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Abstract

The discovery of topological phases of matter, initially driven by theoretical advances in quantum
condensed matter physics, has been recently extended to classical wave systems, reaching out to a wealth
of novel potential applications in signal manipulation and energy concentration. Despite the fact that
wave propagation in many realistic media (metals at optical frequencies, polymers at ultrasonic
frequencies) is inherently dispersive, topological wave transport in photonic and phononic crystals has
so far been limited to ideal situations and proof-of-concept experiments involving dispersionless media.
Here, we report the first experimental demonstration of topological edge states in a classical water wave
system supporting highly dispersive wave propagation, in the intermediate regime of gravity-capillary
waves. We use a stochastic method to rigorously take into account the inherent dispersion and devise a
water wave crystal insulator supporting valley-selective transport at topological domain walls. Our
measurements, performed with a high-speed camera under stroboscopic illumination, unambiguously
demonstrate the possibility of valley-locked transport of water waves.

1. Introduction

Topological insulators are bulk insulators whose bands are characterized by a quantized number known as a
topological invariant [1, 2], which cannot change upon continuous transformations of the band structure. This
topological property of the bands implies the presence of edge states at topological interfaces, which is protected
by the topology of the surrounding bulk insulators [3—10]. Originally discovered in condensed matter systems,
including Quantum-Hall [11-19] and Quantum Spin-Hall insulators [20-23], the concept of topological
transport has recently been transposed to various fields of classical wave physics, including optics [24-26],
acoustics [8, 27-29], microwaves [ 12, 30], and mechanics [9, 31-34], where it represents a promising way to
transport signals and concentrate energy in a robust, symmetry-protected way. While classical analogs of Chern
insulators [28, 35], quantum spin-Hall systems [36], and valley-Hall insulators [8, 37—40] have been previously
studied and demonstrated, prior arts have focused mainly on idealistic situations in which the dispersion of the
host materials have been neglected or avoided. This drastic assumption, however, holds only for a small subset of
the available physical platforms in which exploiting topological physics could have large practical implications.
It does not hold, for instance, for water wave systems, which generally support highly dispersive surface waves
[41]. Yet, controlling the energy carried by ocean waves, and forcing it to concentrate at a location where it can be
harvested, would be a fascinating application of topological physics, providing topological edge modes are
compatible with the highly dispersive character of these systems.

In this article, we demonstrate experimentally the relevance of topological physics in a classical wave system
with strong dispersion, namely gravity-capillary waves at a water—air interface interacting with a water wave
crystal. We use a stochastic method to obtain the dispersion relation in the crystal, using Bloch’s theorem, and
we design topological edge states based on valley conservation. Our measurements, based on direct imaging
using a high-speed camera under stroboscopic illumination (see figure 1), demonstrate unambiguously the
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Figure 1. Experimental setup for observation of topological gravity-capillary waves in a water wave crystal. (a) The crystal sample
(green color) is placed in a water tank. A mechanical straight paddle is exciting vertical motion of the water surface at the same
frequency as the stroboscopic illumination. A mirror is placed at 45° below and reflects the image on a diffusive screen placed in front.
(b) The hexagonal crystal is made of triangular pillars witha = 8 mm, b = 6.4 mm, and a variable orientation angle c (here

a = 30°). (c) A typical 3D-printed crystal sample made of PLA (polylactic acid) is shown.

possibility of topological transport in systems with very strong dispersion, extending the reach of topological
physics to a wealth of new physical platforms.

2. Theoretical and experimental description

Gravity-capillary water waves are surface waves resulting from the balance of the potential energy of gravity
forces and surface tension with the kinetic energy of a water column. As a result of body (volume) and interface
(surface) contributions, their velocity is isotropic but inherently strongly dispersive and dependent on the water
depth. In order to describe the propagation of gravity-capillary waves in the regime of small water elevation (as
compared to the water depth), we consider the linear velocity potential theory for water waves [42—44]. In the
absence of external forces, the vertical displacement (elevation) of the liquid—air interface 7)(x, y) satisfies the
two-dimensional partial differential equation

V - (epeg V) + Kcpegn = 0, (1)
where ¢, is the phase velocity, ¢, is the group velocity, and & is the wavenumber. A similar equation is satisfied by

the horizontal part of the velocity potential [42]. We further recall that the dispersion relation between
wavenumber and angular frequency w for a horizontal liquid—air interface is given by

w? = gk(1 + d2k?tanh(kh), )
where gis the gravitational acceleration, / is the water depth, and d., is the capillary length. The phase velocity is then
cp= - \/ L+ d? k*)tanh(kh) 3)
K K
and the group velocity is
dw 1 d?r? kh
Cg=—=|—+ 8 + Cps 4

£ dk (2 1 + d?K? sinh(Znh)) P @

where the capillary length is given by d, = \/g—Tp , with «y the surface tension and p the mass density of the liquid.

Inside the artificial crystal sample, equation (1) can be used to obtain Bloch waves and therefore band
structures. Indeed, equation (1) can be recast as a Helmholtz equation for scalar waves in a dispersive medium
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Figure 2. Phononic properties of the water wave crystal of figure 1. (a) The dispersion relation is obtained as the response to a
stochastic excitation [45] for a water level h = 7.3 mmand @ = 30° (the dispersion relation for &« = 0° is the red line). The inset
represents the first Brillouin zone (BZ). (b) The measured transmission of a plane wave through a 5 unit cell thick crystal slab (dotted
line) is compared with the numerically computed transmission (solid line). (¢) Numerical simulation of the reflection of a plane wave
at 22 Hz (inside the phononic band gap) on the crystal. (d) Experimentally recorded surface elevation at the same frequency. The
boundaries of the crystal are indicated with dashed lines.

V- (Aw)Vn) + wBw)n =0, )

with coefficients A(w) = ¢, cgand B(w) = ¢,/ c,, depending explicitly on frequency. A Neumann boundary
condition is considered at the interfaces between pillars and water, i.e. 9 / On = 0, where n is the normal to the
interface [42—44]. Bloch waves have the form 7 (x, y) = n, (x, y)exp(ik - r), with k the Bloch wavevector and 7
the periodic part of the Bloch wave. Computing eigenvalues and eigenfunctions to obtain the Bloch waves of the
crystal is not straightforward since the coefficients of the equation depend on frequency. We use instead the
stochastic excitation method proposed by Laude and Korotyaeva [45]. The method considers all possible values
of frequency wand Bloch wavevector k and observes the response of the system to a spatially random force
distributed inside the unit-cell. The finite element implementation for equation (5) follows the prescriptions in
[45]. A further difficulty is that the model does not take into account certain interface effects between water and
the solid pillars, including the formation of a meniscus as a result of capillary forces. As the distance between
pillars is smaller than the wavelength [46], such effects can be approximated by using an effective dispersion
relation (see appendix). In practice, the effective value of the surface tension is adjusted according to
experimental observations. The derived value, v = 0.17 N m~ Y is larger than the usual value for the
unperturbed water—air interface, corresponding to an effective increase of the phase velocity inside the artificial
crystal. The phenomenological model for the artificial crystal is thus composed of equation (5) together with the
effective dispersion relation in equation (2) and Neumann boundary conditions at the pillars.

We compute phononic band structures w(k) along the boundary of the irreducible Brillouin zone (BZ)
(namelythepathI' — K — M — I') as depicted in figure 2(a) for the geometry of figure 1(b). Phononic band
structures are shown for an hexagonal crystal of triangular pillars with lattice constanta = 8 mm and
b/a = 0.8. The phononic band gap extends from 18 to 23 Hz for & = 30°, whereas the band gap closes for
« = 0°. The transmission through a finite crystal sample composed of 5 periods (o = 30°)is shown as a
function of frequency in figure 2(b) for direction I'K. A good agreement between theory and experiment is
observed. At a frequency of 22 Hz, inside the phononic band gap, incident waves are indeed reflected by the
crystalline insulator and form a standing wave pattern on the incident side, as illustrated in figure 2(c). Full wave
numerics are obtained by solving equation (5) using the finite element method in Comsol Multiphysics at a fixed
frequency. Figure 2(c) shows an example of the water wave field obtained using this method. PMLs (perfectly
matched layers) are used to absorb the outgoing waves.
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Figure 3. Valley-selective excitation of water wave edge modes for two interfaces at 3 = 0°. (a) Numerical simulation and

(b) experimental measure of transmission at 22 Hz. (c) Quantitative comparison of the transmission for A-B and B-A interfaces in the
experimental and numerical cases (over the full frequency range on the left and zoom on the bandgap region on the right), as well as
the case of the domain B. Dots are used for experimentally measured points. Dispersion relations obtained for supercells for the
interface B-A in (d) and A-B in (e).

The experimental setup shown in figure 1 is composed of a 24 x 30 cm” water wave ripple tank illuminated by
stroboscopic light synchronized with a straight paddle, operating at a frequency tunable between 10 and 75 Hz.
Shadows caused by light refraction at the sinusoidally modulated water surface are formed onto a screen after
reflection off a mirror and are recorded with a camera. A typical experimental wave pattern is shown in figure 1(a),
without any post-processing. The observed patterns are related to the local surface curvature (a bright fringe
indicating a positive curvature and a local elevation of the water level). Hence, after image processing, we obtain a
quantity proportional to the vertical elevation of the water surface. Crystal samples are fabricated with 3D additive
printing in PLA and a typical sample is shown in figure 1(b). Samples are composed of pillars that are higher than
the water level (15 mm, whereas the water level without the crystal equals 7 mm). The experimental transmission
for « = 30°is shown as a function of frequency in figure 2(b) and is in fair agreement with theory. The
experimental image in figure 2(d) confirms the strong phononic band gap reflection near 22 Hz.

The 2D hexagonal crystal of rotated opaque triangles supports valley vortex Bloch waves carrying a
quantized topological phase [37]. Actually, when o = 0°, the plane crystallographic group—or wallpaper group
—ofthecrystalis p31m, meaning that there are three 3-fold axes of rotation and three reflection planes, two of
which are images in a reflection. When a = 0°, the symmetry is reduced to that of wallpaper group p3, with
only three 3-fold axes of rotation remaining . The Bloch waves defining the phononic band gap follow the same
p3 symmetry and show three vortices placed either in between the vertices of the triangles (Bloch waves K;, with

3 . . . . .
For & = 30°, the wallpaper group is p3m1, and there are three 3-fold axes of rotation and three reflection planes intersecting at the
rotation centers.
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Figure 4. Water wave fields obtained for different geometries of interfaces at 22 Hz. (a) Numerical simulation and (b) experimental
transmission of a 30° interface. (c) Numerical simulation of a 60° interface and (d) Numerical simulation of a zigzag shaped interface.

valley topological phase +sgn(a)) or in between the sides of the triangles (Bloch waves K,, with valley
topological phase —sgn(«)) [37]; see figure A2 of the appendix for a representation of the K; and K, Bloch waves.
Note that the vortex centers actually coincide with rotation centers of the crystal.

The crystal B of triangles rotated by — || is the image in a glide reflection of axis Ox and translation a/2 of the
crystal A of triangles rotated by +|«|. This property can be exploited to construct a domain wall (DW) separating
the two non equivalent chiral crystals A and B. As depicted in figure 3(a), the DW A-B with A placed above B is
different from the DW B—A with B placed above A. Both DWs have the symmetry of the frieze group pl1g.Itwas
shown for classical non dispersive waves that the DWs support unidirectional edge waves [8]; here we show that
the property remains true for dispersive water waves. Both the numerical result in figure 3(a) and the
corresponding experiment in figure 3(b) show that a plane surface wave incident normally from the left is
funneled to the right side for the A—-B DW, but not for the B-A DW. The reason for this asymmetry is discussed
below. The transmission through the topological waveguides was estimated and is presented in figure 3(c); again
experiment and numerics agree fairly well. Videos of experimental and numerical water wave propagation along
the DW are provided in the supplemental material.

The edge modes are obtained numerically using the stochastic excitation method, considering a super-cell
encompassing 5 rows of each crystals A and B. The phononic band structures for DWs A—B and B—A are shown
in figures 3(d)—(e). In each case a edge mode appears inside the phononic band gap, traversing it to connect the
systems of bulk bands extending below and above. The A-B edge wave has a negative dispersion—its group
velocity is negative for positive wavenumbers,—whereas the B—A edge wave has a positive dispersion. The insets
in the figures show the modal distribution of both edge waves. It can actually be verified that the A—B edge wave
is composed of K; valley vortex waves that are evanescent in the transverse direction. Conversely, the B-A edge
wave is composed of K, evanescent valley vortex waves. As further discussed in the appendix, the sign of the
topological charge is in direct connection with the sign of the group velocity of the edge waves.

The possibility of coupling an externally incident plane wave with an edge wave of the domain wall can be
evaluated by comparing their modal fields. We evaluate the following overlap integral

S e ) dy
S I »Idy

(6)

computed on the interface 92 between the crystal and the incidence region. The resulting number, which varies
between 0 and 1, measures the matching of the edge mode with a plane wave with amplitude , = 1 alongthe
interface 0S2. We found numerically that s _p ~ 1for the A-BDW, and that Uy_, = 0.03 for the B~ADW.
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These numbers confirm the asymmetry of coupling of the normally incident plane wave to both edge modes.
Furthermore, the overlap integral computed for all Bloch modes (see appendix) confirms that transmission
occurs only along DW A-B for all frequencies.

A DW waveguide making an angle of 30° with respect to the direction of propagation was also fabricated and
tested (see figures 4(a)—(b)). Again, theory and experiment agree and show that at the output interface a point-
like source emission is obtained. Note that the 30°-rotated DW is not purely of the A-B or B-A type and actually
combines K, and K, vortex states to funnel surface waves. The 60°-rotated DW shown in figure 4(c) is of the B-A
type. Due to non normal incidence the K, vortex edge wave can be excited in this case. Finally, the Z shape DW of
figure 4(d) combines a series of 120° turns and is of the A—B type. However, the latter crystal has a very low
confinement and was thus only tested numerically.

3. Conclusion

To conclude, we performed an experimental demonstration of the existence of topological edge states guided a
domain wall of a water wave crystal, in the intermediate regime of gravity-capillary waves. The edge states are a
superposition of vortex waves carrying a quantized topological phase [37] and can be described by a classical
analogy to the valley Hall effect [7, 8, 47]. A good qualitative agreement between theory and experiments was
obtained, with the capillary effects at the interface between water and the crystal modeled via the use of an
effective parameter. Our observations extend the reach of topological wave physics to a wide range of physical
platforms containing highly dispersive media, not only water wave systems, but also elastic waves and
plasmonics.
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Appendix

We describe in more detail experimental methods, the effective dispersion relation, the phononic band
structures, the overlap integral, and the vortex Bloch waves of the water wave crystals considered in this work.

A.1. Experimental methods

The experimental apparatus we use to observe and image water waves is shown in figure 1. Light impinging from
afrequency modulated source is steered at the interface between water and air, travels through the thin water
tank and reaches the observation screen after reflection off a mirror. A common phenomenological
interpretation of the bright lines observed on the screen is to link them to the wave crests that act as cylindrical
collecting lenses, while shades are linked with wave troughs that behave as diverging lenses. However, the
situation is in general far more complex and the relationship between the pattern of light and shade on the screen
and the ripple elevation above the average water surface level is not straightforward [48]. In fact, it should be
described as the intersection of a three-dimensional caustics with the projection plane, taking into account
blurring due to source extension and chromatic dispersion [49]. Still, this statement is mostly true for waves with
strongly curved interfaces, that is for short wavelength and large amplitude [50], and for cases where we observe
interaction of multiple waves [49]. In our case, with mostly very low wave amplitude in the crystal and beyond,
thelight and shade patterns are not significantly affected by these limitations and bear direct link with the surface
curvature, allowing to easily extract the significant quantities of the ripples using image processing.

A.2. Effective dispersion relation

We consider waves propagating in linear, irrotational, and inviscid water. The velocity vector derives from a
velocity potential as v = V®. For the geometry depicted in figure 1 we can apply the method of separation of
variables to write [42]

D(x, y, z, t) = Re[d(x, y)cosh(k(z + h))e '], 7)

with the water—air interface at z = 0. With this device, the original three-dimensional problem is cast into a two-
dimensional partial differential equation (1) with Neumann boundary condition at the pillar-water interface.
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Figure Al. Dispersion relation for water waves for a waterlevel 1 = 7.3 mm.

r K M r r K M r
Wave Vector Wave Vector
Stochastic Response Stochastic Response
0 05 1 0 0.5 ] 1

KT KT KT KT
Wave Vector Wave Vector Wave Vector Wave Vector Wave Vector

Figure A2. Computed dispersion relations obtained as the response to a stochastic excitation [45] for a water level i = 7.3 mm for
a = 30°in(a), « = 0°in (b). In the lower row of panels, 5 different angles are used and only the Brillouin zone direction of interest,
i.e.I'Kis depicted.

Without the pillar in the hexagonal unit cell, periodicity is artificial and plane wave propagation is governed
by the dispersion relation (2) with surface tensiony = 0.073 N m ™' accounting for the water—air interface. The
dispersion relation is plotted in figure A1(b) and can be rewritten

%pwz = %(pg/i + ~vyx*)tanh(kh), 8)

with p = 1000 kgm >and g = 9.81 ms~'. Under that form, the left-hand side accounting for the kinetic
energy density density is balanced by the right-hand side accounting for the potential energy density. The
potential energy has two contributions, from gravity and from surface tension.

With the pillar in place, there is an additional surface contribution to the potential energy at the pillar-water
interface. We do not attempt to model that contribution precisely, but assume that it has a form similar to the

7
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Figure A3. Wallpaper groups for crystals with different values of rotation angle cv. 3-fold rotation centers are indicated with red
triangles; reflection axes are indicated with dotted lines.

term for the water—air interface, and we remark that a positive surface tension must lead to an increase in the
total potential energy for one unit cell of the crystal. Since the kinetic energy must match that increase for any
solution of the Helmholtz equation, the phase velocity w/x must increase accordingly. The increase in phase
velocity is determined experimentally by comparing the change in wavelength when the crystal is not in place
and when it is. Considering the crystal without a band gap (o« = 0°) and measuring the wavelength ata
frequency of 20 Hz, we monitor the change in wavenumber in figure A1. We infer the effective value

Vet = 0.17N m ™" for our samples. Of course, that particular value depends on the crystal details, especially on
the filling fraction, and should not be given a microscopic meaning. It is an effective parameter in the
metamaterial sense, inferred for the unit cell of the crystal considered as a whole. As a result, equations (2) and
(5) of the main manuscript form a phenomenological model of the water wave crystal, sufficient for qualitative
comparison with experiment. It remains that obtaining a more precise three-dimensional model would be
necessary for a quantitative analysis.

A.3.Phononic crystal for water waves

The stochastic excitation method [45] is used to obtain the phononic band structure via finite element
implementation of equation (5) in the main manuscript. This equation is for a scalar unknown field, the
elevation 7)(x, ¥), and has the form of a dispersive Helmholtz equation. The main difficulty is that the coefficients
of the equation depend on frequency. The stochastic excitation method circumvents the difficulty by fixing both
frequency wand wavenumber k and by observing the response of the system to a spatially random force
distributed inside the unit-cell. The unit-cell is the elementary hexagon depicted in figure 1(b) of the main
manuscript; dimensions are given in the caption of the latter figure.

The phononic band structures plotted in figure A2 show that the phononic band gap is initially closed when
the angle of rotation of the triangular pillars is zero, « = 0°. When «is increased or decreased, the phononic
band appears symmetrically and gradually opens until its maximum value obtained for || = 30° (see the lower
row of the figure).
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K, state
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0 Inl 1

Figure A4. Vortex Bloch waves at the K point of the first Brillouin zone. The color scale is for the modulus of water elevation
(normalized). The distribution of the Poynting vector is shown with arrows. Vortex Bloch waves K; and K, are shown for pillars
rotated by either &« = 30° orav = —30°.

A.4.Vortex Bloch waves

Decisive information is obtained regarding the topological properties of the crystal by observing the Bloch waves
belonging to the two bands defining the phononic band gap. The space group symmetry of the crystal is
illustrated in figure A3 for different values of the angle of rotation cv. The wallpaper group changes from p31m
forao = 0°to p3for 0° < |a| < 30° andto p3mlfor|a| = 30°. Following [37], we display in figure A4 the
Bloch waves K; and K, lying on the first and the second band at the K point of the first BZ for « = 30°.

Bloch wave K follows the p3 symmetry. It mainly features three vortices centered in the region where
vertices of the triangles are closest. Note that the direction of rotation of the vortices is opposite when the sign of
aisreversed. They turn toward the left for positive o and toward the right for negative cv. Bloch waves K for £«
are images in a glide reflection of axis Ox and translation by half the lattice constant (they are also images in glide
reflections rotated by 27/3 and 47/ 3).

Bloch wave K also follows the p3 symmetry and features three vortices centered in the region where sides of
the triangles are farther away. The direction of rotation of the vortices is opposite when the sign of angle «v is
reversed, and is the opposite of the direction of rotation of K vortices. As in the case of K; Bloch waves, Bloch
waves K, for £ are images in a glide reflection of axis Ox and translation by half the lattice constant (they are
also images in glide reflections rotated by 27/3 and 47/ 3).

A.5. Vortex edge waves propagating along a domain wall

Bloch edge waves are obtained by considering a supercell of type A—B (A above B) or B—A (B above A), as
explained in the main text. The interest is mainly for their field distribution for frequencies belonging to the
phononic band gap. In this case, since the band gap is complete, they must be evanescent in the transverse
direction, i.e. their amplitude decays exponentially away from the domain wall (DW). This is confirmed by the
modal shapes shown in figure A5.

The vortex Bloch waves K; and K, of figure A4 sit at the edges of the phononic band gap and are thus not
evanescent. Because the eigenvalue problem is analytic in the complex plane as a function of the wavenumber k,
we infer that the evanescent Bloch waves inside the band gap can be continuously deformed from the K; and K,
Bloch waves. Since the edge waves are necessarily composed of such evanescent Bloch waves of the crystal,
matched at the DW, the formation of the edge waves can be understood as a superposition of vortex Bloch waves.

9
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Figure A5. Domain wall vortex edge waves. The color scale is for the modulus of water elevation (normalized). The distribution of the
Poynting vector is shown with arrows. The A—B domain wall is shown on the left and the B—A domain wall is shown on the right.
Close-up views are provided in order to illustrate the distribution of the Poynting vector.

r wave vector r wave vector K
overlap integral overlap integral
0 05 1 0 05 1

Figure A6. Overlap integral for the B-A domain wall (left) and the A—B domain wall (right) versus wavenumber (horizontal axis) and
frequency (vertical axis).

From the field distributions in figure A5, we infer that the edge mode of the A—-B DW is composed of K;
evanescent Bloch waves and that the edge mode of the B-A DW is composed of K, evanescent Bloch waves. The
Poynting vector arrows further confirm that the A—-B DW mode propagates with opposite phase and group
velocities, while the B-A DW mode propagates with phase and group velocities of the same sign.

A.6. Overlap integral

The overlap integral measuring the coupling with a normally incident plane wave can be computed for all Bloch
waves of the DW supercells, similarly to the phononic band structures shown in figures 3(d)—(e). The result is
shown in figure A6 for domain walls A—B and B—A. It can be clearly observed that the B-A DW mode cannot be
exited by a plane wave. This can be intuitively understood from the odd and even nature of the A-B and B-A
edge modes, shown in figure A5.
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