The number of positive solutions of a non-linear problem with discontinuous non-linearity

Jacques Douchet

Ecole Polytechnique Fédérale de Lausanne, 61 avenue de Cour, 1007 Lausanne, Switzerland

(Ms received 5 February 1981)

Synopsis

For the non-linear problem

$$\begin{cases} -u''(x) = \lambda f(u(x)) & \text{for } 0 < x < 1 \\ u(0) = u(1) = 0 \end{cases}$$

where f is a discontinuous function at 1, we show that the number of non-trivial positive solutions, for a given real number $\lambda \ge 0$, is related to the graph of a continuous function g. Then, by studying the function g it is possible in some special cases to give, for any $\lambda \ge 0$, the minimal or exact number of non-trivial positive solutions.

1. Introduction

We consider the non-linear two point boundary-value problem

$$\begin{cases} -u''(x) = \lambda f(u(x)) & \text{for } 0 < x < 1 \\ u(0) = u(1) = 0 \end{cases}$$
 (1.1)

where $f:[0, +\infty) \to [0, +\infty)$ is given. We assume that there exist two continuously differentiable functions $h:[0, 1] \to [0, +\infty)$ and $k:[1, +\infty) \to (0, +\infty)$ such that

$$h(0) = 0,$$
 (H1)

$$h(p) > 0$$
 for all $p \in (0, 1]$, (H2)

$$h(1) \neq k(1), \tag{H3}$$

$$f(p) = \begin{cases} h(p) & \text{if } p \in [0, 1) \\ k(p) & \text{if } p \in (1, +\infty). \end{cases}$$
 (H4)

The value of f at 1 need not be related to h and k, but f(1) should be positive.

DEFINITION. A solution of problem (1.1) is a pair $(u, \lambda) \in C^1([0, 1]) \times [0, +\infty)$

such that

$$u(x) \ge 0$$
 for all $x \in [0, 1]$,

$$u(0) = u(1) = 0$$
,

u' is absolutely continuous on [0, 1]

and

$$-u''(x) = \lambda f(u(x))$$
 for almost all $x \in [0, 1]$.

We denote by S the subset of $C^1([0,1]) \times [0, +\infty)$ consisting of all the solutions of problem (1.1). Since f(0) = 0, the set of trivial solutions $\{(0,\lambda) \in C^1([0,1) \times [0,+\infty) | \lambda \ge 0\}$ belongs to S. Let $S^+ = \{(u,\lambda) \in S | ||u|| \ne 0\}$ where $||u|| = \max_{x \in [0,1]} |u(x)|$.

In order to prove the existence of solutions in S^+ , we consider for all $n \in \mathbb{N}$ the following problem:

$$\begin{cases} -u''(x) = \lambda f_n(u(x)) & \text{for } 0 < x < 1 \\ u(0) = u(1) = 0 \end{cases}$$
 (1.1)_(n)

where $f_n:[0,+\infty)\to(0,+\infty)$ is defined by $f_n(t)=f(t)+(1/n)$ for all t in $[0,+\infty)$. Let S_n be the subset of $C^1([0,1])\times(0,+\infty)$ consisting of all the solutions of problem $(1.1)_{(n)}$. Then (see [1,2,3]), we know that for any $\rho>0$, there exists a unique (u_n,λ_n) in S_n such that $||u_n||=\rho$. Moreover (u_n,λ_n) has the following properties:

- (1) $\lambda_n = g_n^2(||u_n||)$, where $g_n:(0, +\infty) \to (0, +\infty)$ is a continuous function defined by $g_n(p) = \sqrt{2} \int_0^p \{F_n(p) F_n(\omega)\}^{-\frac{1}{2}} d\omega$, $F_n(\omega) = \int_0^\omega f_n(s) ds$;
- (2) $u'_n(x) > 0$ for all $x \in [0, \frac{1}{2})$ and u'(x) < 0 for all $x \in (\frac{1}{2}, 1]$;
- (3) $u_n(\frac{1}{2}) = \rho$ and $u'_n(\frac{1}{2}) = 0$;
- (4) if $\rho = 1$, then $\{x \in [0, 1] | u_n(x) = 1\} = \{\frac{1}{2}\};$

if $\rho > 1$, then there exists $x_0 \in (0, \frac{1}{2})$ such that $\{x \in [0, 1] | u_n(x) = 1\} = \{x_0, 1 - x_0\}$;

(5) $u_n(x) = u_n(1-x)$ for all $x \in [0, 1]$.

Now that these definitions have been given, let us state our main results.

In Section 3, we show that for any $\rho > 0$ there exists a unique solution (u, λ) in S^+ such that $||u|| = \rho$. We also state that S^+ is a continuum in $C^1([0, 1]) \times [0, +\infty)$ and furthermore S^+ is a continuous curve in $C^1([0, 1]) \times [0, +\infty)$ which can be parameterized by ||u||. The last result of Section 2 is that if h(1) < k(1) and $\lim_{p \to +\infty} p^{-1} f(p) = 0$, then there are always values of λ for which there exist at least two distinct solutions of problem (1.1) in S^+ .

In Section 3, we study the case $h'(0) = \lim_{p \to 0^+} p^{-1} f(p) = \alpha > 0$. We show that $\mathscr{C} = S^+ \cup \{(0, \pi^2/\alpha)\}$ is a continuum in $C^1([0, 1]) \times [0, +\infty)$ and furthermore \mathscr{C} is a

continuous curve in $C^1([0,1]) \times [0, +\infty)$ which can be parameterized by ||u||. We also state that if $\lim_{p \to +\infty} p^{-1} f(p) = 0$, then for any $\lambda \ge \pi^2/\alpha$ there is at least one solution of problem (1.1) in \mathscr{C} . For the two following cases:

$$f(p) \ge pf'(p)$$
 for all $p \in [0,1) \cup (1,+\infty)$ and $h(1) > k(1)$, (A)

$$f(p) \leq pf'(p)$$
 for all $p \in [0, 1) \cup (1, +\infty)$ and $h(1) < k(1)$, (B)

we give, for any $\lambda \ge 0$, the exact number of solutions of problem (1.1) in \mathscr{C} . At the end of Section 3, we give a theorem in which, for some values of λ , there exist at least three distinct solutions of problem (1.1) in \mathscr{C} .

In Section 4, we study the case $h'(0) = \lim_{p \to 0^+} p^{-1} f(p) = 0$. We show the existence of a number $\hat{\lambda} \ge 0$ such that, for any $\lambda > \hat{\lambda}$, there is at least one solution of problem (1.1) in S^+ . Moreover, if $\lim_{p \to +\infty} p^{-1} f(p) = 0$, there exists a positive number λ_1 such that, for any $\lambda > \hat{\lambda}_1$ there are at least two distinct solutions of problem (1.1) in S^+ , for $\lambda = \hat{\lambda}_1$ there is at least one solution in S^+ and for $\lambda \in [0, \lambda_1)$ there is no solution in S^+ . As in Section 3, for the case (B): $f(p) \le pf'(p)$ for all $p \in [0, 1) \cup (1, +\infty)$ and h(1) < k(1), we give, for any $\lambda \ge 0$, the exact number of solutions of problem (1.1) in S^+ .

The problem (1.1) has already been studied in the following three articles. In [4], Laetsch studies the problem (1.1) with the assumption that f is a continuous function on $[0, +\infty)$. In [3], Stuart studies it with the same assumptions as in the present paper, but supposes that h(0) > 0. In [5], Nistri treats the case h(p) = 0 for all $p \in [0, 1]$ and k(p) > 0 on $[1, +\infty)$.

2. General properties of S^+

We start this section by giving a theorem concerning the structure of any solution (u, λ) in S^+ .

THEOREM 2.1. Let $(u, \lambda) \in S^+$, then:

- (1) $\lambda > 0$ and u(x) > 0 for all $x \in (0, 1)$;
- (2) u'(x) > 0 for all $x \in [0, \frac{1}{2})$ and u'(x) < 0 for all $x \in (\frac{1}{2}, 1]$;
- (3) $u(\frac{1}{2}) = ||u||$ and $u'(\frac{1}{2}) = 0$;
- (4) if ||u|| = 1, then $\{x \in [0, 1] | u(x) = 1\} = \{\frac{1}{2}\};$

if ||u|| > 1, there exists x_0 in $(0, \frac{1}{2})$ such that $\{x \in [0, 1] | u(x) = 1\} = \{x_0, 1 - x_0\}$;

(5) u(x) = u(1-x) for all $x \in [0, 1]$.

The proof of this theorem is given in [1].

Let $F(\omega) = \int_0^{\omega} f(s) ds$ for $\omega > 0$. Since f(s) > 0 for all s > 0, F is a strictly increasing function on $(0, +\infty)$.

Let $g(p) = \sqrt{2} \int_0^p \{F(p) - F(\omega)\}^{-\frac{1}{2}} d\omega$ for p > 0. We note that $g(p) < +\infty$ for p > 0 and g is a continuous function on $(0, +\infty)$. Moreover $\lim_{n \to +\infty} g_n(p) = g(p)$ for all p > 0.

LEMMA 2.2 Suppose that $(u, \lambda) \in S^+$. Then $\lambda^{\frac{1}{2}} = g(||u||)$.

Proof. Let us assume that ||u|| > 1. By Theorem 2.1, there exists a number $x_0 \in (0, \frac{1}{2})$ such that $u(x_0) = 1$ and $-u''(x) = \lambda f(u(x))$ for all $x \in [0, x_0) \cup (x_0, \frac{1}{2}]$. We obtain

$$-\frac{1}{2}(u'(x))^2 = \lambda F(u(x)) + c_1 \quad \text{for all} \quad x \in [0, x_0)$$
$$-\frac{1}{2}(u'(x))^2 = \lambda F(u(x)) + c_2 \quad \text{for all} \quad x \in (x_0, \frac{1}{2}].$$

Since $u \in C^1([0,1])$ and F is continuous on $(0, +\infty)$, it follows that $c_1 = c_2 = -\lambda F(||u||)$.

Thus $u'(x) = \sqrt{2\lambda} \{F(\|u\|) - F(u(x))\}^{\frac{1}{2}}$ for all $x \in [0, \frac{1}{2}]$, and consequently $\lambda^{\frac{1}{2}} = g(\|u\|)$.

If $||u|| \le 1$, a similar argument shows that $\lambda^{\frac{1}{2}} = g(||u||)$. This completes the proof.

This relationship was introduced in this connection by Laetsch [4].

COROLLARY 2.3. (1) Suppose that (u_1, λ_1) and (u_2, λ_2) are two solutions of problem (1.1) in S^+ such that $||u_1|| = ||u_2||$. Then $\lambda_1 = \lambda_2$ and $u_1(x) = u_2(x)$ on [0, 1]. (2) Let $\lambda > 0$. Suppose that (u_1, λ) and (u_2, λ) are two distinct solutions of problem (1.1) in S^+ . Then either $u_1(x) < u_2(x)$ on (0, 1) or $u_1(x) > u_2(x)$ on (0, 1).

Now that all these preliminary results have been obtained, we can state out

THEOREM 2.4. For any $\rho > 0$, there exists exactly one solution of problem (1.1) such that $||u|| = \rho$.

Proof. Since the unicity is given by Corollary 2.3, we only need to prove the existence of a solution. Let $\rho > 0$, then for any $n \in \mathbb{N}$, there exists (u_n, λ_n) in S_n such that $||u_n|| = \rho$ and $\lambda_n = g_n^2(\rho)$. Since $\lim_{n \to +\infty} g_n^2(\rho) = g^2(\rho)$ we have that $\{\lambda_n\}_{n \ge 1}$ converges and that $\lambda \equiv \lim_{n \to +\infty} \lambda_n = g^2(\rho)$. Let $\overline{\lambda} = \sup\{\lambda_n | n \in \mathbb{N}\}$ and $l(\rho) = \sup\{f(t) | t \in [0, \rho]\}$, then $\overline{\lambda} < +\infty$ and $l(\rho) > 0$.

We thus obtain $|u_n'(x) - u_n'(y)| = \lambda_n |\int_x^y f_n(u_n(s)) ds| \le \overline{\lambda}(l(\rho) + 1)|x - y|$ for all x, y in [0, 1] and all $n \in \mathbb{N}$. If we put $y = \frac{1}{2}$, we have $||u_n'|| \le \overline{\lambda}(l(\rho) + 1)$ for all $n \in \mathbb{N}$. Therefore, by the Ascoli-Arzelà theorem, there exists a subsequence $\{u_{n_j}\}_{j \ge 1}$ of $\{u_n\}_{n \ge 1}$ which converges to u in $C^1([0, 1])$. It follows that $u(\frac{1}{2}) = ||u|| = \rho$, u(0) = u(1) = 0 and $u'(x) \ge 0$ for all $x \in [0, \frac{1}{2}]$. Since u(x) = u(1 - x) for all $x \in [0, 1]$, it remains to show that $u'(x) = -\lambda \int_{\frac{\pi}{4}}^x f(u(s)) ds$ for all $x \in [0, \frac{1}{2}]$.

(a) Suppose that $\rho \leq 1$, then

main existence theorem.

$$u'(x) = \lim_{j \to +\infty} u'_{n_j}(x) = \lim_{j \to +\infty} -\lambda_{n_j} \int_{\frac{1}{2}}^{x} \{h(u_{n_j}(s)) + (1/n_j)\} ds$$
$$= -\lambda \int_{\frac{1}{2}}^{x} h(u(s)) ds$$

for all $x \in [0, \frac{1}{2}]$. Therefore

$$\{x \in [0, 1] | u(x) = 1\} \subset \{\frac{1}{2}\},\$$

and we have

$$\int_{\frac{1}{4}}^{x} h(u(s)) ds = \int_{\frac{1}{4}}^{x} f(u(s)) ds \quad \text{on } [0, \frac{1}{2}].$$

(b) Suppose that $\rho > 1$. Then, there exists a number x_0 in $(0, \frac{1}{2})$ such that

$$\{x \in [0, 1] | u(x) = 1\} = \{x_0, 1 - x_0\}.$$

(1) For any $x \in (0, x_0)$, there exists $j_x \in \mathbb{N}$ such that $u_{n_j}(s) < 1$ for all $j \ge j_x$ and all $s \in [0, x]$. Thus,

$$u'(x) = \lim_{j \to +\infty} \left[-\lambda_{n_j} \int_0^x \left\{ h(u_{n_j}(s)) + \frac{1}{n_j} \right\} ds + u'_{n_j}(0) \right]$$

= $-\lambda \int_0^x f(u(s)) ds + u'(0)$ for all $x \in [0, x_0)$.

Since u' is a continuous function on [0,1], we have $u'(x) = -\lambda \int_0^x f(u(s)) ds + u'(0)$ for all $x \in [0, x_0]$.

(2) A similar argument shows that $u'(x) = -\lambda \int_{\frac{1}{2}}^{x} f(u(s)) ds$ on $[x_0, \frac{1}{2}]$.

And it follows from (1) and (2), that $u'(x) = -\lambda \int_{\frac{1}{2}}^{x} f(u(s)) ds$ for all $x \in [0, \frac{1}{2}]$. This completes the proof of this theorem.

Theorem 2.4 allows us to consider the function $\sigma:(0, +\infty) \to C^1([0, 1])$ which is defined by: $(\sigma(\rho), g^2(\rho)) \in S^+$ and $||\sigma(\rho)|| = \rho$. On S^+ we consider the topology induced from $C^1([0, 1]) \times [0, +\infty)$.

THEOREM 2.5. The one-to-one map $\psi:(0, +\infty) \to S^+$ defined by $\psi(\rho) = (\sigma(\rho), g^2(\rho))$ is continuous.

An immediate consequence of this last theorem is that S^+ is a continuum in $C^1([0,1]) \times [0,+\infty)$ and furthermore S^+ is a continuous curve in $C^1([0,1]) \times [0,+\infty)$ which can be parameterized by ||u||.

It follows, from Lemma 2.2 and Theorem 2.4, that the number of solutions of problem (1.1) in S^+ is given, for any $\lambda > 0$, by the graph of g^2 . With the purpose of obtaining better information about this graph, we give two different representations of g'.

First representation of g'

We note that, for p > 0,

$$g(p) = \sqrt{2} p^{\frac{1}{2}} \int_{0}^{1} R(p, t)^{-\frac{1}{2}} dt$$

where

$$R(p,t) = \int_{t}^{1} f(pz) dz$$
 for all $(p,t) \in (0, +\infty) \times [0, 1]$.

Let

$$\Delta_{p_0} = \begin{cases} \left[\frac{p_0}{2}, \bar{p}_0\right] & \text{if} \quad p_0 \in (0, 1) \\ \left[\bar{p}_0, 2p_0\right] & \text{if} \quad p_0 \in (1, +\infty). \end{cases}$$

Where $\bar{p} = (1 + p_0)/2$ for all $p_0 \in (0, +\infty)$.

LEMMA 2.6. For all $p_0 \in (0, 1) \cup (1, +\infty)$, there exists a positive constant $d(p_0)$ such that

$$R(p,t)^{-\frac{3}{2}} \left| \int_{0}^{1} f'(pz)z \, dz \right| \leq d(p_0)(1-t)^{-\frac{1}{2}} \quad for \ all \quad (p,t) \in \Delta_{p_0} \times [0,1).$$

LEMMA 2.7. Let $T(p) = \int_0^1 R(p,t)^{-\frac{1}{2}} dt$. Then T is continuously differentiable on $(0,1) \cup (1,+\infty)$. Furthermore

$$T'(p) = -\frac{1}{2} \int_{0}^{1} R(p,t)^{-\frac{3}{2}} \int_{1}^{1} f'(pz)z \, dz \, dt \quad \text{if} \quad p \in (0,1)$$

and

$$T'(p) = -\frac{1}{2} \int_{0}^{1} R(p,t)^{-\frac{3}{2}} \int_{t}^{1} f'(pz)z \, dz \, dt - \frac{1}{2}p^{-2} \{k(1) - h(1)\} \int_{0}^{1/p} R(p,t)^{-\frac{3}{2}} \, dt$$
if $p \in (1, +\infty)$.

Proof. (1) If $p \in (0, 1)$, it follows by using Lemma 2.6, that

$$T'(p) = \frac{d}{dp} \int_{0}^{1} R(p,t)^{-\frac{1}{2}} dt = \int_{0}^{1} \frac{\partial R(p,t)^{-\frac{1}{2}}}{\partial p} dt = -\frac{1}{2} \int_{0}^{1} R(p,t)^{-\frac{3}{2}} \int_{t}^{1} f'(pz)z \, dz \, dt.$$

T' is continuous on (0, 1).

(2) If p > 1, then

$$T(p) = \int_{0}^{1} R(p,t)^{-\frac{1}{2}} dt = \int_{0}^{1/p} R(p,t)^{-\frac{1}{2}} dt + \int_{1/p}^{1} R(p,t)^{-\frac{1}{2}} dt.$$

And it follows, by using Lemma 2.6, that

$$T'(p) = -\frac{1}{2} \int_{0}^{1} R(p,t)^{-\frac{3}{2}} \int_{t}^{1} f'(pz)z \, dz \, dt - \frac{1}{2} p^{-2} \{k(1) - h(1)\} \int_{0}^{1/p} R(p,t)^{-\frac{3}{2}} \, dt.$$

T' is continuous on $(1, +\infty)$.

Now, we are able to give the first representation of g'.

COROLLARY 2.8. g is continuously differentiable on $(0,1)\cup(1,+\infty)$. Furthermore

$$g'(p) = \sqrt{2} \left\{ \frac{1}{2} p^{-\frac{1}{2}} \int_{0}^{1} R(p,t)^{-\frac{1}{2}} dt - \frac{1}{2} p^{\frac{1}{2}} \int_{0}^{1} R(p,t)^{-\frac{3}{2}} \int_{t}^{1} f'(pz) z \, dz \, dt \right\} \quad \text{if} \quad p \in (0,1)$$

and

$$g'(p) = \sqrt{2} \left\{ \frac{1}{2} p^{-\frac{1}{2}} \int_{0}^{1} R(p,t)^{-\frac{1}{2}} dt - \frac{1}{2} p^{\frac{1}{2}} \int_{0}^{1} R(p,t)^{-\frac{3}{2}} \int_{t}^{1} f'(pz) z \, dz \, dt \right.$$
$$\left. - \frac{1}{2} p^{-\frac{3}{2}} \{ k(1) - h(1) \} \int_{0}^{1/p} R(p,t)^{-\frac{3}{2}} dt \right\} \quad \text{if} \quad p \in (1, +\infty).$$

Second representation of g'

LEMMA 2.9.

$$\begin{split} g'(p) &= \sqrt{2} \, f(p) \left\{ -\frac{1}{2} \int_{0}^{\frac{1}{2}} \{F(p) - F(\omega)\}^{-\frac{3}{2}} \, d\omega + \left\{ \frac{1}{k(1)} - \frac{1}{h(1)} \right\} \{F(p) - F(1)\}^{-\frac{1}{2}} \right. \\ &+ \frac{1}{h(\frac{1}{2})} \{F(p) - F(\frac{1}{2})\}^{-\frac{1}{2}} - \int_{\frac{1}{2}}^{p} \{F(p) - F(\omega)\}^{-\frac{1}{2}} \frac{f'(\omega)}{f^{2}(\omega)} \, d\omega \right\} \quad for \ all \quad p > 1. \end{split}$$

Proof. Since

$$g(p) = \sqrt{2} \left\{ \int_{0}^{1} \{F(p) - F(\omega)\}^{-\frac{1}{2}} d\omega + \frac{2}{k(1)} \{F(p) - F(1)\}^{\frac{1}{2}} - 2 \int_{1}^{p} \{F(p) - F(\omega)\}^{\frac{1}{2}} \frac{f'(\omega)}{f^{2}(\omega)} d\omega \right\} \text{ for all } p > 1,$$

by differentiation we obtain the assertion.

COROLLARY 2.10.

$$\lim_{p \to 1^+} g'(p) = \begin{cases} +\infty & if & h(1) > k(1) \\ -\infty & if & h(1) < k(1) \end{cases}$$

Having shown, in Theorem 2.4, that there is exactly one solution of problem (1.1) in S^+ for each value of ||u||, let us now ask for which values of $\lambda > 0$ there is a solution. The next lemma helps us to answer this question.

LEMMA 2.11. Suppose that $\lim_{p\to+\infty} p^{-1}f(p)=0$. Then $\lim_{p\to+\infty} g(p)=+\infty$.

Proof. Let $n \in \mathbb{N} - \{1\}$. Then there exists a positive number p_n such that $\{F(p) - F(\omega)\} \leq \frac{1}{2n} (p^2 - \omega^2)$ for all $p \geq \omega \geq p_n$.

Let $\bar{p}_n = np_n$, then if $p \ge \bar{p}_n$ we obtain

$$g(p) \ge 2\sqrt{n} \int_{p/n}^{p} \frac{d\omega}{\sqrt{(p^2 - \omega^2)}} = 2\sqrt{n} \left\{ \frac{\pi}{2} - \operatorname{Arc} \sin \frac{1}{n} \right\} \ge 2\sqrt{n}.$$

Therefore $\lim_{p\to +\infty} g(p) = +\infty$.

THEOREM 2.12. Suppose that $\lim_{p \to +\infty} p^{-1} f(p) = 0$ and that h(1) < k(1). Then there exist numbers λ_1 and λ_2 with $0 < \lambda_1 < \lambda_2$ such that, for each $\lambda \in (\lambda_1, \lambda_2)$, there are at least two distinct solutions of problem (1.1) in S^+ .

Proof. Since g^2 is continuous on $[1, +\infty)$, $\lim_{p\to +\infty} g(p) = +\infty$ (Lemma 2.11) and $\lim_{p\to 1^+} g'(p) = -\infty$ (Corollary 2.10), there exists a number $\rho_1 > 1$ such that $0 < \lambda_1 = \min\{g^2(p) | p \ge 1\} = g^2(\rho_1) < g^2(1) = \lambda_2$. Therefore, for any $\lambda \in (\lambda_1, \lambda_2)$, there exist two numbers ρ and $\bar{\rho}$ with $1 < \rho < \rho_1 < \bar{\rho}$ such that $g^2(\rho) = g^2(\bar{\rho}) = \lambda$. It follows that $(\sigma(\rho), \lambda)$ and $(\sigma(\bar{\rho}), \lambda)$ are two distinct solutions of problem (1.1) in S^+ . This completes the proof.

3. Study of S^+ when h'(0) > 0

Let $\mathscr C$ denote the subset of $C^1([0,1]) \times [0,+\infty)$ defined by $\mathscr C = S^+ \cup \{(0,\pi^2/\alpha)\}$ where $\alpha = \lim_{p \to 0^+} p^{-1} f(p) = h'(0)$. On $\mathscr C$ we consider the topology induced from $C^1([0,1]) \times [0,+\infty)$.

Let

$$\tilde{g}(p) = \begin{cases}
g(p) & \text{if } p > 0 \\
\frac{\pi}{\sqrt{\alpha}} & \text{if } p = 0
\end{cases} \quad \text{and} \quad \tilde{\psi}(p) = \begin{cases}
\psi(p) & \text{if } p > 0 \\
\left(0, \frac{\pi^2}{\alpha}\right) & \text{if } p = 0.
\end{cases}$$

Then it is easy to see that $\tilde{g}:[0, +\infty) \to (0, +\infty)$ is a continuous function and hence $\tilde{\psi}:[0, +\infty) \to \mathscr{C}$ is a continuous function. It immediately follows that \mathscr{C} is a continuum in $C^1([0, 1]) \times [0, +\infty)$, and furthermore \mathscr{C} is a continuous curve in $C^1([0, 1] \times [0, +\infty)$ which can be parametrized by ||u||.

PROPOSITION 3.1. Suppose that $\lim_{p\to +\infty} p^{-1}f(p)=0$. Then, for any $\lambda \ge \pi^2/\alpha$, there is at least one solution of problem (1.1) in \mathscr{C} .

Proof. We see from Lemma 2.11 that $\lim_{p\to +\infty} \tilde{g}(p) = +\infty$. The result follows immediately from this and the continuity of \tilde{g} on $[0, +\infty)$.

PROPOSITION 3.2. Suppose that $\liminf_{p\to+\infty} p^{-1}f(p)=\beta>0$. Then, there exists a positive constant γ such that $f(p) \ge \gamma p$ for all $p \ge 0$ and $\{\lambda \ge 0 \mid \text{there exists } (u,\lambda) \in \mathscr{C}\} \subset (0,\pi^2/\gamma]$.

Proof. Since $\liminf_{p\to +\infty} p^{-1}f(p) = \beta > 0$, there exist two positive numbers $\overline{\beta}$ and p_0 such that $f(p) \ge \beta p$ for all $p \ge p_0$. Since $\lim_{p\to 0^+} p^{-1}f(p) = \alpha > 0$, the number

 $m = \inf\{p^{-1}f(p) | p \in (0, p_0]\}\$ is positive. Let $\gamma = \min\{\overline{\beta}, m\}$, then $f(p) \ge \gamma p$ for all $p \ge 0$.

If $(u, \lambda) \in \mathscr{C}$ with $||u|| \neq 0$, then $\{F(||u||) - F(\omega)\} \ge \gamma/2(||u||^2 - \omega^2)$ for all $\omega \in [0, ||u||]$, and we obtain

$$\sqrt{\lambda} = \sqrt{2} \int_{0}^{\|u\|} \{F(\|u\|) - F(\omega)\}^{-\frac{1}{2}} d\omega \leq \frac{\pi}{\sqrt{\gamma}}$$

If $(u, \lambda) \in \mathscr{C}$ with ||u|| = 0, then $\lambda = (\pi^2/\alpha) \le (\pi^2/\gamma)$. This completes the proof of this proposition.

Now, we study the structure of $\mathscr C$ under the assumption (A): $f(p) \ge pf'(p)$ for all $p \in [0,1) \cup (1,+\infty)$ and h(1) > k(1). Under this assumption, $p^{-1}f(p)$ is a non-increasing function on $[0,1) \cup (1,+\infty)$. Let $m = \lim_{p \to +\infty} p^{-1}f(p)$, then it is easy to show that

$$\xi = \lim_{p \to +\infty} \tilde{g}(p) = \begin{cases} \frac{\pi}{\sqrt{m}} & \text{if } m \neq 0 \\ +\infty & \text{if } m = 0. \end{cases}$$

THEOREM 3.3. Let $a \in [0, 1]$. Suppose that:

- (i) fsatisfies assumption (A),
- (ii) $f(p) = \alpha p \text{ for all } p \in (0, a),$
- (iii) $f(p) \neq \alpha p$ for all $p \in (a, 1)$,

then

- (1) $\{(u,\lambda)\in\mathscr{C}|\lambda\in[0,\pi^2/\alpha)\cup[\xi^2,+\infty)\}=\emptyset$,
- (2) $\{(u,\lambda)\in\mathscr{C} | \lambda=\pi^2/\alpha\} = \{(\gamma\sin\pi,\pi^2/\alpha) | \gamma\in[0,a]\},$
- (3) for any $\lambda \in (\pi^2/\alpha, \xi^2)$, there exists exactly one solution of problem (1.1) in \mathscr{C} .

Proof. By assumption (i), we have that $\int_t^1 f'(pz)z \, dz \leq p^{-1}R(p,t)$ for all $(p,t) \in (0,+\infty) \times [0,1]$. Suppose that $a \neq 1$, then for all $p \in (a,1)$ there exist two numbers t_p and $\overline{t_p}$ in (0,1) with $t_p < \overline{t_p}$ such that $\int_t^1 f'(pz)z \, dz < p^{-1}R(p,t)$ for all $t \in (t_p, \overline{t_p})$. And we obtain, by the first representation of g', that $\widetilde{g}'(p) > 0$ for all $p \in (a,1) \cup (1,+\infty)$. Thus, this theorem becomes an immediate consequence of Lemma 2.2 and Theorem 2.4.

In the same way, we can study the structure of $\mathscr C$ under the following assumption (B): $f(p) \le pf'(p)$ for all $p \in [0,1) \cup (1,+\infty)$ and h(1) < k(1). In this case, $p^{-1}f(p)$ is a non-decreasing function on $[0,1) \cup (1,+\infty)$. Let $r = \lim_{p \to +\infty} p^{-1}f(p)$, then it is easy to show that

$$\xi = \lim_{p \to +\infty} \tilde{g}(p) = \begin{cases} \frac{\pi}{\sqrt{r}} & \text{if } r \in [0, +\infty) \\ 0 & \text{if } r = +\infty. \end{cases}$$

THEOREM 3.4. Let $a \in [0, 1]$. Suppose that:

- (i) f satisfies assumption (B),
- (ii) $f(p) = \alpha p$ for all $p \in (0, a)$,
- (iii) $f(p) \neq \alpha p$ for all $p \in (a, 1)$,

then

- $(1) \{(u,\lambda)\in\mathscr{C} | \lambda\in[0,\xi^2]\cup(\pi^2/\alpha,+\infty)\} = \emptyset,$
- (2) $\{(u,\lambda)\in\mathscr{C} | \lambda=\pi^2/\alpha\} = \{(\gamma\sin\pi,\pi^2/\alpha) | \gamma\in[0,a]\},$
- (3) for any $\lambda \in (\xi^2, \pi^2/\alpha)$, there exists exactly one solution of problem (1.1) in \mathscr{C} .

In our next theorem, we give an example of a function f for which there are, for some $\lambda > 0$, at least three distinct solutions of problem (1.1) in \mathscr{C} .

THEOREM 3.5. Let $a \in [0, 1)$. Suppose that

- (i) $f(p) \ge pf'(p)$ for all $p \in [0, 1)$,
- (ii) $f(p) = \alpha p$ for all $p \in [0, a]$, (iii) $f(p) \neq \alpha p$ for all $p \in (a, 1)$,
- (iv) h(1) < k(1),
- (v) $\lim_{p\to +\infty} p^{-1} f(p) = 0$.

Then, there exist numbers λ_1 and λ_2 with $0 < \lambda_1 < \lambda_2$ such that for any $\lambda \in (\lambda_1, \lambda_2)$ there exist at least three distinct solutions of problem (1.1) in C.

Proof. Since \tilde{g}^2 is continuous on $[1, +\infty)$, $\lim_{p\to +\infty} \tilde{g}(p) = +\infty$ (Lemma 2.11) and $\lim_{p\to 1^+} \tilde{g}'(p) = -\infty$ (Corollary 2.10), we have that $\bar{\lambda} = \min\{\tilde{g}^2(p) | p \ge 1\}$ exists and that $0 < \bar{\lambda} < \tilde{g}^2(1) = \lambda_2$. We obtain from assumptions (i) and (iii) that $\lambda_2 > \pi^2/\alpha$. Let $\lambda_1 = \max{\{\overline{\lambda}, (\pi^2/\alpha)\}}$, then $0 < \lambda_1 < \lambda_2$ and there exists a number $\overline{\rho}_1 > 1$ such that $\tilde{g}^2(\bar{\rho}_1) = \lambda_1$. Let $\lambda \in (\lambda_1, \lambda_2)$. Since \tilde{g}^2 is a continuous function on $[0, +\infty)$ and $\lim_{p\to+\infty} \tilde{g}^2(p) = +\infty$ (Lemma 2.11), there exist numbers ρ_1, ρ_2 and ρ_3 with $0 < \rho_1$ $<1<\rho_2<\bar{\rho}_1<\rho_3$ such that $\lambda=\tilde{g}^2(\rho_1)=\tilde{g}^2(\rho_2)=\tilde{g}^2(\rho_3)$. Therefore $(\sigma(\rho_1),\lambda)$, $(\sigma(\rho_2),\lambda)$ and $(\sigma(\rho_3),\lambda)$ are three distinct solutions of problem (1.1) in \mathscr{C} .

4. Study of S^+ when h'(0) = 0

Since h'(0) = 0, it follows immediately that $\lim_{p \to 0^+} g(p) = +\infty$.

PROPOSITION 4.1. There exists a number $\hat{\lambda} \ge 0$ such that for any $\lambda > \hat{\lambda}$ there is at least one solution of problem (1.1) in S^+ .

PROPOSITION 4.2. Suppose that $\lim_{p\to +\infty} p^{-1}f(p)=0$. Then, there exists a positive number λ_1 such that for any $\lambda > \lambda_1$ the problem (1.1) has at least two distinct solutions in S^+ , for $\lambda = \lambda_1$ at least one and for $\lambda \in [0, \lambda_1)$ none.

Proof. Since $\lim_{p\to 0^+} g^2(p) = +\infty$, $\lim_{p\to +\infty} g^2(p) = +\infty$ (Lemma 2.11) and g^2 is a continuous function on $(0, +\infty)$, $\lambda_1 = \min\{g^2(p) | p > 0\}$ exists and for any

 $\lambda > \lambda_1 > 0$ there are numbers ρ , ρ_1 and $\bar{\rho}$ with $0 < \rho < \rho_1 < \bar{\rho}$ such that $g^2(\rho_1) = \lambda_1$ and $g^2(\rho) = g^2(\bar{\rho}) = \lambda$. Thus, $(\sigma(\rho), \lambda)$ and $(\sigma(\bar{\rho}), \lambda)$ are two distinct solutions of problem (1.1) in S^+ . Furthermore, $(\sigma(\rho_1), \lambda_1)$ is also a solution of problem (1.1) in S^+ . This completes the proof of this proposition.

Now, we study the structure of S^+ under assumption (B): $f(p) \le pf'(p)$ for all $p \in [0,1) \cup (1,+\infty)$ and h(1) < k(1). In this case, $p^{-1}f(p)$ is a non-decreasing function on $(0,1) \cup (1,+\infty)$. Let $m = \lim_{p \to +\infty} p^{-1}f(p)$, then

$$\xi = \lim_{p \to +\infty} \tilde{g}(p) = \begin{cases} \frac{\pi}{\sqrt{m}} & \text{if } m \in (0, +\infty) \\ 0 & \text{if } m = +\infty \end{cases}.$$

THEOREM 4.3. Suppose that f satisfies assumption (B). Then

- (1) $\{(u,\lambda)\in S^+ | \lambda\in [0,\xi^2]\}=\emptyset$,
- (2) for any $\lambda > \xi^2$, there exists exactly one solution of problem (1.1) in S^+ .

References

- 1 C. A. Stuart. Differential equations with discontinuous non-linearities. Arch. Rational Mech. Anal. 63 (1976), 59-75.
- C. A. Stuart. Boundary-value problems with discontinuous non-linearities. Proc. Conf. Diff. Equations, Dundee 1976. Lecture Notes in Mathematics 564, 472–484 (Berlin: Springer, 1977).
- 3 C. A. Stuart. The number of solutions of boundary-value problems with discontinuous non-linearities. Arch. Rational Mech. Anal. 66 (1977), 225-235.
- 4 T. Laetsch. The number of solutions of a non-linear two point boundary-value problem. *Indiana Univ. Math. J.* 20 (1970), 1–13.
- 5 P. Nistri. Positive solutions of a non-linear eigenvalue problem with discontinuous non-linearity. *Proc. Roy. Soc. Edinburgh Sect. A* 83 (1979), 133–145.

(Issued 25 January 1982)