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Institut Quantique, Département de Physique
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Abstract—In this article we present two experiments carried
on diffusive metallic wires and aiming at understanding better
current fluctuations and the informations we can extract from
them. The first experiment studies the non-gaussiannity of those
fluctuations at low frequency. The second one studies the dynamic
response of current fluctuations to an ac exitation. From the
frequency dependence of this response function we obtain a direct
determination of the inelastic relaxation times.

Diffusive contacts have attracted a lot of interest over the
years [1]–[8]. This is probably due to their simplicity making
them good candidates for reliable theoritical predictions of
their transport properties. In addition, the ease of tuning
the interactions at play by simply changing the length of
the sample makes the diffusive wire a perfect platform for
experimentalists. It allows the study of electron transport in
presence of interactions or the test of new experimental probes
in different regimes. In this paper we will demonstrate with
two experiments the versatility of such a system. In a first
one we will be interested in a short sample for which, at low
temperature, interactions are negligible and the transport is
elastic and diffusive. It has been predicted that current fluctua-
tions in this elastic regime are non-gaussian and exhibit a third
moment 〈δI3〉. We will present one of the rare experiments
performed on high order moment of current fluctuations. In
a second experiment we will demonstrate a new experimental
technique allowing a direct determination of relaxation times
of electrons. We will distinguish two regimes. The diffusive
regime for short wires where relaxation is dominated by the
diffusion time τD along the sample. And a macroscopic regime
at higher temperature and longer wire length, where relaxation
is described by electron-phonon interactions allowing the
determination of the electron-phonon interaction time τe−ph.

I. NON-GAUSSIAN CURRENT FLUCTUATIONS

At low frequency, the variance of current fluctuations in
a diffusive wire has been calculated using many techniques
[1]–[3], all providing the same answer for the spectral density
of current fluctuations SI2 measured at temperature T with a
voltage bias V :
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where R is the sample resistance, e the electron charge and kB
the Boltzmann constant. This result indicates the existence of
shot noise with a Fano factor F2 = e−1dSI2/dI = 1/3 at large
bias V � kBT/e, which has been confirmed experimentally
[8]. The reduction of the Fano factor as compared to that of a
tunnel junction, F2 = 1, is interpreted in the quantum theory as
stemming from the existence of well transmitting channels and
in the semi-classical theory from the existence of a position-
dependent distribution function. The third moment of current
fluctuations has also been calculated by several theories [3]–[7]
which at low frequency all yield to the same spectral density
SI3 given by:
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This result differs from that of a tunnel junction SI3 = e2I
on two main factors: first it depends on temperature; second
it has a much lower Fano factor at high voltage, F3 =
e−2dSI3/dI = 1/15 instead of F3 = 1 for the tunnel junction.
Eq. (2) corresponds to a measurement performed with a
noiseless voltage bias and an ammeter, i.e. an apparatus with
an input impedance much lower than that of the sample. This
situation can be achieved with a high impedance sample,
but a typical metallic wire has a low impedance and one
has to consider the effects of both the finite impedance of
the environment, here a resistance RA (the input impedance
of the amplifier), and the current noise experienced by the
sample, here generated by the amplifier used to detect current
fluctuations and described by a noise spectral density SA.
Those environmental effects are very subtle on the third
moment of voltage fluctuations. They have been thoroughly
studied both theoretically [9], [10] and experimentally [11],
[12] and obey:

SV 3 = −R3
DSI3 + 3R4

D(SA + SI2)
dSI2

dV
. (3)
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Fig. 1. Schematics of the experimental setup. A/D represents a 14 bits, 400
MSample/s digitizer.

where RD = RRA/(R + RA) with R being the sample
resistance. As a consequence, a reliable way to characterize
all the environmental terms is required to extract the intrinsic
third moment of current fluctuations SI3 .

Experimental setup. The sample is a 1 µm long, 10 nm wide,
165 nm thick Aluminum (Al) wire of resistance Rw = 30.5 Ω.
Its contacts, also made of Al, are much larger (400 µm×400
µm) and thicker (200 nm) to make sure they behave as good
electron reservoirs [13]. An Al tunnel junction of resistance
Rj = 34 Ω is used as a reference to calibrate the setup.
Both samples have been made by e-beam lithography and the
metal has been deposited by double angle evaporation [14].
The experimental setup is presented in Fig. 1. The samples
are placed on the 7 mK stage of a dilution refrigerator. They
are kept in their normal, non superconducting state with the
help of a strong Neodymium permanent magnet. The two
samples are connected to a cryogenic microwave switch which
allows us to measure either of them without changing anything
in the detection circuit. They are dc current biased through
the dc port of a bias-tee and ac coupled to a cryogenic
microwave amplifier in the range 40 MHz-1 GHz. The use of
a cryogenic amplifier both optimizes the signal to noise ratio
and minimizes the noise experienced by the sample which
leads to environmental contributions. The signal is further
amplified at room temperature in order to achieve a level high
enough for digitization. Non-linearities in the detection are
very detrimental since they lead to strong artifacts. Despite
the use of ultra-linear amplifiers, non-linearities still give rise
to a contribution which is an even function of I in the sample.
We simply remove this by considering [SV 3(I)−SV 3(−I)]/2.
After amplification the signal is digitized by a 14 bit, 400
MS/s digitizer with a 1 GHz analog bandwidth. We measure
real-time histograms of the signal from which moments are
computed.

Results: elastic transport. In the inset of Fig. 2 we present
the measurement of SV 2 for the tunnel junction (orange
symbols) and the wire (purple). From the high current slope of
SV 2 vs. I for the tunnel junction we find the gain of the setup.
Then, we deduce the Fano factor of the wire F2 = 0.35±0.02,

Fig. 2. Intrinsic third moment of current fluctuations SI3 vs. I for the wire at
different temperatures. Symbols are experimental data, lines are the theoretical
expectations of Eq. (2). Inset: SI2 for the tunnel junction (orange) and the
wire (purple) T ∼ 640 mK.

in good agreement with the theoretical value of 1
3 in Eq. (1).

This ensures that electron transport is elastic in the sample, in
agreement with other measurements of similar wires [8], [15].
From SV 2 we also deduce the electron temperature for the wire
and for the tunnel junction, as well as the noise temperature of
the amplifier Ta ' 7.5 K. Values of the temperature indicated
in the various figures correspond to electronic temperatures
deduced from the measurements of SV 2 .
We then extracted SV 3 vs. I for the tunnel junction and the
wire at temperatures ranging from 130 K to 660 K. Following
the procedure of [16], we use the measurements performed
at all temperatures on the tunnel junction to extract the
parameters that characterize the environment, i.e. the amplifier
impedance RA = 44.8 Ω and the effective environmental
noise temperature T ∗

0 = 0.54 K. From the knowledge of the
environmental parameters we can extract the intrinsic third
moment of current fluctuations in the wire using Eq. (3). The
corresponding results are plotted in Fig. 2. The theoretical
predictions of Eq. (2) are plotted as solid lines with no fitting
parameters. A clear agreement between experiment and theory
is achieved at all temperatures for the current range explored.
At higher temperature electron-electron interaction start to be
important. We also performed this experiment at higher current
where interactions have to be taken into account modifying the
statistic of electron transport [17].

II. DETERMINATION OF RELAXATION TIMES

The environmental terms we have subtracted correspond
to a feedback mechanism due to the non-linearity of the
second moment of current fluctuation. In fact the intrinsic third
cumulant itself is explained by such a feedback in the quasi-
classical theory. At a given frequency the effect of the feedback
is to modulate the noise, hence one could think of using a
controlled excitation power δP (f) to effectively reproduce,
in a controlled manner, this modulation. This would permit
to easily measure a response function R(f) = δS2/δP (f).
At low frequency R(0) correspond to the noise equivalent
to the environmental terms of the third cumulant. At higher



Fig. 3. Experimental setup. Diode symbol represents a power detector.
VNA=Vector Network Analyser

frequency R(f) should exhibit a cutoff frequency revealing
any relaxation dynamic present in the sample.

The frequency dependence of R(f) has been calculated for
a metallic wire in different regimes [18]. For long enough sam-
ples the energy relaxation of the electron gas is dominated by
electron-phonon interactions. This occurs when L � Le−ph

where Le−ph is the electron-phonon scattering length given
by L2

e−ph = Dτe−ph with D the diffusion coefficient. For
shorter samples L� Le−ph electron-phonon processes are in-
efficient and the energy relaxation is dominated by diffusion of
hot electrons into the contacts. In both regimes the frequency
dependence of |R(f)|2 is extremely well approximated by a
Lorentzian decay:

|R(f)|2 =
R(0)2

1 + (2πf/Γ(Te))2
(4)

where Γ the energy relaxation rate depends on the relax-
ation process. The frequency dependence of R(f) is a direct
probe of Γ without any assumption about the specific heat
Ce as in previous work [19]. In the presence of several
relaxation processes, the fastest relaxation usually dominates.
Since τe−ph is strongly temperature dependent and diverges at
low temperature whereas τD is temperature independent, the
energy relaxation is dominated by electron-phonon coupling
at high temperature (τe−ph � τD) and diffusion at low tem-
perature (τe−ph � τD). Our measurement allows continuous
monitoring of Γ as a function of temperature.

We have measured Γ(Te) for six samples made of different
metals (Al, Ag) and different geometries. The wires have
length L ranging from 5 µm to 300 µm and thickness d
of 10 nm for the shortest and 20 nm for the others. The
width has been adjusted to obtain a resistance of the order
of 50 Ω for impedance matching purpose. The experimental
setup is presented in Fig. 3. The sample, placed at the 10 mK
stage of a dilution refrigerator, is dc and ac biased through
the low frequency port of a diplexer by a time dependent
voltage V = V0 + δV cos(2πft) with δV < V0. The dc part
V0 is used to control the sample mean electron temperature
through a constant Joule heating PJ = GV 2

0 and allowed us
to work between ∼ 50 mK and ∼ 2 K. The superimposed
ac power at frequency f , δPJ(t) = 2GV0δV cos(2πft)
modulates the electron temperature of the sample. To detect
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Fig. 4. Amplitude of the normalized thermal impedance as a function of
frequency for sample 2. The symbols are the experimental data and the dashed
lines are fits according to Eq. (4). The different curves correspond to different
electron temperatures from '50 mK to '1 K.
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Fig. 5. Energy relaxation rate as a function of electron temperature for all
the samples. Dashed lines are fits according to Eq. (5)

this temperature, we measure the rms amplitude of the voltage
fluctuations (Johnson noise) generated by the sample. Indeed,
the noise spectral density of voltage fluctuations SV is related
to the electron temperature by SV = 4kBTe/G. The voltage
fluctuations are measured in the frequency band ∆F ' 1.5−5
GHz (high frequency port of the diplexer) and amplified
by a cryogenic amplifier placed at the 3 K stage of the
dilution refrigerator. Their rms amplitude is detected by a
power meter (diode symbol in Fig. 3) whose response time
τdet ∼ 1 ns limits the maximum frequency at which the
noise modulation can be detected, f . 1 GHz. Experiments
have been performed at a phonon temperature of 10 mK. In
Fig. 4, we present the normalized thermal impedance versus
frequency for sample 2 for electron temperatures between 53
mK and 1.04 K. The symbols are the experimental data and the
black dashed lines the fits according to Eq. (4). The frequency
dependence of |R(f)|2 is very well fitted by a Lorentzian,
Γ(Te) being the only fitting parameter. We have performed
this experiment for different samples and extracted Γ(Te) on
5 orders of magnitude.
We present in Fig. 5 the measured relaxation rates as a function
of electron temperature for all the wires. At low temperature



we observe a plateau, the relaxation rate does not depend
on temperature. In this limit only diffusion cooling occurs,
and Γ(Te) ' 10.01/τD. At high temperature the observed
Tn
e dependency is characteristic of an electron-phonon cooling

process [20]. In [21] the dynamic has only been calculated in
the electron-phonon cooling or diffusion cooling regimes and
not during the crossover. We thus assume that the frequency
dependence of |R(f)|2 follows a Lorentzian even during the
crossover between the two regimes with a relaxation rate given
by the sum of the relaxation rates of the two processes:

Γ(Te) '
10.01

τD
+ ATn

e . (5)

Dashed lines in Fig. 5 are fits according to Eq. (5). The
plateau observed in Γ(Te) at low temperature, see Fig. 5,
provides a direct determination of the diffusion time τD
as a function of sample length. At high temperature the
relaxation is dominated by electron-phonon interaction , the
expected value for three dimensional phonon bath in the
clean metallic limit [20], [22]. In previous experiments, τ−1

e−ph

has been reported to behave as Tn
e with n ranging from 2

to 4 depending on the nature of the disorder [19], [23]–[27].
Disordered gold wires have been observed to behave as
T 2.9
e below 1K [26]. As far as we know, electron-phonon

relaxation rates of Al and Ag have not been measured below
1K, a temperature range hardly explored [19], [26], [27].
From this experiment we are also able to extract the specific
heat of electrons, for more information see [28].

III. CONCLUSION

We have measured the third moment of current fluctuations
in a wire, thus demonstrating that even the simplest conductor
exhibits non-Gaussian noise. Our data at low voltage are in
very good quantitative agreement with the theory. In particular
we have found a Fano factor F3 = 1/15 characteristic of
elastic transport in diffusive conductors. We have also demon-
strated a sub-kelvin direct measurement of inelastic times in
wires made of simple metals, which provides the determination
of the electron-phonon scattering time, the diffusion time and
the electron heat capacity of the sample. Our approach is
however extremely versatile, and of great interest to study
interactions and electron diffusion in modern materials.
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