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Abstract Cartilage matrix mechanical function is largely
determined by interactions between the collagen fibrillar net-
work and the proteoglycan gel. Although the molecular phys-
ics of these matrix constituents have been characterized and
modern imaging methods are capable of localized measure-
ment of molecular densities and orientation distributions,
theoretical tools for using this information for prediction of
cartilage mechanical behavior are lacking. We introduce a
means to model collagen network contributions to cartilage
mechanics based upon accessible microstructural informa-
tion (fibril density and orientation distributions) and which
self-consistently follows changes in microstructural geom-
etry with matrix deformations. The interplay between the
molecular physics of the collagen network and the proteogly-
can gel is scaled up to determine matrix material properties,
with features such as collagen fibril pre-stress in free-swell-
ing cartilage emerging naturally and without introduction of
ad hoc parameters. Methods are developed for theoretical
treatment of the collagen network as a continuum-like dis-
tribution of fibrils, such that mechanical analysis of the net-
work may be simplified by consideration of the spherical
harmonic components of functions of the fibril orientation,
strain, and stress distributions. Expressions for the collagen
network contributions to matrix stress and stiffness tensors
are derived, illustrating that only spherical harmonic compo-
nents of orders 0 and 2 contribute to the stress, while orders
0, 2, and 4 contribute to the stiffness. Depth- and compres-
sion-dependent equilibrium mechanical properties of carti-
lage matrix are modeled, and advantages of the approach
are illustrated by exploration of orientation and strain distri-
butions of collagen fibrils in compressed cartilage. Results
highlight collagen-proteoglycan interactions, especially for
very small physiological strains where experimental data are
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relatively sparse. These methods for determining matrix
mechanical properties from measurable quantities at the
microscale (composition, structure, and molecular physics)
may be useful for investigating cartilage structure-function
relationships relevant to load-bearing, injury, and repair.

1 Introduction

Articular cartilage is a composite polyelectrolyte hydrogel
with mechanical properties determined by interactions among
its molecular constituents (Grodzinsky, 1983). The major
constituents are a collagen fibrillar network and a proteo-
glycan (PG) gel. The molecular physics of these individual
components have been characterized by a range of investi-
gations. Tensile properties of collagen molecules (Luo et al.
2004) have been observed experimentally, in addition to the
properties of collagen fibers (Pins et al. 1997) which form
the mechanically functional network. In theoretical model-
ing, collagen mechanics is often addressed using rope-like
constitutive laws with spring-like behavior in tension and
negligible resistance in compression (Farquhar et al. 1990;
Soulhat et al. 1999; Wilson et al. 2004). The PG gel provides
much resistance to fluid flow (Zamparo and Comper 1989)
and solute transport (Torzilli et al. 1997) in cartilage. Further-
more, it accounts for most of the matrix fixed charge density
(Maroudas et al. 1969; Bashir et al. 1999), which contributes
to electrokinetic phenomena (Frank and Grodzinsky 1987)
and compressive stiffness (Seog et al. 2002). Theoretical
models of PG gel molecular physics including electroki-
netic transport (Eisenberg and Grodzinsky 1988), electro-
static component of compressive modulus (Buschmann and
Grodzinsky 1995), and anisotropic hydraulic permeability
(Quinn et al. 2001a) have been developed through extensions
of unit cell approaches for transport in fibrous media (Happel
1959; Kuwabara 1959; Brenner and Edwards 1993). Molecu-
lar scale models of collagen and PG contributions to cartilage
mechanics are useful for relating the compression-dependent
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material properties of articular cartilage (Mow et al. 1984;
Chen et al. 2001; Quinn et al. 2001b; Reynaud and Quinn
2006) to microstructural changes which occur during tissue
deformations (Quinn et al. 2001a).

Interactions between collagen network tensile properties
and PG gel swelling pressure contribute to cartilage mechan-
ics and matrix microstructural organization (Maroudas 1976;
Williams et al. 1996). The mechanics of cartilage explant
disks in radially unconfined axial compression (Armstrong
et al. 1984; Kim et al. 1995) involve predominant contri-
butions from PG gel swelling pressures for axial stresses,
balanced by collagen network tensile stresses in the radial
direction. These contributions combine to determine the tis-
sue compressive Young’s modulus (E) and Poisson’s ratio (ν)
at equilibrium (Jurvelin et al. 1997). PG gel flow resistance
introduces transient fluid pressurization, which together with
collagen viscoelasticity (Wilson et al. 2004) can influence
time-dependent behavior (Mizrahi et al. 1986; Jurvelin et al.
1997) important to cartilage biomechanical function (Park
et al. 2003) and injury (Morel and Quinn 2004a).

Collagen contributions to cartilage mechanics depend
upon network organization, molecular physics, and tissue
deformation. Collagen type II molecules are organized into
a crosslinked fibrillar network in cartilage. Fibrillar size de-
pends upon matrix location at cell and tissue length scales.
The pericellular matrix contains a fine collagen latticework
while the interterritorial matrix between cells contains a
mixed population of relatively large fibrils together with a
finer latticework (Hunziker et al. 1997). Furthermore, differ-
ent tissue zones exhibit different collagen densities (Camacho
et al. 2001) and predominant orientations of large interterrito-
rial fibrils. Consistent with classical arcade-like descriptions
of collagen network organization in cartilage (Benninghoff
1925), the superficial zone contains fibrils oriented primarily
parallel to the articular surface (Jeffery et al. 1991), while
deep tissue zones may exhibit large interterritorial fibrils
tending to be oriented perpendicular to the bone-cartilage
interface (Hunziker et al. 1997), with the intermediate zone
containing more random fibril orientations (Mollenhauer et al.
2003). The depth-dependent structure of the collagen net-
work likely underlies depth-dependence of cartilage mechan-
ical behavior (Chen et al. 2001). Estimates of the mechanical
constitutive behavior of collagen fibrils have suggested rope-
like behavior with tensile moduli up to 750 MPa, depending
upon the degree of crosslinking (Pins et al. 1997). Collagen
network structural organization changes as the tissue deforms
(Kääb et al. 1998; Alhadlaq and Xia 2004). Therefore,
measurement of collagen fibril densities and orientations
(Camacho et al. 2001; Xia et al. 2001; Xia and Elder 2001;
Mollenhauer et al. 2003) might be applicable to estimation of
local matrix mechanical properties, if links between molecu-
lar physics, matrix structural organization, and tissue defor-
mations are established.

Several theoretical models have been developed to ad-
dress collagen network mechanics. Scale-up from molecular
physics to tissue properties, with individual fibrils subject to

continuum-scale deformations and network mechanics deter-
mined from superposition of many individual fibrils has been
explored in the contexts of cartilage (Farquhar et al. 1990),
tissue-equivalent materials (Barocas and Tranquillo 1997),
and aortic valves (Billiar and Sacks 2000; Driessen et al.
2003). The “fibril-reinforced” model for articular cartilage
aimed to explicitly address the mechanics of the collagen
network and the PG gel acting simultaneously (Soulhat et al.
1999). In this particular approach, collagen fibril microstruc-
tural details were ignored and replaced by nonlinear spring
elements representing network constitutive behavior. As a re-
sult, this approach relied upon empirical characterization in
specific loading configurations (rather than independently ac-
quired molecular physics and microstructural data) for mod-
eling of collagen network mechanics. Furthermore, the PG
gel was modeled as poroelastic (Soulhat et al. 1999; Li et al.
2000) instead of a gas-like, flow-resistant material consistent
with the understanding of its molecular physics (Grodzin-
sky 1983; Buschmann and Grodzinsky 1995). Therefore, the
“fibril-reinforced” approach does not fully separate collagen
and PG contributions to cartilage mechanics: the PG gel pos-
sesses a seemingly nonphysical Poisson’s ratio and collagen
fibrils support zero tensile stress under tissue free-swelling
conditions, which is inaccurate (Maroudas 1976). Limita-
tions of the “fibril-reinforced” model have been partially ad-
dressed by extensions to include greater numbers of spring
elements representing collagen network constitutive behav-
ior (Wilson et al. 2004) and more careful attention to interac-
tions between collagen tension and PG gel swelling pressures
in the absence of tissue loading (Wilson et al. 2005). However,
these approaches still rely upon empirical characterization of
the effective constitutive behavior of matrix constituents in
specific loading configurations, and retain ad hoc parameters
such as PG gel Poisson’s ratio. Therefore they are limited in
their potential for estimation of cartilage mechanical proper-
ties from independently determined microstructural data and
molecular physics.

Our objectives were to develop a constitutive model of the
cartilage collagen network based upon measurable structural
quantities including fibril density and orientation distribu-
tions. This microstructure-based approach aims for direct
scale-up from structural organization and physics at the
molecular scale to mechanics at the tissue scale, without
case-specific empirical characterization. It therefore may be
readily applied to matrix from any tissue zone or extracel-
lular location, and any mechanical loading conditions. For
implementation in finite element calculations of cartilage
deformations proceeding with incremental time steps, con-
stitutive laws governing matrix poroelastic mechanics
are derived from microstructural data. Small deformations
are allowed to occur, then associated microstructural changes
are determined and constitutive laws re-derived. Therefore
modeled deformations proceed as many small linear steps,
but microstructural data and matrix properties are continu-
ously updated to model nonlinear behavior over large
deformations.



Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage 75

2 Methods

Cartilage matrix elements large compared to the molecular
scale but small enough compared to the tissue scale to have
uniform composition, structure, and physical properties were
considered. Each element was assumed to have two compo-
nents: a collagen network and a PG gel (Fig. 1). The col-
lagen network consisted of collagen fibrils and their hydra-
tion water (Maroudas and Bannon 1981), while the PG gel
consisted of proteoglycans, their hydration water, and water
which could flow during matrix deformations. With the vol-
ume fraction of PG gel represented by γ , that for the collagen
network was 1 − γ .

Matrix elastic moduli were determined from changes to
the elastic stress tensor in response to small deformations.
Small matrix deformations relative to a reference state were
described by a vector displacement field u; its gradient decom-
poses into the symmetric strain tensor (E) and an antisymmet-
ric component (�) representing solid body rotation (Malvern
1969); respectively

∇u = 1

2

(∇u + (∇u)t) + 1

2

(∇u − (∇u)t) = E + � (1)

where superscript t denotes transposition. The equilibrium
elastic stress tensor for the cartilage matrix element (S)
changed with deformation. This transition was expressed in
terms of E and � to define the fourth-order matrix stiffness
tensor J (Farquhar et al. 1990):

Sd = S + J : E + R : � (2)

where subscript d denotes a quantity after a small deforma-
tion and R : � accounts for pure rotation without stiffness.

The total equilibrium elastic stress tensor (S) for the car-
tilage matrix element was the sum of the area-averaged equi-
librium elastic stress tensors of the PG gel (Spg) and collagen
network (Scol). Using Eq. 2, separate stiffness tensors for
the PG gel (Jpg) and collagen network (Jcol) were defined
such that J = Jpg + Jcol. However, this was complicated by

Fig. 1 Cartilage matrix elements are considered to contain a collagen
network component and a PG gel component. The collagen network
consists of dry collagen and bound hydration water, and is considered
to conserve its volume during tissue deformations. The PG gel consists
of proteoglycans, their hydration water, and freely movable water

differential effects of deformation on each matrix component.
Collagen fibrils were assumed subject to the same displace-
ment field u as the matrix itself at the continuum scale (be-
low), but the collagen network was assumed to conserve
its volume (fibrils and collagen hydration water; Fig. 1).
Therefore, matrix element volume changes required rela-
tively greater volume changes in the PG gel. The strain tensor
E can be decomposed into isotropic and deviatoric (D) com-
ponents (Malvern 1969), respectively

E = I
∇ · u

3
+

[
1

2

(∇u + (∇u)t) − I
∇ · u

3

]

= I
∇ · u

3
+ D (3)

where I represents the unit dyadic tensor. For small defor-
mations, the isotropic part results in a fractional change of
total element volume of ∇ · u while D involves no volume
change. The fractional change of PG gel volume was there-
fore γ −1∇ · u. With α representing the PG gel “solid” (dry
PG plus hydration water) volume fraction, the changes of γ
and α during small deformations were

γd = γ + (1 − γ )∇ · u (4)

and

αd = α(1 − γ −1∇ · u) (5)

The equilibrium elastic stress tensor for the PG gel was
determined from Poisson–Boltzmann modeling of the elec-
trostatic contribution to swelling pressure of glycosamino-
glycan solutions (Buschmann and Grodzinsky 1995) using
a 20-node finite difference calculation implemented on a
spreadsheet. Consistent with previous results, 0.25 MPa was
added to the electrostatic contribution to estimate total PG
gel swelling pressure (Buschmann and Grodzinsky 1995).
Results were indistinguishable from previous findings and
summarized by

Spg[MPa] = γ [274.1α2 − 15.98α + 0.27733]I (6)

Spg was therefore always isotropic in the present model
so that anisotropic mechanics could only arise due to contri-
butions from the collagen network. Eq. 4, 5, and 6 provide

Jpg[MPa] = −[274.1α2(1 + γ )

−15.98αγ − 0.02733(1 − γ )]II (7)

for the PG gel contribution to the matrix stiffness tensor.
Collagen fibrils were assumed the basic unit of construc-

tion of the collagen network, with larger fibers equivalent to
many fibrils oriented in the same direction. It was assumed
that fibrils were of uniform size (constant volume), and that a
single constitutive law relating fibril tensile stress σ to strain
εf could be identified. It was also assumed that for any direc-
tion the mean fibril number density could be defined (with
opposite directions sharing equally). To determine the area-
averaged stress tensor of the collagen network (Scol), consider
a matrix volume of length dtot and cross-sectional area Atot
across which an imaginary test surface with unit normal n is
drawn (Fig. 2a). The probability of interaction with the test
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Fig. 2 a Sketch of matrix control volume containing collagen fibers
(black bars). For each fiber orientation (f̂i ), a single fiber stress (σi ) is as-
sumed. The stress tensor for the collagen network is determined by con-
sidering forces acting through a control surface drawn (gray) through
the matrix. b Close-up of an imaginary control surface drawn through
an individual collagen fiber of cross-sectional area Ai , for which the
contribution to the collagen network stress tensor is to be determined.
The tensile force in the fiber is given by σi Ai f̂i

surface for a fibril with a given orientation (labeled with sub-
script i) is fi · n/dtot, where f is a vector representing fibril
length and direction. Since the tensile force associated with
each fibril is σi Ai f̂i where f̂i = fi/|fi | and Ai represents
fibril cross-sectional area (Fig. 2b), the average stress due to
collagen fibrils acting across the test surface is

Scol · n = 1

Atot

∑

i

Ni

(
fi · n
dtot

)
σi Ai f̂i

=
∑

i

Ni

Ntot
σi

(
Ai |fi | Ntot

Atotdtot

)
f̂i f̂i · n (8)

where Ni is the number of fibrils with a given orientation and
Ntot is the total number of fibrils in the test volume. Since
fibrils were assumed to conserve volume, the term in brack-
ets on the right side of Eq. 8 is the fibril volume fraction
(1 − γ ). With P(θ, φ) sin θdθdφ representing the fraction of
fibers oriented between θ and θ +dθ , and φ and φ +dφ, Scol
may therefore be expressed as the integral

Scol = (1 − γ )

2π∫

0

π∫

0

P (θ, φ)σ (θ, φ) iR iR sin θdθdφ (9)

where R, θ, φ have their usual meanings in spherical coordi-
nates.

Under a small displacement field u, vectors representing
fibrils (f) were assumed to undergo a continuum-scale map-
ping.

fd = f · (I + ∇u). (10)

When following an individual fibril during deformation in
the Lagrangian sense, tensile strains and stresses varied as

εfd = εf + (1 + εf )iR iR : ∇u (11)

σd = σ + ∂σ

∂εf

(
1 + εf

)
iR iR : ∇u (12)

where iR denotes a unit radial vector defining fibril orienta-
tion. Equations 4, 9, 10, and 12 were used to determine Jcol
(Morel 2004), which may be written

Jcol = −ScolI + Tcol + Rcol (13)

where

Tcol = (1 − γ )

2π∫

0

π∫

0

P (θ, φ)

[
∂σ

∂εf

(
1 + εf

) − 2σ

]

× iR iR iR iR sin θdθdφ (14)

and Rcol =col Ri jkl is most easily expressed with index nota-
tion as
colRi jkl =col Silδ jk +col S jlδik (15)

where colSi j = Scol and δi j is the Kronecker delta func-
tion. Equations 9 and 14 therefore prescribe calculations for
determination of collagen network contributions to the matrix
stiffness tensor (Eq. 13), provided γ, P(θ, φ), εf (θ, φ), and
σ(εf ) are known.

With the poroelastic properties of cartilage matrix ele-
ments determined from collagen network and PG gel micro-
structure, small deformations under loading may be mod-
eled and microstructural changes in matrix architecture cal-
culated. To first order in u, Eqs. 4 and 5 describe changes in
γ and α, which completely characterize PG gel microstruc-
ture for present purposes. Equation 11 describes changes in
individual fibril strains in the Lagrangian sense, but requires
modification to

εfd(θ, φ) = εf (θ, φ) + (1 + εf (θ, φ))iR iR : ∇u
− iR · ∇u · ∇εf (θ, φ) (16)

for description of changes in εf (θ, φ) in the laboratory frame.
The fibril orientation distribution P(θ, φ) varied as

Pd(θ, φ) = P(θ, φ)[1 − (I − 3iR iR) : ∇u]
− iR · ∇u · ∇ P(θ, φ) (17)

accurate to first-order terms in u (Morel 2004).
In practice, the forms of Eq. 9 and 14 make it efficient

to work in terms of the spherical harmonic decompositions
(SHDs) of P(θ, φ), εf (θ, φ), and σ(θ, φ) which character-
ize collagen network microstructure. The tensor iR iR only
contains spherical harmonic components of orders 0 and 2;
therefore due to orthogonality of spherical harmonic func-
tions only the SHD of the product P(θ, φ)σ (θ, φ) of orders
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0 and 2 contribute to S (Eq. 9). This permits integration to be
performed “in advance”, and Eq. 9 may be replaced by a dot
product between vectors representing the amplitudes of the
SHD of P(θ, φ)σ (θ, φ) and the results of Eq. 9 for individ-
ual spherical harmonic functions in place of P(θ, φ)σ (θ, φ).
Similarly, iR iR iR iR only contains spherical harmonic com-
ponents of orders 0, 2, and 4, and Eq. 14 may be replaced by
a dot product between vectors representing the amplitudes

of the SHD of P(θ, φ)
[

∂σ
∂εf

(
1 + εf

) − 2σ
]

and the results

of Eq. 14 for individual spherical harmonic functions in its
place. Similarly, the forms of Eq. 16 and 17 and the proper-
ties of spherical harmonics make it convenient to calculate
deformation-induced changes in P(θ, φ) and εf (θ, φ) while
remaining in the SHD domain (Morel 2004).

A piecewise linear rope-like constitutive law was assumed
for all fibrils,

σ = Mεf if εf ≥ 0
σ = 0 if εf < 0 (18)

with a constant tensile modulus of elasticity M = 70 MPa
corresponding to lightly crosslinked fibrils from previous
measurements (Pins et al. 1997). For small changes from free-
swelling matrix geometry, where all collagen fibers remain
in tension, mathematical linearity permits the full calcula-
tion “cycle” (Fig. 3) to remain entirely in the SHD domain
(Morel 2004). For modeling of matrix strains in excess of a
few percent, it becomes convenient to return to the spatial
domain for determination of σ(θ, φ) from εf (θ, φ). For this
purpose, the code ccSHT was implemented, kindly provided
by Christopher Cantalupo.

Superficial, intermediate, and deep tissue zones were
modeled (Fig. 4) using previously determined values (Marou-
das et al. 1991; Buschmann and Grodzinsky 1995) for free-
swelling matrix composition and microstructure (Table 1).
Spherical harmonic components up to order 6 were included
in calculations. To compare mechanical behaviors among
the three zones, simulations were performed corresponding
to radially unconfined static axial compression of cartilage
disks between rigid, frictionless, impermeable boundaries.
The “axial” direction of compression was perpendicular to
the articular surface. For each simulation, the cartilage disk
had uniform composition corresponding to one of the defined
tissue zones (Table 1), thereby representing a homogeneous
tissue slice. Under these conditions, the equilibrium mechan-
ical properties of an individual element corresponded to those
of an entire tissue zone. This relatively simplified approach
was taken in order to examine the abilities of the modeling ap-
proach to realistically predict matrix mechanics from micro-
structural data, and to differentiate between the mechanics of
tissue zones with different microstructural organization.

3 Results

Under free-swelling conditions, the absence of externally ap-
plied loads implied that isotropic PG gel swelling pressure
was balanced solely by tensile forces in the collagen network.

Fig. 3 Outline of the calculation scheme for model implemen-
tation. Initial conditions for matrix microstructural parameters
(P(θ, φ), εf (θ, φ), γ, α) were estimated from literature values and used
to determine matrix mechanical properties (κpg, Jpg, Jcol). Properties
were then input to a finite element model where small matrix defor-
mations were allowed to occur subject to applied loads. These small
deformations (E) were then used to determine changes in matrix micro-
structural parameters and to update the matrix mechanical properties
prior to finite element calculation of the next small deformation

Fig. 4 Orientation distributions of collagen fibers in superficial, inter-
mediate, and deep zones of cartilage under free-swelling conditions.
Corresponding strains within individual collagen fibrils are also ex-
pressed as a function of fibril orientation

In this situation, different cartilage zones exhibited markedly
different distributions of collagen fibril loading (Fig. 4). In
the superficial zone, where the network consisted of fibrils
with orientations preferentially parallel to the articular sur-
face, PG gel swelling pressure was balanced by a greater
number of fibrils in these directions as compared to other
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Table 1 Modeling parameters characterizing microstructure of cartilage zones for free-swelling conditions prior to applied deformations

Tissue zone Matrix volume PG gel volume Collagen fibril orientation distribution:
fraction of PG gel (γ ) fraction of solid (α) coefficients of spherical harmonic components

Y0
0 Y0

2 Y0
4 Y0

6

Superficial 0.55 0.06 0.2821 −0.0899 0.0351 0.0149
Intermediate 0.70 0.12 0.2821 0.0000 0.0000 0.0000
Deep 0.65 0.13 0.2821 0.0810 0.0307 0.0129

Fig. 5 Strains within individual collagen fibrils εf (θ, φ) during small
quasistatic compressions of superficial, intermediate, and deep tissue
zones. For each zone, calculations were performed for compression
ranges where fibril strains remained positive for all directions. Quanti-
tative values for strains (expressed as percent) in fibrils oriented parallel
and perpendicular to the compression direction are written above and
beside strain distributions

directions. As a consequence, individual fibrils oriented per-
pendicular to the articular surface supported greater tensile
loads than those oriented in parallel directions, since fewer
fibrils were available (per unit surface) to balance the same
swelling pressure. In the intermediate zone, where collagen
fibril orientations were distributed uniformly in all directions,
tensile stresses in individual fibrils were likewise identical in
all directions. In the deep zone, the network consisted of fib-
rils oriented preferentially in the direction perpendicular to
the interface with underlying bone. Stresses within individ-
ual fibrils in the deep zone were therefore greatest for fibrils
oriented parallel to the bone interface, under free-swelling
conditions.

In the presence of externally applied loads, forces within
the two matrix components no longer balanced each other.
Instead, matrix deformations occurred such that at mechan-
ical equilibrium the net contribution of the PG gel and the
collagen network balanced the external loads. In the superfi-
cial zone, tensile stresses in fibrils oriented perpendicular to
the articular surface were relieved by unconfined compres-
sion (Fig. 5), while a combination of changes occurred in
the collagen network allowing increased tensile load support
in directions parallel to the articular surface. First, individ-
ual fibrils oriented parallel to the articular surface supported
greater loads. Second, fibrils tended to change their orienta-
tions toward these directions, increasing the capacity of the

collagen network to support tensile loads perpendicular to
the compression direction. Third, as the fluid was expelled
from the PG gel during compression, the volume fraction of
collagen fibrils (1−γ ) increased, providing increased tensile
load support per unit area of matrix (Eq. 9). These collagen
network structural changes occurred to offset increases in
the swelling pressure of the PG gel resulting from its vol-
ume reduction during matrix compression. Similar changes
in both matrix components occurred within the intermediate
and deep zones, although in each case these changes emerged
from the zone-specific distributions of collagen fibril stresses
existing prior to compression.

For comparison with previous experimental results, equi-
librium matrix mechanical properties were also calculated for
each tissue zone near to free-swelling conditions. At 0.5%
compression, Young’s moduli were 2.8 MPa in the superfi-
cial zone, 3.5 MPa in the intermediate zone, and 5.9 MPa in
the deep zone, while Poisson’s ratios were 0.36, 0.40, and
0.42, respectively (Table 2). With increasing compression,
Young’s moduli tend to increase while Poisson’s ratios de-
creased (Table 2).

4 Discussion

This work aims to bridge gaps between histological data for
cartilage structure and theoretical tools for simulating carti-
lage function. The approach builds upon previous work by
introducing means for treating the collagen network as a con-
tinuum-like distribution of fibrils rather than a collection of
a small number of representative spring elements. Advanta-
ges of this new approach include the derivation of general
relationships for collagen network contributions to cartilage
mechanics (Eqs. 9, 13, and 14), and retaining a basis for
collagen network modeling (fibril densities and orientation
distributions) which follows straightforwardly from indepen-
dent structural measurements. Matrix material properties are
determined simply from the mechanical interplay between
the collagen network and the PG gel (Maroudas 1976), pro-
viding a means for scale-up from molecular physics to matrix
properties without introduction of ad hoc parameters such as
Poisson’s ratio of the PG gel (Soulhat et al. 1999; Wilson
et al. 2004). As a result, clear distinctions between PG gel
and collagen network contributions to matrix mechanics are
obtained, with features such as collagen fibril pre-stress in
free-swelling cartilage emerging naturally. This model there-
fore translates directly between measurable quantities at the
microscale (composition, structure, and molecular physics)
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Table 2 Model results for cartilage matrix mechanical properties in different cartilage zones, for compression regimes where all collagen fibrils
remained in tension

Tissue Zone Young’s modulus 
(MPa)

Poisson’s ratio

Matrix 
compression

Matrix 
compression

0.5% 1.0% 2.0% 0.5% 1.0% 2.0%
Superficial 2.8 0.36
Intermediate 3.5 3.6 3.7 0.40 0.37 0.32
Deep 5.9 6.0 0.42 0.39

and at the macroscale (matrix material properties), which
may be useful for investigating cartilage structure-function
relationships in many contexts.

Limitations of this approach include potential inaccura-
cies due to overt reliance upon microstructure-based mod-
els of matrix molecular physics. The constitutive behavior
of collagen fibrils depends upon fibrillar structure including
crosslinking (Pins et al. 1997), so that definition of a fibrillar
“structural unit” from which all larger fibrils are composed is
questionable. As suggested by previous work (Wilson et al.
2005), it may be more accurate to consider the collagen net-
work as a superposition of multiple networks with different
fibril sizes and constitutive behaviors. Unit cell models of PG
gel molecular physics are based upon several simplifying
assumptions and therefore imperfect by their nature (Bus-
chmann and Grodzinsky 1995). In order to emphasize the
emergence of collagen network mechanics from individual
fibrillar behavior, the present model deliberately neglected
some aspects of molecular physics which may be important
under certain conditions, such as collagen fibril viscoelastic-
ity (Wilson et al. 2004) and PG gel anisotropic permeability
(Reynaud and Quinn 2006). Furthermore, the cartilage matrix
contains many constituents in addition to fibrillar collagens
and PGs; these minor constituents may contribute to matrix
mechanics directly or by modifying the behavior and inter-
actions of the two major constituents.

Findings for equilibrium mechanical properties near free-
swelling conditions within different cartilage matrix zones
were reasonably consistent with previous experimental find-
ings. Poisson’s ratios were in the range of 0.32–0.42
(Table 1), somewhat elevated compared to previous measure-
ments (Jurvelin et al. 1997). This discrepancy appeared to be
due to the very small compressive strains modeled, where ra-
dial deformations of axially compressed explant disks could
occur more easily due to collagen reorientation as opposed
to the much stiffer fibril extension predominant at the higher
strains of experiments. Modeled Poisson’s ratios increased
with depth in cartilage consistent with depth-dependent defor-
mations of full-thickness explant disks (Jurvelin et al. 1997).
Modeled Young’s moduli also increased with depth within
cartilage (Table 2) consistent with previous findings (Chen
et al. 2001). Values of Young’s moduli ranged from 2.8 to
6.0 MPa which were elevated by approximately 10× com-
pared to typical experimental results (Jurvelin et al. 1997;
Chen et al. 2001). However, this discrepancy has a rational

basis which highlights mechanical interactions between the
collagen network and the PG gel. Very small compressive
strains in the range of 1–2% involve many collagen fibrils go-
ing from extended to relaxed, such that PG gel swelling pres-
sures must be compensated by external forces over a small
range of strain. As a result, matrix compressive stiffness can
be greatly elevated compared to that of the PG gel alone
(Fig. 6). Experimental measurements of cartilage stiffness
are typically performed for matrix compressive strains ≥5%,
where changes in PG gel swelling pressure dominate mechan-
ical behavior and matrix stiffness is approximately 0.5 MPa
(as suggested by Eq. 6 and Table 1). Therefore, mechanical
characterization techniques which can assay matrix behavior
in the range of 1% compressive strains are of significant inter-
est for exploring collagen-PG interactions. The present model
provides reasonable results for cartilage equilibrium mechan-
ical properties, for compositional and structural parameters
corresponding to matrix superficial, intermediate, and deep
zones. In addition, modeled changes in matrix microstruc-
ture were consistent with previous observations (Kääb et al.
1998), providing a clear illustration of links between molec-
ular organization and tissue-scale mechanical properties in
cartilage.

Previous experimental studies of cartilage mechanical
behavior may be better interpreted in light of the present
model. Radially confined axial compression of cartilage disks
resulted in increases of matrix swelling pressure which were
more dramatic in the axial versus the radial direction (Khalsa
and Eisenberg 1997). This was considered surprising because
these changes were presumed to result from swelling pres-
sure increases within the PG gel alone, and were expected
to be isotropic. However, collagen network volume fraction
(1−γ ) increases during radially confined axial compression,
providing increased tensile load support per unit area (Eq. 9)
in the radial direction while it decreases in the axial direction
(Fig. 5), consistent with the observed behavior (Khalsa and
Eisenberg 1997). Nevertheless, radial confinement of axially
compressed cartilage disks may prevent collagen network
contributions to offsetting PG gel swelling pressure by other
mechanisms which are operative without confinement (such
as increased deformation in the radial direction). Other exper-
imental studies have highlighted unconfined radial defor-
mations of axially compressed cartilage disks which were
greater for directions perpendicular versus parallel to the
superficial zone split-line pattern (Mizrahi et al. 1986). The
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Fig. 6 Conceptual interpretation of high compressive moduli at low
strains in cartilage-like materials. a Consider an isothermal ideal gas
in a 1D piston chamber, wherein a piecewise linear spring of resting
length f0 resists upward movement of the massless piston (gray). At
“free-swelling” equilibrium, where the external force Fext = 0, the
spring extends to length feq > f0. b Consideration of forces on the
piston provides a “constitutive law” similar to present results. When
the spring is stiffer than the gas, the modulus for small compressive
strains where f0 < f < feq may be greater than for larger strains
where f < f0

proposed interpretation of these results suggested that direc-
tions of increased tensile stiffness corresponding to pref-
erentially oriented collagen fibrils (the split-line direction)
were under increased pre-stress prior to compression (Miz-
rahi et al. 1986). The present model suggests the opposite:
with isotropic PG gel swelling pressure less pre-stress is ex-
pected within individual fibers oriented along preferential
directions. An alternate explanation for the observed behav-
ior may simply be that more fibrils tend to be oriented along
the split-line direction, making the collagen network stiffer
along that direction. Further observations highlighted greater
effects on tensile stiffness along the split-line direction for
changes in ionic strength (PG gel swelling pressure) (Miz-
rahi et al. 1986). As illustrated in the present model, collagen
network tensile deformations may occur due to fibril reori-
entation or fibril elongation, with greater stiffness associated
with the latter case. It is therefore possible for directions of
predominant fibril orientation to exhibit less stiffness than
other directions, when fibril reorientation is the main con-
sequence of matrix deformations in the predominant fibril
direction while fibril elongation occurs in other directions.

The present study was restricted to equilibrium matrix
mechanics and relatively simple physics of the PG gel in order
to highlight novel features of the collagen network modeling
approach. Future efforts could extend this work to address
more general situations. Poroelastic mechanics during
dynamic matrix deformations could be addressed similarly to

previous studies (Morel and Quinn 2004a) with the introduc-
tion of a matrix hydraulic permeability tensor given by γκpg,
where κpg represents the microstructure-dependent hydraulic
permeability tensor of the PG gel (Quinn et al. 2001a). Contri-
butions of the collagen network in other loading geometries
could be investigated. For example, previous studies have
investigated the contribution of changes in electrostatic en-
ergy density associated with glycosaminoglycan architecture
to the cartilage shear modulus (Jin and Grodzinky 2001), but
more careful attention to shear-induced changes in molecu-
lar architecture (Quinn 1996; Quinn et al. 2001a) indicates
that the modeled effects were likely overestimated. The pres-
ent model could be used to explore other contributions of
the PG gel to cartilage shear mechanics, such as via induced
pre-stresses in the collagen network. Mechanical interactions
between cartilage zones and molecular-scale stress distribu-
tions resulting from inhomogeneous or discontinuous matrix
structure might be explored in relation to full-thickness tis-
sue function and interactions between cartilage-like tissues
in tissue engineering or repair contexts. Mechanical failure of
cartilage in compression likely results from matrix deforma-
tions which induce molecular-scale stresses exceeding some
collagen fibril or network yield stress. Under high strain rate
injurious compression, these phenomena are linked to fluid
pressurization and can give rise to zone-specific mechanical
damage (Morel and Quinn 2004b). The present modeling
approach provides means to investigate loading of individ-
ual collagen fibrils for a range of matrix compositions and
microstructures, which may help identify tissue loading envi-
ronments which can induce collagen microdamage. More
sophisticated fibril orientation distributions could also be
investigated, in order to clarify the mechanical significance
of specialized collagen architectures as in, for example, the
split-line pattern of collagen orientation in the superficial
zone.

Appendix A: Symbols

α Volume fraction of dry PG plus hydration water within
the PG gel

A Cross-sectional surface area of collagen fibril
Atot Cross-sectional area of imaginary control volume
col Referring to the collagen network
γ Volume fraction of PG gel within a matrix element
dtot Length of imaginary control volume
εf Fibril tensile strain relative to zero-stress relaxed

length
f Vector representing collagen fibril length and direc-

tion
i Unit vector
I Unit dyadic tensor
J Elastic stiffness tensor
κ Hydraulic permeability tensor
n Unit normal vector to imaginary control surface
Ni Number of collagen fibrils with orientation labeled by

i
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Ntot Total number of collagen fibrils in a control volume
pg Referring to the proteoglycan gel
P Orientation distribution of collagen fibrils
r Radial vector in spherical coordinates
R, θ, φ Spherical coordinates (0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π)
R Tensor describing rotation-induced changes in S

(Eq. 2 and 13)
σ Tensile stress in individual collagen fibrils
SHD Spherical harmonic decomposition
S Equilibrium elastic stress tensor of a matrix ele-

ment
T Tensor describing deformation-induced changes in

S (Eq. 13)
u Tissue-scale vector displacement field
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