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Abstract—Topological superconductor nanowires constitute a
strong candidate for the observation of Majorana bound states,
which are expected to lie at each of its ends. Here, we suggest
that current-current correlations probed at finite frequency offer
a promising and original tool for the further characterization
of the presence of such states in condensed matter systems,
complementary to properties studied thus far. Focusing on a
voltage-biased junction between a normal metal and a topological
superconductor nanowire, we use the nonequilibrium Keldysh
formalism to compute the finite frequency emission and absorp-
tion noise. Our results suggest that the presence of a Majorana
bound state leads to a characteristic behavior of the noise
spectrum at low frequency. While more work is still required to
ensure that this constitutes an unambiguous signature, we could
already check that different features arise for a nontopological
system with a resonant level, exhibiting a zero-energy Andreev
bound state.

Index Terms—finite frequency noise, topological superconduc-
tors, Majorana fermions

I. INTRODUCTION

Majorana fermions [1], a concept which originally emerged
in particle physics, now constitute a very active field of study
in modern condensed matter physics. In this context, it is
thought to arise from the collective behavior of a many-body
electronic system, rather than being an elementary particle.

What brought these peculiar excitations to the forefront is
the pioneering work of Kitaev [2]. Studying a tight-binding
chain of electrons equipped with p−wave superconducting
pairing between neighboring sites, he could show that for a
whole region of the parameter space (the so-called topological
phase) there exist spatially localized Majorana bound states
(MBSs) emerging at the boundaries of this one-dimensional
system.

The practical realization of such a toy model, now known
as a “Kitaev chain”, has since been an ongoing experimental
effort. One strong candidate for a real-life version of the Kitaev
chain are topological superconductor (TS) nanowires. The
latter consist of semiconducting nanowires with strong Rashba

Fig. 1. Schematic view of the setup: a junction between a voltage-biased
normal metal (light blue) and a grounded topological superconductor nanowire
(light red).

spin-orbit coupling, proximity induced s-wave superconductiv-
ity, and a Zeeman magnetic field [3]–[8]. This triggered many
attempts at finding experimental evidence of the presence of
MBSs in such realistic devices. In addition to an obvious fun-
damental interest for such an observation, Majorana fermions
also represent a promising quantum information platform with
a built-in topological protection, which constitute a very strong
motivation for firm and robust realizations of MBSs.

However, despite the significant experimental progress, an
unequivocal signature of these MBSs is still lacking. Promis-
ing experiments were conducted [9], but the features they
reveal are ubiquitous and could be associated with other
sources. This lead to many more theoretical proposals [10]–
[15] for the detection of Majorana fermions, usually relying
on the quantum transport properties of more elaborate devices.
The search for such a “smoking gun”, a signature that would
unequivocally signal the presence of Majorana fermions, is
still quite active as it has not reached a definite answer so far.

Here, we propose to consider the finite-frequency noise (i.e.
current-current correlations) of a voltage-biased normal metal-
topological superconductor (NTS) junction. This transport
property offers an original probe for the study of TS, as
it provides valuable information, complementary with, say,



the differential conductance, opening the way for a different
approach consisting in combining different resources in order
to rule out alternative physical mechanisms.

II. MODEL

The setup we consider is a junction between a normal
metallic lead and a semi-infinite topological superconductor
wire. The latter corresponds to the continuous version of the
Kitaev chain in the low-energy limit, and is described as
an effectively spinless single-channel p−wave superconductor
with a Hamiltonian of the form

Hj =

∫ +∞

0

dx ψ†j (x) (−ivF∂xσ3 + ∆jσ2)ψj(x). (1)

The leads are labeled as j = 0 and 1, for the TS nanowire
and the normal metal lead respectively. Here σ1,2,3 are Pauli
matrices in Nambu space, while vF stands for the Fermi
velocity and ∆0 is the superconducting gap. The Hamiltonian
for the normal lead in the absence of voltage is given by
a similar form in the limit of vanishing gap parameter ∆1.
The Nambu spinor ψ†j (x) =

(
c†Rj(x), cLj(x)

)
introduced here

combines right- and left-moving fermion operators cR,L(x).
The coupling between the two leads is then described by

the following tunneling Hamiltonian

HT = λc†0c1 + H.c. = Ψ†1W10Ψ0, (2)

where cj are boundary fermions given by cj = cRj(0) +

cLj(0), combined under the Nambu notation Ψ†j =
(
c†j , cj

)
,

and we introduced the tunneling matrix W10 = λσ3.
The current operator through the normal lead is readily

obtained from this tunneling Hamiltonian as

I1 = ieΨ†1σ3W10Ψ0 = ieλΨ†1Ψ0. (3)

This then allows us to define the current-current correlations
in real time, which reads

S11(t, t′) = 〈I1(t)I1(t′)〉 − 〈I1(t)〉〈I1(t′)〉. (4)

In order to compute the physical properties of the junction,
an essential tool is the Keldysh Green’s functions for the
boundary fermions. For each lead, they are given by a set
of 4 matrices in Nambu space defined as

Gη1η2j1j2
(t1, t2) = −i

〈
TKΨj1 (tη11 ) Ψ†j2 (tη22 )

〉
(5)

where ηj = ± corresponds to the Keldysh time index speci-
fying the position of time along the Keldysh contour, and TK
denotes the Keldysh time-ordering prescription.

The average current can then be reexpressed in the form of a
trace in Nambu space involving the Keldysh Green’s function

〈I1〉 = eλ

∫ +∞

−∞

dω

2π
TrN

[
G−+

01 (ω)
]

(6)

and similarly, the real-time noise correlator reads

S11(t, t′) = e2λ2TrN
[
G−+

00 (t, t′)G+−
11 (t′, t)

−G−+
01 (t, t′)G+−

01 (t′, t)
]
. (7)
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Fig. 2. Emission noise S+(Ω) (in units of e2∆) as a function of frequency
Ω (in units of ∆) in the tunneling regime (transparency τ = 0.02) and low
temperature (θ = 0.01∆) for different values of the voltage bias. The full
numerical result (full lines) is compared with the analytic form of Eqs. (15)-
(18) (dashed lines).

Now the full Keldysh Green’s functions entering these expres-
sions are readily obtained from the Dyson’s equation expressed
in Keldysh-Nambu-lead space, involving the tunneling matrix
W along with the bare Green’s functions associated with the
two leads [16]:

g
R/A
00 (ω) =

√
∆2 − (ω ± i0+)

2
σ0 + ∆σ1

ω ± i0+
(8)

gK00(ω) =
[
gR00(ω)− gA00(ω)

]
tanh

( ω
2θ

)
(9)

g
R/A
11 (ω) = ∓iσ0 (10)

gK11(ω) = −2i tanh

(
ωσ0 − eV σ3

2θ

)
, (11)

where eV is the voltage applied to the normal lead, and θ is
the temperature of both leads.

III. FINITE FREQUENCY NOISE

Since we apply a constant voltage, the NTS junction under
study is in a stationary situation. It follows that the current-
current correlations S11(t, t′) introduced in Eq; (4) actually
only depend on the time difference t − t′. This allows us to
introduce two distinct correlators, and subsequently Fourier
transform them, to define the emission and absorption noise
as

S+(Ω) =

∫ +∞

−∞
dτS11(0, τ)eiΩτ (12)

S−(Ω) =

∫ +∞

−∞
dτS11(τ, 0)eiΩτ . (13)

These two quantities are not independent, as they satisfy
S−(Ω) = S+(−Ω), so that it is enough to consider the
emission noise for all frequencies on the real axis to fully
describe the whole range of physical parameters.

As it turns out, the structures arising in the emission noise
tend to get smoothed out by increasing either temperature or



transparency, so that the most promising setups to observe
characteristic signatures of the MBS are low temperature
tunnel junctions.

Interestingly, this regime allows for a tractable analytic
derivation, as the emission noise then reduces to

S+(Ω) =e2λ2

∫ +∞

−∞

dω

2π
TrN

[
g−+

00 (ω)g+−
11 (ω)

]
. (14)

Working out the integral explicitly in the zero temperature
limit, one is left with 4 contributions of the form

S+
a (Ω) =e2λ2∆ Θ (eV − Ω) (15)

S+
b (Ω) =e2λ2 2

π
Θ (eV −∆− Ω)

[√
(eV − Ω)2 −∆2

∆

− arctan

(√
(eV − Ω)2 −∆2

∆

)]
(16)

S+
c (Ω) =e2λ2∆ Θ (−eV − Ω) (17)

S+
d (Ω) =e2λ2 2

π
Θ (−eV −∆− Ω)

[√
(eV + Ω)2 −∆2

∆

− arctan

(√
(eV + Ω)2 −∆2

∆

)]
(18)

where Θ(x) is the Heaviside distribution. As can be seen
from Fig. 2, this result agrees very well with the emission
noise obtained from a full numerical solution of the Dyson’s
equations in the tunneling regime at low temperature.

The finite frequency noise is related to fluctuations of the
current. It is therefore crucial to understand the processes that
contribute to the current, by transferring electrons between
leads along with the emission or absorption of a photon. They
are pictured qualitatively in Fig. 3. As it turns out, based
on their frequency and voltage dependence, along with the
frequency range over which they contribute, one can find a
one-to-one correspondence between these basic processes and
the contributions arising in our analytic derivation of the finite
frequency noise (which is why we used matching labels).

From this, one readily sees that the presence of a MBS is
directly probed via the emission and absorption processes of
Fig. 3(a) and (c). The process shown in Fig. 3(a) corresponds
to electrons hopping from the normal metal to the Majorana
state either by emitting or absorbing a photon (depending
on the sign of the electron energy), therefore covering the
whole range of frequency Ω ∈ [−∞,+eV ]. Similarly, the
process in Fig. 3(c) represents an electron transmitted from
the Majorana state of the topological superconductor at zero
energy to the empty states of the normal metal, accompanied
by the absorption of a photon, leading to a finite result for
frequencies Ω ∈ [−∞,−eV ]. While the process from Fig. 3(c)
is hard to resolve as it is dominated by other terms (typically
S+
b (Ω)), the one from Fig. 3(a) is the leading contribution

at low frequency. Furthermore, this contribution is frequency-
independent, leading to a wide plateau in the finite frequency
noise, a feature which arises from the sharp peak in the density
of states (DOS) of the TS lead associated with the MBS.

∆eV

(a)

∆eV

(b)

∆eV

(c)

∆eV

(d)
Fig. 3. Energy diagram of the junction illustrating emission [top part of (a)
and (b)] and absorption [bottom part of (a) and (b), (c) and (d)] processes.
Occupied electronic states are in light blue for the normal lead, and in light
red for the TS one.

IV. COMPARING WITH AN N-DOT-S SETUP

To illustrate the added value of finite frequency noise
over other physical quantities, we now consider a junction
involving a quantum dot between a normal metal and a
conventional BCS superconductor. This device corresponds to
a nontopological normal metal/superconductor junction, which
bears Andreev bound states located at zero energy.

More importantly, this system can be tuned to yield a dif-
ferential conductance which looks qualitatively similar to that
of a low transparency NTS junction, with a conductance peak
reminiscent of the signature expected for a MBS despite the
absence of such excitations. This is achieved by considering
symmetrical couplings ΓN = ΓS from the leads to the dot,
and setting the energy ε of the dot to zero.

We focus on this particular regime, and compute the finite
frequency current correlations, using a Keldysh Green function
formalism [17], [18]. Unlike the NTS case, the final result
for the emission and absorption noise turns out to be non-
perturbative in the coupling strength, preventing a simple
analytical treatment in the regime of low transparency of the
junction, even in the regime of large gap. We therefore rely on
a full numerical approach which treats the tunneling between
dot and leads at all orders. The resulting finite frequency noise
is displayed in Fig. 4.

As in the NTS junction, the emission noise shows a clear
plateau which drops sharply to zero at frequency Ω = eV .
This plateau arises from the presence of a narrow peak in the
DOS, associated with weakly coupled discrete energy level of
the dot. However, not only this plateau does not extend to the
same energy scale for negative frequencies, it also shows a
very different behavior at low frequency. Indeed, close to zero
frequency, the emission noise suddenly dips down, reaching
a value that corresponds to half that of the plateau, a known
result in double-barrier symmetric junctions [19].
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Fig. 4. Emission noise S+(Ω) (in units of e2∆) as a function of frequency Ω
(in units of ∆) for a symmetric N-dot-S junction, with coupling Γ = 0.02∆
and low temperature (θ = 0.01∆) for different values of the voltage bias.

It follows that, while we cannot claim that the finite fre-
quency noise signatures uniquely identify the presence of a
MBS, our results clearly show that it is able to discriminate
between the NTS and N-dot-S system when the differential
conductance could not.

V. CONCLUSIONS

Focusing on a voltage biased NTS junction, we showed
that the finite frequency noise at low transparency could be
understood in terms of basic processes, and lead to distinctive
features arising from the presence of a MBS. Considering a
N-dot-S system, we argued that unlike the differential conduc-
tance, the finite frequency noise could be used to discriminate
between a real MBS and an accidental Andreev bound state
at zero energy.

Finally, this feature should be measurable in actual experi-
ments at low temperature. In practice, in order to measure the
finite-frequency noise, one needs a noise detector which, in
principle, should be described within a quantum mechanical
framework [20]–[22], just as the nanodevice it is connected
to. Considering for the detection an LC resonant circuit
inductively coupled to the junction, and following [20] and
[23], one can predict the result of such a measurement and
obtain an expression of the so-called measurable noise. In the
regime of low detector temperature, TLC � Ω, this actually
reduces to the emission noise, up to a constant prefactor
[18], thus showing the same low-frequency behavior which
we could associate with the presence of a MBS.
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