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Abstract

Many studies on collective animal behavior seek to identify the individual rules that underlie

collective patterns. However, it was not until the recent advancements of micro-electronic

and embedded systems that scientists were able to create mixed groups of sensor-rich

robots and animals and study collective interactions from the within a bio-hybrid group. In

recent work, scientists showed that a robot-controlled lure is capable of influencing the col-

lective decisions of zebrafish Danio rerio shoals moving in a ring and a two-room setup.

Here, we study a closely related topic, that is, the collective behavior patterns that emerge

when different behavioral models are reproduced through the use of a robotic lure. We

design a behavioral model that alternates between obeying and disobeying the collective

motion decisions in order to become socially accepted by the shoal members. Subse-

quently, we compare it against two extreme cases: a reactive and an imposing decision

model. For this, we use spatial, directional and information theoretic metrics to measure the

degree of integration of the robotic agent. We show that our model leads to similar informa-

tion flow as in freely roaming shoals of zebrafish and exhibits leadership skills more often

than the open-loop models. Thus, in order for the robot to achieve higher degrees of integra-

tion in the zebrafish shoal, it must, like any other shoal member, be bidirectionally involved

in the decision making process. These findings provide insight on the ability to form mixed

societies of animals and robots and yield promising results on the degree to which a robot

can influence the collective decision making.

Introduction

From the middle of the twentieth century, modelling collective behavior has been in the center

of attention of many biological, physical, and computational studies. The main motivation

behind such studies lies in the rather complex behaviors that can arise from simple rules on

the individual level [1]. Such phenomena are quite common in nature and range from the

molecular level, to the subject of this study, collective animal behavior. Disentangling the
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dynamics of such collective phenomena can reveal information concerning the underlying

structure and organization of multiple physical phenomena observed in nature [2]. However,

modelling these phenomena requires rigorous data analysis to extract formulation that can

reproduce, at least in theory, the observed collective dynamics. In collective motion of fish, the

focus of this paper, there exist various models describing their potential interactions rules [3–

16]. More often than not, to compare the quality of different potential models, scientists have

evaluated their likelihood to reproduce or predict experimental data [17, 18]. However, this

approach does not guarantee any success since different sets of rules are able to reproduce the

observed collective movements. One way to overcome these limitations is to test models in

real conditions. However, their implementation and validation in physical, real-time and noisy

systems is a technical challenge that was only recently solved thanks to the development of

micro-electronic and embedded systems. Therefore, in the past years, robots and artificial

lures allowed scientists to put these theoretical models to the test in real-life scenarios and with

true feedback from the animals, in order to study their collective behavior. Thus, they have

since been increasingly involved in inferring the rules of interaction among animals such as

bees [19–21], fish [22–27], birds [28–30] and cockroaches [31].

Some of them [32–34] relied on the use of teleoperated devices that produce signals (e.g.,

visual, acoustic, electric) to attract or repel the animals, others rely on mobile robots that are

not explicitly mimicking the animal under study (e.g., it could be a sheepdog among sheep

[35]) and some relied on mimetic lures, that is, on lures that mimic the shape, size, and appear-

ance or behavior [22, 23, 31, 36, 37]. These studies demonstrated that artificial agents able to

perceive and emit pertinent and adapted signals can influence and control self-organized

choices by mixed groups of animals and robots [38].

Although robots proved to be a valuable asset in this context, they also uncovered the need

for behavioral models that are applicable to robotic platforms. As biological systems are char-

acterized by great variability and diversity of interaction dynamics, it is very challenging to

evaluate the degree to which a robot or robotic lure is integrated within it. A first strategy that

addresses this issue relies on open-loop models [39–54] that do not actively react to or take

into account the actions of the animals. In this case, it may be difficult to discern if the focal

animal is reacting to external stimuli or to another agent considered as a shoal member. There-

fore, they may often fail to provide a clear insight into the internal decision making process

and the natural information flow between the shoal members. A second strategy is based on

closed-loop models [23–26, 55–58] attempting to achieve a conspecific status among individu-

als by engaging in mutual information exchange and could reveal the intrinsic decision mak-

ing mechanism of individuals. In [55], the authors compared the success of a robotic lure to

integrate among a shoal of zebrafish Danio rerio by increasing the biomemitic characteristics

of the artificial agent (biomimetic or non-biomimetic lure, movement pattern, and trajectory)

and showed that the level of integration increases with the biomimetism of the robotic agent.

While similar studies have been conducted with the use of computer animations [59], none of

the former studies explicitly compared behavioral models of interaction to evaluate their rela-

tive performance when a physical device (i.e., a robot) is used for the interaction.

Therefore, the following research question arises: can we discriminate between different

behavioral rules by implementing them in a robot interacting with a shoal of zebrafish? Here,

we studied this research question as follows: (1) we make use of a circular corridor setup

which serves as a baseline control experiment arena for numerous studies on collective behav-

ior [27, 60–62]; (2) we designed three behavioral models exhibiting three different dynamics,

namely, a purely reactive model that explicitly follows the fish, an imposing direction model

constantly attempting to dictate the collective swimming direction decision and a biomimetic

model mimicking the decisions of zebrafish in a circular corridor environment; (3) we
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performed experiments with zebrafish-only and mixed groups of robots and zebrafish; (4) we

analyzed the results using three inherently different approaches. We show that our robotic sys-

tem was capable of participating in the collective decision making and blending in the shoal

without perturbing its interaction dynamics. This, in turn, led to an improved integration state

where the robot was not only accepted by the shoal, but it was also contributing to the collec-

tive decision and acting as a leader for the majority of the time.

Materials and methods

Animals

The authorization for the experiments conducted in this research work was approved by the

state ethical board of the Department of Consumer and Veterinary Affairs of the Canton de

Vaud (SCAV) of Switzerland (authorization№ 2778).

For the experiments, 60 wild-type zebrafish Danio rerio with short fins were used (AB

strain). The zebrafish were acquired from a pet shop and subsequently stored in a 60-litre

aquarium. The average length of the zebrafish used was approximately 4 cm. Water in the

housing aquarium was kept at a temperature of 26˚C. The fish were fed once per day with

commercial food between 16:00 and 18:00. Furthermore, the aquarium was enriched with plas-

tic plants, Cladophora, gravel, rocks, and aquatic snails.

Experimental setup

The experimental arena pictured in Fig 1 consists of a 10 cm wide circular corridor (from two

circular walls: an outer of 58 cm diameter and (2) an inner of 38 cm diameter) placed in a

100 × 100 × 25 cm3 glass tank, as in [27]. This setup presented the zebrafish with a binary

choice for movement: i.e they could either move clockwise (CW) or counter-clockwise

(CCW). In fact, this is a common setup for behavioral studies [27, 61–63] because it allows for

Fig 1. Experimental setup. (left) Top view depicting the setup’s dimensions, i.e. inner ring radius of 19 cm and outer of 29 cm. The dotted circles indicate the

positions of zebrafish while the full circle indicates the position of the biomimetic lure, and (right) breakdown view of the setup depicting individual components that

are necessary for closed-loop interaction. The mobile robot (FishBot) is moving below the tank and drives a biomimetic lure inside the tank through a magnetic

coupling. The top and bottom mounted cameras capture frames at a rate of 15 Hz and transmit the information to a computer. The computer will then fuse the

information to determine the positions and heading of fish and robot(s) alike. In gray, we denote the conductive plates that are used to power the FishBot.

https://doi.org/10.1371/journal.pone.0220559.g001

Bidirectional interactions facilitate the integration of a robot into a shoal of zebrafish Danio rerio

PLOS ONE | https://doi.org/10.1371/journal.pone.0220559 August 20, 2019 3 / 25

https://doi.org/10.1371/journal.pone.0220559.g001
https://doi.org/10.1371/journal.pone.0220559


setting aside spatial complexities and instead provides a symmetric arena that enables

researchers to analyze multiple instances of the same behavioral traits (e.g., U-turns [60]

where the fish will perform a direction change greater than or equal to 180˚) and quantify

their consistency across different types of behavioral models.

The bottom part of the experimental tank was covered with a Teflon plate to allow for

smoother motion of the robotic fish lure (see Robotic system for closed-loop zebrafish-robot

interactions) and avoid any stimuli produced by reflections or by the mobile robot moving

below the setup. Furthermore, the setup was confined behind white sheets to isolate the fish

from the rest of the room, while also maintaining a consistent lighting environment. A uni-

form luminosity for the room was provided by four 110-W fluorescent lamps placed at each of

the four sides of the tank.

Robotic system for closed-loop zebrafish-robot interactions

For the zebrafish-robot interaction experiments we used one miniature wheeled robot, the

FishBot [22, 64] (see Fig 2B). The robot was placed between two conductive plates located

below the experimental setup (see Fig 1) and was powered using brushes that were constantly

in contact with them. This configuration allowed the robot to operate for long periods of time

and powered the motors that were, in turn, capable of achieving the necessary speed and accel-

eration in order to quickly adapt to the rapid spatial displacements of zebrafish. The FishBot

was additionally equipped with a Bluetooth chip that allowed it to wirelessly communicate

with a computer that was providing the necessary motor commands.

Fig 2. FishBot and biomimetic lure. (A) The biomimetic lure (approximately 4.5 cm long) fixed on a white carbon stick, (B) the FishBot on its side (approximately

5.5 cm long), (C) relative size of the lure, FishBot and FishBot cover (from left to right), and (D) assembled robotic system; the white cover protects critical parts of the

FishBot, and the lure magnetically coupled to the FishBot.

https://doi.org/10.1371/journal.pone.0220559.g002
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A soft biomimetic lure of approximately 4.5 cm length (see Fig 2A) was selected to physi-

cally interact with the animals. This lure was designed to mimic the morphology of the zebra-

fish and passively beat its tail during its underwater motion. As described in [22] this specific

lure achieved strong acceptance in groups of zebrafish. Subsequently, it was mounted on a

carbon stick at a height of 3 cm to ensure that it was visible by neighboring fish. An iron plate

located at the bottom of this stick carried two magnets that allowed for a magnetic coupling

(similarly to [22–26], see Fig 2D) to the robot located below the setup.

Control and tracking software

In order to close the interaction loop between the fish and the robot we made use of the Con-

trol and tracking for multi-agent animal-robots groups (CATS) framework [65]. CATS contin-

uously monitored the positions of the robot and the animals through image frames obtained

by the two cameras located above and below the setup (see Fig 1). In particular, the overhead

camera was set to simultaneously stream video in two resolutions; (1) a 1040 × 1040 stream

that was recorded and used for the analysis of the experiment, and (2) a 512 × 512 stream that

was used in CATS for the detection of the fish and/or lure in real-time. The image frames from

the camera located at the bottom of the setup were directly fed to CATS for processing.

More specifically, the agents’ positions were determined by feeding the image frames of

the overhead camera to a corner detection method [66] implemented using the OpenCV [67]

library; while the camera located below the setup was used to localize the mobile robot, which

was equipped with 6 light-emitting diodes of blue color, using a blob detector. Subsequently,

CATS fused information from both cameras to distinguish the artificial lure from the living

individuals. We note that both cameras operated at a rate of 15 frames per second.

Once CATS had finished determining the positions, the resulting spatial information (2D

position and heading direction) became available in the control layer of CATS. This layer is

responsible for the higher level control procedure of the robot (i.e., deciding which is the next

desired state for the robot). The behavioral models presented in the following section were

implemented within the control layer of CATS and output higher level commands such as

desired velocity, position, and orientation. Those commands were then fed to a micro-control-

ler unit where a proportional-integral-derivative controller (PID) translated the higher level

commands to motor commands, similarly to [64].

Additionally, to the online control procedure that was devised for the fish-robot interaction

experiments, the videos of each experiment underwent post-processing using the idTracker

software [68] to extract the trajectories of each agent for each experiment. This time-consum-

ing and computationally expensive process is capable of recreating the trajectories of each

identified agent (6 agents for 30 minute long experiments) with on average 95% accuracy, cor-

recting any mistakes made in trajectories due to crossings that occurred naturally throughout

the experiment.

Experimental procedure

For the duration of the experiments, we maintained a constant height of 6 cm of water in the

setup. Under these conditions, the fish were not additionally stressed, and their movement was

on average constrained to a specific height, thus, reducing spatial complexities on the z-axis.

Prior to placing the zebrafish in the setup, the water temperature was brought to 26˚C. There-

after, a shoal of zebrafish was randomly caught from the rearing tanks with a fishnet and

placed in the experimental setup. After a 5 minute acclimatization period during which the

FishBot remained stationary, we started and recorded the experiment for 30 minutes. No indi-

vidual was used twice in the same day.
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We conducted 10 experiments with shoals of six zebrafish and no FishBot to observe the

baseline behavior of the fish (hereby referred to as “fish-only” experiments) when no artificial

stimuli were provided. Then we conducted a total of 3 × 10 experiments with five zebrafish

and one FishBot with three different behavioral models (described in the following section) for

the FishBot. Each model was tested in random order to account for the fish getting accustomed

to a specific behavior exhibited by the robot.

Behavioral models

Follower model (FM). We designed a closed-loop following model, the “Follower

Model”, where the robot was simply instructed to head towards the point in space that was on

average most dense in terms of fish occupancy. FM is a purely reactive, passive model in the

sense that it does not actively model or embed interaction in its design and instead reacts only

to the position of the fish by always following it.

Despotic model (DM). We also designed an open-loop model, which is an adaptation of

the approach described in [27] that uses only one robot which was instructed to perform a CW

movement throughout the experiment. Contrary to FM, this model is always attempting to

impose the collective movement direction decision, thus we call it “Despotic Model”.

Feedback-Initiative model (FIM). Finally, we implemented a closed-loop parametric

behavioral model similar to [61]. In [61], the authors described a model that operates in a one-

dimensional decision space (i.e., CW or CCW movement). First, the circular corridor arena is

divided into 40 equal cells of 9-degree arc length each. Then, the focal individual will take a

directional decision according to the perceived heading directions of its neighbors and a prob-

ability to “disobey” this collective decision. More specifically, the next heading direction of an

individual is given by the following expression:

hðfishj; t þ 1Þ ¼

hðfishj; tÞ þ
XNP

i¼0; i6¼j

hðfishi; tÞ

�
�
�hðfishj; tÞ þ

XNP

i¼0; i6¼j

hðfishi; tÞ
�
�
�

; ð1Þ

where h(fishj, t) 2 {−1, 1} the heading direction at time t and NP the subset of the set of all indi-

viduals, NA, that are in the perceptual range of the focal individual. The perceptual range is

defined as the set F� NA of the individuals that are within pr cells in the forward direction of

the focal individual. At every time-step and after computing the new heading direction, the

focal individual is given a probability 1 − Pobey to choose the opposite direction to the one

computed through the above interaction metric. We refer to this opposition to the collective

decision of swimming direction as the initiative of the focal individual.

In order to investigate the degree to which our robot can influence the directional decisions

taken by the group, we propose a variant of this model where the focal individual attempts to

closely mimic zebrafish interaction in similar arenas [27, 61, 63] while at the same time it intel-

ligently embeds initiative in its decision making according to the feedback perceived by the

neighboring social companions. Therefore, we call this model “Feedback-Initiative Model”.

Similarly to [61], we discretized the circular corridor in cells and controlled the robot’s direc-

tion of movement in the one-dimensional space of CW or CCW movement. More specifically,

we separated the setup in 40 cells each of which corresponds to approximately 4 cm of arc

length, the average length of a single zebrafish. Essentially, increasing the number of cells, i.e.,

decreasing the arc length per cell, would allow for more detailed separation of the fish in terms

of cell occupancy, but would be subject to the noise produced by CATS (see Control and
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tracking software). This discretization process reduced the locomotion control dimensions

to 1D space and the model need only to output a simple instruction at every time-step: move

one cell CW or CCW. The model made a prediction about the best candidate direction at time

t + 1, every 0.25 seconds (i.e., the controller time-step is equal to 0.25 seconds). In the context

of this study, the best candidate swimming direction was considered to be the one that has the

highest probability to elicit a collective U-turn (i.e., a switch of the swimming direction for the

majority of individuals). A complete system cycle of the model is depicted in Fig 3.

Our source of inspiration for those interactions was derived by the innate behavior of zeb-

rafish in similar setups and can be summarized in the following two key features for a focal

individual: (1) an innate tendency to align with the shoal and (2) a tendency to perform a U-

turn when few or no agents are in the field of view of the focal, initiating a direction change

that might propagate throughout the shoal [3, 62, 63, 69]. The former is formalized as a

weighted sum of the direction of a focal individual’s neighbors and is defined as the dot prod-

uct of the heading (-1 or 1) and an exponential function that can rapidly increase or decrease

the impact of a neighbor according to its position, as follows:

hðfishj; t þ 1Þ ¼
XNA

i¼0; i6¼j

hðfishi; tÞ � e
a�pðfishi ; tÞ

ð2Þ

where pðfishj; tÞ 2 ½0; jNCjÞ � Z the position of the fish j at time t, NC the set of cells that cor-

respond to the discretization process and a 2 R a regulatory parameter to set the slope.

Fig 3. Closed-loop robot control. For each system cycle: (1) a high resolution image frame is captured by the overhead camera, (2) the frame sent to a high

performance computer, where it is processed to determine the positions, velocities, and headings of each individual, (3) the extracted positions are discretized and each

individual is placed in its corresponding cell and (4) the discretized positions and headings of each individual are forwarded to the FIM, which in turn, weighs the

heading direction of the neighboring individuals and produces a desired position (red star) for the next timestep. After a few time-steps an approximation of the target

position will be achieved (green star) and the process is repeated.

https://doi.org/10.1371/journal.pone.0220559.g003
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To allow for more flexibility in FIM we used two separate parameters αf and αb for fish that

are in leading and following positions respectively (see Algo. 1) and defined the sets F and B of

fish in the forward and backward positions respectively. Intuitively, the difference between the

parameters af and ab can express biologically observed behaviors such as that fish within the

immediate field of view of a focal individual have more influence on it [3, 60, 62, 69], while the

followers can still be perceived due to the water flow [70] and might have less, but significant

influence. The parameters αf and αb were manually tuned for this specific configuration and

are given the values -0.2 and -0.5, respectively. Despite the sum’s ability (see Eq 2) to phase out

the influence of perceived agents over distance, we explicitly limited the robot’s knowledge

within 15 cells (pf = 7 cells forward, pb = 7 cells backwards and current cell occupied; or 135

degrees of perceptual range for the choice of 40 cells). Indeed, for very low values of α (see Eq

2), a conspecific could have been perceived in front and behind the focal fish due to the circu-

lar design of the setup. Finally, the focal individual’s tendency to perform a U-turn and even

disobey the collective decision of the shoal concerning the direction of movement was mod-

eled as a probability Pobey. The probability Pobey is dependent on the amount of fish in the for-

ward direction to account for an individual’s intuition to not wander too far from the fish

school or to simply initiate a random direction change. More specifically, this probability is

regulated by two constant parameters (see Algo. 1): (1) ainfluence = 4, which allows one to

increase or decrease the amount of influence of forward individuals concerning the obedience

(2) a constant upper bound τ = 0.95, value which we estimated through past fish-only experi-

ments. A subset of the parameter space that could be used in different scenarios include:

• αf = αb = −inf, τ = 1) Pobey = 1, will produce purely following behavior.

• αf = αb = τ = 0) Pobey = 0, will produce a behavior that always contradicts the collective.

• ainfluence = 0, will retain a constant and neighbor-independent Pobey.

• Setting the perceptual range to zero (i.e., Fish0 = ;) and τ = 1, will produce an imposing direc-

tion behavior (the initial direction will be followed throughout the experiment).

We designed this model to be parametric and include stochastic elements of decision mak-

ing. The parametric design allows for modification of the model to comply with different sce-

narios of interaction or species of fish (e.g., the robot could be instructed to emphasize on

following by changing a few parameters), either prior to deployment or during an experiment,

while the stochasticity serves as a way to promote initiative in the model. In [61] the authors

described a model where the focal individual’s next direction will be with high certainty

decided by the average swimming direction of the neighboring individuals. Conversely, here

the goal was to elicit a different effect from the fish and influence them to change their swim-

ming direction.

Algorithm 1
procedure STIMULATE(Fish0)

Split Fish0 to:
C = {fish in focal cell} � Fish0

F = {fish in pf forward cells} � Fish0

F = {fish in pb forward cells} � Fish0

s ¼
PjFj

i¼0; fishi2F
hðfishi; tÞ � eaf pðfishi ; tÞ þ

PjC[Bj

j¼0; fishj2C[B
hðfishi; tÞ � eab �pðfishj ; tÞ

h0 ¼
s ; s 6¼ 0

hðfocal; tÞ ; otherwise

(
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Pobey ¼
t �
�

1 � ðjF [ Cj þ 1Þ
� ainfluence

�
; Fish0 6¼ ;

t ; otherwise

8
<

:

with probability 1 − Pobey reverse h0

return h0

procedure MOVE(h(focal, t + 1)
p(focal, t + 1) = p(focal, t) + (h(focal, t + 1)

procedure FEEDBACKINITIATIVEMODEL
8fish 2 Fish, where |Fish| = |NA|:
Initialize position 2 [0, |NC|)
Initialize heading 2 {CW = −1, CCW = 1}
while stopping criteria not met do
8fish 2 Fish:

Fish0 = {fish within the perceptual range of the focal fish} �
Fish [ ;
h(focal, t + 1) = STIMULATE(Fish0)
MOVE (h(focal, t + 1))

Data filtering

The 15 frames per second capture rate made it possible to detect even minor fluctuations in

the displacement of an individual. On one hand, this rate is useful for tracking fast moving

objects or animals, but, in the case of zebrafish that move with an average speed below 20-25

cm/second in this setup, it might induce noise due to temporary loss of the position or the

image processing algorithm reporting minor differences in the position of an individual at

every time-step. Therefore, throughout the following experiments we filtered the data reported

in two ways: (1) 3 frames (0.2 seconds of interaction) were averaged to calculate the centroidal

position, heading or velocity of each agent and (2) the behavioral models presented in follow-

ing sections discretized the positions in bins, the number of which was selected to further filter

the measurements where necessary.

Data analysis

In this section, we introduce a set of metrics based on spatial, directional and information the-

oretic measures, as well as the statistical methods followed to evaluate and compare the behav-

ioral models. We note that all the raw trajectory data are available at https://github.com/epfl-

mobots/plos_one_experiments.

Average angular distance. In collective behavior, denser groups often suggest a more

cohesive, aligned and organized movement [63, 71], thus, density-based measures have been

widely used for inferring the interaction rules within a group of animals [72, 73]. Here, we

computed a similar measure, by calculating the average angular distance between all pairs of

agents. The angular distance between two fish is defined by the angle θij(t) at time t, where i, j
are two individuals and θij(t) 2 [0, π] is the angle between i and j with respect to the origin

point of the setup (center of both rings). We note that θij(t) refers to the acute angle between

the two individuals (i.e., we only evaluate the angular proximity). The average angular distance

was computed as the average of all the pairwise angular distances and is summarized in the fol-

lowing expression:

averageAngularDistanceðtÞ ¼
1

NAðNA � 1Þ

XNA

i¼1

XNA

j¼1; i6¼j

yijðtÞ ð3Þ
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Collective U-turns. Although the average angular distance provides useful topological

information concerning the closeness of the group and thus its cohesive and synchronized

movement, it would be incomplete without a complementary metric concerning the interac-

tions within it. Here, we captured these interactions in the number of collective direction

changes performed (e.g., from CW to CCW or vice versa), which in this binary choice scenario

we defined as collective U-turns. The U-turn in schools of fish has attracted attention [60, 62,

63] as it provides insight on how information is propagated among individuals. Consequently,

the effect that each behavioral model has on the occurrence of collective U-turns is representa-

tive of its ability to mimic, modulate or perturb the collective decision making.

To calculate the number of collective U-turn events we first defined the polarization of a

zebrafish shoal in this context, as follows:

polðtÞ ¼
1

NA

XNA

i¼0

hðfishi; tÞ ð4Þ

A collective U-turn occurs when the polarization of the shoal switches from one direction

to another (pol(t) � pol(t − 1)<0; i.e., we did not take into account transitions from CW/CCW

to 0). Complementary figures concerning the duration of consecutive movement before a col-

lective U-turn occurs are available in the Supporting information. section (S1, S2, S3, S4, S5,

S6, S7 and S8 Figs).

Transfer entropy. To complete the aforementioned metrics we also employed an infor-

mation theoretic measure based on the Shannon entropy [74], called transfer entropy (TE)

[75, 76]. Recent studies in collective behavior [43, 60, 77–80] have been increasingly using TE

to provide insight on the mutual interactions of individuals over time or with time delays [81].

Here, we adopted the notation of TE with embedded delay, as defined in [82]. More specifi-

cally, given two time-series X and Y, TE measures the amount of information provided by the

source X about the target Y and is defined as follows:

TX!Y ¼
X

pðynþ1; y
ðkÞ
n ; x

ðlÞ
n Þ log

pðynþ1jyðkÞn ; x
ðlÞ
n Þ

pðynþ1jx
ðkÞ
n Þ

ð5Þ

where l and k are the history lengths for the two time-series:

xðlÞn ¼ fxn; xn� tk ; xn� 2tk
; . . . ; xn� ðk� 1Þ�tk

g ð6Þ

yðlÞn ¼ fyn; yn� tl ; yn� 2tl
; . . . ; yn� ðl� 1Þ�tl

g ð7Þ

and τk, τl the time delay for the source and destination signal respectively.

In the context of this research work, we defined the time-series X, Y to be the direction of

two separate individuals over time. More specifically, we represented the direction of each

agent in a discrete signal with values -1 (CW) or 1 (CCW), by sampling the direction of each

individual every 0.2 seconds. For this computation, a more detailed trajectory is required and

thus we used a discretization with a cell count of NC = 160 (i.e., 1 cm per cell; for this proce-

dure, we used the positions extracted from idTracker). In case an individual had not moved

during this period, we assumed that its heading has remained the same as in the previous

time-step. Furthermore, considering that the influence of one individual to another will be

delayed in time, we shifted the source and target time-series by a factor τk and τl, respectively.

The intuition behind this measure is that given the direction Yn of an individual, we gain infor-

mation about the next direction Xn of another individual. It is rather obvious that the direction
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change of single individual will not propagate instantly and, thus, there exist the parameters τk
and τl that express this delay.

However, choosing the latter parameters is a non-trivial task, as the values need be mean-

ingful with respect to the experiment in question and at the same time expressive enough to

allow for observing potential differences in the fish-robot experiments. To that end, we

adopted the same technique of the authors in [60], that is, we run a simple search algorithm to

find the parameters that maximize the average TE for the fish-only experiments. To reduce the

size of the search space, we only considered values of k 2 [1, 15] and τk 2 [1, 15] (i.e., up to

three seconds of signal length and delay). We explicitly set the target delay to τl = 1 and the

length to l = 1 (i.e., 0.2 seconds) as we are interested in the effects of the source signal. We note

that the robot-fish experiments were considered for this optimization step to account for the

bias that was introduced due to the use of the lure and the models.

Subsequently, we calculated all the pairwise TE values and computed the mean TE across

all individuals during one experiment. To do so, we used the JIDT [83] framework to calculate

the TE with the optimized parameters k = 4 and τk = 1 (i.e., k = 4 corresponds to 0.8 seconds of

history and τk = 1 corresponds to a delay of 0.2 seconds). The optimized parameters are empir-

ically found to correspond the time that is necessary for an individual to perform a U-turn and

fully propagate it to the shoal.

We computed two separate mean TE values: one for the outgoing and one for the incoming

amount of information exchanged. For each case we sum the resulting TE for the trajectories

of all the fish-fish or fish-robot pairs. Intuitively, the metric expresses the average information

flow direction (incoming or outgoing) when the robot is used. For each behavioral model and

each of the outgoing and incoming cases we computed three different quantities: (1) the over-

all TE for all individuals (2) the TE related to the robot alone (outgoing and incoming) and (3)

the average TE of all fish (i.e., excluding the robot’s contribution).

Statistical tests. To further validate the interpretation of the resulting data, we performed

a Kruskal–Wallis (KW) test followed by a post hoc analysis using Tukey’s honest significant

difference (T-HSD), for each measure presented in the following section. The Kruskal–Wallis

is chosen due to the fact that the variance of the data-sets in question differs depending on the

experiment type.

Results

Average angular distance

First, we compiled the average angular distance between the shoal members across the entire

observation period for each experiment of the four tested conditions (Fig 4). For the fish-only

condition (i.e., where no artificial stimuli are present in the setup), we observed an average

angular distance of 35.04 ± 12.62 degrees. Compared to this baseline measure, all models

showed a higher inter-individual angular distance (FM: 64.72 ± 15.95 degrees, DM:

59.31 ± 11.87 degrees, FIM: 51.04 ± 10.68 degrees), with these distributions differing signifi-

cantly from each other (KW test, p< 0.0001, χ2 = 22.45). A more detailed comparison

revealed that both the FM and DM significantly differ from the fish-only (T-HSD post hoc

test, p< 0.0001 and p< 0.001, respectively) while the FIM differs significantly from the FM

and DM (T-HSD post hoc test, p� 0.22 and p� 0.53, respectively) but not from the fish-only

distribution (T-HSD post hoc test, p� 0.072). Complementary statistics are available in S1

Table of the Supporting information. Thus, while FIM still did not perform as well as the con-

trol experiments (16 degrees� 8 cm arc distance), its ability to mimic the collective decision

making allowed the robot to maintain the cohesion of the shoal with on average 14 degrees

better than FM and 9 degrees better than DM. Moreover, the results observed are consistent
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over time as shown in Fig 4B depicting the average angular distance for every minute of the

experiment.

The mean performance and amount of variance in the FM model is indicative of its defi-

ciency when it with regard to its ability to be accepted and integrated with the shoal. Further-

more, such result is in direct contradiction with FM’s explicit goal, which was to head towards

the densest point of the shoal and thus promote a more cohesive behavior, and could suggest

that its movement patterns were too aggressive to be accepted by the shoal and contribute

to its operation. DM, on the other hand, performed on average worse than the fish-only but

exhibits similar variance and seemed to perturb the shoaling behavior less. Finally, FIM was

the most consistent over time which could be indicative of an overall better acceptance by the

shoal.

Collective U-turns

The collective U-turns performed per minute (see Fig 5). (1) fish-only had median of 13.05

turns and a mean of 12.38 ± 3.71, (2) FM had median of 7.25 turns and a mean of 8.27 ± 2.30,

(3) DM had median of 6.97 turns and a mean of 7.91 ± 1.60 and (4) FIM had median of 12.38

turns and a mean of 11.91 ± 2.77. These distribution differ significantly from each other (KW

test, p< 0.001 and χ2 = 16.63). An additional post hoc T-HSD analysis showed that: FM versus

fish-only had significantly different mean rank (p< 0.05); DM versus fish-only also showed

significantly different mean rank (p< 0.001); FIM versus fish-only showed no significant

difference (p> 0.99) but FIM versus FM (p< 0.05) and DM (p< 0.01) showed a significant

difference (a detailed table of the post hoc analysis is available in S2 Table of the Supporting

information).

Fig 4. (A) Average angular distance in degrees over ten runs and (B) average angular distance in 1-minute time-steps over all replicates. Annotations of the

statistical significance (Kruskal–Wallis test folowed by Tukey’s honest significant difference criterion post hoc analysis) are marked with a dash or stars. The dash

corresponds p> 0.05, a single star to p< 0.05, two stars to p< 0.01, three stars to p< 0.001. and four stars to p< 0.0001.

https://doi.org/10.1371/journal.pone.0220559.g004
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These results showed that FM’s and DM’s poor performance in terms of angular distance

translated in poor performance in terms of collective U-turns. While this was to be expected

for the DM that was instructing the robot to move CW, FM once again appeared to disrupt the

collective dynamics of the shoal. More specifically, DM’s low number of U-turns demonstrated

Fig 5. Average number of collective U-turns per minute over all replicates. Annotations of the statistical significance (Kruskal–Wallis test folowed by Tukey’s

honest significant difference criterion post hoc analysis) are marked with a dash or stars. The dash corresponds p> 0.05, a single star to p< 0.05, two stars to p< 0.01,

three stars to p< 0.001. and four stars to p< 0.0001.

https://doi.org/10.1371/journal.pone.0220559.g005
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its ability to influence the collective decision making rather than to participate in it (the shoal

moves CW� 65% of the time similar to [27]). Conversely, there was no significant difference

between FIM and the fish-only experiments regarding the collective U-turns. This indicates

that FIM had strong biomimetic capabilities due to its design, that explicitly embedded the

ability to follow but also initiate direction changes.

In addition to the collective U-turns, we also investigated the success rate of the robot to ini-

tiate a collective U-turn. In Fig 6A we depict the percentage of successful U-turns that were

owed to the robot’s motion, in Fig 6B we depict the highest percentage of successful U-turns

exhibited by any one individual taking part in the experiment, and in Fig 6C we depict the per-

centage of the robot that was the most influential individual. We note that in the case of the

fish-only experiments we chose one random individual and we excluded the DM experiments

since the robot would never perform a U-turn. Intuitively, the above measurements can pro-

vide an estimate of the leadership characteristics of each model compared to the innate behav-

ior of the zebrafish. Moreover, the distributions depicted in Fig 6A and 6B provide, once

again, insight on the degree to which the robot might have been perturbing or naturally inter-

acting with the living individuals.

We performed KW test for the successful U-turn initiation distribution and obtained the

values of p< 0.05 and χ2 = 7.65. A follow-up T-HSD post hoc test revealed that fish-only does

not differ significantly from the FM (p> 0.5), while it did indeed differ significantly from FIM

(p< 0.5). FM also differs significantly from FIM (p< 0.05). While Fig 6B alone does not pro-

vide a lot of additional information (the distributions d not differ significantly KW test,

p> 0.05), in combination with Fig 6A we notice that the robot’s U-turn initiation success rate

was very similar to the distribution for the fish-only individuals with the highest success rate.

Fig 6. U-turn initiation success rates. (A) successful U-turns that were initiated by the robot (or a random individual in the case of fish-only), (B) highest success rate

in an experiment owed to any one individual, and (C) percentage of experiments in which the robot had the highest success rate. Annotations of the statistical

significance (Kruskal–Wallis test folowed by Tukey’s honest significant difference criterion post hoc analysis) are marked with a dash or stars. The dash corresponds

p> 0.05, a single star to p< 0.05, two stars to p< 0.01, three stars to p< 0.001. and four stars to p< 0.0001.

https://doi.org/10.1371/journal.pone.0220559.g006
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In Fig 6C we quantified the latter in terms of the percentage that the robot acted as the leading

individual and found than in FM experiments this corresponds to 20% and in FIM experi-

ments to 70%. While FIM was clearly more successful in initiating a U-turn, FM’s success rate

was greater than what could be expected by a following model. This is, was fact, directly linked

to the densest point alternation (see Follower Model (FM)), which could very well have trig-

gered a U-turn for the robot if the densest centroid appeared in the reverse direction. Overall,

this provides evidence that the FIM was capable of producing patterns that did not perturb the

collective and at the same time allowed it to have a leadership role with higher, compared to a

random individual, percentage.

Transfer entropy

We complete this section by evaluating the information propagation capabilities of each model

by resorting to information theory and more specifically to the use of TE (see section Transfer

entropy). In Fig 7, we measured the TE for all shoal members (fish and robots) quantifying the

average influence that individuals exerted on (outgoing TE) or received from (incoming TE)

the others.

First, we analyzed the average outgoing entropy for all agents (Fig 7A). Again, the distribu-

tions significantly differ from each other across the different treatments (KW test, p< 0.00001,

Fig 7. Average transfer entropy (TE) for direction time-series. The first row (i.e., Fig A, B, C) corresponds to the average outgoing TE of the shoal (i.e., amount of

TE from focal towards other individuals) and the second (i.e., D, E, F) corresponds to the average incoming TE (i.e., amount of TE from other individuals towards the

focal). A & D: TE for the mixed group (all individuals are considered), B & E: TE only for the robotic agent (for fish-only experiments a random fish replaces the

robot) and C & F: TE only for living individuals (i.e. the robot is excluded in the computation and for fish-only experiments a random fish and excluded from the

analysis). Annotations of the statistical significance (Kruskal–Wallis test followed by Tukey’s honest significant difference criterion post hoc analysis) are marked with

a dash or stars. The dash corresponds p> 0.05, a single star to p< 0.05, two stars to p< 0.01, three stars to p< 0.001. and four stars to p< 0.0001. The complete

pairwise comparisons can be found in S5, S6, S7 and S8 Tables, name, S10 Table.

https://doi.org/10.1371/journal.pone.0220559.g007
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and χ2 = 26.78). The fish-only condition, that showed the highest TE values, differs signifi-

cantly from the FM (T-HSD post hoc test, p< 0.01) and DM (T-HSD post hoc test,

p< 0.0001) but not from the FIM (T-HSD post hoc test, p� 0.59).

The lower performance observed in the mixed groups could be partly attributed to the

robot’s slow response to stimuli or the models’ lack of locomotive aspects that might play an

important role in good integration (e.g., biomimetic locomotion patterns). On the other hand,

it is important to note that the amount of outgoing directional information exchanged did not

significantly differ in the case of FIM versus fish-only which in turn implies that the robotic

lure had a considerable impact on the shoal. In fact, FIM stood out compared to the rest of the

models in terms of distribution similarity, therefore, we conclude that its biomimetic decision

making was indeed important when it came to propagating information within the shoal.

To highlight the role played by the robot in the shoal dynamics, we separated the average

outgoing TE of the robot (Fig 7B) and the average outgoing TE of the fish (Fig 7C). The intui-

tion behind this threefold separation (average TE for all agents, average robot TE, average fish

TE) is summarized as follows: (1) an overall estimate of how each model affected directional

information transfer in the shoal, (2) a quantification of the robot’s interaction with the fish

and (3) an evaluation of the perturbations in information transfer between the fish due to the

presence of the robot. We note that for the fish-only box-plots of Fig 7B and 7C, we chose one

fish at random since no robot is used.

For the robot TE case in Fig 7B, the distributions differ significantly (KW test, p< 0.00001

and χ2 = 27.19). A multiple comparison of the distributions showed that: fish-only did not dif-

fer significantly from FM (T-HSD post hoc test, p� 0.11) and FIM (T-HSD post hoc test, p�
0.54) but differed significantly from DM (T-HSD post hoc test, p< 0.0001).

Then, we computed the average outgoing TE exchange only among the fish for the different

conditions (Fig 7C). The KW test showed that the distributions differ significantly with each

other (KW test, p< 0.05). The multiple comparisons post hoc test revealed that: fish-only dif-

fer significantly from FM (T-HSD post hoc test, p< 0.01), but not from DM (T-HSD post hoc

test, p> 0.05) and FIM (T-HSD post hoc test, p� 0.93). In these cases, FIM performed closely

to the control experiments. We believe that this could be linked to the degree of acceptance of

the robot by the society. More specifically, if the robot does not perturb the directional infor-

mation propagation, or ideally contributes to it, it might have higher chances to be accepted as

a conspecific. In that respect, FIM seems to be the better model out of the ones we tested.

Similarly, we computed the average incoming TE for all individuals Fig 7D, only the robot

Fig 7E, and only the fish for all conditions Fig 7F. For the incoming TE for all agents, the

results were identical to the one obtained for the average outgoing TE shown in Fig 7A as the

amount of information exchanged is preserved within the system but distributed differently

among the fish and the robot.

Concerning the average incoming TE of the robot (see Fig 7E), the distributions were

significantly different, as observed for the average outgoing TE (KW test, p< 0.0001, χ2 =

32.21). From the complementary T-HSD post hoc analysis we obtained the values p� 0.07,

p< 0.0001, p< 0.05 for fish-only versus FM, fish-only versus DM and fish-only versus FIM,

respectively. In this case, the FIM under-performed compared to FM. However, this could be

expected as the FM, a purely reactive model, was constantly instructing the robot to follow the

fish while the FIM could lead the robot to take an initiative that contradicted the behavior of

the fish.

For the average incoming TE of only the fish (Fig 7F), we also observed a significant effect

of the conditions on the average TE (KW test, p< 0.001). However, contrarily to the average

outgoing TE, the multiple comparisons showed that fish-only significantly differs from the FM

(T-HSD post hoc test, p< 0.01) and DM (T-HSD post hoc test, p< 0.001) but not from the
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FIM (T-HSD post hoc test, p� 0.89). These results confirmed that the robot controlled by the

FIM did not impede the transfer of information between the fish.

Discussion

Testing theoretical hypotheses in realistic conditions is an imperative step towards under-

standing the collective dynamics of natural systems. However, generating specific patterns that

are valuable to validate those hypotheses requires sophisticated physical systems. In the case of

animal studies, and specifically the study of zebrafish’s group interactions, such systems must

blend well enough in the shoal as to allow for natural and life-like interaction dynamics to

emerge. Thus, apart from visual biomimetic cues, a robotic device ought to behave as close to

the living creature as possible. In turn, this raises questions on the necessity of complex behav-

ioral models in order for an artificial agent to socially interact with a high degree of integration

in the group. Here, we showed that a model, that has been simplified to be implemented on a

physical system, allowed the robot to establish life-like interactions with a shoal of fish through

a bidirectional communication scheme.

While one could assume that a simple following model that instructs a robotic agent to

move towards the fish would quite naturally succeed in “infiltrating” the shoal, we showed that

our own Follower model (FM), failed to do so. Although further experiments need to be con-

ducted to understand the underlying mechanisms that FM failed to capture, intuitively, a lure

that is not attempting to interact with the living agents is less appealing to them and at times

is completely disregarded (in the collective decision-making sense). Such hypotheses were

already studied in related work (e.g. [26]), but, here, we were able to do so in a reproducible

way, in experiments of 30 minutes, with a closed-loop interaction between the animals and the

robot that was permanent during the entire experiment. The results of the previous section

also showed that this passive control scheme perturbed the behavior of the fish as we observed

greater mean inter-individual distance and at the same time fewer U-turns performed on the

global scale. This was also validated by visual inspection of the corresponding experiment

recordings. Moreover, we attempted to trace the source of this failure by using a TE metric to

estimate the amount of information that is exchanged when this model is active on the robot.

While such a metric can not be used to safely draw causal conclusions, the results implied that

there was a significantly different trend in the information flow for this model (see Fig 7) that

could explain the lack of similarity on the global scale (i.e., inter-individual distance, U-turns

and successful U-turn initiation).

Another baseline, yet very informative, experiment we conducted is related to the Despotic

model (DM). In contrary to the FM, we set out to test the response of the fish when the sce-

nario is inverted, that is when the robot is disregarding their decisions concerning the direc-

tion of movement. More specifically, we aimed to test two extreme cases and observed the

responses for each one. As shown in section Feedback-Initiative Model (FIM)., DM also fails

to capture the interest of the living individuals for long periods of time. Conversely, the Feed-

back-Initiative model (FIM) managed to exhibit patterns that proved to lead to similar dynam-

ics on a global scale. Especially the results depicted in Fig 5 concerning the collective U-turns,

showed that the living individuals interact with the robot and between them in a similar man-

ner as groups of only fish. Similarly, the TE measurements implied that the robot managed to

establish stronger communication channels with the fish that could, in turn, explain the simi-

larity of the U-turn distributions. Even more interestingly, we noticed that the robot had a

leading role (i.e., a direction change of the robot was likely to propagate to the remaining

group members) for the majority of the experiments and had a very similar influence to the

most influential fish individual of the fish-only experiments.
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In this study, we implemented different behavioural models on a robot-fish to test their

ability to interact with the bio-hybrid group members. In particular, we segmented the model

space in three categories spanning it; (1) passive models (FM), (2) reactive models (DM), and

(3) intermediate models, like the FIM where the robot alternates between (1) and (2). The con-

tribution of this work lies in the following two; (1) demonstrating that the robotic framework

we developed is able to exhibit encoded models to study the collective behavior of small fish

species, such as the one of [61] from which the FIM was inspired, and (2) the comparative

study of those three fundamentally different approaches to the robot control problem and it

constitutes a first towards building more complex models that can elicit even more complex

responses by leveraging the findings of this study.

Limitations

Embedded systems have come a long way in the past century and have allowed for the minia-

turization of robotic systems to the point where they can interact with small animals like fish

[22–24, 26]. While most of those systems can achieve similar acceleration and velocity pro-

files to the zebrafish themselves, they are still constrained by the physical laws. That is, such

systems need to account for friction, are often bound to the trade-off of size versus controlla-

bility, typically rely on additional parts that affect water flow and in the case of multi-robot

systems they need to maintain a safe distance (e.g., fish tend to cross on the y-axis but to this

day there is no physical robot that can achieve this). Here, we relied on a two-part system, a

miniature robot and a lure, that has already proved to be significantly biomimetic to “blend”

in a shoal of fish [22]. In some cases, we found that each of the models presented required a

considerable amount of manual tuning of their parameters to reach realistic motion profiles.

On that end, our control procedures could benefit from the advancements in machine learn-

ing that have been shown to be able to tune such models in real-time [84]. Moreover, while

the models used did not require more computational power than what was available, we

expect that future experiments with multiple robots and more complex models might and,

therefore, the future work needs to focus on both data-efficient algorithms for the adaptation

step of the robot and to making use of modern computational systems that can deal with this

intensive load.

An alternative approach that was proposed in order to address some of the physical limita-

tions of such a robotic system was the use of animated images (e.g., a fish image) projected

into the experimental arena [59]. This would in principle allow for very rapid movements

without the complexity owed to the use of physical systems that can not, for example, operate

in very small distances. However, while such systems offer a great alternative, in the case of

zebrafish and animals in general there might be interactions that are exclusively elicited

through physical contact or properties (e.g., the zebrafish will perceive changes in water flow

and adapt accordingly).

In addition to the physical limitations of such a complex robotic system, we were also faced

with the task of ensuring that the individuals used in this study were not acclimatized to the

effects of the robot. For this purpose, we used the same protocol established and validated in

our prior studies, that is, the models were encoded in a random way for sequential experiments

and no fish was used twice each day. The policy enforced by the host country (Switzerland)

concerning the refined and reduced usage of animals for experimentation allowed for the of

only two aquariums and a small number of fish (see section Experimental procedure). Since

the fish had to be returned in the two aquariums available at the time, separating the groups

tested was not feasible. To address this, we randomly caught fish from the aquariums to create

mixed populations with different prior experiences and account for the same robot effect.
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Future work

The evaluation of the extent to which the robot can “blend” in a group of living animals and

socially interact with them is imperative in order to establish useful and informative baselines

about the design, implementation and more importantly the prospects of mixed groups of ani-

mals and robots. A robotic tool capable of “convincing” its social companions that it is part of

their group is likely the first step towards an ethological tool that allows for probing very spe-

cific responses from the bio-hybrid group. For this to happen, there is the need for realistic

decision making models that can lead meaningful interactions, for robots agile enough to

adapt to the quick responses of the fish and for robust and data-efficient algorithms that can

potentially tune the models online to allow the robot to integrate in the group for long periods

of time. The results conducted within this research work, imply that a highly integrated agent

might be more influential and well integrated with a group of 5 zebrafish. While such a claim

needs to be studied further, it becomes more obvious that to validate collective behavior mod-

els, data simulations are not sufficient as they can not model or predict its true impact on the

individuals themselves, that is, there is a reality gap between simulation and physical world.

Thus, the use of robotic systems becomes increasingly more important in view of more com-

plex studies on the underlying mechanisms of natural systems. Thus far, our platform has

allowed us to test scenarios, with various fish species interacting with one or more robots that

could embed similar models to the one developed in this work, in order to study complex col-

lective behavior with groups of multiple fish and robots.
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11. Bertin E, Droz M, Grégoire G. Boltzmann and hydrodynamic description for self-propelled particles.

Physical Review E. 2006; 74(2):022101. https://doi.org/10.1103/PhysRevE.74.022101
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