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Abstract

We investigate the growth of a hydraulic fracture assuming a power-law dependence of ma-

terial toughness with fracture length for plane strain and radial geometries. Such a toughness

fracture length dependence models in a simple manner a toughening mechanism for rocks. We de-

velop an efficient numerical method for the hydraulic fracture growth problem combining Gauss-

Chebyshev quadrature and Barycentric Lagrange interpolation techniques. Scaling and numerical

results demonstrate that the transition from the viscosity to the toughness dominated regime occurs

earlier. The toughness dominated regime always governs growth at large time for both geometries.

In all cases, larger net pressure and shorter length are obtained. The solution is very well approxi-

mated by the existing constant toughness solutions using the instantaneous value of toughness. If

the apparent fracture toughness saturates beyond a given length scale, the solution transitions back

to the constant toughness solutions.

Keywords: Hydraulic fracture, Fluid-solid coupling, Apparent toughness, Gauss-Chebyshev

methods

1. Introduction1

The propagation of a hydraulic fracture (HF) in an impermeable elastic solid is relatively well2

understood, with theoretical predictions matching laboratory scale experiments in model material3

(e.g. PMMA, glass, cement) at least for simple planar fracture geometries [1, 2, 3]. In particular,4
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the ratio between the energy dissipated in the creation of fracture surfaces (fracture energy) versus5

the energy dissipated in fluid flow [4, 5] governs HF growth, leading to either toughness dominated6

or viscosity dominated propagation.7

Despite the relatively good agreement of hydraulic fracture mechanics predictions with labo-8

ratory experiments performed in brittle/fine-grained materials, deviations from theoretical predic-9

tions have been reported in field observations and micro-HF treatments in vertical wells [6, 7, 8, 9].10

Apart from a possible increase of fracture energy1 in the field compared to the laboratory scale,11

such deviations, in particular a larger propagation net pressure (the difference between the fluid12

pressure and the confining stress) might also be explained by other factors such as the additional13

frictional losses associated with near well-bore fracture tortuosity [10, 11]. In any case, these field14

observations indicate a higher energy demand for larger scale fractures, and hint to further study15

of the HF growth in quasi-brittle materials.16

A process zone develops around the fracture tip in quasi-brittle materials, where non-elastic17

processes such as micro-cracking and plastic deformations are present. The size of the process18

zone acts as a good indicator of the apparent fracture energy. Rubin [12] has investigated theoreti-19

cally a propagating HF under high confining stress adopting a cohesive zone model. He argues that20

the tip cavity (fluid lag) generated by viscous fluid flow grows with the fracture and results in an21

increase of the process zone size and energy consumption via the perturbation of the near-tip stress22

field. Numerical studies [13, 14, 15, 16, 17] accounting for plastic dissipation of a propagating23

hydraulic fracture have shown a higher net pressure and wider inlet opening, implying an increase24

of the apparent fracture toughness2 up to more than one order of magnitude [13, 15]. Hashida et25

al. [18] have reported hydraulic fracturing experiments on Iidate granite spanning fracture radius26

between a few millimeters up to 20 centimeters (on specimen size up to metric scale). These tests27

clearly show an increase of the toughness with fracture radius following approximately a power28

law (see Fig. 1-right). In plaster blocks, Van Dam et al. [19] have reported a development of the29

fracture tip bluntness, indicating an increase of the process zone size.30

1We define the fracture energy GR as the energy spent in the creation of unit (nominal) fracture surface.
2The fracture toughness KIc is calculated from Irwin’s equation using the fracture energy KIc =

√
GRE′, where E′

is the plane-strain elastic modulus defined.
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Fig. 1: Sketch of a hydraulic fracture with fracture length dependent apparent toughness (left) and the evolution of

apparent toughness with fracture radius in hydraulic fracturing tests in Iidate granite from [18] (right). The evolution

of the apparent toughness can be fitted by a power-law KIc ∝ `
1/5 for ` < 100 mm. The deviation for ` > 150 mm

might be possibly due to multiple reasons, such as the full development of the non-linear zone around the fracture tip

and the restriction of the limited specimen size on the continuous growth of the apparent toughness.

Another line of observations comes from the analysis of magmatic dikes. Dikes are natural31

hydraulic fractures driven by magma, spanning a range of scale up to tens of kilometers. A recent32

review on dike propagation [20] reports that apparent fracture toughness values in the range 100-33

4000 MPa.m1/2 are often needed to reconcile field observations [21, 22, 23, 24, 25]. These ranges34

of toughness are larger by 2-3 orders of magnitude than values O(1) MPa.m1/2 measured in the35

laboratory rock fracture [26, 27]. Moreover, field observations indicate that the process zone of36

dikes can be much larger than those produced at the tips of tensile fractures at the laboratory scale37

and exhibit a direct proportionality with fracture dimension [20, 28, 29, 30]. Such observations38

imply further a scale-dependent or fracture length dependent characteristic of the apparent fracture39

energy. Scholtz [31] analyses the emplacement of dikes [32] and finds that a linear displacement-40

length scaling provides a better fit to the data rather than a square-root scaling [22, 21, 33, 32],41

from which he infers that the fracture toughness scales with the square-root of fracture length42

instead of being a constant rock property. The proposed linear scaling of mode I natural fractures43

happens to be consistent with the well known linear relation between fault length and accumulated44

slip (and damage zone) for shear type fractures (mode II/III) in the earth crust [34].45

There is not yet a clear consensus among researchers regarding the evolution of fracture tough-46
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ness at large scales in quasi-brittle rocks in the upper earth crust [31, 35]. The complexity of47

various physical mechanisms contributes to multiple possible explanations [20, 35]: in-situ stress48

[12, 36, 37], rock tensile strength [12], rock mass scale [29], temperature [33, 37] and the enhanced49

viscous losses due to roughness [38] are all reported more or less responsible for higher apparent50

toughness in hydraulic fractures at a larger scale. The goal of this paper is to quantify the impact51

of an increase of fracture energy with fracture length on HF propagation without presuming the52

exact toughening mechanism. We restrict ourselves to the case of an impermeable material and53

the injection at a constant rate Qo of a Newtonian fluid of viscosity µ.54

2. A power-law-like fracture length dependent toughness with a possible saturation55

2.1. R-curve behaviour and its size effect56

Numerous toughness measurements of quasi-brittle materials in the lab present a power-law57

like evolution of the fracture growth resistance as the fracture advances. Such increase then ap-58

proaches a critical value – an evolution referred to as the "R-curve" [39]. This critical fracture59

growth resistance is commonly considered as a material property, which is presumed measurable60

when the specimen is large compared to the intrinsic material length scale (e.g. process zone size,61

which may possibly be much larger than typical laboratory samples). A size effect of the R-curve,62

though rarely mentioned in literature, has been reported in some experiments with specimen di-63

mensions much larger than the ones typically used in the laboratory. Dempsey et al. [40] report a64

series of toughness measurements on sea ice plates, spanning from the common laboratory cm-m65

scale up to 80 m × 80 m, with the same plate width of 1.8 m for all specimens. The authors report66

an increase of the apparent fracture toughness with specimen dimensions up to 3 m × 3 m × 1.867

m with a value nearly twice the one measured on smaller specimens (0.5 m × 0.5 m × 1.8 m).68

Morel et al. findings [41] on wood also report a size effect of the R-curve behaviour. They show69

that the critical fracture resistance scales with the width of the cracked-through plate specimen70

and follows a power-law-like evolution with specimen width. Different from the observations on71

sea ice [40], no plateau value is reported in the evolution of the critical fracture resistance with72

specimen width, with a maximum thickness of 60 mm for all the geometrically self-similar spec-73

imens in their experiments. These findings, combined with observations from lab HF tests [18]74
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and dikes [31], imply a possible power-law evolution of the apparent fracture toughness and an75

existence of a finite toughness value beyond a certain length scale.76

2.2. A power-law dependence of apparent fracture toughness77

In this paper, we investigate the case where the apparent fracture energy follows a power-law-78

like fracture length dependence. We assume that the underlying increase of the process zone that79

results in the macroscopic increase of the apparent fracture toughness remains small compared to80

the fracture length. This hypothesis of small scale yielding [42] allows to approximate the fracture81

growth within the principles of linear elastic fracture mechanics (i.e. a single fracture characterised82

by the apparent fracture toughness). In terms of material toughness, we write83

KIc = A`α, A =
K∗
`α∗

(1)

where K∗ is the apparent fracture toughness measured at a given fracture length scale of `∗ and α84

the power-law scaling exponent. Such a power-law dependence does not introduce any new length85

scale as the pair of `∗ and K∗ is selected so as to characterise the fracture length dependence of86

the toughness. Noticeably, such fracture length dependence of the apparent toughness is different87

from the one observed in a R-curve. In the R-curve, the evolution of the fracture growth resistance88

does not depend on the initial fracture length `o but is a function of the fracture extension length89

∆` = ` − `o (the difference of the fracture length ` with respect to its initial value `o).90

Different toughening mechanisms are embedded into such a power-law dependence model.91

The scaling exponent α is most likely function of material properties and in-situ conditions. Ac-92

cording to [13, 43], the increase of the apparent toughness during the growth of a planar and93

smooth HF in weak formations is related to the size of plastic zone and depends on the level of94

in-situ stress, the rock strength and elastic modulus as well as the pumping parameters. It is there-95

fore very likely that the power-law scaling exponent is function of these parameters as there are96

practical implications that the apparent fracture toughness will be higher when the fracture front97

propagates in the vertical than the horizontal directions [16, 43, 44, 45]. Such argument is consis-98

tent with the findings of [37] who report a dependence of the rock toughness on confining stresses.99

Morel et al. [41] also argue that the scaling exponent is material-dependent and is closely related to100

5



self-affine fracture surfaces and their anomalous roughening characteristic. The through-the-plate101

fracture in their experiments initiates at a small length scale such that the initial fracture length in102

the propagation direction is much smaller than the length (perimeter) `‖ of the fracture front (given103

by the plate thickness). In this case, the magnitude of the roughness increases as a function of104

the fracture length ` (case a). This results in an increasing discrepancy between the real fracture105

surface area at the micro scale and the nominal fracture surface at the macro scale. As a result,106

the fracture energy increases with the fracture length and presents a relation similar to Eq. (1),107

where α is function of self-affine scaling exponents of fracture surfaces. When the fracture length108

becomes comparable to the specimen width `‖ in [41], the magnitude of the roughness saturates109

at a value dependent on `‖ (case b). The toughness scaling changes to KIc ∝ `‖
αc , where αc,110

also material-dependent and function of the self-affine scaling exponents, characterises the frac-111

ture roughness growth within the length of the fracture front `‖. These observations (a and b)112

suggest different power-law scaling exponents for different fracture geometries. For a plane-strain113

hydraulic fracture in an infinite medium, the fracture front is infinite (`‖ = ∞), which suggests the114

apparent toughness scaling with the fracture length KIc ∝ `
α as in case (a). For a radial fracture,115

the fracture length (radius) is comparable to the front length (`‖ = 2π`), suggesting the apparent116

toughness scaling with fracture radius, KIc ∝ `‖
αc , as in case (b). We compile different power-law117

scaling exponents of different materials from the literature in Table 1. The exponents for granite118

and mortar are obtained based on the argument of [41] and roughness self-affine scaling exponents119

in [46, 47]. Moreover, a power-law scaling exponent of α ≈ 1/2 is suggested [32] based on the120

field observations of emplacement scaling on dikes and a value of α ≈ 0.1 for Nevada Tuff is also121

reported [35] from laboratory measurements [48].122

2.3. Possible appearance of a finite apparent toughness beyond a length scale123

The exact evolution of apparent fracture toughness with fracture length remains an open ques-124

tion. As reported in the previously mentioned experiments [18, 40], the toughening effect is likely125

curtailed beyond a certain length scale `s (fracture length beyond which the apparent toughness126

reaches an asymptotic value). Such an upper limit of the increase of apparent toughness may result127

from different mechanisms. Papanastasiou [13, 15] examines the apparent fracture toughness of a128
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Table 1: Power-law scaling exponents for the evolution of apparent fracture toughness for different materials and

geometries. The power-law exponents for plane-strain and axisymmetric fractures are estimated by using Eq. (4.6)

and Eq. (4.7) in [41] respectively and using the roughness self-affine scaling exponents in [41] for pine and spruce,

[46] for granite and [47] for mortar.

Material Plane-strain (α) Axisymmetric (αc)

Pine 0.062-0.183 0.365

Spruce 0.055-0.131 0.235

Granite 0.171 0.205

Mortar 0.039 0.275

smooth plane-strain HF in an infinite domain using a coupled elasto-plastic finite element model129

with cohesive interface elements for propagation criterion. The author shows that the apparent130

toughness increases initially with fracture length following approximately a power law, and then131

reaches an asymptotic value. The author owes the observed plateau of the apparent toughness to132

the full development of plastic(or process) zones that shield the tip. However, the appearance of133

the finite toughness is also possibly due to the restraints of the specimen(or crust) dimensions. If134

we account for the fracture roughness and extend the findings in [41] to large scale fractures, a135

potentially unabated fracture toughening with fracture growth is expected for an unbounded do-136

main. However, when the fracture grows close to the specimen (or earth crust) dimensions in the137

lab (or at depth), a finite apparent toughness may also appear due to such dimension limit on the138

continuous growth of apparent toughness. It may be likely that the saturation length scale `s can139

be potentially large given that the large toughness values reported in dikes [21, 22, 23, 24, 25]140

correspond to a fracture length of the order of kilometers.141

In the following, we investigate the growth of a fluid-driven fracture assuming a power-law142

dependence of toughness with fracture length as described by Eq. (1) and also account for a pos-143

sible saturation of the fracture toughness above a given scale. We focus on both plane-strain and144

axisymmetric (radial) fracture geometries. We first perform a dimensional analysis to describe145

the solution structure as well as the governing dimensionless parameters. We then solve the com-146

plete evolution problem numerically. We notably develop a scheme combining a Gauss-Chebyshev147
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quadrature with Barycentric Lagrange interpolation and differentiation techniques [49]. In Section148

3, 4, 6, 7.1 and 7.2, we assume that the saturation length scale `s is very large (`s → ∞) so that149

the toughness follows a power-law-like evolution without reaching the asymptotic value (` < `s).150

We then discuss the effect of the plateau of apparent fracture toughness beyond a saturation length151

scale `s in Section 7.3.152

3. Mathematical model153

We introduce a parameter d in order to represent the governing equations for a plane-strain154

(d = 1) and an axisymmetric hydraulic fracture (d = 2) simultaneously. In view of the problem155

symmetry, we write the governing equations for the fracture half-length `(t) in plane-strain, and156

also denote the fracture radius as `(t) for the axisymmetric / radial geometry. Following [50, 51],157

we use the following set of effective material parameters for clarity:158

K′∗ =

√
32
π

K∗, E′ =
E

1 − ν2 , µ′ = 12µ (2)

where E is the solid elastic modulus, ν Poisson’s ratio, µ the fluid viscosity, and K∗ the reference159

apparent fracture toughness measured at ` = `∗.160

3.1. Elasticity161

For a strictly Mode I fracture, the elasticity equations reduce to a single boundary integral162

equation relating the fracture opening w and the net pressure p defined as p = p f − σo where σo163

is the in-situ compressive stress normal to the fracture plane (the minimum stress) [52]:164

1
4π

1
`

∫ 1

−1
Gd(ξ, ξ′)

∂w
∂ξ′

dξ′ =
1
E′

p, ξ ∈ [−1,1] (3)

where ξ = x/` is the dimensionless spatial coordinate in the fracture. Gd is the elastic kernel,165

representing the stress component normal to the fracture plane induced by a unit dislocation. It is166

function of the fracture geometry:167

• In plane-strain (d = 1)168

G1(ξ, ξ′) =
1

ξ − ξ′
(4)
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• and in axisymmetry (d = 2)169

G2(ξ,ξ′) =


sign(ξξ′)

[
1

ξ − ξ′
E(k) −

1
ξ

K(k)
]
, |ξ′| < |ξ|

1
ξ − ξ′

E(1/k), |ξ′| > |ξ|

(5)

where k = ξ′/ξ and E(k) and K(k) denote the complete elliptic integrals. The axisymmetric kernel170

is obtained from the solution for a ring dislocation at ξ′ ∈ [0,1] [53, 54], and the symmetric171

continuation onto ξ′ ∈ [−1,0].172

3.2. Lubrication flow173

The elastic compliance of an open fracture is much larger than the fluid compressibility [55].174

As a result, under the assumption of an impermeable medium (zero leak-off) and zero fluid lag,175

the width-averaged fluid mass conservation reduces to volume conservation:176

∂w
∂t

+
1

xd−1

∂

∂x

(
xd−1q

)
= 0 (6)

Similarly, for laminar flow conditions, the width averaged fluid balance of momentum reduces to177

Poiseuille law relating the local fluid flux q to the local pressure gradient [56]:178

q = −
w3

µ′
∂p
∂x

(7)

where we have implicitly assumed that the in-situ compressive stress σo is uniform.179

3.3. Boundary conditions180

The fluid is injected at the fracture center x = 0 either as a line (d = 1) or a point (d = 2)181

source. We assume a constant injection rate Qo in the following. A zero fluid flux and zero182

fracture opening conditions apply at the fracture tip x = ` [57]:183

2 lim
x/`→0

(πx)d−1q = Qo, q(`) = 0, w(`) = 0 (8)

3.4. Global continuity equation184

The integration of the lubrication equation (6) combined with the previous boundary conditions185

(8) yield a global fluid continuity equation:186

2
∫ `

0
(πx)d−1wdx = Qot (9)
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3.5. Propagation criterion187

Under the assumption of small scale yielding, the process zone size is much smaller than the188

fracture length and linear elastic fracture mechanics is valid to describe the fracture propagation.189

The propagation criterion of a quasi-static hydraulic fracture translates into the classical square-190

root asymptote near the fracture tip [42], with the mode I stress intensity factor KI equal to the191

fracture toughness KIc at all time: KI = KIc. In view of the fracture length dependent evolu-192

tion of the toughness described by the power law in Eq. (1), the linear elastic fracture mechanics193

asymptote for fracture width near the tip becomes:194

w ∼
K′∗
E′

(
`

`∗

)α
(` − x)1/2, ` − x � ` (10)

4. Scalings and Structure of the solution for a fracture-length-dependent toughness195

4.1. Viscosity and toughness scaling196

The propagation of plane-strain and radial hydraulic fractures are well understood for the case197

of fracture length independent fracture toughness. Solutions [58, 59, 50] have been obtained in198

limiting propagation regimes where either the dissipation associated with fluid viscous flow (vis-199

cosity dominated - M−regime) or with the creation of new fracture surfaces (toughness dominated200

- K−regime). For the case of a plane-strain hydraulic fracture in an impermeable medium, the201

propagation is actually always self-similar and is defined by a single dimensionless parameter202

characterising the relative importance of toughness versus viscous forces: e.g. a dimensionless203

toughness K . The radial fracture geometry yields a different solution structure. Indeed, as the204

perimeter of the fracture increases with time, the energy associated with the creation of new sur-205

faces increases and eventually dominates over viscous forces at large time. As a result, for a radial206

fracture, the dimensionless toughness K increases with time: the propagation transitions from the207

M−regime to the K−regime. In what follows, using similar procedures, we investigate the scaling208

of the solution for both geometries in the case of a fracture length dependent fracture toughness209

and discuss the corresponding modifications of the structure of the propagation of a hydraulic210

fracture in an impermeable medium.211
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We introduce a dimensionless fracture opening Ω, net pressure Π, and fracture half-length or212

fracture radius γ as follows:213

`(t) = L(t)γ(ξ,G), w(x, t) = ε(t)L(t)Ω(ξ,G), p(x,t) − σo = ε(t)E′Π(ξ,G) (11)

In these definitions, ε(t) is a small dimensionless number capturing the fact that the fracture char-214

acteristic scale W(t) is much smaller than the characteristic length L(t). Similarly the characteristic215

net pressure P(t) = ε(t)E′ is much smaller than the rock elastic modulus. G(t) denotes additional216

dimensionless parameters of which the solution depends on. All yet to be defined and possibly217

dependent on time to reflect the moving boundary nature of the hydraulic fracture problem.218

With such a scaling, we thus obtain the following dimensionless form of the governing equa-219

tions.220

• Elasticity221

1
4π

1
γ

∫ 1

−1
Gd(ξ,ξ′)

∂Ω

∂ξ′
dξ′ = Π(ξ) (12)

• Lubrication flow (Reynold’s equation obtained combining fluid continuity and Poiseuille222

law) written in the moving coordinates system (ξ = x/`(t)):223 (
ε̇t
ε

+
L̇t
L

)
Ω −

L̇t
L
ξ
∂Ω

∂ξ
+ Ġt

(
∂Ω

∂G
−
ξ

γ

dγ
dG

∂Ω

∂ξ

)
=

1
Gm

1
γ2ξd−1

∂

∂ξ

(
ξd−1Ω3∂Π

∂ξ

)
(13)

• Global continuity equation224

2πd−1γd
∫ 1

0
ξd−1Ωdξ = Gv (14)

• Propagation condition (in terms of the fracture width near-tip asymptote) for the case of a225

power-law dependence of the fracture toughness on the fracture length (Eq. (1)):226

Ω ∼ Gkγ
α+1/2(1 − ξ)1/2, 1 − ξ � 1 (15)

In these dimensionless equations, Gm, Gv and Gk are three independent dimensionless groups227

emerging from lubrication flow, global continuity and propagation criterion respectively, whose228

expressions are given by:229

Gm =
µ′

ε3E′t
, Gv =

Qot
εLd+1 , Gk =

K′∗
εE′L1/2

(
L
`∗

)α
(16)
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Table 2: Viscosity and toughness scaling for plane-strain (d = 1) and radial (d = 2) hydraulic fractures in the case of

a power-law dependence of fracture toughness with fracture length.

Scaling Viscosity Toughness

ε(t) εm =

(
µ′

E′t

)1/3

εk =

(
K′∗

d+1

E′d+1Q1/2−α
o `∗

α(d+1)t1/2−α

)1/(α+d+1/2)

L(t) Lm =

(
E′Q3

ot4

µ′

)1/(3(d+1))

Lk =

(
QoE′`∗αt

K′∗

)1/(α+d+1/2)

W(t) Wm =

(
µ′dQ3

ot3−d

E′d

)1/(3(d+1))

Wk =

K′∗
dQα+1/2

o tα+1/2

E′d`∗αd

1/(α+d+1/2)

P(t) Pm =

(
E′2µ′

t

)1/3

Pk =

(
K′∗

d+1

E′1/2−αQ1/2−α
o `∗

α(d+1)t1/2−α

)1/(α+d+1/2)

G(t)
Gm = 1 Gm =M = (t/tmk)−(d−1+4α)/(α+d+1/2)

Gk = K = (t/tmk)(d−1+4α)/(3(d+1))
Gk = 1

In order to define a particular scaling, we set two of these dimensionless groups to unity and230

solve for the corresponding ε(t) and L(t). For an impermeable medium, the fracture volume always231

equals the injected volume, i.e. Gv = 1. Two scalings are therefore obtained by assuming that232

either viscous forces (Gm = 1) or toughness (Gk = 1) dominate. It results in a viscosity and a233

toughness scaling respectively. Table 2 lists the different characteristic scales and dimensionless234

parameters in these two scalings as functions of the material parameters, injection rate, time and235

fracture geometry.236

In the viscosity scaling, G = Gk is the only remaining dimensionless parameter appearing in237

the set of governing equations which we rename as dimensionless toughness K . It characterises238

the relative importance of the solid apparent toughness compared to viscosity on the propagation239

of a hydraulic fracture. In the toughness scaling, we define similarly the dimensionless viscosity240

M from G = Gm. The scalings are of course related to one another - via the following relations:241

K =

(
t

tmk

)(d−1+4α)/(3(1+d))

, M = K−3(1+d)/(α+d+1/2),
εm

εk
= K−(d+1)/(α+d+1/2),

Lm

Lk
= K1/(α+d+1/2)

(17)

In the previous relation, we have introduced a timescale tmk, which corresponds to the time when242

the characteristic fracture scales in the two scalings are equal, i.e. Lm = Lk at t = tmk. Such a243
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timescale quantifies the time of transition from the M−regime to the K−regime. We can define the244

corresponding transitional characteristic scales Lmk = L(tmk), Wmk = W(tmk), and Pmk = P(tmk) :245

tmk =

(
µ′d+α+1/2Q3/2−3α

o E′2d−α+5/2`3α(d+1)
∗

K′∗
3(1+d)

)1/(4α+d−1)

, Lmk =

(
µ′QoE′3`4α

∗

K′∗
4

)1/(4α+d−1)

,

Wmk =

(
µ′α+1/2Qα+1/2

o E′5/2−d−α`α(3−d)
∗

K′∗
(3−d)

)1/(4α+d−1)

, Pmk =

(
K′∗

d+1

µ′1/2−αQ1/2−α
o E′3/2−3α`α(d+1)

∗

)1/(4α+d−1)

(18)

It is worthwhile to note that the viscosity scaling does not depend on fracture toughness. The246

expressions obtained are similar to the ones derived in [58, 50]. Only the toughness dominated247

scaling is modified compared to the case of the fracture length independent toughness. By setting248

α = 0, we obviously recover the well-known scalings for the case of the fracture length indepen-249

dent fracture toughness [58, 59, 50]. For example, in a plane-strain fracture (d = 1), when the250

fracture toughness is fracture length independent α = 0 , the dimensionless toughness K becomes251

time-independent252

d = 1 : K(α = 0) =
K′∗
E′

(
E′

µ′Qo

)1/4

(19)

coincident with the expression obtained in [58, 59].253

4.2. Zero-viscosity / toughness dominated solutions254

The fracture propagation problem reduces to a self-similar problem at small (K � 1) and large255

time (K � 1). The early-time viscosity dominated solutions already available in the literature are256

of course also valid for the case of fracture length dependent toughness ( fracture toughness does257

not play a role in the viscosity dominated regime). We derive here large-toughness solutions in a258

similar manner as in the case of fracture length independent toughness [60, 50, 58]. These zero259

viscosity solutions are expressed in the toughness scalings, and the corresponding dimensionless260

opening, length and net pressure are referred with a subscript ko in reference to the zero-viscosity261

solutions. As the viscosity is negligible, the net pressure is uniform in the fracture. The governing262

equations reduce to the elastic solution for a uniformly pressurized fracture, global volume balance263
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and fracture propagation condition, i.e.:264

Ωko = 4
(
2
π

)d−1

γkoΠko

√
1 − ξ2 (20)

2γd
ko

∫ 1

0
(πξ)d−1Ωkodξ = 1 (21)

Ωko ∼ γ
α+1/2
ko (1 − ξ)1/2, 1 − ξ � 1 (22)

where Ωko, γko and Πko are the dimensionless fracture opening, fracture half-length (d = 1) or265

fracture radius (d = 2), and net pressure. The solutions for a plane-strain fracture are thus266

γko =

2
√

2
π

1/(α+3/2)

, Πko =
1

2π

(
π

2
√

2

)2/(α+3/2)

, Ωko =
2
π

(
π

2
√

2

)1/(α+3/2) √
1 − ξ2 (23)

and for an axisymmetric fracture:267

γko =

(
3

π
√

2

)1/(α+5/2)

, Πko =
3

16

π√2
3

3/(α+5/2)

, Ωko =
3

2π

π√2
3

2/(α+5/2) √
1 − ξ2 (24)

We recover the zero-viscosity solutions for fracture length independent fracture toughness [59,268

50] when setting α = 0 in (23) and (24).269

4.3. Effect of fracture length dependent toughness270

One important difference brought by the fracture length dependent toughness (α > 0) is that271

the dimensionless toughness increases with time in both geometries. This notably changes the272

partition between the viscous and the fracture energy dissipation during the growth of a hydraulic273

fracture even for a plane-strain fracture. In both geometries, as the fracture toughness increases274

with length, the energy spent in the creation of new fracture surface necessarily increases with time275

and ultimately dominates. This constitutes a qualitative change in the evolution of plane-strain HF276

from the case with fracture length independent toughness, when the dissipation partition is time-277

invariant. A plane-strain hydraulic fracture will eventually transition to the toughness dominated278

regime for the case of unabated increase of the apparent fracture toughness, even if it is initially279

dominated by viscosity.280

For a radial fracture, the transition from the viscosity to the toughness dominated regime is281

accelerated due to the increase of the fracture toughness with fracture length. Larger α implies a282
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faster increase of the energy dissipated in the solid and leads to a smaller value of the transition283

timescale tmk. The increase of the fracture energy results in a higher net pressure required to drive284

the fracture propagation. Smaller fracture length and wider fracture opening are obtained for the285

same volume of the injected fluid.286

It is interesting to note that when α = 1/2, K ∝ (t/tmk)1/3, for both geometries (Table 2).287

Notably for that particular value of α, the characteristic pressure scale Pk(t) becomes independent288

of time, i.e. the propagation is driven by a constant pressure at large time: this pressure exactly289

balance the toughness increase with length. For values of the power-law scaling exponent α larger290

than 1/2, we observe that the characteristic toughness dominated pressure Pk(t) increases with time291

for both geometries. This is a significant difference compared to the fracture length independent292

toughness case. In other words, for α > 1/2, the increase of the stress intensity with fracture293

length (in ∝ Pk`
1/2) is not sufficient to compensate the increase of the toughness with length (in294

∝ `α from Eq. (1)). Classically in hydraulic fracturing, a net pressure increase with time is related295

to the propagation of a height contained / blade-like fracture (also referred to as the PKN geometry)296

under the assumption of a fracture length independent toughness [61]. Existing field observations297

of net pressure increases are usually relatable to contained-height hydraulic fracture growth (PKN298

fracture) as monitored by micro-seismicity [62]. It is thus interesting to contrast such a behaviour299

for very different fracture geometry (radial or plane-strain) for a power-law dependent toughness300

with α > 1/2. We therefore see that in the field in order to decipher between these two possible301

causes, independent measurements of fracture geometry and pressure are required.302

5. Numerical algorithm303

We now describe a numerical method for the solution of the complete evolution problem from304

a given initial state - e.g. the viscosity dominated solution which is valid for time smaller than305

tmk(α). Our method is based on a non-uniform moving mesh discretized using a Gauss-Chebyshev306

quadrature and a collocation method [63, 49].307

Extrapolation, integration, and differentiation operations are simplified as matrix multiplica-308

tions using Barycentric techniques [64, 49]. We turn the fully coupled hydraulic fracture propa-309

gation problem into a system of ordinary differential equations in time that can be integrated with310
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classical methods for ordinary differential equations.311

We first present the Gauss-Chebyshev quadratures associated with the discretization of the312

elastic equation. We then select the corresponding Barycentric operators listed in [49] and show313

how they can be applied to the discretization of a radial and plane-strain fracture. The correspond-314

ing vector and matrix are denoted respectively by bold type and blackboard bold type.315

5.1. Gauss-Chebyshev quadrature316

Gauss-Chebyshev quadrature methods for the solution of boundary integral equation arising317

in fracture mechanics is a classical technique [63]. The method makes use of a primary s =318

{s j}, j = 1,..., n, and a complimentary z = {zi}, i = 1,...,m, sets of nodes, discretizing the fracture319

interval (−1,1), which corresponds to the roots of the respective Chebyshev polynomials denoted320

as φn(s) and ψm(z) respectively [63]. The choice of φn(s), ψm(z) and corresponding sets of nodes321

s and z stems from the type of the dislocation density singularity at the fracture tips. Specifically,322

the square-root singularity of linear elastic fracture mechanics can be directly embedded in the323

discretization. The dislocation density is expressed as:324

dw
ds

= ω(s)F(s), ω(s) =
1

√
1 − s2

(25)

whereω(s) is a weight function with the required tip singularity and F(s) an unknown non-singular325

function.326

For the type of singularity embedded in Eq. (25), the primary and complimentary polynomials327

are the Chebyshev’s of the first φn(s) = Tn(s), and second ψm(z) = Um(z) (with m = n − 1) kinds328

respectively; and the two sets of spatial nodes are given by:329

s j = cos
(
π( j − 1/2)

n

)
, j = 1,..., n; xi = cos

(
πi
n

)
, i = 1,..., n − 1, (26)

5.2. Hilbert transform operator for the dislocation density330

The Hilbert transform331

H[w](z) =
1
π

∫ 1

−1

1
z − s

∂w
∂s

ds (27)
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is evaluated on the complimentary z−set of nodes using representation (25) of the dislocation332

density on the s−set, {F(s j)}. This results in the following:333

H[w](zi) =

n∑
j=1

Hi jF(s j), Hi j =
1
n

1
zi − s j

(28)

5.3. Operators for extrapolation, differentiation and integration334

The unknown function F representing the unknown dislocation density as Eq. (25) can be335

extrapolated from the Gauss-Chebyshev nodes to the fracture tip:336

F(−1) =

n∑
j=1

P jF(s j), F(1) =

n∑
j=1

Q jF(s j) (29)

where, according to Table 3 of [49].337

P j = (−1) j tan(arccos(s j)/2)
n

, Q j = −(−1) j cot(arccos(s j)/2)
n

(30)

Integration operators can be defined on either grid with the result of integration on the same338

or the other grid. For example, consider the integration of a regular function g(s) defined on the339

z−grid, {g(zi)}, with the result evaluated on the same grid:340 ∫ zi

0
g(z)dz =

m∑
i′=1

Tii′g(zi′), Tii′ =

m−1∑
k=0

[Ψk(zi) − Ψk(0)]Bki′ (31)

where, from Table 2 in [49], Ψk(z) is the indefinite integral of the complimentary set of Cheby-341

shev’s polynomials (i.e. ψk = Uk(z)),342

Ψk(z) =

∫ z

ψk(z)dz =
cos(k + 1)θ

k + 1
, θ = arccos(z) (32)

and343

Bki′ =
2

m + 1
sin

(
πi′

m + 1

)
sin

(
π(k + 1)i′

m + 1

)
(33)

For another example, consider integration of the dislocation density dw/ds = ω(s)F(s), with344

F(s) defined on the s−grid, {F(s j)}, and results evaluated on the z−grid [49]:345 ∫ +1

zi

∂w
∂s

ds = −

n∑
j=1

S i jF(s j), S i j =

n−1∑
k=0

[Φk(zi) − Φk(1)]Bk j (34)
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where, from Table 2 in [49],346

Φk(z) =

∫ z

φk(s)ds = −
sinkθ

k
(35)

and347

Bk j =


1
n
, k = 0

2
n

cos
(
πk( j − 1/2)

n

)
, k > 0

(36)

Specifically, the integration matrix {S i j} simplifies to a vector {S A j} on the integration interval348

[−1,1] and simplifies to {S H j} on [0,1].349 ∫ +1

−1

∂w
∂s

ds =

n∑
j=1

S A jF(s j), S A j =

n−1∑
k=0

[Φk(1) − Φk(−1)]Bk j (37)

∫ +1

0

∂w
∂s

ds =

n∑
j=1

S H jF(s j), S H j =

n−1∑
k=0

[Φk(1) − Φk(0)]Bk j (38)

A differentiation operator can be defined on either grid. In the following, we utilize differenti-350

ation on the z−grid. For a regular function g(z), we obtain351

g′(zi) ≈
m∑

i′=1

Dii′g(zi); Dii′ =
ωi′/ωi

zi − zi′
, i , i′; Dii = −

m∑
i′=1,i′,i

Dii′ (39)

where ωi = (−1)isin2(πi/n) (see Table 3 in [49]).352

5.4. Discretized governing equations353

Using the previously defined operators, we discretize the governing equations of the problem354

as follows.355

5.4.1. Elasticity356

The elasticity equation (3) after discretization reads:357

4`
E′

p(zi) =

n∑
j=1

1
n

Gd(zi,s j)F(s j) (40)

written in the matrix form as:358

4`
E′

p = Gd · F (41)
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where p = {p(zi)}, F = {F(s j)} are unknown vectors and Gd = {
1
n

Gd(zi,s j)} is the elasticity359

quadrature matrix.360

The quadrature (40) has spectral accuracy for the plane-strain fracture [49, 63], when kernel361

G1(z,s) =
1

z − s
is the Cauchy one, and the corresponding quadrature matrix G1 = H = {

1
n

1
zi − s j

}.362

For an axisymmetric fracture, the kernel is to the leading order of the Cauchy type, but it also363

contains a weaker logarithm singularity. We therefore write it as:364

G2(z,s) =
1

z − s
+

ln |z − s|
2z

+ ∆G(z,s) (42)

where ∆G(z,s) corresponds to the non-singular part of G2(z,s). In order to maintain the accuracy of365

the quadrature in this case, we represent the logarithm-term as an integral of the Cauchy-like term,366

ln|z − s| =
∫ z

0

dz
z − s

+ lns, where the latter term is inconsequential (i.e. it gives zero contribution to367

the elasticity integral). Using integration on the z−grid for the logarithm-term, the final elasticity368

matrix for the axisymmetric fracture case becomes:369

G2 = H +
1
2z

T ·H + ∆G (43)

where T = {Tii′} is the z−grid integration matrix and ∆G = {
1
n

∆G(zi,s j)}.370

5.4.2. Lubrication flow371

We integrate the lubrication equation (6) from the z−grid nodes to the fracture tip accounting372

for the tip boundary condition w(ξ = 1) = 0 (Eq. (8)):373

−

(
∂wi

∂t
1
d

zd
i +

∂

∂t
1
d

∫ 1

zi

ξd ∂w
∂ξ

dξ
)
−

˙̀

`

∫ 1

zi

ξd ∂w
∂ξ

dξ = −
1
µ′`2 zd−1

i w3
i
∂p
∂ξ

∣∣∣∣∣
ξ=zi

(44)

where wi is the fracture opening evaluated at zi. The discretization of these terms is obtained in the374

following by using the integration operator S = {S i j} and differentiation operator D = {Dii′} and375

by back-substituting the discretized elasticity equation (40).376 {
∂wi

∂t
1
d

zd
i

}
=

1
d

zd ∂

∂t
(S · F) (45){

1
d

∫ 1

zi

ξd ∂w
∂ξ

dξ
}

=
1
d

(
−S ·

(
sd F

))
(46){

1
µ′`2 w3

i zd−1
i

∂p
∂ξ

∣∣∣∣∣
ξ=zi

}
=

E′

4µ′`3 (S · F)3zd−1 (D ·Gd · F) (47)
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We then obtain the final discretized (n − 1) lubrication equations:377

−
1
d

zd ∂

∂t
(S · F) +

1
d
∂

∂t

(
S ·

(
sd F

))
+

˙̀

`

(
S ·

(
sd F

))
= −

E′

4µ′`3 (S · F)3zd−1 (D ·Gd · F) (48)

5.5. Global continuity equation378

The global continuity equation reduces to the following using the integration operators SA =379

{S A j} or SH = {S H j} defined above:380

• Plane-strain381 ∫ 1

−1
ξ
∂w
∂ξ

dξ +
Qot
`

= SA · (s F) +
Qot
`

= 0 (49)

• Axisymmetry382 ∫ 1

0
ξ2∂w
∂ξ

dξ +
Qot
π`2 = SH ·

(
s2 F

)
+

Qot
π`2 = 0 (50)

5.6. Propagation criterion383

The opening asymptote near the tip (10) indicates a square root singularity of the disloca-384

tion density at the tip as shown in Eq. (51), which is already embedded in the Gauss-Chebyshev385

quadrature (25):386

lim
z→1

dw
dz

= lim
z→1

dw
dξ

dξ
dz

= −
K′∗
E′
`1/2

2

(
`

`∗

)α
lim
z→1

1
√

1 − z
(51)

lim
z→1

dw
dz

= lim
s→1

ω(s)F(s) =
F(1)
√

2
lim
s→1

1
√

1 − s
(52)

By setting the coefficients before the singularity in Eq. (51) and Eq. (52) equal to each other and387

applying the extrapolation operator Q = {Q j}, the propagation condition for a fracture length388

dependent toughness simplifies to389

F(1) ≈ Q · F = −
1
√

2

K′∗`
1/2

E′

(
`

`∗

)α
(53)

We therefore get a set of discretized equations (48), (49) or (50) depending on the geometry,390

and (53), all of which are function of ` and F. By differentiating Eq. (49) or (50), and Eq. (53)391

with respect to t, we finally get a system of ODEs that can be schematically written as:392

M(Y,t)
dY
dt

= F (Y,t) (54)
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where Y = {`,F} is the unknown vector and M and F are the matrix and vector functions of Y and393

t which follow from the above differentiation.394

On the account of the problem symmetry for a plane-strain fracture, choosing an even n, we395

set396

F = {F1, F2, ..., Fn/2,−Fn/2, ...,−F2,−F1} (55)

The first (n/2 − 1) equations of Eq. (48) are thus equivalent to the last (n/2 − 1) equations. By397

taking advantage of the symmetry, we account for the first (n/2 − 1) equations in Eq. (48) when398

building the ODEs of Eq. (54).399

For a radial fracture, we select an odd n since the choice of an even n would result in infinite400

values of the elasticity matrix (43). We therefore set:401

F = {F1, F2, ..., F(n−1)/2, 0,−F(n−1)/2, ...,−F2,−F1} (56)

Similarly, we take the first ((n − 1)/2 − 1) equations of Eq. (48) to build the ODE system.402

The final non-linear system of ODEs (54) can be solved using appropriate numerical algo-403

rithms. We have used the built-in ODE solver of Mathematica 11.0 [65]. In terms of initial404

conditions, assuming a fracture length dependent toughness of Eq. (1), the fracture propagation405

for both geometries starts from a viscosity dominated solution3. We therefore use the solutions of406

the self-similar problem with K � 1 for a plane-strain fracture (see Appendix A for more details)407

and the zero-toughness solution for a radial fracture [50]. In the latter, we initialize the fracture408

growth at time to � tmk(α) with a fracture radius of `o � Lmk(α) and a fracture toughness of409

K∗(`o/`∗)α.410

We use n = 100 for a plane-strain fracture and n = 101 for a radial fracture for all the simula-411

tions presented in this paper. The computational cost using the default settings of the Mathematica412

ODE solver is of several seconds for a simulation spanning 6-15 decades of time (e.g. two sec-413

3If we account for a non-zero toughness at initiation, the approximation of zero-toughness solutions for a radial

fracture is still valid at early time, since the energy dissipation in the solid is limited by the small geometry and

viscosity dominates the fracture growth. However, this may differ for a plane-strain fracture: any state between the

viscosity or toughness dominated regimes can serve as an initial condition, see Section 7.2 for more discussions.
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Fig. 2: Evolution of the dimensionless fracture radius and inlet opening with dimensionless time for the case of a

fracture length independent toughness (α = 0). Dashed curves indicate numerical solutions while the orange and gray

lines correspond to zero-toughness (K = 0) and zero-viscosity (M = 0) solutions respectively.

onds for the case of Fig. 2, around 30 seconds for the case of Fig. 12)4 on a personal computer414

(MacBook Pro, 2015, 2.9 GHz Intel Core i5).415

5.7. Numerical verification - fracture length independent fracture toughness case416

We first benchmark our numerical solver for the case of a fracture length independent fracture417

toughness for which a number of (semi-) analytical solutions are known. The solver is able to418

reproduce all propagation regimes for both geometries in a very efficient manner.419

We present here comparisons for a radial fracture for which the solution evolves from viscosity420

to toughness dominated regime with time for a fracture length independent toughness.421

The fracture behaviour is characterised by different power laws in the M− and K−regime, as422

illustrated in Fig. 2, where the departure from the viscosity dominated regime is observed to start423

at tmk. The profiles of the fracture opening and net pressure for K = 0.32, 2.7, 5.0 are displayed in424

Fig. 3, showing an excellent match with the zero-toughness (K = 0) and large-toughness (M� 1)425

solutions [50] respectively.426

4The computational cost is related to the complexity and non-linearity of the system. The system of Fig. 12 is

more non-linear due to a smoothed toughness saturation function and is thus more time-consuming than the case of

Fig. 2.
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Fig. 3: Profile of fracture opening and net pressure in a radial fracture for the case of a fracture length independent

toughness (α = 0) with K = (t/tmk(α = 0))1/9 = 0.32, 2.7, 5.0, scaled separately by viscosity scaling Ωm,Πm and

toughness scaling Ωk,Πk. The near M−vertex solution (K = 0.32 ≤ 1 [50]) can be approximated the by zero-

toughness solution which is indicated by the orange curve. The gray curves indicate the corresponding large-toughness

solutions [50] with K = 2.7, 5.0 respectively.

6. Results for fracture length dependent toughness427

We now discuss the effect of a fracture length dependent toughness on the growth of hydraulic428

fractures for α ∈ [0, 1].429

We first discuss the plane-strain geometry. Fig. 4 displays the evolution of fracture half-length,430

net pressure and width at the fracture inlet for different values of α. As observed from the scaling431

considerations discussed in Section 4, the hydraulic fracture propagation evolves from the viscos-432

ity to the toughness dominated regime. We observe from the simulation that the transition starts at433

time larger than tmk(α) in line with the scaling arguments. At large time, the numerical solutions434

approximately coincide with the large toughness / zero viscosity asymptotes (blue lines on Fig. 4).435

A power-law dependence toughness leads to a shorter fracture length and larger net pressure in the436

toughness dominated regime. We observe a propagation under constant net pressure for α = 1/2437

and even an increase of net pressure with time for α > 1/2 as expected.438

Similar evolutions are observed for a radial hydraulic fracture. The time evolution of the439

fracture radius and inlet width are displayed in Fig. 5 for different α.440

It is interesting to re-scale these numerical results using the viscosity scaling and to redefine441

the dimensionless toughness by using the current value of toughness K∗(`/`∗)α as function of the442
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Fig. 4: Evolution of the dimensionless fracture half-length (up-left), inlet opening (up-right) and net pressure at the

inlet (down) with dimensionless time in a plane-strain fracture, dashed curves indicate the numerical simulations while

the blue solid lines indicate the fracture length dependent zero-viscosity solutions and orange solid lines the viscosity

dominated solutions.
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Fig. 5: Evolution of the dimensionless fracture radius (left) and inlet opening (right) with dimensionless time for a

radial fracture. Dashed lines indicate the numerical simulations while the blue solid lines indicate the fracture length

dependent zero-viscosity solutions and orange solid lines the zero-toughness solution.
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Fig. 6: Dependence of the dimensionless half-length γm (left) and inlet opening Ωm (right) in the viscosity scaling

on the scale-related dimensionless toughness K̄1. Numerical solutions of α = 1/4, 1/2, 3/4, 1 approximately coincide

with the small-toughness [58] and small-viscosity [59] solutions (α = 0) with first-order corrections, the previous

numerical results (gray empty squares) [58] as well as the self-similar solutions (disks) calculated via the procedures

in Appendix A.

current fracture length i.e.:443

• Plane-strain (d = 1)444

K̄1 =
K′∗
E′

(
E′

µ′Qo

)1/4 (
`

`∗

)α
(57)

• Axisymmetric (d = 2)445

K̄2 =
K′∗
E′

(
E′5t2

µ′5Q3
o

)1/18 (
`

`∗

)α
(58)

Such a definition explicitly embeds the fracture length dependence of the fracture toughness in446

the same dimensionless parameter as the fracture length independent toughness case [60]. After447

doing so, the dimensionless solution for any value of α expressed as function of K̄d approximately448

collapses on the same curve as the solution for fracture length independent toughness - see Figs 6,449

7 for the dimensionless length and inlet opening. Fig. 8 presents the relative difference of the di-450

mensionless length between the fracture length dependent and fracture length independent cases.451

The difference is null in both viscosity (K̄d = 0) and toughness dominated (K̄d → ∞) regimes.452

Both end-member regimes are described by the fracture length independent solution with instan-453

taneous value of toughness exactly, e.g. at large time, from Eq. (23), Eq. (24) and Eq. (17), the454
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Fig. 7: Dependence of the dimensionless fracture radius γm (left) and inlet opening Ωm (right) in the viscosity scaling

on the scale-related dimensionless toughness K̄2. Numerical solutions of α = 1/4, 1/2, 3/4, 1 approximately coincide

with the fracture length independent toughness solution (α = 0) and the previous numerical solutions (gray empty

squares) reported in [66] for the case of a fracture length independent toughness.

evolution of dimensionless fracture length with K̄d becomes independent of α:455

Plane-strain, γm ≈

2
√

2
πK̄1

2/3

; Axisymmetric, γm ≈

(
3

π
√

2K̄2

)2/5

(59)

The relative difference in the transient regime is not zero but remains very small with a maximum456

value of less than 2% as illustrated in Fig. 8.457

For α ∈ [0,1], the change of apparent toughness has therefore a nearly instantaneous impact on458

the propagation of a plane-strain or axisymmetric fracture. The propagation of a hydraulic frac-459

ture can be therefore approximately dominated by one master curve, no matter how the apparent460

fracture toughness evolves in different scales and all solutions can be obtained from the fracture461

length independent toughness solution. It indicates that the solution obtained here numerically462

could be obtained from the fracture length independent toughness solution and a non-linear root463

finding scheme to determine the current length embedded in the definition of K̄d.464

7. Discussions465

7.1. Emplacement scaling466

The displacement to length or emplacement scaling is often used in geology to discuss the467

physics of the fracture propagation of magmatic dikes and natural fractures. Field observations of468
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Fig. 8: Evolution of the relative difference of the dimensionless fracture length/radius γm (between the fracture length

independent and fracture length dependent cases) with the instantaneous dimensionless toughness K̄d. At the same

value of K̄d, a non-zero α results in a shorter fracture radius in the axisymmetric geometry, but a longer fracture length

in the plane-strain geometry than the case of α = 0 (fracture length independent). Such a discrepancy of a plane-strain

fracture is due to the fact that K̄d(α = 0) stays constant during the fracture growth instead of increasing as in the

case of a radial fracture. For α > 0, in order to reach the same value of K̄1(> K) for a plane-strain fracture in the

fracture length dependent and -independent cases, the fracture toughness increases in the fracture length dependent

cases before reaching such value of K̄1(> K). During this period of toughness increase, the instantaneous fracture

toughness in the fracture length dependent case is smaller than that of the fracture length independent case, therefore

indicates less energy dissipation in the creation of fracture surfaces and a longer fracture length.
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displacement-length scaling have nourished discussions about the fracture length dependence of469

fracture toughness [31, 35]. In this section, we discuss the obtained displacement-length scaling470

for axisymmetric and plane-strain geometries for the power-law fracture length dependent tough-471

ness model.472

The dimensional analysis reveals that both fracture opening and fracture length evolve with473

time and are related to the propagation regime associated with the principal source of energy474

dissipation. From Table 2, we obtain475

M − regime, W ∝ L(3−d)/4; K − regime, W ∝ Lα+1/2 (60)

At early time, when the fracture toughness has a negligible influence, the emplacement scaling476

is only geometry-dependent. At large time, for toughness dominated fractures, the emplacement477

scaling becomes independent of the geometry and is solely function of α: the larger α is, the larger478

the emplacement scaling W/L.479

Fig. 9 illustrates the complete evolution of the emplacement scaling from the early time M−regime480

to the large time K−regime. For a plane-strain fracture with fracture length independent tough-481

ness, the scaling parameter happens to remain the same in all propagation regimes. For a fracture482

length dependent fracture toughness, the emplacement scaling increases from a lower value in the483

M−regime to a geometry-independent value in the K−regime at large time in both geometries.484

The displacement-length ratio reflects the evolution of the partitioning of energy between viscous485

flow and the creation of fracture surfaces during propagation.486

A square-root emplacement scaling corresponds to the fracture length independent toughness487

as reported in the literature [21, 32, 33]. The linear emplacement scaling W ∝ L reported from488

field studies [31] corresponds to the case of a square-root fracture length dependent toughness489

(α = 1/2). It is therefore interesting that, although debate exists in regards to the emplacement490

scaling observed in the field (either 1/2 or linear), emplacement scaling ratio larger than one have491

not been reported. This seems to indicate that a power-law exponent larger than α = 1/2 for the492

fracture length dependent toughness is unlikely.493

28



0.1 1 10 100 1000

1

10

100

1000

0.1 1 10 100 1000

1

10

100

1000

Fig. 9: Evolution of displacement-length scaling in two geometries: plane-strain (left) and axisymmetric (right) for

different α values, scaled respectively by Wmk and Lmk.

7.2. Difference brought by the fracture length dependent toughness494

The apparent fracture toughness may exhibit a lower cut-off Kc within a cross-over length scale495

`c. For most quasi-brittle materials, `c is of the same order of magnitude as specimen dimensions in496

the lab. In order to grasp the difference brought by an increasing toughness, it is natural to choose497

a reference state corresponding to a fracture toughness K∗ ≈ Kc measured at a laboratory length498

scale `∗ ≈ `c. In this section, we analyse the difference brought by the power-law dependence499

compared with the fracture length independent case assuming `s → ∞.500

When ` ≤ `∗, the fracture energy reduces to a constant and does not vary with the fracture501

length. The growth of hydraulic fractures is the same as the case of the fracture length independent502

toughness with KIc = K∗. We define t∗ as the time for the fracture to propagate with a constant503

toughness K∗ in order to reach a fracture length of `∗. When ` > `∗, the apparent toughness scales504

with the fracture length and the propagation transitions to large toughness solutions as discussed505

in Section 6. The ratio between the large toughness solutions of the fracture length dependent and506

independent cases are shown in Table 3, where the corresponding power laws can be recovered507

at large time by the numerical solutions as illustrated in Figs 10 and 11. The evolution of the508

difference ratio depends strongly on the reference state where the apparent toughness starts to509

scale with the fracture length. Such a reference state can be characterised by `∗/Lmk(α = 0) for a510

radial fracture and byK(` = `∗,α = 0) for a plane-strain fracture. As shown in Fig. 10, a transition511

of principal energy dissipation from viscosity to toughness appears if the viscosity happens to512
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Table 3: Time dependence of the difference ratio between the large toughness solutions for fracture length dependent

toughness and fracture length independent toughness, respectively. Such difference ratios of inlet opening, net pressure

and fracture length scale are power laws of the dimensionless time (t/tmk(α = 0))β for an axisymmetric fracture and

(t/t∗)β for a plane-strain fracture, with the exponent β a function of the geometry index d and toughness power-law

scaling exponent α.

Geometry
Time power-law exponent β

Plane-strain (d = 1) Axisymmetric (d = 2)

w(0,α)/w(0,α = 0) 2α/(3α + 9/2) 4α/(5α + 25/2)

p(0,α)/p(0,α = 0) 4α/(3α + 9/2) 6α/(5α + 25/2)

`(α)/`(α = 0) −2α/(3α + 9/2) −2α/(5α + 25/2)

dominate the fracture growth at the reference state. Both a smaller length scale for the initiation of513

the toughening effect and a larger value of the power-law exponent α result in a more pronounced514

difference as illustrated in Fig. 10 and Fig. 11.515

Using values for material and injection parameters - representative of an industrial fracturing516

treatment, we quantify the departure of the solution from the fracture length independent tough-517

ness case for a radial fracture in Table 4. The characteristic net pressure increases with α while the518

characteristic length, as well as, the characteristic transition time from the viscosity to the tough-519

ness dominated regime, decreases with α. The relative difference of the fracture radius can go up520

to 40% after long injection duration for α = 1/2.521

7.3. Effect of a finite apparent fracture toughness beyond a given length scale522

The fracture toughness might reach an asymptotic value beyond a certain length scale `s, pos-523

sibly due to the saturation of the process zone size or the limits of the constraints of the medium524

dimensions (earth crust). In this section, we model such possible saturation of the fracture tough-525

ness (`s < ∞) as follows:526

KIc = K∗ (`/`∗)α (1 − f ((` − `s)/`∗)) + Ks f ((` − `s)/`∗), Ks = K∗ (`s/`∗)α (61)

Here f is a smoothed Heaviside step function f (m) = 1/(1 + exp(−2hm)), where h is a positive527

dimensionless number controlling the smoothing of the approximation (a smaller value entails a528
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Fig. 10: Evolution of the difference ratio of net pressure at the inlet with dimensionless time in a plane-strain fracture

for K(` = `∗,α = 0) = 0.063 (left), 2.50 (right), dashed lines indicate the numerical simulations while the blue solid

lines indicate the fracture length dependent zero-viscosity solutions.
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Fig. 11: Evolution of the difference ratio of fracture radius (left) and inlet opening (right) with dimensionless time in

a radial fracture (`∗/Lmk(α = 0) = 0.008), dashed lines indicate the numerical simulations while the blue solid lines

indicate the fracture length dependent zero-viscosity solutions.
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Table 4: Characteristic scales and difference ratio values for different values of the toughness power-law scaling

exponent α in the axisymmetric geometry (E′ = 20 GPa, Qo = 2 × 10−2 m3/s, µ′ = 3 Pa.s, K∗ = 1.5 MPa.m1/2,

`∗ = 0.1 m and `∗/Lmk(α = 0) = 1.03 × 10−8)

α = 0 α = 1/4 α = 1/2

tmk(α) (s) 3.56 × 1014 3.67 × 105 3.70 × 102

Lmk(α) (m) 9.84 × 106 9.97 × 102 46.5

Pmk(α) (kPa) 0.150 1.48 × 102 1.48 × 103

R/R(α = 0) (t = 90 min) 1 1.00 0.88

w(0)/w(α = 0) (t = 90 min) 1 1.00 1.14

R/R(α = 0) (t = 3 d) 1 0.98 0.60

w(0)/w(α = 0) (t = 3 d) 1 1.01 2.26

"smoother step" - we have used h = 130 here). Under the same assumption that `∗ ≈ `c as in529

Section 7.2, the saturation length scale is comparable to or larger than the reference length scale:530

`s ≥ `∗. (`s/`∗)α therefore describes the difference of apparent toughness between the reference531

and final state whereas α characterises the slope of the power law branch. When `s � `∗, the532

saturated apparent toughness Ks can be exceedingly large compared to K∗.533

As illustrated in Fig. 12 (for α = 1/2 and different values of `s/Lmk(α)), the hydraulic frac-534

ture evolves by first following the solution obtained previously for the power-law fracture length535

dependent toughness and then transitions back to the fracture length independent toughness so-536

lution (α = 0 with KIc = Ks) when the fracture reaches the saturation length scale ` = `s. The537

impact of the toughness evolution on fracture growth is nearly instantaneous for α ∈ [0, 1] in both538

geometries as previously shown in Figs. 6 and 7, however, the transition towards the toughness539

dominated solution at large timescale with a fracture length independent toughness (α = 0 with540

KIc = Ks) can be much more gradual for a radial fracture when `s/Lmk(α) � 1 in Fig. 12.541

The effect of the toughness saturation on the propagation of a hydraulic fracture with fracture542

length dependent toughness up to `s can be summarized in the propagation diagram of Fig. 13.543

A plane-strain hydraulic fracture evolves initially from the reference state which can be either544

viscosity or toughness dominated towards the fracture length dependent toughness edge (M − Kα)545
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Fig. 12: Evolution of the difference ratio of dimensionless fracture radius (left) and fracture half-length (right) with

dimensionless time where α = 1/2. Dashed curves indicate the numerical transition and blue solid lines refer to

zero-viscosity solutions.

Fig. 13: Propagation diagram illustrating the propagation of a hydraulic fracture in a material exhibiting a fracture

length dependent toughness with a saturated length scale `s for plane-strain and axisymmetric geometries. Kα signifies

the fracture length dependent toughness dominated regime.

33



(see Fig. 13-left), and, as soon as the fracture half-length ` reaches `s, the propagation switches546

to the fracture length independent toughness, plane-strain self-similar solution characterised by a547

constant dimensionless toughness K̄1(` = `s) from Eq. (57). Depending on the value of K̄1(` = `s),548

any state between the M− and K−regime is possible at large time for a plane-strain hydraulic549

fracture. The effect of toughness saturation for the radial hydraulic fracture is similar pending the550

fact that due to the geometry, the propagation always ends up being toughness dominated at large551

time - with the final toughness Ks governing the characteristic scales (see Fig. 13-right).552

8. Conclusions553

We have investigated theoretically the growth of a plane-strain and axisymmetric hydraulic554

fracture, assuming a power-law dependence of the fracture toughness with fracture length KIc ∝ `
α.555

We have posed the hydraulic fracture propagation problem based on the usual assumptions of556

linear elastic fracture mechanics, assuming that the small scale yielding approximation remains557

always valid and that the fracture is much larger than the process zone size.558

In order to solve such a HF problem, we have developed a highly efficient and accurate numeri-559

cal scheme based on the combination of Gauss-Chebyshev quadrature with barycentric differentia-560

tion and interpolation. Using such a spatial discretization allows to recast the non-linear, non-local561

hydraulic fracture evolution problem into a system of non-linear ordinary differential equations562

(ODEs) that can be solved by existing ODE integration schemes. The scheme performs extremely563

well against the published hydraulic fracture growth solutions for constant fracture toughness.564

Our numerical results quantify precisely the impact of a power-law fracture length dependent565

toughness on HF growth. The increase of fracture energy with fracture length yields shorter and566

wider hydraulic fracture, and larger net fluid pressure. Our results demonstrate a shortening of567

the viscosity dominated to toughness dominated propagation for a radial fracture and show the568

existence of a viscosity to-toughness transition for a plane-strain fracture, a transition which does569

not exist in the case of a constant fracture toughness. The hydraulic fracture growth with a power-570

law toughness can be always very accurately approximated by the constant toughness solution571

when using the instantaneous value of toughness (function of the current fracture length), as per572

Eq. (57) and Eq. (58). If the fracture toughness saturates beyond a given scale `s, the hydraulic573
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fracture propagation transitions back to the constant toughness solution as soon as ` > `s - as574

depicted in Fig. 12.575

Our results obviously depend on the value of the power-law scaling exponent α, with large576

changes between α ≤ 1/2 and α > 1/2. The predicted emplacement scaling (ratio of displacement577

to length) is geometry-dependent in the viscosity dominated regime: W ∝ L1/2 for plane-strain,578

W ∝ L1/4 for axisymmetric geometry. It is however solely dependent on α in the toughness579

dominated regime with W ∝ L1/2+α. Compared to these theoretical predictions, emplacement W/L580

observations of dikes tend to indicate that the power-law scaling exponent α should at most be581

equal to 1/2 [31]. Such a limit appears consistent with available experimental evidences (Table 1)582

pointing to values of α lower than 1/2.583

More field and experimental studies are needed in order to better quantify the importance584

of a possible fracture length dependence of fracture energy in relation to industrial as well as585

natural hydraulic fractures. The scalings and numerical results derived here could help decipher586

the validity of the power-law dependence hypothesis of apparent fracture toughness and guide587

further investigations.588

Acknowledgement589

D.I. Garagash acknowledges the support from the Ministry of Education and Science of the590

Russian Federation (Contract No. 14.581.21.0027, Unique identifier RFMEFI58117X0027).591

Appendix A. Discretization for the plane-strain self-similar problem592

For a plane-strain hydraulic fracture, the dimensionless toughness K determines the solution593

of the self-similar problem. We rewrite the dimensionless governing equations in the viscosity594

scaling by introducing a new dimensionless opening [58].595

Ω̄ = Ω/γ (A.1)

The governing equations becomes:596
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• Elasticity597

4Π =
1
π

∫ +1

−1

∂Ω̄

∂ξ′
G1(ξ,ξ′)dξ′ (A.2)

• Lubrication flow598 ∫ 1

ξ

∂Ω̄

∂ξ
dξ +

2
3
ξΩ̄ + Ω̄3 dΠ

dξ
= 0 (A.3)

• Global continuity equation599 ∫ 1

−1
Ω̄dξ =

1
γ2 (A.4)

• Propagation criterion600

Ω̄ ∼
K
√
γ

(1 − ξ)1/2 (A.5)

We select the Gauss-Chebyshev polynomials of the first type Tn for discretization.601

∂Ω̄

∂s
= ω(s)F(s), ω(s) =

1
√

1 − s2
(A.6)

The discretized equations reduce to602

4Π = G1 · F (A.7)

−z(S · F) + S · (s F) +
2
3

z(S · F) + (S · F)3(D ·Π) = 0 (A.8)

SA · (s F) +
1
γ2 = 0 (A.9)

Q · F +
1
√

2

K
√
γ

= 0 (A.10)

By back-substituting the elasticity (A.7) into the lubrication equations (A.8), we get (n + 1)603

equations including the global continuity (A.9) and the propagation criterion (A.10). On the ac-604

count of the problem symmetry as in Eq. (55), the first (n/2−1) equations of Eq. (48) are equivalent605

to the last (n/2 − 1) equations. We hence account for the first (n/2 − 1) equations of Eq. (A.8)606

together with Eq. (A.9) and (A.10) and solve the solutions of {γ,F} using the Mathematica built-in607

function FindRoot. As illustrated in Fig. 6, the numerical results fit well the small-toughness and608

small-viscosity solutions [58, 59], and also the previous numerical solutions [58].609
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