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Optimal control in heterogeneous domain
decomposition methods

V. 1. AGOSHKOV* P. GERVASIO] and A. QUARTERONI¥

Abstract — Some new domain decomposition methods (DDM) based on optimal control approach are
introduced for the coupling of first- and second-order equations on overlapping subdomains. Several
cost functionals and control functions are proposed. Uniqueness and existence results are proved for
the coupled problem and the convergence of iterative processes is analyzed.

Domain decomposition methods are effective methods of contemporary numeri-
cal mathematics for solving boundary value problems [4, 6-10]. To construct these
methods, the optimal control approaches can be applied [1, 2, 4, 6-8]. These ap-
proaches are used to formulate domain decomposition methods for overlapping and
nonoverlapping (disjoint) subdomain decomposition [6, 7], as well as for equations
of different orders in each subdomain [3, 4, 10].

In this paper we analyse some DDM based on the optimal control approaches.
We also propose some new algorithms for solving equations of different types in
subdomains. Furthermore, we consider the application of our approaches to formu-
lating and studying DDM for systems of equations. The main aim of this paper is to
consider DDM for overlapping subdomain decompositions.

The analysis of algorithms considered in the sequel is based on the methodol-
ogy proposed in [1]. This methodology is primarily based on the theory of operator
equations and applications of adjoint operators. The proofs of some statements in
this paper are given in [3]. To derive these proofs and analyse the domain decom-
position algorithms we use the results of the theory of PDE (the Cauchy problems
results, the Poincare problem, problems with oblique derivatives). We also show
that the results related to the DDM theory are consequences of the theory of opera-
tor equations and PDE.
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Figure 1. The first possible decomposition.
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Figure 3. The third possible decomposition.
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1. NOTATIONS, ASSUMPTIONSAND PRELIMINARY STATEMENTS

Let Q be a two-dimensional domain with the boundary T" = 9dQ, which is assumed
to be Lipschitz continuous and piecewise of class G2, Q = QUT. We use the
following notations (see Figs. 1-3 for some examples): Ql and Q, are two subsets
of Q such that Q = Qlng,Qlﬂgz#@ Q1 =Q1NQ, Tk = anﬂrS(—
dQ \ T,k = 1,2. We consider two situations: when I1 N T, # & (see the case
in Fig. 1) and 1“1 NI, = & (the cases in Figs. 2, 3).We assume that d<,0Q, are
piecewise of class C(?) and Lipschitz ontinuous.

Let n = (ng,nz) be the outward unit normal on T, T = (nz,—ny) the tan-
gent vector; b = (by,b,) be a vector with smooth components. We define: & =
b-n=3% bin on 9Q, b = (b)) — (bF)~, (bf)" = (b +b)/2, (b)) =
(|bK| —bK) /2, k=1,2. We will use the real spaces Lp(),L2(Qk),L2(T),...,La(T )
k=1,2, as well as the following spaces:

Lo(80) = {ueLa(S) : Iullyg = ([ @) poar) <o), k=12
La(§0) 1= {ueLa(S) s ullg = ([ @ 1oar) <), k=12
Lol = e LT Jullyryy = ( f ) Tupar) < f k=12
o) = e L Jullyrgy = ( f ) ubar) <} k=12

where §; = Scn {(bf)~ # 0}, § = Scn {(bf)" # 0}, I, = TN {(bf)~ # 0},
Iy =Tk {(bK)* # 0}. Let us consider the differential operators
Liup =div(bu) +bou;  in Qg

. ) (1.1)
Loup = —vAu +div(bup) +bouy  in

where v = const > 0, b and by are such that (by + (divb)/2) > uo = const > 0
Vx € Q. Each operator Ly is defined on smooth functions in €, k = 1,2. The op-

erator Ll((o), k = 1,2, is defined by (1.1) on smooth functions which satisfies the
homogeneous boundary conditions on I'x. We consider the following problem: find
Uy, Uy, A1, Ao such that
Liup=f inQp, (b)) uy=(t)"g onTy, (bY)"ur=(bl)"A on §
Loup=f in Qy, Ww=g onTy W :Az on $ (12)
U=u IinQ

where f is a given function defined in Q, while the function g is defined on 9<Q.
Hereafter we assume that all b, fy, f, gin (1.2) are smooth in Q.
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Problem (1.2) is an “‘exact controllability problem’ with two ‘controls’ 4, A,.
Let us study some uniqueness and existence results for (1.2), which are used later.
If {u1, U, A1, A2} is a smooth solution of (1.2) we can consider the equation
Liu; = f; on Qg5 to find
aul 8U1
bh—— +b;—— uu="f ondQ 1.3
5t oo 12 (1.3)
where u = by +divb, b, =b-n, b; =b-7 and n is the outward unit normal to 0.
Let us state the first proposition.

Proposition 1.1 [3]. Problem (1.2) has no solution in the general case, i.e,
without introducing specific restriction to the data of the problem.

We introduce the following types of assumptions:
l.

m m

Qp=Ja ar=Jar®, ar®coql), m<e
k=1 k=1

meas(AT™) >0, b,#0 onAIr'® (see Fig.1)

(1.4)

where Qi‘? = Q15N Q.

1.
Q15 is finite, n= bp+divb>0 on 8912, u §é 0 ondQq

the direction b at any point of 9, makes an acute angle (1.5)
with the outward normal to Q5.

m
Q= U Q:(LI;), b, 7& 0 on 8912, E — li E >0 on 8912

where % is the derivative along d<%,.

The following proposition is valid.

Proposition 1.2 [3]. If problem (1.2) has a solution and one of the assumptions
I-11l isvalid, this solution is unique.

The assertions of Propositions 1.1, 1.2 will be used in the next section while
investigating a domain decomposition algorithm based on optimal control. Note
also that analogous assertions can be proved for the case Q C R', n> 2, and for a
system of equations of type (1.2). The results of the Cauchy problems, the problems
of the oblique derivative, and the Poincare problem are still useful for proving these
assertions.
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2. ANALYSISOF DDM WITH TWO CONTROL FUNCTIONS

Let us consider the weak statement of (1.2): find {w, u», A1, A2} such that

Liup=f in Q, (b)) u=(bY)~g on Ty, (bY) u=(bY) A& on §
L2U2:f in Qz, U=g on Fg, U2:7Lz on Sz (21)

inf Jp(ug,up)
M2

where

Bl ) = 5 [ i2(a(2) ~ ta(2))2d0
Q

function y;, is the characteristic function of 4, and A = (41, 4,) is the vector of
‘controls’ A4, Ap.

Consider the following iterative method: for given A%, solve
LiuP=f in Q, (b)) ul=(b})"g on Iy, (bY)ul=(bL) A" on §
Lu'=f in Q, u'=gonl; u=A" on$ (2.2)
AL =AMy Jh (U ul), m=0,1,...
where {ym} are suitable relaxation parameters to be chosen according to conver-
gence criteria [1, 9-13].
Algorithm (2.2) is in fact a domain decomposition method for solving (1.2).

In this section we analyse problem (2.1) and the convergence of the approximate
solution obtained by iterative process (2.2).

The variational equations (‘optimality conditions’) corresponding to (2.1) read
as follows:

Liup=f in Q, (bY) u=(bY~g on Ty, (b)) u=() A on S
Luy=f inQ, uw=gonl, uwu=2A on$S
Lo = yaa(u —p) in @1, (b})Taw=0 on Iy, (bh)*q =0 on §
L3 02 = y12(u — ) in Q2, G =0 on I (2.3)

0
(b})" =0 on S, v%:O onS
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while the iterative process (2.2) can be rewritten as: for a given A°
Liu'=f in Qi, (by)"ul'=(b5)"g on Iy, (by)"ul'=(by) A" on §
Lu'=1fin Q, u'=gonl, u=4"on$S
L% = (U —ul) in Q;, (b})Tg"=0 on 9 (2.4)

Ly 0 = i2(uP — ) in Q2 GF'=0 on 90,

m
(bh) " A" = (BF) A" — ym(b}) " on S, lﬁ““zflzm—ymv(;irf on S.

Proposition 2.1 [3]. (1) Problem (2.1) (resp. (2.3)) has no solution in the gen-
eral case.
(2) If problem (2.1) (resp. (2.3)) has a solution, in the general case inf, Jo(ug, uz) >
0,i.e,uU; # U inQqo.
(3) If one of the assumptions I-111 is satisfied and the problem (2.1) (resp. (2.3)) has
a solution, this solution is unique.
(4) If the problem (2.1) (resp. (2.3)) has a unique solution and the iterative process
(2.2) (resp. (2.4)) is convergent, generally

lim Jul" — W'l (cayp) = CONSE > 0 (2.5)

i.e., uy",uy' do not generally concide in €2 asm — oo,

From Proposition 2.1 we can draw the following conclusion: in order for the
property limy_.. ||u¥ — u§|| = 0 to hold, statement (2.1) has to be modified. One
possibility, which consists in introducing a third control (in addition to A, A,), will
be investigated in the next section.

Remark 2.1. We can study the ‘regularized problem’ (instead of (2.1)):
Liup =1 in Qq, (bﬁ)‘ul = (b},)‘g on I, (b},)‘ul = (b%)_ll on §

L, =f in Q, w= gon Ip, W= o on S (26)

inf 1(oc/ (b},)‘/lfdl"+a/ 23dT) + o(us, o), @ >0,
7[,1,7[.2 2 Sl SZ

If o > 0, this problem has the unique solution u(o), Ax(er), k= 1,2. The associated
iterative process (2.2) converges: U'(a) — uk(a), (o) — Ax(ax) for k=1,2 as
m — oo, where {ux},{Ax} is the solution of (2.6). However, we cannot prove that
uk(o) — ug and Ax(o) — A for k=1,2 as o — 0. In fact, if problem (1.2) has
some solutions, {u(o)}, {Ak(cr)} converge to the solution with the minimal norm
of {A}. However, if problem (1.2) (or (2.1)) has no solution, we cannot expect
the convergence of the iterative process in the general case or {w(a)}, {Ak(a)}
converge to a pseudosolution.
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3. DDM WITH THREE CONTROL FUNCTIONS

In this section we propose and analyse a domain decomposition algorithm to solve
problem (1.2) making use of three control functions.

Let  be a smooth function in Q such that 0 < w(x) <1in Q, ® =0in Q\Qy,
® > 0in Q. Let us consider the problem: find w, Ak, k= 1,2, v € L»(Q12) such
that

Liy=f+ovin Q, (bY) u=(®)"gonTy, (bY) u =B A onS

(3.1)
Loup = f in Qz, U =g on Fz, U :Az on Sz (32)
Ui = Uy in Qq. 3.3

The optimal control problem associated with (3.1)—(3.3) reads: find y = ux(o),
M = M&(o), k=1,2, v=v(a) which satisfy (3.1), (3.2) and, moreover,

inf Jg(Up, Uz, 22, 42,V) (3:4)

M2V

where

Jo(U1,Up, A1, A2,V) = %(a/&(bﬁ)‘lfdl"+a/szkfdl"

—I—OC/ a)v2d9+/;(12(u1—u2)2d£2)
Q Q

and o =const> 0 is the regularization parameter.

If « =0, (3.1), (3.2) and (3.4) are the weak statement of problem (3.1)—(3.3).
In the sequel, we identify L,(€3,) with the subspace Lgo) (Q) = {u:ue Ly(Q),
u=0in \Q,}. The multiplication of u € Ly(€12) by 12 will be considered as
the prolongation by zero of u onto Q\Q15.

The minimization requirement (3.4) yields the set of optimality equations:

L§°)*q1 = x12(Uu — W) in Qp, (b})* g =0 on 9
Lgo)*QZ =x2(up—u) in Qy, q= Oa on dQ, (3.5)
a(by) A+ (by) " =0o0n S, OC?Lz—i—V% =0on S

oaov+ g =0 inQy.

We consider the iterative process to solve (3.1), (3.2) and (3.5): for any given
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A2, A2, W0 for m> 1 we look for A", A v+l such that
Liul=f+ov™in Q, (b})"ul=(bl)"gon Iy
(b5)~uf" = (by) A" on S
Lu'="fin Q, u'=gonTI, uwW=A"on$S
LGN = yaa (UM —ul) in Q, (bY)Tq"=0 on I
L2 = yaa (U —uJ) in Qp, =0 on 9Q, (36)
(bh) =A™ = (08) AP — ym(ox(bR)~ A"+ (bR)a") on S
A =0~ ym(ockszrvaa&) on S
VL = v (ov™ + g in Qgp, m=0,1,....

The parameters {ym} have to be chosen to make these equations converge.
Hereafter we use the notion of ‘dense solvability’ for problem (3.1)—(3.3) (see

[5D).

Definition 3.1. We say that problem (3.1)—(3.3) is densely solvable (or the prop-
erty of dense solvability holds for (3.1)—(3.3)) if for any g > 0 there are functions

11,12,\75uch that the problems
Lith = f+ @Vin Q;, (b}) "0 = (b})~gonTy, (b)~Ty = (bl)"AonS
Lot = fin Qz, h=gonl,, th=lonS (3.7)
have the solutions ty, U, such that

101 — T2 Ly () < &1 (3.8)

(This is also referred to as a property of ‘approximate’ controllability for problem
(3.1)-(3.3).)

Let us now consider problem (3.1)—(3.3). Should two solutions {Lﬁl), ugl), 11(1)’
7L } and {u , Uy @ /11(2)’ 12(2 ()} exist, their difference u = ugl) — ugz),

, v = v —v(@ would satisfy the equations

Liuy=wvin @, (OY) u=00nTy, () u=(Mm) A onS

Loup =0 in Qy, W= Oon Ty, w= 12 on S (39)
U = U, in Q.

From (3.9) for u; = U, = uin Q4, we obtain the boundary value problem

Lou=0 in Q

Llu_bn§u+b g +uu=wv=0 on 9dQ. (3.10)
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If assumptions (1.4) are valid, we have:

Lou=0 in Qio, u:%zo on AT®,  k=1,....m
u=0in Q15 by the uniqueness continuation theorem. Hence,v=0, % =0, ux=0
in Q, k=1,2, i.e. the solutions of (3.1)—(3.3) are unique.

The same conclusion holds when assumption (1.5) or (1.6) rather than (1.4) is
valid.

The uniqueness result is valid for problem (3.1), (3.2), (3.5) (equivalently (3.1),
(3.2), (3.4)) for any o > 0. Let us study the existence of solutions of this problem.
If oo > 0, existence and uniqueness are proven by invoking the results of [1].

Now, we consider the case o = 0. First, we prove the ‘dense solvability’ of
(3.1)—(3.3). For this purpose let us consider the homogeneous adjoint problem cor-
responding to (3.1)-(3.3): find o, g, wsuch that

L§°)*q1 = 12w in Q;, (b)) =0 on 9Q

Lgoqu =x12W in Q, G=0 on JQ (3.11)
(b}) "1 =0 on S, v%:o onS, oq=0in Q.

The last relation yields: g = 0 in Q5. Now, using the equations in Q; and Q,, we
also conclude that w=0in €2, gx =01in Q, k=1,2. So the adjoint problem (3.11)
admits only a trivial solution. If we apply the theory of operator equations [1, 5], we
have the dense solvability of (3.1)-(3.3). Besides, the solutions of (3.1), (3.2), (3.5)
for sufficiently small o > 0 can be chosen as ‘regularized approximations’ of the
solutions of (3.1)—(3.3) such that (see [1]):

Liuy = f+ v in Qp, (b})~up=(b})"gon Iy
(b)) ur=(b)"A on §
Lu=fin Q, uw=gonTl, w=2Aon$S (3.12)

1
Jo(us, Up) = 5112 (s — )1, ) < 1

and
212(u1 = W) [1f, ) — O @s & — +0 (3.13)

where ug = u(a), &k = A(o), k=1,2, v=v(a) are the solution of (3.1), (3.2),
(3.5).

Remark 3.1. Using (3.13) and the results from the theory of PDE, it is easy to
obtain some additional convergence results such as

Hb ) VquLz(Ql) + quHLz(Ql) + HqZHLz(Qz) —0, quHHl(Qz) —0asa—+0
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and
%l[H2(q,) — 0 as a — +0 if € is convex or d€2; is smooth.

Let us formulate the assertion.

Proposition 3.1. For problems (3.1)—(3.3) and (3.1), (3.2), (3.5) the following
statements hold true:

(1) Problem (3.1)—(3.3) isdensely solvable.

(2) For any o > 0 problem (3.1), (3.2), (3.5) (equivalently, (3.1), (3.2), (3.4)) has
the unique solution w = ug(o), Ak = Ak(e), k=1,2, v=v(a) and

[ x22(U1 — U2) [, ) — O @s & — +0.

(3) If problem (3.1)—(3.3) has the unique solution Lﬁo),llfo), k=1,2, v,
uar) = U, Aa) =A%, k=12, v(a) v as o — +0.

(4) 1 {ul}, {4}, k=1,2, v are calculated by the convergent iterative process
(3.6), for any & > 0 there area small o > 0 and a sufficiently largem=M >
1 such that || x12(Uf" — u)[lL,@) < &, i.e, {ud} {AM}, k=1,2, v can be
considered as an approximate solution of (3.1)—(3.3).

(5) If (3.1)~(3.3) hasthe unique solution (*, 1.”, k=1,2, V¥,

o A= A9 k=12, V">V asa—0 and m— o

and for a sufficiently small o > 0 and large m= M > 1 the functions ", A", v™
can be chosen as approximations of q&o) , /léo), VO k=1,2.

Statements (1), (2) have been formulated earlier. The proof of (3)-(5) follows
from (1), (2), the convergence of (3.6) and the general results of the theory of ill-
posed problems [1, 11, 12].

Remark 3.2. We call attention to the following point: if || — Up||(,(qy,) — O,
o — +0or [uf'— U, q,) — 0as & — +0and m— e, we do not expect the con-
vergence of both v(a) and V"(a) to zero as o« — +0 and m — < in the general case
(because in this case it can be in contradiction with the results from Propositions 1.1
and 1.2).
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4. DOMAIN DECOMPOSITION ALGORITHMS
WITH ‘MIXED-TYPE' CONTROLS

Now we study domain decomposition algorithms based on optimal control ap-
proaches with different types of controls on §,S, and in Q5. We consider the
following optimal control problem: find w, Uy, A1, A2, Vv such that

Liup = f+ v in Qq, (b,l])‘ul = (b%)‘g on Iy

4.1
(b})~u = (b)) 7 on S @b
L o . o 8U2 2\ o 2\
o =f in Qy, =g on Iy, (v%Jr(bn) u2> =(by)"A2 on S (4.2)
inf Jo,(ur, Uz, A1, 42,V) (4.3)
)Ll,}Lz,V
where @ and J,, have been defined in the previous section.
The variational equations correspondig to (4.3) are
Lgo)*ql = X12(U1 — Uz) in Ql, (bﬁ)*ql =0 on 8!21
Léo)*qz =x2(l1—W) in Q, ¢=0o0nTI;
(4.9)

JQp 25+ _

(V%‘i‘(bn) q2> =0on S

a2+ 0 p=00nS, o) A+ =00 S
awv+ g =0 on Q.

The iterative process that we propose to solve (4.1), (4.2), (4.4) is: for any given
A0 A2,
Llurl“: f+oVv" in Qy, (b%)_UT: (b}])‘g on Iy
(bf)~ul' = (bp)"A[" on §
Jdu

m
Lul=f in Q, ul=g, (va—;+(b§)-ug“) — ()" A" on S

L0 = i2(UP — uB) in @1, (bj)"af' =0 on 90y

LG = yip(UP— W) in Qp, =0 on I (4.5)

e 2N m) _
(vm+(bn) q2> =0on S
(BR) =A™ = () Al — pm(ex(bE) A"+ (b)) on S
(02)~ A" = (03) " A" — Ym(0x(03) "'+ (02) ") on S

oVl = oV — (V™ + o) in Qi, m=0,1,....
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To study the existence of the solution (when o = 0, uniqueness for problem
(4.1)—(4.3) follows from that of (3.1)—(3.3)) let us consider the adjoint problem
L§°)*q1 =x12W in Qi, (bf)Tgr =0 on 9

* . d
Lgo) Q2 = x12W in Qp, =0 on Iy, (v%+(bﬁ)+q2) =0on S (4.6)

By~ qp=00nS, (BB) @p=00nS, og=0in Q.

The latter relation implies that oqp = 0 in Q4. Therefore, w= 0 in Q1. The function
O satisfies the following equations:

Léo)*qg =0in Q, g=0o0nT

)
(V%+(bﬁ)+%> =0on S, (B) @=0o%

and (as meas(S, ) > 0)

Lgo)*qZZO in Qoy, qZ:%:O on g

Hence, if meas (S;) > 0, then gp = 0 in Qy, problem (4.6) has a trivial solution and
we conclude that the boundary value problem (3.1)-(3.3) is densely solvable.

Thus, we obtain the assertion.

Proposition 4.1. If meas(S, ) > 0, the assertions of Proposition 3.1 hold true
for problem (4.1)-(4.3) (instead of (3.1), (3.2), (3.4)) and for process (4.5) (instead
of (3.6)).

5. DOMAIN DECOMPOSITION ALGORITHMSFOR SYSTEMS
OF EQUATIONS

In this section we generalize the above approach to the case of heterogeneous sys-
tems of equations. We pay attention to the coefficient v which can be equal to zero
in some subdomain of € or everywhere in Q. In the following we assume that

Q= Ukoq ﬁg'?, where each subdomain Q&? is convex or has a smooth boundary
QLY.

5.1. Let us consider the boundary value problem: find uc = (ux1,Ux2), Ak =
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(A1, Ak2), k=1,2, and v = (v1,V2) such that
—(V- (V1V))U1+(V-b)U1+B()U1 =f+owvin Q

Ju
<v18—1+(br1])’u1) = (brl,)*g on I’y

Ju
(vla—nlJr(brll)*ul) =Mm) "2, 0n S (5.1)
—(V~(VzV))Uz—i—(V'b)Uz—I-B()UZ:f in Q
Ju
(Vza—r]2+(br21)_uz> =) A2 0nS, u;=0o0nT,
U; = Uy in Q1

where b = (by,b), {(bX)~},{(bK)"},® are defined as in the previous sections,

f=(f1,f2), 9= (01,02) are given vector functions, By = {bi(?)} is a2 x 2 matrix
which is assumed to be positive definite (but not necessarily symmetric). We assume
that there exist two constants g, Co > O:

2 2
Z blj &i&j 2CO|€‘2 Z b” €|€J+(—Z€ ,Uo\é\z vé eR?vx e Q.

,j=1 i,j=1 i=1

The coefficients v, v, are bounded and v; > 0in Qq, v, > const > 0 in Q, and
we assume all given data in (5.1) to be smooth.

5.2. To formulate the weak statement of (5.1) we introduce the real Hilbert
spaces:

Hok = [Lo(Q))* =Hg, k=12,  Hipp=[La(Q12)]* = Hj,

Xy = {Uk = (Uk1,Uk2) : Uk € Hok,

Uil = (/Q (Vi Vuil? + | (b~ V)uwl? + Juy*)d2
k
1/2
+/ BT lu?dl) <o}, k=12
[ () udr) < oo}
Xgo) = {Uk €Xo:up=00n Fg}
1/2
Lo(8f) = {Aut IAulug = ([ BhPAr) <o)
1/2
Lo(TY) = {gk:||gk||L2<r5)=(/r(bﬁ)plgklzdr) <°°}, p=—+ k=12
k

The spaces L2(S,),L2(S}),L2(T} ), L2(T}) are identified with their dual spaces.
Note that we do not identify X with Xi. Thus, we have: Xy C Hok = Hg ) C X,
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k=1,2. In the sequel, the functions of Hj, are extended by zero to include {\ Q12
and the multiplication of u € Hi, by x12 is considered as the trivial continuation of
u to i\ Q2. We identify Hi, with the subspace (k=1,2)

0 o
Hé& = {u € Hox: u=0in Q\Qu2,  ullyyo o) = [Ulli, = ||U||[L2(le)]2}'

To formulate (5.1) in the weak form we multiply the equation in € by U; € Xy in
Ho,1, the equation in €, by Uy € xg‘” in Ho 2. After integration by parts we obtain

the following problem: find u; € Xq1,u, € ng’),ak €ly(§), k=12, andveHyp
such that

al(ul,ﬁl) = (f,Gl)HM + ((JOV,LI\;L)|-|O‘l +/(br11)72'1 -UdD
S
+/ (b})~g-Tydl’ Vi € XV
(5.2)

(Ug,Uz f U2 Hoo —i—/ 2,2 -Updl VUp € Xgo)

X12U1 = )C12U2 a.e.in Qp
where (U, Uk)H,, = (uk,Gk)[Lz(Qkﬂz and
ak(uk,Gk) = /(kauk,VGk — Uk (b,V)Gk—I— (Bouk) Gk) dQ
Qg

+/(bﬁ)+uk~ﬁkdr, k=12
0Q

Note that

/ (b%)+U2 ~ngl“ = /(bﬁ)+U2 -szl“, u, =0, Gz =0onT5.

0Q; S
Ifvi=0inQq,
al(ul,ﬁl) = /(—Ul . (b,V)Gl + (BOU]_) Gl)dQ + / (b:rll)JrUl -Gldl".
Q1 an

If vi =0in Q;\Q12, we have
a1(uy,Gr) = /(—ul-(b,V)al+(Bou).a1)dQ
1\ Q12

+ / (ViVU1 - Vi, — s - (b, V)Gi1 + (Bou) - Gr )dQ+ / (b1Y* Uy - Gy
Q12 o0
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Let us define the following “direct’ and ‘adjoint’ operators:

L1: X1 — Xj, (L1u1,U1)Hy, = ar(ug,Uy), Ui € X3 YUy € X1
Lo XS = X (Loug, o)k, = @0(us, ), upe X vy e xY
L;: X1 — X3, (U1,L3u1)H,, = a1(Uz,uy), ui € X YUy € X3
Ly XY = X", (T, LsUz)xg, = @2(Ta, Up), upeX? vy exP
Br:Lo(S)) = Xi,  (Bidy, W)y, = [(b) A1-0ydl, A;elp(S) ViyeX;

(bﬁ)ig-ﬁldl—‘ Vﬁl € Xi.

$
By :La(Sy) — X9, (Bg/’Lz,G)HO‘Zz/(bﬁ)*lgﬁzdr, Arely(S) WupexV
S
Bug:Lo(Ty) =X}, (BuggOng, = [

Now problem (5.2) can be rewritten in the operator form as follows:

L1u1:f+a)v+Blll—|—Bl,gg in X’{
Loup =f+ByA, in Xgo)* (5.3)

/hgul = X12U2 a.e€. in Q.

Note that the latter relation and the equation J(uy,uz) = || x12(us — U2) Hfl_z(g))z/z =
0 are equivalent.

5.3. Consider the optimal control problem: find uy € X1,uy € x;‘)), Arela(S),
k=1,2 and v € Hj, such that

Liuy =f+ov+Bid+ Blﬂgg (5.4)
Loup, =f+ lez (5.5)
inf Ja(UJ_,UZ,A'l,A.Z,V) (56)

ll, 2,V

where

1
Jolun.tz A Aa.v) = 5 (@ [ (6)7AaPPdr o [ (6F) Ao

+a fo w\v]zdl"Jr/ x12(ug — uz)de), o = const > 0.
Q

If o =0, (5.4)—(5.6) is the weak statement of (5.3).
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The system of variational equations corresponding to (5.4)—(5.6) reads
al(ul,Gl) = (f Gl H01+/ bt 73.1 -Gldl"+/(br1])*g~ﬁldl“ YU, € X1

az(up,Uz) = (f,Uy) Ho. +/ )"Ay-Udl VU, € Xgo)

ar (G1,01) X12(U1—U2)7 Ou)Hey YO1 € X1

( (.7)
8 (82, 02) = (f12(Us — Uz), G2)hg, V2 € XY
o(by) A1+ (b)) g1 =0 aeon§
o(b3)~ 12+(b%)_Q2:0 a.e.onS

aov+oq; =0 a.e. iny.

Proposition 5.1[3]. (1) If v, v, =constin Q, v1 # v, and one of assumptions
(1.4), (1.5) or (1.6) with u = By + (divb) - I is satisfied, if problem (5.7) for oo =0
has a solution, this solution is unigue.

(2) For any o > 0, problem (5.7) has the unique solution u = ux(a), Ak =
A(a), k=1,2, v=v(a).

(3) Problem (5.3) is densely solvable and there holds: || a2(u1 (o) — uz(e))||Hy, —
0, ax — +0.

If problem (5.3) has the unique solution u§°>, ugo) ,A§°>,x;°>,v<0>, we have u(ot) —
ul?, A(a) =AY, ov(a) —» ov®, k=1,2.

Let us consider the following iterative process to solve (5.4)—(5.6) approxi-
mately: given 22,49,v°, we solve
Liul = f+ ov™+BiAT + By g0
Loud = f+BoAY (5.8)
2™ = My d (P U AT AT VY, m=0,1,...

where z" = (A7, A", v™) is the vector of controls and J, is the gradient of J,. Using
the adjoint equations, the third equation yields
Lidf' = xiz(u' —u3)
L3093 = x12(uf' —uz)
(b5) AT = (b)) AT — ym(ex(b}) AT+ (b)) af) aeonS (59
(67) 25" = (B}) A% — m(0x(B) xz +(bp)a)  aeonS

oVl = ov" — y(cov™+oqf) a.e.in(y
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m=20,1,....

For each o > 0, one can choose the parameters {y,} can be choosen such that
process (5.8) is convergent [11-13].

Theorem 5.1. The following assertions hold true:
(1) For any given € > 0, there exist a small o > 0 and M = M(«, €) such that
722 (UM — ud) ||, < &, for the solutions of (5.8) ((5.9)); thus

2 (Uh! —ud) [y, — 0 @s o — +0, M — e (5.10)

and uM, u}, A} A% WM can be considered as an approximate solution of problem
(5.3).

(2) I problem (5.3) has the unigue solution U ul” A% 2% v,

2
0 0
3, (10 = el I8 = M) ) + 10040 =) o, — Oz @ 0
B (5.11)

M — oo

and relation (5.10) isvalid too, where u",ul’, AT, A5, v are calculated by the iter-
ative process (5.8).

The proof of this theorem follows from the assertions of Proposition 5.1 and
the convergence of iterative process (5.8). If v =0in Q; or vi =0 in Q;\Qy, the
same results are still valid.

For simplicity we do not write down algorithm (5.9) ((5.8)) in terms of equa-
tions (5.7). This algorithm can be realized numerically in some cases by considering
(5.4)—(5.6) as an extremum problem and in form (5.8). In other cases, this algorithm
can be considered in form (5.9) as an iterative method to solve system (5.7). In both
cases there are specific methods for choosing the parameters {y,} [11-13].

6. CONCLUSION

We have analysed some heterogeneous domain decomposition algorithms based on
the optimal control approaches to ‘overlapping domains €, <Q,’. To prove the con-
vergence of algorithms we need to study the uniqueness and existence questions for
the boundary value problem and the exact controllability problem ‘stated initially’.
We proved that to construct approximate solutions, which coincide in &, = Q; NQ,
with any accuracy, the ‘volume control” must also be introduced into consideration.
“Volume controls’ can be introduced into both equations as well.

In [3] we also analyzed the control approach developed in the previous sections
to heterogeneous domain decomposition methods in the case of the ‘standard’ (ho-
mogeneous) domain decomposition method for elliptic equations.
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Some of our conclusions are confirmed by numerical experiments described in
[4].

We hope that the results presented in this paper will be helpful in the construc-
tion of domain decomposition algorithms for other types of equations and boundary
conditions, for systems of equations, and for problems inQ Cc R', n> 2.
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