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Abstract
The discovery of topological phases ofmatter, initially driven by theoretical advances in quantum
condensedmatter physics, has been recently extended to classicalwave systems, reaching out to awealth
of novel potential applications in signalmanipulation and energy concentration.Despite the fact that
wave propagation inmany realisticmedia (metals at optical frequencies, polymers at ultrasonic
frequencies) is inherently dispersive, topologicalwave transport inphotonic andphononic crystals has
so far been limited to ideal situations andproof-of-concept experiments involving dispersionlessmedia.
Here,we report thefirst experimental demonstration of topological edge states in a classical waterwave
system supporting highly dispersivewave propagation, in the intermediate regimeof gravity-capillary
waves.Weuse a stochasticmethod to rigorously take into account the inherent dispersion anddevise a
waterwave crystal insulator supporting valley-selective transport at topological domainwalls.Our
measurements, performedwith a high-speed camera under stroboscopic illumination, unambiguously
demonstrate the possibility of valley-locked transport ofwaterwaves.

1. Introduction

Topological insulators are bulk insulators whose bands are characterized by a quantized number known as a
topological invariant [1, 2], which cannot change upon continuous transformations of the band structure. This
topological property of the bands implies the presence of edge states at topological interfaces, which is protected
by the topology of the surrounding bulk insulators [3–10]. Originally discovered in condensedmatter systems,
includingQuantum-Hall [11–19] andQuantumSpin-Hall insulators [20–23], the concept of topological
transport has recently been transposed to various fields of classical wave physics, including optics [24–26],
acoustics [8, 27–29], microwaves [12, 30], andmechanics [9, 31–34], where it represents a promisingway to
transport signals and concentrate energy in a robust, symmetry-protected way.While classical analogs of Chern
insulators [28, 35], quantum spin-Hall systems [36], and valley-Hall insulators [8, 37–40] have been previously
studied and demonstrated, prior arts have focusedmainly on idealistic situations inwhich the dispersion of the
hostmaterials have been neglected or avoided. This drastic assumption, however, holds only for a small subset of
the available physical platforms inwhich exploiting topological physics could have large practical implications.
It does not hold, for instance, for waterwave systems, which generally support highly dispersive surface waves
[41]. Yet, controlling the energy carried by oceanwaves, and forcing it to concentrate at a locationwhere it can be
harvested, would be a fascinating application of topological physics, providing topological edgemodes are
compatible with the highly dispersive character of these systems.

In this article, we demonstrate experimentally the relevance of topological physics in a classical wave system
with strong dispersion, namely gravity-capillary waves at awater–air interface interactingwith awaterwave
crystal.We use a stochasticmethod to obtain the dispersion relation in the crystal, using Bloch’s theorem, and
we design topological edge states based on valley conservation.Ourmeasurements, based on direct imaging
using a high-speed camera under stroboscopic illumination (seefigure 1), demonstrate unambiguously the
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possibility of topological transport in systemswith very strong dispersion, extending the reach of topological
physics to awealth of newphysical platforms.

2. Theoretical and experimental description

Gravity-capillary waterwaves are surfacewaves resulting from the balance of the potential energy of gravity
forces and surface tensionwith the kinetic energy of a water column. As a result of body (volume) and interface
(surface) contributions, their velocity is isotropic but inherently strongly dispersive and dependent on thewater
depth. In order to describe the propagation of gravity-capillary waves in the regime of small water elevation (as
compared to thewater depth), we consider the linear velocity potential theory forwaterwaves [42–44]. In the
absence of external forces, the vertical displacement (elevation) of the liquid–air interface η(x, y) satisfies the
two-dimensional partial differential equation

h k h  + =· ( ) ( )c c c c 0, 1p g
2

p g

where cp is the phase velocity, cg is the group velocity, andκ is thewavenumber. A similar equation is satisfied by
the horizontal part of the velocity potential [42].We further recall that the dispersion relation between
wavenumber and angular frequencyω for a horizontal liquid–air interface is given by
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where g is the gravitational acceleration,h is thewater depth, anddc is the capillary length.Thephase velocity is then
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where the capillary length is given by = g
r

dc g
, with γ the surface tension and ρ themass density of the liquid.

Inside the artificial crystal sample, equation (1) can be used to obtain Blochwaves and therefore band
structures. Indeed, equation (1) can be recast as aHelmholtz equation for scalar waves in a dispersivemedium

Figure 1.Experimental setup for observation of topological gravity-capillary waves in awater wave crystal. (a)The crystal sample
(green color) is placed in awater tank. Amechanical straight paddle is exciting verticalmotion of the water surface at the same
frequency as the stroboscopic illumination. Amirror is placed at 45° below and reflects the image on a diffusive screen placed in front.
(b)The hexagonal crystal ismade of triangular pillars with a=8mm, b=6.4 mm, and a variable orientation angleα (here
α=30°). (c)A typical 3D-printed crystal samplemade of PLA (polylactic acid) is shown.
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with coefficientsA(ω)=cp cg andB(ω)=cg/cp depending explicitly on frequency. ANeumann boundary
condition is considered at the interfaces between pillars andwater, i.e.∂η /∂n=0, where n is the normal to the
interface [42–44]. Blochwaves have the form h h=( ) ( ) ( · )x y x y ık r, , expk , with k the Blochwavevector and ηk
the periodic part of the Blochwave. Computing eigenvalues and eigenfunctions to obtain the Blochwaves of the
crystal is not straightforward since the coefficients of the equation depend on frequency.We use instead the
stochastic excitationmethod proposed by Laude andKorotyaeva [45]. Themethod considers all possible values
of frequencyω andBlochwavevector k and observes the response of the system to a spatially random force
distributed inside the unit-cell. Thefinite element implementation for equation (5) follows the prescriptions in
[45]. A further difficulty is that themodel does not take into account certain interface effects betweenwater and
the solid pillars, including the formation of ameniscus as a result of capillary forces. As the distance between
pillars is smaller than thewavelength [46], such effects can be approximated by using an effective dispersion
relation (see appendix). In practice, the effective value of the surface tension is adjusted according to
experimental observations. The derived value, γeff=0.17 Nm−1, is larger than the usual value for the
unperturbedwater–air interface, corresponding to an effective increase of the phase velocity inside the artificial
crystal. The phenomenologicalmodel for the artificial crystal is thus composed of equation (5) together with the
effective dispersion relation in equation (2) andNeumann boundary conditions at the pillars.

We compute phononic band structuresω(k) along the boundary of the irreducible Brillouin zone (BZ)
(namely the path G - - - GK M ) as depicted infigure 2(a) for the geometry offigure 1(b). Phononic band
structures are shown for an hexagonal crystal of triangular pillars with lattice constant a=8mmand
b/a=0.8. The phononic band gap extends from18 to 23Hz forα=30°, whereas the band gap closes for
α=0°. The transmission through afinite crystal sample composed of 5 periods (α=30°) is shown as a
function of frequency infigure 2(b) for directionΓK.A good agreement between theory and experiment is
observed. At a frequency of 22Hz, inside the phononic band gap, incident waves are indeed reflected by the
crystalline insulator and form a standingwave pattern on the incident side, as illustrated infigure 2(c). Full wave
numerics are obtained by solving equation (5) using thefinite elementmethod inComsolMultiphysics at afixed
frequency. Figure 2(c) shows an example of thewaterwavefield obtained using thismethod. PMLs (perfectly
matched layers) are used to absorb the outgoingwaves.

Figure 2.Phononic properties of thewater wave crystal of figure 1. (a)The dispersion relation is obtained as the response to a
stochastic excitation [45] for awater level h=7.3 mmandα=30° (the dispersion relation forα=0° is the red line). The inset
represents thefirst Brillouin zone (BZ). (b)Themeasured transmission of a planewave through a 5 unit cell thick crystal slab (dotted
line) is comparedwith the numerically computed transmission (solid line). (c)Numerical simulation of the reflection of a planewave
at 22 Hz (inside the phononic band gap) on the crystal. (d)Experimentally recorded surface elevation at the same frequency. The
boundaries of the crystal are indicatedwith dashed lines.
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The experimental setup shown infigure 1 is composed of a 24×30 cm2waterwave ripple tank illuminatedby
stroboscopic light synchronizedwith a straight paddle, operating at a frequency tunable between 10 and 75Hz.
Shadows caused by light refraction at the sinusoidallymodulatedwater surface are formedonto a screen after
reflection off amirror and are recordedwith a camera. A typical experimentalwave pattern is shown infigure 1(a),
without anypost-processing.The observed patterns are related to the local surface curvature (a bright fringe
indicating a positive curvature and a local elevation of thewater level).Hence, after image processing,weobtain a
quantity proportional to the vertical elevationof thewater surface. Crystal samples are fabricatedwith 3D additive
printing inPLAand a typical sample is shown infigure 1(b). Samples are composedof pillars that are higher than
thewater level (15mm,whereas thewater levelwithout the crystal equals 7 mm). The experimental transmission
forα=30° is shownas a function of frequency infigure 2(b) and is in fair agreementwith theory.The
experimental image infigure 2(d) confirms the strong phononic band gap reflection near 22Hz.

The 2Dhexagonal crystal of rotated opaque triangles supports valley vortex Blochwaves carrying a
quantized topological phase [37]. Actually, whenα=0°, the plane crystallographic group—orwallpaper group
—of the crystal is p m31 , meaning that there are three 3-fold axes of rotation and three reflection planes, two of
which are images in a reflection.When a ¹ 0 , the symmetry is reduced to that of wallpaper group p3, with
only three 3-fold axes of rotation remaining3. The Blochwaves defining the phononic band gap follow the same
p3 symmetry and show three vortices placed either in between the vertices of the triangles (Blochwaves K1, with

Figure 3.Valley-selective excitation ofwater wave edgemodes for two interfaces atβ=0°. (a)Numerical simulation and
(b) experimentalmeasure of transmission at 22 Hz. (c)Quantitative comparison of the transmission for A–B andB–A interfaces in the
experimental and numerical cases (over the full frequency range on the left and zoomon the bandgap region on the right), as well as
the case of the domain B.Dots are used for experimentallymeasured points. Dispersion relations obtained for supercells for the
interface B–A in (d) andA–B in (e).

3
Forα=30°, thewallpaper group is p m3 1, and there are three 3-fold axes of rotation and three reflection planes intersecting at the

rotation centers.
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valley topological phase a+ ( )sgn ) or in between the sides of the triangles (Blochwaves K2, with valley
topological phase a- ( )sgn ) [37]; see figure A2 of the appendix for a representation of theK1 andK2 Blochwaves.
Note that the vortex centers actually coincidewith rotation centers of the crystal.

The crystal B of triangles rotated by a-∣ ∣ is the image in a glide reflection of axisOx and translation a/2 of the
crystal A of triangles rotated by a+∣ ∣. This property can be exploited to construct a domainwall (DW) separating
the twonon equivalent chiral crystals A andB. As depicted infigure 3(a), theDWA–Bwith A placed above B is
different from theDWB–Awith B placed aboveA. BothDWshave the symmetry of the frieze group p g11 . It was
shown for classical non dispersive waves that theDWs support unidirectional edgewaves [8]; here we show that
the property remains true for dispersive water waves. Both the numerical result infigure 3(a) and the
corresponding experiment infigure 3(b) show that a plane surfacewave incident normally from the left is
funneled to the right side for the A–BDW, but not for the B–ADW.The reason for this asymmetry is discussed
below. The transmission through the topological waveguideswas estimated and is presented infigure 3(c); again
experiment and numerics agree fairly well. Videos of experimental and numerical water wave propagation along
theDWare provided in the supplementalmaterial.

The edgemodes are obtained numerically using the stochastic excitationmethod, considering a super-cell
encompassing 5 rows of each crystals A andB. The phononic band structures forDWsA–B andB–A are shown
infigures 3(d)–(e). In each case a edgemode appears inside the phononic band gap, traversing it to connect the
systems of bulk bands extending below and above. TheA–B edgewave has a negative dispersion—its group
velocity is negative for positive wavenumbers,—whereas the B–A edgewave has a positive dispersion. The insets
in the figures show themodal distribution of both edgewaves. It can actually be verified that theA–B edgewave
is composed of K1 valley vortexwaves that are evanescent in the transverse direction. Conversely, the B–A edge
wave is composed of K2 evanescent valley vortexwaves. As further discussed in the appendix, the sign of the
topological charge is in direct connectionwith the sign of the group velocity of the edgewaves.

The possibility of coupling an externally incident planewavewith an edgewave of the domainwall can be
evaluated by comparing theirmodal fields.We evaluate the following overlap integral

ò

ò

h h

h
Y = ¶W
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x y y

x y y
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computed on the interface∂Ω between the crystal and the incidence region. The resulting number, which varies
between 0 and 1,measures thematching of the edgemodewith a planewavewith amplitude η0=1 along the
interface∂Ω.We found numerically that Y »- 1A B for the A–BDW, and that Y »- 0.03B A for the B–ADW.

Figure 4.Water wavefields obtained for different geometries of interfaces at 22Hz. (a)Numerical simulation and (b) experimental
transmission of a 30° interface. (c)Numerical simulation of a 60° interface and (d)Numerical simulation of a zigzag shaped interface.

5

New J. Phys. 21 (2019) 083031 NLaforge et al



These numbers confirm the asymmetry of coupling of the normally incident planewave to both edgemodes.
Furthermore, the overlap integral computed for all Blochmodes (see appendix) confirms that transmission
occurs only alongDWA–B for all frequencies.

ADWwaveguidemaking an angle of 30°with respect to the direction of propagationwas also fabricated and
tested (see figures 4(a)–(b)). Again, theory and experiment agree and show that at the output interface a point-
like source emission is obtained.Note that the 30°-rotatedDW is not purely of the A–Bor B–A type and actually
combines K1 andK2 vortex states to funnel surface waves. The 60°-rotatedDWshown infigure 4(c) is of the B–A
type. Due to non normal incidence theK2 vortex edgewave can be excited in this case. Finally, theZ shapeDWof
figure 4(d) combines a series of 120° turns and is of the A–B type.However, the latter crystal has a very low
confinement andwas thus only tested numerically.

3. Conclusion

To conclude, we performed an experimental demonstration of the existence of topological edge states guided a
domainwall of awaterwave crystal, in the intermediate regime of gravity-capillary waves. The edge states are a
superposition of vortex waves carrying a quantized topological phase [37] and can be described by a classical
analogy to the valleyHall effect [7, 8, 47]. A good qualitative agreement between theory and experiments was
obtained, with the capillary effects at the interface betweenwater and the crystalmodeled via the use of an
effective parameter. Our observations extend the reach of topological wave physics to awide range of physical
platforms containing highly dispersivemedia, not only water wave systems, but also elastic waves and
plasmonics.
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Appendix

Wedescribe inmore detail experimentalmethods, the effective dispersion relation, the phononic band
structures, the overlap integral, and the vortex Blochwaves of thewater wave crystals considered in this work.

A.1. Experimentalmethods
The experimental apparatus we use to observe and imagewater waves is shown infigure 1. Light impinging from
a frequencymodulated source is steered at the interface betweenwater and air, travels through the thinwater
tank and reaches the observation screen after reflection off amirror. A common phenomenological
interpretation of the bright lines observed on the screen is to link them to thewave crests that act as cylindrical
collecting lenses, while shades are linkedwithwave troughs that behave as diverging lenses. However, the
situation is in general farmore complex and the relationship between the pattern of light and shade on the screen
and the ripple elevation above the averagewater surface level is not straightforward [48]. In fact, it should be
described as the intersection of a three-dimensional caustics with the projection plane, taking into account
blurring due to source extension and chromatic dispersion [49]. Still, this statement ismostly true forwaveswith
strongly curved interfaces, that is for short wavelength and large amplitude [50], and for cases wherewe observe
interaction ofmultiple waves [49]. In our case, withmostly very lowwave amplitude in the crystal and beyond,
the light and shade patterns are not significantly affected by these limitations and bear direct linkwith the surface
curvature, allowing to easily extract the significant quantities of the ripples using image processing.

A.2. Effective dispersion relation
Weconsider waves propagating in linear, irrotational, and inviscidwater. The velocity vector derives from a
velocity potential as = Fv . For the geometry depicted infigure 1we can apply themethod of separation of
variables towrite [42]

f kF = + w-( ) [ ( ) ( ( )) ] ( )x y z t x y z h, , , Re , cosh e , 7ı t

with thewater–air interface at z=0.With this device, the original three-dimensional problem is cast into a two-
dimensional partial differential equation (1)withNeumann boundary condition at the pillar-water interface.
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Without the pillar in the hexagonal unit cell, periodicity is artificial and planewave propagation is governed
by the dispersion relation (2)with surface tension γ=0.073Nm−1 accounting for thewater–air interface. The
dispersion relation is plotted infigure A1(b) and can be rewritten

rw r k gk k= +( ) ( ) ( )g h
1

2

1

2
tanh , 82 3

with ρ=1000 kg m−3 and g=9.81 m s−1. Under that form, the left-hand side accounting for the kinetic
energy density density is balanced by the right-hand side accounting for the potential energy density. The
potential energy has two contributions, fromgravity and from surface tension.

With the pillar in place, there is an additional surface contribution to the potential energy at the pillar-water
interface.We do not attempt tomodel that contribution precisely, but assume that it has a form similar to the

Figure A1.Dispersion relation forwater waves for a water level h=7.3 mm.

Figure A2.Computed dispersion relations obtained as the response to a stochastic excitation [45] for a water level h=7.3 mm for
α=30° in (a),α=0° in (b). In the lower row of panels, 5 different angles are used and only the Brillouin zone direction of interest,
i.e.ΓK is depicted.
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term for thewater–air interface, andwe remark that a positive surface tensionmust lead to an increase in the
total potential energy for one unit cell of the crystal. Since the kinetic energymustmatch that increase for any
solution of theHelmholtz equation, the phase velocityω/κmust increase accordingly. The increase in phase
velocity is determined experimentally by comparing the change inwavelengthwhen the crystal is not in place
andwhen it is. Considering the crystal without a band gap (α=0°) andmeasuring thewavelength at a
frequency of 20Hz,wemonitor the change inwavenumber infigure A1.We infer the effective value
γeff=0.17Nm−1 for our samples. Of course, that particular value depends on the crystal details, especially on
thefilling fraction, and should not be given amicroscopicmeaning. It is an effective parameter in the
metamaterial sense, inferred for the unit cell of the crystal considered as awhole. As a result, equations (2) and
(5) of themainmanuscript form a phenomenologicalmodel of thewater wave crystal, sufficient for qualitative
comparisonwith experiment. It remains that obtaining amore precise three-dimensionalmodel would be
necessary for a quantitative analysis.

A.3. Phononic crystal for waterwaves
The stochastic excitationmethod [45] is used to obtain the phononic band structure viafinite element
implementation of equation (5) in themainmanuscript. This equation is for a scalar unknownfield, the
elevation η(x, y), and has the formof a dispersiveHelmholtz equation. Themain difficulty is that the coefficients
of the equation depend on frequency. The stochastic excitationmethod circumvents the difficulty by fixing both
frequencyω andwavenumber k and by observing the response of the system to a spatially random force
distributed inside the unit-cell. The unit-cell is the elementary hexagon depicted infigure 1(b) of themain
manuscript; dimensions are given in the caption of the latter figure.

The phononic band structures plotted infigure A2 show that the phononic band gap is initially closedwhen
the angle of rotation of the triangular pillars is zero,α=0°.Whenα is increased or decreased, the phononic
band appears symmetrically and gradually opens until itsmaximumvalue obtained for a = ∣ ∣ 30 (see the lower
row of thefigure).

Figure A3.Wallpaper groups for crystals with different values of rotation angleα. 3-fold rotation centers are indicatedwith red
triangles; reflection axes are indicatedwith dotted lines.
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A.4. Vortex Blochwaves
Decisive information is obtained regarding the topological properties of the crystal by observing the Blochwaves
belonging to the two bands defining the phononic band gap. The space group symmetry of the crystal is
illustrated infigure A3 for different values of the angle of rotationα. Thewallpaper group changes from p m31
forα=0° to p3 for a < < ∣ ∣0 30 , and to p m3 1 for a = ∣ ∣ 30 . Following [37], we display infigure A4 the
Blochwaves K1 andK2 lying on thefirst and the second band at theK point of the first BZ forα=30°.

BlochwaveK1 follows the p3 symmetry. Itmainly features three vortices centered in the regionwhere
vertices of the triangles are closest. Note that the direction of rotation of the vortices is opposite when the sign of
α is reversed. They turn toward the left for positiveα and toward the right for negativeα. Blochwaves K1 for±α

are images in a glide reflection of axisOx and translation by half the lattice constant (they are also images in glide
reflections rotated by 2π/3 and 4π/3).

BlochwaveK2 also follows the p3 symmetry and features three vortices centered in the regionwhere sides of
the triangles are farther away. The direction of rotation of the vortices is opposite when the sign of angleα is
reversed, and is the opposite of the direction of rotation of K1 vortices. As in the case of K1 Blochwaves, Bloch
waves K2 for±α are images in a glide reflection of axisOx and translation by half the lattice constant (they are
also images in glide reflections rotated by 2π/3 and 4π/3).

A.5. Vortex edgewaves propagating along a domainwall
Bloch edgewaves are obtained by considering a supercell of type A–B (Aabove B) or B–A (B aboveA), as
explained in themain text. The interest ismainly for theirfield distribution for frequencies belonging to the
phononic band gap. In this case, since the band gap is complete, theymust be evanescent in the transverse
direction, i.e. their amplitude decays exponentially away from the domainwall (DW). This is confirmed by the
modal shapes shown infigure A5.

The vortex Blochwaves K1 andK2 offigure A4 sit at the edges of the phononic band gap and are thus not
evanescent. Because the eigenvalue problem is analytic in the complex plane as a function of thewavenumber k,
we infer that the evanescent Blochwaves inside the band gap can be continuously deformed from theK1 andK2

Blochwaves. Since the edgewaves are necessarily composed of such evanescent Blochwaves of the crystal,
matched at theDW, the formation of the edgewaves can be understood as a superposition of vortex Blochwaves.

Figure A4.Vortex Blochwaves at theK point of thefirst Brillouin zone. The color scale is for themodulus of water elevation
(normalized). The distribution of the Poynting vector is shownwith arrows. Vortex Blochwaves K1 andK2 are shown for pillars
rotated by eitherα=30° orα=−30°.
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From thefield distributions infigure A5, we infer that the edgemode of the A–BDW is composed of K1

evanescent Blochwaves and that the edgemode of the B–ADW is composed of K2 evanescent Blochwaves. The
Poynting vector arrows further confirm that the A–BDWmode propagates with opposite phase and group
velocities, while the B–ADWmode propagates with phase and group velocities of the same sign.

A.6.Overlap integral
The overlap integralmeasuring the couplingwith a normally incident planewave can be computed for all Bloch
waves of theDWsupercells, similarly to the phononic band structures shown infigures 3(d)–(e). The result is
shown infigure A6 for domainwalls A–B andB–A. It can be clearly observed that the B–ADWmode cannot be
exited by a planewave. This can be intuitively understood from the odd and even nature of the A–B andB–A
edgemodes, shown infigure A5.
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