 
see ref 29  

4b-e 

HeLa cells 
microtubules-Alexa 
Fluor 647 

HeLa fixation and labeling, primary anti-
tubulin antibody clone DM1A 1:150 dilution 
(Abcam), donkey anti-mouse-Alexa Fluor 647 
antibody 0.005 mg ml-1 (Invitrogen)  

home-built widefield microscope, for 
details see materials & methods, 
excitation 635nm 1.9 kW cm-2, 20 ms 
exposure time  

50 mM MEA in 50 
mM Tris-HCl pH 8.0 
with oxygen 
scavenging, for 
details see materials 
& methods  

4f 
HeLa cells wheat germ 
agglutinin-Atto 565 

HeLa fixation and labeling, wheat germ 
agglutinin-Atto 565 5 ng ml-1, see Preparation 
of labeled proteins in materials & methods 

home-built widefield microscope, for 
details see materials & methods, 
excitation 561nm 1 kW cm-2  See above  

5a-e 
COS-7 microtubules-
Abberior Flip 565 

COS-7 fixation and labeling, primary anti-
tubulin antibody clone B-5-1-2 ascites fluid 
1:200 dilution (Sigma-Aldrich), secondary 
donkey anti-mouse-Abberior Flip 565 1:100 
dilution, see Preparation of labeled proteins 
in materials & methods 

home-built widefield microscope, for 
details see materials & methods, 
excitation 561nm 0.2 kW cm-2, 20 ms 
exposure time PBS, pH 7.4 

5 
GATTAquant PAINT 
HiRes 40R nanoruler 

Courtesy of P. Tinnefeld and J. Schmied 
http://www.gattaquant.com/   
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Table S2: Summary of sample preparation, imaging conditions and buffer used for Figures S2 to S16 

Figure sample sample preparation imaging conditions buffer 

S2 

COS-7 microtubules-
Abberior Star 635P 
same as 2c 

COS-7 fixation and labeling, primary anti-
tubulin antibody clone B-5-1-2 ascites fluid 
1:200 dilution (Sigma-Aldrich), secondary 
goat anti-mouse-AbberiorStar635P 0.01 mg 
ml-1 (Abberior) 

Leica TCS SP8 3X, 11.2 μW 634 nm 
illumination laser, 775 nm 201.5 mW 
STED laser, HyD: 645-720 nm, gain 100, 
pixel size 15 nm binned 2x, 8x average, 
gate 1-11 ns Mowiol-DABCO 

S7a-c 
GATTAquant Confocal 
270B 

Courtesy of P. Tinnefeld and J. Schmied 
http://www.gattaquant.com/   

S7d-f GATTAquant STED 90R See above   

S7g-i GATTAquant SIM 140B See above   

S7j-l GATTAquant SIM 120 B See above   

S8 
GATTAquant PAINT 
80R See above   

S9 HeLa cell 
Fixed, unlabelled HeLa cell, data same as 
figure 2 ref4 

Home-built widefield multi-plane 
microscope, for details see ref4 PBS 

S10 Fluorescent beads Tetraspeck beads, 175 nm 
Home-built widefield microscope 
(NA=1.27, image pixel size=108nm)  

S14a,g,i 
COS-7 microtubules-
Atto594 

COS-7 fixation and labeling, primary anti-
tubulin antibody clone B-5-1-2 ascites fluid 
1:200 dilution (Sigma-Aldrich), secondary 
goat anti-mouse-Atto594 0.01 mg ml-1 (Atto-
tec) 

Leica TCS SP8 3X, 3-12% 570 nm 
illumination laser, 775 nm 0-403 mW 
STED laser, HyD: 600-640 nm, gain 200, 
pixel size 20 nm binned 2x, 8x line 
average, 200 Hz, gate 1-12 ns Mowiol-DABCO 

S14b,c,g,h 
COS-7 microtubules-
Atto490LS 

COS-7 fixation and labeling, primary anti-
tubulin antibody clone B-5-1-2 ascites fluid 
1:100 dilution (Sigma-Aldrich), secondary 
donkey anti-mouse-biotin 1:200 dilution 
(Jackson ImmunoResearch), streptavidin-
Atto490LS 0.01 mg ml-1 (Atto-tec) 

Leica TCS SP8 3X, ~6.6-52.8 μW 495 nm 
illumination laser, 775 nm 0-403 mW 
STED laser, HyD: 645-720 nm, gain 200, 
pixel size 20 nm binned 2x, 8x line 
average, 200 Hz, gate 1-12 ns Mowiol-DABCO 

S14d 
COS-7 microtubules-
Abberior Star 635P 

COS-7 fixation and labeling, primary anti-
tubulin antibody clone B-5-1-2 ascites fluid 
1:200 dilution (Sigma-Aldrich), secondary 

Leica TCS SP8 3X, 11.2-89.6 μW 634 nm 
illumination laser, 775 nm 403 mW 
STED laser, HyD: 645-720 nm, gain 200, Mowiol-DABCO 
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goat anti-mouse-AbberiorStar635P 0.01 mg 
ml-1 (Abberior) 

pixel size 20 nm binned 2x, 8x line 
average, 200 Hz 

S14e,f 
COS-7 microtubules-
Abberior Star 635P 

COS-7 fixation and labeling, primary anti-
tubulin antibody clone B-5-1-2 ascites fluid 
1:200 dilution (Sigma-Aldrich), secondary 
goat anti-mouse-AbberiorStar635P 0.005 mg 
ml-1 (Abberior) 

Leica TCS SP8 3X, 11.2 μW 635 nm 
illumination laser, 775 nm 0 mW STED 
laser, HyD: 645-720 nm, gain 200, pixel 
size 20-100 nm, 200 Hz, gate 0.3-12 ns Mowiol-DABCO 

S14g,h 
COS-7 microtubules-
Alexa594 

COS-7 fixation and labeling, primary anti-
tubulin antibody clone B-5-1-2 ascites fluid 
1:200 dilution (Sigma-Aldrich), donkey anti-
mouse-Alexa Fluor 594 antibody 0.005 mg 
ml-1 (Invitrogen) 

Leica TCS SP8 3X, 4% 590 nm 
illumination laser, 775 nm 403 mW 
STED laser, HyD: 600-640 nm, gain 200, 
pixel size 20 nm binned 2x, 8x line 
average, 200 Hz, gate 1-12 ns Mowiol-DABCO 

S14g,i 
COS-7 microtubules-
Abberior Star 635P 

COS-7 fixation and labeling, primary anti-
tubulin antibody clone B-5-1-2 ascites fluid 
1:200 dilution (Sigma-Aldrich), secondary 
goat anti-mouse-AbberiorStar635P 0.005 mg 
ml-1 (Abberior) 

Leica TCS SP8 3X, 634 nm 179.2 μW 
illumination laser, 403 mW 775nm 
STED laser, HyD: 645-720nm, gain 100, 
pixel size 20 nm binned 2x, 8x average, 
200 Hz, gate 0.8-11 ns Mowiol-DABCO 

S15 

COS-7 microtubules-
Abberior Star 635P 
same as 1 See above 

Leica TCS SP8 3X, 11.2 μW 634 nm 
illumination laser, 201.5 mW 775 nm 
STED laser, HyD: 645-720 nm, gain 100, 
pixel size 15nm binned 2x Mowiol-DABCO 

S16 
HeLa microtubules-
Alexa647 

HeLa fixation and labeling, primary anti-
tubulin antibody clone DM1A 1:150 dilution 
(Abcam), donkey anti-mouse-Alexa Fluor 647 
antibody 0.005 mg ml-1 (Invitrogen)  

home-built widefield microscope, for 
details see materials & methods, 
excitation 635nm 1.9 kW cm-2, 20 ms 
exposure time  

50 mM MEA in 50 
mM Tris-HCl pH 8.0 
with oxygen 
scavenging, for 
details see materials 
& methods  
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