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The well-known Reid-Harris expansions, applied to the stream function formulation, and 
the projection-diffusion Chebyshev Stokes solver, in primitive variables, are used to com- 
pute the fundamental Stokes eigenmodes of each of the symmetry families characterizing the 
Stokes solutions in the square. The numerical accuracy of both methods, applied with several 
discretizations, are compared, for both the eigenvalues and the main features of the corre- 
sponding eigenmodes. The Chebyshev approach is by far the most efficient, even though the 
associated solver does not provide a divergence free velocity but asymptotically. 
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1. Introduction 

The Cartesian Stokes eigenmodes are not analytically known except when they are 
periodic in all, or in all but one, space directions. If they are indeed constrained to verify 
no-slip velocity conditions on a closed boundary they can only be determined by nu- 
merical approach. The present paper regards the Stokes fundamental eigenmodes in the 
square whose physical implications are commented in [ 12] and illustrated in [5,6,22], for 
instance. Only one of them is known to the authors' knowledge, the most fundamental 
of all, whose symmetry properties are the most straightforwardly expected [5,22]. All 
symmetry configurations are reported in this paper. 

Computing the Stokes eigenmodes can be made from either their (velocity- 
pressure) primitive variable or stream function formulation, but the choice of the scheme 
is particularly relevant. With the former formulation, the well-known Stokes solvers are 
either non consistent, namely the time-splitting schemes, or very expensive, even for 
the 2D present case, namely the Uzawa and Green (or influence matrix) options. On 
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the stream function formulation side, it is worth mentioning here that the biorthogonal 
series based on "Papkovich-Fadle" polynomial expansions [7,17,19] cannot be used for 
solving this problem. They lead indeed to a transcendental eigenvalue system, the matrix 
entries depending on the eigenvalue to be evaluated [20]. Moreover one of the problems 
raised by the eigenmodes accurate numerical determination regards the requirement of 
enforcing the numerical velocity to be divergence free for obtaining relevant and conver- 
gent results. 

The present contribution has opted for using two different spectral expansions, 
associated with each Stokes formulation: a Chebyshev collocation method and the 
Galerkin-Reid-Harris (RH) decomposition. The former one feeds a pseudospectral 
solver in primitive variables (the Projection-Diffusion (PrDi)) known to be consistent 
with the continuous space-time problem [ 11 ], and optimal in computation cost. The lat- 
ter one uses the well known eigenmodes of the fourth-order differential problem [9,15], 
completed with no-slip/no-flux boundary conditions, for solving the stream function for- 
mulation. This problem is known in structural mechanics as being the buckling load 
problem [16,21]. These approaches differ intrinsically, as regards, for instance, the nu- 
merical velocity divergence which asymptotically vanishes with the polynomial degree 
in the former case, while it is exactly zero in the second one. 

The paper is organized as follows. Section 2 provides the governing equations. 
The Stokes eigenmodes in the square enjoy symmetry properties. They are exposed in 
section 3. Then both numerical approaches are presented in section 4. Section 5 brings 
the results for the fundamental mode of each symmetry family. A systematic compar- 
ison is made of the converging behaviors and numerical accuracy that each approach 
supplies for the eigenvalue and eigenmodes main features. A conclusion terminates this 
contribution. 

2. Governing equations 

Let us consider the dimensionless formulation of the 2D Stokes eigenproblem, 
written in the open domain g2 = ]-1,  1[ 2 with coordinates x = (x, y) = (xl, x2) and 
(u, p) = ((u, v), p) the velocity and pressure eigenmode: 

,ku= A u -  Vp forx 6 f2, (1) 

V �9 u = 0 for x 6 ~ ,  (2) 

u = 0 for x 6 Of2, (3) 

where ~. is the Stokes eigenvalue. We denote the closure of ~2 by f2 and the boundary 
by Of 2. 

The (u, p) uncoupled version reads 

( ~ - A ) A u = 0  f o r x r ~ ,  (4) 

A p = 0  f o r x r ~ .  (5) 
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Figure 1. The 0-rotation and the u-mirror-symmetry about the (D) line making an angle ~/2 with e.r. 

The stream function formulation, known as the buckling load problem, with ~ (x) such 
that (u, v) = (O~/Oy, -O~/Ox), is 

( X - A ) A ~ t = O  f o r x 6 f 2 ,  (6) 

with 

~p-- - - 0  f o r x 6 0 f 2 ,  (7) 
On 

n being the coordinate evaluated along n, the unit vector normal to ;9f2. 

3. Symmetries 

Apart from the translation which is not of interest here, two planar isometries are 
to be considered [18]: the 0-rotation around the square center, and the a-symmetry, that 
is the mirror-reflection about the straight line (D) making an a / 2  angle with the unit 
horizontal axis ex. These transformations are sketched in figure 1, with M = (x, y) 
M' = (x', y') under the application of a 0-rotation, and M = (x, y) --+ M" = (x", y") 
under an a-symmetry. Corresponding operators are introduced, respectively denoted 
by R(O) and 8(~).  They describe the transformation of any function ~(x,  y), with 
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~(x ' ,  y') = T4(O)~(x, y) and ~(x",  y ' )  = S(u)~(x, y). Because of the square geom- 
etry, 0 and ot must be integer multiples of rr/2 and only the R(mr /2 )  and S(nJr/2) 
operators, n being integer, are to take into account. 

Composition rules are easy to establish, for instance, 

7"~(01) ' ]~(02)  = "~(01 q-- 02)  , 

~ ( o ) S ( a )  = S(O + a) ,  S(a)T4(O) = S ( a  - 0), 

S ( O l l ) S ( o r  : ']~(or 1 _ or2).  

From them it can be shown that all possible transformations can be generated by only 
three isometries. The common eigenmodes of ~(rr) ,  74(zr/2) and S(0) are then chosen 
for spanning the functional space of any Stokes solution. Let us note lYl, n ,  }'3) these 
eigenmodes thus defined by the following three relations, 

~Ur)l•  m, • = }',[gl, m, • ~ 11, n ,  n )  = n i l ,  n ,  n ) ,  

S(0)I• }2, }3> = h i •  re, n>, 

in which we have >'1 = + 1, }'3 = -4-1 and n = + 1 only with }'1 = 1. The }'1 = - 1  
states have no 7Z(zr/2) symmetry. They are denoted by I - 1 , / ,  + l ) .  Together with the 
I1, +1, +1) states, we have therefore 6 symmetry families for classifying the Stokes 
solutions. Those having given n and }'3 are also eigenmodes of S((2n + 1)Jr/2), rep- 
resenting reflection about the square diagonals with }'2}'3 as eigenvalue. Therefore, in 
contrast with the others, the families I - 1 , / ,  + 1) have no reflection symmetry about the 
square diagonals. Finally, from the relations 

it is inferred that the Stokes eigenmodes which are odd under the rr-rotation appear by 
pair associated with the same eigenvalue. 

These eigenmodes have to be identified, family per family, within the numerical 
solutions of the projection-diffusion Stokes solver, whereas their analytical formulation 
has to be build for solving the buckling load biharmonic problem. 

4. Solvers 

This section gathers the main features of both discrete eigenproblems, the primitive 
variables projection--diffusion solver and the stream function Reid-Harris system. 

4.1. Chebyshev projection-diffusion Stokes solver 

The uncoupling between the velocity and pressure fields is the major difficulty of 
any primitive variables approach. In particular, the continuous uncoupled problem given 
by equations (4), (5) cannot be the starting point of any discrete system since it requires 
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twice as many boundary conditions on velocity as available. Therefore, the consistent 
[11 ] continuous uncoupled formulation is first introduced followed then by the key points 
of its discrete version, whose details are presented in [1 1]. 

4.1.1. The continuous projection--diffusion uncoupling 
The PrDi solver performs a (u, p) uncoupling by introducing from equations (1), 

(2) an intermediate divergence free field, the acceleration a, 

a = ku - A u ,  (8) 

leading to solve the problem into two steps. 

1. The pressure is evaluated from the following Darcy problem: 

a + V p = 0  i n f 2 , ,  i =  1 ,2 ,  (9) 

V . a = 0  in S2, (10) 

a . n = ( V  x V x ) u . n  onOf2. (11) 

The f2, are defined by 

~"~1 =] -1 , -q - l [  x [ -1 ,  + l ] ,  

~22 = [ - I ,  --F1] x ] -1 ,  q--l [, 

respectively for the first and second components of (9). The normal boundary con- 
dition (11) takes into account equation (8) together with the boundary condition (3) 
and the incompressibility relation (2) by which only the (V x V x u) part of Au 
remains. This substitution is compulsory for preserving the ellipticity of the discrete 
Stokes solver (see [14] and [1 1, section 4.1]). 

2. Once the pressure is known, the field a is evaluated and the velocity comes from a 
pure diffusion problem: 

k u - A u = a = - V p  f o r x ~ f 2 ,  (12) 

u = 0  forx 6 0f2. (13) 

4.1.2. Chebyshev solver 
The u, a and p fields are expanded in tensor product of Chebyshev polynomials, 

of order (N, M) for the (x, y) dependencies respectively. A usual collocation method is 
applied [4,8]. It consists of exactly enforcing the differential equations, and the boundary 
conditions, at the Chebyshev Gauss-Lobatto points. 

Let us introduce the discrete spaces, {f2} and {aS2}, made of the set of the Gauss- 
Lobatto points respectively located inside S2 and on the boundary af2. The discrete space 
{~} is the union of {f2} and {a~}. From now on, u, a and p denote the set of the nodal 

I 

values in {~} of the corresponding fields. 
The first step (9)-(1 1) is now discretized. The discretization of equation (9) pro- 

ceeds in a particular way. Indeed its ith component is collocated in the discrete space 
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which excludes the two plane boundaries normal to the ith direction, where instead the 
conditions (1 1) are imposed. The collocated problem (9)-(11) reads then 

a + D p = f  in{~}, (14) 

7 9 . a = 0  in{~}. (15) 

D is the usual gradient operator, and its restriction by collocation of equation (9) is 
noted ~.  The discrete system (14) gathers what comes from equations (9) and (11), 
the right-hand side f coming exclusively from the discretized normal boundary condi- 
tion (11 ): 

a .  n = (79 x D •  n on {0t'2}. (16) 

The r.h.s, f is thus defined to be zero at all nodes except where the normal boundary 
conditions (16) are imposed: 

f = 0 except (J~)tx,=+! ---- (ai)lx,=+l' i = 1, 2. (17) 

This vectorial field f will be denoted in a compact way: 

f = " a .  n" = " ( D  • D •  n". (18)  

By substitution of equation (14) into equation (15), we obtain finally: 

~'p = 79.f in {~}, (19) 

with 

g=TP.5, 
a quasi-Poisson operator which is fully commented in [1] and [1 1, section 3.3]. 

The discrete formulation of equations (12), (13) then reads as follows: 

~.u = A o u  - D ~ - I D  �9 "[(79 • D •  n]",  (20) 

where .,4o denotes the homogeneous Dirichlet Laplacian matrix, and the last term of the 
right-hand side is the discretized pressure gradient as it comes from equations (14), (18) 
and (19). 

This last equation yields the discretized Stokes eigenproblem. Its eigenspace con- 
tains the Stokes eigenmodes with strictly negative eigenvalues. By truncature in the dis- 
cretized diffusion step (12), (13), and in spite of the fact that the field a be numerically 
divergence free, the resulting velocity cannot be divergence free, but asymptotically with 
the polynomial degrees, if it verifies the required regularity conditions. 

4.2. Galerkin-Reid-Harris solver 

4.2.1. Galerkin expansions 
Let the Reid-Harris functions 

1 f cosh(~ix) 
Ci(x) = v f  ~ ~ cosh(~i) 

cos(G/x) ) 
cos(G/) ' 
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1 (sinh(gix) sin(g/x)) 
Si(x) : " ~  sinh(g,) sin(g/) ' i = 1,2 . . . . .  

be the even and odd eigenfunctions of the 1D differential problem 

da f  d f  x=+l d x  4 = f l 4 f ,  f ( x  = -1-1) ----- 0 = ~ - -  , 

where the respective eigenvalues /~4 _~ ~? and f14 ~ g? are roots of 

tanh(~i) + tan(~i) = 0, coth(gi) - cot(gi) = 0. 

The stream function ~(x) must verify the boundary conditions (7) so that it can be 
looked for as appropriate Galerkin expansions of 2D tensorial products of these 1D 
functions. For each symmetry family there exists a simple way to generate functions 
of x and y which enjoy the desired symmetries. Let E(x) and O(x) be two functions 
(possibly endowed with a subscript) respectively even and odd with respect to their ar- 
gument, x for the moment. It can be checked that the analytical representation of the 
different states is 

I1, -4-1, 1) -- El(x)E2(y ) 4- E2(x)El(y), 
[1, 4-1, - 1 )  - Ol(x)O2(y) q: O2(x)O1 (y), 

[ - 1 , / ,  1) - O(x)E(y), 
[ - 1 , / ,  - 1 )  - E(x)O(y). 

Their respective Galerkin expansion, in terms of the Reid-Harris functions, then reads 

~ll , l .t>(X, Y) = 

1/f[1,-l.1)(X, Y) = 

1/)'ll,1,-1)(X, Y) : 

~l~.-~.-~l(x,  y)  = 

~t- l . / ,Ll(x,  y)  = 

~1-1./.-1>(x, Y) = 

1 

E a"i[ Ci(x)Cj(y) + Ci(x)Ci(y)] ' 
t~>j=l 

1 

E a<i[ Ci(x)C)(y) - C.,(x)Ci(y)], 
t > j = l  

1 

E a',i[ Si(x)Si(y) - S,(x)S, (y)], 
i>. j=l  

1 

a,,,[si(x)Sj(y) + sl(X)s,(y)], 
i>/j=l 

1 

E ai,jSi(x)Ci(Y)' 
t,l=l 

I 

E ai,jC' (x)SI (y)" 
t,j=l 
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The computation of the sets of ai. j coefficients is described hereafter. Only one of the 
last two eigenmodes needs to be evaluated, the other being simply deduced by applying a 
(n/2)-rotation. They have identical eigenvalues. Therefore, only 5 eigenmodes families 
are from now on considered. 

4.2.2. Galerkin discrete systems 
Each symmetry family contains an infinite number of eigenmodes #/(x, y), but 

only a limited number of them is reachable at fixed cut-off I, namely, 12 modes in 
the family 1 - 1 , / , - 1 ) ,  1(1 + 1)/2 modes I1, 1, 1) and I 1 , - 1 , - 1 ) ,  and I ( I  - 1)/2 
modes I 1, - 1, 1) and I 1, 1, - 1). Computing the eigenmodes of a symmetry family 
amounts to solving a generalized eigenvalue problem in ai.j. Such a problem is now 
presented in some details for the I -1 , / ,  1} family. The starting point is equation (6). 

i The Galerkin expansion ~l-i./.l>(x, y) = }--~m.,,=l am,nSm(X)Cn(y) is inserted into this 
equation, and the resulting series is projected onto the basis functions Su(x)C~(y), for 
# , v = l  . . . . .  I, 

(A2~l-l./.l>(X, Y), St,(x)Cv(Y)) = ).(A~l_l./.l}(x, Y), Su(x)C~(Y)), 

where ( f  (x, y), g(x, y) ) = ft_l fl_~ f (x, y)g(x, y) dx dy. This supplies the following 
linear system: 

1 
4 (~,4' + ~'~) a''~ + 2 E 

m,tl=l 

/ z , v =  1 . . . . .  I. 

(• ) XtimYv,,am.n = ~. Xtimam,v + Y~,au., , 
\ m = l  n=l 

The matrices X and 32 are defined by the 1D scalar products: 

f 
l [ 4#2m2 (/zcot(#) - m cot(m)) 

�9 3fflt m : S l l ( X ) S m ( x ) d x  : l.s 4 -- m 4 

1 i /z cot(u)(1 - U cot(u)) 

f l  4v2n2(_v tan(v )+ntan(n ) )  
3)v,, Cv(y)C'n' (y) dy i)4 _ n-------'~ 

- v  tan(v)(1 + v tan(v)) 

Analogous systems are built for the other families, with 

i f #  :~ m, 

i f #  = m ,  

ifv =~ n, 

i f v = n .  

I 

= 1)(x, y) + ~ll.l.l>(X, Y)) E am'nCm(x)Cn(y) 
m,n=l 

and 

~(~ll.l.-l>(x, Y) + ~Pll.-l.-l>(X, Y)) = 
1 

Z am,nSm(x )Sn(y ) ,  
rn,n:l 
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respectively projected onto the C,(x)C~(y)'s and the St,(x)Sv(y)'s. Once the ai, j co- 
efficients matrices are obtained, the I1, 1, 1 ) and 11, - 1, - 1 ) eigenmodes correspond to 
their i j-symmetrical part and the I1, - 1, 1) and l l, 1, - 1) eigenmodes to their i j-anti- 
symmetrical part. 

5. Results 

Both numerical approaches are compared for their accuracy with the fundamental 
mode of each symmetry family. The same Chebyshev polynomial degree N is taken 
in both space directions. The Chebyshev Stokes solver therefore works with grids of 
(N + 1) 2 unevenly distributed nodes. Taking I = N - 1 thus provides the same num- 
ber of degrees of freedom in both schemes for approximating the Stokes eigenmodes. 
Double precision computations are performed, with N = 8, 16, 32, 64 and 96, for the 
Stokes solver, supplying an eigenvalue problem solved by ARPACK [10]. The Reid- 
Harris eigenvalue systems are solved, with I = 7, 15, 31 and 63, using the Mathematica 
software [23]. 

As well known from Moffatt's work [13], an infinite sequence of eddies is ex- 
pected to occur in each comer of the square. Their amplitude and size exponentially 
decrease descending into the comer. They are singular solutions of A2~p = 0 with 

= Olp/On = 0 on the boundaries. These eddies are not specific of the Stokes eigen- 
modes, apart from the fact that they distribute themselves among the same symmetry 
families: the comer eddies are even about the square diagonals for the modes I1, 1, 1) 
and I1, - 1, - 1), odd for the modes I1, - 1, 1) and I1, 1, - 1 ) and without symmetry for 
the last mode I -  1, / ,  1). The exponential decrease of the odd comer eddies amplitude 
and size is sharper than those of the even ones. Consequently, the comer eddies attached 
to the mode 1 -1 , / ,  1 ) are expected to be almost even about the square diagonals. 

5.1. Comparison with results published in [2,3] 

The I1, 1, 1) most fundamental eigenmode (figure 3) is numerically known to a 
high accuracy since the works of Bj~rstad et al. published in [2,3]. The buckling load 
problem is indeed solved with quadruple precision by a spectral Legendre-Galerkin 
method, with N going up to 5000. This provides reference data for a first assessment 
of the accuracy of our results from both solvers. A systematic comparison is thus per- 
formed using the available data, 'namely, the eigenvalue, and the main features of the 
eigenmode, that is the two leading comer eddies that our solvers are able to resolve. The 
eddies are characterized by the extremal values of the stream function, (lPext.1 , ~ext ,2) ,  
and the distance from the comer, (dl, d2), where these values are. Relative errors de- 
fined by IX - Xref/Xref] are computed, X standing for the aforementioned quantities, 
and Xref being taken from [3]. Figure 2 gathers all the relative errors as a function of 
N --- I + 1. Solid and dashed curves respectively correspond to the PrDi and RH solvers. 
These curves are numbered (1) for the eigenvalue, (2) and (3) for lPext. I and dl, and (4) 
and (5) for lPext,2 and d2. 
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Figure 2. Relative errors I(X - Xref)/Xrefl regarding the I1, 1, 1) most fundamental mode. Solid and 
dashed curves respectively correspond to the PrDi and RH solvers. The quantity X successively stands 
for the eigenvalue (curves (1)), the extremal value of the stream function of the first comer eddy, ~ext, 1 
(curves (2)), the location d 1 of this value from the corner, (curves (3)), the extremal value of the stream 
function of the second comer eddy, ~ext,2 (curves (4)), and the location d 2 of this value from the comer 

(curves (5)). Xre f is taken from [3]. 

Table 1 
The fundamental modes eigenvalues: for N = 96 the PrDi absolute eigenvalue Ikl of each symmetry family; 

for N = I + 1 = 8, 16, 32, 64 the relative error I(k96 - ~.N)/~.961. 

N Scheme [1, 1, 1) I 1 , - 1 ,  1) tl, l , - 1 )  t l , - 1 , - 1 )  I - I , / ,  l) 

96 PrDi 13.086172791 38.531365767 

8 PrDi 2.14. 10 -4  1.51 - 10 -2  

RH 1.06.10 -5  6 .22 .10  -5  

16 PrDi 4 .08-10 -7  3 .89 .10  -8  

RH 2.95.10 -7  1.73.10 -6  

32 PrDi 4.90- 10 -10 9.62. 10 -12 

RH 9.61 �9 10 -9  4.6. 10 -8  

64 PrDi 6 .24 .10  -11 1.32.10 -11 

RH 1.92.10 -8  3.12- 10 -9  

67.280247001 

5.18- 10 -2  

6 .78 .10  -5  

7 .66 .10  -7  

2.41 �9 10 -6  

1.95.10 -11 

1.16.10 -7  

1.8.10 -1!  

4 .08 .10  -8  

32.052396078 

6.67- 10 -4  

1.88.10 -5  

6 .33 .10  -8  

5 .32 .10  -7  

9.84 10 - l l  

2.28 10 -7  

1.61 10 -11 

2.55 10 -7  

23.031098494 

3 .67 .10  -2  

1.93.10 -5  

1.3.10 -7  

2 .22 .10  -7  

1.04.10 -10 

4.21 �9 10 -7  

4 .37 .10  - l l  
4 .42 .10  -7  
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Figure 3. The I1, 1, 1) fundamental mode obtained with the N = 96 Chebyshev solver. Contours of 
streamlines. (a) Core vortex: minimun contour level -1; maximum level 0; interval of 6.6666 - 1 0  - 2 .  

(b) Zoomed primary corner eddy: minimun contour level 0: maximum level -t-1.0 - 1 0 - 4 ;  interval of 
1.0.10 -5. (c) Zoomed secondary comer eddy: minimun contour level -4.0 - 1 0 - 9 ;  maximum level 0; 

interval of 4.0 �9 10 - 10. 

The overall converging behaviour is clear, faster for the eigenvalue computation 
(curves (1)), and almost systematically better for the PrDi than for the RH solvers. A nu- 

merical saturation of the errors on the eigenvalue occurs for N between 64 and 96 for 

the PrDi solver, and for smaller values of I with the RH solver. Therefore, the RH solver 

should not be applied with I larger than 63, a cut-off which merely allows to roughly 
predict the occurence of the second comer eddy (isolated points (4) and (5) in figure 2). 

Moreover, the N = 96 PrDi results can be taken as reference data for this work, in 
absence of any other available published reference data. 
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Table 2 
The relative norm IIV - ull/llult for the fundamental modes obtained by the PrDi solver. 

N I1, 1, 1) I 1 , - l ,  1) I1, 1 , - 1 )  I 1 . - 1 , - 1 )  I - 1 , / ,  1) 

8 2 . 4 5 . 1 0  - 2  0.864 2.26 0.107 1.26 

16 2 . 2 5 . 1 0  -3  4 . 9 5 . 1 0  -5  3 . 8 5 . 1 0  -4  1.65- 10 -3  1.41 �9 10 -3  

32 1 .79 .10  -4  7.14- 10 -7  1 .78 .10  -6  7 . 5 9 . 1 0  -4  2 . 6 3 . 1 0  - 4  

64 1 .76 .10  -5  2.11 �9 10 - 9  1 .45 .10  -9  1.11 �9 10 -5  1 .04 .10  -5  

96 5 . 7 7 . 1 0  - 6  2.04- 10 - 9  8.18.10 -10 1 .47 .10  -5  6.11 - 10 - 6  

5.2. The eigenvalues 

Table 1 supplies (a) the absolute eigenvalue I)~961 of each symmetry family funda- 
mental mode, obtained by the N = 96 PrDi solver, followed by (b) the relative error on 
all other eigenvalues ~.S, measured with the ratio [ (~-96 - -  ~ N ) / ~ ' 9 6 ]  �9 

This table indicates that the numerical accuracy supplied by our Chebyshev Stokes 
solver starts to saturate (for this mode) at about N = 64. The convergence of the eigen- 
values coming from the RH expansions is seen to be slower and to saturate at error levels 
significantly higher than those of the Chebyshev solver. 

This shows that enforcing the velocity numerical divergence to be zero can be not 
better than adequately monitoring its departure from zero, which one decreases expo- 
nentially with N (see table 2). 

5.3. The eigenmodes 

Both schemes are now compared for their ability to provide the main features of 
the fundamental mode of each symmetry family. 

Table 2 reports for these modes the relative norm of V �9 u defined by the ratio 
IIV �9 u l l / l lu l l ,  where II,tll stands for the pointwise maximum absolute value of &, and 
Ilull = max (llull,  Ilvll). The announced exponential decrease with N of this ratio is 
observed. The main contribution to this ratio comes from the comer eddies. This ratio is 
thus significantly smaller for the odd comer eddies, those of the I 1, - 1, 1 ) and [ 1, 1, - 1) 
families, than for the others. 

Tables and figures 3-7 provide the results for the fundamental modes by increas- 
ing value of their IZl. The figures show the stream function contours which come from 
the almost solenoidal velocity fields supplied by the N = 96 Chebyshev Stokes solver. 
Each figure presents the core pattern (a), and the primary and secondary comer eddies 
in successive zooms, (b) and (c), respectively. The data given in the tables are referred 
to by (a), (b) and (c). For each eigenmode are successively given in the tables, (1) for 
N = 96, the position of its absolute ~p-extremum (amplitude normalized at 1), and then 
the position and amplitude of the comer eddies, followed by (2) the corresponding rela- 
tive errors defined by the ratios [(X96 - XN)/X961, X standing for any of the mentioned 
quantities obtained at a given N. The stream function extrema are the zeroes of both 
velocity components. They are computed by applying a Newton-Raphson procedure. 
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Table 3 
Data regarding the fundamental mode 11, 1, 1): for N = 96, the distance from the corner and amplitude of  

the corner eddies,  and for N = 1 + 1 = 8, 16, 32, 64 the corresponding relative errors, for the projec t ion-  

diffusion and Reid-Harr is  schemes.  

N Scheme Primary corner eddy (b) Secondary corner eddy (c) 

distance amplitude distance amplitude 

96 PrDi 0.118724516366 1.1705464033-10 - 4  7.18776730077- 10 - 3  3.2635770411.10 - 9  

8 PrDi 1.32. 10 - 2  0.18 - - 

RH 0.028 0.41 - - 

16 PrDi 1.23- 10 - 3  2 .64.  10 - 3  - - 

RH 4.1 - 10 - 3  1 . 2 7 . 1 0  - 2  - - 

32 PrDi 2 .67-  10 - 8  4 .02-  10 - 6  2 .25 .  l0 - 2  0.41 

RH 2 . 4 8 . 1 0  - 4  7 . 6 . 1 0  - 4  - - 

64 PrDi 5 .28.  10 - 9  1.94. 10 - 8  1 .07 .10  - 3  2 . 4 7 . 1 0  - 3  

RH 5 . 6 3 . 1 0  - 6  2 . 0 4 . 1 0  - 5  0.94 1.0 

Often there are several identical (by symmetry) extrema (in the core pattern, and in the 
corners). Their average positions and amplitudes are then quoted in the forthcoming 
tables. These tables show that the Chebyshev solver is significantly more efficient for 
numerically resolving the comer eddies. Indeed, its near boundary spatial resolution in- 
creases quadratically with N while the Reid-Harris expansion wavenumbers, ~, and ~',, 
increase only linearly with i. 

The fundamental mode I1, 1, 1) (figure 3) is made of only one cell centered at 
x = y = 0 (x --- 2.0104 �9 10 -11, y = 1.1109 �9 10 -l~ from the N = 96 Stokes solver), 
the other extrema being all associated with the corner eddies and lying on the square 
diagonals. Table 3 gives their amplitude and the distance from the corner where they 
are located. The Chebyshev solver captures two corner eddies, with a good accuracy 
with N = 64, whereas the Reid-Harris expansion with the same number of unknowns 
provides a very rough approximation (amplitude of 4.6 �9 10 -16 instead of 3 �9 10 - 9 )  of 
the secondary corner eddy, located at a distance of 3.9 �9 10 - 4  instead of 7 �9 10 -3. For 
reaching an equivalent accuracy to that of the Chebyshev expansion would require about 
300 terms in the Reid-Harris expansion. 

The fundamental mode 1 -1 , / ,  1 ) (figure 4) is made of two counter rotating cells 
located on each side of the horizontal axis ex. The mode I - 1 , / ,  - 1 )  - not shown - 
whose eigenvalue is identical, is obtained by a (7r/2)-rotation. The reference extremum 
of I - 1 , / ,  1) is at x = 0 (x = -8 .1706 .10  -11 from the N = 96 Chebyshev solver) and 
y given in table 4. The corner eddies have no symmetry about the square diagonals but 
their symmetrical parts are dominant, explaining the almost equality between the coordi- 
nates x and y of the extrema. The average values quoted in the table correspond to the lo- 
cation they have in the top fight corner. The I = 31, 63 Reid-Harris expansions provide 
very bad approximations of the secondary corner eddy, supplying amplitudes of order 
10 - 26  instead of 2.10 -9 and distances from the corner of about 2.10 -v instead of 4.10 -3. 
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Figure 4. The I - 1 , / ,  1) fundamental mode obtained with the N = 96 Chebyshev solver. Contours of 
streamlines. (a) Core vortex: minimun contour level - 1; maximum level + 1; interval of 6.6666 �9 10 -2 .  
(b) Zoomed primary comer eddy: minimun contour level 0; maximum level +9 .0  �9 10-5;  interval of 
9.0.  10 -6 .  (c) Zoomed secondary comer eddy: minimun contour level - 3 . 0  �9 10-9;  maximum level 0; 

interval of 3 . 0 . 1 0  -10.  

The fundamental mode I 1, - 1, - 1) is shown in figure 5. It is made of four counter 
rotating cells, located in the sectors made by the axes ex and ~y. It has four identical 
absolute extrema, of unit amplitude, on the straight lines of equation Ixl = lYl. Their 
average distance from x = y = 0 is given in table 5. Its comer eddies are symmetrical 
about the square diagonals, and their average distance from the comer is also reported. 
Here again, the I = 31, 63 Reid-Harris expansions provide very bad approximations of 
the secondary comer eddy, supplying amplitudes of order 10 -26 and distances from the 
comer of about 2 . 1 0  -7  . 

The mode [ 1 , - 1 ,  1) (figure 6) is odd under the reflection symmetry about the 
square diagonals. It has four identical absolute extrema, of unit amplitude, located on 
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Table 4 

Data regarding the fundamental mode l -  I , / ,  l ): for N = 96, the position of the core absolute ~-extremum 
(amplitude normalized at 1), the distance from the comer and amplitude of the comer eddies, and for 
N = I + 1 = 8, 16, 32, 64 the corresponding relative errors, for the projection-diffusion and Reid-Harris 

schemes. 

N Scheme Core (a) Primary comer eddy (b) Secondary corner eddy (c) 

y x amplitude x amplitude 

Y 3' 

96 PrDi 

8 PrDi 0.32 

RH 1.28. 10 -4  1.51 

1 . 6 8  

16 PrDi 1.59- 10 -8  2.67 

2.34 

RH 3 .95 .10  - 6  1.13 

5.83 

32 PrDi 6 . 7 . 1 0  - l ~  2.43 

1.11 

RH 6.51. 10 -7  1.05 

7.71 

64 PrDi 1.63. 10 -9  3.64 

3.65 

RH 5.59. 10 - 8  7.7- 

6.18 

• 0.94150948819 8.1764160235.10 -5  0.99647590506 2.2770846033.10 - 9  
0.94203498742 

�9 1 0  . 2  2 6 .  

�9 1 0  - 2  

. 1 0  -4  1.46�9 10 -2  

10-6 

10 -3  12. 

10-4 

10 - 6  1 .47 .10 -5  

10-6 

10 -4  5.5 

10-5 

10 - 8  6. I �9 10 -7  

10-8 

10 - 6  0.21 

�9 10 -6  

0.99647588429 

3.74. 10 -4  

2.32 10 - 4  

1. 

1. 

8.09 10 - 6  

5.95 10 -6  

1. 

1. 

0.356 

1. 

1.68 �9 10 -2  

1. 

Table 5 
Data regarding the fundamental mode I 1 , - 1 , - 1 ) :  for N = 96, the position of the core absolute 
~-extremum (amplitude normalized at I), the distance from the corner and amplitude of the corner ed- 
dies, and for N = I + 1 = 8, 16, 32, 64 the corresponding relative errors, for the projection~liffusion and 

Reid-Harris schemes. 

N Scheme Core (a) Primary corner eddy (b) Secondary corner eddy (c) 

distance distance amplitude distance amplitude 

96 PrDi 

8 PrDi 5 . 1 6 . 1 0  -4  

RH 2.38.  10 -5  

16 PrDi 6.65- 10 - 8  

RH 6.27. 10 -7  

32 PrDi 1.49. 10 - 9  

RH 1.71. 10 -7  

64 PrDi 1 .94 .10  -11 

RH 9.24- 10 -8  

0.58260184571 0.06576790813 9.1851486567.10 -5  3.9807584035.10 -3  2.5552859449.10 -9  

w 

6.t I - 10 -1 

9.64- 10 - 4  

6.22 10 -3  

2.57 10 -5  

6.09 10 -4  

6 . 9 . 1 0  -8  

2 . 7 3 . 1 0  - 4  

2.27.  10 -2  - - 

1.86. 10 -1 - - 

2,56. 10 -4  7.57- 10 -2  1.65 

8.89. 10 -3  1. 1. 

1.54. 10 -8  5.2. 10 -5  1.24. 10 - I  

1.61. 10 - 6  1. 1. 
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Figure 5. The I1, - 1 ,  - 1 )  fundamental mode obtained with the N = 96 Chebyshev solver. Contours of 
streamlines. (a) Core vortex: minimun contour level - 1; maximum level + 1; interval of 6.6666 �9 10 -2.  
(b) Zoomed primary comer eddy: minimun contour level 0; maximum level 1.0.10-4; interval of 1.0.10 -5.  
(c) Zoomed secondary corner eddy: minimun contour level - 4 . 0  �9 10-9; maximum level 0; interval of 

4 .0 .10  -1~ 

the axes ex and ey, at an average distance from x = 0 = y given in table 6. Both 
coordinates of the comer eddies maxima are also supplied. They do not lie at rr/8 from 
the square border. Embryonic secondary comer eddies appear in a contour plot of the 
I = 63 Reid-Harris stream function. Their existence is not quoted in table 6. 

At last, the mode I1, 1, - 1) (figure 7), also odd under the reflection symmetry about 
the square diagonals, is made of eight counter rotating cells, housed by pair in the sectors 
made by the axes ex and ~ .  Its eight identical absolute extrema, of unit amplitude, are at 
the same distance from x = 0 = y. Their average coordinates are given in table 7, con- 
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Figure 6. The I1, - 1 ,  l) fundamental mode obtained with the N = 96 Chebyshev solver. Contours of 
streamlines. (a) Core vortex: minimun contour level - 1: maximum level +1; interval of 6.6666 �9 10 -2.  
(b) Zoomed primary comer eddy: minimun contour level - 2 . 0 -  10-5; maximum level 2.0- 10-5; interval 
of 2.0 �9 10 -6.  (c) Zoomed secondary comer eddy: minimun contour level - 7 . 0  �9 10-11; maximum level 

7 . 0 . 1 0 - 1 l ;  interval of 7 .0 .10  -12. 

verted for corresponding to the upper rightmost maximum. Both coordinates of the up- 
per rightmost comer eddy maxima located above the square diagonal are also supplied. 
With this eigenmode, no comer eddy is captured by the I ~< 63 Reid-Hams expansions. 

6. Conclusions 

Two spectral expansions are used to compute the Stokes fundamental eigenval- 
ues and eigenmodes in the square, one for each symmetry family. Firstly, a consistent 
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Table 6 
Data regarding the fundamental mode I 1, - 1, 1): for N = 96, the position of the core absolute ~p-extremum 
(amplitude normalized at 1), the distance from the comer and amplitude of the comer eddies, and for 
N = I + 1 = 8, 16, 32, 64 the corresponding relative errors, for the projection-diffusion and Reid-Harris 

schemes. 

N Scheme Core (a) Primary comer eddy (b) Secondary comer eddy (b) 

distance x amplitude x amplitude 

Y Y 

96 PrDi 0.51590285446 0,85591228142 1.5762941409.10 -5  0.98303645693 6.3090863633.10 -11 

0,94700951603 0.99379719736 

8 PrDi 1.71 �9 10 -2  

RH 2 .04 .10  -4  

16 PrDi 3 .92 .10  -7  

RH 5 . 8 9 . 1 0  - 6  

32 PrDi 9.27. 10 -12 

RH 3.65- t0 -7  

64 PrDi 5 . 3 6 . 1 0  -12 

RH 4 . 2 6 . 1 0  -8  

m 

m 

5.77 10 -7  

2.39 10 -5  

3.05 10 -7  

1.88-10 -7  

1.75. 10 - 9  

1.25. 10 - 9  

0.16 
5.07. 10 -2  

m 

9.02. 10 - 4  

4 . 0 3 . 1 0  - 9  1.7. 10 -3  

1.15 �9 10 -3  

2 . 9 4 . 1 0  - 8  1 .52 .10  -7  

1 .67 .10  -7  

I .  

7 .24 .10  - 2  

1.14. l0  -4  

primitive variables Stokes Chebyshev collocation solver is applied, providing numerical 
velocities asymptotically divergence free as the discretization is refined. The second ap- 
proach calls for the Reid-Harris functions for solving the stream function biharmonic 
problem. A systematic comparison of both schemes with the same number of unknowns 
is made, its results being reported here. It is clearly stated that the Chebyshev approx- 
imations are, by far, much more accurate. This is related to their intrinsic high near 
boundary spatial resolution, improving quadratically with N instead of linearly with the 
Reid-Harris functions. Moreover this brings a quantitative argument to support the idea 
that enforcing the solutions to be divergence free is not a guarantee to get them more 
accurately. 
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