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Exceptional units and Euclidean number fields
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Abstract. By a result of H-W. Lenstra, one can prove that a number field
is Euclidean with the aid of exceptional units. We describe two methods
computing exceptional sequences, i.e., sets of units such that the difference of
any two of them is still a unit. The second method is based on a graph theory
algorithm for the maximum clique problem. This yielded 42 new Euclidean
number fields in degrees 8, 9, 10, 11 and 12.
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Introduction. Let K be an algebraic number field, Ok its ring of integers and
O3 be its group of units. An element u € O} is said to be an exceptional unit
if 1 —u € O} . Besides their intrinsic interest, exceptional units have also been
studied because they can be used to show that certain algebraic number fields
are Euclidean. Indeed, Lenstra has shown that if there exist sufficiently many
exceptional units with the property that all of their differences are also units, then
the number field is Euclidean with respect to the norm [7]. This method has been
used by H.W. Lenstra himself, and by A. Leutbecher, J. Martinet and G. Niklasch
(8], [9], [10], [11]) to obtain many examples of Euclidean number fields of degree
at most 10.

The aim of the present paper is to study families of exceptional units in some
number fields, of degrees up to 12, and give new examples of Euclidean number
fields with Lenstra’s method. Some basic tools for this are N. Elkies’ new bounds
for sphere packings, D. Simon’s table of polynomials for number fields of small
discriminant and algorithms from graph theory.
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1. Exceptional sequences. Let K be a number field with ring of integers O and
group of units OF. Let Ex be the set of exceptional units of K, i.e.

Ex ={we Okl —we Ok}

A sequence w1, wo, ... ,ws, of elements in Ok such that for every 1 <i < j < m,
we have w; —w; € O is called an exceptional sequence in K. Lenstra’s constant,
denoted by A(K), is the maximal length of an exceptional sequence in K. We
notice that, if Wi, W2, Wi € Ok is an exceptional sequence, then the sequence

(2 wo —w1

(w’- = u) is exceptional as well. So, it is sufficient to consider sequences
i=1

with w; = 0 and wy = 1. In this case, w; is contained in Fx for every j > 3.

One can also define Lenstra’s constants of higher order as follows. For a positive
integer k, denote Ag(K) the maximal length of sequences of algebraic integers of K
(not necessarily distinct) such that among any k41 elements of the sequence, there
are at least two whose difference is a unit. In particular, we have A;(K) = A(K).

There are upper bounds on the constants Ay(K). The first one, A(K), is
bounded from above by the smallest norm of a proper ideal of O, denoted here
by L(K), and, more generally, we have Ax(K) < k- L(K), proving finiteness of
Ak(K), for every k. The value of L(K) is easily computable for any number field
K.

The set Ef is known to be finite as well ([2] or [12]). There are algorithms to
compute it (for example [16], [17]). However the number of exceptional units in the
number fields studied in this paper is very large, and, as we only need a sufficiently
large lower bound of A(K), it is enough to get a subset of Ex and then look for
large exceptional sequences in it. Our aim in the sequel is to describe a method
for computing exceptional sequences in number fields, without entirely computing
the set F.

2. Euclidean number fields. For a number field K we denote n its degree over
Q, [r1,72] its signature, d(K) its discriminant over Q and Nk /g : K — Q the
usual number field norm. The field K is embedded in K ®g R which is isomorphic

to R™ x C™. For an element a = (ozj);lz‘g” € R™ x C™ we define N(a) =
71 1472

[Tl TI lesl? er.

=1 j=rit1

The number field K is said to be norm-FEuclidean or, for short, Fuclidean, if
its ring of integers is Fuclidean with respect to the absolute value of the norm, i.e.
for every a,f3 € Ok, 8 # 0, there exists 7 € Ok such that |NK/Q(a7ﬁ'y)| <

[Nk /o (B)]-

H.W. Lenstra showed the following theorem giving a condition for a number field
to be Euclidean relying on exceptional sequences [7].
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Theorem 2.1. Let K be a number field of degree n and discriminant d(K). Let
U C R™ be a bounded Lebesgue measurable set with pu(U) > 0 and such that
N(u—wv) < 1 for all u,v € U. Let §(U) be the packing center density of the
set U, that is 6(U) = %, where A(U) is the packing density of U. Then K s
norm-Euclidean if the following inequality is satisfied:

A(K) > 6(U)V/|d(K)]

Since it is difficult to compute the packing density of sets, there are few practical
choices for the set U. In fact, there are only two “good” sets known. The first is
the largest set satisfying the condition of the theorem. This set leads to center
densities similar to “Minkowski bounds” (6(U) = 7% : (%)m). The second “good”
set is a sphere since the topic of packings of spheres is widely studied. The best
known upper bounds on sphere packings are provided by H. Cohn and N. Elkies
in [3].

Using densities of these two sets and, in (i), the generalization of theorem 2.1
(theorem (1.17) in [7]), we have :

Corollary 2.2. A number field K is norm-Euclidean if it satisfies one of the fol-
lowing inequalities :
(i) Ak(K) > k-a(n,ra)-/|d(K)| with a(n,ry) = 2 ~(%)T2, for some k.

(ii) A(K) > a(n)-/|d(K)| with (%)% -a(n) the upper bounds on sphere packings
given in [3].

A. Leutbecher and J. Martinet [9] suggest that number fields having small
discriminants should have a rather large Lenstra’s constant. Therefore, and as a
consequence of the formula given in the theorem 2.1 itself, it is natural to apply
the algorithm to a list of number fields with small discriminants. In degree larger
than 8, there does not exist any systematic list of number fields, but D. Simon has
computed a list of irreducible polynomials having small discriminants ([14], [15]),
from which one can define number fields with small discriminants.

3. Computations. Two methods were used to construct exceptional sequences.
Both were implemented using computer algebra system PARI/GP [1].

3.1. First approach. The first method is simple and, consequently, fast. First we

compute a system of fundamental units {uy, ua,... , U, us}, withm =7 +ry—1
and u; a torsion unit. Then, choosing bounds @i, and amax, We consider every unit
of the form v = u{* - u3? - - - ulm - uft, with amin < a; < amax for alli =1,2,...,m

and a; varying between 0 and the order of u;. Among these, we keep those for
which 1 — u is a unit as well, getting a subset F' of Fx. To get an exceptional
sequence, we then repeat the following steps until F' is empty : choose a unit
v € F, put in F’ the units u € F satisfying v — u € O3, replace F by F’.

The crucial point is clearly the way of choosing the unit v € F, so that we
get a sequence as long as possible. The first idea is to make this choice randomly.
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Sufficiently repeated, this provides exceptional sequences which are long enough
to prove that some number fields are Euclidean.

Remark 3.1. The method described above may also be used to compute a lower
bound on Ay(K). We try to compute a lower bound on Ag(K) when 2m +1 >
2-a(n,r9)-\/|d(K)|, where m is the length of the longest sequence that we found. If
this is verified, we try to find an exceptional sequence {0, 1, ws, ... ,wm,—1} and two
units w; and ug such that w; —u; € O for all 7 and j. Then, take an exceptional
units v satisfying, say, u; — v € O}, and search for another exceptional sequence
of length m — 1 among the exceptional units w satisfying u, —v € Oj. This gives
a set of 2m + 1 units such that among any three of them there are at least two
whose difference is a unit. This proves that the number field K is Euclidean. This
method may be generalized for higher order Lenstra’s constants.

Remark 3.2. A problem appearing with the first approach is that it provides
sequences which look very complicated, and, in particular, useless in the point
of view of the previous articles on this subject. Indeed, as written by Leutbecher
and Martinet, a search for fields with long exceptional sequence often reveals fields
with small discriminants. So, if we could identify some new sequences, it should
be possible to construct new number fields having small discriminant, and maybe
not appearing in D. Simon’s lists. From this point of view, instead of computing
an arbitrary system of fundamental units, we tried to construct a system of units
which are written as simple as possible on the integral basis of the number field.
Then we tried to find exceptional sequences among units being products of not
too many fundamental units. Unfortunately, even using the method described in
the sequel, we were not able to identify new exceptional sequences and find some
number fields not appearing in D. Simon’s table.

3.2. Approach by the theory of graphs. The second method is based on algorithms
from graph theory searching the maximum clique in a given graph and on the
principle given by H. W. Lenstra in [7], that, if we have some exceptional units,
then we may compute more by some simple rules.

One can associate a graph with a set of exceptional units as in [8], that is
vertices of the graph are exceptional units and two vertices u and v are connected
if u—v € OJ. In this way, an exceptional sequence is exactly a clique in this graph,
that is a subgraph in which any two vertices are connected. Finding the maximum
clique is known to be a NP-hard optimization problem. Among all the algorithms
written on this problem, two were used in our work, a branch-and-bound method
[4] and a variable neighborhood search [5].

On another side, the following proposition ([7] et [9]) may be used in order to
construct subsets of Fx.

Proposition 3.3. Let K be a number field and Ey the set of exceptional units. We
have:



Vol. 88 (2007) Exceptional units and Euclidean number fields 429

(i) Let G be the group generated by x +— 1—x and x — x =1, which is isomorphic
to the symmetric group Ss. The action of G on Ey is faithful unless /—3 €
K. So, if u € Ex then the siz (resp. two) elements su, for s € G, belong to
Er if V=3¢ K (resp. /=3 € K).

(ii) Let (u,v) € Ex satisfying u — v € O}, then the three following units uv=!,
(1—u)(1—v)"tand (1 —u=1)(1 —v=1)~! belong to Ex as well.

3.2.1. Description of the method. The method is the following. First we construct
a small subset F' of Ex containing products of only some fundamental units and
their orbit under the action of G, and compute the associated graph. Then we
apply the branch-and-bound algorithm [4] which is an improved exhaustive search.
The result is the maximal exceptional sequence in F'. The algorithm ends here if
a stopping condition is satisfied, and else the variable neighborhood search [5] is
applied.

This algorithm consists in computing another subset of E, constructed around
the maximal previously found clique, denoted by C. This means that we compute
exceptional units from the previously found exceptional units using the above
proposition. Initializing d at #C — 1, we keep only the ones which are “connected”
with at least d units of C. Then we compute the maximal clique in this new
subset of Ex. This clique may be C itself. Then, until a stopping condition is met,
decrease the value of d and repeat these operations.

The main stopping conditions is the size of C. That is achievement either of
the theoretical bound given by the smallest ideal norm or of the bound allowing
proof that the number field is Euclidean. Other stopping conditions used here are
elapsed time and size of the graphs to be taken in account.

4. Results. Tables 1 to 6 contain the number fields K for which we could find an
exceptional sequence long enough to prove that K is Euclidean.

TABLE 1. Euclidean number fields of degree 8 and signature [4,2]

d(K) ag,ai,--- ,as «a A> L
15297613 -1, -2, 1, 5, 2, -6, -3, 2, 1| 15.23 17 25
15908237 | -1, -1, 3, 1, -9, 4 6, -5, 1]1553 16 23
16324589 | -1, 4, 4, 11, -6, 11, 1, -4, 1|1574 16 23
16374773 | -1, -2, 0, 7, 4, -5 -4 , 11576 16 17
16526789 -1, 0, 3, 0, 0, -1, -3, 0, 1| 15.83 16 19
16623109 1, -8, 4, 14, -17, -1, 11, -6, 1]1588 17 23
16643125 1, 1, 0, -1, 0, 2, -2, -1, 1]1589 16 19
16706269 | -1, -6, -6, 13, 11, -9, -6, 2, 1]1592 16 19

We found exactly the same number fields using the two methods. The columns
respectively give, the discriminant of the number field, the coefficients of the poly-
nomial P(z) =ag+ a1 -2+ ...+ a, - 2" defining the number field, the bound «
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TABLE 2. Euclidean number fields of degree 8 and signature [4,2],

d(K) ap,ai,... ,as 2a0 Ao > 2L
16877741 1, -2, -3, 5, 7, —4, -5, 1, 1| 32.00 33 46
16981229 1, -2, 1, 15, 3, -14, -6, 2 1]3210 33 46
17025973 -1, -5, -9, -9, -7, -2, 1, 2, 11 32.14 33 46
17318125 | -1, -5, 4, 13, -5, 11, 1, 4, 1]3242 33 38

TABLE 3. Euclidean number fields of degree 9 and signature [3,3]

d(K) aog,ai,--. ,a9 «a A> L
—109880167 -1, -2, 0, 3, 1, -3, 1, 1, -2 1| 16.08 17 29
110852311 1, 3 -2 -8 -1, 8 2, -4, -1, 1]1615 18 27
111543479 1, o 1, 2, 1, -2, -3 -1, 1, 1]1620 18 23
112700719 | -1, 0, 4, -12, 5, 22, -37, 25, -8  1]|16.29 17 23
112978759 1, 1, -3, 3, 1, 5 3, 2 -3 1]1631 17 23
112992391 | -1, 2, -4, 2, 3, -6, , . -2, 1|1631 17 27
-113501567 -1, 0, 4, 1, -3 0, 1, -1, -1, 1| 16.35 17 25
113511599 | -1, -1, 9, 0, -18, 2, 13, -3, -3, 1|1635 17 23
~113931487 1, 1, 2, o0, -1, -1, -2, 0, ., 1]1638 17 25
114479303 | -1, 9, -27, 18, 27, -23, —16, T, ., 1]1642 18 23
114807607 | -1, 0, -4, 2, 12, -1, -11, -2, 3, 1 |1644 17 23
-115041127 1, 4, 0, -7, 5, -5, 0, 7, -5, 1| 16.46 17 27
115270559 1, 1, -1, -9, 2, 14, -1, -7, 0, 1]|1647 17 19
115691111 | -1, -1, -2, -1, 1, 5 2, -4, -1, 1|1650 17 25
—116188367 1, 0, -1, 1, 3, 1, -3, -2 0, 1| 16.54 17 23
—118246927 1, -3 1, 6, -7, -6, 8, 2, 4, 1| 16.68 17 23
~121510799 | -1, 0, 2, 3, -1, -5 -4, 1, 3, 1|1691 17 19

TABLE 4. Euclidean number fields of degree 10 and signature [2,4]

d(K) ap,at, ... ,aio a A> L
799905449 | -1, -1, o0, 1, -1, -1, 1, 1, 0, -1, 11680 17 25
801214577 1, -1, -1, 4, -3, 1, 0, -1, 3, -3, 1| 16.82 18 29
801589013 -1, 3, -2, 2, 0, -9, 0, 2, 2, 3, 1] 16.82 17 25
802448461 | -1, -3, 0, 5 1, -4, 1, 2, -2, -1, 1]1683 17 25
803282693 | 1, 4, -6, 4, 2, -8, 12, 11, 7, -3, 1|1684 18 29
809040437 | 1, o0, -1, -1, 3, 0, 4, 4, 0, -2, 1]1690 17 29
814270253 1, 1, -3, 1, 5, -5, -1, 4, -2, -1, 1| 16.95 17 23
817298432 -1, 0, -1, s 1, 0, 0, -2, 1, 0, 1] 16.99 17 23
838803593 | -1, 1, 2, -1, -1, -1, 1, 3, -2, -1, 1]1721 18 29
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TABLE 5. Euclidean number fields of degree 11 and signature [1,5]

d(K) ap, a1, ... ,011 a A> L
-5781612911 -1, 3, -6, 7, -7, 7, -8, 6, -3, 2, -2, 1]1729 18 29
-5807103943 -1, , 0, -3, 2, 2, -4, 0 3 -1, -1, 1| 1733 18 29
—5901091967 1, -3, 3, 2, -6, 4, 2, -5, 3, 1, =2, 1| 1747 18 29
—-5939843699 -1, o 1, 1, 3, 0 -1, -2, -2, 1, O, 1| 1752 18 29
~5999947987 1, -2, 2, 1, -5, 5, 1, -5, 3, 1, -2, 1] 1761 18 29
—6046447999 -1, 2, 4, 4, -6, 5, -5 4, -2, 3, 0, 1]1768 18 19

TABLE 6. Euclidean number fields of degree 12 and signature [0,6]

d(K) ag,al, ... ,a12 « A> L
41223887921 1, 3, 4, -3, 4, -7, 8, -5, 2, -1, 2, -2, 1|1748 19 37
42058512657 1, 5, 13, 25, 39, 52, 59, 57, 47, 30, 15, 5, 1 | 17.66 18 31
42194001221 1, 4, 10,-17, 22,-24, 24,21, 17,-12, 7, -3, 1|17.69 18 31
42925852301 1, 1, 2, 2, 3 -2, -1, 11, 1, 3, -2, -1, 11784 18 29

given by theorem 2.1, the length of the longest found exceptional sequence and
the smallest norm of a proper ideal of O . The value of « is given by Minkowski’s
bound, denoted by «(n,r3) in section 2, in degree 8 and by the center density of
spheres for degree 9 to 12. In degree 8, when the computed exceptional sequences
failed to achieve the required bound but was close enough (see remark 3.1), we
computed lower bounds for the second Lenstra’s constant. This was successful for
the four number fields of table 2.

In degree 8 and 9, some of these number fields were already proven to be
Euclidean. This is the case for four of the number fields of degree 8 and for two of
degree 9. So these tables give 42 new Euclidean number fields, and, in particular,
give the first examples of Euclidean number fields of degree 10 and signature [2,4],
and of degree 11 and signature [1,5].

Remark 4.1. Number fields appearing in tables 1 to 6 have unit rank ry + 7o = 6.
We computed exceptional sequences in some number fields with small discriminant
and r1 + 79 > 6 as well. We could observe that, for a given degree, maximal length
of an exceptional sequence grows with unit rank. However the increase appeared
to be of at most one or two units as the required bounds are multiplied by a
factor between 1.5 and 2, when increasing unit rank by one (except for totally
real number fields, bounds given in [13] being smaller). So it seems hopeless to
show that some number fields with r; + ro > 6 are Euclidean with this method.
Nevertheless it is interesting to note that we can find longer exceptional sequences
considering number fields with greater unit rank. As an example, table 7 gives
lower bounds on Lenstra’s constants for number fields of smallest discriminant in
degree 9.
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TABLE 7. Bounds on Lenstra’s constant in degree 9

[r1,72] d(K) o A> L
[1,4] 20510281 | 8.49 16 23
[3,3] -109880167 | 16.38 18 29
[5,2] 453771377 | 32.35 19 25
[7.1] -1904081383 | 52.04 21 37
[9,0] 9685993193 | 39.07 22 27
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