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Abstract

Keywords

In this paper we present two methods for the quantitative measurement of
the thickness of ferroelectric domain walls, one using high-resolution electron
microscopy (HREM) and the other weak beam transmission electron micro-
scopy (WBTEM). These techniques can be used to determine the thickness
of domain walls at room temperature as well as close to the ferroelectric to
paraelectric phase transition. The first method allows a direct visualization
of the lattice distortion across the domain wall, by measuring the continuous
deviation of a set of planes with respect to the undistorted lattice. The second
method consists in a quantitative analysis of the thickness fringes that appear
on weak beam images of inclined domain walls. By fitting simulated fringe
profiles to experimental ones, we can extract the thickness of the domain
walls in a quantitative way. These two complementary techniques lead to a
complete characterization of the thickness of ferroelectric domain walls over
a wide range of specimen thicknesses at different magnifications. As an
example we apply these methods to ferroelectric domain walls in PbTiOs.
The domain wall thickness at room temperature is found to be 1.5 = 0.3 nm
using HREM (in very thin samples =10 nm) and 2.1 = 0.7 nm using WBTEM
(in samples thicker than 30 nm).

high-resolution electron microscopy, weak beam imaging, ferroelectric
domain walls, PbTiO3, image simulation, quantitative electron microscopy

Introduction

terize the structure of such interfaces and to determine

The properties of domain walls in ferroelectric materials
present a great scientific and technological interest because
of their influence on the macroscopic properties of these
compounds (permittivity, piezoelectric constants, fatigue
mechanisms). Several models {1,2] have been proposed
to describe the structure of domain walls, but only a few
quantitative observations have been reported so far
[3-5]. We use two complementary techniques to charac-

their thickness quantitatively.

Methods

High-resolution electron microscopy

HREM allows a direct observation of ferroelectric domain
walls at atomic resolution. When a domain wall is viewed
edge on, one can observe the displacements of the atomic
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Fig. 1 HREM micrograph of a 90
taken on a [010] zone axis

ferroelectric domain wall in PbTiO

columns near the interface (Fig. 1). In many ferroelectric
crystals, far from the ferroelectric to paraelectric phase
transition temperature, the displacements of the atomic
columns near a domain wall are only of the order of a
few tenths of Angstréms and decrease quickly far away
from the interface. Consequently, an accurate method is
required to quantify these distortions in order to determine
the domain wall thickness. The method used in this work
consists in measuring the variation of the geometrical
phase in HREM images and to quantify the distortion of
one set of planes [6]. The image of a perfect set of lattice
fringes with a reciprocal lattice vector J is given by:

I3(7) = Ap + 24z cos 23 - 7 + (3] (1)

where Ay is the background intensity, A3 is the amplitude
of the fringes, 7 the position, and C§ a constant phase
term. By expressing § as the sum of a fixed reference
reciprocal vector o and a small variation Ag with respect
to that reference, equation 1 can be rewritten as:

I3(7) = Ag + 2Az cos [2mgo - 7 + 2mAG - 7 + C] =
Ag + 245 cos [2mdy - T + Og,(7) + Cgl  (2)

The term @y, () = 2nAg - 7 is called the geometrical
phase (for the reference reciprocal lattice vector gg). The
distortion of the planes can be modelled by allowing g to
vary with position, so that the geometrical phase becomes

8y, () = 2mA4(7) - 7. (3)

It should be noticed that a perfect lattice (§ constant)
produces a uniform ramp in the geometrical phase. In the
case of a ferroelectric domain wall, each domain exhibits
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a nearly perfect crystal lattice far away from the interface
with distortions appearing only across the domain wall
where the planes are bent. It is expected that the geo-
metrical phase map shows two ramps (one for each
domain) which are connected in the domain wall region.
Thus, in the direction perpendicular to the interface the
phase varies linearly with the position except in the
domain wall itself. The first step for the measurement of
the geometrical phase in a HREM micrograph consists in
calculating the Fourier transform of the image. A circular
mask (whose edge has been smoothed by a gaussian
function) is then applied to the diffractogram in order
to keep only the reciprocal vectors close to the peak
corresponding to the set of planes considered (Fig. 2). The
Fourier space is then recentred on a reference reciprocal
vector g,. The geometrical phase is given by the phase of
the inverse Fourier transform of this recentred diffracto-
gram (Fig. 3). In order to quantify the domain wall
thickness we have to determine a function that describes
the variation of the phase across the domain boundary.
This function is constructed in analogy with the variation
of the polarization across the domain wall. According to
the classical van der Waals theory [7], the polarization
across the domain wall varies like

X = Xp

P(x) = Py tanh ‘2—§—

(4)
with P, being the polarization far from the domain wall
and (x - xp) the distance from the centre of the domain
wall (Fig. 4). In our case, only the component parallel to
the interface has to be considered, which (according to
Cao and Cross [2]) is given by

P, sinh (%)
X)) =— e (5)
N2 [B+ sinh? (3)]t

where B is a constant depending on the material. Accord-
ing to Widom [8], the parameter & is the correlation
length of the spontaneous polarization fluctuations in
bulk phase. £ characterizes the decay of the exponential
tail of the hyperbolic function. The thickness of the
domain wall L is thus defined as & or any multiple of it.
A reasonable choice for the domain wall thickness, which
is in agreement with previous experiments [9], is the
value L = 4&. With these considerations, we are led to
make the assumption that the continuous variation of the
geometrical phase across the domain wall has to be
described by a function that has the same asymptotic
behaviour as Py. The function for the geometrical phase
satisfying these conditions is given by
X-Xg

O30 (X) = 3 (my —my) &

+ my (x - xp) + ¢ for x < xq
(6)
X=X

B30 () =3 (M= M) & T 4y (x— xp) + cfor x = x,

where m; and m, are proportional to the ramp parameters
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Fig. 2 Power spectrum of Fig. 1. The mask used for the calculation of the geometrical phase is represented by the circle. The centre of the cirde
corresponds to the reference reciprocal laitice vector g and lies in the middle of the (101) peaks.

in each of the domains (which depend on the choice of
the reference reciprocal lattice vector go) and cis a constant
phase term. £ and consequently the domain wall thickness
L can be determined by fitting equation 6 to the geo-
metrical phase measured experimentally.

Weak beam transmission electron microscopy

When inclined domain walls are imaged using weak beam
transmission electron microscopy [10], we observe well
resolved thickness fringes across the boundary. By fitting
simulated fringe profiles to experimental ones, we can
extract the thickness of the domain walls in a quantitative
way. A similar method also using the weak beam tech-
nique has recently been used for the determination of the
thickness of antiphase boundaries [11]. The simulation of
the weak beam images is performed using the Howie-

Whelan approach of the dynamical theory of electron
diffraction. For simplicity we introduce the column
approximation [12,13], which is justified by the high
electron energy (200-300 keV). The observed thickness
fringes across the domain boundary are due to a local
variation of the extinction errors 33 of the diffracted
electron beams in the crystal. Thus, the values of the
excitation errors are dependent on the position (x,y,z) of
the electrons in thg crystal and can be rewritten as 3;,, =
3; + 3; - dR Idz. R(x,y,z) is the displacement field that
describes the deviation of the unit cell positions due
to the presence of the domain wall (deformable ion
approximation). The displacement of the diffracting lattice
planes is illustrated in Fig. 6a. One of the two adjacent
domains is aligned with respect to the beam and satisfies
the specified diffraction conditions, whereas in the other
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Fig. 3 101 geometrical phase map. The phase can only take values
between —nt (black) and n (white) which induces phase jumps visible in
the phase map by an abrupt variation in the grey levels.

Py

~ Exp(-(x-xq)g] for x-xg >> &

P(x)

-P, X
0
Xo

Fig. 4 Varation of the polarization across the domain boundary according
to van der Waals. The asymptotic behaviour is indicated.

domain the crystal planes are displaced and therefore do
not satisfy the diffraction conditions anymore. Therefore,
the displacement field R varies from 0 on one side of the
domain boundary to a linear displacement on the other
side. The transition between those two regions has some
spatial extension which is proportional to the thickness
of the domain wall. By making the same considerations
concerning the variation of the polarization across the
domain wall as in the previous paragraph, we can immedi-
ately express the displacement field as (Fig. 6b):

d §etrx)% for x < x

(7)
R(x) = de % + (x-xp)) for x = xg

where d is a displacement vector depending on the crystal
geometry. The shape of R is obviously very similar to the
geometrical phase determined for the HREM method.
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Another important element for the simulation of weak
beam images is the calculation of the structure factors V3
which consist of two parts

Vi v+ vy @ (8)

where V3 ) denotes the Fourier coefficient of the real
lattice potential V(7) and V3 () the absorption arising from
inelastic scattering mainly due to phonons. V3 " is given by

4mh?
2:1Q T ATt L0 G (9)

(=

V3

where the m is the rest mass of the electron, Q is the
volume of the unit cell and 7, is the position of the atom
n in the unit cell. M,, = 8n? <u?>, is the Debye-Waller
factor with <u?>, being the mean square vibrational
amplitude of atom 7. 7 is the atomic scattering amplitude
in the first-order Born approximation. The expression for
vz @ is similar to the one for V3 ), except that £, is
replaced with the absorptive form factor f,. The detailed
formalism for determining f,” and f,) can be found in
the work by Weickenmeier and Kohl [14].

Using the theory described above, we are able to
compute the thickness fringe profiles that are observed
on the weak beam images. The simulated profiles are
then fitted to the experimental ones by varying simultan-
eously the following simulation parameters: sample
thickness, excitation error, absorption coefficient and the
parameter & describing the domain wall thickness. The
fitting procedure is terminated when the mean square
difference between the two profiles is minimized.

Results

Both methods have been applied to 90° domain walls
in PbTiO;. This material undergoes a first order phase
transition at T, = 492°C from a cubic paraelectric (T > T)
structure to a tetragonal ferroelectric one (T < T,). The
90° domain walls are twins lying on {101} planes. Figure
1 shows a HREM micrograph of a 90° ferroelectric domain
wall taken on a [010] zone axis (common to the two
adjacent domains) using a Philips CM300 UT FEG micro-
scope (accelerating voltage Vy = 300 kV, point to point
resolution p = 0.17 nm). The corresponding power spec-
trum is displayed on Fig. 2, the splitting of the peaks due
to the twinning is clearly visible. The circle indicates the
mask used to calculate the geometrical phase. Here, the
(101) planes are chosen because they present the largest
distortion. The reference reciprocal lattice vector is chosen
precisely in the middle of the two (101) peaks, so that
the geometrical phase is symmetric. The geometrical phase
map is shown in Fig. 3. The abrupt changes from black
to white in this image come from the —n to n phase jumps.
A line scan is made perpendicularly to the interface (see
Fig. 5) and the domain wall thickness is extracted by
fitting equation 6 to the obtained profile. The value for L
is found to be 1.5 = 0.3 nm.
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Fig. 5 Variation of the geometrical phase perpendicular to the interface together with a fitted curve using equation 6. The centre of the domain wall
is also determined by the fit (inset).

s R (a) (b)

Fig. 6 (a) Displacement of diffracting lattice planes across the domain wall. The upper domain (light gray) 1s aligned with respect to the incident
electron beam, whereas in the lower domain (dark gray) the crystal is not diffracting. (b) Continuous bending of the lattice planes across the domain
wall due to finite temperature. The asymptotic behaviour of the plane bending results from an analogy with the variation of the polarization across
the domain wall (Fig. 4).

Figure 7 shows a weak beam image of a domain wall Domain 1 is aligned in the specified diffracting conditions,
in PbTiO; taken in g-2g diffracting conditions. In this case ~ whereas domain 2 appears dark since it is not diffracting.
4 = [110], the boundary plane is (101) and 4 =0.22[101]. Well defined thickness fringes can be observed across the
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domain boundary and the number of fringes clearly
increase with increasing sample thickness. In Fig. 8 the
simulated profiles (solid lines) are superposed on the
experimental ones (circles) for two different sample thick-
nesses. The result of the fit gives an average value of L =
2.1 £ 0.7 nm for the domain wall thickness at room
temperature.

Discussion

The results obtained for the thickness of 90° ferroelectric
domain walls in PbTiO; using HREM and WBTEM are
consistent considering the accuracy of the methods. Sim-
ilar values are reported in the literature using HREM
[4] or electron holography [15]. The minor discrepancy

Profile 1 =73

Domain 1

Profile 2 —

200 nm

Fig. 7 Weak beam transmission electron micrograph of a ferroelectric
domain boundary taken in g-2g diffracting conditions. Well resolved
thickness fringes are observed across the domain wall.
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between our values could however also be due to the
different sample thicknesses at which the measurements
are performed. In fact, the sample thickness for HREM is
restricted to values around 10 nm, whereas it is typically
between 30 nm and 100 nm for the weak beam technique.
This difference in the specimen thickness is one of the
key factors that makes the two techniques complementary.
From an experimental point of view HREM is more
demanding with respect to the sample quality and the
performance of the microscope (high magnification and
high stability) but in return it yields detailed information
concerning the atomistic structure of the domain walls.
This information is again very useful for the modelling of
the domain wall which is needed for the weak beam
image simulations. The weak beam method is on the
other hand less concerned with sample quality and drift
problems, can be performed on any classical TEM and
should be easier to use at high temperature.

Conclusion

We successfully measured the thickness of ferroelectric
domain walls in lead titanate using HREM on the one
hand and WBTEM on the other hand. The results obtained
are 1.5 = 0.3 nm and 2.1 * 0.7 nm respectively, which
is consistent considering the measurement accuracy. The
two techniques are complementary in the sense that
HREM is applied to very thin specimens (<10 nm),
whereas WBTEM becomes accurate for samples thicker
than 30 nm. Moreover, the atomistic structure of the
domain walls determined by HREM vyields an accurate
model which is used for the simulation of the WBTEM
images. These techniques are currently being used to
monitor the broadening of the ferroelectric domain walls
as a function of temperature.
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Fig. 8 Superposition of experimental (drdes) and simulated (solid lines) thickness fringe profiles at a sample thickness of (a) 72 nm and (b) 100 nm.
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