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Abstract  10 

Super-resolution microscopy opened diverse novel research directions by overcoming the classical 11 

resolution limit. Revealing structures beyond the diffraction limit was made possible by exploiting the 12 

fluorescent emission of individual fluorophores. Involving sample properties to apply these techniques 13 

entails a redefinition of the resolution parameter. Here, we propose a new method for assessing the 14 

resolution of individual super-resolved images based on image partial phase auto-correlation. The 15 

novel algorithm is model-free and does not require any user-defined parameters. We demonstrate its 16 

performance on a wide variety of imaging modalities, including diffraction-limited techniques. Finally, 17 

we show how our method can be used to optimize image acquisition and post-processing in super-18 

resolution microscopy. 19 

  20 
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Introduction  21 

Over the past decades, the field of microscopy was enriched with a broad range of novel imaging 22 

methods, providing unprecedented insights into sub-cellular structures1,2. When designing a microscopy 23 

experiment, one has to select an appropriate imaging modality taking into account the required spatial 24 

and temporal resolution. The image quality greatly varies among different techniques and is influenced 25 

by sample properties. Image formation for all microscopy techniques (coherent or incoherent, 26 

diffraction-limited or super-resolution imaging) can be modelled as the convolution of a ground-truth 27 

object with the specific point-spread function plus various method-related noise contributions. In Fourier 28 

space, the object spectrum is multiplied by the transfer function of the system. The shape of the transfer 29 

function depends on the imaging method employed, but common to all techniques is image low-pass 30 

filtering, characterized by a cut-off frequency. This spatial frequency limit already known to Abbe3 is 31 

generally expressed as 𝑘𝑐 = 𝑁𝐴
2𝜋

𝜆
, where 𝑁𝐴 is the sine of the maximum collection angle multiplied by 32 

the refractive index and 𝜆 the illumination central wavelength, and corresponds to the resolution in 33 

coherent imaging. 34 

Super-resolution techniques overcome the diffraction limit by exploiting specific fluorophore 35 

properties such as stimulated emission or temporal fluctuations. Therefore, image resolution needs to 36 

be reconsidered by taking into account the fluorescent properties of the sample to establish a novel 37 

resolution measure for super-resolved imaging4. Ideally, this resolution criterion should work on a single 38 

image, be independent of the imaging method, have no user-dependent settings and be compatible with 39 

classical resolution. Such an estimator of resolution is of particular interest for autonomous adaptive 40 

microscopes5,6 that require robust tools to automatically achieve and maintain optimal performance in 41 

long-term imaging of biological samples. 42 
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In 1982, van Heel7 and Saxton8 independently proposed the use of Fourier Ring Correlation (FRC) 43 

using two independent images of the same object for resolution estimation of electron microscopy 44 

images. The concept was quickly expanded to 3D via Fourier Shell Correlation by Harauz9 and several 45 

threshold concepts have been proposed (0.5, 0.14310, 2𝜎8,11, SSNR12) to extract a resolution measure. 46 

Later, Banterle13 and Nieuwenhuizen14 independently extended, reconsidered and applied the method 47 

to assess the resolution of single-molecule localization microscopy (SMLM) images. Similar to electron 48 

microscopy, their method requires two stochastically-independent images of the same object and 49 

estimates the resolution by computing cross-correlations of Fourier space rings. The cut-off frequency is 50 

defined as the spatial frequency where the so-called FRC curve drops below a fixed value equal to 0.143.  51 

In SMLM, the two image realizations are typically accomplished by splitting the image series, i.e. 52 

the localizations, into two distinct subsets. In general, it can be achieved for any imaging technique15 by 53 

acquiring two consecutive images under the same conditions. However, maintaining these conditions 54 

may be difficult due to, for example, bleaching or temporal fluctuations of the fluorescence signal. This 55 

is especially pertinent in live-cell imaging and significantly challenges the stationarity assumption of FRC. 56 

Here, we propose a new method able to estimate the resolution based merely on an individual 57 

image without any further requirement or a priori knowledge. The algorithm expects only a non-58 

saturated, bandwidth-limited signal with adequate spatial sampling. This novel estimator is based on 59 

partial phase correlation and does not rely on any user-defined parameters. The algorithm is fast, uses 60 

only linear operations and enables the real-time objective assessment of image resolution and Signal to 61 

Noise Ratio (SNR). We successfully applied our new approach on a variety of microscopy data sets, 62 

ranging from widefield imaging to SMLM and STED microscopy. We show that our estimator can also be 63 

used to optimize image resolution, both during experiments and throughout data post-processing. 64 

 65 
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Method  66 

Decorrelation analysis 67 

To achieve objective threshold-free resolution estimation, we introduce a processing method 68 

termed decorrelation analysis. The main algorithm is divided into two steps. First, the Fourier transform 69 

of the image is computed after a standard edge apodization to suppress high-frequency artefacts. The 70 

Fourier transform is normalized as 𝐼𝑛(𝒌) =
𝐼(𝒌)

|𝐼(𝒌)|
. The input image 𝐼(𝒌) and its normalized version 𝐼𝑛(𝒌) 71 

are then cross-correlated in Fourier space using Pearson correlation and condensed in a single value 72 

between 0 and 1 (Fig. 1a). Second, the operation is repeated, but the normalized Fourier transform is 73 

additionally filtered by a binary circular mask of radius 𝑟 ∈ [0,1] expressed in normalized frequencies 74 

(Fig. 1b). By repeating the calculation, we compute 𝑑(𝑟) which is expressed as 75 

𝑑(𝑟) =
∬ 𝑅𝑒{𝐼(𝒌)𝐼𝑛

∗(𝒌)𝑀(𝒌; 𝑟)} 𝑑𝑘𝑥𝑑𝑘𝑦

√∬|𝐼(𝒌)|2𝑑𝑘𝑥𝑑𝑘𝑦 ∬|𝐼𝑛(𝒌)𝑀(𝒌; 𝑟)|2𝑑𝑘𝑥𝑑𝑘𝑦 

, 
(1) 

where 𝒌 = [𝑘𝑥, 𝑘𝑦] denotes Fourier space coordinates, 𝐼(𝒌) the Fourier transform of the input image, 76 

𝐼𝑛(𝒌) the normalized Fourier transform and 𝑀(𝒌; 𝑟) the binary mask of radius r. ∬  is the double integral 77 

over 𝑘𝑥 and 𝑘𝑦. For a detailed mathematical derivation and additional considerations, see 78 

Supplementary Material Section 1. 79 

The core idea of the method is that by normalizing the Fourier transform of the input image, we balance 80 

the signal and noise contributions while the information of the object structure is preserved in the phase 81 

(the phase is responsible for organizing the constructive and destructive interferences of the complex 82 

exponentials to form the image, the amplitude plays only a minor role in this process). Taking a radius of 83 

the binary mask equal to 1 allows the extraction of the correlation value related to the original ratio of 84 

signal and noise. If we consider an image containing only white noise, we see that 𝑑(𝑟 = 1)  ≈  1, since 85 
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the white noise power spectrum is constant by definition (the normalization does not affect the signal). 86 

If we add a bandwidth-limited signal to the image, the correlation value for 𝑟 = 1 will decrease (the 87 

normalization now has a direct effect on the added signal and thus 𝐼𝑛(𝒌) only partially correlates with 88 

𝐼(𝒌)).  89 

By decreasing the radius of the mask (𝑟 <  1), we progressively remove the noise contribution but 90 

preserve the signal due to its bandwidth-limited nature. If the image contains only noise, the cross- 91 

 92 

Figure 1: Image decorrelation analysis workflow. (a) Cross-correlation of the image with its Fourier-filtered normalized version. 93 
(b) Cross-correlation coefficient as a function of the mask radius. (c) High-pass filtering of the input image and resolution 94 
estimation. (d) The plot of all decorrelation functions computed for the image and resolution estimation; Green: Decorrelation 95 
function without any high-pass filtering, Grey: Decorrelation functions with high-pass filtering, Blue cross : Local maxima, Black: 96 
decorrelation function of highest frequency peak, Vertical dashed line: cut-off frequency 𝑘𝑐 . Scale bar, 5 µm.  97 



7 
 

correlation value will decrease linearly as a function of radius 𝑟. If we now add a signal, the decorrelation 98 

function 𝑑(𝑟) will exhibit a local maximum of amplitude 𝐴0 that indicates the spatial frequency 𝑟0 of best 99 

noise rejection and signal preservation ratio. Restricting the mask further removes more signal than 100 

noise, therefore reducing the correlation below 𝐴0 until it drops to 0 for 𝑟 = 0. The position 𝑟0 of the 101 

local maximum is therefore directly related to the spatial frequency distribution of the image and its 102 

amplitude 𝐴0 is positively correlated with the image Signal-to-Noise Ratio (see Supplementary Fig. S1 for 103 

detailed plots of decorrelation function behaviour with respect to different noise statistics, aberrated 104 

transfer functions, various cut-off frequencies, various SNRs and high-pass filtering strength). For a 105 

detailed description of the algorithm, see Supplementary Material Section 1.1. 106 

While being related to the spatial frequency content of the image, the position of the maximum 107 

does not directly indicate the resolution of the image. The input image is then subjected to a total of 𝑁𝑔 108 

high-pass filters (spanning the range from weak to very strong filtering) in order to attenuate the energy 109 

of the low frequencies. For each filtered image, a decorrelation function is computed and the peak 110 

position 𝑟𝑖 and amplitude 𝐴𝑖  are extracted, generating a set of [𝑟𝑖, 𝐴𝑖] pairs (Fig. 1c). If the high-pass 111 

filtering removes too much signal, the decorrelation function will not exhibit a local maximum and the 112 

peak position and amplitude will both be set to 0. We investigated two different strategies for the 113 

resolution estimation: selecting the highest frequency peak or selecting the peak corresponding to the 114 

highest geometric mean (𝐺𝑀 = √𝑟𝑖𝐴𝑖) (giving the same weight to the position and amplitude). After 115 

processing several simulations and microscopy images taken from different imaging modalities including 116 

Confocal, STED, SIM, SOFI and PAINT, we observed that in all cases but confocal images, both criteria 117 

provide identical estimates of resolution (see Supplementary Material Section 1.2). We consequently 118 

define the resolution estimate as 119 

𝑘𝑐 = max [𝑟0, … , 𝑟𝑁𝑔
] (2) 
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which corresponds to the local maximum of highest frequency (Fig. 1d). The resolution is then 120 

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
2∗𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒

𝑘𝑐
, where 𝑘𝑐 is expressed in normalized frequencies. By computing the resolution 121 

with a varying sampling of 𝑑(𝑟) and a varying number of high-pass filtering 𝑁𝑔, we confirm the 122 

robustness of the algorithm and estimate the precision of the algorithm to be about ±1 to 3nm, 123 

independently of the type of image (see Supplementary Material Fig. S2). We confirmed, via simulations 124 

of point emitters, MTFs, rings and crossing lines, that our resolution estimate depends linearly on the 125 

frequency support of the image (see Supplementary Material Section 2.1, 2.2 and 2.3) and that the 126 

amplitude of the local maximum 𝐴0 before any filtering is directly correlated with the image SNR. 127 

Instead of searching for the frequency at which the transfer function vanishes (which can only 128 

be measured in the absence of noise), we estimate the highest frequency from the local maxima of the 129 

decorrelation functions, enabling parameter-free image resolution estimation. The presented method 130 

does not estimate the theoretical resolution as stated by Abbe, but rather the highest frequency with 131 

high enough signal with respect to the noise. It provides a rapid and objective way to quantify the 132 

frequency content of a single image without any user-defined parameter. 133 

Results 134 

 To demonstrate the validity and broad applicability of the method, we processed nanorulers data 135 

provided by GATTAquant (courtesy of P. Tinnefeld and J. Schmied).  DNA origami nanorulers emerged as 136 

a platform for reliable performance evaluation across different super-resolution modalities. Their 137 

adaptability is due to the fact that one can design these self-assembled nanostructures by placing a 138 

defined number of fluorescent dye molecules in precise geometries16. The resolutions estimated by our 139 

algorithm are smaller than the mark-to-mark distances of the nanorulers, which corroborates the fact 140 

that they are resolved in all imaging modalities (see Supplementary Material Section 3). After establishing 141 

the legitimacy of our method on the DNA origami samples, we extended our analysis to various 142 
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diffraction-limited (see Supplementary Material Section 4 for bright-field imaging) and super-resolution 143 

microscopy images of biological structures, presented in the following. By imaging a z-stack of fluorescent 144 

beads, we validated that our resolution estimate fits the expected resolution well. Our estimator 145 

provides a unique tool to assess the alignment of an optical setup or the performance of a microscope 146 

objective lens using a single experimental image (see Supplementary Material Section 5). All the 147 

presented results have been processed using custom Matlab code (source code publicly available at 148 

https://github.com/Ades91/ImDecorr.git). For ease of use, the algorithm has also been implemented in 149 

Java and is available as an open source ImageJ17 plugin (see Supplementary Material Section 6). 150 

Confocal/STED 151 

We started with confocal18 and Stimulated Emission Depletion (STED) microscopy19,20, both 152 

point-scanning techniques that can be realized on the same setup thus allowing the transition from 153 

diffraction-limited to super-resolution imaging. STED microscopy is a super-resolution method that uses 154 

confocal illumination to excite the fluorophore and a donut-shaped depletion beam to de-excite (via 155 

stimulated emission) most of the surrounding fluorophores prior to fluorescence emission. The 156 

resolution of STED microscopy for a given fluorophore is dependent on the spatial and temporal co-157 

alignment of the two beams21, the shape, and the quality of the depletion beam and its power22. 158 

Using a commercial STED microscope (Leica TCS SP8 3D STED), typically available in state-of-the-159 

art imaging facilities, we imaged the microtubule network of COS-7 cells immuno-labelled with Abberior 160 

Star635P, both in confocal and STED mode (pulsed fluorescence excitation at 635nm and pulsed STED 161 

depletion laser at 775nm). Fig. 2a-d show the resulting images and their corresponding decorrelation 162 

analysis. Throughout the manuscript, we used the following convention: the green line and the grey lines 163 

are the original decorrelation functions prior to high-pass filtering and post-high-pass filtering; the blue 164 

to black lines are the decorrelation functions with refined mask radius and high-pass filtering range; the  165 

https://github.com/Ades91/ImDecorr.git
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 166 
Figure 2: Confocal and STED. All images show microtubules in fixed COS-7 cells immunolabeled with Abberior Star 635P. (a) 167 
Confocal image and (b) its corresponding decorrelation analysis. Green line: decorrelation functions before high-pass filtering. 168 
Magenta line: Radial average of log of absolute value of Fourier transform of (a). Gray lines: all high-pass filtered decorrelation 169 
functions. Blue to Black lines: decorrelation functions with refined mask radius and high-pass filtering range. Blue crosses: all 170 
local maxima. Dashed vertical line : cut-off 𝑘𝑐  (for the sake of readability, we used the same color and style representation for 171 
all the subsequent analysis). (c) STED image of the same structure as in (a) with line profile of selected microtubule and (d) its 172 
corresponding decorrelation analysis. (e) Sequential STED imaging of two different cells (f) SNR estimator and resolution (average 173 
and standard deviation) of a total of 4 STED sequences as a function of time. (g) STED images as a function of STED power. The 174 
lower panel shows the corresponding Fourier space with indicated cut-off frequency. (h) Resolution as a function of STED power 175 
(average and standard deviation of 5 images per STED power).  Scale bar, 5 µm. Image acquisition and sample details are 176 
provided in Table S1. 177 

blue crosses indicate all the local maxima; the magenta line is the normalized radial-averaged log of the 178 

absolute value of image Fourier transform. The image resolution is indicated as a black vertical line. As 179 

expected, all the decorrelation functions exhibit a local maximum, with STED showing a 2.52-fold 180 

resolution improvement over confocal imaging. We plotted in Fig. 2c the manually selected line profile 181 

of a microtubule cross-section, a method typically used to estimate the resolution. The measured 182 

FWHMs are in good agreement with our estimates.  183 

Fig. 2e and f show the result of the analysis performed on a time series of eight consecutive STED 184 

images (each STED image is the average of 8 scans; acquisition time per STED image of 15 sec) and a total 185 

of four sequences (only two shown here). As expected, repeated imaging of the same structure gradually 186 

bleaches the fluorophores, progressively degrading the SNR as indicated by the parameter 𝐴0 . We also 187 

observe a consistent deterioration of the resolution until the 7th frame, where we reach a resolution 188 
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close to the one observed in the confocal image. The bleaching is so strong that the structure is no longer 189 

continuous. The proposed method confirms the expected degradation of image resolution and provides 190 

a quantitative estimation of the image SNR and resolution. Fig. 2g and h illustrate how our resolution 191 

estimation can be used to optimize STED imaging. Imaging under several STED illumination powers was 192 

performed, always adjusting the excitation power to maintain the optimal dynamic range of the image 193 

to avoid noise-limitation of STED resolution15 (for a total of 5 images per STED power, pixel size 40 nm). 194 

We see that using 20% of STED laser power has a significant improvement on the resolution (about 2.4 195 

fold) but doubling the power only decreases the resolution by a factor of 1.1 as expected due to the non-196 

linear behaviour of STED. Further increases in STED power do not lead to significant changes in 197 

resolution, possibly due to a misalignment of the excitation and STED beam, imperfect “zero” of the STED 198 

doughnut as well as excess photo-bleaching and background induced by the STED beam20. We conducted 199 

additional experiments, investigating further acquisition parameters such as the STED delay, pixel size 200 

and comparing the performance of different dyes to choose the optimal label (see Supplementary 201 

Material Section 7). STED microscopy critically depends on photophysics that can also be exploited to 202 

increase the resolution (lifetime21, photostability23, spectra24, etc.). For pulsed STED experiments, the 203 

best resolution is reached when the depletion pulses immediately follow the excitation pulse. We used 204 

our resolution estimate as a readout to adjust the delay between the pulses in the Leica system. Figure 205 

S14c shows a drastic improvement in resolution at about t=1800ps. Previously, an indirect strategy 206 

based on minimizing the remaining fluorescence intensity25 or an FRC resolution estimate was used15. 207 

Our algorithm provides a direct and straightforward estimation of image resolution that can be used to 208 

objectively find the best acquisition settings and optimize sample preparation, including choice of dye, 209 

based on a single image of the sample of interest without imposing additional requirements on the data 210 

acquisition scheme. In principle, it should as well be possible to use our resolution estimate to tune the 211 

microscope alignment, e.g. to adjust the overlap of STED donut with confocal excitation spot. 212 
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WF/SIM 213 

STED has also been used for high-resolution live-cell imaging, but care should be taken to avoid 214 

sample damage due to high-depletion laser powers by special imaging procedures20. A super-resolution 215 

method that is widely used for imaging dynamics of living cells is Structured Illumination Microscopy26–28 216 

(SIM). SIM aims at improving the lateral and axial resolution by multiple imaging of the sample with high-217 

frequency illumination patterns29. The theoretical resolution improvement of SIM is linked to the 218 

frequency of the illumination. In practice, SIM resolution depends on the pattern modulation contrast, 219 

refractive index mismatch and local distortion of the pattern30. Fig. 3a shows the analysis of a pseudo 220 

widefield image, obtained by averaging the raw SIM sequence of actin filaments in U2OS cells31 labelled 221 

with Phalloidin-Atto488 (obtained on a Delta-Vision|OMX v4, courtesy of T. Huser). A resolution of about 222 

253 nm is estimated by decorrelation analysis (cut-off of 7.9[1/𝑢𝑚], the pixel size of 80 nm; Fig. 3b). Fig. 223 

3c shows the SIM reconstruction (see Supplementary Material Section 8 for the details of the 224 

reconstruction) of Fig. 3a and its corresponding decorrelation analysis (cut-off of 12.4[1/𝑢𝑚], the pixel 225 

size of 45.8 nm; Fig. 3d). We measure a resolution improvement of about 1.56. Measuring the position 226 

of the illumination peaks in the Fourier transform of the raw data (4.75 and 9.5[1/𝑢𝑚] for the first and 227 

second diffraction order respectively), provides a way to estimate the theoretically expected resolution 228 

improvement. We observe that the contribution of the first diffraction order with the wide-field 229 

resolution (
7.9+4.75

7.9
 ≈ 1.6) fits well with our estimation, indicating that the information encoded in the 230 

second diffraction order is not sufficiently contrasted. The use of more advanced reconstruction 231 

algorithms may improve this result. 232 

So far, we only considered the global resolution, i.e. averaged over the whole image and in all 233 

directions. In order to account for non-isotropic resolution, we subdivide the Fourier space in sectors and 234 

compute the cut-off frequency as a function of the direction. This is referred to as sectorial resolution 235 
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(see Supplementary Material Section 9). Fig. 3e shows a different pseudo widefield and SIM 236 

reconstruction of the mitochondria network31 in U2OS cells (measured on a Zeiss Elyra S1, courtesy of 237 

M. Sauer, resolution gain of 1.73). Fig.3f displays the Fourier transform of the SIM reconstruction, 238 

overlapped with the sectorial resolution (solid white line) and the average resolution (dashed white  239 

 240 

Figure 3: Widefield and SIM (a) Pseudo widefield image of the actin network in fixed U2OS cells labeled with phalloidin-Atto 488 241 
(Courtesy of T. Huser). (b) Corresponding decorrelation analysis. (c) SIM reconstruction of (a) with selected cross-sections. (d) 242 
Corresponding decorrelation analysis. (e) Pseudo widefield and SIM reconstruction of mitochondria network in U2OS cells labeled 243 
with mitotracker (Courtesy of M. Sauer). (f) Sectorial resolution estimation (dashed white line) and average resolution (solid 244 
white circle). (g) Local resolution estimate of (e). (h) Histogram of local resolution shown in (g). Scale bar, 5 µm. Image acquisition 245 
and sample details are provided in Table S1. 246 

circle). Finally, by subdividing the image into smaller tiles (as was done for FRC in14) (70x70 pixels with an 247 

overlap of 20 pixels), we can estimate the resolution over the whole field-of-view and reveal local 248 

variations in resolution (Fig. 3g). Due to the very weak signal in the top and center part of Fig.3e, 249 

corresponding sub-regions have very large resolution values. In order to preserve the dynamic range, all 250 

resolutions larger than 400nm were set to 400nm. Furthermore, the resolution map can be plotted as a 251 

histogram of resolutions (Fig. 3h), providing another perspective of the image. We also see that the 252 

average resolution is approximatively the median of all local resolutions. 253 

SOFI/Deconvolution 254 
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Sub-diffraction imaging can also be achieved by analysing a time series of stochastically blinking 255 

emitters. Stochastic Optical Fluctuation Imaging32,33 (SOFI) achieves super-resolution by computing high- 256 

order spatiotemporal cumulants. SOFI processing is of interest to analyse because it predicts a resolution 257 

improvement of 1/√𝑛, where n is the correlation order and 1/𝑛 after deconvolution and brightness 258 

linearization. It provides an ideal test case for our resolution estimator.  259 

Fig. 4a shows the results of SOFI analysis (up to 6th order) of MEF cells expressing paxillin labelled 260 

with mEos234 (courtesy of H. Deschout). Fig. 4b displays the results of the decorrelation analysis, where 261 

the raw cumulants follow the theoretical resolution improvement up to 70 nm for 6th order linearized 262 

SOFI, indicating good blinking statistics. The deviation observed for the widefield (average of the whole 263 

sequence, here denoted as SOFI 1) and 2nd order SOFI can be attributed to sub-optimal out-of-focus 264 

light rejection. Similarly, the linearized SOFI cumulants, obtained by 10 iterations of Lucy-Ridcharson 265 

deconvolution and taking the nth root of the SOFI image, follow a similar trend close to the theoretical 266 

value. The deconvolution operation by itself constitutes an interesting case study for our algorithm. We 267 

show (see Supplementary Material Section 10) that the resolution can be set to any value, as a function 268 

of the input point-spread function and number of iterations of the deconvolution. It is the duty of the 269 

user to ensure that the resolution is not enhanced beyond the limit supported by the microscopy 270 

method. Our algorithm can thus be used to quantify deconvolution strength but not the validity of the 271 

deconvolution. 272 

To  minimize bleaching and drift artefacts, practical SOFI processing is achieved by first 273 

subdividing the whole acquisition into sub-sequences, computing SOFI and averaging the results of the 274 

sub-sequences35,36. By using our decorrelation analysis over the resulting SOFI image for various sub-275 

sequences lengths, we are able to identify the optimal resolution-SNR sub-sequence length for the given 276 

input data. Fig. 4c shows the results of such an analysis (sub-sequence length ranging from 50 to 4000 277 
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 278 

  279 

Figure 4: SOFI (a) Raw SOFI and Linearized SOFI images of focal adhesions in MEF cells expressing paxillin-mEos2 (courtesy of H. 280 
Deschout) shown up to order 6. (b) Estimated and theoretical resolution vs the SOFI order. (c-e) Cumulant analysis of microtubules 281 
in HeLa cells immunolabeled with Alexa Fluor 647.  (c) Resolution and SNR estimate vs the sub-sequence size used for SOFI 282 
processing. (d) Resolution estimate vs number of frames. (e) Raw SOFI 3 images for 50, 200 and 3000 frames. (f) Un-optimized 283 
raw SOFI image of fixed HeLa cells labeled with wheat germ agglutinin-Atto 565 using “default” processing parameters. (g) Same 284 
images as (f) after optimization of the resolution. Scale bar, 5 µm. Image acquisition and sample details are provided in Table S1. 285 

frames), performed on a sequence of blinking Alexa647 targeting microtubules of HeLa cell (images 286 

shown in Supplementary Material Section 8, Fig. S6a, 8000 frames in total). For this data, we found an 287 

optimal sub-sequence length of 1500 frames. 288 

Fig. 4d and 4e demonstrate how the total number of frames used to compute SOFI impacts the 289 

resolution in HeLa-cell microtubules labelled with Alexa 647. We see that 50 frames already allow the 290 

computation of a 3rd order SOFI image. However, due to the blinking kinetics, many more frames are 291 

required to properly resolve the underlying structure. We also see that the resolution is slightly better 292 

when the image consists only of sparse point-like structures. This is due to the fact that our algorithm 293 

estimates the resolution from a single image. Using only 50 frames, the algorithm sees a sparse 294 

distribution of high-frequency dots. As we include more frames in the analysis, a larger-scale structure 295 
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containing more low frequencies starts to emerge, leading to a slightly modified resolution estimate.  296 

Finally, Fig. 4f shows a raw 3rd order SOFI image of HeLa cells stained with wheat germ agglutinin-Alexa 297 

488, processed with default parameters (first 1000 frames removed and sub-sequence length of 500 298 

frames). Fig. 4g shows the same image, after optimization of the sub-sequence length and the number 299 

of frames to be removed at the beginning and the end of the acquired data to obtain the best resolution 300 

(1800 first frames removed, subsequence length of 1000, no frames removed at the end of the 301 

sequence). The optimized processing procedure results in a 1.6-fold improvement of resolution 302 

compared to the starting image. 303 

Localization microscopy 304 

Finally, we applied our method on Single Molecule Localization Microscopy37–39 (SMLM) data. In this case, 305 

super-resolution is achieved by the individual localization of a subset of sparsely and stochastically 306 

blinking emitters in successive image frames. By fitting the emission point-spread functions, single- and 307 

multiple-emitter positions can be determined with nanometric accuracy40,41. To estimate the resolution, 308 

our method requires a rendered image. This is typically realized by replacing a filtered set of localization 309 

events by a 2D Gaussian of standard deviation equal to the localization uncertainty. The filtering step 310 

consists of rejecting unphysical or poor localization events. We validated, using simulations, that our 311 

algorithm is also able to correctly estimate the resolution of a localization-based image (see 312 

Supplementary Material, Section 11 and Fig. S17).  Fig. 5a shows a STORM image of immuno-labelled 313 

microtubules (Abberior Flip 565, 16000 frames, localized using single-emitter least square fitting in 314 

ThunderSTORM42 with default parameters). Each localization was rendered (in Matlab, the pixel size of 315 

10 nm) as a normalized Gaussian with standard deviation equal to the localization uncertainty.  316 
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 317 
Figure 5: Localization microscopy (a) Pseudo widefield, standard deviation and STORM image of microtubules in COS 7 cells 318 
labelled with Abberior Flip 565. (b) Decorrelation analysis of (a). (c) Fourier Ring Correlation analysis of (a). (d)  Decorrelation 319 
resolution (black line) and FRC resolution (orange line) as a function of a number of frames. (e) Line profile of 15 randomly 320 
selected microtubule cross-sections (f) (f) GATTAquant PAINT image of HiRes 40R nanoruler with mark-to-mark distances of 321 
40nm. (g) Zoom of (f) and decorrelation and FRC resolution estimate. (h) 10 line profiles of HiRes 40R molecules indicating a 322 
resolution better than 40nm.  Image acquisition and sample details are provided in Table S1. 323 
 324 

With self-blinking dyes43,44, it is not possible to take a widefield image. We thus obtained a pseudo 325 

widefield (WF) and standard deviation (STD) image by computing the temporal average and standard 326 

deviation of all the frames. We estimate a resolution of 542nm for the pseudo widefield, due to the low 327 

SNR of the image and a resolution of 302nm for the STD image. Finally, we estimate a resolution of 89nm 328 

for the STORM image. Fig. 5b and c display the corresponding decorrelation resolution estimate and FRC 329 

curve, respectively (obtained by splitting the localizations in two odd and even localization subsets to 330 

generate two independent realizations). Both estimates agree on the resolution, with FRC (estimated 331 

resolution of 85nm) being slightly more optimistic, which is consistent with its behaviour observed in 332 

simulations and reported recently by Marsh et al40 .  333 

Fig. 5d shows how our method and FRC resolution vary as a function of the number of frames. 334 

We observe a drastic difference in the predicted resolution between the two methods only up to 5000 335 
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frames. This is due to the fact that FRC requires two images instead of one. For a low number of frames, 336 

the localization events are too sparse to produce significant correlations, leading to a large resolution 337 

estimate. On the other hand, our method only considers a single image, which is constituted of sparse 338 

Gaussians with no apparent structure but a very good SNR (since there is no noise in a rendered 339 

localization image). This leads to a very optimistic resolution estimate with the localization uncertainty 340 

as a lower bound. As we increase the number of frames, the two random subsets of localization events 341 

start to correlate and the FRC resolution estimate starts to decrease. Similarly, as we include more 342 

localization events, a larger-scale structure (hence containing low spatial frequencies) starts to emerge. 343 

Consequently, our resolution estimate increases as the structure is built up. We finally observe that both 344 

methods converge at approximately the same speed at around 12000 frames, with FRC estimating a 345 

slightly better resolution45. Fig 5e shows a total of 15 microtubules cross-sections randomly selected over 346 

Fig. 5a. The apparent average microtubule diameter is about 95nm, which is consistent with the 347 

resolution estimate and the secondary immunostaining, which increases the apparent microtubule 348 

diameter by 10-30nm46,47.  349 

Fig. 5f shows a rendered image of GATTAquant HiRes 40R nanorulers48 (courtesy of P. Tinnefeld 350 

and J. Schmied). Fig. 5g shows a closeup image of three molecules showing that the three point-source 351 

spaced by 40nm can be resolved. Our algorithm estimates a resolution of 32nm while FRC estimates a 352 

resolution of 28nm, again being slightly more optimistic than our method. Fig. 5h shows a total of 10 line 353 

profiles of individual molecules (grey lines) and their average (solid black line). 354 

Finally, it has been shown that multiple blinking events can severely impact the FRC resolution 355 

estimate by introducing spurious correlations14. While this effect can in principle be mitigated, it requires 356 

an accurate estimation of the underlying blinking statistics49. We show (see Supplementary Material Fig. 357 

S18) that our resolution estimate is independent on the probability of multiple blinking event, as our 358 

method does not require any assumption on the blinking kinetics. 359 
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Discussion 360 

We proposed a new method for parameter-free resolution and SNR estimation of a single 361 

microscopy image. We were able to circumvent the need for a threshold by introducing a new form of 362 

partial phase correlation. In principle, our method can be applied to any imaging technique, including 363 

electron microscopy, atomic force microscopy, X-ray tomography and live-cell imaging. Here, we 364 

demonstrated its broad applicability by applying it to various types of microscopy images, ranging from 365 

bright field to single-molecule localization microscopy images. By processing nanoruler data, we showed 366 

that the method can be used to quantitatively assess the resolution which enabled an optimization of 367 

imaging parameters, post-processing and reconstruction of acquired data. Our approach provides a new 368 

and objective way to quantify the effective resolution in super-resolution microscopy. The extension of 369 

our method to 3D would require a reformulation of our algorithm in the spherical coordinate. 370 

By developing an open-source ImageJ plug-in, we enable the use of our method to non-image 371 

processing specialist. We provide a unique and novel approach for resolution estimation based on the 372 

analysis of a single image that can be used for image processing optimization and image reconstruction 373 

comparison. We envision that our new resolution estimate represents a powerful tool for on-the-fly 374 

microscopy setup characterization and optimization as well as for automated microscopes. We hope that 375 

our method will be adopted by the ever-growing microscopy community as an everyday tool, helping 376 

them to achieve high-quality research. 377 

Materials and methods 378 

Cell culture 379 

HeLa and COS-7 cells were cultured at 37 °C and 5 % CO2 using DMEM high glucose with pyruvate (4.5 g 380 

l-1 glucose, with GlutaMAXTM supplement) supplemented with 10 % fetal bovine serum and 1 x penicillin-381 

streptomycin (all gibco®, Thermo Fisher Scientific).  382 
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Cell fixation and immunostaining 383 

Cells were seeded in Lab-tek® II chambered cover slides (nunc) or on 18 mm high-precision No. 1.5 384 

borosilicate coverslips (Marienfeld) in 12 well plates (Thermo Fisher Scientific) 1-2 days before fixation 385 

in DMEM (see cell culture) or DMEM high glucose w/o phenol red (4.5 g l-1 glucose) supplemented with 386 

4 mM L-gluthamine, 10 % fetal bovine serum and 1x penicillin-streptomycin (all gibco®, Thermo Fisher 387 

Scientific).  388 

HeLa cells: 389 

Cells were washed twice in pre-warmed buffer (microtubule stabilizing buffer (MTSB): 100 mM PIPES pH 390 

6.8, 2mM MgCl2, 5 mM EGTA or PBS for wheat germ agglutinin (WGA) staining), followed by application 391 

of pre-warmed fixation buffer (3.7 % paraformaldehyde (PFA), 0.2 % Triton X-100 in MTSB or 3.7 % 392 

paraformaldehyde (PFA) in PBS for wheat germ agglutinin (WGA) staining) for 15 min at room 393 

temperature (RT). Cells were then washed three times for 5 min each with 1 x PBS and stored in 50 % 394 

glycerol in 1 x PBS at 4 °C or the immunostaining protocol was continued to prepare samples for 395 

fluorescence imaging. Fixed and permeabilized cells were blocked with 3 % BSA in 1 x PBS and 0.05 % 396 

Triton X-100 for 60 min at RT or overnight at 4 °C.  397 

Cells fixed without permeabilization were stained with 5 ng ml-1 WGA-Atto 565 for 10min followed by 398 

three times 5 min washes with 1 x PBS. The blocked samples with prior permeabilization were 399 

immediately incubated with a mix of primary anti-tubulin antibody (1 mg ml-1 DM1a mouse monoclonal 400 

(ab80779) 1:150 dilution, Abcam) in antibody incubation buffer for 60 min at RT (AIB: 1 % BSA in 1 x PBS 401 

and 0.05 % Triton X-100). Cells were then washed three times for 5 min each with AIB, followed by 402 

incubation with donkey anti-mouse-Alexa Fluor 647 antibody (0.005 mg ml-1 Invitrogen) for 60 min at RT. 403 

This and all subsequent steps were performed in the dark.  All cells were again washed three times for 5 404 
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min each with AIB and incubated for 15 min post-fixation with 2 % PFA in 1 x PBS followed by three 5 min 405 

washes with PBS. Cells were imaged immediately or stored in 50 % glycerol in 1 x PBS at 4 °C until imaging. 406 

COS-7 cells: 407 

The protocol is similar as described previously by Chazeau et al.50. Cells were washed twice in pre-408 

warmed DMEM w/o phenol red (see cell culture) following 90s incubation with extraction buffer 409 

(microtubule stabilizing buffer 2 (MTSB2: 80 mM PIPES, 7 mM MgCl2, 1 mM EGTA, 150mM NaCl, 5mM 410 

D-glucose adjust pH to 6.8 using KOH) with freshly added 0.3 % Triton X-100 (AppliChem) and 0.25% 411 

glutaraldehyde (stock solution 50% electron microscopy grade, Electron Microscopy Sciences). 412 

Immediately afterwards, pre-warmed 4 % paraformaldehyde (PFA) in PBS was incubated for 15 min at 413 

room temperature (RT). Cells were then washed three times for 5 min each with 1 x PBS and stored in 414 

50 % glycerol in 1 x PBS at 4 °C or the immunostaining protocol was continued. Next, a freshly prepared 415 

solution of 10mM NaBH4 in 1x PBS was incubated on the cells for 7 minutes followed by one quick wash 416 

in 1xPBS, and two washes 10min 1xPBS on an orbital shaker. Cells were permeabilized in PBS with 0.25 417 

% Triton X-100 for 7min followed by blocking with blocking buffer (BB: 2% (w/v) BSA, 10mM glycine, 418 

50mM ammonium chloride NH4Cl in PBS pH 7.4 for 60 min at RT or overnight at 4 °C.  419 

The blocked samples were immediately incubated with primary anti-tubulin antibody (clone B-5-1-2 420 

ascites fluid 1:100-1:200 dilution, Sigma-Aldrich) in BB for 60 min at RT. Cells were then washed three 421 

times for 5 min each with BB, followed by incubation with either donkey anti-mouse-Alexa Fluor 647 422 

antibody for SOFI imaging (donkey anti-mouse (H+L) highly cross-adsorbed at 0.005 mg ml-1 Invitrogen), 423 

donkey anti-mouse-AbberiorFlip565 for SMLM imaging (preparation see below at 1:200 dilution) or goat 424 

anti-mouse-AbberiorStar635P (at 0.005-0.01 mg ml-1 Abberior), goat anti-mouse-Atto594 (at 0.0025-425 

0.005 mg ml-1 Atto-tec), donkey anti-mouse-Alexa Fluor 594 antibody (donkey anti-mouse (H+L) highly 426 

cross-adsorbed at 0.005 mg ml-1 Invitrogen)or donkey anti-mouse-biotin (Biotin-SP (long spacer) 427 
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AffiniPure Donkey Anti-Mouse IgG (H+L), at 1:200 Jackson ImmunoResearch) for STED imaging for 60 min 428 

at RT. This and all subsequent steps were performed in the dark. All cells were again washed three times 429 

for 5 min each with AIB and incubated for 15 min post-fixation with 2 % PFA in 1 x PBS followed by three 430 

5 min washes with PBS. Cells with biotinylated secondary antibody were additionally incubated with 431 

streptavidin-Atto490LS (at 0.01 mg ml-1 Atto-tec) in PBS for 30min followed by 3 washes for 5 min in PBS 432 

before post-fixation. Cells were imaged immediately or stored in 50 % glycerol in 1 x PBS at 4 °C until 433 

SOFI or SMLM imaging. For STED microscopy, cells were mounted on a coverglass slide (Thermo Fisher 434 

Scientific) using Mowiol-DABCO (preparation see below) and allowed to harden for at least 24h at RT. 435 

Cells were imaged within 1 week of sample preparation. 436 

Preparation of labeled proteins 437 

2 mg ml-1 donkey anti-mouse (H+L) highly cross-adsorbed antibody (Invitrogen) was incubated with 438 

AbberiorFlip565-NHS (Abberior) and 2 mg ml-1 WGA (Vector Labs) was incubated with Atto565-NHS 439 

esther (Atto-tec) at a ratio of 1: 6 for 1h at RT while shaking with the pH raised to 8.3 using sodium 440 

bicarbonate. The mixture was purified using illustra NAP Columns (GE Healthcare) according to 441 

manufacturer’s instructions and eluted with slightly acidic PBS to recover the labeled antibody at neutral 442 

pH. The protein concentration was estimated by absorption spectrometry to <1.5 mg ml-1 donkey anti-443 

mouse AbberiorFlip565 and 0.5 mg ml-1 WGA-Atto565.  444 

Imaging buffer and embedding medium 445 

The samples for SOFI using Alexa Fluor dyes were imagined in a 50 mM Tris-Hcl pH 8.0, 10 mM NaCl 446 

buffer containing an enzymatic oxygen scavenging system (2.5 mM protocatechuic acid (PCA) and 50 nM 447 

Protocatechuate- 3,4-Dioxygenase from Pseudomonas Sp. (PCD) with >3 Units m g-1) and a thiol (2-448 

Mercaptoethylamine). The thiol and a stock solution of 100 mM PCA in water, pH adjusted to 9.0 with 449 

NaOH, were always prepared fresh. PCD was aliquoted at a concentration of 10 μM in storage buffer 450 
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(100 mM Tris-HCl pH 8.0, 50 % glycerol, 50 mM KCl, 1 mM EDTA) at -20 °C and thawn immediately before 451 

use. The samples for SMLM using Abberior Flip 565 were imaged in 1x PBS. Mowiol-DABCO for STED 452 

embedding was prepared as described in the manufacturer protocol (Roth Gebrauchsanweisung Mowiol 453 

488). Aliquots were kept at -20C and thawn immediately before use.  454 

Microscope setups  455 

Widefield, SOFI and SMLM 456 

Data for Fig. 4e-g, Fig. 5, Fig. S3a-d and Fig. S7a were acquired on a standard widefield custom build 457 

microscope. A total of 4 illumination laser lines (405nm 200 mW Roithner; 488nm 200mW Toptica; 458 

561nm 350mW Quantum laser; 635nm 1W Roithner) are collimated, expanded and combined with 459 

dichroic filters. The beams are then cropped with a rectangular aperture of approx. 7.2 mm placed in the 460 

conjugated object plane, resulting in a 120x120 µm field of view. The beams are then focused with an 461 

achromatic lens (f = 200mm) and reflected by a 3mm thick Quad Line Beamsplitter (R405/488/561/635; 462 

Semrock) in the back focal plane of the objective (Nikon 60x/1.27NA SR water immersion). The 463 

fluorescence signal is focused on the camera (Orca Flash 4.0; Hamamatsu) with a 200mm achromatic 464 

lens. The sample position is controlled in X and Y by a Scan-plus IM 120x80 (Marzheuser) and in Z by a 465 

Nano-Z piezo nanopositioner (Mad City Labs). All acquisitions were performed using Micromanager. The 466 

laser intensities used in the experiments can be found in Table S1. 467 

Confocal and STED 468 

Confocal and STED microscopy was performed at the EPFL bioimaging and optics platform (BIOP) using a 469 

Leica SP8 STED 3X. The setup consists in a Leica DMi 8 inverted microscope body equipped with a white 470 

light laser (470-670nm) and a Leica HC PL APO 100X/1.40 oil objective for STED. For STED imaging we 471 

used the 775nm pulsed depletion laser and detected the fluorescence on HyD detectors. 100% 775nm 472 

laser power corresponds to 403mW, 100% 633nm laser power corresponds to 1.12mW, 100% 488nm 473 
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laser power corresponds to 0.33mW and 100% 520nm laser power corresponds to 0.43mW (power 474 

measurements were performed after the objective by the BIOP). The laser powers and other acquisition 475 

parameters used in the experiments can be found in Table S1. 476 

Data processing 477 

The algorithm is implemented in MATLAB (Mathworks) and ImageJ. All the codes are available upon 478 

request. 479 
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