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In this paper we propose a class of jump-stabilized Lagrange multiplier methods for the finite-element
solution of multidomain elliptic partial differential equations using piecewise-constant or continuous
piecewise-linear approximations of the multipliers. For the purpose of stabilization we use the jumps

in derivatives of the multipliers or, for piecewise constants, the jump in the multipliers themselves, across
element borders. The ideas are illustrated using Poisson’s equation as a model, and the proposed method
is shown to be stable and optimally convergent. Numerical experiments demonstrating the theoretical
results are also presented.
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1. Introduction

Patching together possibly unrelated meshes across an interface (artificial or real) using Lagrange multi-
plier techniques requires that the relation between the discrete spaces chosen for the primal variable and
the multipliers is such that the resulting numerical scheme is stable. Proving stability reduces to proving
that the approximate solution fulfils thief—supcondition (cf.Brezzi & Fortin 1991), which strongly
restricts the possible choices of balance between the multiplier and the primal variable. One way around
this problem is to use stabilized multiplier methods aBambosa & Hughe£1992), Beckeret al. (2003
andHansboeet al. (2005. These are typically of least squares type, meaning that the stability is obtained
via a least squares control of the residual of the multiplier equation. In this paper we suggest, instead, a
stabilization scheme more in the veinBéirman & Hansbq2004), i.e., based on jumps in derivatives
of the multiplier (or the multiplier itself) across element edges.

Another practical problem is the implementation of integration of products of traces of the primal
variable and the multiplier. Stable methods (¥¢zhimuth 2007) typically use one of the trace meshes
for the multipliers, and most stabilized methods use the jump in the primal variable as a part of the stabi-
lization (for an exception sddansbcet al,, 2005. This means that piecewise polynomials on unrelated,
unstructured meshes have to be integrated. By using stabilization solely involving the multiplier itself,
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it is possible to use a third, for example, completely structured, mesh for the multiplier, which may help
considerably in the integration problem.

An outline of the paper is as follows. In Secti@rwe introduce our model problem, together with
some notation, and present the interface Lagrange multiplier method with a generic discretization of the
multiplier. The stability and error analysis of the new method are carried out in S&ctmal numerical
experiments demonstrating the theoretical results are presented in Section

2. Formulation of the method

In this section we introduce an interface Lagrange multiplier method for the finite-element discretization
of elliptic problems on non-matching grids. Before doing that, we make precise the model problem that
we will be working on, together with some notation and motivation of the present work.

2.1 Model problem

Let Q be a bounded domain iR", wheren = 2 or 3, with boundang Q. As a model problem, we
consider a stationary heat conduction problem in the case where there is a piecewise straight internal
boundary!” dividing 2 into two subdomain®; and Q,. Thus we want to solve far the problem

—Aui=1f ing,
uUu=0 onoRiNow,
(2.1)
up—ux=0 onr,
ny-Vur+n2-Vua=0 onrl
fori = 1,2, where we have denoted by the restriction ofu to Q;. Here f is a given function,

denotes the Laplace operator amdis the outward pointing normal t@; at I", wherei = 1,2. We
assume that the interfade is decomposed as the unidh= J I'j of ny straight lines (planes) of
sizetj. We remark that two different situations can occur from a geometric point of view (seg)Fig.

1. botho21 N 6Q ando Q2 N Q2 have nonzergn — 1)-dimensional measure;
2. eithero Q1 N 6Q oroQ, N oL has zergn — 1)-dimensional measure.

Define

V ={v:vj € HY(Qi),vi =00noQi \ I,i = 1,2}

FiG. 1. Intersection and nonintersectionBfandéQ in the case? c R2.
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and 4 = H=Y2(I"). A weak form of @.1) using the Lagrange multiplier approach is then as follows.
Find (u, 1) € V x 4 such that

Z/ Vui~V0idX+//l|[v]|dS=Z/ fojdx VoeV,
i Qi r i Qi

(2.2)
/l[u]lﬂds,:O Vued,
r
where [p] := (v1 — v2)|r is the jump ofv acrossl". Note that, formally, we have
A=-N1-Vur=n2-Vuy onl/r. (2.3)

2.2 Notation

We introduce the necessary notation for the definition of the method that we are going to present and its
subsequent analysis, focusing, for simplicity, on the case of tetrahedral elements. Therefore we assume
that we are given a tetrahedral me@iﬁ‘ of the domain®;, wherei = 1, 2. We denote by; the mesh

size of 7. Obviously, 7" = 7" U 7" provides a mesh fo2, whose mesh size Is= maxhy, hy}.

We introduce the (family of) finite-element spaces

V=M evio"k e PY(T) VT e oMy,
whereP(T) denotes the space of linear polynomialsTan
We assume that eaclj has been triangulated into a mefé’ﬁ of simplicesK with sizeh ;. We

use the notatiom - for the function such thdtl[‘l[‘j = h]"j. We assume that the trace mesh@hj

on I'j and the multiplier mesky" are all shape regular. Further, viewing the mesh size parameters

as piecewise-constant functions on the respective meshes, we assume that there holds a local quasi-
uniformity for the trace meshes in the sense that there are global corstamidc, such that, for each

X € I', we havecihj j(x) < hprj < chjj(x) fori = 1,2, whereh; j is the mesh size parameter

of aﬂif‘j. In the analysi<C will denote a generic constant that is independent of the mesh size, but not
necessarily of the constants andc, or the local mesh geometry. We now introduce the space for the
approximation of the Lagrange multipliers as

A" = (" " e PUK) VK ed), j=1.....np},
with| =0 orl =1, and forl = 1 we letx" be globally continuous on eadh.

2.3 Interior penalty stabilization

We propose the following method.
Find (u, 2" e VM x 4" such that

Z/ Vuih.Vz)ith+/ /1h|[vh]|dS=Z/ foldx Vol evh,
i Qi r i Qi
(2.4)

[l ds =t =0 vl e A",
r
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where
nr

iGn=2 % [ rilildds it =0

j=1 Kesﬁjh 0
(2.5)

=3 3 [ yhb IV [radds it =1

j=1 Ke.‘fjh

Herehyk is the mean size of the elements shaidig, [q] is the jump ofg acros$K foroKNarl; = @,
[l =0onoK Naor;forl =0,[Vrq]l = Vrqforl =1 onoK Nar;, andy is a constant. BWr we
denote the gradient in the plane Bf

REMARK 2.1 Another possible choice of stabilization operator is
nr
jO. =2 > / yh3 VraiVrudx ifl =1 (2.6)
j=1 Ke%jh K

The analysis of this method is included as a special case of the one given below. Details are left to the
reader.

We note that?.4) is aweakly consistennethod: inserting a sufficiently regular analytical solution
(u, 1) in the place ofu", 2", we find that

C_uhy.vph — MM ds =
Z/inul uly . vo! dx+/r(/1 AM[v"]ds =0,

/uu—u“]lu“ds=—j<z“,ﬂ“>
I

forallo" € VP anduM € 4". We rephrase this property in abstract form in the following lemma, where
we set

B, 250, 1) ::zi:/gi VUi - Voi dx+/r/1|[v]|ds—/F|[u]|yds.

LEMMA 2.2 The methodZ.4) is weakly consistent in the sense that
BMu—u", 2= 20" )y = =, 1M

forallo" e VM anduh e 4N,

3. Analysis of the method

For the analysis we introduce the triple norm (defined/ox L>(7") for & = 0, and Fo¥ = 1 the norm
is used on functions in the discrete spa¥d@sand 4") as

@, IE = IVOlGH + a2y o+ €T, ),
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where
lolGn =210l ) a2y, 1=/FhF#2dS
|

We will also use the discrete half-norm

. -1 2
”UthF /Fhrv ds

/ ulodds < el _y p 10015 (3.1)

and note for future reference that

REMARK 3.1 We note that, in general we have coercivity@t(u, 0; v, 0) on'Y, where

Y = |U e HY(Q1) x HY(Q2): v]o0 =0,/[v]ds=0]
r

(cf. Wohlmuth 2001). By choosingu = 1 in (2.2) we have

/Fl[u]lds:o

and hence we can look for a solution only in the subspgc@ Y on which the coercivity holds. In the
case when bothQ1N0Q andoQ2,N oL have nonzergn — 1)-dimensional measure, coercivity instead
follows directly from a standard Poind&inequality. In that case we, however, have to use

= (HeyZ(I),

1/2

the dual space dfij,"(1") (for a formal definition of this space see, elggns & Magenes1968.

We next define a quasi-interpolation operatpras the standard nodal interpolation operator onto
the trace mestﬁﬂhJ on Ij of the mesh or2; in the case of a continuous multiplier space. In the case
of a discontinuous multiplier space; is defined by

1
7i A" (%) = o > M0k
{I{e%jh:xkeli}
wherexy denotes the coordinate of node numken the trace mesh anak denotes the cardinality of
the set of elementsK e %h Xk € K}. The constan€; depends on the quasi-uniformity constants

c1 andcy. A cornerstone |n the analysis of the edge-stabilized Lagrange multiplier method is then the
following discrete interpolation lemma.

LEMMA 3.2 Fori" e 4" we have

12" = maR2y < GG AN, (3.2)
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Proof. We first consider the case of piecewise-constant multipliers. Wiite— z; A"|2 , h - as the
—Lh,

sum over the triangles of the trace meslﬁ@hj as follows:

nr
1/2
1Ah—mat2y =20 Ih2G" = 2 A2, k-
j=1Kkeo "

Let .7 be the set of all of the triangld$ in %jh such that the measure Bf N K is nonzero and letz
be the set of all faceE e %jh such that the measure &f N F is nonzero. LeV denote the space of
functionse, = A" — z; A" associated with7 .

We consider an affine map from the reference elen&(X) = Mg X + bk . This mapping is also
used for the overlapped patch of elements (see BigThe proof now goes by norm equivalence on
discrete spaces. We will prove that the jump operator is a norm of the space then conclude by
a scaling argument. By the shape regularity and the local quasi-uniformity assumption on the trace
meshes, we know that the dimension of the spdds bounded uniformly irh. Clearly, if el =
[/lh]|,g = 0forall F € .4 theniMis constant over# , and hence, is zero. As a consequence, the
following inequality holds:

I = MRy = [ V7 = miP ideMold < € 3 147 IdetMo,

Fe Z

where we have used that mé9 = 1 andé is uniformly bounded since difW) is bounded. Moreover,
on the reference element we have

¢ 3 UM deMol <& Y [N detmol s

FeZ Fes

“

FiG. 2. Affine mapM from a reference element, marked grey.
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Scaling back to the physical element, we have

6 Y [UMPemois<ea 3 [ IMcds
Ee 7 e

and, sincéeMg | = pKilhK (wherepy, is the radius of the largest inscribed disc in the reference element),
we may conclude.

We finally consider the second case: continuous piecewise affine functions. The proof in this case
is similar to the previous one, but simpler singe must always be zero at the interpolation points.
Assume, once again, thite,, e;) = 0. This means that, € P! globally onK, but it vanishes at the
interpolation points and must therefore be zero since polynomials of order 1 are uniquely defined by the
interpolation points on the reference element. Hej@s, e, ) is a norm on the spacé. Once again,
we may conclude by scaling and summation over the elements. O

Lemma3.2is insufficient for stability due to the presence of corners or Dirichlet boundary condi-
tions. The reason for this is that, to prove the inf-sup condition we wish to choose a fwil:ténh’h,
which is a harmonic extension 81, such that

h h h ;
vileoinr = wihrA”, 0} =0 inQy.

Unfortunately, if boundary conditions are imposed strongly uhl'Aémust be zero in the part df inter-

secting the boundary to be a membeM¥, or if I” has corners them;h A" will be double valued in

the corner (in two space dimensions) and clearly the continu@usannot fulfil the jump inc1h AN,

We will show how this problem can be solved by modifying the interpolant by simply setting it to zero
at the problematic points. To keep down technical details we restrict ourselves to the two-dimensional
case. We introduce the modified interpolant. a@“f denote the trace mesh @T‘ Then

%0 0 if xce 0K C 04,
w104 (Xk) = .
. m1AN(x) otherwise

In the following important lemma we show that the missing portion in corners or on Dirichlet boundaries
can be controlled by the stabilization operator as well.

LEMMA 3.3 If Ah € A" then we have
1 .
[ Amsohpinds > U2, -GN
r ’ 6 _é’h’r

Proof. It is sufficient to show the inequality on one of the sidgs First let /g = {x € [7j: nl,oxlh +
z1AYand i = I \ I'e. We may then write

/ AMhpmodds= "2, +/ AMhr (a2 —/lh)ds+/ MN7104ds
r —2:h.Ti I Ie

=272,y + 1t 12 (3.3)
We first consider the terrhy. It follows from the Cauchy—Schwarz inequality and Lemma 3.1 that

1 he2 i oh h
> =212, = GG A, (3.4
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The second part, however, requires a slightly more intricate analysis./fovonsists of the extremal
intervals of I that we will denote byls o and I'e ;. We only consider one end interval. L&k o
be parameterized b§0, xg), where 0 is the end point ofj and xg is the interior point such that
TeoN I = xg. We write g = 714" (xg). It then follows that

|2:/ (xh—zE)hpnl,ozhds+/ Jehrmy oM ds
It It o

1 hy2 1 hy2 h
>_Zlig — _= .
> =Sl = "2, = Sl ||_%’h’FE’0+AEoiEhrnl,OA ds. (3.5)

Note that|(Zg — 2" (xe)| < 3I[A"(xe)]I. It then follows by a discrete Poindamequality thai| 1 —

ANz, W S Cj(h, A1) in the case of piecewise-constant multiplicator spaces. For the case of the
—1hre

piecewise affine multiplicator space the nonconsistent part is also needed. Indeed, in the case of affine
Lagrange multiplicators, sindéZg — ") (xg)| = 0, a Poinca inequality yields that

hp2 h2
I2e = 2M3 1o < ClReV A3,

wherehg = xg < chy. The gradient oft" cannot be controlled solely by the jumps since we do not
haveV " = 0 somewhere i 0. However, since by definitiorM,A"|s = V,A"|¢ for f € orj,
we have the Poincértype estimate

lie = "2y < CIOM AN

in this case as well.

The uniformity of the above bounds, of course, relies on the fact that the various trace meshes have
‘similar’ mesh sizes. If the mesh for the Lagrange multiplicators is strongly refined independent of the
other trace meshes, then the constamtbove will become large.

Recalling thatig is constant o g o andnl,o/lh = (x/xE)/IE on I'e, o, ONe may easily evaluate the
last two integrals of equatior3(5) to obtain

X 1
Aeh ﬂlolhds=/ Zeh (—)/lEds=—IIAEII2
/FED L Tep r XE 2 -3.hTIEo

and

2
X 1
A2 =/ h /lhzds=/ hr(— ) 22ds= Z|liel? .
171047021 o e g oo r(r104") o \xe) E IEIZ1 0 e

Collecting the inequalities3(3)—(3.5), we have
1 1o
h h hy 2 icah 9h 2
/r- Ahrmioh” ds > EII/1 ”—%,h,ﬂ -Cj(2", A + 3 iz—o ||’15||—%,h,r5i'

We may conclude using that, for= 0, 1 we have

M2y e S22y 2= AN2y <210+ CHEN A,
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leading to the desired inequality

1
1 1
h h hy2 icah 9h h)2
> = — =
/F Mhrmoids> SIANZ, = CIGM A + 6i§—0 [ P 0

LEMMA 3.4 (Stability) LetW" = VPNY, whereY is defined in RemarR.1 For all(u", A") e Whx 4"
we then have

Cli", AMr < sup 2 h, a0 oM iy + @b, #h).
’ N, M) eWhx A @R, Ml

Proof. Assume thatu", 2") e W" x 4". Consider the harmonic extensiaf € Vi, such that
Wloosnr =hrriol, Wl =0 in@y,
for which, by equivalence on norms on discrete spaces and scaling, we have
Mln < clhrrioAly ~ < Cllwy oAl < CqlaM 3.6
WG ln < clhrayol®ls < Cllrod gy p < CallA_g - (3.6)

Takeu" = A" andoM = o 460, whereo!! := u", o8} := Ul andd is a positive parameter to be chosen.

We first note that, by3.6), we have
U} + Ul < € (1271 + IUllan)
and thus the continuity result
@™, «Mir< ciia®, M (3.7)
follows. Next we note that, by definition, we have
A A D T [T R TP RAD) (3.8)

and by applying Lemma.3we obtain

B h(uh,/lh;og,O):/

vuh. Vu? dx +/ /lhhrnl,oih ds
Q21

r

1 .
> =l + S1AM2 = C G727
Loz _ Epghyz. o Tpohp2 L3 oh
> =5 L = SIIT + 5147025 = Cai (3727
1 €

1 h2 h,2 . h h
2—2—6||u I7n+ (6 ch) A ||_%’h’r —C,j(M M, (3.9

wheree is at our disposal. Adding3(8) and @.9), choosinge < 1/(12C;) andd < min(e, 1/(2C,)),
followed by invoking 8.7), the statement of the lemma follows. O
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LEMMA 3.5 (Continuity) Provided that the multipliers are regular enough for the triple norm to make
sense, foralue V+ VM, 1 e 4+ 4" v e VP andu € 4", we have

2", 230,10 < C (W, Dllo+ 1213 1+ 11l ) 1@, - (3.10)

Proof. The continuity follows immediately by the Cauchy—Schwarz inequality, the duality inequality

[ nds <y pipny,,
r 2° 2>
and its discrete counterpaB.(), and by noting that, by a trace inequality, we have

1Dy - < loally - + lo2lly - < ClIVolion.

LEMMA 3.6 (Best approximation) We have
h h ; h h h
u—u,1-—1 <C inf ( u—ov',A— + |4 —
¢ Mo € i\l #Mllo+ 114 = a"l_y 1

LU= "y o+ 5" 1Y), (3.11)
Proof. Take(»", u") € VN x 4". By the triangle inequality we have
=", 2= 2N < = o™ 2 = 1Mo+ " —u", 1" = M),

and by Lemmas2.2, 3.4 and 3.5 we have that there exists" and y" with [|(x", y")[l1 <
I —on, A" — 1M1 such that

A N e (e e A SV A R AN
=CA"U—o" 2= x5 X"y — (" y")
<CIIW =", 2" = kMl (W = 0" 2 = @Pllo+ 14 = "y 1

U= 0"y 41" 1M, (3.12)

which concludes the proof. O
We now have the following priori estimate.

THEOREM3.7 (Convergence) With e H2(Q) and1 € HY2( | Ij), we have

llu—u", 2 =M+ jeM M <c (h|U|H2(g) + hFl;[‘lHl/z(UFj)) . (3.13)



880 E. BURMAN AND P. HANSBO

Proof. In Lemma3.6choose" = zpu andx" = R A, wherer}, denotes the standard nodal interpolant
in V", andPy andP; as thel (| I'j)-projection onto the piecewise-constant and piecewise-linear (con-
tinuous) spaces, respectively. Moreover,n}ﬁtandnﬁ denote the different interpolants on the meshes

on 1 andQ,. Then, by standard estimates we have
VU = zhu)lloh < Chiulyzg),
14— Hill_%,h,pj < Chridlizury), 1=0.1,
and by interpolation between function spaceslktznsbecet al., 2005 we have
14 =PRil_s ; < Chrldlgizur), =01

Further,

Il = nullly < U= mqullyp p+ U= 77Ul p s
and by the trace inequality we have
-1/2 1/2
IollLaek) < Chic”2lollLk) + 2 IVollLyk)
(cf. Thomée 1997). We conclude that

ITu = znullly < Chiulyzgg).

(3.14)

(3.15)

(3.16)

(3.17)

It remains to estimate the jump terms and the nonconsistent boundary term present for piecewise affine

approximation of the multiplier. We have, fbe= 0, that

Ihok [PoA] llak = Ilhak [PoA — PiA]llak s

which we can split into contributions from the elemé&htnd its neighbour, and b (17) we have, also

using an inverse estimate, that

Ihak (Poi — Pii)llok < C(INE2(Poi — Pid)llk + IIhY/ 2V (Poi — PLA) (k)

< ClIh/%(Poi — P1a)lIk

< C(IhY%(Po — DIk + N2 = Pud)llk).

Forl = 1 we similarly have (for albK, also those 0@ 1")
Ih2 VPLAllak < CIhY2VPLA|Ik
3/2
= C[h/*V(P1A — Pod)llk

< CIhY2(Pii — Pod)llk

< C(IMY2(PLi — D)k + 102 (2 — Pod)ll).

(3.18)

(3.19)
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Taking the sum over all of the elements, we find that
i(AZ, ADHYZ < Chrldlyegr, 1=0,1, (3.20)
and by the triangle inequality we have
JEN M2 <O = RN = RDY2 + (R, RA).
The above interpolation estimates combined with Ler8t6éincluding the inequality3.12) concludes

the proof. O
Finally, we give a second-order convergence estimate (@) for the error in the primal variable.

THEOREM 3.8 (L2-convergence) Assuming thax is a convex domain, we have

lu=lye) < O (1Ul2qa) + Alvzer;)) - (3.21)
Proof. Consider the dual problem of solving
—dz=u—-u"inQ, z=0 onsQ. (3.22)

Definingdnz := N1 - Vz, we have, using Lemma2with o" = znzandu" = Rz, that

||u—uh||fz(g)=2/g V(Ui —uih)-V(z—nhz)dx+/F(P|6nz—6nz)|[u—uh]]ds
i i

—/ (A - /lh)l[nhz]lds+ j(/lh, R onz).
r

Estimating each term on the right-hand side separately, we have, denoting the maximum second deriva-
tive of z by D?z and using standard interpolation estimates, that

> / V(Ui —u)-V(z—7n2) dx < [V (U=uMllohllV (z=7h2)lILyc2) < ChIIV u—uMlonll D21y
i e
and
1/2 -1/2
/ (Rénz — an2)[u — U ds < |72 (Ranz — an2) Ly I1h 7 2Lu — UM Lo
r
<Chifu—u"Tlly 10?2y )
We now note that
ITu—=u"Nlly = 10Dy - < CIIUT g - = ClIU = Uil
<C(lus—ullly -+ lluz = Wlly ) < Cliw=u", 0)lko
by a trace inequality together with Poinéa inequality, and we conclude that

/ (Rénz — an2)[u — u"ds < Chij(u — u, 0) ol D%l Lyco-
I



882 E. BURMAN AND P. HANSBO
Further, gnz] = ntz—z+2z—zfzand
£ [ =M= ds < Cli= Iy, A0 2ahz = Dl
<ChlIz = A"I_1 p ID*ZlL @),

2

and finally, using the same argument as in the proof of The@&&nwe have

j(", Ranz) < jON AMY2j(Ranz, Rén2)Y/?

<Chj(", 2MY2D?z)| ).

If Q is convex then we have fron3.22 that|| DZZ”LZ(_Q) < Clju — uh|||_2(_Q), and the result follows
from Theorents.7. O

4. Numerical examples
4.1 Locking

A typical example of the effect of too many Lagrange multipliers on the interface is given ir8.Fig.
The domain isQ = (0, 3) x (0, 3) with Q2 = (1,2) x (1.5, 2.5). We show the result obtained for a
problem with a smooth solution using 3000 linear multipliers on each straight segment diGigdeugd
05, as well as the effect of edge stabilization with= 200. The severe locking, due to overconstraining
(failure to meet the inf—sup condition), is completely alleviated.

4.2 Convergence

On the same domain as in Sectiérl we give the convergence af in the broken energy norm anid
in the discrete half-nornj - ”—%,h,r- In Fig. 4 we give an elevation of the approximate solution on the
last mesh in a sequence. Here the exact solution is given-by¥3 — x)X(3 — y)y.

In Figs5 and6 we give convergence plots for the piecewise-constant and the piecewise-linear, con-
tinuous approximations of the multiplier. Twenty-two multipliers were used in the first mesh, and the

0 IR,

A2 RININNY
AN

?;{ﬁ.ﬁm\\“ TRINOAN

‘#“
N

W\

FIG. 3. Locking effect from inf-sup instability and the effect of stabilization.
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FIG. 5. Convergence obtained with piecewise-constant multipliers.

number was doubled in each successive mesh refinement. We=s&00 in both cases. We note that
the piecewise-constant multiplier gives a convergence (of approxim@téf/?)) that is better than that
of the linear multipliers (approximatel§(h)), which may be due to the fact that the normal derivative
from u" indeed piecewise is constant. We remark that the convergence curv&s doe given with
respect to the mesh size fof. Since they are tied, this is of no consequence.

Finally, in Fig.7 we give the convergence af in L»(Q), which is of second order, in agreement
with (3.21).
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FiG. 7. Convergence dfu — Uh|||_2(_g) obtained with continuous and discontinuous multipliers.

5. Concluding remarks

We have proposed a weakly consistent interior penalty stabilization of the Lagrange multipliers in the
numerical solution of elliptic interface problems. Unlike other stabilization schemes, the stabilization
does not directly couple the discretizations of the primal solution and the multiplier. In our numerical
experience the choice of the stabilization parameter does not much affect the primal solution, though os-
cillations in the approximation of the multiplier may occur if it is chosen too small. Since the multiplier
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can alternatively be derived from the primal solution, this may be of little consequence in practice. We

strongly believe that, in particular, for the piecewise-constant approximation our scheme offers a good
alternative to stable multiplier methods such as the mortar method, as well as to alternative stabilization
methods.
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