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Abstract— Two methods of detection and characterization 
of blinking pixels are presented and compared. The first one is 
based on the time-scaled signal and the other is based on the 
power spectral density of the signal. These methods are then 
applied on a temperature dependent measurement. It is then 
shown that the number of RTS pixels and the blinking 
frequency follow a Boltzmann behavior.  
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I. INTRODUCTION 
    Within the frame of High Operating Temperature (HOT) 
infrared focal plane arrays (FPAs), low frequency noise, 
otherwise called 1/fα noise [1], is one of the main issues to 
tackle in terms of long term stability of the image quality. It 
contributes to the degradation of the images quality. And 
then it decreases the time before a two-point correction is 
needed. Studies are led to uncover the predominant low 
frequency contributor to the degradation of RFPN in visible 
CMOS [2] and infrared FPAs [3][4][5][6]. Therefore, 
obtaining a physical understanding of the main sources of 
1/fα noise, such as Random Telegraph Signal (RTS), is 
critical to improve the detectors image stability.  
    A RTS pixel, usually called “blinking pixel” has its 
temporal signal fluctuating between two or multiple stable 
states. It is characterized by the amplitude jump between 
these states, and the mean state lifetime. If we define the 
states as: [{1}, {2},…, {N}], the blinking frequency is 
defined as follows: 

 (1) 

with <τi> the mean lifetime of the level i. Fig.1 shows an 
example of a bi-stable RTS pixel, with its associated 
amplitude and mean lifetimes. Since the lifetime distribution 
for one single pixel is random, we can also assign it a 
Gaussian distribution with a standard deviation στ. The 
amplitudes and lifetimes greatly differ from one blinking 
pixel to another, which makes them difficult to detect 
systematically.   
    In the first part of this paper, our RTS pixels detections 
and characterization methods and algorithms are described. 
The first method is based on Pruned Exact Linear Time 
(PELT) algorithm [7]. It is used to detect and characterize 
blinking pixels. The second method is Low Frequency 

Noise Spectroscopy (LFNS) [4], which is, in our case, solely 
used for characterization. In a second part, preliminary 
Arrhenius plot results obtained with both methods are 
presented and discussed. 

 
Fig. 1. Typical bi-stable RTS signal over time and its different properties..  

II.     RTS PIXELS DETECTION AND CHARACTERIZATION 
    RTS pixels detection and preliminary characterization in 
HgCdTe FPAs have already been achieved in the case of bi-
stable signals in [8]. RTS pixels with random white noise 
will present multiple Gaussians on their temporal signal 
histogram. These Gaussians can then be fitted and if there is 
more than one, we may assume the pixel has RTS noise. 
Their mean value gives us information about the amplitude 
of the telegraph signal. Multiple Gaussians fitting method 
may be used in the case of multi-stable RTS pixels. 
However, the characterization based on this method, 
developed by Yuzhelevski et al. [9] is not trivial in the case 
of multi-stable pixels, and at the moment we are only able to 
extract RTS lifetime parameters for bi-stable pixels with this 
technique.  
    Thus, we used an optimized changepoint detection 
algorithm presented in [7], which is called “Pruned Exact 
Linear Time” (PELT) method. Given a set of data X, we can 
define a cost function well-suited to a normal distribution 
with changing mean, and a variance criterion as follows: 

Cr=  
where MAD is the Median Absolute Deviation of the data, 
and k a sensibility factor.  
    This criterion is mostly empirical but derives from the 
idea of locating the segments of data which are the furthest 
from the Gaussian behavior. Using the PELT algorithm, the 
local minima of the cost function are found, then providing 
the position of the data changepoints. At this point of the 
algorithm, there are as many “states” as there are 
changepoints. In order to access the real values of the states, 



we attribute each point of the signal to one of the states with 
a “State Reduction” (SR) algorithm we developed. It uses 
the following criterion on the pixel’s non-RTS Gaussian 
noise: if the difference between two states is lower than m 
times the white noise of the signal, these two levels are 
equivalent to a state with a level equal to their mean value. 
The coefficient m is empirical, and may be adjusted. 
However it is most of the time close to 2. The lifetime 
distribution of each state can then be obtained, with its mean 
value and standard deviation. Fig. 2a) and b) shows PELT 
changepoint fit in two types of cases: high jump amplitude-
to-noise ratio and low jump amplitude-to-noise ratio. We 
can see that in both cases, the PELT curves (in red) match 
well the bi-stable and multi-stable telegraph signal (in blue). 
Fig. 2c) shows 2b) associated histogram, and highlights the 
difficulty to fit Gaussians on this histogram. 

 

 

 
Fig. 2. RTS detected pixel signals (blue curve) and the visualization of 
their PELT-estimated bi-stable and multi-stable states (red curve) in 
different cases: a) high jump amplitude-to-noise ratio case, b) low jump 
amplitude-to-noise ratio case, with c) its associated histogram.  

    This PELT method is independent from state lifetimes, 
which  gives as much weight to short-lived states as to long-
lived sates and enables the detection of RTS pixels with 
unbalanced lifetimes (for example: ). But it also 

makes the spike-typed signals (very short and random 
pulses) more detectable and therefore brings false alarms.  
The other main associated drawback is its slightly higher 
tendency to detect changepoints along low frequency drift. 
This effect is mainly corrected by our SR algorithm but 
errors, such as detecting very slow drift noise as RTS, can 
still be noted, as the confirmation of the algorithm remains 
visual. 
    In order to confirm the veracity of the mean lifetime 
values extracted with PELT method, Low Frequency Noise 
Spectroscopy (LFNS) [10][11][12] is systematically  applied 
on samples with a sufficient amount of images (min. 5k 
images, typ. 50k images). The LFNS spectrum is the Power 
Spectral Density (PSD) spectrum multiplied by the 
frequency. As mentioned in the introduction, RTS noise is 
part of the “1/fα” low frequency sources of noise of the 
spectrum, where α mainly ranges between 1.0 and 2.0. It can 
be shown that RTS noise has a Lorentzian spectrum with a 
corner frequency fc [7], which is the blinking frequency. It 
follows the following equation in the case of bi-stable RTS 
noise [13]:  

 (2) 

with A the RTS amplitude and τ1,2 the respective mean 
lifetimes for each stable state. We can deduce that, in this 
case, αRTS=2.0. Thus it is represented in LFNS by an intense 
peak centered on fc, while the 1/f noise is flatlined by the f-
normalization. The area of the peak is proportional to the 
square of the jump amplitude. This technique has the 
advantage of emphasizing the high-alpha sources of noise 
against the low-alpha ones. The main drawback is that this 
technique is not a self-sufficient detection technique, as we 
cannot distinguish RTS noise from Generation-
Recombination (GR) noise. Both of them have Lorentzian 
spectra and therefore have the same signature in LFNS. In 
general, this method is used to study GR noise and carrier 
lifetime, another way of reducing low frequency noise in 
semiconductors. In our case, Low Frequency Noise 
Spectroscopy is a good technique to determine precisely an 
RTS pixel blinking frequency, and is robust to 1/f low 
frequency noise, compared to temporal analysis.  
    Fig.3 presents a low frequency noise spectrum of a real 
pixel. It is fitted with a Lorentzian+white noise model and a 
value of blinking frequency is extracted. The PSD is 
estimated using the Welch periodogram method [14].  

 
Fig. 3. Low Frequency Noise Spectrum of an 140K RTS pixel and the 
fitted model with its different contributions. The corresponding blinking 
frequency of the pixel is fc=0.53Hz.  

a) 

b) 

c) 



    It is important to note that this blinking frequency is not 
representative of the whole infrared array.    With a typical 
signal of 5k frames, the measurable blinking frequency 
ranges from 0.1Hz to 10Hz. Likewise, this 
Lorentzian+white noise model is only strictly suitable in the 
case of bi-stable RTS pixels, which have a Lorentzian PSD. 
The case of multi-stable RTS pixels is more complex. If the 
number of states is three, the system contains two related 
systems. They are either two independent systems with, 
coincidentally, the same amplitude, which brings us back to 
the aforementioned case, or two strongly correlated systems. 
The PSD of such a system is unclear and is not considered at 
the moment. This is the reason why only bi-stable pixels, 
which are predominant, will be considered in is paper. 

III. EXPERIMENTAL RESULTS 
    Experimental study has been realized on a 640x512 px², 
15μm pitch, blue Mid-Wave Infrared (MWIR) p-on-n 
HgCdTe R&D FPA from Sofradir [3]. Its cutoff frequency 
is λc = 4.2μm at 140K which is in the middle of the MWIR 
band. The FPA is integrated in a custom liquid nitrogen 
continuous flow cryostat which enables control of the sensor 
temperature. The sensor is polarized in reverse and placed in 
front of a blackbody with fixed temperature (typ. 25°C). A 
series of 7 measurements of 50K images with the detector 
temperature ranging from 120K to 155K has been 
performed, during the same thermal cycle. The framerate 
being 99.8 fps, the measurement timespan is approximately 
501 s. For each measurement, each pixel with a sufficient 
noise is treated with the PELT algorithm. When a RTS pixel 
is detected, its parameters are calculated (jump amplitude, 
mean lifetime), the LFNS spectrum is computed and the 
LFNS blinking frequency is extracted. The proportion of 
RTS pixels detected for each measurement is shown in 
figure 4a). It is calculated by normalizing the number of 
RTS pixels by the highest one of the sequence (which is 
recorded at 155K). An exponential model is fitted with 
R²=0.9988. Likewise, it is confirmed by the linear fit of the 
curve: ln (NRTS) =f (1000/T) with R²=0.9977 in fig. 2b).  
We now have a confirmation that the number of RTS pixels 
inside a single MWIR blue FPA has a Boltzmann behavior. 
In parallel, it is also shown in figure 5 that blinking 
frequency is activated by temperature. Fig. 5b) shows 
superposed LFN spectra for the PELT-detected RTS pixel 
n°182113 whose temporal signal is shown in figure 5a). The 
temporal signal has been truncated to only 500 frames for 
visual convenience purposes, but the LFN spectra have been 
evaluated with the full signal, i.e. 50K images. 

 
Fig. 4. a) Arrhenius curve NRTS=f(T) of the number of RTS pixels and its 
exponential fitted model. b) ln(NRTS)=f(1000/T) curve and its linear fitted 
model.  

  
   The blinking frequency and the area of the peak appear to 
increase with the temperature, as expected. Each spectrum is 
systematically fitted with our Lorentzian+white noise 
model. Fig.5c) shows the evolution  of the normalized 
blinking frequency as a function of temperature for the same 
pixel. In the same way as the number of RTS pixels, it 
follows an Arrhenius law, which is coherent with the 
literature [3]. 

    LFNS is a very straightforward and efficient way to 
obtain corner frequencies, but is limited by the experimental 
conditions. The highest obtainable frequency is linearly 
related to the ROIC. On the opposite, the lower measureable 
frequency is linear with the actual length of the experiment. 
However, in the case of standard 640x512 pixels FPAs, the 
amount of data resulting in very long experiments is huge 
and sometimes cannot be afforded. The minimum frequency 
is then a compromise between a windowing of the FPA and 
the amount of statistics on RTS pixels needed. 
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b) 



 

 

 
 
Fig. 5. a) Temporal signal of pixel n°182113 (in blue) and PELT fit (in 
red), truncated to 500 frames for viewing purpose. b) Low Frequency Noise 
Spectra of the same pixel with their fit for varying temperatures. c) 
Arrhenius curve of the blinking frequency of the same pixel. Blue dots are 
the measured value, red line is the fitted curve.  

CONCLUSION 
    In this paper, we used two complementary methods, one 
based on the analysis of the temporal signal using the PELT 
algorithm, and the other based on the analysis of the power 
spectral density using the LFNS method. The PELT 
changepoint method is a very efficient RTS detection 
method, and extracts amplitudes, lifetimes, and blinking 
frequency for bi-stable and multi-stable blinking pixels. To 
avoid false alarms, Low Frequency Noise Spectroscopy is 
applied in order to confirm the blinking frequency obtained 
with PELT (only for bi-stable pixels for now). A pixel that 
has gone through both algorithms with consistent values is 

considered a true RTS. LFNS can also be used to study GR 
noise due to its similar spectral signature.    
   The validity of these methods has been demonstrated in 
the case of an Arrhenius law study. In parallel, this study 
confirmed the Boltzmann behavior of the number of RTS 
pixels and of the blinking frequency of an individual pixel. 
The next step in the study is to apply these methods to the 
whole RTS pool of pixels in the infrared FPA in order to 
estimate amplitude, mean lifetime and activation energy 
distributions. Those methods will be used to study the RTS 
phenomenon in cooled infrared FPA under different stress 
situations.  
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