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Abstract The calyx of Held is a large glutamatergic
synapse in the mammalian auditory brainstem. By using
brain slice preparations, direct patch-clamp recordings can
be made from the nerve terminal and its postsynaptic target
(principal neurons of the medial nucleus of the trapezoid
body). Over the last decade, this preparation has been
increasingly employed to investigate basic presynaptic
mechanisms of transmission in the central nervous system.
We review here the background to this preparation and
summarise key findings concerning voltage-gated ion
channels of the nerve terminal and the ionic mechanisms
involved in exocytosis and modulation of transmitter
release. The accessibility of this giant terminal has also
permitted Ca2+-imaging and -uncaging studies combined
with electrophysiological recording and capacitance mea-
surements of exocytosis. Together, these studies convey the
panopoly of presynaptic regulatory processes underlying
the regulation of transmitter release, its modulatory control
and short-term plasticity within one identified synaptic
terminal.
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A short history of the calyx of Held

The size of a synapse is a significant technical constraint for
electrophysiological recording. The large dimensions of
some invertebrate synapses have been exploited to provide
considerable insight into presynaptic function (Llinas et al.
1972; Augustine et al. 1985; Young and Keynes 2005).
However, the progress of similar studies in vertebrates was
long hampered by the technical difficulty of presynaptic
recording from small nerve terminals. Over the last 50 years,
a range of preparations have contributed to our understand-
ing of presynaptic mechanisms, from the neuromuscular
junction (Katz 1969) to chromaffin cells (Neher and Marty
1982), chick ciliary ganglion (Martin and Pilar 1963;
Stanley and Goping 1991), neurohypophysial nerve termi-
nals (Lemos and Nordmann 1986; Jackson et al. 1991) and
synaptosomal preparations (Nicholls and Sihra 1986), to
name just a few. Given the predominance of fast gluta-
matergic synapses in the mammalian central nervous
system (CNS) and their pivotal role in information
processing, the development of a preparation at which
direct presynaptic patch-clamp recordings were feasible and
at which glutamate was the neurotransmitter was desirable.
One candidate was the hippocampal mossy fibre terminal,
from which direct recordings have indeed been achieved
(Geiger and Jonas 2000). Another approach has made use
of anatomical evidence for two giant synapses in the
auditory pathway, the endbulbs of Held and calyces of
Held, respectively.

Both synapses are glutamatergic and form part of the
relay pathway subserving sound-source localisation in
the auditory brainstem (Fig. 1a). They owe their name to
the German anatomist Hans Held, who working in Leipzig
in the late 19th century, studied the central auditory
pathways by the Golgi staining technique in cats (Held
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1893). Ramón y Cajal intensively studied these giant
synapses by using Golgi material from several species
(Ramón y Cajal 1972) and rendered the first high-
resolution images of calyces of Held at the light-
microscopic level. Held also gave his name to another
auditory giant synapse called the endbulb of Held, which
is the primary afferent synapse onto the bushy cells of the
anterior ventral cochlear nucleus (aVCN; Lorente de No
1981). Physiological characterisation and intra-axonal
recording from axons in the trapezoid body (Fig. 1) of
cats showed bushy cell projections to several ipsilateral
and contralateral nuclei, with all axons giving rise to one
or rarely two calyces in the contralateral medial nucleus of
the trapezoid body (MNTB; Spirou et al. 1990; Kuwabara
et al. 1991; Smith et al. 1991). Immunohistochemical
evidence first suggested that the calyx of Held could be
glutamatergic (Grandes and Streit 1989) and this was
confirmed by in vitro current-clamp recordings in brain slices
showing block of excitatory inputs by the glutamate

receptor antagonist DNQX (Banks and Smith 1992).
Whole-cell voltage-clamp from MNTB neurons showed dual
component excitatory postsynaptic currents (EPSCs) with a
fast time-course component mediated by α-amino-3-5-meth-
yl-4-isoxazolepropionic acid (AMPA) receptors and a slower
time-course N-methyl-D-aspartate (NMDA) receptor-mediat-
ed current (Forsythe and Barnes-Davies 1993).

Direct recordings from the calyx of Held presynaptic
terminal were subsequently achieved by using patch-clamp
methods in an in vitro slice preparation of the rat brainstem
(Forsythe 1994; Borst et al. 1995). Presynaptic recording
from the endbulb of Held synapses in the aVCN has proven
technically more difficult and, so far, has only been
achieved in the chick (Sivaramakrishnan and Laurent
1995). The accessibility of the calyx of Held has since
been used to investigate presynaptic ion channels, Ca2+

influx, transmitter release and its short-term modulation
under direct voltage-clamp control of the presynaptic
terminal. The calyx of Held has also become a model

Fig. 1 The calyx of Held synapse in the auditory brainstem circuit.
a Representation in the coronal plane of the brainstem auditory
pathway and the calyx of Held synapse, which forms part of the
auditory circuit at the level of the superior olivary complex (SOC).
The calyx of Held is an excitatory glutamatergic synapse arising
from globular bushy cells in the anterior ventral cochlear nucleus
(aVCN) onto a principal cell in the medial nucleus of the trapezoid
body (MNTB). The principal cells provide an inhibitory projection
to other nuclei of the SOC such as the lateral superior olive (LSO).
The bushy cells in the aVCN receive excitatory input from the
auditory nerve fibres. The calyx of Held is thus a tertiary auditory
synapse that rapidly relays information, providing the LSO and
other nuclei with (inhibitory) information with regard to sound
arriving at the contralateral ear. b Representation of a single calyx of

Held synapse onto a given single MNTB principal cell (modified,
with permission from Elsevier, from Walmsley et al. 1998). The
MNTB principal cells receive additional inhibitory and excitatory
input through small bouton-like synapses but, in most cases, a given
MNTB principal cell is thought to receive input from only one large
calyx of Held. Thus, a one-to-one synaptic relationship exists
between a given globular bushy cell and an MNTB principal cell. c
Development of afferent fibres originating from the aVCN (reprin-
ted, with permission of Wiley-Liss, from Kandler and Friauf 1993).
The first fibres cross the midline approximately by embryonic day
15 (E15) and, at postnatal day 3 (P3), large calyceal synapses are
formed and the one-to-one synaptic relationship is established. Later
in development (P14), characteristic changes occur in the morphol-
ogy of the calyx. (Data in this and subsequent figures are from rat)
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system for studying developmental changes of presynaptic
function prior to hearing “onset” when the auditory canal
opens (this occurs at around postnatal day 11 (P11) or P12
in rats and mice; Blatchley et al. 1987; Geal-Dor et al.
1993) and on towards maturation at around 20 days
postnatally. The direct access of the nerve terminal to
patch-clamp recording allows the manipulation of the
intracellular biochemical environment, the introduction of
Ca2+ indicators and light-sensitive Ca2+ chelators and the
manipulation of the presynaptic Ca2+ concentration. In this
review, we will briefly introduce the structure of the calyx
of Held and then describe those research fields of synaptic
transmission in which work on the calyx of Held has made
important advances. Finally, we will discuss the advan-
tages, limitations and future potential of the calyx of Held
as a model presynaptic preparation.

Function of the calyx of Held in the auditory brainstem
circuitry

The calyx of Held is thought to arise from globular bushy
cells in the aVCN, which project onto principal neurons of
the contralateral MNTB (see Fig. 1; Harrison and Irving
1966; Friauf and Ostwald 1988; Spirou et al. 1990;
Kuwabara et al. 1991; Smith et al. 1991). It therefore
forms a tertiary synapse in the auditory pathway. The
MNTB principal cells provide inhibitory glycinergic pro-
jections to neighbouring nuclei in the superior olivary
complex, including the lateral superior olive (LSO; see
Fig. 1; Tollin 2003) and the medial superior olive (MSO;
Banks and Smith 1992; Joris et al. 1998; Brand et al. 2002).
The LSO and MSO are the first nuclei in which binaural
information converges, with the calyx of Held/MNTB
synapse forming a fast “inverting” relay, at which excitation
originating from the contralateral cochlea is converted into
inhibition to the ipsilateral auditory brainstem. The large
size of the calyx of Held allows it to harbour hundreds of
active zones (see below) and thus a single presynaptic
action potential (AP) releases hundreds of quanta, generat-
ing a large EPSC that rapidly depolarises the MNTB
neuron to threshold. Hence, the large size of the presynaptic
terminal guarantees rapid signalling, preserving the timing
information of the acoustic signal for processing by the
binaural circuits underpinning sound localisation (Oertel
1999; Trussell 1999).

A single MNTB principal neuron receives input from
only one calyx-type synapse, although multiple calyceal
inputs are occasionally observed in ~5% of principal
neuron recordings in mice (Bergsman et al. 2004) and
~20% of the afferent fibres give rise to two calyces on
separate MNTB principal neurons (Kuwabara et al. 1991;
Smith et al. 1991; Rodríguez-Contreras et al. 2006). In

addition to the calyceal input, principal cells receive conven-
tional excitatory synapses (Forsythe and Barnes-Davies 1993;
Hamann et al. 2003) and inhibitory inputs (Banks and Smith
1992; Awatrami et al. 2004). The calyx of Held develops
early, with trapezoid axons growing from the cochlear
nucleus, crossing the midline by E15 and forming large pre-
calyceal nerve endings by P3 (Fig. 1c; Kandler and Friauf
1993; see also Morest 1968; Hoffpauir et al. 2006).

Morphology and ultrastructure of the calyx of Held

A number of electron-microscopic (EM) studies have been
conducted on calyces of Held (Lenn and Reese 1966;
Nakajima 1971; Jean-Baptiste and Morest 1975; Sätzler
et al. 2002; Taschenberger et al. 2002) and endbulbs of
Held (Lenn and Reese 1966; Ryugo et al. 1996; Nicol and
Walmsley 2002). They show that despite the large size of
the nerve terminal (Fig. 2a), individual active zones of
calyceal nerve endings in the MNTB and VCN are
morphologically similar to those of conventional small
nerve terminals (Fig. 2b). Calyceal terminals arise from a
myelinated axon, which can be thick in cats (5–10 μm;
Rowland et al. 2000) but is thinner in rats (<2 μm;
Rodríguez-Contreras et al. 2006). Small synaptic vesicles
(SSVs) accumulate at electron-dense contact sites, the
active zones (Fig. 2b). Interestingly, calyceal SSVs are of
slightly larger diameter (~45 nm) than those contained in
many small bouton-like hippocampal and cerebellar syn-
apses, which are ~35 nm in diameter (Schikorski and
Stevens 1997; Xu-Friedman et al. 2001). An EM
reconstruction of an entire calyx of Held from a P9 rat,
by using serial ultrathin sections (Sätzler et al. 2002), has
shown the presence of ~550 individual active zones, with
an average nearest-neighbour separation of ~0.6 μm.
Numerous non-synaptic contact sites, named puncta
adherentia (also observed by Jean-Baptiste and Morest
1975), have also been found. Synaptic contact sites
(active zones) have an average surface area of 0.1 μm2,
similar to estimates for hippocampal and cerebellar
excitatory synapses (Schikorski and Stevens 1997; Xu-
Friedman et al. 2001) and contain an average of two
morphologically docked vesicles (Sätzler et al. 2002).
Another study has estimated that the extrapolated number
of active zones increases from ~300 at P5 to ~680 at P14
(Taschenberger et al. 2002). The number of active zones
corresponds well to the estimated number of functional
active zones based on EPSC fluctuation analysis (Meyer
et al. 2001; and see Fig. 5b). Thus, the calyx of Held can
be seen as a vast “parallel” arrangement of hundreds of
active zones, all activated by a single presynaptic AP.

Although the calyx of Held contains “conventional” active
zones, there is some evidence for structural specialisations
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beyond mere size. Investigations of mature calyces by Row-
land et al. (2000) in the cat have revealed that the non-
synaptic contact sites (puncta adherentia) are associated with
tethered mitochondria within 200 nm of the membrane, a
complex that they have called the “mitochondria-associated
adherens complex” (MAC). Recently, Wimmer et al. (2006)
have found, by using confocal fluorescence microscopy after
virus-mediated over-expression of synaptic vesicle proteins
(Wimmer et al. 2004), that vesicle clusters and active zones
are organised in “donut”-like assemblies of ~1 μm in
diameter. Electron microscopy has revealed that the “donuts”
are comprised of ~5–9 active zones clustered around the
same number of mitochondria. Interestingly, “donuts” only
appear during maturation of the calyx of Held after the
opening of the auditory canal (at P11/12; Blatchley et al.
1987; Geal-Dor et al. 1993). The intricate arrangement of
the release apparatus (vesicle clusters and active zones) and
mitochondria might represent an optimal spatial arrange-
ment for fast re-supply of ATP and for local Ca2+

sequestration into mitochondria (Billups and Forsythe
2002). This arrangement might be advantageous for
sustaining high rates of transmitter release during the high
frequency firing that occurs physiologically at the calyx of
Held (Kopp-Scheinpflug et al. 2003).

Presynaptic AP and ion channels of the calyx of Held

Direct recording of presynaptic conductances at synaptic
terminals in the mammalian CNS has so far only been
achieved at three sites: the excitatory calyx of Held, the
mossy fibre terminals (Geiger and Jonas 2000) and the
cerebellar inhibitory pinceau (Southan and Robertson
1998). An example of a calyx of Held (filled with Lucifer
yellow) viewed by differential interference contrast optics
and then under fluorescence illumination is shown in
Fig. 3a. Because of the continuity of the calyceal nerve
terminal and its axon, whole-cell recording from the calyx
will include currents arising from proximal parts of the
axon, with the current and voltage responses of a terminal
being influenced by the length of the intact axon. For
instance, terminals with short axons fire a single AP on
sustained depolarisation, whereas terminals with intact
axons in excess of 150 μm exhibit a sustained repetitive
AP firing throughout the depolarisation (Dodson et al.
2003). Our objective here is to summarise the ionic
conductances regulating excitability and AP generation at
the calyx of Held.

Presynaptic resting membrane potentials (RMPs) at the
calyx are around −75 mV (Forsythe 1994; Borst et al. 1995;

Fig. 2 Morphology and ultra-
structure of the calyx of Held.
a Electron micrograph of the
calyx of Held from a P9 rat
(yellow presynaptic calyx, blue
postsynaptic MNTB principal
neuron, red its nucleus, boxed
area active zone). Bar 5 μm.
Taken, with permission, from
Sätzler et al. (2002); copyright
2002 by the Society for Neuro-
science. b High resolution EM
images of active zones within
calyces of Held (green vesicles
identified as morphologically
docked). Left Two neighbouring
active zones from a P5 rat. Right
Single active zone in a P14 rat.
Bars 200 nm. Reprinted, with
permission from Elsevier, from
Taschenberger et al. (2002)
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Borst and Sakmann 1996), which is slightly more negative
than the RMPs of the postsynaptic MNTB neuron at around
−65 mV. Upon afferent fibre stimulation, the calyx shows
overshooting orthodromic presynaptic APs (Fig. 3b) reach-
ing +30 mV, with half-widths of 0.41 ms at 25°C (Dodson
et al. 2003) and 0.26 ms at 36°C (Borst and Sakmann
1998b; Kushmerick et al. 2006). A developmental acceler-
ation in the presynaptic AP time-course is also apparent,
with halfwidths at P14 being less than half of those at P7
(Fig. 3c; Taschenberger and von Gersdorff 2000). As
previously observed from intra-axonal recording of mye-
linated axons (Barrett and Barrett 1982), the calyx APs are
accompanied by depolarising after-potentials (DAP) of
around 10 mV in amplitude (Borst et al. 1995; Dodson et
al. 2003; see Fig. 3b). DAPs peak with latencies of around
5 ms, last between 20 and 100 ms and are unaffected by
blocking Ca2+ channels, by transmitter release or by
increasing Ca2+ buffering, consistent with a postulated
origin involving passive discharge of internodal capacitance
(Barrett and Barrett 1982), although they may be further
enhanced by the capacitive load of the terminal itself.

Presynaptic APs are blocked by tetrodotoxin (TTX;
Forsythe 1994; Borst et al. 1995; Leao et al. 2005). In
contrast to the ciliary ganglion (Martin and Pilar 1963), no
evidence has been found for direct electrical transmission
across gap junctions. The presynaptic axon is myelinated and
hence AP propagation is via saltatory conduction with
voltage-gated Na+ channels located at nodes of Ranvier
and K+ channels at juxtaparanodal regions (Rasband and
Shrager 2000). Voltage-gated Na+ channel structure is similar
to that of Ca2+ channels (Catterall et al. 2005). In the CNS, a
developmental transition from expression of Nav1.2 to
Nav1.6 occurs at maturation (Caldwell et al. 2000; Rios et
al. 2003) in many areas of the brain. Immunohistochemical
labelling shows that Na+ channel density is low at the calyx,
supporting the idea of passive AP propagation into the
terminal but, by P12, Nav1.6 is located at a high density in
the last segment of the axon (heminode, which is unmyelin-
ated; Leao et al. 2005). This pattern of localisation differs
from the situation in en-passant terminals, such as mossy-
fibre boutons, where a high density of voltage-gated Na+-
current has been found in outside-out patches from the
terminal (Engel and Jonas 2005). With maturation up to P15,
calyceal Na+ currents increase in magnitude and show
accelerating inactivation and recovery from inactivation
(tau: 0.5 ms at 35°C), contributing to increased afferent fibre
excitability (Leao et al. 2005).

K+ channels Most alpha (α) subunits of K+ channels have a
structure analogous to one domain of voltage-gated Na+

channels; hence, four subunits must assemble to form a
functional channel. Channels may be heterologous but are
usually composed of subunits from within the same family,

plus beta subunits and/or accessory proteins. With around
100 K+-channel subunit genes in more than 10 families,
there is potential for huge diversity (Coetzee et al. 1999)
and thus relating native channels to their recombinant
counterparts is difficult, and it is worth providing a brief
overview by way of introduction to presynaptic K+ currents.

There are four families of mammalian voltage-gated K+

channels which can generate the classic “delayed rectifier”
characteristics. The shaker-related Kv1 subunits (of which
there are seven members) form channels activated by small
depolarisations from RMP (10–40 mV, hence low voltage-
activated) and are involved in regulating excitability and
the threshold for AP firing. Kv1 channels may exhibit
voltage-dependent inactivation through an N-terminal
(N-type, ball and chain) mechanism (Aldrich 2001) but
this depends on the subunit composition and/or presence of
beta subunits. The two shab-related Kv2 subunits associate
with many accessory subunits and generate a broad range
of conductances. Kv2.1 channels are widely expressed but,
as yet, little evidence exists for their immunolocalisation in
the MNTB or synaptic terminals (R.E.W. Fyffe, personal
communication). The four shaw-related Kv3 subunits are
activated by larger depolarisations (>50 mV, hence high
voltage-activated). These voltages are only achieved during
APs and Kv3 channels participate in repolarisation,
particularly in fast-spiking interneurons (Rudy and McBain
2001). Finally, the three shal-related Kv4 subunits that
generate transient inactivating subunits underlie A-type (IA)
currents (Jerng et al. 2004). Like Kv1 channels, they are
activated by small depolarisations but at resting potentials
require membrane hyperpolarisation to remove steady-state
inactivation. Other related K+ channels, such as Kv7
(KCNQ; Delmas and Brown 2005) and twin-pore K+

channels (KCNK; Goldstein et al. 2001) are expressed in
the auditory brainstem (Karschin et al. 2001; J. Johnston,
A. Skrzypiec, M. Postlethwaite and I.D. Forsythe, in
preparation) but will not be considered here.

The postsynaptic MNTB neuron expresses both low
voltage-activated (IK,LV) and high voltage-activated (IK,HV)
K+ currents, which regulate firing threshold and AP re-
polarisation, respectively (Brew and Forsythe 1995; Dodson
et al. 2002). IK,LV is blocked by the black mamba snake
toxin, dendrotoxin-I (DTx-I), confirming mediation by Kv1
channels. Kv1 channels are located in cell bodies,
dendrites, synaptic terminals (Wang et al. 1994) and
juxtaparanodal regions of myelinated axons (Rasband and
Shrager 2000). IK,HV is mediated by Kv3 channels, which are
generally associated with high frequency AP firing and
mediate rapid AP repolarisation in many areas of the CNS
(Rudy and McBain 2001), including the auditory brainstem,
and are blocked by low (mM) concentrations of tetraethylam-
monium (Brew and Forsythe 1995; Wang and Kaczmarek
1998; for a review, see Kaczmarek et al. 2005). Activity-
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dependent changes in Kv3 channel activity are mediated by
channel phosphorylation by casein kinase II (Macica and
Kaczmarek 2001) and protein kinase C (PKC; Macica et al.
2003). In the MNTB, there is high basal phosphorylation at
ser503 of Kv3.1b and this decreases the postsynaptic K+-
current amplitude. Exposure to moderate sound levels causes
dephosphorylation and increases IK,HV in the MNTB neuron
(Song et al. 2005), thus improving the ability of MNTB
principal cells to follow AP firing at high frequencies.
Characterisation of the presynaptic K+ currents is not
complete but several studies have shown that, like the
postsynaptic bushy cell and MNTB principal cell bodies,
both low and high voltage-activated outward currents play a
major role in regulating presynaptic AP firing.

IK,LV currents mediated by Kv1 channels Voltage clamp
recordings have shown that calyces of Held possess a
current activating over a low voltage range (−60 to
−30 mV, Fig. 3e,f, closed symbols). These currents were
blocked by DTx-I confirming mediation by Kv1 channels,
and by tityustoxin Kα, which is specific for channels
containing Kv1.2 subunits, but were less sensitive to
dendrotoxin-K, which blocks Kv1.1-containing channels
(Dodson et al. 2002, 2003). Immunohistochemistry has
confirmed that Kv1.2 subunits are located in the axon (see
Fig. 3g) immediately adjacent to, but excluded from, the
terminal itself. Thus, Kv1.2 localisation seems to overlap
with the Nav1.6 location (Leao et al. 2005), compatible
with a role in regulating threshold excitability.

Blockade of presynaptic Kv1 channels has no effect on
AP halfwidth (Dodson et al. 2003) or on evoked transmitter
release (Brew and Forsythe 1995) from a single AP but
blockade increases DAP amplitude, which then elicits
additional aberrant APs during the DAP. These results
suggest that presynaptic Kv1 functions to shunt and to
suppress terminal hyperexcitability and so minimises AP
“reflection”. Reflection arises because the duration of the
DAP outlasts the Na+-channel refractory period, thus
generating an antidromic AP under certain conditions
(Dodson et al. 2003). Of note, Kv1 currents of the calyx
of Held show little inactivation (Forsythe 1994; Dodson et
al. 2003) and the calyx exhibits no short-term plasticity
attributable to Kv1 channels. However, inactivating K+

currents do contribute to AP repolarisation at mossy fibre
terminals (Geiger and Jonas 2000) and neurohypophysial
terminals (Jackson et al. 1991; Thorn et al. 1991), where
accumulation of inactivation during AP trains increases AP
duration and Ca2+ influx and causes short-term facilitation
of transmitter release.

IK,HV currents mediated by Kv3 channels Early recordings
from the calyx have demonstrated that calyceal high
voltage-activated outward K+ currents are blocked by

micromolar concentrations of 4-aminopyridine (Forsythe
1994). Low millimolar (1–3 mM) concentrations of
tetraethylammonium (which blocks Kv3 currents) increase
AP duration (Wang and Kaczmarek 1998) and transmitter
release (Ishikawa et al. 2003; Fig. 3d). Immunohistochem-
ical studies at the light-microscopic level show that Kv3
subunits are absent from the heminode and so do not
overlap with Kv1 or Nav1.6 channels (Dodson et al. 2003;
Fig. 3g). Intriguingly, in EM studies, little or no Kv3.1b
immunostaining has been observed on the release face but
is concentrated on the non-release face of the synapse
(Elezgarai et al. 2003). The reasons for this are unknown
since, from a biophysical perspective, their location on one
synaptic face or another would have little impact on their
ability to repolarise presynaptic APs. One rationale, given
that the calyx can occupy over 60% of the postsynaptic
soma surface, is that accumulation of K+ in the small
volume of the synaptic cleft would have a dramatic impact
on pre- and postsynaptic membrane potential and so, by
locating these channels on the non-release face, secondary
depolarisation of the pre- and postsynaptic membrane
potentials is probably minimised; however, the mechanism
of this localisation or exclusion from the release face is
unknown. Given the broad distribution of phosphorylated-
Kv3.1b in both postsynaptic and presynaptic compartments

Fig. 3 Presynaptic patch-clamp recordings from the calyx of Held:
the nerve terminal action potential (AP) and voltage-gated K+

currents. a Nomarski image (differential interference contrast) of a
single MNTB neuron with surrounding calyx (arrows). Presynaptic
recording from this terminal was confirmed by labelling with Lucifer
yellow from the patch pipette. Scale Neuronal diameter: 18 μm. b An
orthodromic presynaptic AP followed by a depolarising after-potential
(DAP). Modified, with permission, from Borst et al. (1995). c Normalised
presynaptic APs at three different postnatal developmental stages. The
presynaptic AP is brief at P7 (half-width: ~0.5 ms) but becomes even
briefer with further postnatal development. Modified, with permission,
from Taschenberger and von Gersdorff (2000); copyright 2000 by the
Society for Neuroscience. d Paired pre- and postsynaptic recording.
Application of 1 mM tetraethylammonium (TEA; blocks the high-
voltage-activated K+ current) increases AP duration (Pre) and increases
transmitter release (EPSC). Taken, with permission, from Ishikawa et al.
(2003); copyright 2003 by the Society for Neuroscience. e Outward K+-
currents of the calyx of Held generated on depolarisations from a holding
potential of −70 mV. Current traces are shown for voltage steps from −70
to −5 mV, under control conditions in the presence of tetrodotoxin (top)
and following application of tityustoxin-Kα (100 nM, TsTx-Kα, Kv1.2
antagonist). The current amplitudes observed with steps to −40 mV
(which largely correspond to the low-voltage-activated K+ current, IK,LV)
are indicated by filled black bar (left). f Current-voltage relationship of
outward K+ currents plotted at the time indicated by filled and open
symbols in e. Note that TsTX-Kα blocks all outward current at voltages
up to −30 mV. Taken, with permission, from Dodson et al. (2003).
g Immunolocalisation of Kv3.1b and Kv1.2 subunits in the calyx
(left, red) and the last 2 μm of the axon (arrow). Kv1.2 subunits are
not located in the calyx but are present in the last portion of the
axon (centre, green). The overlay (right) shows that Kv3 and Kv1
channels are located in distinct compartments (stars, daggers). Bar
10 μm. Taken, with permission, from Dodson et al. (2003)

b
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of the MNTB (Song et al. 2005), Kv3.1 modulation
probably also occurs in the presynaptic terminal, but this
has yet to be directly demonstrated.

IH currents As yet, little information has been obtained
regarding K+ channels responsible for setting RMPs in the

MNTB, but there is good evidence for the participation of
an IK,LV and IH in octopus cells (Bal and Oertel 2001).
Hyperpolarisation-activated non-specific cation currents,
known as IH, are mediated by HCN subunits and are
permeable to K+ and Na+ (their reversal potential is around
−30 mV). They have relatively slow kinetics but are active
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at RMPs and are broadly expressed in the CNS (Santoro et
al. 2000), being associated with oscillatory rhythm (Hu et
al. 2002) and the control of dendrite excitability (Day et al.
2005). IH currents are present in the calyx of Held and the
postsynaptic MNTB neuron (Banks et al. 1993; Cuttle et al.
2001). HCN1 and HCN2 subunits are expressed in specific
neuronal patterns in various auditory brainstem nuclei
(Koch et al. 2004). IH localised in presynaptic terminals
can influence exocytosis at the crustacean NMJ (Beaumont
and Zucker 2000) but, although initial studies have
suggested similar effects in the hippocampus (Mellor et al.
2002), this has not been confirmed (Chevaleyre and
Castillo 2002) and, at the calyx of Held, the blocking of
IH does not modulate transmitter release (Cuttle et al.
2001). IH is also present at inhibitory synaptic terminals of
cerebellar basket cells (Southan et al. 2000) where the
blocking of IH (with ZD7288) increases the frequency of
spontaneous inhibitory postsynaptic currents. IH is modu-
lated by intracellular cAMP at both the postsynaptic MNTB
neuron (Banks et al. 1993) and the presynaptic terminal
(Cuttle et al. 2001) and so could contribute to activity-
dependent modulation of the presynaptic RMP, in concert
with other low voltage-activated currents and leak channels.

Ca2+-activated K+ channels There is good evidence that
large conductance (BK) Ca2+-activated K+ channels
(generated by slo1 subunits) are widely expressed and
influence transmitter release at the amphibian (Robitaille
et al. 1993) and mammalian (Katz et al. 1995) neuromus-
cular junctions. Recent immunohistochemical studies
have shown that slo1 is present in axons and terminals
associated with glutamatergic synapses (Misonou et al.
2006). Pharmacological studies have shown that the BK
antagonist iberiotoxin blocks a slow current in the calyx
of Held (Ishikawa et al. 2003) and another study has noted
a K+ current activated by Ca2+ uncaging in the calyx of
Held; this current is suppressed by tetraethylammonium
(Wölfel and Schneggenburger 2003), which also blocks
BK channels. However, further characterisation is re-
quired to understand the contribution of Ca2+-activated K+

channels to the regulation of transmitter release. In situ
hybridisation and immunohistochemical data suggest that
the related Na+-dependent K+ channels, Slick and Slack
(Bhattacharjee and Kaczmarek 2005), are expressed in the
MNTB; their function is currently being assessed.

Calcium channels at the calyx of Held

Presynaptic Ca2+ channels have received considerable atten-
tion, since the calyx of Held preparation offers the means to
study the presynaptic Ca2+ channels involved in triggering
exocytosis at a glutamatergic synapse directly. Whole-

terminal recordings under conditions suitable for blocking
voltage-gated Na+ and K+ channels show peak inward Ca2+

currents of between 1–2 nA with 2 mM [Ca2+]o (Borst et al.
1995; Borst and Sakmann 1996, 1998b; Forsythe et al. 1998;
see Fig. 4a). Patch-clamp and immunohistochemical studies
in young rats prior to the opening of the auditory canal (P10)
have revealed that N-, R- and P-type Ca2+ channels
contribute to the voltage-dependent Ca2+ influx (Wu et al.
1999). However, a shift in the balance of the presynaptic
subunits occurs so that, from around P10, the Ca2+currents
triggering exocytosis are sensitive only to ω- agatoxin-IVA
(Forsythe et al. 1998), indicating the dominance of the
P-type Ca2+ channel formed by CaV2.1 subunits. The
sensitivity of the presynaptic Ca2+ current to ω-agatoxin
IVA is shown in Fig. 4c. Developmental studies have clearly
demonstrated that the switch from mixed N- and P- to P-type
channels takes place at ~P10/11 (Iwasaki and Takahashi
1998; Iwasaki et al. 2000). Although most studies have used
voltage steps to evoke Ca2+ currents, Borst and Sakmann
(1998b) have studied the activation of Ca2+ current during a
presynaptic AP with two electrode voltage clamps and have
shown that the peak inward Ca2+ current occurs shortly after
the AP peak (Fig. 4d). A recent study of transmission
efficacy during synapse development has revealed that
acceleration of the presynaptic AP time-course decreases
Ca2+ influx, whereas EPSC amplitude increases during
maturation in mice, implying considerable enhancement in
coupling efficacy during calyx of Held development (Yang
and Wang 2006).

The presynaptic P-type Ca2+ channel shows the classical
bell-shaped current/voltage curve (Fig. 4b) with little
current at voltages negative to −40 mV and peak inward
currents between −20 mV and 0 mV. The terminal does not
possess any transient (“T-type”) Ca2+ currents as can be
seen by contrasting the Ca2+ currents evoked in a bushy cell
body (which shows a clear T-type Ca2+ current) with the
same voltage protocols delivered to a calyceal terminal
(Fig. 4e, lower traces). The presynaptic P-type current is
subject to several activity-dependent modulations. A form
of Ca2+-dependent inactivation (Forsythe et al. 1998) can
be seen from the initial decay of the current in the largest
(−15 mV step) current trace in Fig. 4a. The inactivation
depends on the presence of extracellular Ca2+ and, by
analogy with the modulation of recombinant P/Q Ca2+

channels (DeMaria et al. 2001), this could be mediated by
Ca2+/calmodulin binding. Ca2+-current inactivation contrib-
utes to synaptic depression following prolonged high-
frequency activity (Forsythe et al. 1998) and during the
onset of repetitive stimulation (Xu and Wu 2005). At
short intervals, a short-term Ca2+-dependent facilitation
lasting up to 100 ms occurs, which is distinct from the
voltage-dependent relief of G-protein inhibition (Borst
and Sakmann 1998a; Cuttle et al. 1998) and is mediated
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by frequenin/NCS-1 (neuronal Ca2+ sensor 1; Tsujimoto
et al. 2002). CaV2.1 knock-out mice, which lack func-
tional P-type channels, maintain transmission at the calyx
of Held through compensation by N-type channels
(Inchauspe et al. 2004; Ishikawa et al. 2005). Differences

between transmission in the knock-out and wildtype
animal have given important clues to the physiological
function of P-type channels. Although peak Ca2+ current
is lower in the CaV2.1 knock-out, the major difference is
the absence of Ca2+-dependent facilitation of the N-type

Fig. 4 Presynaptic calcium currents. a Ca2+ currents evoked from a
prepulse to of −120 mV show no activation until step depolarisations
are positive to −40 mV. The current activates rapidly and exhibits
marked inactivation at the more positive steps (−15 mV). b The
current-voltage relationship (for the same terminal as in a) shows
steep voltage-dependent activation, with peak inward currents being
elicited at around −15 mV; an apparent reversal potential is observed
at around +45 mV. c In animals older than P10, most of the
presynaptic Ca2+ current is blocked by ω-agatoxin-IVA. Large
depolarisations (double arrow) relieve the block. A high dose
(200 nM) blocks around 97% of the current and the remainder is
blocked by cadmium (50 μM). a–c Reprinted with permission from
Elsevier, from Forsythe et al. (1998). d The Ca2+ current elicited by
a presynaptic AP at 36°C. Top Two-electrode voltage-clamp was

made on a single calyx of Held nerve terminal by using a measured
AP as a voltage-clamp command waveform. Middle Total current.
Bottom Ca2+ current as the difference current. Taken, with
permission, from Borst and Sakmann (1998b). e Ca2+ currents of
bushy cell body and calyx of Held terminal with identical voltage
protocols, stepping from −100 mV to either −50 mV or −10 mV.
Note that the transient Ca2+ current is only apparent in the bushy cell
body and no current is evoked at −50 mV in the calyx (HP holding
potential). Modified, with permission, from Doughty et al. (1998).
f The metabotropic glutamate receptor agonist L-AP4 reduces the
amplitude of the presynaptic Ca2+ current. Single traces are super-
imposed and the complete I/V is shown below. Reprinted, with
permission, from Takahashi et al. (1996), copyright 1996 AAAS
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presynaptic current, suggesting that this facilitation is
dependent on the expression of P-type Ca2+ channels
(Inchauspe et al. 2004; Ishikawa et al. 2005).

Postsynaptic glutamate receptors
and their developmental regulation

The calyx of Held is a glutamatergic synapse, and early
postsynaptic voltage-clamp recordings have shown a fast
component of the EPSC that is sensitive to the AMPA/
kainate-receptor antagonist CNQX, and a slow component
blocked by the NMDA-receptor antagonist AP-5 (Forsythe
and Barnes-Davies 1993). The fast EPSC component is also
blocked by GYKI 52466 showing that it is mediated
exclusively by AMPA receptors (Futai et al. 2001). In
young animals (P8–P10), NMDA-receptor-mediated syn-
aptic conductance is comparable to, or larger, than the
AMPA component (von Gersdorff et al. 1997; Joshi and
Wang 2002) but, with postnatal maturation, the NMDA-
receptor-mediated EPSC is downregulated (Taschenberger
and von Gersdorff 2000; Futai et al. 2001; Joshi and Wang
2002), with only a small NMDA EPSC remaining after
P20. At the same time, the decay time constant of AMPA-
receptor-mediated EPSCs and miniature EPSCs (mEPSCs)
is speeded up during development (Taschenberger and von
Gersdorff 2000; Joshi and Wang 2002; Joshi et al. 2004),
reaching values of ~0.3 ms after P20 in rats and mice (Futai
et al. 2001; Yamashita et al. 2003; Fernández-Chacón et al.
2004). The fast AMPA EPSC decay is caused by the fast
rates of AMPA-receptor deactivation and desensitisation,
which are probably determined by the high expression
levels of the AMPA-receptor “flop” splice variants in these
neurons, as revealed by single-cell polymerase chain
reaction (Geiger et al. 1995; Koike-Tani et al. 2005). The
fast decay of AMPA EPSCs is also observed in
glutamatergic synapses made by auditory fibres in the
chick nucleus magnocellularis (Zhang and Trussell 1994)
and on bushy and stellate cells in the mammalian cochlear
nucleus (Isaacson and Walmsley 1995; Gardner et al.
1999). Fast AMPA-receptor signalling is seen as an
adaptation for the preservation of timing information in
these auditory circuits (Trussell 1999).

Quantal properties of transmission (N, p, q)

Since the discovery by Katz and colleagues that, at the
neuromuscular junction, chemical synaptic transmission is
quantal (Katz 1969), a major goal has been to understand
the regulation of quantal parameters underlying transmis-
sion at a given synapse. The quantal hypothesis states that
the amplitude of a postsynaptic current (PSC; or postsyn-

aptic potential) is determined by the product of the quantal
amplitude q, the number of release sites N and the
probability p that release occurs at each site:

PSC ¼ q � N � p ð1Þ
The quantal amplitude q is a measure of membrane

current induced by neurotransmitter release from a single
presynaptic vesicle. The presynaptic factors N and p are
dimensionless. The mathematical derivation of this bino-
mial theory for quantal release (Quastel 1997; Scheuss and
Neher 2001) postulates N independent release sites, from
each of which exactly one or no release event may occur
per AP. The “release site” in this definition is equal to the
physical docking site of an individual vesicle. It is
important to note, however, that a “release site” in the
binomial model is not identical to an active zone. A
morphologically defined active zone usually has more than
one docked vesicles (range: 3–8; see above), most of which
are thought to be fusion-competent (Schikorski and Stevens
2001). Thus, a given stimulus could release zero, one, or
several vesicles at an individual active zone: hence,
“multivesicular release” (Wadiche and Jahr 2001). During
multivesicular release, postsynaptic receptors become in-
creasingly saturated, so that the postsynaptic conductance
change will not grow linearly with the second, third, ... nth
vesicle released simultaneously at the same active zone
(Auger et al. 1998; Meyer et al. 2001). Thus, several
released vesicles from a given active zone interact
postsynaptically because of the limited number of postsyn-
aptic receptors (Matveev and Wang 2000). Work on the
calyx of Held has shown that N, depending on the means
taken to minimise postsynaptic receptor saturation and on
the type of stimulus used to evoke release (AP-stimulation
versus direct presynaptic depolarisation or Ca2+ uncaging),
often lies between two biologically relevant numbers: the
number of active zones (Naz) and the number of readily
releasable vesicles (Nves).

The quantal size q at the calyx of Held has been
determined from spontaneous EPSCs (either in the absence
or presence of TTX) and amplitude histograms generally
show means between 30–35 pA at room temperature and at
a holding potential of approximately −70 mV, with coefficients
of variation of 0.3–0.5 (see Fig. 5a; Sahara and Takahashi
2001; see also Chuhma and Ohmori 1998; Schneggenburger
et al. 1999; Meyer et al. 2001; Taschenberger et al. 2005).
Spontaneous EPSCs might be multiquantal if presynaptic
APs trigger release; however, the application of 1 μM TTX
does not influence the frequency or amplitude of sponta-
neous EPSCs at the calyx of Held (Ishikawa et al. 2002)
and, hence, spontaneous EPSC recorded in the absence of
TTX are probably also true mEPSCs. In rats older than
P8–P10, mEPSCs are ~50 pA (Taschenberger et al. 2005)
and an increase in temperature to ~37°C leads to an
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increase of the quantal amplitude by ~50% (Kushmerick
et al. 2006; M. Postlethwaite, M. Hennig, B.P. Graham
and I.D. Forsythe, submitted for publication). Release
from non-calyceal terminals may make a small contribu-
tion to the mEPSCs recorded in the MNTB principal
cells. However, sub-threshold depolarisations of the
calyx (Sahara and Takahashi 2001) or dialysis with
strongly Ca2+-buffered solutions to increase presynaptic
[Ca2+]i beyond baseline (Sun et al. 2002; Lou et al. 2005)
increases mEPSC frequency in simultaneous pre- and
postsynaptic recordings, indicating that the mEPSCs
occurring at rest are to a large part generated by the calyx.

The calyceal EPSC evoked by a single afferent fibre
stimulation is in the range of 4–8 nA, although currents in

excess of 15 nA are not uncommon. The values are more
than two orders of magnitude larger than the amplitude of a
single mEPSC. To a first approximation, then, the quantal
content m m ¼ N � pð Þ of an evoked EPSC is large (150–
250; Borst and Sakmann 1996; Schneggenburger et al.
1999). However, in the event of pooling of transmitter
between neighbouring active zones, as might occur by spill-
over of glutamate (DiGregorio et al. 2002), quanta may add
up non-linearly and the quantal content might be different.
To investigate quantal size during evoked transmission,
methods of non-stationary EPSC variance analysis (Scheuss
and Neher 2001) have been applied at the calyx of Held.
Meyer et al. (2001) have used a method in which the
decrease of EPSC amplitudes during short-term depression

Fig. 5 Quantal parameters of
synaptic transmission at the
calyx of Held. a Amplitude
distribution of spontaneous
“miniature” EPSCs (mEPSCs).
Sample traces are shown right.
Taken, with permission, from
Sahara and Takahashi (2001).
b Variance-mean analysis of
evoked EPSCs under conditions
of high release probability
(15 mM [Ca2+]o). The variance-
mean plot shows a maximum
(right). A parabola was fitted to
the four right-most lying data
points (right). Extrapolation to
maximal EPSC amplitudes gave
an estimate of the binomial
parameter N. Taken, with per-
mission, from Meyer et al.
(2001); copyright 2001 by the
Society for Neuroscience.
c Probing the size of a pool of
readily releasable vesicles by
strong presynaptic depolarisa-
tions. A presynaptic depolarisa-
tion to 0 mV for 50 ms,
preceded by a brief pre-pulse to
+80 mV, evoked a presynaptic
Ca2+ current (ICa) and a large
postsynaptic EPSC (~16 nA).
Deconvolution of the EPSC
with the waveform of the
underlying “quantal” mEPSC
gave the cumulative release rate
(bottom), which was fitted with
a double-exponential function
(bottom, dotted line). Reprinted,
with permission from Elsevier,
from Sakaba and Neher (2001b)
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is used to lead the synapse repetitively through various
states of release probability (Fig. 5b). Under normal
recording conditions with 2 mM [Ca2+]e, the variance-mean
relationship of peak EPSC amplitudes during depression
induced by a 10-Hz train is linear, indicating that the release
probability is quite low at 2 mM [Ca2+]e. With the limiting
condition of low p, the variance-mean data should only
cover the linearly rising phase of a parabola, and the slope
should be equal to the underlying quantal size. The slopes
averaged ~25–30 pA, which is only slightly smaller than
the mean of amplitude distributions of spontaneous
mEPSCs, which is ~31 pA (Meyer et al. 2001). With a
similar EPSC variance-mean approach, Taschenberger et al.
(2005) have determined the quantal size during evoked
transmission to be somewhat higher at ~50 pA. There is,
therefore, no reason to assume that sub-linear quantal
summation occurs during evoked EPSCs under conditions
of normal release probability (2 mM [Ca2+]e). Thus, we can
conclude that a single AP evoking an EPSC of 4–8 nA is
caused by the release of between 150–250 quanta from the
presynaptic terminal.

This still leaves open the question regarding the number
of independent units N mediating release at the calyx of
Held. The binomial parameter N can be estimated from
EPSC variance-mean plots by extrapolating to the maximal
EPSC amplitude (Silver 2003). Since the EPSC variance-
mean relationship is linear at normal release probability
(see above), Meyer et al. (2001) enhanced the release
probability by increasing [Ca2+]e from 2 mM to 15 mM;
this leads to a five-fold to seven-fold potentiation of the
EPSC amplitude. At 15 mM [Ca2+]e, a maximum in the
EPSC variance-mean plot has been observed in many cases
(Meyer et al. 2001) and the parabolic fit has been
extrapolated to the maximal EPSC amplitude (Fig. 5b,
right panel). Dividing this value by the quantal size should
give an estimate of N, which was found to be ~600 on
average between individual cells. Considering indications
of multivesicular release and AMPA-receptor saturation
(see above), Meyer et al. (2001) interpreted this value
of N as an upper-limit of the number of functional active
zones that contribute to transmission at the calyx of Held,
rather than representing a true “single vesicle release
constraint” at each active zone, as postulated at other
synapses based on EPSC variance-mean analysis (Korn
et al. 1981; Silver et al. 2003). Although the cell-to-cell
variability of the estimated parameter N is large (~200 to
more than 1000; Meyer et al. 2001), there is remarkable
agreement with the number of active zones estimated in the
EM studies (~500; Sätzler et al. 2002; Taschenberger
et al. 2002; see above).

How many readily releasable vesicles are available at
the calyx of Held? An early attempt to estimate the
readily releasable pool employed a method based on

cumulative EPSC amplitudes during 100 Hz stimulation
(Schneggenburger et al. 1999). High-frequency stimula-
tion leads to strong depression of EPSC amplitudes at the
calyx of Held (Borst et al. 1995; Wang and Kaczmarek 1998;
Schneggenburger et al. 1999; see also below). If depression
is primarily caused by a presynaptic mechanism related
to the depletion of a readily releasable pool, then back-
extrapolation of the cumulative EPSC amplitude to the
onset time of the stimulus train should give an estimate
of the readily releasable pool. This method gave values
of ~600 vesicles (Schneggenburger et al. 1999) or ~800
vesicles (Bollmann et al. 2000). However, it later became
apparent that the depression induced by 100-Hz trains was
not purely presynaptic (Scheuss et al. 2002; Wong et al.
2003; see below). Correcting for the decrease in quantal size
caused by postsynaptic desensitisation suggests that ~900
vesicles are released during the first five pulses of a 100-Hz
train (Scheuss et al. 2002).

Direct stimulation of the presynaptic nerve terminal with
prolonged presynaptic depolarisations has shown that the
number of readily releasable vesicles at the calyx of Held is
even larger. Sakaba and Neher (2001a) have made
simultaneous pre- and postsynaptic voltage-clamp record-
ings under conditions aimed at isolating voltage-gated Ca2+

currents. Using long (50 ms) presynaptic depolarisations
that evoke EPSCs of 10 nA or larger (see also Wu and
Borst 1999), they analysed the time-course of quantal
release rates by EPSC deconvolution (Neher and Sakaba
2001) and found that ~3,000 vesicles are released in two
kinetically distinct release phases, with time constants of
~2 ms and ~30 ms, respectively (Fig. 5c; Sakaba and Neher
2001b). The double-exponential time-course was inter-
preted as representing release from two classes of readily
releasable vesicles, which are sometimes called FRP (“fast-
releasing pool”) and SRP (“slow-releasing pool”). The
reason for the different release kinetics of FRP and SRP
vesicles are not known at present; this may be caused either
by a differential vesicle-to-Ca2+-channel localisation on the
nanometer scale (Meinrenken et al. 2002) or by differences
in the Ca2+ sensitivity between FRP and SRP vesicles, as
observed in chromaffin cells (Voets 2000; for a review, see
Sorensen 2004).

Presynaptic capacitance measurements after inducing
presynaptic Ca2+ currents also suggest the release of a large
number of vesicles (~3,300–5,000; Sun and Wu 2001) with
a time constant of about 3 ms. Similarly, release evoked by
Ca2+ uncaging, which raises [Ca2+]i to ~10–15 μM, has a
fast- and slow-release component with a total release of
~3,000 vesicles as estimated by EPSC deconvolution
(M. Wölfel, X. Lou and R. Schneggenburger, submitted) or
~4,000 vesicles when estimated by presynaptic capacitance
measurements (Wölfel and Schneggenburger 2003). Thus,
there is broad agreement across several studies that strong
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direct Ca2+ stimuli of the presynaptic nerve terminal
stimulates the release of ~3,000–4,000 vesicles at the calyx
of Held, probably in more than one kinetic release
component.

The large number of readily releasable vesicles from
functional studies reflects the overall “giant” structure of
the calyx of Held, with several hundred presynaptic active
zones in EM reconstructions (~300–700 active zones;
Sätzler et al. 2002; Taschenberger et al. 2002). The number
of readily releasable vesicles as defined in functional
studies (~3,000–4,000; see above) is somewhat larger than
the EM estimates of morphologically docked vesicles,
which were ~1,100–2,800, depending on the exact distance
of vesicles from the membrane and on postnatal age
(Sätzler et al. 2002; Taschenberger et al. 2002). Neverthe-
less, considering that the functional pool size is variable
between cells (Wölfel and Schneggenburger 2003) and that
ultrastructural analysis can only reconstruct one or a few
calyces, the agreement between the functional and the
morphological data is reasonable. If a single AP releases
~150–200 vesicles (see above), then the average release
probability of a given readily releasable vesicle (pves) must
be low (~200/3,000 or 5%–7%). Such a small release
probability pves has consequences for our understanding of
the mechanisms of short-term plasticity at the calyx of Held
(see below).

Presynaptic Ca2+ signalling and the intracellular Ca2+

sensitivity of synaptic vesicle fusion

The good accessibility of the calyx of Held to whole-cell
recording has also been used for combined electrophysio-
logical and Ca2+-imaging studies investigating presynaptic
Ca2+ dynamics in a single nerve terminal. Ca2+ imaging has
shown that the spatially averaged, free Ca2+ concentration
([Ca2+]i) signal in the calyx has an amplitude of ~400 nM
and decays with a time constant of 80–100 ms (Helmchen
et al. 1997). The fast decay of [Ca2+]i, which is also
apparent after brief trains of presynaptic stimuli (~40 ms;
Billups and Forsythe 2002) is caused by effective Ca2+-
extrusion mechanisms, such as Na+-Ca2+ exchangers, Ca2+-
ATPases in the plasma membrane (Kim et al. 2005) and
uptake of Ca2+ into mitochondria (Billups and Forsythe
2002). In addition, slow Ca2+ binding to the Ca2+-binding
protein parvalbumin, which is present in calyces of Held
(Felmy and Schneggenburger 2004), further accelerates the
decay of spatially averaged [Ca2+]i (M. Müller, B.
Schwaller and R. Schneggenburger, submitted).

Since transmitter release occurs at the membrane in close
proximity to voltage-gated Ca2+ channels, the “local”
intracellular Ca2+ signal relevant for vesicle fusion and
transmitter release must be substantially higher than the

spatially averaged [Ca2+]i. Indeed, theoretical work in the
1980s has shown that the fast time-course (~1 ms) of
transmitter release during an AP in the nerve terminal can
only be explained by a similarly rapid rise and decay of the
local Ca2+ signal (Chad and Eckert 1984; Simon and Llinás
1985; Yamada and Zucker 1992; Roberts 1994). Neverthe-
less, the relationship between the presynaptic intracellular
Ca2+-concentration ([Ca2+]i) and transmitter release was
unknown for CNS synapses until recently. The application
of simultaneous pre- and postsynaptic patch-clamp mea-
surements, combined with presynaptic Ca2+ uncaging,
has been used to study the intracellular Ca2+ requirements
for vesicle fusion at the calyx of Held (Bollmann et al.
2000; Schneggenburger and Neher 2000; Felmy et al.
2003b; Wölfel and Schneggenburger 2003; Bollmann and
Sakmann 2005; Lou et al. 2005).

Figure 6a shows a Ca2+-uncaging experiment at the calyx
of Held (Schneggenburger and Neher 2000). The good
accessibility of the calyx to whole-cell patch-clamp recordings
was used to load the nerve terminal with a mixture of a Ca2+-
loaded light-sensitive Ca2+ chelator (DM-nitrophen) and a
suitable low-affinity Ca2+ indicator (fura-2FF in the case of
Fig. 6a). A brief flash of light (~1 ms; Schneggenburger and
Neher 2000) or a UV-laser pulse (Bollmann et al. 2000) then
photolyzed part of the DM-nitrophen, leading to a rapid
increase in [Ca2+]i that returned slowly (t1/2: ~150 ms) to
baseline (Fig. 6a, left). Such step-like [Ca2+]i elevations
triggered transmitter release that was measured as an EPSC
in simultaneous postsynaptic whole-cell recording (Fig. 6a,
right). The amount and the kinetics of release depended on the
[Ca2+]i reached after the flash.

During Ca2+ uncaging, spatial gradients of [Ca2+]i as
occur during the opening of presynaptic Ca2+ channels are
avoided. Since the Ca2+-loaded DM-nitrophen is most
probably homogeneously distributed in the cytosol, Ca2+

uncaging should generate homogeneous [Ca2+]i elevations
(Naraghi et al. 1998). Thus, the [Ca2+]i measured after
uncaging is equal to the [Ca2+]i signal that drives
transmitter release. An estimate of the local Ca2+ transient
at the site of vesicle fusion can then be obtained by back-
calculation from the measured Ca2+ sensitivity in a “reverse
approach” (for a review, see Schneggenburger and Neher
2005). First, the relationship between transmitter release
rate and presynaptic [Ca2+]i is measured and fitted with a
kinetic model of Ca2+ binding and vesicle fusion, taking
into account the kinetic parameters of transmitter release,
such as Ca2+-dependent synaptic delay. The models
incorporate five Ca2+-binding steps, since the relationship
between transmitter release and [Ca2+]i is highly non-linear,
with a slope of ~4–5 in a double-logarithmic data plot
across a range of ~2–8 μM [Ca2+]i (see also Fig. 6b, right).
The parameters of the model can then be used to predict the
time-course and amplitude of the local Ca2+ signal as
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“seen” by an average readily releasable vesicle. A brief
local Ca2+ signal of 10–25 μM amplitude, with a half-width
of ~0.5 ms is compatible with transmitter release following
a presynaptic AP (Bollmann et al. 2000; Schneggenburger
and Neher 2000).

Comparison of this transient local Ca2+ signal at the
release site with the spatially averaged [Ca2+]i signal of the
whole terminal (~400 nM; see above) shows that the local
Ca2+ signal is about 20–40 times higher than the spatially
averaged signal and that it decays ~50–100 times faster.
The brief duration of the back-calculated local Ca2+ signal
(~0.5 ms) was recently confirmed more directly (Bollmann
and Sakmann 2005). In this study, Ca2+ uncaging induced
by laser-pulses was used to produce rapidly decaying
[Ca2+]i transients by including millimolar concentrations
of the slow Ca2+ buffer EGTA in the presynaptic pipette
solution. The fluorescence change of a low-affinity Ca2+

indicator was measured after the laser-pulses, and the
[Ca2+]i transient, which was slightly faster than the
measured fluorescence change, was back-calculated accord-
ing to kinetic modelling. EPSC amplitude and rise-time
(reflecting the amount and kinetics of transmitter release)
depended on the width of the presynaptic [Ca2+]i transient.
Brief [Ca2+]i transients with a half-width of less than
0.5 ms were needed to produce EPSCs with a similarly

rapid rising phase as those produced during a presynaptic
AP (Bollmann and Sakmann 2005).

Recently, the intracellular Ca2+ requirements for low rates
of asynchronous transmitter release have been investigated at
the calyx of Held (Lou et al. 2005; see Fig. 6b). The
presynaptic terminal was dialysed with strongly Ca2+-
buffered pipette solutions aimed at clamping the resting
[Ca2+]i to values between 50 nM and 800 nM and the
effective [Ca2+]i was measured with an indicator dye. This
showed that increasing [Ca2+]i above the resting value of
~30 nM in the calyx led to a clear increase in the frequency
of spontaneous mEPSCs (Fig. 6b, left) and, thus, that
“spontaneous” release was not completely independent of
[Ca2+]i. Plotting mEPSC frequency as a function of [Ca2+]i
gave a slope of less than 1 in the range of low [Ca2+]i
(Fig. 6b, right). Interestingly, the intracellular Ca2+ depen-
dency of mEPSC frequency was shown to be contiguous
with the [Ca2+]i dependency of release evoked by weak
flashes (Fig. 6b, right, open circles) and with the peak release
rates observed after flashes that elevated [Ca2+]i to >2 μM
(Fig. 6b, right, closed circles; Lou et al. 2005). The
authors concluded that the same Ca2+-sensing mecha-
nism mediated both asynchronous release close to resting
[Ca2+]i and transient release with Ca2+ uncaging steps to
higher [Ca2+]i. In order to explain the strongly reduced
Ca2+ cooperativity at low [Ca2+]i, an “allosteric” model
was proposed in which vesicle fusion could occur at low
rates in the absence of Ca2+ binding, although binding of
an increasing number of Ca2+ ions progressively in-
creased the vesicle fusion rate constants (Lou et al.
2005). This model is analogous to allosteric models for
ligand-gated ion channel activation (e.g. for cyclic-
nucleotide gated channels; Li et al. 1997), where
evidence for ion channel opening in the absence of
ligand binding has been obtained.

The finding that the Ca2+ cooperativity in triggering
vesicle fusion is low around resting [Ca2+]i (~1) and that it
increases to a value of ~4 with [Ca2+]i stimuli of higher
amplitudes (Fig. 6b, right) is also likely to be of particular
functional relevance. If a high cooperativity mechanism
operated close to baseline [Ca2+]i, then small sub-micro-
molar elevations of residual [Ca2+]i would produce strong
increases in transmitter release. This would be highly
undesirable as it would generate excessive “tonic” turn-
over of transmitter quanta at a synapse designed to transmit
information phasically, locked to each presynaptic AP. The
data by Lou et al. (2005) also reveal an amazing dynamic
range covered by the Ca2+ regulation of transmitter release:
from a “spontaneous” release rate of ~1 Hz at resting
[Ca2+]i to a peak transmitter release of ~300 vesicles/ms
during the AP (Schneggenburger and Neher 2000;
Taschenberger et al. 2005). Thus, the presynaptic AP
transiently increases the rate of transmitter release by

Fig. 6 Intracellular Ca2+ sensitivity of synaptic vesicle fusion.
a Presynaptic Ca2+ uncaging at the calyx of Held. Left, top A calyx
filled with fura-2FF and Ca2+-loaded DM-nitrophen imaged at low
and high resolution during and after the experiment, respectively. Left,
bottom Three flashes with different intensities elevated the presynaptic
intracellular Ca2+ concentration ([Ca2+]i) to ~8, 12 and 25 μM. Right,
top The EPSCs evoked by these [Ca2+]i elevations. Right, bottom
From the EPSCs, the transmitter release rates were determined by
EPSC deconvolution. Adapted, with permission from MacMillan,
from Schneggenburger and Neher (2000). b Ca2+ dependency of
transmitter release over an extended range of presynaptic [Ca2+]i. Left
Simultaneous pre- and postsynaptic recordings were made at resting
[Ca2+]i in the presynaptic terminal (top) or with strongly Ca2+-
buffered solutions aimed at elevating the presynaptic [Ca2+]i above
resting values (middle, bottom). Note that elevating [Ca2+]i above
baseline leads to an increased transmitter release rate, as is apparent by
the increased mEPSC frequency. Right The Ca2+ sensitivity of
asynchronous release measured by infusing terminals with strongly
Ca2+-buffered solutions (open symbols; see b, left) is contiguous with
the Ca2+ sensitivity as measured by Ca2+ uncaging (filled symbols).
The data were fitted with an “allosteric” model of Ca2+ activation of
vesicle fusion (black line). Adapted, with permission from MacMillan,
from Lou et al. (2005). c Botulinus toxin A (BotTx A), which
specifically cleaves the SNARE-protein SNAP-25, induces a right-
ward-shift of the intracellular Ca2+ sensitivity of vesicle fusion. Left
Ca2+-uncaging stimulus (arrow), followed by a strong presynaptic
depolarisation in a control cell. Middle Same protocol applied in a
calyx recorded with BotTx A added to the presynaptic patch pipette.
Right Relationship between release rates (normalised to the number of
readily releasable vesicles) and presynaptic [Ca2+]i after the flash is
shifted to the right in the presence of BotTx A. Adapted, with
permission, from Sakaba et al. (2005), copyright 2005 AAAS

R

Cell Tissue Res (2006) 326:311–337 325



~300,000-fold over resting values or by more than five orders
of magnitude for a [Ca2+]i elevation of approximately two to
three orders of magnitude (Fig. 6b, right). This is only
possible with a highly non-linear mechanism coupling the
rise of [Ca2+]i to transmitter release. Synaptotagmin-1 has
been identified as the Ca2+ sensor for a fast component of
transmitter release in hippocampal neurons (Geppert et al.
1994; Fernández-Chacón et al. 2001). At the calyx of Held,
where synaptotagmin-1 is not expressed, the close homo-
logue synaptotagmin-2 might play this role (Pang et al.
2006). However, the molecular mechanism responsible for
the high cooperativity of Ca2+ in vesicle fusion is still
unknown and needs to be addressed in future work.

A recent study has analysed the molecular determinants
of Ca2+-induced vesicle fusion by perfusing calyces with
various botulinum and tetatanus neurotoxins (Sakaba et al.
2005). These toxins proteolytically cleave SNAREs at
specific sites and thereby inhibit transmitter release (for a
review, see Humeau et al. 2000). When Sakaba et al. (2005)
included BotTx C1 or tetanus toxin (TeT), which specifi-
cally cleaves syntaxin or synaptobrevin, respectively, in the
presynaptic recording pipette, release was reduced but the
remaining release has similar kinetics (an “all-or-none”
effect of the toxins). On the other hand, in the presence of
BotTx A, which cleaves off the last nine amino acids of
SNAP-25, release in response to a Ca2+-uncaging step to
about 10 μM [Ca2+]i was nearly abolished, although higher
levels of Ca2+ uncaging could almost fully rescue release in
the presence of BotTx A (Fig. 6c, middle; Sakaba et al.
2005). Analysis of the release rate versus [Ca2+]i relation-
ship over a range of ~3–60 μM [Ca2+]i showed that BotTx
A induced an approximately four-fold rightward shift of the
intracellular Ca2+ sensitivity of vesicle fusion, without a
change in the apparent Ca2+ cooperativity as revealed by
the similar slopes in the double-logarithmic plots (Fig. 6c,
right). Thus, interfering with the integrity of the presynaptic
SNARE-complex can lead to a decrease in the Ca2+

sensitivity of release.

Mechanisms of short-term plasticity

Repetitive stimulation of afferent fibres leads to a pro-
nounced frequency-dependent depression of EPSCs at the
calyx of Held synapse (Borst et al. 1995; von Gersdorff et
al. 1997; Wang and Kaczmarek 1998). Thus, the calyx is a
depressing synapse but facilitation of the second EPSC
amplitude is sometimes observed in response to high-
frequency trains (e.g. Schneggenburger et al. 1999). The
facilitation can be uncovered by lowering the initial release
probability with low extracellular [Ca2+] (Barnes-Davies
and Forsythe 1995; Borst et al. 1995) or by lowering the
quantal output during the first stimulation in paired pre- and

postsynaptic whole-cell recording (Sakaba and Neher
2001a; Felmy et al. 2003b) and under conditions where
postsynaptic desensitisation has been minimised (Wong et
al. 2003). Felmy et al. (2003a,b) have studied the
mechanism of short-term facilitation and found, by using
Ca2+ uncaging, that the intracellular Ca2+ sensitivity of
vesicle fusion is unchanged during facilitation. Following
prolonged high-frequency stimulation, the calyx of Held
shows a pronounced post-tetanic potentiation of transmitter
release, which is mediated by a mechanism dependent on
residual Ca2+, but different from that implicated in short-term
facilitation (Habets and Borst 2005; Korogod et al. 2005).
Thus, short-term plasticity at the calyx of Held appears to be
similar to that at the neuromuscular junction, with depression
prevailing during high-frequency trains at normal release
probability and a transient overshoot of transmission follow-
ing such trains (Liley and North 1953; Elmquist and Quastel
1965). Longer-lasting forms of plasticity have so far not been
apparent at the calyx of Held.

Direct whole-cell recordings from the nerve terminal
allow assessment of whether changes in the AP waveform
or changes in AP-mediated Ca2+ influx contribute to
synaptic depression. During the strong depression induced
by 100-Hz trains, AP amplitude decreases slightly and
becomes broader; however, presynaptic voltage-clamp
experiments show similar Ca2+-current integrals activated
by early and late AP waveforms (Borst and Sakmann
1999), suggesting that changes in AP waveform may not
contribute to the depression of release during brief high-
frequency trains. At lower frequencies (2–30 Hz), the Ca2+

current decreased with repetitive stimulation because of
Ca2+-current inactivation (Xu and Wu 2005). Although the
relative reduction of Ca2+ current is small (Fig. 7a, right),
with the high-power relationship between Ca2+ current and
release (3.6 as measured by Xu and Wu 2005), even a small
decrease is expected to be highly efficient in modulating
transmitter release and the decrease expected by a simple
3.6th power relationship predicted the observed depression
of EPSC amplitudes (Fig. 7a, right; Xu and Wu 2005).
Thus, Ca2+-current inactivation, which was first shown to
mediate the “deep” depression observed after prolonged
high-frequency stimulation at the calyx of Held (Forsythe et
al. 1998), also contributes to the depression observed
during the onset of low-to-intermediate frequency trains
(2–30 Hz).

Depletion of a readily releasable vesicle pool was also
postulated to contribute to depression at the calyx of Held
(von Gersdorff et al. 1997; Schneggenburger et al. 1999;
Weis et al. 1999). In the following years it became clear,
however, that the AMPA-R desensitisation that had been
observed earlier at glutamatergic chick endbulb synapses
(Trussell et al. 1993; Otis et al. 1996) might play a larger
role in depression at the calyx of Held than initially
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suspected. Neher and Sakaba (2001) have found that
cyclothiazide, which very effectively slows the rate of
desensitisation of AMPA-R in MNTB principal cells
(Koike-Tani et al. 2005), reduces the depression of EPSCs
observed in simultaneous pre- and postsynaptic recordings.
Using EPSC fluctuation analysis of the peak EPSC
amplitudes during 100-Hz trains at elevated release prob-
ability, Scheuss et al. (2002) estimated that, during the third
to fifth EPSC in a 100-Hz train, the quantal amplitude q
was reduced to ~35% of its initial value (see Fig. 7c). The
reduction of q was less strong in the presence of CTZ; with
CTZ and kynurenic acid (a low-affinity AMPA-R antago-
nist), q was stable throughout the first five pulses of a 100-
Hz train. Thus, the reduction of q during the second to the
fifth stimulus of a 100-Hz train is probably caused by
desensitisation of postsynaptic AMPA-Rs. Taschenberger et

al. (2002) and Wong et al. (2003) have also shown, by
using the low-affinity fast-off-rate antagonist, kynurenic
acid (and CTZ in some cases), that postsynaptic mecha-
nisms contribute to depression (Fig. 7b). The postsynaptic
contribution to depression is reduced with developmental
maturation (Taschenberger et al. 2002, 2005), perhaps
because changes in calyx morphology allow faster diffusion
of glutamate from the synaptic cleft (Renden et al. 2005).

The extent to which vesicle pool depletion contributes to
depression remains unclear. Several different mechanisms of
depression are present at the calyx of Held (see above) and
with a large pool of readily releasable vesicles (see above;
Schneggenburger and Neher 2000; Sakaba and Neher 2001a;
Sun and Wu 2001; Wölfel and Schneggenburger 2003), the
role of vesicle pool depletion early during high-frequency
trains seems less significant. However, a key finding is that

Fig. 7 Mechanisms of short-term depression at the calyx of Held.
a Inactivation of presynaptic Ca2+ current contributes to synaptic
depression. Left A presynaptic AP (top) was used as a voltage-clamp
command waveform and was applied twice with an interval of 500 ms.
The second pulse (red traces) evoked a smaller Ca2+ current (middle)
and a smaller EPSC (bottom). Middle ICa (top) and EPSCs (bottom)
evoked by 10 short presynaptic depolarisations at 2 Hz. Note the
decrease in ICa and EPSCs from the second depolarisation onwards.
Right The relative ICa and EPSC amplitudes plotted as a function of
stimulus number (black symbols). Because of the high-power relation-
ship between Ca2+ current and EPSCs with an exponent of 3.6, the
reduction in ICa might fully explain the depression of EPSCs. Modified,
with permission from Elsevier, from Xu and Wu (2005). b Postsynaptic
AMPA-receptor (AMPA-R) desensitisation contributes to depression
during high-frequency trains. Left EPSCs in response to a 100-Hz train

of afferent fibre stimuli, recorded at P6 (black trace control, green trace
after application of 50 μM cyclothiazide to remove AMPA-R
desensitisation, CTZ cyclothiazide). CTZ reduced the depression of
the 2nd and 3rd EPSCs. Modified, with permission from Elsevier, from
Taschenberger et al. (2002). c Estimated average quantal sizes during
the EPSCs evoked by a short 100-Hz train of stimuli, analysed from
EPSC variance and covariance under three different pharmacological
recording conditions. Note that, under control conditions, the quantal
size of ~35 pA during the first EPSC was strongly reduced with
subsequent stimuli. In the presence of CTZ (100 μM), or CTZ and
kynurenic acid (CTZ+Kyn; 1 mM), the quantal size reduction was less
or absent, respectively, indicating that postsynaptic AMPA-R desensi-
tisation and/or saturation was the cause for the observed quantal size
reduction. Taken from Scheuss et al. (2002), copyright 2002 by the
Society for Neuroscience
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certain stimuli used for measuring pool sizes (such as
prolonged voltage-clamp depolarisations, see Fig. 5c; Sakaba
and Neher 2001a) or Ca2+-uncaging stimuli (M. Wölfel, X.
Lou and R. Schneggenburger, submitted) lead to two
components of release that correspond to rapidly and to
more reluctantly releasable vesicles (see also Moulder and
Mennerick 2005). Sakaba (2006) has shown that the
“phasic” release that is time-locked to brief presynaptic
depolarisations is mediated, as expected, by fast-releasing
vesicles and that reluctant vesicles only contribute to the
asynchronous release that builds up during the train of
depolarisations. On the other hand, increasing the release
probability during trains of APs leads to successively larger
cumulative peak EPSC amplitudes in hippocampal synapses
(Moulder and Mennerick 2005). Moreover, strong Ca2+-
uncaging stimuli beyond 15 μM [Ca2+]i release an increasing
number of vesicles in the fast component at the calyx of
Held (M. Wölfel, X. Lou and R. Schneggenburger,
submitted). Both findings suggest that reluctant vesicles
can also be released rapidly, provided that [Ca2+]i is
sufficiently high. Clearly, more work is needed to define
the relationship between the fast-releasing and the more
reluctantly released vesicles and to determine the reasons for
their different release kinetics.

Endocytosis and presynaptic vesicle recycling

After fusion, vesicles are recycled for use, and the early
steps of this recycling pathway are mediated by
endocytic uptake of the vesicle membrane (Südhof
2004). A long-standing controversy exists with regard to
the contribution of “kiss-and run” release mechanisms
(which would imply extremely rapid endocytosis) and
slower mechanisms of membrane re-uptake (Royle and
Lagnado 2003). At the calyx of Held, presynaptic
membrane capacitance (Cm) measurements can be used
to detect the amount of exocytosis (Sun and Wu 2001;
Taschenberger et al. 2002; Wölfel and Schneggenburger
2003). The decrease in Cm following the stimulus
probably indicates membrane re-uptake by endocytosis,
as has been established in other model systems (for a
review, see Royle and Lagnado 2003). Exocytosis evoked
by a short AP-equivalent voltage-step at the calyx of Held
induced a measurable capacitance increase followed by a
rapid (~120 ms) and nearly complete decay of Cm,
initially suggesting that endocytosis after stimulation with
a single AP is fast, in the range of a few hundred
milliseconds (Sun et al. 2002). However, such a rapid and
complete Cm decay was not apparent in other work
(Taschenberger et al. 2002) and control experiments in
which calyces have been infused with botulinus toxins to
block exocytosis have subsequently indicated that the

rapid decay in Cm is not related to exo/endocytosis
(Yamashita et al. 2005; Wu et al. 2005). Endocytosis after
short AP-equivalent depolarisations is now estimated to
occur with a time constant of 10 s (Yamashita et al. 2005)
or 2 s (Wu et al. 2005); prolonged stimulation leads to the
slowing of endocytosis rates by up to ~30 s (Sun et al.
2002; Yamashita et al. 2005) as observed in hippocampal
neurons (Sankaranarayanan and Ryan 2000) by imaging
methods with synaptopHlourin (Miesenböck et al. 1998).
Endocytosis is blocked by internal perfusion with GTP-γS
or a peptide interrupting the dynamin-amphiphysin inter-
action, indicating that this membrane retrieval depends on
dynamin-1 GTPase activity (Yamashita et al. 2005).

Membrane retrieval at the calyx of Held has also been
investigated at the light-microscopic and EM level by
studying the uptake of styryl dyes or horseradish peroxidase
(HRP; de Lange et al. 2003). Prolonged stimulation at 5 Hz
for >15 min leads to de-staining of the styryl dye RH 414
with a time constant of 260 s, from which a recycling pool
of ~20,000 vesicles can be calculated (de Lange et al. 2003)
corresponding to ~5–10 times the number of readily
releasable vesicles of 3,000–4,000 (see above). De Lange
et al. (2003) also counted the number of RH-414-stained
vesicles by using photoconversion and electron microscopy.
After strong stimulation with high K+, HRP-labelled endo-
some-like structures were present, suggesting the activation
of bulk membrane retrieval, as previously observed at the
neuromuscular junction (Richards et al. 2000). With
prolonged 5 Hz stimulation, however, no sign of bulk
membrane retrieval was found and ~5% of all vesicles were
labelled by RH 414. De Lange et al. (2003) conclude that
two forms of membrane retrieval exist but that, under
physiological stimuli with 5-Hz trains (a frequency similar
to the spontaneous firing frequency of these auditory
neurons; Kopp-Scheinpflug et al. 2003), the recycling of a
limited number of vesicles, most likely without an endo-
somal intermediate, suffices to guarantee sustained trans-
mitter release at the calyx of Held.

Presynaptic modulation of transmitter release

The major form of receptor-mediated modulation of
transmitter release is via G-protein-coupled depression of
presynaptic Ca2+ channels. Modulation of the presynaptic
Ca2+ current underlies presynaptic inhibition mediated by
metabotropic glutamate receptor (mGluR) and γ-amino-
butyric acid (GABAB), A1 adenosine and α2 noradrenergic
receptors. Intriguingly, other forms of transmitter-mediated
modulation occur via direct depolarisation (in the case of
glycine), whereas modulation by changes in presynaptic K+

conductance has been tested but has not yet been observed
at the calyx.
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Metabotropic glutamate receptors Extensive evidence
exists that group III mGluRs (mGluR4,6,7 & 8) are present
at presynaptic sites (Anwyl 1999; Schoepp 2001) and that
they act as auto-receptors at many synapses in the CNS.
Early reports from synaptic recordings in the MNTB
demonstrated depression of calyceal EPSCs on application
of the specific group III agonist L-2-amino-4-phosphono-
butyrate (L-AP4) and variance analysis revealed that this
was attributable to a reduction in the probability of
transmitter release (Barnes-Davies and Forsythe 1995).
Direct presynaptic recording showed that the mechanism
of the reduced release probability involved the inhibition of
the Ca2+current (Fig. 4f) rather than potentiation of a K+

conductance (Takahashi et al. 1996). Because of the power
relationship between Ca2+ influx and transmitter release,
small changes in presynaptic Ca2+ current have large effects
on EPSC amplitude. L-AP4 can depress transmitter release
by over 80% and this action is blocked by the group III
antagonist (R,S)-cyclopropyl-4-phosphonophenylglycine
(CPPG; von Gersdorff et al. 1997). In the calyx of Held
of rat, there is immunocytochemical evidence for
mGluR8 (Renden et al. 2005) and mGluR4a (Elezgarai
et al. 1999), with mGluR4a immunoreactivity showing a
developmental increase, peaking at P9 and then declining to
adult levels. However, because of the cascade-catalytic
nature of metabotropic signalling pathways, reduced recep-
tor protein may not influence functional signalling or
maximal signalling levels, although it might reduce
sensitivity (Kenakin 2004). Raising of tonic glutamate
levels by blocking glutamate uptake increases mGluR8-
mediated depression of evoked EPSCs in young animals
but, following the opening of the auditory canal, it has less
effect and, in P16–18 Sprague-Dawley rats, mGluR
agonists cause less depression (around 30%) than in
younger animals (>80%; Renden et al. 2005). This suggests
a decrease in mGluR function with maturation, although
strain differences are possible, since P21 Lister Hooded rats
exhibit maintained EPSC depression of ~70% on the
application of L-AP4 (M. Postlethwaite and I.D. Forsythe,
unpublished observations). Species differences are also
implied by the much lower levels of mGluR modulation
observed in mature mice (Renden et al. 2005; C.D.
Inchauspe and O.D. Uchitel, personal communication).
Intriguingly, several studies, including at the calyx (von
Gersdorff et al. 1997; Iwasaki and Takahashi 2001), have
noted only small changes in synaptic response on endog-
enous physiological activation of mGlu autoreceptors by
using high-frequency synaptic stimulation. Whereas this
result could be interpreted as a failure of synaptically
released glutamate to reach presynaptic mGluRs in suffi-
ciently high concentrations, it is also explained by a
masking of autoreceptor activation through compensatory
increases in available vesicles as the release probability

declines because of mGluR activation during the train of
synaptic stimuli (Billups et al. 2005). The effect of this
increased number of available vesicles and reduced release
probability p can be observed as a slowed rate of recovery
following high frequency transmission and mGluR activa-
tion. Such a masking mechanism may serve to distribute the
metabolic load across more release sites, helping to maintain
higher frequency transmission and sustaining the dynamic
range of transmission across the synapse, without compro-
mising the information contained within the EPSC train.

No evidence for Group II metabotropic receptors has
been obtained in direct presynaptic recordings from
young rats on application of DCG-IV (Takahashi et al.
1996) but immunohistochemical evidence suggests a shift
in expression of Group II receptors in glial cells, during
early development, to expression in MNTB neurons on
maturation (Elezgarai et al. 2001) implying that physio-
logical studies in older animals may provide further
insights. Group I mGluRs have been implicated in
mechanisms of retrograde inhibition, involving postsyn-
aptic activation of mGluR1 triggering the Ca2+-dependent
release of endocannabinoids, which subsequently acti-
vate calyceal CB1 receptors and inhibit presynaptic
Ca2+ currents (Kushmerick et al. 2004).

GABAB and glycine GABAB receptors are perhaps the most
ubiquitous G-protein-coupled presynaptic receptors at
glutamatergic synapses (Bowery et al. 2002). Their activa-
tion at the calyx of Held causes potent depression of
transmitter release (Barnes-Davies and Forsythe 1995) and
is mediated by a Gβ/γ-coupled depression of the presyn-
aptic Ca2+ current (Isaacson 1998; Takahashi et al. 1998)
with immunolocalisation suggesting that Go subtypes are
present at the calyx (Kajikawa et al. 2001). Sakaba and
Neher (2003) have shown that, in addition to the well-
established effect of GABAB receptors on presynaptic Ca2+

currents, GABAB receptors slow the recovery from synap-
tic depression (as tested in double-pulse protocols). This
slowing of vesicle recruitment after strong release is
reversed by intracellular cAMP, indicating that the likely
mechanism is an inhibition of adenylate cyclase and a
subsequent decrease of cAMP concentration. This signal-
ling pathway involves cAMP-dependent guanosine ex-
change factor (cAMP-GEF; Ozaki et al. 2000), as
determined by a specific cAMP-GEF activator (Sakaba
and Neher 2003).

Studies at the chick endbulb synapse suggest that, during
high rates of on-going activity, the presynaptic GABAB

effect may be excitatory in nature and serve to extend the
dynamic range of transmission (Brenowitz et al. 1998).
There is no evidence of axo-axonic synapses on the calyx
(Sätzler et al. 2002) or endbulb of Held (Nicol and
Walmsley 2002) and so physiological activation of the
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presynaptic GABAB receptors is likely to be attributable to
spillover from mixed glycine/GABA synapses, which are
present in these brainstem nuclei (Lim et al. 2000; Kim and
Kandler 2003). Indeed, a developmental switch from
GABA- to glycine-mediated inhibitory transmission in the
brainstem (Smith et al. 2000; Nabekura et al. 2004) may
underlie a shift in the balance of presynaptic inhibitory
drive, since the activation of presynaptic glycine receptors
increases transmitter release at the calyx of Held (Turecek
and Trussell 2001). There is no known metabotropic
glycine receptor but application of glycine activates
presynaptic glycine receptor channels (Turecek and
Trussell 2002), slightly depolarising the presynaptic
membrane potential. Direct depolarisation of the calyx
increases resting [Ca2+]i and enhances release in a manner
reminiscent of a residual Ca2+ mechanism (Awatramani et
al. 2005).

Other metabotropic and presynaptic ionotropic
receptors Evidence has been provided for noradrenergic
α2 receptor inhibition of the presynaptic Ca2+ current in
around half of the calyceal terminals (Leao and von
Gersdorff 2002) and for presynaptic adenosine receptors
(Barnes-Davies and Forsythe 1995) with A1 receptor
depression of presynaptic Ca2+ currents and evoked EPSCs
(Kimura et al. 2003; Wong et al. 2006). Although P2X
receptors are present on the chick ciliary ganglion calyx
(Sun and Stanley 1996) and on non-calyceal inhibitory and
excitatory terminals in the MNTB (Watano et al. 2004), no
evidence has been found for presynaptic P2X receptors at
the calyx of Held. Indeed, the endogenous activation of
adenosine A1 receptors involves the release of adenosine
itself, rather than metabolism of ATP by ectonucleotidases,
since ATP release cannot be detected by using Luciferin-
Luciferase bioluminesence at the calyx (Wong et al. 2006).
Most recently, the ionotropic glutamate receptor agonist
AMPA (Takago et al. 2005) has been found to induce small
presynaptic currents and to modulate the presynaptic Ca2+

current via a G-protein-sensitive mechanism.

PKC modulation Phorbol esters have long been known to
induce a prolonged increase in transmitter release at
synapses (Malenka et al. 1986; Shapira et al. 1987).
Phorbol esters activate PKC via binding to their C1-
domains but recent evidence indicates that their presynaptic
mechanism is, at least in part, mediated by binding to the
C1-domain of munc-13, a presynaptic vesicle-priming
factor (Betz et al. 1998; Rhee et al. 2002). Phorbol ester
modulation has been studied at the calyx of Held by using
simultaneous pre- and postsynaptic recordings. Hori et al.
(1999) have shown that phorbol esters enhance EPSCs
without changing mEPSC amplitude, suggesting that the
effects are presynaptic. The lack of change in presynaptic

voltage-gated K+ currents or Ca2+ currents indicates that the
potentiation of transmitter release is not mediated by a
major change in presynaptic AP waveform or Ca2+ influx,
although Lou et al. (2005) have recently found that phorbol
ester slightly potentiates presynaptic voltage-gated Ca2+

currents by ~15%. Cm measurements have shown that
phorbol ester increases release in response to short voltage-
clamp depolarisations, but not in response to longer
depolarisations (≥10 ms), which by themselves empty the
pool of readily releasable vesicles (Wu and Wu 2001).
Using presynaptic Ca2+ uncaging and paired pre- and
postsynaptic recordings, Lou et al. (2005) have shown that
phorbol esters increase the Ca2+ sensitivity of vesicle fusion
as probed by Ca2+ uncaging. Thus, there is good agreement
that phorbol esters increase the Ca2+ sensitivity of vesicle
fusion at the calyx of Held without increasing the number
of readily releasable vesicles. There is immunocytochemi-
cal evidence that phorbol esters act through the PKC-ε
isoform (Saitoh et al. 2001) but an involvement of munc-13
has also been reported (Hori et al. 1999).

Concluding remarks and future perspectives

We now possess perhaps a more detailed understanding of
the ionic and biophysical basis of transmission at the calyx
of Held than for any other synapse. Indeed, beyond the
technical feat of making presynaptic recordings, it is the
wealth of detailed knowledge that will promote further
studies of transmitter release at this synapse and permit the
exploration of how specific proteins participate in regulat-
ing specific steps of transmitter release.

The main strength of the calyx of the Held has been the
accessibility of its presynaptic terminal to patch-clamp
recordings. This has allowed various groups to study
whether changes in presynaptic excitability, AP waveform
or Ca2+ currents underlie presynaptic forms of short-term
plasticity and the modulation of transmitter release. These
studies have established that the activation of a surprising
wealth of presynaptic metabotropic receptors (mGluRs,
GABAB, adenosine and noradrenalin) mostly act via a
direct G-protein-coupled reduction of voltage-gated Ca2+

currents, without affecting the presynaptic AP waveform or
presynaptic K+ currents. Short-term depression is accom-
panied, but not mediated, by changes in presynaptic AP
waveform but can be mediated in part by Ca2+-dependent
inactivation of presynaptic Ca2+ currents. These studies
have re-emphasised that small changes in Ca2+ influx can
potently modulate transmitter release, because of the high-
power relationship between Ca2+ and release.

The accessibility of the presynaptic calyx nerve terminal has
proven crucial to determining mechanisms underlying Ca2+-
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evoked transmitter release. Ca2+ uncaging in the nerve
terminal shows a surprisingly high Ca2+ sensitivity and
cooperativity of release, with an exponent of 4–5. These
estimates of the Ca2+ sensitivity of vesicle fusion have
constrained parameters for realistic computational models of
Ca2+-secretion-coupling in nerve terminals (Meinrenken et al.
2002). The high Ca2+ cooperativity and the finding that
multiple Ca2+ channels control the release of a given vesicle
(at least in young animals; see Fedchyshyn and Wang 2005)
permit highly efficient control of transmitter release. The
ability to voltage-clamp both pre- and postsynaptic compart-
ments, together with EPSC deconvolution, has given insights
into the factors that control the time-course of transmitter
release (Felmy et al. 2003a) and revealed the surprisingly
large number of readily releasable vesicles (~3,000–4,000)
compared with the modest number of quanta released by a
single AP (“only” 150–250). These findings demonstrate that
not all vesicles have the same release probability; this
heterogeneity influences the rates of vesicle pool depletion
during prolonged high-frequency trains. Taken together, our
knowledge of the structure, biophysics and physiology of this
synapse are increasingly detailed and are beginning to be built
into computational models of transmission (Trommershäuser
et al. 2003; Graham et al. 2004), which have been refined by
reiterative modelling and experimental testing.

As with every experimental model, there are also
limitations, which future work may overcome. Dialysis
of the terminal restricts studies of ion channel modula-
tion and presynaptic plasticity, since it is impossible to
add all potential signalling precursors to our patch
pipette solutions, and there is an important need to
perfect perforated patch recording from the calyx. It has
been difficult to perturb the calyx of Held at the
molecular level and therefore to relate presynaptic
function to specific molecules. Acute over-expression
of proteins is not possible in the slice preparation,
because of the lack/slow rate of protein synthesis in
isolated terminals and because most calyceal axons are
severed during the slicing process. Organotypic cultures
of the auditory brainstem are possible (Lohmann et al.
1998) but there are no reports of the survival of calyceal
terminals in slice culture. Transgenic mice with knocked-
out or mutated presynaptic proteins have been studied
(Fernández-Chacón et al. 2004; Pang et al. 2006) but an
analysis of perinatally lethal mice is impossible because
the optimal age window (P6–P14) for functional studies is
not reached. In-vivo virus-mediated over-expression of
proteins may provide a suitable vehicle in the calyx of
Held (Wimmer et al. 2004) and should in principle
allow the application of small interfering RNA (siRNA)
silencing of gene expression (He and Hannon 2004).
The application of virus-mediated over-expression and
siRNA-mediated knock-down approaches at the calyx

of Held will vastly expand the usefulness of this
preparation.

Development of cell-type-specific knock-out or knock-in
mice would also be highly desirable. Unfortunately, promotors
specifically active in selective types of neurons have only been
identified in a few cases (Tsien et al. 1996; Barski et al. 2000;
Díez-Garcia et al. 2005). The need for specific promotors will
draw the attention to the characterisation of bushy cell
subtypes in the aVCN. Calyces of Held are thought to arise
from globular bushy cells but the presynaptic neuron
population might be heterogeneous both with respect to
localisation and gene expression and we know little about the
specific genes expressed in these cells. Although gene
expression analyses have recently been performed in auditory
brainstem nuclei (Cho et al. 2001; Koehl et al. 2004; Harris et
al. 2005), the ventral cochlear nucleus is composed of many
cell types (Oertel 1999) and so the identification of the bushy
cell subtypes that give rise to the calyx and the study of their
selective gene expression profiles will be crucial. Combined
molecular, anatomical and physiological studies will also be
helpful in identifying the molecules that play a role in
establishing the precise synaptic connectivity of the auditory
system (Cramer et al. 2004).
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