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Abstract--It was demonstrated that the branching 

process model is useful to generate a series having a � �⁄  spectrum in a wide range of frequency more 

than seven decades. 
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Ⅰ.  INTRODUCTION 

In the stochastic process such as the Markov process, 

an event in the process is strongly influenced by the 

event happened just before.  The time series 

composed of these events shows usually a 1 ��⁄ -like 

spectrum.  In the present work, a medium, in which 

many particles exist and each single particle may be 

divided into several particles and be absorbed, is 

considered, where the particle number at a moment is 

decided stochastically by the number just before.  If 

these particles are observed by a detector, the detecting 

events may show another kind of stochastic behavior.  

This is the basic idea of this work and is illustrated in 

Fig. 1. 

The particle numbers at time �� and �� in Fig. 1 

are 7 and 10, respectively.  A detection may 

correlated with another detection through the 

branching paths as given by a, b and c in the figure.  

The detection d has no correlation with a, b and c, 

because it is on another branching chain different from 

that of a, b and c.  The length of the path between the 

detections has statistical correlation with the physical 

time interval.  The time interval, for example, 

between a and b is approximately equivalent to that 

between b and c, but the correlation between b and c 

may be far weaker than that between a and b, because 

the path between b and c is longer than that between a 

and b. 

 

Ⅱ. DETECTION PROBABILITY 

  We suppose a medium in which a particle may be 

subjected to absorption, branching multiplicative 

reaction, and detection with the probabilities ��, �� 

and ��, respectively.  The statistics of the particles 

and detections in the medium can be obtained in close 

forms.  Their detailed mathematical expressions are 

given in my previous works [1] and [2] by using the 

branching process model.  In the present work, we 

Fig. 1.  Chain of the branching process.  The square, 
circle and black spot represent a particle immigrated 
randomly in the medium, absorption and detection of a 
particle, respectively.  The path of a particle is shown 
by a full line. 



focused only on the case that exactly two particles are 

produced by a branching reaction, a detection of a 

particle has no influence on the particle number and 

the absorption rate is equivalent to the branching rate, 

i.e., �� = ��.  The case that a particle is absorbed by 

detection and the case of �� ≠ �� are discussed in 

[1], [2], [3] and [4]. 

  We consider the probability ��(�,	, �)  that m 

detection counts have been recorded during the time 

interval (0, t) and n particles are found in the medium 

at time t > 0 after k particles exist at � = 0.  It is 

rather complicated to obtain this probability for every 

single value of m>0, but the probability ��(0,	, �) 

can be described closely as ��
0,	, �� = ��(�,�) = 
�
0, �, �� ∙ ��	�
�,�	��,    (1)
�

�
�
 

where 
    ��(�,�) = ��,�    (2) 

and 

 �(0, �, �) = � �����
(��	��)������
(��	�������)�� ∙ �(0, � − 1, �)
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Here 
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and 

  ε = ��
��  .                                                                        (6) 

The probability that we get some detections during 

the time interval (0, t) and n particles are found in the 

medium at � > 0 after we had k particles at � = 0 is 

given by 

  
 ��
�,	, �� = ��
	, �� − ��
0,	, �� 
�

�
�
 ,               (7) 

where ��(	, �) is the probability that n particles are 

found in the medium at time � > 0 after we had k 

particles at � = 0.  When the probability (7) is much 

smaller than ��(0,	, �) , the probability recording 

more than two counts can be negligible and the 

following relation holds approximately, 

  ��
1,	, �� ≅ ��
	, �� − ��
0,	, ��.                        (8) 

  The probability ��(	, �) is given in [1], [2] and [3] 

as 
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where 

  ��� = ��,�,                               (10) 

  �
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and 

  � = ���
����� .     (12) 

 

Ⅲ. COMPUTER SIMULATIONS 

  Whether a particle detection has occurred or not in a 

very short time interval was decided successively by 

using the Monte Carlo method with the probabilities 

described in (1), (8) and (9), and the series formed by 

the time intervals between two successive detections 

(count series) was generated in the case of ε = 1.  

The obtained series was analyzed using the fast Fourier 

transformation technique (FFT) and the power spectral 

density (PSD) was calculated.  One of the results is 

shown in Fig. 2, where the frequency is related to the 

detection counts not to time. The PSD behaves like a 

1 �⁄  distribution for six decades or more of frequency 

when the series size is shorter than 2097152.  The 

PSD behavior starts to deviate from the 1 �⁄  line in a 

low-frequency range when the series size is over 

4194304.  The condition ε = 1  means that each 

particle is detected once, on average, before absorbed 



in the medium.  When ε < 1, the PSD deviates from 

1 �⁄  line at a shorter series size [3].  On the other 

hand, when ε > 1, the PSD is very similar to the case 

of ε = 1 [3]. 

 

Ⅳ. RESULTS AND DISCUSSIONS 
  There are at least two limitations on 
performing the computer simulations.  The 
existing particle number should be avoided to 
be zero, because no branching will arise from no 
particle situation.  A very large number of 
particles takes unreasonably long time to 
process on a computer, and so it should be set a 
limit on the number of particles.  In the 
present simulations the upper limit of the 
number of particles (maximum particle 
number) was set to 1000.  The effect of the 
limitation of the particle number on the PDS 
was examined, the results of which is shown in 
Fig. 3, where the count series were generated 

under the same condition with the case in Fig. 2 
but the upper limits were set to 200, 400 and 
700.  As can be seen in Fig. 3, the frequency 
range with the 1 �⁄  behavior of the spectrum is 
so sensitive to the limit, and is increasing 
steadily with the maximum particle number.  
It indicates clearly that the frequency range 
with the 1 �⁄  behavior can be extended more if 
the upper limit is set to larger than 1000.  It is 
not sure that this trend in Fig. 3 continues on 
and on endlessly, but if the limit is set up to 
2000 or more, the PSD may behave like 1 �⁄  for 
about eight decades of frequency. 

  In order to see the above expectation, two count 

series with the upper limits set to 2000 and 3000 were 

generated in the case of ε = 1 .  Their obtained 

results are shown in Figs. 4 and 5, respectively.  In 

Fig. 4, the PSD of the series size of 33554432 behaves 

like a 1 �⁄  distribution, but it turns off from the 1 �⁄  

line in a low-frequency range at a longer series size.  

In Fig. 5, when the series size is 67108864, the PSD 

has a 1 �⁄  distribution over seven decades of 

frequency, but at a longer size of the series it is not 

clear whether the PSD deviates from the 1 �⁄  line or 

not.  It was difficult to generate a fully long series in 

this case because of limited computing time, and so the 

statistical precision of the FFT results in Fig. 5 is 

insufficient.  It can be said, however, that the 

frequency range having the 1 �⁄  behavior spreads out  

wider compared with the case that the upper limit is 

Fig. 2.  The PSD of the count series for the case 
of ε = 1 .  The series sizes are 2097152 and 
4193404 for the upper and lower PSD, 
respectively.  The straight lines give the 1 �⁄  
behavior. 

Fig. 3.  Relation of the longest series size with the 1 �⁄  
behavior and the maximum particle number. 



2000. 

 

Ⅴ. CONCLUSION 

  The branching process model has been applied to 

discuss the 1 �⁄  problem, and the 1 �⁄  behavior has 

been demonstrated in the spectrum of the obtained 

series in a wide range, as wide as seven decades, of 

frequency.  This frequency range is expected to 

expand up to eight decades or more by simulating on a 

higher-speed computer.  It is expected, from the 

present results, that the 1 �⁄  behavior may be realized 

by observing a part of the familiar 1 ��⁄  phenomena. 

 

REFERENCES 

[1] T. Kobayashi, “Branching processes in the 

presence of random immigration and 

representations for time series” J. Phys. A: Math. 

Gen., vol. 21, pp3723-3737, 1988. 

[2] T. Kobayashi, “1 �⁄  noise: Branching Process 

Model (Ⅰ); Formalization”, unpublished. 

[3] T. Kobayashi, “1 �⁄  noise: Branching Process 

Model (Ⅱ); Computer Simulations”, unpublished. 

[4] T. Kobayashi, “�	� series generated by using the 

branching process model”, J. Phys. A: Math. Gen., 

vol. 22, ppL931-L938, 1989. 

 

Fig. 4.  The PSD of the count series when the 
maximum particle number is set to 2000.  The 
series size is 33554432, and the straight line 
gives the 1 �⁄  behavior. 

Fig. 5.  The PSD of the count series when the 
maximum particle number is set to 3000.  The 
series size are 67108864 (upper) and 134217728 
(lower).  The straight lines give the 1 �⁄  
behavior. 


