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Synopsis
For the non-linear problem
{fu”(x)z/lf(u(x)) for O0<x<l
u(0)=u(1)=0
where f is a discontinuous function at 1, we show that the number of non-trivial positive solutions, for
a given real number 1>0, is related to the graph of a continuous function g. Then, by studying the

function g it is possible in some special cases to give, for any 120, the minimal or exact number of
non-trivial positive solutions.

1. Introduction
We consider the non-linear two point boundary-value problem

{—u”(x):/lf(u(x)) for 0<x<1 (L)

u(0)=u(1)=0

where f:[0, + 20)—[0, + o) is given. We assume that there exist two continuously
differentiable functions 4:[0, 17—[0, + oo} and k:[1, + 00)—(0, + o0) such that

h(0)=0, (H1)
h(p)>0 forall pe(0,1], (H2)
h(1)% k(1), (H3)
N hip) if pel0,1)
f(p)_{k(p) it pe(l, +w). (H4)

The value of f at 1 need not be related to h and k, but f(1) should be positive.

DEFINITION. A solution of problem (1.1) is a pair (4, 1)e C*([0,1]) x [0, + 0)
G
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282 Jacques Douchet

such that
u(x)z0 forall xe[0,1],
u(0)=u(l1)=0,
u’ is absolutely continuous on [0, 1]
and

—u"(x)=M(u(x)) for almost all xe[0,1].

We denote by S the subset of C!([0,1])x [0, + o) consisting of all the solutions
of problem (1.1). Since f(0)=0, the set of trivial solutions {(0,1)e C*([0,1)x
[0, +0)|A20} belongs to S. Let S*={(u,A)eS|||u]|#0} where |u]|=
maxxe[O,l]’u(x)l'

In order to prove the existence of solutions in S*, we consider for all neN the
following problem:
—u"(x)=4,(u(x)) for O<x<1 (0.1)
u(0)=u(1)=0 T

where f,:[0, + c0)—(0, + o) is defined by f,(t)=f(t)+ (1/n) for all t in [0, + c0).
Let S, be the subset of C!([0,1])x (0, +c0) consisting of all the solutions of
problem (1.1),,. Then (see [1, 2, 3]), we know that for any p>0, there exists a
unique (u,,4,) in S, such that ||u,||=p. Moreover (u,,4,) has the following
properties:

(1) A,=g2(|u,l]), where g,:(0, +00)—(0, + o) is a continuous function defined by
£p)=/2 [ {F\(p) = F (@)} *dos, F(@)=¢ f,(s)ds;

(2) u,(x)>0 for all xe[0,4) and u'(x) <O for all xe(3,1];

(3) u,(})=p and u,(3)=0;

(4) if p=1, then {xe[0, 1]|u,(x)=1}={3};

if p>1, then there exists x,€(0,3) such that {xe[0,1]]u,(x)=1}={x,1—x,};
(5) u,(x)=u,(l—x) for all xe[0,1].

Now that these definitions have been given, let us state our main results.

In Section 3, we show that for any p>0 there exists a unique solution (u,2) in
S* such that ||ul]|=p. We also state that S* is a continuum in C'([0,1])x
[0, +o0) and furthermore S* is a continuous curve in CY([0,1]) x [0, + o) which
can be parameterized by ||ul|. The last result of Section 2 is that if h(1)<k(1) and
lim, ., p~'f(p)=0, then there are always values of A for which there exist at
least two distinct solutions of problem (1.1) in S™.

In Section 3, we study the case h'(0)=lim,_o+p 'f(p)=0>0. We show that
% =S"*u{(0,7*/«)} is a continuum in C*([0,1])x [0, + c0) and furthermore % is a
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Non-linear problem with discontinuous non-linearity 283

continuous curve in C'([0,1]) x [0, + co) which can be parameterized by ||u|. We
also state that if lim,_, , p~'f(p)=0, then for any i=n?/a there is at least one
solution of problem (1.1) in €. For the two following cases:

fp)zpf'(p) forall pef0,1)u(l, +c0) and h(l)>k(1), (A)
f(P)Epf'(p) forall pel0,1)u(l,+0) and h(l)<k(l), (B)

we give, for any A>0, the exact number of solutions of problem (1.1) in 4. At the
end of Section 3, we give a theorem in which, for some values of A, there exist at
least three distinct solutions of problem (1.1) in €.

In Section 4, we study the case k' (0)—-11mp_,0 p f(p)=0. We show the
existence of a number £>0 such that, for any 1> 4, there is at least one solution of
problem (1.1) in S*. Moreover, if lim,,,,p~'f(p)=0, there exists a positive
number A, such that, for any 1> 4, there are at least two distinct solutions of
problem (1.1) in S*, for A=/4, there is at least one solution in §* and for
4€[0, A,) there is no solution in S*. As in. Section 3, for the case (B): f(p)<pf’(p)
for all pe[0,1)u(l, +o0) and h(1)<k(1), we give, for any 4120, the exact number
of solutions of problem (1.1) in S*.

The problem (1.1) has already been studied in the following three articles. In [4],
Laetsch studies the problem (1.1) with the assumption that f is a continuous
function on [0, + o). In [3], Stuart studies it with the same assumptions as in the
present paper, but supposes that #(0)>0. In [5], Nistri treats the case A(p)=0 for
all pe[0,1] and k(p)>0 on [, + o0).

2. General properties of S
We start this section by giving a theorem concerning the structure of any
solution (1, A) in S™.
THEOREM 2.1. Let (u,A)eS™, then:

(1) A>0 and u(x)>0 for all xe(0,1);
(2) u (x)>0for all xe[0,1) and v'(x) <0 for all xe (4, 1];
3) '(3)=0;
4) lf Hullzl then {xe[0,1]|u(x)=1}={3};
if Hu]l>1, there exists x4 in (0,%) such that {xe[0, 1]1u(x)=1}={x0, 1—x5};

(5) u(x)=u(l—x) for all xe[0,1].

The proof of this theorem is given in [1].

Let F(w)={§ f(s)ds for »>0. Since f(s)>0 for all s>0, F is a strictly
increasing function on (0, + o0).

Let g(p)z\/ifg {F(p)—F(w)} *dw for p>0. We note that g(p)<+ oo for
p>0 and g is a continuous function on (0, 4+ c©). Moreover lim,_, . g,(p)=2g(p)
for all p>0.
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284 Jacques Douchet
LEMMA 2.2 Suppose that (u, i)e S*. Then 3% =g(||ul]).

Proof. Let us assume that ||u[|>1. By Theorem 2.1, there exists a number
xg€(0,3) such that u(xq)=1 and —u"(x)=Af(u(x)) for all xe[0, x,)u(xq,3]. We
obtain

=3 (X)) =AF(u(x))+c¢,; forall xe[O0,x,)
—LW(x))?=AF(u(x))+c, forall xe(xq,1].

Since ueC'([0,1]) and F is continuous on (0, +co), it follows that ¢, =c,=
—2F(|ul]).

Thus  w/(x)=./22{F(||ul])~F(u(x))}* for all xe[0,4], and consequently
=g ({|ull).

If |u]| £1, a similar argument shows that A*=g(||u/|). This completes the proof.

This relationship was introduced in this connection by Laetsch [4].

COROLLARY 2.3. (1) Suppose that (uy,A;) and (u,, A,) are two solutions of
problem (1.1) in S* such that ||u,||=|u. | Then 2, =4, and u, (x)=u,(x) on [0, 1].

(2) Let i>0. Suppose that (uy,A) and (uy, A1) are two distinct solutions of
problem (1.1} in S*. Then either u;(x)<u,(x) on (0, 1) or u,(x)>u,(x) on (0, 1).

Now that all these preliminary results have been obtained, we can state out
main existence theorem.

THEOREM 2.4. For any p>0, there exists exactly one solution of problem (1.1)
such that ||ul|=p.

Proof. Since the unicity is given by Corollary 2.3, we only need to prove the
existence of a solution. Let p >0, then for any ne N, there exists (u,, 4,) in S, such
that ||u,|=p and 4,=gZ(p). Since lim,_ . g2(p)=g*(p) we have that {1,},.,
converges and that A=lim,, ., A4,=g%*(p). Let JZ=sup {)y,,|neN} and I(p)
=sup { f(¢)|t [0, p1}, then A<+ o0 and I(p)>0.

We thus obtain |u,(x)—u,(y)| =1 ny,, (s))ds| < Z(l(p) +1)[x—y| for all x, y in
[0,1] and all neN. If we put y=3%, we have |u, H<) p)+1) for all neN.
Therefore, by the Ascoli-Arzela theorem, there exists a subsequence {uy }j2 of
{t},>, which converges to u in C'([0,1]). It follows that u(})=||u th, u(0)
=u(1)=0 and v/ (x)=0 for all xe[0,4]. Since u(x)=u(l—x) for all xe[0,17, it
remains to show that u'(x)= —ij’%‘ fu(s))ds for all xe[0,41].

(a) Suppose that p<1, then

W)= lim ), (x)= lim —2, | {h(u, (s)+ (1/n,)} ds

j—ot o jo>tow 1
5 (u(s))ds
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Non-linear problem with discontinuous non-linearity 285
for all xe[0,1]. Therefore
{xe[0, 1]]u(x)=1} = {3},

and we have

N\»?'; %

ds—jf(u ))ds on [0,1].
(b) Suppose that p>1. Then, there exists a number x, in (0,3) such that

{xelO0, 1]|u(x): 1} ={xg, 1 —x¢}.

(1) For any xe(0,x,), there exists j,€N such that u, (s)<1 for all j=j, and all
se€[0, x]. Thus,

w(x)= lim |:*/lnjx{h(unj(s))+;}ds+u,’,j(0):|

= —i?f(u(s))deru’(O) for all xe[0, xg).
0

Since u' is a continuous function on [0, 1], we have u'(x)=— A% f(u(s))ds
+u'(0) for all xe [0, x,].
?) A similar argument shows that «/(x)= —A [} f(u(s))ds on [x,,3].

And it follows from (1) and (2), that u'(x)=—4if} f(u(s ))ds for all xe[0,%]. This
completes the proof of this theorem.

Theorem 2.4 allows us to consider the function ¢:(0, + oc)—C* ([0, 1]) which is
defined by: (a(p), g*(p))eS™ and |a(p)||=p. On S* we consider the topology
induced from C([0,1]) x [0, + o).

THEOREM 2.5. The one-to-one map :(0, +o0)—S* defined by (p)
=(a(p), g*(p)) is continuous.

An immediate consequence of this last theorem is that S* is a continuum in
C*([0,1]) %[0, + o0) and furthermore S* is a continuous curve in C*([0, 1]) x
[0, + o0) which can be parameterized by ||ul|.

It follows, from Lemma 2.2 and Theorem 2.4, that the number of solutions of
problem (1.1) in §* is given, for any >0, by the graph of g2 With the purpose of
obtaining better information about this graph, we give two different
representations of g’.

First representation of ¢’

We note that, for p>0,
1
8P =/20* [R(p.0) Har
where
1
R(p,t)={f(pz)dz for all (p,1)e (0, + c0) x [0, 1].
t
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286 Jacques Douchet
Let

Po _ .
[20: POJ if poe(0,1)
A —

Po

[Po-2P0] il pye(l, + )

Where p=(1+p,)/2 for all pye (0, + ).

LEMMA 2.6. For all p,e(0,1)u(l, + o0), there exists a positive constant d(p,)
such that

<d(po)(1—1)"* forall (p,i)eA, x[0,1).

1
R(p,t)" %
0

LEMMA 2.7. Let T(p)=[3R(p,t) *dt. Then T is continuously differentiable
on (0, 1)u (1, + o). Furthermore .

1

T'(p)=—3[R(p,t) *[f'(pz)zdzdt if pe(0,1)

Ot =

and

1 1 1/p
T'(p)= —%gR(p,t)‘%§f’(‘p2)zdzdt—%p’z{k(l)~h(1)} (f) R(p,t) }dt

if pe(l, + x0).

Proof. (1) If pe (0, 1), it follows by using Lemma 2.6, that

1 . 1(7R(p,t)_% 1 _371 .
T'(p)= g (p,1) zdt=£T =—%£R(p,t) H f'(pz)zdzdu.

T' is continuous on (0, 1).

(2) If p>1, then

1 1/p 1
={R(p,t)"*dt= | R(p,t) *dt+ | R(p,t)"*dt
0 4]

1/p

And it follows, by using Lemma 2.6, that
L 1 Lp B
= %QR(P, t) 2 f f(pz)zdzdt—3p *{k(1)—h(1)} g R(p,t)”*dt.

T’ is continuous on (1, + ).
Now, we are able to give the first representation of g'.
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Non-linear problem with discontinuous non-linearity 287

COROLLARY 28. g is continuously differentiable on (0,1)u(l, + oc).
Furthermore

g/(p):ﬁ{%p’%(f)R(p,t)%dt—%p%gR(p,t)‘%§f’(p2)zdzdt} if pe(0,1)
and
N 1 X X 1 S 1
g/(p)=\/§{ip’({R(p,t)"dt—%pz(};R(p,t)‘ZIf’(pZ)zdzdt
1/p
—3p~ Hk(1)—h(1)} (f) R(P,t)_%dt} if pe(l, +o0).

Second representation of ¢’

LEMMA 2.9.

: F 1 _,
:ﬁ.f(p){—%gmp) F(@)}” dw+{k(1) h(l)}{ (P)—F(1)}

(@)
fHw)

S ) - FG) [ () - F(o))

() dw} forall p>1.

Proof.  Since

| {(F(p)—F(w)}~* o+, 4 F)-FQ )

. 2
g(p)=\/5{b dot+3

S (@)
)

2§ F(p)—Flo)? dw} for all p>1,

by differentiation we obtain the assertion.

COROLLARY 2.10.

lim g'(p)=

po1t

+oo if h(1)>k(1)
—oc if h(l)<k(l)

Having shown, in Theorem 2.4, that there is exactly one solution of problem
(L.} in S* for each value of |[ul|, let us now ask for which values of >0 there is
a solution. The next lemma helps us to answer this question.

LEMMA 2.11.  Suppose that lim,_, , , p~'f(p)=0. Then lim,_, ., g(p)= + 0.
Proof. Let neN—{1}. Then there exists a positive number p, such that

1
{F(p)—Flo} =5 (p*—o?) forall pzozp,.
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288 Jacques Douchet

Let p,=np,, then if p=p, we obtain

P dw i 1
g(p)z2/n | ———=—=2 n{—Arcsin‘}g2 n.
\[pj:,,./(pth) Vn 2 HELNE
Therefore lim,_, , , g(p)= + .

THEOREM 2.12.  Suppose that lim,_,, . p~'f(p)=0 and that h(1)<k(l). Then
there exist numbers A, and i, with 0<l; <A, such that, for each ie (i, 1,), there
are at least two distinct solutions of problem (1.1) in S™.

Proof. Since g* is continuous on [1, + o), lim,_, , , g(p)=+ (Lemma 2.11)
and lim,_,+g'(p)= —oo (Corollary 2.10), there exists a number p, >1 such that
0<Z, =min{g*(p)|p21} =g%(p,)<g?>(1)=A4,. Therefore, for any Ae(,,1,), there
exist two numbers p and p with 1<p<p,<p such that g%(p)=g%(p)=4. It
follows that (o(p), 2) and (a(p), ) are two distinct solutions of problem (1.1) in S™.
This completes the proof.

3. Study of S when h'(0)>0

Let € denote the subset of C!([0,1])x [0, + o) defined by €=S*U{(0, n?/a)}
where a=1lim,_,+p~'f(p)=Hh(0). On ¥ we consider the topology induced from
CY([0,1]) x [0, + c0).

Let
glp) if p>0 ¥ (p) if p>0
. Ty 2
g(p)= \ﬂ/ i =0 and  (p)= <0’n> i p=o.
o o

Then it is easy to see that g:[0, +o0)—(0, +oc) is a continuous function and
hence §:[0, + 00)—% is a continuous function. It immediately follows that % is a
continuum in C'([0,1]) x[0, + <o), and furthermore % is a continuous curve in
C'([0, 1] x [0, 4+ o0) which can be parametrized by |[u|.

PROPOSITION 3.1.  Suppose that lim,_. , . p~"'f(p)=0. Then, for any /.2n’/a,
there is at least one solution of problem (1.1) in €.

Proof. We see from Lemma 2.11 that lim,_, ,, g(p)=+ oo. The result follows
immediately from this and the continuity of g on [0, + x).

PROPOSITION 3.2.  Suppose that liminf, ., p~'f(p)=p>0. Then, there exists
a positive constant y such that f(p)zyp for all p=0 and {7 z0| there exists
(u, 2) €€} < (0,n%/7].

Proof. Since liminf, . p~'f(p)=B>0, there exist two positive numbers B
and p, such that f(p)= pp for all p=p,. Since lim,_,o+p~ ' f(p)=a>0, the number
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Non-linear problem with discontinuous non-linearity 289

m:inf{p_lf(p)‘pe(o, Pol} is positive. Let y=min {8, m}, then f(p)=yp for all p
=0.

I (,7)e® with |ul|#0, then (F(|ul)—F(w)}zy2(|u|>—w?) for all

f f f {F(H “ Flw)}™ 'd(u<ﬁ

If (u, A)e% with ||u||=0, then A= (/o) < (n?/y).
This completes the proof of this proposition.

Now, we study the structure of 4 under the assumption (A): f(p)=pf'(p) for all
pel0,1)u(l, +oc) and h(1)>k(1). Under this assumption, p~'f(p) is a non-
increasing function on [0, 1)u(1, + o0). Let m=lim,_, , , p~ 'f(p), then it is easy to
show that

¥/
= lim gp)=4 Jm T

P 4+ if m=0.

THEOREM 3.3. Let ac[0,1]. Suppose that:

) fsatisfies assumption (A),
(ii) f(p)=op for all pe (0, a),
(i)) f(p)#op for all pe(a, 1),

then

(1) {(u,1)e€|1e[0, 7 /a)[E2 + c0)} =,
(2) {(w,2)e€|i=n"/a} ={(ysinm, n*/a)|y [0, al},
(3) for any Ae(n?/a, £2), there exists exactly one solution of problem (1.1) in €.

Proof. By assumption (i), we have that {!f'(pz)zdz<p~'R(p,t) for all
(p,t)e (0, + 20) x [0,1]. Suppose that a1, then for all pe(a, 1) there exist two
numbers ¢, and ¢, in (0,1) with ¢,<t, such that [! f(pz)zdz<p~'R(p,t) for all
t€(t,,1,). And we obtain, by the first representation of g’, that g'(p)>0 for all
pe(a,1)u(l, +00). Thus, this theorem becomes an immediate consequence of
Lemma 2.2 and Theorem 2.4.

In the same way, we can study the structure of ¢ under the following
assumption (B): f(p)<pf’'(p) for all pe[0,1)u(l, +00) and h(l)<k(1). In this
case, p~'f(p) is a non-decreasing function on [0, 1)u(l, + ). Let
r=lim,_ ,, p~'f(p), then it is easy to show that

Vi
— if re[0, +w)
(= lim g(p)= \/;

p—+tw

0 if r=+w.
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290 Jacques Douchet
THEOREM 34. Let ae(0,1]. Suppose that:

(1) f satisfies assumption (B),
(i) f(p)=ap for all pe (0, a),
(ii) f(p)#ap for all pe(a, 1),

then

(1) {(u,A)e¥|1e[0,E]u(n?/a, +0)} =,
2) {(u,A)e€|i=n*/a}={(ysinm, n*/a)|y [0, a]},
(3) for any le (&2, n?/a), there exists exactly one solution of problem (1.1) in €.

In our next theorem, we give an example of a function f for which there are, for
some 4>0, at least three distinct solutions of problem (1.1) in .

THEOREM 3.5. Let ae[0,1). Suppose that

(i) fp)zpf'(p) forall pel0,1),
(i) f(py=op for all pe(0,a],
(i) f(p)#ap for all pe(a,l),
(iv) h(l)<k(1),

V) lim,_ , ., p~'f(p)=0.

Then, there exist numbers A, and A, with 0<A, <A, such that for any A€ (A, 4,)
there exist at least three distinct solutions of problem (1.1) in €.

Proof. Since g* is continuous on [1, + o), lim,_, , , g(p)=+oo (Lemma 2.11)
and lim,_,, + §'(p)=— oo (Corollary 2.10), we have that 1=min {g”z(p)|pgl} exists
and that 0 <7< g?(1)=/,. We obtain from assumptions (i) and (iil) that i, >n?/a.
Let A, =max {Z,(n*/«)}, then 0<,; <1, and there exists a number p, >1 such that
22(p,)=4,. Let ie(4,,4,). Since g2 is a continuous function on [0, +o0) and
lim,, ., g2(p)=+ oo (Lemma 2.11), there exist numbers p,, p, and p; with 0<p,
<l<p,<p;<p; such that i=g>(p;)=8%(p,)=8%(p;). Therefore (a(p,), %),
(a(p,),A) and (o(p;), A) are three distinct solutions of problem (1.1) in 4.

4. Study of S* when h'(0)=0
Since h'(0)=0, it follows immediately that lim,_,+ g(p)= + c0.

PROPOSITION 4.1. There exists a number 220 such that for any 3> 1 there is
at least one solution of problem (1.1)in §*.

PROPOSITION 4.2.  Suppose that lim,_ ., p~ 'f(p)=0. Then, there exists a
positive number A, such that for any A> A, the problem (1.1) has at least two
distinct solutions in 7, for A=A, at least one and for 1.€[0, 1,) none.

Proof. Since lim,_+g*(p)= + oo, lim,_ , , g*(p)=+ o (Lemma 2.11) and g2
is a continuous function on (0, 4+ o¢), 4, =min {gz(p)]p>0} exists and for any
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A>A1>0 there are numbers p, p, and p with 0<p<p, <p such that g2(p,)=4,
and g%(p)=g%(p)=+ Thus, (a(p), ) and {(o(p), 2) are two distinct solutions of
problem (1.1) in S*. Furthermore, (¢(p,), 4,) is also a solution of problem (1.1) in
S*. This completes the proof of this proposition.

Now, we study the structure of S* under assumption (B): f(p)<pf’(p) for all
pel[0,1)u(l, +0) and h(l)<k(l). In this case, p  'f(p) is a non-decreasing
function on (0, 1)U(1, + 00). Let m=lim,_, , , p~ 'f(p), then

T
— i 0
= lim §(p)= ﬂ if me(0, +w0)

pore 0 if m=+ow

THEOREM 4.3.  Suppose that fsatisfies assumption (B). Then
(1) {(w,A)eS*|1e[0,¢%]} =,

(2) for any A>E?, there exists exactly one solution of problem (1.1) in S*.
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