Eva Bayer-Fluckiger · Grégory Berhuy · Pascale Chuard-Koulmann

CM-fields and skew-symmetric matrices

Received: 3 September 2002 / Revised version: 7 December 2003

Published online: 21 May 2004

Abstract. Cohen and Odoni prove that every CM-field can be generated by an eigenvalue of some skew-symmetric matrix with rational coefficients. It is natural to ask for the minimal dimension of such a matrix. They show that every CM-field of degree 2n is generated by an eigenvalue of a skew-symmetric matrix over \mathbf{Q} of dimension at most 4n + 2. The aim of the present paper is to improve this bound.

Introduction

In [4], Cohen and Odoni show that every CM-field is generated by an eigenvalue of some skew-symmetric matrix with rational coefficients. They also ask for the minimal dimension of such a matrix. Using a result of Bender [2], they prove that every CM-field of degree 2n is generated by an eigenvalue of a skew-symmetric matrix over \mathbf{Q} of dimension at most 4n + 2. The aim of the present paper is to show that this bound can be improved to 2n + 3 if $n \equiv 1 \pmod{4}$, to 2n + 1 if $n \equiv 3 \pmod{4}$, and to 2n + 4 if $n \equiv 3 \pmod{4}$, and to 2n + 4 if $n \equiv 4 \pmod{4}$.

We start with a general discussion of skew–symmetric matrices of given rank and a given eigenvalue. These conditions imply some restrictions on the characteristic polynomial of the matrix. Hence it is natural to study skew–symmetric matrices having a given characteristic polynomial. It is easy to see that the characteristic polynomial of a skew–symmetric matrix is even or odd. Conversely, let $P \in \mathbb{Q}[X]$ be a monic polynomial of degree m such that $P(-X) = (-1)^m P(X)$. Let $A = \mathbb{Q}[X]/(P)$, and let $\sigma: A \to A$ be the \mathbb{Q} -linear involution induced by $X \mapsto -X$. We show that there exists a skew–symmetric matrix over \mathbb{Q} with characteristic polynomial P if and only if the m-dimensional unit form satisfies a certain invariance relation with respect to (A, σ) (see §1). This is just a more conceptual formulation of a well–known method of finding skew–symmetric (symmetric, orthogonal,...) matrices having a given eigenvalue (see for instance [2], [1]). After proving some preliminary results in §2, we apply this method in §3.

DOI: 10.1007/s00229-004-0462-0

E. Bayer–Fluckiger: Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland. e-mail: eva.bayer@epfl.ch

G. Berhuy: Department of Mathematics, University of British Columbia, Vancouver BC, V6S 1C2, Canada. e-mail: berhuy@math.ubc.ca

P. Chuard-Koulmann: Institut de Mathématiques, Université de Neuchâtel, rue Emile Argand 11, 2007 Neuchâtel, Switzerland. e-mail: pascale.chuard@unine.ch

1. Skew-symmetric matrices and adjoint involutions

Let k be a field of characteristic $\neq 2$.

Adjoint involutions

Let A be a commutative k-algebra, and let $\tau: A \to A$ be a k-linear involution. Let $q: A \times A \to k$ be a symmetric bilinear form defined over the k-vector space A. We say that the algebra with involution (A, τ) is *adjoint to q* if

$$q(xy, z) = q(y, \tau(x)z)$$

for all $x, y, z \in A$. If A is given and if (A, τ) is adjoint to q, then we shall use the notation $\tau = \tau_q$.

The following remark will often be implicitly used in the proofs:

Remark. Assume that $(A, \tau) \simeq (A', \tau') \times (A'', \tau'')$, for some algebras with involution (A', τ') and (A'', τ'') . Let $q: A \times A \to k$ such that $\tau = \tau_q$. Then q is isomorphic to a direct sum of symmetric bilinear forms $q': A' \times A' \to k$ and $q'': A'' \times A'' \to k$ with $\tau' = \tau_{q'}$ and $\tau'' = \tau_{q''}$.

Recall that A is an étale algebra if it is isomorphic to a product of a finite number of separable field extensions of finite degree of k. Let $Tr: A \to k$ be the trace map. Then A is étale if and only if the symmetric bilinear form $Tr: A \times A \to k$, given by $(x, y) \mapsto Tr(xy)$, is non-degenerate.

Proposition 1.1. Suppose that A is an étale algebra. Then the following are equivalent:

- (a) $\tau = \tau_q$;
- (b) there exists $\alpha \in A$ such that $\tau(\alpha) = \alpha$, and that $q(x, y) = \text{Tr}(\alpha x \tau(y))$. Moreover, q is non-degenerate if and only if $\alpha \in A^*$.

Proof. This is well–known, and follows from the fact that $Tr: A \times A \rightarrow k$ is a non–degenerate symmetric bilinear form.

Let us denote by $q_{(A,\tau,\alpha)}$ the symmetric bilinear form $A \times A \to k$ given by $(x,y) \mapsto \operatorname{Tr}(\alpha x \tau(y))$. If the involution is trivial (that is, τ is the identity) then we set $q_{(A,\tau,\alpha)} = q_{(A,\alpha)}$. Note that $q_{(A,1)}$ is the usual trace form of the algebra A. \square

Skew-symmetric matrices

Let $P \in k[X]$ be a monic polynomial of degree m with $P(-X) = (-1)^m P(X)$ (that is, P is even or odd). It is natural to ask whether P is the characteristic polynomial of some skew–symmetric matrix over k. Set A = k[X]/(P), and let $\tau : A \to A$ be the k-linear involution induced by $\tau(X) = -X$. Let us denote by m < 1 > the m-dimensional unit form.

Proposition 1.2. Suppose that P is separable. Then there exists a skew–symmetric matrix with coefficients in k having characteristic polynomial P if and only if (A, τ) is adjoint to m < 1 >.

Proof. We recall the proof for the convenience of the reader.

Let *V* be an *m*-dimensional *k*-vector space, and let (e_1, \ldots, e_m) a basis of *V*. Let $b_0: V \times V \to k$ be given by $b_0(e_i, e_j) = \delta_{i,j}$.

Let $M \in M_m(k)$ such that $M^t = -M$, and that the characteristic polynomial of M is P. Let $\mu : V \to V$ be the endomorphism given by the matrix M in this basis. Let us endow V with the A-module structure induced by μ (that is, the action of X is given by μ). Then V is a free A-module of rank one. As M is skew-symmetric, we have $b_0(\mu x, y) = b_0(x, \tau(\mu)(y))$ for all $x, y \in V$. This proves that $\tau = \tau_{b_0}$.

Conversely, suppose that $\tau = \tau_{b_0}$. Let us denote by $\mu : A \to A$ the endomorphism given by multiplication by the image of X in A. Then the characteristic polynomial of μ is P. As $\tau = \tau_{b_0}$, we have $b_0(\mu x, y) = b_0(x, \tau(\mu)y) = -b_0(x, \mu y)$. Then $M^t = -M$. This concludes the proof of the proposition. \square

2. Adjoint involutions and CM-fields

Invariants of symmetric bilinear forms

Let V be a finite dimensional k-vector space, and let $q: V \times V \to k$ be a non-degenerate symmetric bilinear form. Set $m = \dim(V)$. We recall the definition of some classical invariants. For more details, see for instance [6].

Determinant. The determinant of q, denoted by det(q), is by definition the determinant of the matrix of q in some k-basis of V, considered as an element of k^*/k^{*2} .

Recall that every symmetric bilinear form can be diagonalised. In other words, there exist a_1, \ldots, a_m such that $q \simeq < a_1, \ldots, a_m >$.

Hasse–Witt invariant. Let $q \simeq \langle a_1, \ldots, a_m \rangle$. The Hasse–Witt invariant of q is by definition

$$w_2(q) = \Sigma_{i < j}(a_i, a_j) \in \operatorname{Br}_2(k),$$

where (a_i, a_j) is the quaternion algebra determined by a_i, a_j and $Br_2(k)$ is the subgroup of elements of order one or two of the Brauer group of k, written additively.

Signature. Let v be an ordering of k, and let k_v be a real closure of k at v. Then over k_v , the symmetric bilinear form q is isomorphic to a diagonal form $<1,\ldots,1,-1,\ldots,-1>$. Let us denote by r the number of 1's and by s the number of -1's in this diagonalisation. Then the signature of q at v is by definition $\operatorname{sign}_v(q) = r - s$.

Adjoint involutions over separable field extensions

Let K be a separable extension of k of finite degree. Let $\sigma: K \to K$ be a non-trivial k-linear involution. Let F be the fixed field of this involution, that is $F = \{x \in K | \sigma(x) = x\}$. Then K is a quadratic extension of F. Let $\theta \in F^*$ such that $K = F(\sqrt{\theta})$.

Lemma 2.1. We have

$$q_{(K,\sigma,\alpha)} \simeq <2> \otimes [q_{(F,\alpha)} \oplus q_{(F,-\alpha\theta)}].$$

Proof. This follows from the orthogonal decomposition $K = F \oplus F \sqrt{\theta}$.

Proposition 2.2. We have

- (i) $\det q_{(K,\sigma,\alpha)} = N_{F/k}(-\theta) \in k^*/k^{*2}$.
- (ii) $\operatorname{sign}_v q_{(K,\sigma,\alpha)} = \Sigma_w (1 \operatorname{sgn}_w(\theta)) \operatorname{sgn}_w(\alpha)$, where the sum is taken over all orderings w of F extending v, and $\operatorname{sgn}_w(x)$ is the sign of x at w.

Proof. Apply lemma 2.1 and the formulas given in theorems 2.5.12. and 3.4.5. of [6]. \Box

CM-fields

Let K be a CM-field. By definition K is a totally imaginary algebraic number field having a non-trivial \mathbf{Q} -linear involution $\sigma: K \to K$, and the fixed field F of this involution is totally real. Set $n = [F: \mathbf{Q}]$. Then $[K: \mathbf{Q}] = 2n$. It is well-known that there exists a totally negative element $\theta \in F^*$ such that $K = F(\sqrt{\theta})$ (see for instance [4]). Note that the involution σ is given by $\sigma(\sqrt{\theta}) = -\sqrt{\theta}$.

We denote by n < 1 > the n-dimensional unit form. Let d_F be the discriminant of the field F, that is the determinant of $q_{(F,1)}$. It is well-known that

$$d_F = \prod_{i < j} (\gamma_i - \gamma_j)^2 \mod \mathbf{Q}^{*2},$$

where the γ_i 's denote the conjugates of a primitive element of F.

Proposition 2.3. Let K be a CM-field of degree 2n, with n odd. Let $\alpha \in F^*$ be totally positive. Then we have

$$q_{(K,\sigma,\alpha)} \simeq < N_{F/\mathbb{Q}}(2\alpha d_F) > \otimes <1, -N_{F/\mathbb{Q}}(\theta) > \otimes (n. <1>).$$

Proof. Note that α and $-\theta\alpha$ are both totally positive. Hence by lemma 2.1. it suffices to check that for any totally positive $\gamma \in F^*$, we have

$$q_{(F,\gamma)} \simeq < d_F \mathrm{N}_{F/\mathbb{Q}}(\gamma) > \otimes (n. < 1 >).$$

Set $b_{\gamma} = \langle d_F N_{F/\mathbb{Q}}(\gamma) \rangle \otimes (n. \langle 1 \rangle)$. The forms $q_{(F,\gamma)}$ and b_{γ} have equal dimensions and determinants. As F is totally real, d_F is positive. Since γ is totally positive, $N_{F/\mathbb{Q}}(\gamma)$ is also positive. Therefore $sign(b_{\gamma}) = n$. We also have

sign $q_{(F,\gamma)}=n$, hence (F,γ) and b_γ have equal signatures. This implies that (F,γ) and b_γ are isomorphic over ${\bf R}$. In particular, over ${\bf R}$ the forms $q_{(F,\gamma)}$ and b_γ have equal Hasse–Witt invariants. Let us check that $q_{(F,\gamma)}$ and b_γ also have equal Hasse–Witt invariants over the p-adic numbers ${\bf Q}_p$ for all prime numbers p. When $p\neq 2$ this follows from [5]. By the product formula, this holds also for p=2. Hence $q_{(F,\gamma)}$ and b_γ have equal dimensions, determinants, signatures and Hasse–Witt invariants. By the Hasse–Minkowski theorem, they are isomorphic (see for instance [6], Chap. 6). \square

3. Skew-symmetric matrices associated with CM-fields

Let K be a CM-field of degree 2n. We keep the notation of §2. In particular, $\theta \in F^*$ is a totally negative element such that $K = F(\sqrt{\theta})$. Let $f \in \mathbf{Q}[X]$ be the minimal polynomial of θ .

Cohen and Odoni (cf. [4]) have shown that there exist skew–symmetric matrices over \mathbf{Q} with eigenvalue $\sqrt{\theta}$. In this section, we give an upper bound for the minimal dimension of such a matrix. We deal separately with the cases n odd and n even.

Theorem 3.1. Suppose that n is odd. Then there exists a skew–symmetric matrix over \mathbf{Q} of dimension 2n + 3 with eigenvalue $\sqrt{\theta}$.

This theorem is a consequence of prop. 3.2.– 3.6. below.

Proposition 3.2. Suppose that n is odd. Then $\sqrt{\theta}$ is an eigenvalue of a skew–symmetric matrix of dimension 2n if and only if $-N_{F/\mathbb{Q}}(\theta) \in \mathbb{Q}^{*2}$.

Proof. There exists a skew–symmetric matrix over \mathbf{Q} of dimension 2n with eigenvalue $\sqrt{\theta}$ if and only if there exists a skew–symmetric matrix over \mathbf{Q} of characteristic polynomial f. By prop. 1.2., this holds if and only if (K,σ) is adjoint to the 2n-dimensional unit form 2n < 1 >. Using prop. 1.1., we see that this is equivalent with the existence of an $\alpha \in F^*$ such that $q_{(K,\sigma,\alpha)} \simeq 2n < 1 >$. Comparing determinants, we see that this implies that $-N_{F/\mathbf{Q}}(\theta) \in \mathbf{Q}^{*2}$. Conversely, suppose that $-N_{F/\mathbf{Q}}(\theta) \in \mathbf{Q}^{*2}$. Set $\alpha = 2d_F$. This is a positive rational number. By prop. 2.3., we get $q_{(K,\sigma,\alpha)} \simeq 2n < 1 >$. This concludes the proof of the proposition.

Proposition 3.3. Suppose that $n \equiv 3 \pmod{4}$. Then $\sqrt{\theta}$ is the eigenvalue of a skew–symmetric matrix of dimension 2n + 1.

Note that the two previous propositions show that 2n + 1 is the best possible bound when $n \equiv 3 \pmod{4}$.

The following lemma is well-known:

Lemma 3.4. For any positive rational number a, we have

$$< a > \otimes < 1, 1, 1, 1 > \cong < 1, 1, 1, 1 > .$$

Proof. By Lagrange's theorem, every positive rational number is a sum of four squares. Hence any such number a is represented by < 1, 1, 1, 1 >. On the other hand, this form is multiplicative (see for instance [6], chap. 2). This implies the desired statement. \Box

Proof of prop. 3.3.. Let P(X) = Xf(X). Notice that $\sqrt{\theta}$ is the eigenvalue of a skew–symmetric matrix over \mathbf{Q} of dimension 2n+1 if and only if there exists a skew–symmetric matrix over \mathbf{Q} with characteristic polynomial P. By prop. 1.1. and 1.2., this is the case if and only if there exist $\alpha \in F^*$ and $a \in \mathbf{Q}^*$ such that $q_{(K,\sigma,\alpha)} \oplus \langle a \rangle \simeq (2n+1)$. $\langle 1 \rangle$.

By prop. 2.3. we have

$$q_{(K,\sigma,\alpha)} \simeq < N_{F/\mathbf{Q}}(2\alpha d_F) > \otimes < 1, -N_{F/\mathbf{Q}}(\theta) > \otimes (n. < 1 >).$$

Set $\alpha = 2d_F$. Then

$$q_{(K,\sigma,\alpha)} \oplus \langle -N_{F/\mathbf{Q}}(\theta) \rangle \simeq \langle -N_{F/\mathbf{Q}}(\theta) \rangle \otimes ((n+1). \langle 1 \rangle) \oplus n. \langle 1 \rangle.$$

As $n + 1 \equiv 0 \pmod{4}$, by lemma 3.4. we have

$$-N_{F/\mathbb{Q}}(\theta) \otimes ((n+1). < 1 >) \simeq (n+1). < 1 >.$$

Therefore

$$q_{(K,\sigma,\alpha)} \oplus < -N_{F/\mathbb{Q}}(\theta) > \simeq (2n+1). < 1 > .$$

Hence prop. 3.3. is proved. \Box

Proposition 3.5. Suppose that $n \equiv 1 \pmod{4}$. Then $\sqrt{\theta}$ is an eigenvalue of a skew–symmetric matrix of dimension 2n + 3.

Proof. Let $d \in \mathbf{Q}^*$ be a sum of two squares, and suppose that $d \neq -\mathrm{N}_{K/\mathbf{Q}}(\theta)$ in $\mathbf{Q}^*/\mathbf{Q}^{*2}$. Set $P(X) = X(X^2 + d) f(X)$. Then P is a separable polynomial (this is clear if n > 1, and this is by choice of d if n = 1). Let $E = \mathbf{Q}[X]/(P)$, and let $\tau : E \to E$ be the \mathbf{Q} -linear involution induced by $X \mapsto -X$. By prop. 1.2., it suffices to show that (E, τ) is adjoint to the (2n+3)-dimensional unit form. It is easy to see that if (E, τ) is adjoint to some non-degenerate symmetric bilinear form q if and only if $q \simeq q_{(K,\sigma,\alpha)} \oplus < 2a, 2ad > \oplus < b >$ for some $\alpha \in F^*$, $a,b \in \mathbf{Q}^*$. Hence by prop. 1.1. it is enough to show that there exist $\alpha \in F^*$, $a,b \in \mathbf{Q}^*$, such that

$$q_{(K,\sigma,\alpha)} \oplus < 2a, 2ad > \oplus < b > \simeq (2n+3). < 1 > .$$

Set $\alpha=2d_K$, $a=-2\mathrm{N}_{F/\mathbf{Q}}(\theta)$ and $b=-d\mathrm{N}_{F/\mathbf{Q}}(\theta)$. Then we have, using prop. 3.3.

$$q(K,\sigma,\alpha) \oplus < 2a, 2ad > \oplus < b > \simeq$$

$$<1, -\mathrm{N}_{F/\mathbb{Q}}(\theta)>\otimes (n.<1>)\oplus <-\mathrm{N}_{F/\mathbb{Q}}(\theta)>\otimes <1, d, d>.$$

As d is a sum of two squares, $< d, d> \simeq <1, 1>$. Hence the above form is isomorphic to $n. <1> \oplus <-N_{F/\mathbb{Q}}(\theta)> \otimes (n+3). <1>$. As n+3 is divisible by 4, we have $<-N_{F/\mathbb{Q}}(\theta)> \otimes (n+3). <1> \simeq (n+3). <1>$. Hence we get the form (2n+3). <1>, as claimed. \square

As shown in prop. 3.6. below, it is sometimes possible to get a better bound:

Proposition 3.6. *Suppose that* $n \equiv 1 \pmod{4}$ *. Then the following are equivalent:*

- 1. $\sqrt{\theta}$ is an eigenvalue of a skew–symmetric matrix of dimension 2n+1;
- 2. $-N_{F/\mathbf{Q}}(\theta)$ is a sum of three squares in \mathbf{Q} .

Proof. As seen in the proof of prop. 3.2., condition (i) holds if and only if

$$q_{(K,\sigma,\alpha)} \oplus \langle a \rangle \simeq (2n+1). \langle 1 \rangle$$

for some $\alpha \in F^*$, $a \in \mathbf{Q}^*$. Note that if this isomorphism holds, then by comparing determinants we get $a = -\mathrm{N}_{F/\mathbf{Q}}(\theta) \in \mathbf{Q}^*/\mathbf{Q}^{*2}$. Hence we can assume that $a = -\mathrm{N}_{F/\mathbf{Q}}(\theta)$. Comparing signatures, we get that α is totally positive. Set $\beta = 2\alpha d_F$. Then by prop. 2.3.,

$$q_{(K,\sigma,q_{\alpha})} \oplus < -N_{F/\mathbf{Q}}(\theta) > \simeq$$

$$< N_{F/\mathbf{Q}}(\beta) > \otimes <1, -N_{F/\mathbf{Q}}(\theta) > \otimes (n. <1>) \oplus <-N_{F/\mathbf{Q}}(\theta)>.$$

This form is isomorphic to the (2n + 1)-dimensional unit form if and only if

$$< N_{F/\mathbf{Q}}(\beta), -N_{F/\mathbf{Q}}(\theta\beta), -N_{F/\mathbf{Q}}(\theta) > \simeq < 1, 1, 1 >$$

(use lemma 3.4. and Witt cancellation). We claim that this happens if and only if $-N_{F/\mathbb{Q}}(\theta)$ is a sum of three squares. The necessity of this condition is clear. Conversely, suppose that $-N_{F/\mathbb{Q}}(\theta)$ is a sum of three squares. Then there exists a positive $b \in \mathbb{Q}^*$ such that

$$<1, 1, 1> \simeq <-N_{F/\mathbf{Q}}(\theta), b, -bN_{F/\mathbf{Q}}(\theta)>.$$

Set $\alpha = 2bd_F$, so $\beta = b$. Then $N_{F/\mathbb{Q}}(\beta) = b$ mod squares. We get

$$q_{(K,\sigma,\alpha)} \oplus \langle -N_{F/\mathbf{O}}(\theta) \rangle \simeq (2n+1). \langle 1 \rangle,$$

as claimed.

The following proposition shows that 2n + 3 is the best possible bound in the case where $n \equiv 1 \pmod{4}$, provided the characteristic polynomial of the matrix is supposed to be separable.

Proposition 3.7. Suppose that $n \equiv 1 \pmod{4}$. If $\sqrt{\theta}$ is an eigenvalue of a skew-symmetric matrix of dimension 2n + 2 with separable characteristic polynomial, then $-N_{F/\mathbb{Q}}(\theta)$ is a sum of three squares in \mathbb{Q} .

Proof. If $\sqrt{\theta}$ is an eigenvalue of a skew–symmetric matrix of dimension 2n+2, then its characteristic polynomial is $P(X) = (X^2 + d) f(X)$ for some $d \in \mathbb{Q}$. Suppose that the polynomial P is separable. Apply prop 1.2. with $P(X) = (X^2 + d) f(X)$. Set $A = \mathbb{Q}[X]/(P)$, and let $\tau: A \to A$ be induced by $X \mapsto -X$. If (A, τ) is adjoint to some symmetric bilinear form q, then $q \simeq q_{(K,\sigma,\alpha)} \oplus < 2a, 2ad >$ for some $\alpha \in F^*$, $\alpha \in \mathbb{Q}^*$. If such a form is isomorphic to the unit form, then α is

totally positive, a is positive and $d = -N_{F/\mathbb{Q}}(\theta)$. Using the same argument as in the proof of prop. 3.6., we get

$$< N_{F/\mathbb{Q}}(2\alpha d_F), -N_{F/\mathbb{Q}}(2\alpha d_F)N_{F/\mathbb{Q}}(\theta) > \oplus < 2a, -2aN_{F/\mathbb{Q}}(\theta) >$$

 $\simeq < 1, 1, 1, 1 > .$

Multiplying this relation by 2a, using lemma 3.4., and simplifying by <1>, we get that $-N_{F/\mathbf{Q}}(\theta)$ is a sum of three squares. \square

We now deal with the case where n is even.

Theorem 3.8. Let K be a CM-field of degree 2n, n even. Then K is generated by an eigenvalue of a skew-symmetric matrix of dimension 2n + 4.

Proof. We first prove that there exist two negative rational numbers a, b such that $w_2(q_{(K,\sigma,1)}) = (-N_{F/\mathbb{Q}}(\theta), -1) + (a, b)$. Since $q_{(K,\sigma,1)}$ has dimension and signature 2n, over \mathbb{R} it is isomorphic to 2n < 1 >. Hence over \mathbb{R} , its Hasse–Witt invariant is trivial. Recall now that the elements of $\operatorname{Br}_2(\mathbb{Q})$ are quaternion algebras. Hence $(-N_{F/\mathbb{Q}}(\theta), -1) + w_2(q_{(K,\sigma,1)}) = (a, b)$ for some $a, b \in \mathbb{Q}$. Since θ is totally negative and n is even, we have $N_{F/\mathbb{Q}}(\theta) > 0$. The above relation then shows that a and b are negative.

Set

$$q = (2n-3). < 1 > \oplus < -N_{F/\mathbf{Q}}(\theta)a, -N_{F/\mathbf{Q}}(\theta)b, N_{F/\mathbf{Q}}(\theta)ab > .$$

Let us show that $q \simeq q_{(K,\sigma,1)}$. It suffices to prove that these two forms have equal dimensions, discriminants, signatures and Hasse–Witt invariants. We have $\dim(q) = 2n$ and $\det(q) = \mathrm{N}_{F/\mathbf{Q}}(\theta)$. Since $\mathrm{N}_{F/\mathbf{Q}}(\theta) > 0$, we have $\mathrm{sign}(q) = 2n$. Moreover, $w_2(q) = w_2(<-\mathrm{N}_{F/\mathbf{Q}}(\theta)>\otimes < a,b,-ab>) = w_2(< a,b,-ab>) + (-\mathrm{N}_{F/\mathbf{Q}}(\theta),-1) = (a,b) + (-\mathrm{N}_{F/\mathbf{Q}}(\theta),-1)$. Therefore q and $q_{(K,\sigma,1)}$ have equal invariants, hence they are isomorphic.

Set
$$\phi = \langle N_{F/\mathbb{Q}}(\theta), -a, -b, ab \rangle$$
. Then we have

$$\phi \oplus q_{(K,\sigma,1)} \simeq (2n-4). <1> \oplus <<-a,-b, \mathrm{N}_{F/\mathbf{Q}}(\theta)>>.$$

The Hasse–Witt invariant of a 3–fold Pfister form is trivial. Moreover, the Pfister form $<<-a,-b, \mathrm{N}_{F/\mathbf{Q}}(\theta)>>$ has dimension 8, trivial discriminant and signature 8, so it is isomorphic to the 8–dimensional unit form. Hence we get $\phi\oplus q_{(K,\sigma,1)}\simeq (2n+4).<1>$. By [3], th. 1, there exists an algebraic number field L with a \mathbf{Q} –linear involution τ and a $\beta\in L$, such that $\phi\simeq q_{(L,\tau,\beta)}$. The proof shows that L is generated by an element ρ with an even irreducible polynomial g, and such that $\tau(\rho)=-\rho$. Moreover, there are infinitely many choices for L, hence we can assume that $f\neq g$. Applying prop. 1.2. with P=fg gives the desired result. \square

References

- [1] Bayer–Fluckiger, E.: Ideal lattices. Proceedings of the Conference Number Theory and Diophantine Geometry: Baker 60, Zürich (1999), Cambridge University Press, 2002, pp. 168–184
- [2] Bender, E.A.: Characteristic polynomials of symmetric matrices. Pacific J. Math. 25, 433–441 (1968)
- [3] Berhuy, G.: On hermitian trace forms over hilbertian fields. Math. Z. **217**, 561–570 (2001)
- [4] Cohen, S.D., Odoni, R.W.K.: Galois groups associated with CM-fields, skew-symmetric matrices and orthogonal matrices. Glasgow Math. J. 32, 35–46 (1990)
- [5] Krüskemper, M.: On the scaled trace forms and the transfer of a number field extension.J. Number Th. 40, 105–119 (1992)
- [6] Scharlau, W.: Quadratic and Hermitian Forms, Grundlehren Math. Wiss. 270, Springer Verlag, 1985