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Abstract—This paper investigates the impact of synchropha-
sor estimation algorithms in Under-Frequency Load-Shedding
(UFLS) and Load-Restoration (LR) schemes, relying on fre-
quency and Rate-of-Change-of-Frequency (ROCOF) measure-
ments produced by Phasor Measurement Units (PMUs). We com-
pare two consolidated window-based synchrophasor estimation
algorithms, as representative approaches based on static and
dynamic signal models, with a focus on the appropriateness of
utilizing PMU-based ROCOF measurements. The performance of
the proposed relaying scheme is assessed by means of a Real-Time
Simulator implementing the time-domain full-replica dynamic
model of the IEEE 39-Bus power system.

Index Terms—Under-Frequency Load-Shedding (UFLS); Pha-
sor Measurement Units (PMUs); IEEE 39-Bus; Real-Time Digital
Simulation; Rate-of-Change-of-Frequency (ROCOF).

I. INTRODUCTION

As known, Under-Frequency Load-Shedding (UFLS) is a
technique that minimizes the risk of uncontrolled system
separation, loss of generation, or shutdown in case of large
power system disturbances, after the primary frequency control
reserve is exhausted [1]. Typically, UFLS schemes rely on
frequency estimates, as computed over extended time-intervals
(~1 s) in order to maximize the estimation accuracy [2].
During a large contingency, if the frequency exceeds a specific
threshold, dedicated relays automatically trip selected loads
in order to preserve grid interconnections and generation
capability [1]-[3]. If a sufficient amount of loads are shed,
then the system operation can be smoothly restored.

Modern power systems are characterized by large shares of
inverter-connected resources, that do not provide any inertia
and thus lead to extremely fast dynamics in case of sudden
contingencies. A clear example happened in September 2016
when the South Australian system faced a severe blackout
when a wind storm hit the region while half of the power
consumption was fed by wind generation [4]. The frequency
experienced a large drop of almost 4 Hz in less than 1 second,
with an estimated Rate-of-Change-of-Frequency (ROCOF) of
roughly 6.25 Hz/s. In this context, the extended time-intervals
employed by typical UFLS schemes are incompatible with
such dynamics.
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For this reason, the employment of Phasor Measurement
Units (PMUs) might represent a promising solution thanks
to their remarkable measurement accuracy as well as time
synchronization [5], [6]. Indeed, PMUs are able to provide
frequency and ROCOF estimates with a reporting rate in the
order of tens of frames per second [7], [8]. Since they rely on
a static signal model, PMU-based measurements may under-
perform in time-varying conditions, particularly if transient
events occur [9], [10]. As a consequence, their measurement
uncertainty has to be taken into account within the control
scheme [11], [12]. In [12], the authors investigate the fea-
sibility of PMU deployment in ROCOF-based applications,
focusing on the problem of ROCOF measurement in terms
of estimation accuracy and reliability. Nevertheless, since
ROCOF is defined as the frequency first-order time-derivative,
it can be seen as a predictive filter whose output accounts for
the variation polarity and velocity.

Traditionally, the approaches for determining the amount of
shed loads are based on the sole use of frequency [1], [2].
Indeed, after a certain disturbance took place, the generation-
load mismatch can be estimated by analyzing the frequency
response characteristic [13]. By monitoring the frequency dis-
turbances in several grid nodes (e.g., via PMUs), it is possible
to detect ongoing transients and determine the most suitable
counteraction [14], [15]. In this regard, it is worth noticing
that the connection, or disconnection, of a load produces rapid
transients that affect the PMUs’ estimation accuracy [16]. In
addition, when dealing with large power networks, it might be
beneficial to partition the analysis in several grid areas in order
to reduce the computational complexity. In this case, though,
the relationship between different control actions in different
grid areas has to be considered [17].

More sophisticated approaches still rely on frequency mea-
surements, but they determine the amount of load to be shed
based on an estimation of the active power deficiency. These
methods are also called adaptive, because the location, speed
and amount of shed loads are adjusted adaptively based on
the specific contingency evolution [3]. To the best of Authors’
knowledge, though, there exist only few UFLS schemes that
adopt ROCOF thresholds to trigger the LS action [18]-[20].
Mostly, they analyze and acknowledge the necessity of using
ROCOF as an index for UFLS schemes, without providing a
strategy to actually measure it. Indeed, frequency and ROCOF
are computed using a simplified system frequency response
model or by assuming the information of the studied power
grid is fully available, rather than using actual measuring
devices (e.g., synchrophasors).



In this context, the disturbance magnitude can be identified
from ROCOF measurements, as they are assumed to be propor-
tional to the power shortage size through the inertia constant:
the higher the ROCOF, the more loads need to be shed
[21]-[23]. An alternative approach employs the instantaneous
voltage deviation as a criterion of proximity to the failure
point: the buses nearby the failure place experience larger
voltage reduction and should be discarded first [24]-[26]. To
guarantee a smoother system restoration, these approaches
introduce significant time delays between consecutive actions.
The combined effect of measurement and delay time makes
the control schemes more robust, but also less responsive and
prompt to react to fast dynamics as observed in [4].

Within this context, this paper investigates the impact of
synchrophasor estimation algorithms in ROCOF-based UFLS
schemes. In more details, the contributions of this paper are
listed here below.

o First, we analyze the anticipative property of ROCOF
with respect to frequency in detecting large electro-
mechanical transients. This may potentially lead to a
faster restoration to a new equilibrium point, and, there-
fore, leveraged by the proposed relaying strategy.

e Then, we propose an effective local UFLS and Load-
Restoration (LR) scheme, based on ROCOF and fre-
quency measurements as provided by PMUs. We further
present how to properly select the strategy’s parameters
based on the targeted power system. Two sets of ROCOF
thresholds are studied, in order to assess the impact of
the parameters tuning.

o We analyze the impact of the synchrophasor estimation
algorithms on the proposed ROCOF-based UFLS, by
comparing two consolidated window-based synchropha-
sor estimators. The first one is based on a static signal
model [27], the second one is based on a dynamic
signal model [28]. As their estimation accuracy has
been thoroughly characterized in previous publications,
in this paper we mainly focus on the impact of ROCOF
computation on the UFLS performance.

e We assess the performance of the proposed relaying
scheme by means of a OPAL-RT Real-Time Simulator
(RTS), where we reproduce a full-replica of the time-
domain dynamic model of the IEEE 39-Bus power sys-
tem, hosting substantial amount of distributed energy
resources [29], [30]. The model used for the study is
available open-source.

The paper is structured as follows. Section II introduces
the context of PMU-based ROCOF measurements. Section III
provides details of the proposed UFLS and LR scheme. Sec-
tion IV describes the power grid model used in the real-time
simulation. Section V presents the performance validation,
including simulation scenarios, results and discussion. Finally,
Section VI summarizes the conclusions of the paper.

II. PMU-BASED ROCOF MEASUREMENTS

In general, the traditional control scheme of ROCOF-based
UFLS relies on four main steps. First, the acquired waveform
is processed in order to extract the fundamental frequency.

Based on this information, the ROCOF is computed as the
first-order time-derivative. Then, a low-pass filtering stage
removes fast and noisy ROCOF dynamics, thus providing a
smoother trend, besides introducing an inevitable time delay.
Finally, the obtained measurements are compared with given
thresholds, whose excess activates the control actions.

In this context, the recent literature provides several so-
lutions, but it is not possible to identify a list of common
guidelines. The frequency estimation stage should consider
a window length in the order of seconds, in view of higher
resolution and noise rejection. The low-pass filtering stage is
typically implemented as a moving average, whose window
length has to be suitably scaled based on the expected ROCOF
variability. However, such time delays are not compatible with
the typical dynamics of modern power systems, e.g. [4].

Furthermore, during large electromechanical transients,
power exchanges are taking place in a broad spectrum, well
beyond the single fundamental component, therefore, the defi-
nition of frequency and ROCOF associated to the fundamental
component represents an open issue from the metrological
point of view [9]-[12], [31]-[33].

In a PMU-based measurement scenario, instead, the IEEE
Std C37.118.1 introduces stringent limits in terms of reporting
latency that make it difficult to perform the ROCOF estimation
over window lengths that account for three and five nominal
cycles, i.e. 60 and 100 ms at 50 Hz, for P- and M-class,
respectively [7]. M-class is intended for measurement appli-
cations requiring accurate synchrophasor estimates, whereas
P-class is intended for mission-critical applications requiring
fast responsiveness. As regards the estimation accuracy, RFE
(Rate-of-Change-of-Frequency Error) is required not to exceed
0.01 Hz/s in steady-state conditions, and 6 Hz/s in the presence
of harmonic distortion [8]. However, ROCOF measurements
applied for real-world scenarios require a metering infras-
tructure more resilient against interfering components and
characterized by a wider dynamic range. With respect to the
South Australian blackout, the level of accuracy imposed by
the IEEE Std C37.118.1 has the same order of magnitude of
the values that are being measured. Also the reporting latency
should not exceed few tens of ms, since the frequency drop is
extremely fast. In other words, PMUs should be able to provide
fast and accurate ROCOF estimates independently from the
variation speed of the fundamental frequency or the distortion
level [34].

It is worth to point out that, typically, PMUs rely on
the time reference made available by the Global Positioning
System (GPS) that represents an optimal trade-off between
performance and installation cost [35]. However, in case the
time reference is lost, PMUs might provide an erroneous
synchrophasor estimation. Given the potential vulnerability of
GPS to spoofing and jamming, PMUs adopted for mission-
critical applications should use multiple timing sources, for
instance deployable over the legacy power system telecom-
munication infrastructure [36]. Also, time drift and angle
compensation strategies could be integrated into PMU devices,
in order to reduce measurement errors deriving from potential
timing source loss [37]. Nevertheless, it is worth noting that a
GPS-disciplined oscillator, when free-running, presents a quite



constant Allan deviation up to 10 minutes. That is to say
that even if the GPS signal is lost, the free-running oscillator
performance keeps sufficiently good for an amount of time
much larger than the one typically required to reconnect to
GPS. For this reason, this issue is considered negligible in an
UFLS scenario like the one considered in the current paper.

Compared to traditional ROCOF relays, PMUs are specif-
ically designed to produce frequently updated measurements
with a reporting rate in the order of tens of fps. Typically,
they consider short window lengths and they do not apply
any moving average compensation. As a consequence, PMU
estimates account for the quasi-instantaneous voltage and
current variations, but their accuracy tends to deteriorate in
the presence of dynamic trends or disturbances [10].

In this paper, we consider two PMU-based ROCOF es-
timation techniques, based on two consolidated state-of-the-
art algorithms, i.e. the Enhanced Interpolated DFT (e-IpDFT)
[27] and the Compressive Sensing-based Taylor-Fourier Model
(cs-TFM) [28]. We selected those two algorithms, because
their implementation details are fully presented in the cur-
rent literature, thus ensuring the replicability of the obtained
results. The selected algorithms adopt not only a different
processing approach, but also rely on a different signal model,
i.e. static for e-IpDFT and dynamic for cs-TFM. The static
estimation technique computes ROCOF as the incremental
ratio between two consecutive frequency estimates. It is thus
reasonable to expect that the ROCOF estimates are partially
delayed and smoothed depending on the adopted reporting
period. Conversely, the dynamic estimation technique is able
to directly compute the instantaneous ROCOF as the second-
order time-derivative of phase. In general, the adoption of
a dynamic signal model allows for tracking possible time-
varying trends, but at the same time suffers from higher
sensitivity to uncompensated disturbances [38].

III. ROCOF-BASED LOAD SHEDDING

a) On the Anticipative Effects of ROCOF: In this Sec-
tion, we analyze the anticipating property of ROCOF measure-
ments in detecting electro-mechanical transients with respect
to frequency estimates. The study is meant to give a qualitative
insight, because a quantitative and thorough study is grid-
dependant and may only be provided via complex numerical
simulations (see Section IV and V). For the sake of brevity, we
here assume simplified models for rotating machines, loads,
and network elements.

We consider a power grid in steady-state conditions, where
N synchronous machines have the same electrical angular
speed {25. During electro-mechanincal transients, the rotating
machine electro-mechanical power balance is expressed by the
following well-know system of equations (e.g., [39]):
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where the index ¢ denotes the considered synchronous ma-
chine, whereas (2; and §; are its angular speed and angular
position with respect to a reference machine rotating at €),.
The terms P,,; and P.; represent the mechanical driving

power and the generated active electrical power, respectively,
whereas M; defines the machine’s inertia coefficient. This
set of differential equations shows, as known, how the time-
derivative of the angular speed df)/dt, i.e. the ROCOF, is
proportional to the power imbalance in the grid.

Furthermore, as discussed in [40], in a power grid composed
of N generation buses and M load buses, a change AP; of
active power at the jth load bus causes a change AP,; of
active power at the ith generation unit, given by:
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where K is an NV x M matrix obtained from system ad-
mittance matrix, Vg is the generator bus voltage vector,
qu = K;;Vg(j), and 6;; is the angle between qu and
K;;V(i), and E;q denotes the Thevenin equivalent voltage
at bus j.

The combination of (1), (2), and (3) provides an insight
on why a ROCOF estimator might be used for a prompt
and anticipative load shedding policy. Indeed, when acquiring
ROCOF measurements from PMUs, that by definition are
characterized by low reporting latency, we are able to infer any
large power imbalance much faster than when using frequency.
Thereby, we may immediately act on AP; (i.e., load shedding)
to counteract the power supply reduction (i.e., Pp,; — Pe;).

b) The Proposed ROCOF-based UFLS Scheme: The
proposed ROCOF-based UFLS scheme is inspired from [41]
and consists of two parts: the ROCOF-based Load Shedding
(R-LS) and the Frequency-based Load Restoration (f-LR).
This dual mechanism has been designed and optimized in
order to ensure a fast reaction to power shortage as well as
a secure network-restoration process. In particular, the f-LR
thresholds have been derived from the guidelines in [1].

As shown in Table I, the control action is scaled to the
threshold level, i.e. larger ROCOF and frequency values cor-
respond to larger amounts of loads to be shed or restored,
respectively. For this analysis, we consider two sets of ROCOF
thresholds, briefly R-LS-1 and R-LS-2, and we compare the
scheme performance as function of different load shedding
shares.

As shown in Algorithm 1, in R-LS case, an activation
criterion has to be satisfied. For each ROCOF threshold R, we
evaluate the probability p of exceeding R. If p is larger than
the activation level, the corresponding load share is activated.
In the presence of multiple thresholds that are simultaneously
activated, only the most severe control action is implemented,
i.e. the largest share of loads is shed.

For the purpose of a smooth and stable system restoration,
we introduce time-delays between two consecutive control
actions. As regards f-LR, a suitably scheduled restoration
avoids the occurrence of system instabilities or load shedding
repetitions. To this end, in this paper we consider a time-delay
of 5000 ms, as recommended by [42].

However, to design a ROCOF-LS relay that uses ROCOF
measurements from PMUs, we need to consider the limitation



Algorithm 1 LS and LR Load Share Selection

input: estimated f and R, thresholds R-LS and f-LR
output: LS or LR Load Share
Load-Shedding Share Selection
for i = 1 : length(R-LS)
if R > R() A p > act(i)
LS Share = R-LS(i)
reset probability p = 0
set time delay = 500 ms
end if
end for
Load-Restoration Share Selection
12: for i = 1 : length(f-LR)
132 if f> f()
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—_—
- O

14: LR Share = f-LR(i)
15: time delay = 5000 ms
16: end if
17: end for
TABLE I

ROCOF AND FREQUENCY THRESHOLDS FOR LS AND LR

Load Share [%] 100 95 90 85 75 60 50

|
R [Hz/s] 03 04 06 07 1 12
RAS-1 - %] 8 84 72 68 64 64
R [Hz/s] 02 03 05 07 1 2
R-LS-2 Pact [%] 84 60 60 60 52 52
f-LR fHz] | 4975 49.6 49.5 494 492 49

on the ROCOF estimation given by PMUs. Indeed, after the
contingency, it is reasonable to expect that the voltage signal is
affected by amplitude and phase modulations. The combined
effect of amplitude and phase modulations is evident in both
voltage waveform and corresponding ROCOF measurements.
To this end, we consider ROCOF estimates R over an obser-
vation window interval of 500 ms, as recommended in [42].
Given a PMU reporting rate of 50 frames per second, this
corresponds to a set of 25 consecutive ROCOF estimates.

As shown in Table I, the ROCOF-LS relay embeds ROCOF
thresholds and probability thresholds. For each ROCOF thresh-
old R, the load shedding will be triggered if the probability p
of exceeding R is larger than the activation threshold p,¢. It is
worth noticing that the load share is defined as a percentage
of the installed load. It is also worth pointing out that the
adopted ROCOF R and activation thresholds p,.; are grid-
dependant and can be obtained through dedicated sensitivity
studies. In this respect, a strategy to tune these parameters, as
well as a quantitative analysis on the interference of voltage
modulation, are proposed in Section IV by making reference
to the targeted electrical grid, i.e., the modified IEEE 39-bus.

c) UFLS Scheme Implementation: The ROCOF-based
UFLS scheme is local, i.e., the relays located in different nodes
do not exchange information and apply the control policy only
based on the locally measured ROCOF and frequency value.

Within the simulated three-phase system, we assumed to
install in each load bus a PMU that measures the bus voltage
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Fig. 1. Diagram of the UFLS scheme coupling with the dynamic load model.
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Fig. 2. Diagram of the modified IEEE 39-Bus power system.

amplitude, frequency and ROCOF associated to phase A. As
shown in Fig. 1, the voltage waveform acquired by the PMU
is corrupted by an additive white Gaussian noise, resulting
in a Signal-to-Noise Ratio (SNR) of 80 dB, in order to
reproduce a plausible measurement noise. Once completed the
estimation process, the PMU streams the measured ROCOF
and frequency to the UFLS relay that determines the LS or
LR load share based on the thresholds in Table I.

IV. SIMULATION MODEL

The impact of the considered synchrophasor estimation
algorithms on the performance of the proposed ROCOF-based
UFLS plan is demonstrated through a full-replica dynamic
model adapted from the IEEE 39-Bus standard test sys-
tem [29], [43]. As shown in Fig. 2, the considered power grid
consists of 39 buses with 19 loads, 10 synchronous generators,
and 4 wind generators. In particular, the 4 wind farms (overall
capacity of 1.35 GW) account for the increasing penetration
of renewable generation in modern power grids.

For each synchrophasor estimation algorithm, we develop a
dedicated PMU model to be deployed in every load bus [44],
[45]. The considered power grid as well as the measurement
devices are modelled in MATLAB Simulink and executed



TABLE II
LI1ST OF GENERATION UNITS

Generation Plant Installed FR
Unit Type Capacity [MVA] /Location
Gl Thermal Plant 3000 PFR, SFR
G2-G4, G6-G10 Hydro Plant 1000 PFR
G5 Hydro Plant 520 PFR
Wind Farm 1 300 bus 2
Wind Farm 2 150 bus 21
Wind Farm 3~ vPe-3 DFIG 400 bus 8
Wind Farm 4 500 bus 11

on OPAL-RT Opal-RT eMEGAsim RTS. For the sake of
reproducibility, the model is open-source and online available
at [30]. It is worth noticing that the initialization procedure is
important to ensure correct steady-state solution. In this regard,
the detailed load flow based initialization procedure is given
in [30].

a) Synchronous Generators: The conventional genera-
tion asset consists of both hydro- and thermal-power plants.
For this analysis, we simulate the generators by means of a
dynamic model of the prime mover, a synchronous machine,
a speed governor, a DC1A excitation system [46] and an
Automatic Voltage Regulator (AVR). For the synchronous
machine, we adopt the sixth-order state-space model [47].

The generator model includes a Primary Frequency Regula-
tor (PFR) with a droop coefficient of 5%. In the thermal-power
plant (G1), that accounts for the highest installed capacity,
we implement also a Secondary Frequency Regulator (SFR),
whose integration time constant is set equal to 120 s.

As a summary, Table II reports the plant type, nominal
capacity and frequency regulation for each generator.

b) Wind Generation: In Table II we show also the
implementation details of the 4 wind farms. In this regard, the
generator is modelled as Type-3 Doubly-Fed Induction Gen-
erator (DFIG) that consists of an asynchronous machine and
a back-to-back Voltage Source Converter (VSC). In particular,
the VSC behavior is reproduced by two equivalent voltage
sources, which generate the AC voltage averaged over one
cycle of the switching frequency. In this way, it is reasonable
to expect that the dynamic interaction between renewable
generation and UFLS control scheme is preserved [48].

For this analysis, we do not develop a detailed aerodynamic
model of the wind turbine, as its effect is accounted already
in the wind profiles. Indeed, the wind profiles are generated
at 1 second resolution by re-sampling the measurements
at 1 minute resolution from ERCOT [49]. The re-sampling
approach is based on iterated smoothing and differentiating
operations that use the statistical characteristics of the aggre-
gated wind generation profiles presented in [50].

¢) Dynamic Load Model: Static load models, including
constant impedance, constant current model, and constant
power models, are well known in the literature and can be
easily implemented [51]. Nevertheless, such static models do
not provide an accurate approximation of the load frequency
and voltage responses. In order to reproduce a plausible
dynamic load behavior, the EPRI LOADSYN model has been
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Fig. 3. Diagram of the EPRI LOADSYN dynamic load model.

adopted [52]." Specifically, we implemented the three-phase
dynamic load model based on the following equations:

Kpo

Py = 20 () 1+ Kg 10 - fo)
Kgo

Q) = Qi) (52) 1+ Kasl) - fo)

where P(t) and Q(t) are the three-phase load active and
reactive power. The parameters K,, = 1.7, K,y = 1.0,
Kg, = 2.6, K4y = —1.7 are obtained from typical load volt-
age and frequency parameters inferred from EPRI LOADSYN
program. In this regard, we represent f(t), V (t), Po(t), and
Qo(t) as time-varying variables sampled with a resolution of
20 ms. We assume that Py(t) and Qo (t) are active and reactive
power consumed at rated frequency and voltage. The rated
demand profile is adapted from a monitoring system based
on PMUs installed on the 125 kV sub-transmission system of
Lausanne, Switzerland [53]. Coherently with the other model
variables, the measured time-series power data are sampled
with a resolution of 20 ms. Since the nominal load values
in the original IEEE 39-Bus power system are different from
our measured data, the final demand patterns are obtained by
re-scaling the measured time series.

The implementation of the EPRI LOADSYN model is
illustrated in Fig. 3. A conventional Phase Locked Loop (PLL)
and a Root Mean Square (RMS) operator measure the bus
frequency and voltage to be employed in the dynamic load
model. On one side, as the PLL may be inaccurate in transient
conditions, a moving average mechanism is implemented in
order to avoid improper behavior of the dynamic load model.
Specifically, the PLL-tracked frequency is updated every 1 ms,
and then buffered for averaging. The overall buffer size is 240
samples, with an overlap size of 220 samples (i.e., the final
frequency f(t) is reported every 20 ms). On the other side, the
bus voltage V' (t) is given by a RMS operator reporting every
20 ms. The RMS value is computed over a window length of
240 ms, as to be consistent with the frequency estimation.

d) Phasor Measurement Units: In this paper, we com-
pare the accuracy provided by two different ROCOF es-
timation techniques, based on consolidated state-of-the-art
algorithms like e-IpDFT [27] and cs-TFM [28]. The details
regarding their implementation within the adopted RTS are
provided in [44] and [45], respectively.

The e-IpDFT PMU adopts an enhanced version of the
IpDFT to estimate the synchrophasor associated to the fun-

! Although this paper adopts only the dynamic load model, a combination
of dynamic and static load models may be also considered.



damental component of the power signal under analysis. Such
technique, described in Algorithm 2, is specifically designed
to mitigate the effects of long-range spectral leakage produced
by the negative image of the fundamental component.

Algorlthm 2 e-IpDFT
wn] == {x(t,) | tn=nTs,n=10,..
X (k) = DFT(z[n] - w[n])

f. A, o} = IpDFT(X (k)
(
(

.N —1] e N}

——

)

- k) Wf<_f7 47 _(’50)
(k) = X (k) — X~ (k)
[y A, o} = TpDFT(X *(k))
R = diff(f) /T,

X
X
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First, the PMU acquires a discrete time-series of samples
x[n], where x(t) is the time-variant power system signal
under analysis, /N is the number of samples contained in the
considered observation interval and F, = T} is the sampling
rate (line 1). The signal is windowed with the Hanning
function w(n] to reduce the long-range spectral leakage effects,
then the weighted signal DFT X (k) is computed (line 2).

The IpDFT technique applied to the highest DFT bins,
provides a preliminary estimate of the fundamental parameters
(line 3). With respect to the location of the highest amplitude
bin k,,, the fractional correction term § is given by:

2 | X (km + )| — [ X (k)|
[ X (km + )] + [ X (k)|
and is used to refine the fundamental parameter estimates as:
A=|x 6% —

X (km sin( 7r5 ‘ g

f=(km +08)Fs/N

d=¢ “)

oo = LX (k) — 7o
R = diff(f)/T,  (5)

These values enable us to reconstruct the component’s
negative image X~ (k ) (line 4), and subtract it from the
original DFT bins, that now account only for the fundamental
component’s positive image X T (k) (line 5). In this reduced-
leakage scenario, we apply again the IpDFT for a further
enhanced estimation of the fundamental parameters { f LA, Po}
(line 6). Finally, we compute the fundamental ROCOF R
as the finite difference between two consecutive frequency
estimations, divided by the reporting period 7). (line 7).

The cs-TFM PMU adopts a formulation of the Taylor-
Fourier Transform (TFT), that has been suitably modified and
generalized in order to deal also with multi-tone power signals.
Thanks to a Taylor series expansion truncated to the second
derivative order, it is possible to include the fundamental
frequency and ROCOF within the estimator state variables
as the first and second time-derivative of the phase angle,
respectively. However, the TFT performance strongly depends
on the spectral support S employed for the filter positioning:
if any significant spectral component is neglected or badly
identified, the TFT results might suffer from uncompensated
spectral leakage and thus lead to inaccurate estimates [38].

The cs-TFM method recovers the spectral support S through
an Orthogonal Matching Pursuit (OMP) algorithm, i.e. a
greedy selection routine that exploits the assumption that the

signal spectrum is sparse and consists only of a limited number
of narrow-band components. The support recovery stage might
suffer from the poor frequency resolution provided by DFT
when short observation intervals are taken into account. In
order to partially overcome this limitation, we apply a CS-
based super-resolution technique that enables us to reduce the
bin spacing by one order of magnitude.

Given the recovered support S, we design the corresponding
TFM model M and we compute the dynamic synchrophasor
p that consists of three Taylor-Fourier series coefficients:

p={p°,p",p*} = pinv(M) - z (6)

where the superscript denotes the derivative order. Based on
this, we are able to estimate the fundamental parameters as:

A= |p°, At =2R(p" - e7%)
A S(pt - e—i®
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A
~1 Cx(m2 —J¢ Al 21
;P H_ SpTe’P) A
= fot+ 2 R= i
=1/ o o A

where R denotes the estimated ROCOF, and fo is the funda-
mental frequency within the recovered spectral support. The
spectral analysis can be limited to the expected variation range
of the fundamental component, i.e. [45, 55] Hz.

As shown in Algorithm 3, the first step consists in enhancing
the frequency resolution by projecting X over the vector space
spanned by matrix Dy. In more detail, the matrix columns are
designed to account for leakage effects over a super-resolved
grid, whose bin spacing is set to 1.515 Hz (line 1).

Algorithm 3 cs-TFM

1Y =D} X

2 fo = max(Y)
3:8= {fO : [1a2>374}}
4 M =TFM(S)

5 p= (MTM)_AlMTA~$
6: fo,p = {A, f, o R}

We associate the fundamental frequency fo to the maximum
bin of the super-resolved spectrum (line 2), and we include into
the spectral support S the first four harmonic terms (line 3).
Based on this information, we construct the TFM matrix (line
4) and compute the corresponding dynamic phasor coefficients
(line 5). Finally, by applying (7), we extract the fundamental
synchrophasor, frequency and ROCOF (line 6).

e) On the Tuning of the UFLS Scheme Parameters:
In order to demonstrate how post-contingency voltage mod-
ulations interfere with the ROCOF estimation, we present in
Fig. 4 the voltage waveform and the corresponding ROCOF
measurements in the IEEE 39-bus power grid experiencing a
large contingency. Specifically, at ¢ = 180 s a total amount
of 1.5 GW generation power is tripped. The waveforms refer
to bus 26, but similar considerations hold for the rest of
the buses. The ROCOF estimates are provided by 4 PMUs:
for both e-IpDFT and cs-TFM, we implement two different
configurations, as representative of P- and M-class of IEEE
Std ¢37.118.1 [7]. By means of the curve fitting tool provided
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Fig. 4. Example of voltage modulation interfering with ROCOF estimation.
Voltage waveform (a); ROCOF measurements (b).

by MATLAB, we are able to fit the waveform with a model
consisting of a sum of sines (one representing the fundamental
tone, two for the amplitude modulation, two for the phase
modulation). Thereby we characterize the modulations of the
waveform in terms of depth and frequency: 12.90% and 5.27
Hz for the amplitude modulation, and 153 mrad and 4.23
Hz for the phase modulation. In the first modulation period
Tv 1, the voltage modulation significantly affects the ROCOF
estimation, and the 4 PMUs provide unreliable results (refer to
Fig. 4b). Conversely, the ROCOF measurements become way
more consistent when the voltage modulation is damped, as
illustrated in the zoomed window in Fig. 4b. Therefore, it is
recommended to wait for a proper time interval before relying
on a ROCOF estimate. In the present paper, we adopt a 500
ms observation interval, as recommended in [42].

A similar sensitivity study enables us to tune the ROCOF R
and the activation thresholds p,., as a function of the sever-
ity of the power outage. Specifically, we conduct dedicated
simulations for the tripping of 1.0 GW, 1.25 GW, 1.5 GW,
1.75 GW and we analyze the frequency dynamics after these
critical events. Fig. 5 shows the simulation results, as reported
by a P-class e-IpDFT PMU at bus 26 (similar results hold
for all buses and for all PMUs). As illustrated in Fig. 5b, the
most severe contingency corresponds to the fastest frequency
decrease, i.e., larger ROCOF. Briefly, the larger the measured
ROCOF, the larger the detected contingency and, therefore,
the larger the amount of loads to be shed. This is consistent
with the ROCOF thresholds R in Table 1. In a similar way,
also the activation thresholds p,.; are tuned with respect to
the contingency severity. As reported in Table I, the larger
the detected contingency, the faster the UFLS should act,
therefore, the lower the activation threshold.
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Fig. 5. Sensitivity study results. Voltage waveform on bus 26 (a); Frequency
measurements on bus 26 by P-class e-IpDFT PMU (b).

V. VALIDATION RESULTS

In this section, we numerically assess the performance of
the proposed UFLS policy, with a focus on the impact of
the synchrophasor estimation algorithm and of the UFLS
parameters. As described in Section IV, the strategy is em-
bedded within the modified IEEE 39-bus. Specifically, we
simulate a large contingency event, in which G4, G6 and
G7 (1.5 GW total generation) are tripped at { = 180 s. For
each synchrophasor estimation algorithm, we implement two
different configurations, as representative of M- and P-class
of IEEE Std ¢37.118.1 [7]. In order to study whether different
thresholds can affect the performance of the overall control
scheme, the tests are repeated with both R-LS-1 and R-LS-2.
The simulation results for R-LS-1 an R-LS-2 are respectively
shown in Fig. 6 and Fig. 7, in terms of measured ROCOF and
active power profile. For the sake of clarity, in the following
graphs we consider a single representative load for each class,
i.e., load 16 for M-class and load 4 for P-class.

Let us first consider the ROCOF measurements from the 4
PMUs. For M-class configuration, Fig. 6a and 7a show the
ROCOF measurements provided by cs-TFM and e-IpDFT for
R-LS-1 and R-LS-2, respectively. As for P-class configuration,
Fig. 6¢ and Fig. 7c¢ show the ROCOF measurements provided
by cs-TFM and e-IpDFT for R-LS-1 and R-LS-2, respectively.
As shown in the figures, right after the contingency, the cs-
TFM estimates of ROCOF anticipate the e-IpDFT ones by one
reporting period (i.e. 20 ms). This anticipatory effect is due
to the fact that cs-TFM adopts a dynamic signal model that
allows for a direct estimation of the phase second-order time-
derivative, whereas e-IpDFT adopts a static signal model and
calculates ROCOF as the finite-difference between subsequent



40 40 T . -
—R-LS-1 load16 M-class cs-TFM —R-LS-2 load16 M-class cs-TFM
20l —R-LS-1 load16 M-class e-IpDFT | 20 —R-LS-2 load16 M-class e-IpDFT |
o L : .
9 1 N
L 20 1 L. 20 ,
5 s
O -40r b O -40 3
Q o
-60 1 T 60 :
-80 - . -80 ]
-100 I I I I I -100 I I I I I
180 180.5 181 181.5 182 180 180.5 181 181.5 182
Time [s] Time [s]
(a) (a)
450 450
—R-LS-1 load16 M-class cs-TFM —R-LS-2 load16 M-class cs-TFM
—R-LS-1 load16 M-class e-IpDFT —R-LS-2 load16 M-class e-IpDFT
400 W 400 §
g S
=350 . =350 1
[} o}
3 300 . £ 300 |
o o
o ) .
2 250 . 2250+ 1 2
[$] “5 [
< <
200 182 8 200 180 180.6 181 )
150 | | | | 150 | | | |
150 200 250 300 350 400 150 200 250 300 350 400
Time [s] Time [s]
(b) (b)
40 " i 40 " "
—R-LS-1 load4 P-class cs-TFM —R-LS-2 load4 P-class cs-TFM
—R-LS-1 load4 P-class e-IpDFT —R-LS-2 load4 P-class e-IpDFT
20 1
@ @
L L o0
1 L
3 3
3 3 -20
o o
-40
| | | | | 60 | | | | |
179.8 180 180.2 180.4 180.6 180.8 181 179.8 180 180.2 180.4 180.6 180.8 181
Time [s] Time [s]
© ©
600 —R-LS-1 load4 P-class cs-TFM 600 -3 —R-LS-2 load4 P-class cs-TFM

—R-LS-1 load4 P-class e-IpDFT

(o]

o

o
T

Active Power [MW]
N
o
o

a1

o

o
T

Active Power [MW]
N
o
o

—R-LS-2 load4 P-class e-IpDFT

300 ‘ b 300 1
i 180 180.7 181 180 180.6 181
200 s s s s 200 s s s s
150 200 250 300 350 400 150 200 250 300 350 400
Time [s] Time [s]
(d) (d)

Fig. 7. PMU-based ROCOF measurements and corresponding active power
profiles for R-LS-2 thresholds: (a) and (b) refer to load 16 and M-class
configuration, whereas (c) and (d) refer to load 4 and P-class configuration.

Fig. 6. PMU-based ROCOF measurements and corresponding active power
profiles for R-LS-1 thresholds: (a) and (b) refer to load 16 and M-class
configuration, whereas (c) and (d) refer to load 4 and P-class configuration.



frequency measurements This is particularly noticeable within
the first 300 ms after the contingency. As ROCOF-LS starts
to be triggered, this effect is less visible.

The corresponding active powers are displayed in Fig. 6b,
Fig. 7b, Fig. 6d and Fig. 7d, and illustrate the control actions of
R-LS and f-LR control scheme. Given R-LS-1 thresholds for
M-class configuration, the zoomed window in Fig. 6b shows
that the e-IpDFT sheds a larger share of loads (+25%) 1.3 s
earlier than the cs-TFM. Given R-LS-2 thresholds for M-class
configuration, the zoomed window in Fig. 7b shows that the
same amount of loads is shed by both cs-TFM and e-IpDFT,
yet the e-IpDFT sheds earlier and the cs-TFM determines a
faster system restoration. Briefly, using both R-LS-1 and R-
LS-2, e-IpDFT sheds earlier whereas cs-TFM restores before.
Although the cs-TFM estimates of ROCOF are anticipated
by one reporting period, the e-IpDFT ones are characterized
by higher ROCOF values. Therefore, in accordance with the
threshold in Table I, it is reasonable to expect that the e-IpDFT
estimates produce a larger amount of loads to be shed (refer to
Fig. 6a and Fig. 7a). As for R-LS-2 thresholds, this difference
is less significant since the more conservative thresholds in
Table I lead to faster load shedding for both estimators.

Given the R-LS-1 and R-LS-2 thresholds for P-class con-
figuration, Fig. 6d shows that the e-IpDFT sheds a larger share
of loads (+10%) and Fig. 7d shows that the same amount of
loads is shed by both cs-TFM and e-IpDFT. As shown in the
zoomed windows, for both the estimators the load shedding
is triggered earlier in P-class than in M-class configuration.
This is due to the fact that, given the shorter observation
interval of P-class PMUs, both estimators provide less accurate
results. Specifically, their ROCOF estimates are quite similar
and, therefore, leading to a similar amount of LS (refer to
Fig. 6¢ and Fig. 7c).

In view of a quantitative evaluation of the performance of
the considered ROCOF estimators, in each simulated scenario
we have computed the Expected Energy Not Served (EENS)?
and the Integrated Frequency Variation (IFV)?. In this context,
Table III reports their values as accumulated over all the load
buses of the simulated power system.

The thresholds’ comparison shows that R-LS-2 corresponds
to higher EENS values than R-LS-1. Indeed, given the same
ROCQOF thresholds, the amount of loads to be shed is higher
in R-LS-2 scenario. As discussed in III, the R-LS-2 thresholds
are associated with lower ROCOF values and activation limits.
Coherently, this implementation choice produces much higher
EENS values. As regards IFV, we would expect that a higher
LS share corresponds to a lower IFV, thanks to the reduction
of the frequency drop. However, if an excessive amount of
loads is shed, it is possible to experience a subsequent rapid
frequency increase, not properly compensated by LR actions.
An example of this phenomenon is shown in Fig. 8, where we
compare the evolution of frequency measurements as provided
by all four PMU configurations in R-LS-1 and R-LS-2. The

2EENS refers to the expected amount of energy not being served to the
demand during the UFLS and LR actions.

3IFV refers to the total integrated frequency deviation (absolute value) of
all the load buses during the UFLS and LR actions.

TABLE III
UFLS SCHEME PERFORMANCE IN SIMULATED SCENARIOS

a1
o

Threshold Estimator Class EENS [MWh] IFV
cs-TFM M 14.05 1336.2
e-IpDFT M 16.70 1358.4
RLST CTRm P 14.51 1329.3
e-IpDFT P 16.83 1373.1
cs-TFM M 14.21 1334.4
e-IpDFT M 24.17 1568.8
RLS2 S TRM P 19.23 1383.2
e-IpDFT P 24.20 1458.9
515 , :
%2 —R-LS-1 - M-class cs-DFM
5L | ! —R-LS-1 - M-class e-IpDFT
! ! R-LS-1 - P-class cs-DFM
505 |19 T —R-LS-1 - P-class e-IpDFT |
N . | i

Frequency [Hz]
S
o
(6]

49
485 |
48 intabuiniabed | I I I
150 200 250 300 350 400
Time [s]
(@)
51.5———=——== T 5D . ,
—R-LS-2 - M-class cs-DFM
—R-LS-2 - M-class e-IpDFT
51 50 R-LS-2 - P-class cs-DFM

.| —R-LS-2 - P-class e-IpDFT

Frequency [Hz]
<

495
49
485 : : : :
150 200 250 300 350 400
Time [s]
(b)

Fig. 8. Frequency: M-class cs-TFM (blue), M-class e-IpDFT (orange), P-class
cs-TFM (yellow), P-class e-IpDFT (violet). Frequency for thresholds R-LS-1
(a); Frequency for thresholds R-LS-2 (b).

frequency overshoots are clearly visible in the zoomed window
in Fig. 8b.

In general, as shown in Fig. 6 and Fig. 7, the cs-TFM
algorithm allows for an instantaneous estimation of ROCOF,
thanks to the direct computation of the phase second-order
time-derivative. The anticipation of one reporting period (i.e.
20 ms) guarantees a more consistent response to fast dynamics.
Based on the results of Table III, it is possible to infer some
recommendations for the implementation of the proposed
UFLS schemes: it is important also to define proper R-LS
thresholds in order to minimize EENS and IFV, as well as to
avoid excessive LS and frequency overshoots.

VI. CONCLUSIONS

In this paper, we investigated the impact of synchrophasor
estimation algorithms in ROCOF-based UFLS schemes. To



this end, we developed a simple yet effective local UFLS
and Load-Restoration (LR) scheme, that relies on PMU-based
estimates of fundamental frequency and ROCOF. Specifically,
we introduce two sets of ROCOF thresholds to promptly
trig the LS and suitably select the amount of shed loads.
Frequency measurements, instead, govern the LR process. The
employment of PMUs enables us to optimize the estimation
accuracy and the reporting rate. In addition, differently from
traditional approaches based on frequency thresholds, the
proposed scheme employs ROCOF measurements to trig the
LS action, as its derivative formulation allows for a prompter
and more effective response to the fast dynamics experienced
in modern power systems with reduced inertia.

We assessed the performance of the proposed relaying
scheme by means of a RTS, where we reproduced a full-
replica of the time-domain dynamic model of the IEEE 39-Bus
power system with a substantial amount of distributed energy
resources. In this context, we considered two consolidated syn-
chrophasor estimation algorithms, i.e., e-IpDFT and cs-TFM,
that rely on a static and a dynamic signal model, respectively.
For each algorithm, we implemented two configurations as
representative of P- and M-class of IEEE Std C37.118.1.

Within this simulated scenario, we reproduced a contin-
gency event with 1.5 GW tripped power, and we evaluated
the UFLS and LR performance for each combination of RO-
COF thresholds and algorithm configurations. As performance
metrics, we considered both the Expected Energy Not Served
(EENS) and the Integrated Frequency Variation (IFV).

In M-class configuration, the ROCOF variation range is
limited and the dynamic model approach provides a prompter
system restoration. In P-class configuration, instead, we notice
higher ROCOF estimations leading to higher EENS and IFV.

The comparison between different ROCOF thresholds
shows that high shares of shed loads might lead to an uncon-
trolled frequency increase and thus trig a too fast and excessive
LR action.

In conclusion, the proposed analysis confirmed the poten-
tial benefits of PMU-based ROCOF measurements for UFLS
applications, and proved that the control scheme performance
depends on the adopted synchrophasor estimation technique
and configuration.
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