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ABSTRACT

A new stellar library developed for stellar population synthesis modelling is presented. The

library consists of 985 stars spanning a large range in atmospheric parameters. The spectra

were obtained at the 2.5-m Isaac Newton Telescope and cover the range λλ 3525–7500 Å at

2.3 Å (full width at half-maximum) spectral resolution. The spectral resolution, spectral-type

coverage, flux-calibration accuracy and number of stars represent a substantial improvement

over previous libraries used in population-synthesis models.

Key words: atlases – stars: fundamental parameters – galaxies: stellar content.

1 I N T RO D U C T I O N

With this paper, we start a project aimed at improving the existing

tools for extracting stellar population information using the optical

region of composite spectra. Although the main motivation of this

work is to use this new calibration to study the stellar content of

galaxies using spectra of unresolved stellar populations, we expect

that the material presented here and in future papers will be use-

ful in other areas of astronomy. This includes a new stellar library,

a set of homogeneous atmospheric parameters, a redefinition and

recalibration of spectral-line indices, empirical fitting functions de-

scribing the behaviour of indices with stellar parameters, and stellar

population model predictions.

A comprehensive spectral library with medium-to-high resolution

and a good coverage of the Hertzsprung–Russell (HR) diagram is an

essential tool in several areas of astronomy. In particular, this is one

of the most important ingredients of stellar population synthesis,

providing the behaviour of individual stellar spectra as a function

of temperature, gravity and chemical abundances. Unfortunately,

the empirical libraries included in this kind of models up to now

contained few stars with non-solar metallicities, compromising the

accuracy of predictions at low and high metallicities.

This problem has usually been partially solved by using empiri-

cal fitting functions, polynomials that relate the stellar atmospheric

�E-mail: patricia.sanchezblazquez@epfl.ch

parameters (Teff, log g, and [Fe/H]) to measured equivalent widths

(e.g. Gorgas et al. 1993; Worthey et al. 1994; Worthey & Ottaviani

1997). These functions allow the inclusion of any star required by

the model (but within the stellar atmospheric parameter ranges cov-

ered by the functions), using a smooth interpolation. However, the

new generation of stellar population models go beyond the predic-

tion of individual features for a simple stellar population (SSP), and

they attempt to synthesize full spectral energy distributions (SEDs)

(Vazdekis 1999; Vazdekis & Arimoto 1999; Bruzual & Charlot

2003; Vazdekis et al. 2003). In this case, the fitting functions cannot

be used, and a library of stars covering the full range of atmo-

spheric parameters in an ample and homogeneous way is urgently

demanded. Moreover, although the evolutionary synthesis codes do

not require absolute fluxes, the different stellar spectra must be prop-

erly flux calibrated in a relative sense so that the whole SED can

be modelled. This, however, is quite difficult to achieve in practice,

due to the wavelength-dependent flux losses caused by differential

refraction when a narrow slit is used in order to obtain a fair spectral

resolution.

Another important caveat in the interpretation of the composite

spectrum of a given galaxy is the difficulty of disentangling the

effects of age and metallicity (e.g. Worthey 1994a). Due to blending

effects, this problem is worsened when working at low spectral

resolution, as it is the case when low-resolution stellar libraries are

used (e.g. Gunn & Stryker 1983; Worthey et al. 1994). There are

a few studies that have attempted to include spectrum features at

higher resolution (Rose 1994; Jones & Worthey 1995; Vazdekis &
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Arimoto 1999). However, predicting such high-dispersion SEDs is

very difficult owing to the unavailability of a library with the required

input spectra.

Whilst the new generation of large telescopes are already gather-

ing high-quality spectra for low- and high-redshift galaxies, the stel-

lar population models suffer from a lack of extensive empirical stel-

lar libraries to successfully interpret the observational data. At the

moment, the available stellar libraries have important shortcomings,

such as small number of stars, poor coverage of atmospheric parame-

ters, narrow spectral ranges, low-resolution and non-flux-calibrated

response curves. Here, we present a library that overcomes some of

the limitations of the previous ones. The new library, at spectral res-

olution of 2.3 Å [full width at half-maximum (FWHM)], contains

985 stars with metallicities ranging from [Fe/H] ∼ −2.7 to +1.0

and a wide range of temperatures.

The outline of this paper is as follows. In order to justify the ob-

servation of a new stellar library, in Section 2 we review previous

libraries in the optical spectral region. Section 3 presents the crite-

ria to select the sample and, in Section 4, the observations and data

reduction are summarized. Section 5 presents the library, while a

quality control and comparison with spectra from previous libraries

are given in Sections 6 and 7, respectively. Finally, Section 8 sum-

marizes the main results of this paper.

2 P R E V I O U S S T E L L A R L I B R A R I E S I N T H E

O P T I C A L R E G I O N

Table 1 shows some of the previous libraries in the blue spectral

range with their principal characteristics. We only include those

libraries which have been used or have been built for stellar popula-

tion synthesis purposes. In the following paragraphs, we comment

on the main advantages and caveats of a selected subsample.

The most widely used library up to now has been the Lick/IDS

library (Gorgas et al. 1993; Worthey et al. 1994), which contains

about 430 stars in the spectral range λλ4000–6200 Å. Examples

of population models using this library are those of Bruzual &

Charlot (1993), Worthey (1994a), Vazdekis et al. (1996), Thomas

et al. (2003) and Thomas et al. (2004). The Lick library, based on

observations taken in the 1970s and 1980s with the IDS, a photon-

counting device, has been very useful, since it contains stars with

Table 1. Some of the previous libraries in the optical region devoted to stellar population studies.

Reference Resolution Spectral range Number of stars Comments

FWHM (Å) (Å)

Spinrad (1962) Spectrophotometry

Spinrad & Taylor (1971) Spectrophotometry

Gunn & Stryker (1983) 20–40 3130–10 800 175

Kitt Peak (Jacoby, Hunter & Christian 1984) 4.5 3510–7427 161 Only solar metallicity

Pickles (1985) 10–17 3600–1000 200 Solar metallicity except G-K giants

Lick/IDS (Worthey et al. 1994) 9–11 4100–6300 425 Not flux calibrated, variable resolution

Kirkpatrick, Henry & McCarthy (1991) 8/18 6300–9000 39 No atmospheric correction

Silva & Cornell (1992) 11 3510–8930 72 groups Poor metallicity coverage

Serote Roos, Boisson & Joly (1996) 1.25 4800–9000 21

Pickles (1998) 1150–10 620 131 groups Flux calibrated

Jones (1999) 1.8 3856–4476 684 Flux calibrated

4795–5465

ELODIE (Prugniel & Soubiran 2001) 0.1 4100–6800 709 Echelle

STELIB (Le Borgne et al. 2003) 3.0 3200–9500 249 Flux calibrated

INDO-US (Valdes et al. 2004) 1.0 3460–9464 1273 Poor flux calibrated

MILES 2.3 3525–7500 985

a fair range of Teff, log g and [Fe/H]. However, a number of well-

known problems are inherent to this library. Since the stars are not

properly flux calibrated, the use of the predictions on the Lick sys-

tem requires a proper conversion of the observational data to the

instrumental response curve of the original data set (see the analysis

by Worthey & Ottaviani 1997). This is usually done by observing

a number of Lick stars with the same instrumental configuration

as the one used for the galaxy. Then, by comparing with the tabu-

lated Lick measurements, one can find empirical correction factors

for each individual absorption feature. Another important step to be

followed is the pre-broadening of the observational spectra to match

the resolution of Lick/IDS, which suffers from an ill-defined wave-

length dependence. Note that, this means that part of the information

contained in high-resolution galaxy spectra is lost. Furthermore, the

spectra of this library have a low effective signal-to-noise ratio (S/N)

due to the significant flat-field noise (Dalle Ore et al. 1991; Worthey

et al. 1994; Trager et al. 1998). This translates into very large sys-

tematic errors in the indices much larger than present-day galaxy

data. In fact, the accuracy of the measurements based on the Lick

system is often limited by the stellar library, rather than by the galaxy

data.

With the availability of new and improved stellar libraries, a

new generation of stellar population models are able to repro-

duce galaxy spectra and not just line-strengths. Jones’ library

(Jones 1999) was the first to provide flux-calibrated spectra with

a moderately high spectral resolution (1.8 Å). Using this library,

Vazdekis (1999) presented, for the first time, stellar population

synthesis models predicting the whole spectrum of a single stel-

lar population. Another example of a population-synthesis model

using this library is Schiavon et al. (2002). However, Jones’ li-

brary is limited to two narrow wavelength regions, 3820–4500 and

4780–5460 Å, and it is sparse in dwarfs hotter than ∼7000 K

and metal-poor giants ([Fe/H] � −0.5). The first limitation

prevents stellar population models from predicting populations

younger than 4 Gyr, while the second limitation affects the mod-

els of old, metal-poor systems like globular clusters. More recently,

a new stellar library at very high spectral resolution (0.1 Å), and

covering a much larger wavelength range (4100–6800 Å), has be-

come available (ELODIE, Prugniel & Soubiran 2001). The physical

parameter range of this library is limited, and the flux calibration
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is compromised by the use of an echelle spectrograph. Recently, an

updated version of ELODIE stellar library (hereafter ELODIE.3,

Prugniel & Soubiran 2004) has been also incorporated into a new

population-synthesis model (Le Borgne et al. 2004). This version

doubles the size of the previous one and offers an improved coverage

of atmospheric parameters.

Bruzual & Charlot (2003) have recently presented new stellar

population synthesis models at the resolution of 3 Å (FWHM) across

the wavelength range from 3200 to 9500 Å. Their predictions are

based on a new library (STELIB) of observed stellar spectra re-

cently assembled by Le Borgne et al. (2003). This library represents

a substantial improvement over previous libraries commonly used

in population-synthesis models. However, the sample needs some

completion for extreme metallicities and the number of stars is not

very high. In particular, the main problem of this library is the lack

of metal-rich giants stars.

Finally, near the time of the completion of this paper, a new

stellar library (INDO-US Valdes et al. 2004) was published. This

library contains a large number of stars (1273) covering a fair range

in atmospheric parameters. Unfortunately, the authors could not

obtain accurate spectrophotometry but they fitted each observation

to an SED standard with a close match in spectral type, using the

compilation of Pickles (1998).

To summarize, the quality of available stellar libraries for popu-

lation synthesis has improved remarkably over the last years. How-

ever, a single library with simultaneous fair spectral resolution

(e.g. ELODIE), atmospheric parameter coverage (e.g. INDO-US),

wide spectral range (e.g. STELIB) and with an accurate flux calibra-

tion is still lacking. In the following sections, we will compare the

new library (MILES) with the previous ones in some of the above

relevant characteristics.

3 S A M P L E S E L E C T I O N

Although the new library is expected to have different applications,

the selection of the stars is optimized for their inclusion in stel-

lar population models. Fig. 1 shows a pseudo-HR diagram for the

whole sample. MILES includes 232 of the 424 stars with known at-

mospheric parameters of the Lick/IDS library (Burstein et al. 1984;

Faber et al. 1985; Burstein, Faber & González 1986; Gorgas et al.

Figure 1. Gravity–temperature diagram for the library stars. Different sym-

bols are used to indicate stars of different metallicities, as shown in the

key.

1993; Worthey et al. 1994). The atmospheric parameter coverage

of this subsample is representative of that library, and spans a wide

range in spectral types and luminosity classes. Most of them are

field stars from the solar neighbourhood, but stars covering a wide

range in age (from open clusters) and with different metallicities

(from Galactic globular clusters) are also included. In addition, with

the aim of filling gaps and enlarging the parameter-space cover-

age, stars from additional compilations were carefully selected (see

below).

G8–K0 metal-rich stars (+ 0.02 < [Fe/H] < +0.5) with tem-

peratures between 5200 and 5500 K were extracted from Castro

et al. (1997), Feltzing & Gustafsson (1998), Randich et al. (1999),

Sadakane et al. (1999), and Thorén & Feltzing (2000). We also

obtained some stars from a list kindly provided by K. Fuhrmann

(private communication). We also added to the sample some stars

with temperatures above 6000 K and metallicities higher than +0.2

(from González & Laws 2000), which will allow to reduce the un-

certainties in the predictions of our models at this metallicity.

The inclusion of hot dwarf stars with low metallicities is essen-

tial to predict the turn-off of the main sequence due to their high

contribution to the total light. We obtained these stars from Cayrel

de Strobel et al. (1997).

MILES also contains dwarf stars with temperatures below

5000 K. These stars, which were absent in the Lick library, al-

low to make predictions, using initial mass functions (IMF) with

high slopes, and have been obtained from Kollatschny (1980),

McWilliam (1990), Castro et al. (1997), Favata, Micela & Sciortino

(1997), Mallik (1998), Perrin et al. (1998), Zboril & Byrne (1998),

Randich et al. (1999), and Thorén & Feltzing (2000).

We also included 17 stars to the region of the diagram corre-

sponding to cool and metal-rich (with [Fe/H] > +0.15) giants stars

from McWilliam (1990), Ramı́rez et al. (2000), and Fernández-

Villacañas, Rego & Cornide (1990). Some metal-poor giant stars

with Teff < 6000 K, from McWilliam (1990), were also incorpo-

rated in order to improve the predictions of old stellar populations

and to study the effect of the horizontal branch.

In the selection of the sample, we have tried to minimize the

inclusion of spectroscopic binaries, peculiar stars, stars with chro-

mospheric emission and stars with strong variability in regions of

the HR diagram where stars are not expected to vary significantly.

For this purpose, we used SIMBAD and the Kholopov et al. (1998)

data base of variable stars.

Fig. 2 shows the atmospheric parameter coverage of MILES com-

pared with other libraries. As can be seen, the numbers of cool

and super-metal-rich stars, metal-poor stars, and hot stars (Teff >

6500 K) have been greatly enhanced with respect to previous works.

4 O B S E RVAT I O N S A N D DATA R E D U C T I O N

The spectra of the stellar library were obtained during a total 25

nights in five observing runs from 2000 to 2001 using the 2.5-m

Isaac Newton Telescope (INT) at the Roque de los Muchachos Ob-

servatory (La Palma, Spain). All the stars were observed with the

same instrumental configuration, which ensures a high homogeneity

among the data.

Each star was observed with three different setups, two of them

devoted to obtain the red and the blue part of the spectra, and a third

one, with a wide slit (6 arcsec) and a low-dispersion grating (here-

after WIDE), which was acquired to ensure a fair flux calibration

avoiding selective flux losses due to the atmospheric differential

refraction. A description of these and other instrumental details is

given in Table 2. Typical exposure times varied from a few seconds
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Figure 2. Parameter coverage of MILES (left-hand panel) compared with other stellar libraries.

Table 2. Observational configurations. ‘Wide’ refers to the config-

uration with the wide slit.

Grating Detector Dispersion

(Å pixel−1)

Red R300V EEV10 0.9

Blue R150V EEV10 0.9

Wide R632V EEV10 1.86

Slit width Spectral coverage Filter

(arcsec) (Å)

Red 0.7 3500–5630 GG495

Blue 0.7 5000–7500 None

Wide 6.0 3350–7500 WG360

for bright stars to 1800 s for the faintest cluster stars. These pro-

vided typical values of SN (Å) (signal-to-noise ratio per angstrom)

averaged over the whole spectral range of ∼150 for field and open

cluster stars, and ∼50 for globular cluster stars.

The basic data reduction was performed with IRAF
1 and REDuc

m E2

(Cardiel 1999). REDuc
m E allows a parallel treatment of data and er-

ror frames, and therefore produces an associated error spectrum

for each individual data spectrum. We carried out a standard re-

duction procedure for spectroscopic data: bias and dark subtrac-

tion, cosmic ray cleaning, flat-fielding, C-distortion (geometrical

distortion of the image along the spatial direction) correction, wave-

length calibration, S-distortion (geometrical distortion of the image

along the spectral direction) correction, sky subtraction, spectrum

extraction and relative flux calibration. Atmospheric extinction cor-

rection was applied to all the spectra using wavelength-dependent

1
IRAF is distributed by the National Optical Astronomy Observatories, USA,

which are operated by the Association of Universities for Research in As-

tronomy, Inc., under cooperative agreement with the National Science Foun-

dation, USA.
2 http://www.ucm.es/info/Astrof/software/reduceme/reduceme.html.

Figure 3. Standard star spectrum after and before correcting for second-

order contamination.

extinction curves provided by the observatory (King 1985,

http://www.ing.iac.es). Some of the reduction steps that required

more careful work are explained in detail in the following

subsections.

4.1 Wavelength calibration

Arc spectra from Cu–Ar, Cu–Ne and Cu–N lamps were acquired

to perform the wavelength calibration. The typical number of lines

used ranged from 70 to 100. In order to optimize the observing time,

we did not acquire comparison arc frames for each individual expo-

sure of a library star but only for a previously selected subsample of

stars covering all the spectral types and luminosity classes in each

run. The selected spectra were wavelength calibrated with their own

arc exposures, taking into account their radial velocities, whereas the

calibration of any other star was performed by a comparison with the

most similar, already calibrated, reference spectrum. This working

procedure is based on the expected constancy of the functional form

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 703–718
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Figure 4. Mean FWHM (expressed in Å) of MILES spectra measured in

11 different spectral regions. The error bars indicate the RMS dispersion of

the values measured with all the stars of the library.

Figure 5. Red (thick line) and blue (thin line) spectra of the star HD 157214

in the spectral range in common between the two instrumental configura-

tions.

of the wavelength-calibration polynomial within a considered ob-

serving run. In this sense, the algorithm that we used is as follows:

after applying a test x-shift (in pixels) to any previous wavelength-

calibration polynomial, we obtained a new polynomial which was

used to calibrate the spectrum. Next, the calibrated spectrum was

corrected from its own radial velocity and, finally, the spectrum was

cross-correlated with a reference spectrum of similar spectral type

and luminosity class, in order to derive the wavelength offset be-

tween both spectra. By repeating this procedure, it is possible to

obtain the dependence of the wavelength offset as a function of the

test x-shift and, as a consequence, to derive the required x-shift cor-

responding to a null wavelength offset. The rms dispersion of the

residuals is of the order of 0.1 Å.

Once the wavelength-calibration procedure was applied to the

whole star sample, we still found small shifts due to uncertainties

in the published radial velocities. In order to correct for this ef-

fect, each star was cross-correlated with the high-resolution solar

Table 3. Methods applied to obtain reddenings for the library

stars, listed in order of preference. The second column shows

the rms dispersion in the comparison of each method with the

values collected from the literature. The third column shows

the number of stars with E(B − V) determined with each

different procedure.

Method σ Number

Literature 444

Appendix A 0.032 275

Jones (1999) 0.029 72

Schuster et al. (1996) 0.012 51

Bonifacio et al. (2000) 0.050 41

Extinction maps 0.048 145

spectrum obtained from BAse de donnees Solaire Sol (BASS2000,

http://bass2000.obspm.fr) in the wavelength region of the Ca H and

K lines. First, the solar spectrum was cross-correlated with the stars

that were cool enough to have the H and K lines. The derived

shifts were then applied to the corresponding spectra. As a next

step we then cross-correlated the hotter stars with stars that did ex-

hibit simultaneously Ca H and K, and Balmer lines, and applied the

shifts.

4.2 Spectrum extraction

A first extraction of the spectra was performed adding the number

of scans which maximized the S/N. However, in these spectra, the

presence of scattered light was weakening the spectral lines. Scat-

tered light in the spectrograph results from undesired reflections

from the refractive optics and the CCD, imperfections in the reflec-

tive surfaces and scattering of the light outside first order from the

spectrograph case. Scattered light amounting to 6 per cent of the

dispersed light is scattered fairly uniformly across the CCD sur-

face, affecting more strongly the spectra with low-level signal. To

minimize the uncertainties due to scattered light, we extracted the

spectra adding only three scans (the central and one more to each

side). Although, in principle, the extraction of a reduced number of

spectra may affect the shape of the continuum (due to the differen-

tial refraction in the atmosphere), we performed the flux calibration

using a different set of stars observed with a slit of 6 arcsec (see

next section). Therefore, the accuracy of the flux calibration is not

compromised by this extraction.

4.3 Flux calibration: the second-order problem

One of the major problems of the Lick/IDS library for computing

spectra from stellar population models is that the stars are not prop-

erly flux calibrated. Therefore, the use of model predictions based

on that system requires a proper conversion of the observational

data to the characteristics of the instrumental IDS response curve

(see discussion by Worthey & Ottaviani 1997). Also, a properly flux-

calibrated stellar library is essential to derive reliable predictions for

the whole spectrum, and not only for individual features (Vazdekis

& Arimoto 1999; Vazdekis 1999; Bruzual & Charlot 2003). It must

be noted that we have not attempted to obtain absolute fluxes since

both, the evolutionary synthesis code and the line-strength indices,

only require relative fluxes.

In order to perform a reliable flux calibration, several spectropho-

tometric standards (BD+33 2642, G 60-54, BD+28 4211, HD

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 703–718
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Figure 6. Sequences of spectral types for a sample of (a) dwarf and (b) giant stars from the library. Effective temperatures, names, spectral types and surface

gravities are given in the labels.

Table 4. A portion of Table 4 is shown for guidance regarding its format and content. The full table is electronically

available at http://www.ucm.es/info/Astrof/MILES/miles.html.

Star RA (J2000.0) Dec. (J2000.0) Spectral type Teff log g [Fe/H] E(B − V) Reference

BD +00 2058 07:43:43.96 −00:04:00.9 sd:F 6024 4.50 −1.56 0.020 4, 5

BD +01 2916 14:21:45.26 +00:46:59.2 K0 4238 0.34 −1.49 0.030 6

BD +04 4551 20:48:50.72 +05:11:58.8 F7Vw 5770 3.87 −1.62 0.000 8

BD +05 3080 15:45:52.40 +05:02:26.6 K2 5016 4.00 −0.79 0.000 4, 6

BD +06 0648 04:13:13.11 +06:36:01.7 K0 4400 1.03 −2.12 0.000 1, 7

BD +06 2986 15:04:53.53 +05:38:17.1 K5 4450 4.80 −0.30 0.006 24

BD +09 0352 02:41:13.64 +09:46:12.1 F2 5894 4.44 −2.20 0.020 4

BD +09 2190 09:29:15.56 +08:38:00.5 A0 6316 4.56 −2.71 0.010 4, 6

BD +09 3223 16:33:35.58 +09:06:16.3 5350 2.00 −2.26 0.045 23

BD +11 2998 16:30:16.78 +10:59:51.7 F8 5373 2.30 −1.36 0.024 23

93521 and BD+75 325) were observed along each night at dif-

ferent air-masses. A special effort was made to avoid the selective

flux losses due to the differential refraction. For this reason, all stars

were also observed through a 6-arcsec slit. This additional spec-

trum was flux calibrated using the standard procedure and the de-

rived continuum shape was then imposed on the two high-resolution

spectra.

In spite of using a colour filter, the red end (λ > 6700 Å) of the

low-resolution spectra suffered from second-order contamination.

Fortunately, since the low-resolution spectra begin at 3350 Å, it was

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 703–718
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Figure 7. Internal B − V error for our repeated observations versus published (B − V) colours from Mermilliod et al. (1997).

Figure 8. Residuals of the comparison of synthetic with empirical (B − V) colours from the Lausanne data base. The numbers within the panels show the

derived mean offsets and standard deviations. See the text for details.

Table 5. Characteristics of the box filters used in

the comparison with other libraries. We list the

central wavelengths (λc) and the filter widths.

Filter λc (Å) Width (Å)

b4000 4000 200

b4300 4300 200

b4900 4900 200

b5300 5300 200

b4600 4600 800

b5400 5400 800

b6200 6200 800

possible to correct this. To do that, we made use of two different

standard stars, Sa and Sb. The observed spectra of the standard stars

before flux calibration can be expressed as

Sa = C1Ta + C2T2a Sb = C1Tb + C2T2b, (1)

where Ta and Tb are the tabulated data for Sa and Sb, respectively,

and T2a and T2b are Ta and Tb resampled to twice the resolution

and displaced by 3350 Å. C1 and C2 represent the instrumental

response for the light issuing from the first and second dispersion

orders, respectively. Solving the system of equations (1), we obtain

the response curves as

C2 = Ta Sb − Tb Sa

T2bTa − T2a Tb
(2)

and

C1 = Sa − C2T2a

Ta
. (3)

With these response curves, we obtain the flux-calibrated star

from 3350 to 6700 Å as

S′
a(λ < 6700 Å) = Sa

C1

(4)

and after resampling Sa
′ to a double dispersion and shifting the spec-

tra by 6700 Å (we refer to the resulting spectra of these operations

as S′
2a), we finally obtain the whole calibrated spectrum as

S′
a = Sa − C2 S′

2a

C1

. (5)

Fig. 3 shows the flux-calibrated spectrum of the standard star

BD+33 2642 before and after correcting for this second-order con-

tamination with the above procedure.

4.4 The spectral resolution

Since it is important to know the spectral resolution of MILES, we

first used the different calibration lamp spectra to homogenize the

spectral resolution of the stars. After that, we selected a set of six

stars from the INDO-US library (Valdes et al. 2004), and fitted a

linear combination of these stars to the spectrum of every star in

11 different wavelength regions. During the process, the resolution

of the MILES spectra was obtained by determining the best-fitting

Gaussian with which the linear combination of INDO-US spectra

had to be convolved, and correcting for the intrinsic width of the

INDO-US spectra (checked to be 1.0 Å for HD 38007, a G0V star,

similar to the Sun, by comparing with a high resolution solar spec-

trum). To do that, we used the task PPXF (Cappellari & Emsellem

2004). The average resolution of the stars is given in Fig. 4.

The figure shows that the resolution amounts to 2.3 ± 0.1 Å.

5 T H E F I NA L S P E C T R A A N D T H E DATA BA S E

At the end of the reduction, spectra in the red and blue spectral

ranges were combined to produce a unique high-resolution flux-

calibrated spectrum for each star, together with a corresponding

error spectrum. The spectra in the two wavelength ranges share a

common spectral range (from 5000 to 5630 Å) in which a mean

spectrum was computed by performing an error-weighted average.

In Fig. 5, we show a typical example of the match between the

red and the blue spectra in this wavelength interval. If we take into

account that the two spectra have been calibrated independently,
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Figure 9. Residuals of the comparison of synthetic colours measured in MILES with those measured in other stellar libraries, versus θ = 5040/Teff. The

different symbols indicate stars of different metallicities, as coded in Fig. 1. The dashed lines correspond to 1σ rms.

the agreement is very good. This gives support to the quality of the

reduction process.

Finally, all the stellar spectra were corrected for interstellar red-

dening, using the Fitzpatrick (1999) reddening law. For 444 stars,

E(B − V) values were taken from Savage et al. (1985), Friede-

mann (1992), Silva & Cornell (1992), Gorgas et al. (1993), Carney

et al. (1994), Snow et al. (1994), Alonso, Arribas & Martı́nez-Roger

(1996), Dyck et al. (1996), Harris (1996), Schuster et al. (1996),

Twarog, Ashman & Anthony-Twarog (1997), Taylor (1999), Beers

et al. (1999), Dias et al. (2002), Stetson, Bruntt & Grundahl (2003),

and V. Vanseviĉius (private communication).

For stars lacking E(B − V) estimates, we obtained new values fol-

lowing the procedure described in Appendix A. With this method,

we achieved reddenings for 275 new stars. For the remaining 284

stars without reddening determinations, these were estimated as

follows.

For 51 stars, E(B − V) values were calculated following

Schuster et al. (1996) from uvby-β photometry obtained from Hauck

& Mermilliod (1998). The rms dispersion between the values ob-

tained with this procedure and those published in the literature (see

previous references) is 0.012 mag. For another subsample of 41

stars, reddenings were calculated with the calibration by Bonifacio,

Caffau & Molaro (2000) using synthetic broad-band Johnson

colours and the line indices KP and HP2 measured directly over our

spectra. The agreement between E(B − V) values obtained with this

procedure and the literature values is within 0.05 mag. E(B − V)

values for 72 stars were calculated following Janes (1997) using

DDO photometry; C(45–48) and C(42–45) were also measured in

our spectra. The rms dispersion between the values obtained with

this method and those from the literature is 0.029 mag. Despite all

these efforts, 145 stars still lacked reddening determinations. For

these stars, E(B − V) values were calculated from their Galactic
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Table 6. Mean offsets and standard deviations (rms) from the comparison

of the synthetic colours of MILES with those from other libraries. Bold

typeface is used when the offsets are statistically different from 0 for a 95

per cent level of confidence.

Jones STELIB INDO-US

Offset rms Offset rms Offset rms

b4000−b4300 0.037 0.042 0.034 0.052 0.017 0.072

b4900−b5300 0.058 0.048 −0.001 0.035 −0.006 0.044

ELODIE STELIB INDO-US

Offset rms Offset rms Offset rms

b4600−b5400 0.019 0.042 0.028 0.067 −0.005 0.078

b4600−b6200 0.007 0.048 0.043 0.142 0.001 0.131

b5400−b6200 0.026 0.080 0.014 0.095 0.005 0.055

Figure 10. Residuals of the comparison of synthetic (B − V) colours from

the INDO-US library with those from MILES [�(B − V) = (B − V)INDO−US

− (B − V)MILES]. The symbols are the same as in Fig. 1.

coordinates and parallaxes by adopting the extinction model by

Chen et al. (1999), based on the COBE/IRAS all-sky reddening map

(Schlegel, Finkbeiner & Davis 1998). The agreement between the

E(B − V) values derived in this way and the values extracted from

the literature is within 0.048 mag.

Table 3 summarizes the different methods of extinction determi-

nations in order of preference. The last column of the table contains

the number of E(B − V) obtained with each method.

As an example of final spectra, Fig. 6 shows comparative se-

quences of spectral types for a sample of dwarf and giant stars from

the library. Information for each star in the data base is presented

in Table 4, available in the electronic edition and at the Library

website (http://www.ucm.es/info/Astrof/ MILES/miles.html). Indi-

vidual spectra for the complete library are available at the same

World Wide Web (WWW) page. The atmospheric parameters have

been derived from values in the literature, transforming them to a ho-

mogeneous system following Cenarro et al. (2001b). The detailed

description of this method will be given in a forthcoming paper

(Selam et al., in preparation). The last two columns of Table 4 show

the adopted E(B − V) values and the reference from which they

were obtained (see the electronic version of the table for an expla-

nation of the reference codes). When several references are marked,

an averaged value has been adopted.

Final stellar spectra were corrected for telluric absorptions of

O2 (headbands at ∼6280 and 6870 Å) and H2O (∼7180 Å) by the

Figure 11. Residuals of the comparison of synthetic (B − V) colours from

the STELIB data set with those from MILES (�(B − V) = (B − V)STELIB

− (B − V)MILES). The symbols are the same as in Fig. 1.

classic technique of dividing into a reference, telluric spectrum. In

short, an averaged, telluric spectrum for the whole stellar library

was derived from ∼50 hot (O–A types) MILES spectra, the

ones that were previously shifted in the spectral direction by

cross-correlating around their telluric regions to prevent systematic

offsets among telluric lines arising from stellar, radial velocity cor-

rections. The resulting spectrum was continuum normalized, with

regions free from telluric absorptions being artificially set to 1. The

spectral regions for which corrections have been carried out run in

the ranges ∼6000–6320 Å, ∼6760–7070 Å and ∼7120–7380 Å.

For each star in the library, a specific, normalized telluric spectrum

matching the position of the stellar telluric features was again de-

rived from cross-correlation. Such a specific, normalized telluric

spectrum was used as a seed to generate a whole set of scaled,

normalized telluric spectra with different line-strengths. The stellar

spectrum was then divided into each normalized, telluric spectrum

of the set. The residuals of the corrected pixels with respect to lo-

cal, linear fits to these regions were computed separately for the O2

and H2O bands in each case. Finally, the corrections minimizing the

residuals for the different bands were considered as final solutions.

As pointed out in Stevenson (1994), the present technique may not

be completely optimal when, as in this case, the velocity dispersion

of the spectra is lower than ∼40 km s−1. It is therefore important to

emphasize that individual measurements of line-strengths within the

corrected regions may not be totally safe. The major improvement

arises, however, when different stellar spectra are combined together

(following, for instance, the prescriptions of SSP evolutionary syn-

thesis models), as possible residuals coming from uncertainties in

the telluric corrections are proven to cancel because of their different

positions in the de-redshifted stellar spectrum (see Vazdekis et al.,

in preparation).

6 QUA L I T Y C O N T RO L

In order to verify the reliability of our spectra and the reduction

procedure, we have: (i) carried out a detailed analysis of stars with

repeated observations to check the internal consistency, and (ii) com-

pared synthetic photometry on the spectra with published values.

6.1 Internal consistency

There are in total 157 repeated observations for 151 different stars

in the library with independent flux calibrations. We have measured
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Figure 12. Differences of the Lick/IDS indices between MILES spectra and Jones’ library against the indices measured in MILES. The number of stars in the

comparison is displayed within each panel. The meaning of the symbols is the same as in Fig. 1.

synthetic (B − V) colours by applying the relevant Johnson &

Morgan (1953) filter transmission curves (photoelectric USA ver-

sions) to these fully calibrated spectra that are not corrected for in-

terstellar reddening and found, from pairwise comparisons, a global

rms dispersion of 0.013 mag. This is an estimate of the random

errors affecting the flux calibration of the library. Fig. 7 illustrates

this comparison by plotting offsets in (B − V) colours from re-

peated observations versus Johnson colours from the Lausanne

data base (http://obswww.unige.ch/gcpd/gcpd.html) (Mermilliod,

Mermilliod & Hauck 1997). Note that this error does not account for

possible systematic errors uniformly affecting the whole library.

6.2 External comparisons

Once we have obtained an estimate of the random errors affecting

the flux calibration, the comparison with external measurements can

provide a good constraint of the possible systematic uncertainties

affecting that calibration. In this sense, we have carried out a com-

parison of the synthetic (B − V) colours derived from our library

spectra with the corresponding colours extracted from the Lausanne

photometric data base (http://obswww.unige.ch/gcpd/gcpd.html)

(Mermilliod et al. 1997). The Johnson (B − V) colour has been

chosen to perform such a comparison, since it constitutes by far

the largest photometric data set in that catalogue. In order to con-

strain the non-trivial problem of using an accurate zero point for

the B and V filters, we used the SED from Bohlin & Gilliland

(2004), based on high-S/N STIS observations and extrapolated to

higher wavelengths, using Kurucz model atmospheres. After nor-

malizing the MILES spectra to the SED of VEGA individually,

we measured the synthetic (B − V) colours by applying the same

method described above for the internal consistency check. Fig. 8

shows the colour residuals (synthetic minus catalogue values) versus

(B − V) from the catalogue for the spectrum of Vega. The mean off-

sets and standard deviations of the comparison are indicated within

each panel. The absolute value of the offset is small (around 0.015

mag), which sets an upper limit to the systematic uncertainties of

our photometry in the spectral range of MILES up to ∼6000 Å.

Furthermore, the measured rms dispersions are, as expected,

larger than the previous standard deviation derived in the internal

comparison, and they can be easily understood just by assuming a

typical error in the compiled photometry of the external catalogue

of ∼0.02 mag.

7 C O M PA R I S O N W I T H OT H E R

S P E C T R A L L I B R A R I E S

Since MILES contains a considerable number of stars in common

with other libraries, it is an interesting task to study how well our

spectra compare with theirs. We carried out this test in two steps.

First, we analysed the differences in synthetic colours computed
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Figure 13. Differences between the Lick/IDS indices measured in MILES and STELIB spectra against MILES’ indices. In each panel, the number of stars in

the comparison is indicated. Stars with different metallicities are displayed with different symbols as in Fig. 1.

using the common spectral wavelength range and, next, we com-

pared the measured Lick/IDS indices.

For the photometric comparison, we selected the following spec-

tral libraries: Jones (1997), ELODIE (Prugniel & Soubiran 2001),

STELIB (Le Borgne et al. 2003) and INDO-US (Valdes et al. 2004).

All the libraries were broadened to match the poorest spectral

resolution (3 Å FWHM) of the different data sets, and resampled to

a common 0.9 Å pixel−1 linear dispersion. Prior to the comparison,

we present some details of the comparing libraries.

(i) Jones (1999). This library, with 295 stars in common with

MILES, covers two narrow wavelength ranges (3856–4476 Å and

4795–5465 Å) and has been flux calibrated. However, the spectra

are not corrected from interstellar reddening.
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Figure 14. Differences between the Lick indices measured on MILES and in the most recent version of ELODIE spectra against MILES’ indices. In each

panel, the number of stars fitted and the slope of the fit are indicated. Stars with different metallicities are displayed with different symbols as in Fig. 1.

(ii) ELODIE (Prugniel & Soubiran 2001). MILES has 202 spec-

tra in common with the data set of ELODIE. Their spectra cover a

wavelength range from 4100 to 6800 Å.

(iii) STELIB (Le Borgne et al. 2003). The MILES data base con-

tains 106 stars in common with STELIB. This library is flux cali-

brated and corrected for interstellar extinction.

(iv) INDO-US (Valdes et al. 2004). We have analysed 310 stars

in common between this library and MILES. The library has not

calibrated in flux. However, as it was said before, the authors have

fitted the continuum shape of each spectrum to standard SEDs from

Pickles’ (1998) library with a close match in spectral type. The

library includes 14 stars for which a flat continuum is applied, and

which we have not used in the comparison.

7.1 Photometric comparison

In order to carry out this comparison, we defined seven box filters

in different spectral regions (see the definitions in Table 5). We

measured relative fluxes within the filters and a combination of

them provided several (as many as five, depending on the library)

synthetic colours for the stars of the different data sets.

Fig. 9 shows the residuals of the synthetic colours measured on

MILES and on the spectra from the other data sets. The residuals

have been obtained as the colour in the comparing library minus the

colour in MILES. Table 6 lists the mean offsets and the dispersions

found in these comparisons. The agreement is generally good, with

the systematic effect in all the cases lower than 0.06 mag. Note that,

when significant, the offsets are generally in the sense of MILES

being somewhat bluer than the previous libraries.

In general, the best agreement is obtained with INDO-US library,

for which we do not find significant differences in the broader

colours (lower part of Table 6). To further explore the possible

differences in the photometric calibration, we have also measured

synthetic (B − V) colours on all INDO-US stars in common with

MILES, obtaining a mean offset between both libraries of �(B −
V) = 0.000 mag, with an rms dispersion of 0.102 mag (see Fig. 10).

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 703–718



MILES: a new library of empirical spectra 715

Table 7. Comparison of the Lick indices measured on MILES spectra with indices measured, after the corre-

sponding spectral resolution correction, in Jones, STELIB and ELODIE.3 libraries. For each data set, the first two

columns list the slope and intercept (other library–MILES) of a straight line fit to data in Figs 12 and 13.

Jones STELIB ELODIE.3

Slope a0 rms Slope a0 rms Slope a0 rms

HδA 0.969 0.217 0.269 1.003 0.821 0.489 1.015 0.394 0.465

HδF 0.975 0.059 0.140 1.005 0.104 0.166 1.020 0.283 0.202

CN1 0.956 −0.008 0.010 0.977 −0.020 0.009 1.031 −0.009 0.019

CN2 0.958 −0.008 0.010 0.966 −0.023 0.012 1.001 −0.006 0.019

Ca4227 0.976 0.031 0.062 1.046 −0.031 0.082 1.092 −0.075 0.104

G4300 0.965 0.098 0.182 0.971 −0.007 0.198 0.982 −0.040 0.276

Hγ A 0.962 −0.155 0.332 0.967 −0.680 0.635 1.005 0.137 0.362

Hγ F 0.975 −0.004 0.138 1.005 −0.183 0.110 1.012 0.106 0.198

Fe4383 0.968 0.160 0.232 1.000 1.078 0.514 0.993 0.071 0.295

Ca4455 1.097 −0.230 0.221 0.991 0.012 0.124

Fe4531 0.969 −0.209 0.260 1.002 0.088 0.154

C4668 0.896 0.147 0.566 1.020 −0.268 0.345

Hβ 0.987 0.011 0.106 1.005 −0.041 0.135 1.009 −0.074 0.118

Fe5015 0.983 0.043 0.175 0.988 0.325 0.281 1.003 0.138 0.271

Mg1 0.952 0.006 0.009 0.980 −0.005 0.007 0.971 0.007 0.007

Mg2 0.975 0.011 0.009 0.996 −0.002 0.006 0.985 0.008 0.008

Mgb 0.999 0.075 0.095 0.995 −0.015 0.117 1.005 0.083 0.103

Fe5270 0.984 0.080 0.119 0.988 0.003 0.187 0.984 0.010 0.131

Fe5335 0.986 −0.064 0.101 1.030 −0.134 0.183 0.998 −0.117 0.130

Fe5406 0.994 0.008 0.063 0.988 0.030 0.075 0.996 −0.026 0.072

Fe5709 1.016 −0.032 0.098 0.955 −0.178 0.125

Fe5782 0.973 0.054 0.069 0.950 −0.093 0.112

Na5849 0.999 0.060 0.140

TiO1 0.965 0.009 0.005

TiO2 0.974 0.001 0.008

This gives us confidence about our photometric calibration, since

Pickles’ library (Pickles 1998) is considered to be very well flux

calibrated. However, in both Figs 9 and 10, residuals seem to fol-

low a different behaviour for stars colder and hotter than ∼5600 K

(θ = 0.9). Stars colder than this temperature exhibit larger residu-

als, with some of them as high as 0.4 mag. This could be due to the

different criteria applied by these authors to the cool and hot stars

with the aim of assigning a continuum shape to each star from the

Pickles library. To examine these differences in more details, we

have compared the INDO-US spectra of the stars with highest resid-

uals with those from MILES, ELODIE or STELIB library, finding

some stars for which INDO-US provides very different continuum

shapes. Therefore, although, in general, the shape of the continuum

for the stars of this library has been well approximated, the method

applied by the authors can lead to some large errors in the assigned

shape of the continuum of some cool stars.

Concerning the comparison with the STELIB data set, and in or-

der to quantify the differences in the photometric calibration, we

have also compared the synthetic (B − V) colours obtained in this

library with those measured in the MILES spectra. The residuals,

plotted in Fig. 11, reveal that, on the average, STELIB spectra are

redder than MILES spectra by �(B − V) = 0.010 mag, with an rms

dispersion of 0.100 mag. It is interesting to compare this dispersion

with the one obtained in the comparison of MILES with tabulated

colours from the Lausanne data base (Section 6.2; rms�0.024 mag).

This suggests that most of the above dispersion comes from uncer-

tainties in the calibration of STELIB. Le Borgne et al. (2003) indeed

found, in their own comparison with the Lausanne data, an rms dis-

persion of 0.083 mag.

The largest systematic differences in the comparison of the

colours of MILES with those of other libraries are obtained with

Jones’ data set. One of the reasons for these discrepancies could

be the absence of interstellar reddening correction in Jones’ library.

In order to test this, we have searched for a possible correlation

between the residuals of the (b4900−b5300) colour and the colour

excesses E(B − V) of the stars in the comparison. The results show

that, although the three stars with the highest E(B − V) values are

also the ones with the highest colour differences, for the rest of the

stars there does not exist such a correlation. Therefore, we do not

know the causes of the reported differences, although it must be

noted that the flux calibration for some stars in Jones’ library has

errors higher than 25 per cent, due to the selective flux losses in the

spectrograph slit (see Vazdekis 1999).

7.2 Comparison of the Lick indices

In this section, we present the comparison of the Lick/IDS indices

of MILES with those of the other stellar libraries, measured on the

common stars between MILES and the other stellar libraries. We

only show the results for the libraries whose spectra have been incor-

porated into stellar population models (i.e. Jones’ library, STELIB

and ELODIE.3). Figs 12–14 show this comparison. For each index,

we have fitted a straight line and the slope is indicated within each

panel. These fits have been obtained iteratively, by removing, in each

step, the stars that deviated more than 3σ . The final numbers of stars

are also given in the panels. Table 7 lists the coefficients of the fits

together with the corresponding rms. As can be seen, the slopes are,

in general, around 1, except in the comparison with Jones’ library,

where the slopes are always smaller than 1, which means that there

exists a general trend for our strongest indices to be weaker than

those in Jones.
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There exist also small differences in the intercept of the fits. It

is important to remark that these systematic effects should be taken

into account when comparing predictions of models using differ-

ent spectral libraries. As a check, observers who want to compare

galaxy observations with models could include several MILES stars

in their observing run in order to check that there are no systematic

differences in the line-strengths. Such a check would, of course,

apply for people using other libraries, like STELIB. We empha-

size however that this is not strictly necessary, because the MILES

data base has been fully flux calibrated with the explicit purpose of

making observations of line-strengths easy and reproducible.

8 S U M M A RY

We have presented a new stellar library, MILES, which contains

998 stars covering the spectral range λλ3500–7500 Å at a reso-

lution of 2.2 Å (FWHM). The main motivation of this work was

to provide a homogeneous set of stellar spectra to be incorporated

into population-synthesis models. For this reason, special care has

been put in the homogeneity of the spectra and in the sample selec-

tion. However, the library can also be useful for a variety of astro-

nomical purposes, from automatic stellar classification (Kurtz 1984)

(e.g. to train neural networks) to test synthetic stellar spectra, among

others.

The main improvements with respect to other previous libraries

are as follows.

(i) The number of stars of the sample.

(ii) The homogeneity of the whole catalogue. All the stars have

been observed with the same instrumental configuration and all

the spectra share exactly the same wavelength scale and spectral

resolution.

(iii) The moderately high spectral resolution. This will allow to

define new line-strength indices with an improved sensitivity to the

stellar population parameters, which, in turn, will help to break

the well-known degeneracies in the spectra of relatively old stellar

populations, like the one between age and metallicity.

(iv) The much improved stellar parameter coverage (see Fig. 2).

The sample has been carefully selected to cover important regions

of the parameter space in order to provide reliable predictions for

the more critical phases of the stellar evolution.

(v) The accuracy of the (relative) flux calibration. The spectra

are very close to a true spectrophotometric system. This will allow

to make predictions of whole SEDs, and not only of the strength

of selected spectral features. The approach to compare model pre-

dictions with galaxy spectra will be to smooth the synthetic spectra

to the same resolution as that of the observations, allowing us to

analyse the observed spectrum in its own system and to use all the

information contained in the data at its original spectral resolution.
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Dyck H. M., Benson J. A., van Belle G. T., Ridgway S. T., 1996, AJ, 111,

1705

Faber S. M., Friel E. D., Burstein D., Gaskell C. M., 1985, ApJS, 57, 711

Favata F., Micela G., Sciortino S., 1997, A&A, 323, 809

Feltzing S., Gustafsson B., 1998, A&AS, 129, 237
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A P P E N D I X A : C O M P U T I N G C O L O U R

E X C E S S E S

For an important fraction of the stars with unknown reddenings from

the literature it has been possible to derive colour excesses by mea-

suring synthetic colours in the spectra. In this sense, we have em-

ployed the subset of stellar spectra with published E(B − V) values to

check the accuracy of our own determinations of reddenings. Once

the method has shown its capabilities to provide accurate colour ex-

cesses for a given interval in effective temperature and gravity (for

the whole metallicity range), we have employed the same technique

to derive E(B − V) measurements for the subset of stars in those

ranges with unpublished reddenings.

In more detail, the procedure followed to compute colour excesses

has been the following. In the first step, we identified the subset of

stars with published E(B − V) values that exhibit, in a practical

sense, negligible reddenings, more precisely those verifying E(B −
V) < 0.001 mag. Next, we employed the transmission curves of

typical filters in the spectral range covered by our stellar library (λλ

3500–7500 Å), to measure synthetic colours. In particular, we used

the B and V Johnson filters, the Strömgren b, v and y, and the Couch–

Newell RF filter. The normalized transmission curves of these filters

are displayed in Fig. A1(a). In addition to those well-known filters,

we have also employed a set of filters defined as simple box functions

of 600-Å width, which are also graphically shown in Fig. A1(b).

Figure A1. Normalized response functions of typical filters – panel (a) –

and special filters – panel (b) – employed to estimate colour excesses in the

subset of stellar spectra without published reddenings. The displayed filters

are the Johnson’s B and V, the Strömgren’s v, b and y, the Couch–Newell’s

RF, and box functions of 600-Å width centred at 3900, 4500, 5100, 5800,

6400 and 7000 Å.

Using all the possible pairs that can be built from any combi-

nation of the previous 12 filters, we measured all these colours in

the reddening-free stellar subsample. As it is expected, there is a

clear variation of any of these colours with effective temperature,

with additional variations due to metallicity for stars of interme-

diate temperature, and also to surface gravity. An illustration of

this behaviour for the (v − RF) colour is shown in Fig. A2. Since

for log(Teff) > 3.6 and log(g) � 3.5 the effect of gravity is much

less important than those of temperature and metallicity, we have

derived empirical fitting functions for the colour variation as a func-

tion of only Teff and [Fe/H] for these temperature and gravity in-

tervals. The fitting functions have been obtained with three differ-

ent sets of polynomials, forced to have common function values

and first derivatives at the joint points. The first and last polyno-

mial sets are only cubic functions on Teff, and the middle set is

also cubic on Teff and linear on [Fe/H] (we have checked that no

higher order in metallicity is required to reduce the residual vari-

ance of the fits). In all the cases, the two joint points of the three

polynomial sets were also considered as free parameters and were

determined via the minimization procedure of the fit. An example

of these fitting functions is also plotted in Fig. A2 for the (v − RF)

colour.

The derived fitting functions were then used to determine colour

excesses of the stars with known E(B − V) from the literature. In

order to perform this computation, we previously obtained, empiri-

cally, the expected transformation between the colour excess of any

of the synthetic colours and the colour excess in (B − V). This was

carried out by introducing fictitious reddenings in the reddening-free
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(a)

(c)

(c)

Figure A2. Variation of the (v − RF) colour as a function of effective tem-

perature. The different symbols correspond to distinct luminosity classes, as

explained in the key, whereas the symbol sizes are indicative of metallicity

(larger symbols for higher [Fe/H]). In panels (a) and (c), we have overplotted,

with light-grey symbols, the stellar sample of Pickles (1998). The inclusion

of the latter has allowed us to obtain an initial fit only dependent on Teff up to

the highest temperature side. The inset in panel (b) corresponds to a zoom in

the intermediate temperature interval (after subtracting the initial fit), where

the dependence on metallicity is more important. A new set of polynomials

were fitted in this interval to reproduce the behaviour in both Teff and [Fe/H]

(where metallicities are [Fe/H]= −2.0, −1.5, −1.0, −0.5, 0.0 and +0.5 from

bottom to top panel). The combination of these polynomials and the initial

fit leads to the final fitting functions displayed in panel (c). Note that these

functions are not extrapolated below log (Teff) < 3.6.

stellar subsample, parametrized as a function of E(B − V), and by

measuring the corresponding excesses in the synthetic colour. In

this step, we employed the Galactic extinction curve of Fitzpatrick

(1999), with a ratio of total to selective extinction at V given by

RV = 3.1. As it is expected, and illustrated in Fig. A3, for not-

very-wide filters there is an excellent correlation, almost indepen-

dent of any stellar atmospheric parameter, between reddenings esti-

mated from different colours. By measuring the differences between

the fitting function predictions and the actual synthetic colours of

the stellar subsample with E(B − V) from the literature, and using

the conversion between colour excesses, it was straightforward to

determine reddenings in (B − V). The values obtained in this way

were compared with those from the literature. The scatter of these

comparisons was computed, and the best 1:1 relation with the low-

est scatter was obtained for the (b4500−b6400) synthetic colour,

shown in Fig. A4.

Figure A3. Comparison between the colour excesses measured in the (v −
RF) colour as a function of fictitious E(B − V) artificially introduced in the

spectra of the reddening-free stellar subsample. Although we are using the

same symbols as those used in Fig. A2, it is clear that the scatter introduced

by distinct atmospheric stellar parameters is almost negligible. The relation

is nicely fitted by a second-order polynomial.

Figure A4. Comparison of E(B − V) values from the literature with

E(B − V) estimations obtained from the excesses measured in the

(b4500−b6400) colour, following the method described in Appendix A.

Once we have determined the colour index that provided the

best match with those found in the literature, we applied the

method to transform all the colour excesses in (b4500−b6400) into

E(B − V) for the stars in the library without published values of this

parameter (and in the ranges of effective temperature and gravity

described above).
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