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Flexible films of vermiculite have been prepared from aqueous suspensions after
swelling by cation exchange and mechanical delamination. Two different swelling
cations, lithium and butylammonium, have been investigated. The degree of swelling
and delamination during the suspension preparation was characterized by the percentage
of water reabsorbed by dried clays and the adsorption of methylene blue. The vermiculite
saturated with lithium ions is more easily delaminated but contains more water than those
saturated with butylammonium. Good quality coherent flexible films could be prepared
from both the lithium and butylammonium exchanged vermiculites but the high percent-
age of water found in the films has a detrimental effect on their dielectric properties. To
reduce the amount of water in the exchanged vermiculites a second ion exchange with
potassium, a less hydratable cation, was investigated. Films prepared after exchange
with potassium showed significant improvements in their dielectric properties, with a
dielectric constante around 10 and a dissipation factortan d around 0.06 at 25±C and
a frequency of 1 kHz.
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I. INTRODUCTION

Vermiculite is a layered sheet silicate of the phyl
losilicate family and originates from the alteration o
mica. The potassium interlayer cation which maintain
the charge neutrality of the sheets in mica is replace
by a hydrated cation, normally Mg in the case o
vermiculite.1 The physical properties of micas and ver
miculite which render these materials interesting are the
low thermal conductivity, high thermal and chemical sta
bility, and particularly their low electrical conductivity.
Sheet micas have been used in electrical equipment
an electrical insulator for many years2 and although in
many applications they have been replaced by polyme
films, their high thermal stability still render them usefu
for certain applications. One of the limitations of shee
micas is their fragility and consequent low flexibility
which limits their application for certain geometries. The
fact that the interlayer cation in vermiculite is hydrate
allows it to be swollen by a treatment in aqueou
salt solutions,3,4 and when followed by delamination
flexible films can be produced.5 The production of
flexible mica films is rendered more difficult becaus
they do not swell and delamination by grinding is
difficult although some high surface area micas hav
become available more recently.6 The vermiculite films

a)Current address: Department of Chemical and Fuels Engineerin
University of Utah, 3290 Merrill Engineering, Salt Lake City,
Utah 84112.
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produced by swelling and delamination also show goo
mechanical properties.5

The presence of water in vermiculite films due to
the presence of the strongly hydrated cations used
the swelling step may reduce the dielectric constan
significantly when compared to sheet mica. In this stud
the effect of a second cation exchange after swelling an
delamination on the dielectric properties of vermiculite
films has been investigated. There have been ma
studies on the cation exchange equilibria7–9 for various
cations and their effect on the degree of hydration o
vermiculite. The ion which seems to contract vermiculite
films most strongly is the potassium ion because of it
low energy of hydration.10–14 Therefore the replacement
of the strongly hydratable swelling ions by potassium
should reduce the amount of water retained in th
vermiculite films. This final exchange of the swelling
cation by potassium will make the vermiculite resemble
mica, the origin of our altered mica-vermiculite. The
vermiculite films have been produced using an exfoliate
vermiculite and two different swelling cations, lithium
and butyl ammonium. The starting vermiculite was char
acterized by chemical analysis and x-ray diffraction, an
its ionic exchange capacity measured. The degree
swelling and delamination of the vermiculite have bee
characterized by the adsorption of methylene blue.15 The
amount of water retained in the films and their affinity
to/for humidity were investigated by thermogravimetric
analysis and the readsorption of water after drying
Films were produced by sedimentation and drying in a
with different humidities. The films were characterized
 1998 Materials Research Society
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by x-ray diffraction (XRD), thermogravimetric analysi
(TGA), and scanning electron microscopy (SEM) an
the dielectric constantsed and dielectric lossstan dd
measured as a function of temperature and frequenc

The methodology used throughout—statistical e
perimental design—is particularly important when dea
ing with natural raw materials such as vermiculite whic
can vary greatly in their composition and homogenei
depending on their source. This methodology inheren
gives an excellent indication of experimental error a
the influence of an uncontrolled parameter that m
affect results when working with such complex system
as the phyllosilicate minerals.

II. EXPERIMENTAL

The vermiculite used in this study was an e
foliated vermiculite supplied by Vermica SA (B¨ozen,
Switzerland).

A. Preparation of vermiculite suspension

To prepare vermiculite suspensions the vermicul
was first swollen by cation exchange and then delam
nated by ultrasonic treatment. The swelling was carr
out by treating the vermiculite for 4 h at 80±C in
solutions of n-butyl ammonium chloride (Bu) (2 M
pH  4.8) or lithium citrate (Li) (1 M, pH 8.5).
These conditions were chosen after a preliminary se
of statistically designed experiments where the solut
concentrations, pH, contact time, and temperature w
investigated.16 The swollen vermiculites were then thor
oughly washed with demineralized water and 40 m
(unless otherwise stated) of suspension (25 gyl) de-
laminated using an ultrasonic horn at 100 W pow
for 30 min (unless otherwise stated). Longer ultrason
treatment times were investigated16 but showed little
further delamination when estimated by the adsorpti
of methylene blue as described below.

To investigate the effect of a second cation exchan
on the vermiculites a potassium exchange was th
carried out. The swollen and delaminated vermiculit
(2 gyl) were left in contact for 3 h with KNO3 solutions
(about1022 M) buffered at pH 4.5 in order to give
0.005 moles of potassium per gram of vermiculite.

B. Preparation of films

The vermiculite films 10 3 10 cm were pre-
pared from the various suspensions (30–35 gyl) by
sedimentation-casting. Silicon rubber molds were plac
on polyacetate sheets supported on a glass plate.
suspension (20–30 cm3) was degassed and then poure
into the mold. The films were dried at 25±C in the
presence of a desiccant (CaCl2) in dry box or at 80±C
in an oven. A certain level of humidity was maintaine
in the oven, by including a beaker of water, to avo
J. Mater. Res., Vol. 1
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the formation of skin on the surface of the film and thu
avoiding bubbles and irregularities on the film surfac
The films were weighed periodically to follow the drying
process. The films obtained had thicknesses of betwe
30 and 60mm. The densities of films were measured o
5–10 rectangular pieces cut from films with the volum
of the sample calculated geometrically.

C. Characterization techniques

The chemical composition of the exfoliated ver
miculite as supplied and after various treatments w
evaluated using inductively coupled plasma spectrosco
(ICP). The solutions for ICP analysis were prepare
by the alkali salt fusion method.17 The vermiculite was
ground with LiBO2 in a 1 : 7 weight ratio and fusion
carried out at 1000±C for 1 h. The resulting mixture
was dissolved in 4% HNO3 at room temperature for the
analysis.

The cation exchange capacity (CEC) was evaluat
by saturating the vermiculite (20 gyl) in a 6 M NaCl
solution for 1 h at 100±C. The concentration of the
interlayer Mg21 and Ca21 ions released was measure
by complexometric titration and ICP analysis for the K
not complexed by the ethylenediaminetetraacetic ac
(EDTA) used in the titration (all chemicals were ana
lytical grade).

X-ray powder diffraction (XRD) was carried out on
the vermiculite (in the form of films) before and afte
various treatments using a Siemens D500 diffractome
(CuKa irradiation). All the films were stored in a
desiccator with silica gel.

The adsorption of methylene blue (MB) has bee
used to assess the degree of delamination of the ver
culite after the various treatments and the effect of th
second cation exchange with potassium. This was carr
out by first drying the vermiculite at 50±C to allow a
precise measurement of the weight of the vermiculit
This was then dispersed in 50 cm3 of de-ionized water
with the aid of an ultrasonic bath. The volume was the
made up to 100 cm3 with an aqueous solution of MB
of known concentration (about5 ? 1024 M or 0.1 gyl)
and placed in a water bath at 27±C and shaken for
16 h. The amount of MB that remained in the fil
tered supernatant was then measured after dilution
assure the MB was in its monomer form,16,18 using a
spectrophotometer (Perkin-Elmer Lamba 6 UV/VIS, a
664 nm for monomer absorption) and by difference th
amount of MB adsorbed by the vermiculite calculated

In order to assess the sensitivity of the variou
vermiculite films to humidity gravimetric and thermo-
gravimetric analysis (TGA) were carried out. The film
were initially dried at 110±C for 16 h and then placed in
an atmosphere at 100% humidity until constant weig
was measured. The amount of water adsorbed is quo
3, No. 1, Jan 1998 229
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as a percentage of the dry weight. The TGA data w
collected on the saturated films using a Setaram TGD
92 (Caluire, France) with flowing dry air and a ramp ra
of 10 ±Cymin from 25 to 600±C.

Scanning electron microscopy (SEM, JEOL 6300
was used to observe the fracture surface and a transv
section of the films. For the transversal section a fi
was impregnated with a resin and the cut made usin
microtome.

Dielectric measurements were made on films c
into 8 mm disks and sputter coated with Au to for
electrodes. The dielectric constant,e, and dielectric loss,
tan d, of the samples were measured as a function
temperature (cooling from 150 to 20±C) and frequency
(30 Hz, 100 Hz, 300 Hz, and 1 KHz) [using a Hewle
Packard precision LCR meter (HP4284A) in conjuncti
with a Delta Design (9023) environmental test chambe

D. Experimental design

Two series of statistically designed experiments19

(factorial 24) were used to study first the effect of th
second ion exchange (i.e., K) on the sensitivity of t
various vermiculites to humidity and second the effe
of this second exchange on the dielectric properties
the films produced. This type of factorial experimen
design allows us to study the influence of four paramet
at two different levels by carrying out 16 separa
experiments.

The four parameters investigated in the first ser
of experiments were (A) the volume of suspensi
used during the ultrasonic delamination treatment (60
120 cm3), (B) the duration of the delamination treatme
(30 or 60 min), (C) the type of salt used to swell th
clays [n-butyl ammonium chloride (Bu) or lithium citrat
(Li)], and (D) with or without the second ion exchang
with potassium (no, yes). The specific experimental co
ditions and sample nomenclature are reported in Tabl
The column treatment contains the coded treatme
according to the Yates’ convention: when a factorX is
applied at its higher level, the lowercase letterx appears
in the treatment code.

The second experimental plan looked at the infl
ence of four parameters on the dielectric properties of
various vermiculite films produced. These were (A) t
type of salt used to swell the clays [n-butyl ammoniu
chloride (Bu) or lithium citrate (Li)], (B) the duration
of the ultrasonic treatment (5 or 30 min), and (C) wi
or without the second ion exchange with potassiu
(no, yes), and (D) the measurement temperature
or 100±C). The specific experimental conditions an
sample nomenclature are reported in Table II.

The data were statistically analyzed using t
ANOVA technique.19 The adjusted values presente
in the control charts were calculated according to t
230 J. Mater. Res., Vol.
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TABLE I. Parameters and their levels studied to investigate the
sensitivity of the various vermiculite films to humidity.

Factor Definition Low level High level

A Volume of suspension 60 cm3 120 cm3

during delamination
B Delamination time 30 min 60 min
C Nature of vermiculite BuNH3 –V Li–V
D Exchange with K No Yes

Volume of Nature of
suspension Delamination swelling Exchange

Treatment (cm3) time (min) cation with K1

“1” 60 30 Bu No
a 120 30 Bu No
b 60 60 Bu No
ab 120 60 Bu No
c 60 30 Li No
ac 120 30 Li No
bc 60 60 Li No
abc 120 60 Li No
d 60 30 Bu Yes
ad 120 30 Bu Yes
bd 60 60 Bu Yes
abd 120 60 Bu Yes
cd 60 30 Li Yes
acd 120 30 Li Yes
bcd 60 60 Li Yes
abcd 120 60 Li Yes

TABLE II. Parameters and their levels studied to investigate their
influence on the dielectric properties of the various vermiculite films
produced.

Factor Definition Low level High level

A Nature of vermiculite BuNH3 –V Li–V
B Duration of ultrasonic 5 min 30 min

treatment
C Exchange with K No Yes
D Measurement temperature 50±C 100±C

Nature of Sonication Exchange Meas. temp.
Treatment vermiculite time (min) with K (±C)

“1” Bu 5 No 50
a Li 5 No 50
b Bu 30 No 50
ab Li 30 No 50
c Bu 5 Yes 50
ac Li 5 Yes 50
bc Bu 30 Yes 50
abc Li 30 Yes 50
d Bu 5 No 100
ad Li 5 No 100
bd Bu 30 No 100
abd Li 30 No 100
cd Bu 5 Yes 100
acd Li 5 Yes 100
bcd Bu 30 Yes 100
abcd Li 30 Yes 100
13, No. 1, Jan 1998
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adequate regression models, retaining only the regres
coefficients found significant at thes1 2 pd confidence
level (p is the probability of type I error, which is the
risk to consider erroneously a regression coefficient
significant).

III. RESULTS AND DISCUSSION

A. Vermiculite characterization

The chemical composition measured by ICP
the vermiculite studied and the suppliers data a
shown in Table III as the percentage weight of the
oxides. Elements such as Mn, Ti, and Na present in
suppliers chemical analysis were below the detect
limits for our ICP measurements. The percenta
weights have been normalized for comparison purpo
and the SiO2 nonnormalized figure included as a
indication of the overall composition. The majo
difference between the suppliers data and the I
analyses are higher values for the K concentration. T
potassium is double the level indicated by the suppl
and the significance is discussed below in conjunct
with the XRD and cation exchange data.

The XRD data recorded on the untreated vermicul
are shown in Fig. 1(a) where two vermiculite phases c
be identified, the expected Mg vermiculite and a mic
like K vermiculite.1,14,20 The reflections at 14.2̊A and
11.9 Å are close to the 001 reflections characteristic
Mg vermiculite with two (14.3Å) and one (11.6Å)
hydration layer, respectively. The reflection at 10.1Å
is typical of potassium aluminosilicates such as ph
gopite or muscovite (micas) which do not swell, i.e
where the potassium interlayer cation does not excha
readily. This reflection is therefore indicative of som
untransformed mica in our starting material—the natu
precursor of vermiculite.7 The reflection at 12.4̊A can
be attributed to an interstratified layer19 in between the
contracted form of the potassium vermiculite and t
magnesium vermiculite. No impurities in the form o
iron or aluminum oxides could be indexed, suggesti
that the Fe and Al in the chemical analysis are structu
cations in either tetrahedral or octahedral sites in
J. Mater. Res., Vol. 1
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FIG. 1. X-ray diffractograms for the starting vermiculite and different
vermiculite films: (a) exfoliated starting material, (b) Bu vermiculite,
(c) Li vermiculite, (d) K (Li) vermiculite, and (e) MB exchanged (Li)
vermiculite.

vermiculite. No carbonates such as CaCO3 or MgCO3

were identified in the diffractograms.
The cation exchange capacity was found to be

81 meqy100 g of vermiculites65%d, assuming that the
exchangeable cations are Mg (65 meq), Ca (10 meq), and
K (6 meq) as confirmed by ICP analysis of the filtrate
after exchange (only about 6% of the K was exchanged),
TABLE III. Chemical composition (wt. %) of the starting vermiculite and after various treatments (precision evaluated at 5%).

Natural exfoliated Bu Li K –(Bu) K –(Li)
Oxide Supplier’s data vermiculite vermiculite vermiculite vermiculite vermiculite

SiO2 46.1 45.75 46.3 46.35 45.55 45.0
(42.0)a (41.6)a

MgO 27.4 28.15 27.35 27.5 26.4 26.55
Al 2O3 14.1 11.2 11.35 11.45 11.05 11.2
FeO1 Fe2O3 7.8 9.0 9.65 9.3 9.5 9.0
CaO 0.5 0.5 0.05 0.1 0.1 0.15
K2O 2.9 5.4 5.3 5.35 7.85 8.15

aNon-normalized result.
3, No. 1, Jan 1998 231
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Mg being the major exchangeable cation at 65 mey
100 g. The CEC is lower than the 100 meqy100 g quoted
by the supplier. This can be explained by the higher
content than indicated by the supplier and the consequ
presence of mica-like minerals (or K vermiculite) in th
vermiculite. The K vermiculite does not exchange i
K easily,7 as indicated by the chemical analysis aft
exchange (Table III). The XRD data for an exchange
vermiculite where the 10.4̊A reflection is still clearly
observed [Fig. 1(b)] also supports this observation.

B. Casting of films

Films were cast from various suspensions and dr
at 25 or 80±C. The drying at 80±C allowed a reduction
in drying time from 48 h to about 6 h with no discernibl
effect on the film properties. Films prepared from L
suspensions sometimes showed inhomogeneities but
Bu suspension films gave very homogeneous, coher
and flexible films [Fig. 2(a)]. All films had densities o
between 1.1 and 1.3 gycm3 s60.1d with no discernible
influence of suspension type. Figure 2(b) shows a typi
transverse section of a film where we observe the go
alignment of the vermiculite particles. A rupture surfac
is shown in Fig. 2(c), illustrating the thin platelets of th
delaminated vermiculite particles in the films.

C. Delamination and water affinity of films

The results of the adsorption of MB and the re
absorption of water indicating the films sensitivity t
humidity are shown in Table IV.

The MB adsorption is quoted in mmole of MB
adsorbed per gram of vermiculite and not as an “e
timated” surface area, because of the uncertainty of
surface area of an MB molecule and in its adsorbed fo
(dimer or monomer) or orientation (face-on edge-o
or otherwise).18,21 The XRD results on Bu, Li, and
K exchanged vermiculites after MB adsorption sho
reflections between 11.8 and 12.2̊A [e.g., Fig. 1(e)].
This is indicative of MB monomer adsorption face-on i
the vermiculite sheet structure as shown schematica
in Fig. 3.20 Chemical analysis (ICP) of the filtrate afte
MB adsorption on Li exchanged vermiculites showe
Li in solution, indicating exchange had taken place.16

The adsorption of MB onto the external surface of th
vermiculite is more likely to be in the dimer form at th
concentrations used for the adsorption experiments.6,22

This suggests that the MB exchanges with the Li
the interlayer spacing and is probably adsorbed as
monomer and the external surface exposed by the del
ination MB will more probably be adsorbed in the form
the dimer. Therefore the amount of MB adsorbed shou
be a good indication of the efficiency of the delaminatio
step. Without a delamination step the amount of M
adsorbed onto Li or Bu exchanged vermiculites w
232 J. Mater. Res., Vol. 1
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FIG. 2. Images of K –Bu vermiculite film: (a) typical flexible film,
(b) typical transverse section, and (c) rupture surface.

lower by a factor of 5.18 In order to estimate the surface
area of these delaminated vermiculites a knowledge of
the internal and external surface is therefore necessary.
The use of nitrogen adsorption to estimate the external
surface could be a possibility but Sheldenet al.6 have
shown that this is viable only for low surface area
micas and is not really applicable to our delaminated
vermiculites. Therefore estimates of internal and external
surfaces and specific surface areas cannot be estimated
unambiguously.
3, No. 1, Jan 1998
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TABLE IV. The amount of methylene blue adsorbed and wate
readsorbed for various vermiculite films.

MB adsorbed % H2O
mmoleyg readsorbed

Samples Treatments s60.02d s60, 2%d

Bu V1 “1” 0.50 10.2
Bu V2 a 0.30 5.7
Bu V3 b 0.53 7.5
Bu V4 ab 0.36 5.0
Li V1 c 0.66 12.0
Li V2 ac 0.45 10.0
Li V3 bc 0.71 16.0
Li V4 abc 0.60 11.5
K–Bu V1 d 0.21 2.6
K–Bu V2 ad 0.19 3.0
K–Bu V3 bd 0.21 2.6
K–Bu V4 abd 0.18 2.5
K–Li V1 cd 0.16 4.1
K–Li V2 acd 0.15 3.2
K–Li V3 bcd 0.24 4.5
K–Li V4 abcd 0.21 3.3

The control chart in Fig. 4 shows the experimenta
data together with the adjusted values calculated with th
statistical regression modelsp , 0.05d. The highest MB
adsorption, i.e., most successful delamination, is se
for the Li exchanged vermiculite (volume of suspensio
60 ml-bc), 30% more than the Bu exchanged sample. A
the volume of suspension is increased the efficiency
delamination shows a decrease. The effect of exchangi

FIG. 3. Schematic representation of the methylene blue (MB) mole
cule with its assumed adsorption orientations.
J. Mater. Res., Vol. 1
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with potassium (factor D) shows a marked decrease i
the amount of MB adsorbed, indicating a closing of
the delaminated sheets whereby the potassium does n
exchange easily with the MB. This closing or contraction
of the interlayer spacing on exchange with potassium
(001 becoming about 10.4̊A) is clearly seen in the XRD
data shown in Fig. 1(d).

The amount of water reabsorbed by the various film
is also shown in Fig. 4. Here we see again that the mo
significant effect is the exchange with potassium (facto
D) where the amount of water reabsorbed decreases fro
6–16% to between 2 and 4%. The effect of the variou
treatments is much less significant after exchange wit
potassium. Before the exchange with potassium the mo
water reabsorbed was for the Li exchanged vermiculit
(factor C) which was also the treatment that gave the be
delamination (most MB adsorbed). In fact, the amount o

FIG. 4. Control chart of results of experimental plan used to asses
the swelling, delamination, and water affinity of various vermiculite
films (SE: standard error).
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FIG. 5. Plot of water readsorption versus quantity of methylene blu
adsorbed for various vermiculites.

MB adsorbed and water readsorbed correlate quite we
(r2  0.936, p , 0.001), as shown in Fig. 5. Therefore
the readsorption of water, a much simpler method tha
MB adsorption, gives a very good indication of the effi-
ciency of the delamination step. The TGA data in Fig. 6
confirm that the amount of water contained in the films
after the potassium exchange is greatly reduced. Th
next section and experimental plan will now describe
the effect of this potassium exchange on the dielectri
properties of these flexible vermiculite films.

D. Dielectric properties

The experimental plan used in this section looked
at the effect of the swelling cation (A), the duration of
the delamination step by ultrasonic treatment (B), the e
fect of a final cation exchange with potassium (C), and
finally the effect of the measurement temperature (D
on the dielectric properties of the various vermiculites
films produced. The dielectric constant,e, and dielectric
loss, tan d, measured at 50 and 100±C for the various
234 J. Mater. Res., Vol. 1
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FIG. 6. Thermogravimetric analysis curves for Li vermiculite and K
(Li) vermiculite films.

treatments are shown in Table V. The results in Table V
are for a frequency of 1 kHz; the trends for the other
frequencies were very similar. The trends are seen more
clearly in the control chart in Fig. 7. Before potassium
exchange there is a clear effect on both thee andtan d,
depending on which swelling cation is used (factor A),
the Li giving highere and tan d values being a direct
cause of the higher affinity for water and water content.
The longer duration of ultrasonic treatment (factor B)
shows an improvement for both types of swelling cation
possibly due to better delamination and consequently
better packing or contraction of the particles in the film.
The most significant factor in the overall picture is the
second ion exchange with potassium (factor C). A sig-
nificant decrease in bothe andtan d is seen irrespective
of all other parameters, the results being very similar
for all vermiculite films once this potassium exchange
TABLE V. Permittivity and dielectric loss,tan d, measured on different vermiculite films at 50 and 100±C and 1 kHz.

Nature of Duration of ultrasonic Exchanged
Treatment vermiculite treatment (min) with K Temp. (±C) Permittivity tan d

“1” Bu 5 No 50 17.0 0.16
a Li 5 No 50 34.0 0.26
b Bu 30 No 50 13.7 0.15
ab Li 30 No 50 21.0 0.24
c Bu 5 Yes 50 13.5 0.10
ac Li 5 Yes 50 10.7 0.06
bc Bu 30 Yes 50 10.2 0.08
abc Li 30 Yes 50 10.3 0.06
d Bu 5 No 100 24.0 0.29
ad Li 5 No 100 41.0 0.42
bd Bu 30 No 100 19.0 0.30
abd Li 30 No 100 26.0 0.41
cd Bu 5 Yes 100 15.2 0.09
acd Li 5 Yes 100 11.4 0.06
bcd Bu 30 Yes 100 11.0 0.08
abcd Li 30 Yes 100 10.6 0.06
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FIG. 7. Control chart of results of experimental plan used to assess
effect of various parameters on the dielectric properties of differe
vermiculite films.

has been carried out. A significant improvement
the temperature stability of the dielectric properties
also observed as shown in Fig. 8 for the K–Li verm
culite films. The majority of these improvements ca
be attributed to the substantial decrease in the wa
affinity and consequently content of these films after th
potassium exchange, the best films produced having
e of 10.3 andtan d of 0.06, approaching those of shee
micas (e of 6 and tan d of 0.001).

IV. CONCLUSIONS

The fabrication of flexible vermiculite films with
different swelling cations has been reported. The natu
of the swelling cation used has an important effect o
J. Mater. Res., Vol. 1

org/10.1557/JMR.1998.0031
d from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:5
he
t

n
s
-

er
e
an
t

re
n

FIG. 8. (a) Dielectric constant,e, and (b) dielectric loss,tan d, for
various Li-vermiculite films as a function of temperature.

the affinity of these films to readsorb water; lithium,
more easily hydratable than the butyl ammonium, was
the most sensitive. The more efficient the delamination
step during the film production, the higher the affinity
for water. A good correlation was observed between a
simple gravimetric measurement of readsorbed water and
the amount of methylene blue adsorbed by the various
vermiculite films studied. This simpler method may
allow quicker and easier determination of the efficiency
of the delamination step used in the production of
such vermiculite films. The effect of exchanging the
swellable cation, either lithium or butyl ammonium,
with potassium gave vermiculite films with much im-
proved dielectric properties (e between 10 and 11 and
tan d between 0.06 and 0.08). The temperature stability
of the dielectric properties were also much improved,
showing very little variation between 20 and 100±C.
The reduction of water content and affinity for water
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of the films after the second ion exchange is the majo
factor influencing the dielectric properties. The secon
ion exchange with potassium after the delamination ste
has led to the production of flexible films with dielectric
properties approaching those of the much less flexib
sheet micas. Such properties should be interesting f
applications where sheet mica cannot be used becau
of its fragility.
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