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In this paper we propose a class of jump-stabilized Lagrange multiplier methods for the finite-element
solution of multidomain elliptic partial differential equations using piecewise-constant or continuous
piecewise-linear approximations of the multipliers. For the purpose of stabilization we use the jumps
in derivatives of the multipliers or, for piecewise constants, the jump in the multipliers themselves, across
element borders. The ideas are illustrated using Poisson’s equation as a model, and the proposed method
is shown to be stable and optimally convergent. Numerical experiments demonstrating the theoretical
results are also presented.
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1. Introduction

Patching together possibly unrelated meshes across an interface (artificial or real) using Lagrange multi-
plier techniques requires that the relation between the discrete spaces chosen for the primal variable and
the multipliers is such that the resulting numerical scheme is stable. Proving stability reduces to proving
that the approximate solution fulfils theinf–supcondition (cf.Brezzi & Fortin, 1991), which strongly
restricts the possible choices of balance between the multiplier and the primal variable. One way around
this problem is to use stabilized multiplier methods as inBarbosa & Hughes(1992), Beckeret al.(2003)
andHansboet al.(2005). These are typically of least squares type, meaning that the stability is obtained
via a least squares control of the residual of the multiplier equation. In this paper we suggest, instead, a
stabilization scheme more in the vein ofBurman & Hansbo(2004), i.e., based on jumps in derivatives
of the multiplier (or the multiplier itself) across element edges.

Another practical problem is the implementation of integration of products of traces of the primal
variable and the multiplier. Stable methods (seeWohlmuth, 2001) typically use one of the trace meshes
for the multipliers, and most stabilized methods use the jump in the primal variable as a part of the stabi-
lization (for an exception seeHansboet al., 2005). This means that piecewise polynomials on unrelated,
unstructured meshes have to be integrated. By using stabilization solely involving the multiplier itself,
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it is possible to use a third, for example, completely structured, mesh for the multiplier, which may help
considerably in the integration problem.

An outline of the paper is as follows. In Section2 we introduce our model problem, together with
some notation, and present the interface Lagrange multiplier method with a generic discretization of the
multiplier. The stability and error analysis of the new method are carried out in Section3, and numerical
experiments demonstrating the theoretical results are presented in Section4.

2. Formulation of the method

In this section we introduce an interface Lagrange multiplier method for the finite-element discretization
of elliptic problems on non-matching grids. Before doing that, we make precise the model problem that
we will be working on, together with some notation and motivation of the present work.

2.1 Model problem

Let Ω be a bounded domain inRn, wheren = 2 or 3, with boundary∂Ω. As a model problem, we
consider a stationary heat conduction problem in the case where there is a piecewise straight internal
boundaryΓ dividing Ω into two subdomainsΩ1 andΩ2. Thus we want to solve foru the problem

−Δui = f in Ωi ,

ui = 0 on∂Ωi ∩ ∂Ω,

u1 − u2 = 0 onΓ,

nnn1 ∙ ∇u1 + nnn2 ∙ ∇u2 = 0 onΓ

(2.1)

for i = 1, 2, where we have denoted byui the restriction ofu to Ωi . Here f is a given function,Δ
denotes the Laplace operator andnnni is the outward pointing normal toΩi at Γ , wherei = 1, 2. We
assume that the interfaceΓ is decomposed as the unionΓ =

⋃
Γ j of nΓ straight lines (planes)Γ j of

size` j . We remark that two different situations can occur from a geometric point of view (see Fig.1):

1. both∂Ω1 ∩ ∂Ω and∂Ω2 ∩ ∂Ω have nonzero(n − 1)-dimensional measure;

2. either∂Ω1 ∩ ∂Ω or ∂Ω2 ∩ ∂Ω has zero(n − 1)-dimensional measure.

Define

V = {v: vi ∈ H1(Ωi ), vi = 0 on∂Ωi \ Γ, i = 1, 2}

FIG. 1. Intersection and nonintersection ofΓ and∂Ω in the caseΩ ⊂ R2.
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andΛ = H−1/2(Γ ). A weak form of (2.1) using the Lagrange multiplier approach is then as follows.
Find (u, λ) ∈ V × Λ such that

∑

i

∫

Ωi

∇ui ∙ ∇vi dx +
∫

Γ
λ[[v]] ds =

∑

i

∫

Ωi

f vi dx ∀ v ∈ V,

∫

Γ
[[u]]μ ds = 0 ∀ μ ∈ Λ,

(2.2)

where [[v]] := (v1 − v2)|Γ is the jump ofv acrossΓ . Note that, formally, we have

λ = −nnn1 ∙ ∇u1 = nnn2 ∙ ∇u2 onΓ. (2.3)

2.2 Notation

We introduce the necessary notation for the definition of the method that we are going to present and its
subsequent analysis, focusing, for simplicity, on the case of tetrahedral elements. Therefore we assume
that we are given a tetrahedral meshT h

i of the domainΩi , wherei = 1, 2. We denote byhi the mesh
size ofT h

i . Obviously,T h = T h
1 ∪ T h

2 provides a mesh forΩ, whose mesh size ish = max{h1, h2}.
We introduce the (family of) finite-element spaces

Vh = {vh ∈ V : vh|K ∈ P1(T) ∀ T ∈ T h},

whereP1(T) denotes the space of linear polynomials onT .
We assume that eachΓ j has been triangulated into a meshGh

j of simplicesK with sizehΓ j . We

use the notationhΓ for the function such thathΓ |Γ j = hΓ j . We assume that the trace meshes∂T h
i, j

on Γ j and the multiplier meshGh
j are all shape regular. Further, viewing the mesh size parameters

as piecewise-constant functions on the respective meshes, we assume that there holds a local quasi-
uniformity for the trace meshes in the sense that there are global constantsc1 andc2 such that, for each
x ∈ Γ , we havec1hi, j (x) 6 hΓ, j 6 c2hi, j (x) for i = 1, 2, wherehi, j is the mesh size parameter
of ∂T h

i, j . In the analysisC will denote a generic constant that is independent of the mesh size, but not
necessarily of the constantsc1 andc2 or the local mesh geometry. We now introduce the space for the
approximation of the Lagrange multipliers as

Λh := {μh: μh|K ∈ Pl (K ) ∀ K ∈ Gh
j , j = 1, . . . , nΓ },

with l = 0 or l = 1, and forl = 1 we letμh be globally continuous on eachΓ j .

2.3 Interior penalty stabilization

We propose the following method.
Find (uh, λh) ∈ Vh × Λh such that

∑

i

∫

Ωi

∇uh
i ∙ ∇vh

i dx +
∫

Γ
λh[[vh]] ds =

∑

i

∫

Ωi

f vh
i dx ∀ vh ∈ Vh,

∫

Γ
[[uh]]μh ds − j (λh, μh) = 0 ∀ μh ∈ Λh,

(2.4)
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where

j (λ, μ) :=
nΓ∑

j =1

∑

K∈Gh
j

∫

∂K
γ h2

∂K [λ] [μ] ds if l = 0,

j (λ, μ) :=
nΓ∑

j =1

∑

K∈Gh
j

∫

∂K
γ h4

∂K [∇Γ λ] ∙ [∇Γ μ] ds if l = 1.

(2.5)

Hereh∂K is the mean size of the elements sharing∂K , [q] is the jump ofq across∂K for ∂K ∩∂Γi = ∅,
[q] = 0 on∂K ∩ ∂Γi for l = 0, [∇Γ q] = ∇Γ q for l = 1 on∂K ∩ ∂Γi , andγ is a constant. By∇Γ we
denote the gradient in the plane ofΓ .

REMARK 2.1 Another possible choice of stabilization operator is

j (λ, μ) :=
nΓ∑

j =1

∑

K∈Gh
j

∫

K
γ h3

∂K ∇Γ λ∇Γ μ dx if l = 1. (2.6)

The analysis of this method is included as a special case of the one given below. Details are left to the
reader.

We note that (2.4) is aweakly consistentmethod: inserting a sufficiently regular analytical solution
(u, λ) in the place of(uh, λh), we find that

∑

i

∫

Ωi

∇(ui − uh
i ) ∙ ∇vh

i dx +
∫

Γ
(λ − λh)[[vh]] ds = 0,

∫

Γ
[[u − uh]]μh ds = − j (λh, μh)

for all vh ∈ Vh andμh ∈ Λh. We rephrase this property in abstract form in the following lemma, where
we set

Bh(u, λ; v, μ) :=
∑

i

∫

Ωi

∇ui ∙ ∇vi dx +
∫

Γ
λ[[v]] ds −

∫

Γ
[[u]]μ ds.

LEMMA 2.2 The method (2.4) is weakly consistent in the sense that

Bh(u − uh, λ − λh; vh, μh) = − j (λh, μh)

for all vh ∈ Vh andμh ∈ Λh.

3. Analysis of the method

For the analysis we introduce the triple norm (defined onV × L2(Γ ) for ξ = 0, and Forξ = 1 the norm
is used on functions in the discrete spacesVh andΛh) as

‖|(v, μ)‖|2ξ := ‖∇v‖2
0,h + ‖μ‖2

− 1
2 ,h,Γ

+ ξ j (μ,μ),
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where

‖v‖2
0,h :=

∑

i

‖v‖2
L2(Ωi )

, ‖μ‖2
− 1

2 ,h,Γ
:=
∫

Γ
hΓ μ2 ds.

We will also use the discrete half-norm

‖v‖2
1
2 ,h,Γ

:=
∫

Γ
h−1

Γ v2 ds

and note for future reference that
∫

Γ
μ[[v]] ds6 ‖μ‖− 1

2 ,h,Γ ‖[[v]]‖ 1
2 ,h,Γ . (3.1)

REMARK 3.1 We note that, in general we have coercivity ofBh(u, 0; v, 0) onY, where

Y =
{
v ∈ H1(Ω1) × H1(Ω2): v|∂Ω = 0,

∫

Γ
[[v]] ds = 0

}

(cf. Wohlmuth, 2001). By choosingμ = 1 in (2.2) we have

∫

Γ
[[u]] ds = 0,

and hence we can look for a solution only in the subspaceVh ∩ Y on which the coercivity holds. In the
case when both∂Ω1∩∂Ω and∂Ω2∩∂Ω have nonzero(n−1)-dimensional measure, coercivity instead
follows directly from a standard Poincaré inequality. In that case we, however, have to use

Λ = (H1/2
00 (Γ ))′,

the dual space ofH1/2
00 (Γ ) (for a formal definition of this space see, e.g.,Lions & Magenes, 1968).

We next define a quasi-interpolation operatorπi as the standard nodal interpolation operator onto
the trace mesh∂T h

i, j on Γ j of the mesh onΩi in the case of a continuous multiplier space. In the case
of a discontinuous multiplier space,πi is defined by

πi λ
h(xk) =

1

nk

∑

{K̃∈Gh
j :xk∈K̃ }

λh(xk)|K̃ ,

wherexk denotes the coordinate of node numberk in the trace mesh andnk denotes the cardinality of
the set of elements{K̃ ∈ Gh

j : xk ∈ K̃ }. The constantCλ depends on the quasi-uniformity constants
c1 andc2. A cornerstone in the analysis of the edge-stabilized Lagrange multiplier method is then the
following discrete interpolation lemma.

LEMMA 3.2 Forλh ∈ Λh we have

‖λh − πi λ
h‖2

− 1
2 ,h,Γ

6 Cj j (λh, λh). (3.2)
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Proof. We first consider the case of piecewise-constant multipliers. Write‖λh − πi λ
h‖2

− 1
2 ,h,Γ

as the

sum over the triangles of the trace meshes∂T h
i, j as follows:

‖λh − πi λ
h‖2

− 1
2 ,h,Γ

=
nΓ∑

j =1

∑

K∈∂T h
i, j

‖h1/2
Γ (λh − πi λ

h)‖2
L2(K ).

Let K̃ be the set of all of the triangles̃K in Gh
j such that the measure ofK ∩ K̃ is nonzero and letF̃

be the set of all faces̃F ∈ Gh
j such that the measure ofK ∩ F̃ is nonzero. LetṼ denote the space of

functionseπ = λh − πi λ
h associated withK̃ .

We consider an affine map from the reference elementM(x̂) = MK x̂ + bK . This mapping is also
used for the overlapped patch of elements (see Fig.2). The proof now goes by norm equivalence on
discrete spaces. We will prove that the jump operator is a norm of the spaceṼ and then conclude by
a scaling argument. By the shape regularity and the local quasi-uniformity assumption on the trace
meshes, we know that the dimension of the spaceṼ is bounded uniformly inh. Clearly, if [eπ ]|F̃ =
[λh]|F̃ = 0 for all F̃ ∈ F̃ thenλh is constant overK̃ , and henceeπ is zero. As a consequence, the
following inequality holds:

‖λh − πi λ
h‖2

L2(K ) =
∫

K̂
|λh − πi λ

h|2 |det(MK )| dx̂ 6 c̃
∑

F̃∈F̃

[λh]|2
F̃

|det(MK )|,

where we have used that meas(K̂ ) = 1 andc̃ is uniformly bounded since dim(Ṽ) is bounded. Moreover,
on the reference element we have

c̃
∑

F̃∈F̃

[λh]|2
F̃
| det(MK )| 6 c̃1

∑

F̃∈F̃

∫

F̃
[λh]2 | det(MK )| dŝ.

FIG. 2. Affine mapM from a reference element, marked grey.



876 E. BURMAN AND P. HANSBO

Scaling back to the physical element, we have

c̃1

∑

F̃∈F̃

∫

F̃
[λh]2 |det(MK )| dŝ6 c̃1

∑

F̃∈F̃

∫

F̃
[λh]2 |MK | ds,

and, since|MK | = ρ−1
K̂

hK (whereρK̂ is the radius of the largest inscribed disc in the reference element),
we may conclude.

We finally consider the second case: continuous piecewise affine functions. The proof in this case
is similar to the previous one, but simpler sinceeπ must always be zero at the interpolation points.
Assume, once again, thatj (eπ , eπ ) = 0. This means thateπ ∈ P1 globally onK̃ , but it vanishes at the
interpolation points and must therefore be zero since polynomials of order 1 are uniquely defined by the
interpolation points on the reference element. Hencej (eπ , eπ ) is a norm on the spacẽV . Once again,
we may conclude by scaling and summation over the elements. �

Lemma3.2 is insufficient for stability due to the presence of corners or Dirichlet boundary condi-
tions. The reason for this is that, to prove the inf–sup condition we wish to choose a functionvh

λ ∈ Vh,
which is a harmonic extension inΩ1, such that

vh
λ |∂Ω1∩Γ = π1hΓ λh, vh

λ = 0 in Ω2.

Unfortunately, if boundary conditions are imposed strongly thenuh
λ must be zero in the part ofΓ inter-

secting the boundary to be a member ofVh, or if Γ has corners thenπ1hΓ λh will be double valued in
the corner (in two space dimensions) and clearly the continuousuh

λ cannot fulfil the jump inπ1hΓ λh.
We will show how this problem can be solved by modifying the interpolant by simply setting it to zero
at the problematic points. To keep down technical details we restrict ourselves to the two-dimensional
case. We introduce the modified interpolant. Let∂Gh

j denote the trace mesh ofGh
j . Then

π1,0λ
h(xk) =

{
0 if xk∈ ∂K ⊂ ∂Gh

j ,

π1λ
h(xk) otherwise.

In the following important lemma we show that the missing portion in corners or on Dirichlet boundaries
can be controlled by the stabilization operator as well.

LEMMA 3.3 If λh ∈ Λh then we have
∫

Γ
λhπ1,0hΓ λh ds>

1

6
‖λh‖2

− 1
2 ,h,Γ

− Cλ j (λh, λh).

Proof. It is sufficient to show the inequality on one of the sidesΓ j . First letΓE = {x ∈ Γ j : π1,0λ
h 6=

π1λ
h} andΓI = Γ j \ ΓE. We may then write

∫

Γ j

λhhΓ π1,0λ ds= ‖λh‖2
− 1

2 ,h,ΓI
+
∫

ΓI

λhhΓ (π1λ − λh) ds +
∫

ΓE

λhπ1,0λ ds

= ‖λh‖2
− 1

2 ,h,ΓI
+ I1 + I2. (3.3)

We first consider the termI1. It follows from the Cauchy–Schwarz inequality and Lemma 3.1 that

I1 > −
1

2
‖λh‖2

− 1
2 ,h,Γ j

− Cj j (λh, λh). (3.4)
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The second part, however, requires a slightly more intricate analysis. NowΓE consists of the extremal
intervals ofΓ j that we will denote byΓE,0 andΓE,1. We only consider one end interval. LetΓE,0
be parameterized by(0, xE), where 0 is the end point of̄Γ j and xE is the interior point such that
Γ̄E,0 ∩ ΓI = xE. We writeλE = π1λ

h(xE). It then follows that

I2 =
∫

ΓE,0

(λh − λE)hΓ π1,0λ
h ds +

∫

ΓE,0

λEhΓ π1,0λ
h ds

>−
1

2
‖λE − λh‖2

− 1
2 ,h,ΓE,0

−
1

2
‖π1,0λ

h‖2
− 1

2 ,h,ΓE,0
+
∫

ΓE,0

λEhΓ π1,0λ
h ds. (3.5)

Note that|(λE − λh)(xE)| 6 1
2|[λh(xE)]|. It then follows by a discrete Poincaré inequality that‖λE −

λh‖2
− 1

2 ,h,ΓE
6 C j (λh, λh) in the case of piecewise-constant multiplicator spaces. For the case of the

piecewise affine multiplicator space the nonconsistent part is also needed. Indeed, in the case of affine
Lagrange multiplicators, since|(λE − λh)(xE)| = 0, a Poincaŕe inequality yields that

‖λE − λh‖2
0,ΓE,0

6 C‖hE∇Γ λh‖2
ΓE,0

,

wherehE = xE 6 chΓ . The gradient ofλh cannot be controlled solely by the jumps since we do not
have∇Γ λh = 0 somewhere inΓE,0. However, since by definition [∇Γ λh]| f = ∇Γ λh| f for f ∈ ∂Γ j ,
we have the Poincaré-type estimate

‖λE − λh‖2
− 1

2 ,h,ΓE,0
6 C j (λh, λh)

in this case as well.
The uniformity of the above bounds, of course, relies on the fact that the various trace meshes have

‘similar’ mesh sizes. If the mesh for the Lagrange multiplicators is strongly refined independent of the
other trace meshes, then the constantC above will become large.

Recalling thatλE is constant onΓE,0 andπ1,0λ
h =

(
x/xE

)
λE onΓE,0, one may easily evaluate the

last two integrals of equation (3.5) to obtain
∫

ΓE,0

λEhΓ π1,0λ
h ds =

∫

ΓE,0

λEhΓ

(
x

xE

)
λE ds =

1

2
‖λE‖2

− 1
2 ,h,ΓE,0

and

‖π1,0λ
h‖2

− 1
2 ,h,ΓE,0

=
∫

ΓE,0

hΓ (π1,0λ
h)2 ds =

∫

ΓE,0

hΓ

(
x

xE

)2

λ2
E ds =

1

3
‖λE‖2

− 1
2 ,h,ΓE,0

.

Collecting the inequalities (3.3)–(3.5), we have

∫

Γ j

λhhΓ π1,0λ
h ds>

1

2
‖λh‖2

− 1
2 ,h,ΓI

− C j (λh, λh) +
1

3

1∑

i =0

‖λE‖2
− 1

2 ,h,ΓE,i
.

We may conclude using that, fori = 0, 1 we have

‖λh‖2
− 1

2 ,h,ΓE,i
6 2‖λE‖2

− 1
2 ,h,ΓE,i

+ 2‖λE − λh‖2
− 1

2 ,h,ΓE,i
6 2‖λE‖2

− 1
2 ,h,ΓE,i

+ C j (λh, λh),
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leading to the desired inequality

∫

Γ j

λhhΓ π1,0λ
h ds>

1

2
‖λh‖2

− 1
2 ,h,ΓI

− C j (λh, λh) +
1

6

1∑

i =0

‖λh‖2
− 1

2 ,h,ΓE,i
. �

LEMMA 3.4 (Stability) LetWh = Vh∩Y, whereY is defined in Remark3.1. For all(uh, λh) ∈ Wh×Λh

we then have

C‖|(uh, λh)‖|1 6 sup
(vh,μh)∈Wh×Λh

Bh(uh, λh; vh, μh) + j (λh, μh)

‖|(vh, μh)‖|1
.

Proof. Assume that(uh, λh) ∈ Wh × Λh. Consider the harmonic extensionuh
λ ∈ Vh such that

uh
λ|∂Ω1∩Γ = hΓ π1,0λ

h, uh
λ = 0 in Ω2,

for which, by equivalence on norms on discrete spaces and scaling, we have

‖uh
λ‖1,h 6 c‖hΓ π1,0λ

h‖ 1
2 ,Γ 6 C‖π1,0λ

h‖− 1
2 ,h,Γ 6 C1‖λ

h‖− 1
2 ,h,Γ . (3.6)

Takeμh = λh andvh = vh
1 + δvh

2, wherevh
1 := uh, vh

2 := uh
λ andδ is a positive parameter to be chosen.

We first note that, by (3.6), we have

‖uh
λ + uh‖1,h 6 C

(
‖λh‖− 1

2 ,h,Γ + ‖uh‖1,h

)
,

and thus the continuity result

‖|(vh, μh)‖| 6 C‖|(uh, λh)‖| (3.7)

follows. Next we note that, by definition, we have

Bh(uh, λh; vh
1, μh) = ‖uh‖2

1,h + j (λh, λh) (3.8)

and by applying Lemma3.3we obtain

B h(uh, λh; vh
2, 0) =

∫

Ω1

∇uh ∙ ∇uh
λ dx +

∫

Γ
λhhΓ π1,0λ

h ds

>−‖uh‖1,h‖uh
λ‖1,h +

1

6
‖λh‖2

− 1
2 ,h,Γ

− Cλ j (λh, λh)

>−
1

2ε
‖uh‖2

1,h −
ε

2
‖uh

λ‖
2
1,h +

1

6
‖λh‖2

− 1
2 ,h,Γ

− Cλ j (λh, λh)

>−
1

2ε
‖uh‖2

1,h +
(

1

6
−

ε

2
C1

)
‖λh‖2

− 1
2 ,h,Γ

− Cλ j (λh, λh), (3.9)

whereε is at our disposal. Adding (3.8) and (3.9), choosingε < 1/(12C1) andδ < min(ε, 1/(2Cλ)),
followed by invoking (3.7), the statement of the lemma follows. �



INTERIOR-PENALTY-STABILIZED LAGRANGE MULTIPLIER METHODS 879

LEMMA 3.5 (Continuity) Provided that the multipliers are regular enough for the triple norm to make
sense, for allu ∈ V + Vh, λ ∈ Λ + Λh, v ∈ Vh andμ ∈ Λh, we have

Bh(u, λ; v, μ) 6 C
(
‖|(u, λ)‖|0 + ‖λ‖− 1

2 ,Γ + ‖[[u]]‖ 1
2 ,h,Γ

)
‖|(v, μ)‖|. (3.10)

Proof. The continuity follows immediately by the Cauchy–Schwarz inequality, the duality inequality

∫

Γ
λ[[v]] ds6 ‖λ‖− 1

2 ,Γ ‖[[v]]‖ 1
2 ,Γ

and its discrete counterpart (3.1), and by noting that, by a trace inequality, we have

‖[[v]]‖ 1
2 ,Γ 6 ‖v1‖ 1

2 ,Γ + ‖v2‖ 1
2 ,Γ 6 C‖∇v‖0,h.

�

LEMMA 3.6 (Best approximation) We have

‖|(u − uh, λ − λh)‖|0 6 C inf
(vh,μh)∈Vh×Λh

(
‖|(u − vh, λ − μh)‖|0 + ‖λ − μh‖− 1

2 ,Γ

+ ‖[[u − vh]]‖ 1
2 ,h,Γ + j (μh, μh)1/2

)
. (3.11)

Proof. Take(vh, μh) ∈ Vh × Λh. By the triangle inequality we have

‖|(u − uh, λ − λh)‖| 6 ‖|(u − vh, λ − μh)‖|0 + ‖|(vh − uh, μh − λh)‖|1,

and by Lemmas2.2, 3.4 and 3.5 we have that there existsxh and yh with ‖|(xh, yh)‖|1 6
‖|(uh − vh, λh − μh)‖|1 such that

‖|(uh − vh, λh − μh)‖|216CBh(uh − vh, λh − μh; xh, yh) + j (λh − μh, yh)

= CBh(u − vh, λ − μh; xh, yh) − j (μh, yh)

6C‖|(uh − vh, λh − μh)‖|1
(
‖|(u − vh, λ − μh)‖|0 + ‖λ − μh‖− 1

2 ,Γ

+‖[[u − vh]]‖ 1
2 ,h,Γ + j (μh, μh)1/2

)
, (3.12)

which concludes the proof. �
We now have the followinga priori estimate.

THEOREM 3.7 (Convergence) Withu ∈ H2(Ω) andλ ∈ H1/2
(⋃

Γ j
)
, we have

‖|(u − uh, λ − λh)‖|0 + j (λh, λh) 6 C
(
h|u|H2(Ω) + hΓ |λ|H1/2(∪Γ j )

)
. (3.13)
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Proof. In Lemma3.6choosevh = πhu andμh = Pl λ, whereπh denotes the standard nodal interpolant
in Vh, andP0 andP1 as theL2(

⋃
Γ j )-projection onto the piecewise-constant and piecewise-linear (con-

tinuous) spaces, respectively. Moreover, letπ1
h andπ2

h denote the different interpolants on the meshes
onΩ1 andΩ2. Then, by standard estimates we have

‖∇(u − πhu)‖0,h 6 Ch|u|H2(Ω), (3.14)

‖λ − Pl λ‖− 1
2 ,h,Γ j

6 ChΓ |λ|H1/2(∪Γ j )
, l = 0, 1, (3.15)

and by interpolation between function spaces (cf.Hansboet al., 2005) we have

‖λ − Pl λ‖− 1
2 ,Γ j
6 ChΓ |λ|H1/2(∪Γ j )

, l = 0, 1. (3.16)

Further,

‖[[u − πhu]]‖ 1
2 ,h,Γ 6 ‖u − π1

hu‖ 1
2 ,h,Γ + ‖u − π2

hu‖ 1
2 ,h,Γ ,

and by the trace inequality we have

‖v‖L2(∂K ) 6 C(h−1/2
K ‖v‖L2(K ) + h1/2

K ‖∇v‖L2(K )) (3.17)

(cf. Thomée, 1997). We conclude that

‖[[u − πhu]]‖ 1
2 ,h,Γ 6 Ch|u|H2(Ω).

It remains to estimate the jump terms and the nonconsistent boundary term present for piecewise affine
approximation of the multiplier. We have, forl = 0, that

‖h∂K [ P0λ] ‖∂K = ‖h∂K [ P0λ − P1λ]‖∂K ,

which we can split into contributions from the elementK and its neighbour, and by (3.17) we have, also
using an inverse estimate, that

‖h∂K (P0λ − P1λ)‖∂K 6 C(‖h1/2
K (P0λ − P1λ)‖K + ‖h3/2

K ∇(P0λ − P1λ)‖K )

6 C‖h1/2
K (P0λ − P1λ)‖K

6 C(‖h1/2
K (P0λ − λ)‖K + ‖h1/2

K (λ − P1λ)‖K ). (3.18)

For l = 1 we similarly have (for all∂K , also those on∂Γ )

‖h2
∂K ∇ P1λ‖∂K 6 C‖h3/2

Γ ∇ P1λ‖K

= C‖h3/2
Γ ∇(P1λ − P0λ)‖K

6 C‖h1/2
Γ (P1λ − P0λ)‖K

6 C(‖h1/2
K (P1λ − λ)‖K + ‖h1/2

K (λ − P0λ)‖K ). (3.19)
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Taking the sum over all of the elements, we find that

j (Pl λ, Pl λ)1/2 6 ChΓ |λ|H1/2(∪Γ j )
, l = 0, 1, (3.20)

and by the triangle inequality we have

j (λh, λh)1/2 6 j (λh − Pl λ, λh − Pl λ)1/2 + j (Pl λ, Pl λ).

The above interpolation estimates combined with Lemma3.6(including the inequality (3.12)) concludes
the proof. �

Finally, we give a second-order convergence estimate inL2(Ω) for the error in the primal variableu.

THEOREM 3.8 (L2-convergence) Assuming thatΩ is a convex domain, we have

‖u − uh‖L2(Ω) 6 Ch2
(
|u|H2(Ω) + |λ|H1/2(∪Γ j )

)
. (3.21)

Proof. Consider the dual problem of solving

−Δz = u − uh in Ω, z = 0 on∂Ω. (3.22)

Defining∂nz := nnn1 ∙ ∇z, we have, using Lemma2.2with vh = πhz andμh = Pl ∂nz, that

‖u − uh‖2
L2(Ω) =

∑

i

∫

Ωi

∇(ui − uh
i ) ∙ ∇(z − πhz) dx +

∫

Γ
(Pl ∂nz − ∂nz)[[u − uh]] ds

−
∫

Γ
(λ − λh)[[πhz]] ds + j (λh, Pl ∂nz).

Estimating each term on the right-hand side separately, we have, denoting the maximum second deriva-
tive of z by D2z and using standard interpolation estimates, that

∑

i

∫

Ωi

∇(ui −uh
i )∙∇(z−πhz) dx 6 ‖∇(u−uh)‖0,h‖∇(z−πhz)‖L2(Ω) 6 Ch‖∇(u−uh)‖0,h‖D2z‖L2(Ω)

and
∫

Γ
(Pl ∂nz − ∂nz)[[u − uh]] ds6 ‖h1/2

Γ (Pl ∂nz − ∂nz)‖L2(Γ )‖h−1/2
Γ [[u − uh]]‖L2(Γ )

6Ch‖[[u − uh]]‖ 1
2 ,h,Γ ‖D2z‖L2(Ω).

We now note that

‖[[u − uh]]‖ 1
2 ,h,Γ = ‖[[uh]]‖ 1

2 ,h,Γ 6 C‖[[uh]]‖ 1
2 ,Γ = C‖[[u − uh]]‖ 1

2 ,Γ

6C
(
‖u1 − uh

1‖ 1
2 ,Γ + ‖u2 − uh

2‖ 1
2 ,Γ

)
6 C‖|(u − uh, 0)‖|0

by a trace inequality together with Poincaré’s inequality, and we conclude that
∫

Γ
(Pl ∂nz − ∂nz)[[u − uh]] ds6 Ch‖|(u − uh, 0)‖|0‖D2z‖L2(Ω).
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Further, [[πhz]] = π1
hz − z + z − π2

hz and

±
∫

Γ
(λ − λh)(π i

hz − z) ds6C‖λ − λh‖− 1
2 ,h,Γ ‖h−1/2(π i

hz − z)‖L2(Γ )

6Ch‖λ − λh‖− 1
2 ,h,Γ ‖D2z‖L2(Ω),

and finally, using the same argument as in the proof of Theorem3.7, we have

j (λh, Pl ∂nz)6 j (λh, λh)1/2 j (Pl ∂nz, Pl ∂nz)1/2

6Chj(λh, λh)1/2‖D2z‖L2(Ω).

If Ω is convex then we have from (3.22) that‖D2z‖L2(Ω) 6 C‖u − uh‖L2(Ω), and the result follows
from Theorem3.7. �

4. Numerical examples

4.1 Locking

A typical example of the effect of too many Lagrange multipliers on the interface is given in Fig.3.
The domain isΩ = (0, 3) × (0, 3) with Ω2 = (1, 2) × (1.5, 2.5). We show the result obtained for a
problem with a smooth solution using 3000 linear multipliers on each straight segment dividingΩ1 and
Ω2, as well as the effect of edge stabilization withγ = 200. The severe locking, due to overconstraining
(failure to meet the inf–sup condition), is completely alleviated.

4.2 Convergence

On the same domain as in Section4.1we give the convergence ofuh in the broken energy norm andλh

in the discrete half-norm‖ ∙ ‖− 1
2 ,h,Γ . In Fig. 4 we give an elevation of the approximate solution on the

last mesh in a sequence. Here the exact solution is given byu = (3 − x)x(3 − y)y.
In Figs5 and6 we give convergence plots for the piecewise-constant and the piecewise-linear, con-

tinuous approximations of the multiplier. Twenty-two multipliers were used in the first mesh, and the

FIG. 3. Locking effect from inf–sup instability and the effect of stabilization.
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FIG. 4. Elevation of the exact solution on the last mesh in a sequence.

FIG. 5. Convergence obtained with piecewise-constant multipliers.

number was doubled in each successive mesh refinement. We setγ = 200 in both cases. We note that
the piecewise-constant multiplier gives a convergence (of approximatelyO(h3/2)) that is better than that
of the linear multipliers (approximatelyO(h)), which may be due to the fact that the normal derivative
from uh indeed piecewise is constant. We remark that the convergence curves forλh are given with
respect to the mesh size foruh. Since they are tied, this is of no consequence.

Finally, in Fig.7 we give the convergence ofuh in L2(Ω), which is of second order, in agreement
with (3.21).
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FIG. 6. Convergence obtained with piecewise-linear multipliers.

FIG. 7. Convergence of‖u − uh‖L2(Ω) obtained with continuous and discontinuous multipliers.

5. Concluding remarks

We have proposed a weakly consistent interior penalty stabilization of the Lagrange multipliers in the
numerical solution of elliptic interface problems. Unlike other stabilization schemes, the stabilization
does not directly couple the discretizations of the primal solution and the multiplier. In our numerical
experience the choice of the stabilization parameter does not much affect the primal solution, though os-
cillations in the approximation of the multiplier may occur if it is chosen too small. Since the multiplier
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can alternatively be derived from the primal solution, this may be of little consequence in practice. We
strongly believe that, in particular, for the piecewise-constant approximation our scheme offers a good
alternative to stable multiplier methods such as the mortar method, as well as to alternative stabilization
methods.
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