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Abstract—Epilepsy is one of the most prevalent paroxystic
neurological disorders that can dramatically degrade the quality
of life and may even lead to death. Therefore, real-time epilepsy
monitoring and seizure detection has become important over
the past decades. In this context, wearable technologies offer a
promising solution to pervasive epilepsy monitoring by removing
the constraints with respect to time and location. In this paper,
we propose a self-aware wearable system for real-time detection
of epileptic seizures on a long-term basis. First, we propose a
multi-parametric machine learning technique to detect seizures
by analyzing both cardiac and respiratory responses to seizures,
which are obtained using only the ECG signal. Second, in order
to enable long-time epilepsy detection, we introduce the notion
of self-awareness in our real-time wearable system. We evaluate
the performance of our proposed solution based on an epilepsy
database of more than 211 hours of recording, provided by the
Lausanne University Hospital (CHUV), on the INYU wearable
sensor. Our proposed system achieves a sensitivity of 88.66% and
a specificity of 85.65% before applying self-awareness. Moreover,
by controlling the energy-quality trade-offs using our self-aware
energy-management technique, we can tune the battery lifetime
of the wearable system to last between 67.55 and 136.91 days
while, still outperforming the state-of-the-art techniques for
wearable seizure detection, by achieving from 85.54% to 79.33%
geometric mean of specificity and sensitivity.

Index Terms—epileptic seizure detection, cardiac system, res-
piratory system, self-awareness, electrocardiography, heart-rate
variability

I. INTRODUCTION

Neurological disorders contribute to 6.3% of the disability-
adjusted life years (i.e., time lost with respect to an ideal
healthy life situation) among all categories of diseases [1].
Epilepsy is one of the most common neurological disorders
affecting more than 65 million people worldwide [2]. De-
spite the recent advances in anti-epileptic drugs, one-third of
epilepsy patients still suffer from seizures. More importantly,
epilepsy represents the second neurological cause of years of
potential life lost, primarily due to seizure-triggered accidents
and sudden unexpected death in epilepsy (SUDEP) [3].

The possibility of monitoring epileptic patients in real time
and on a long-term basis is poised to improve the quality
of life and reduce the mortality rate in these patients [4],
[5]. In particular, by using such real-time epileptic seizure

Manuscript received July 15, 2019.

detection mechanisms, it is possible to notify family mem-
bers, caregivers, and emergency units in case of a seizure.
Therefore, it should be possible to reduce seizure-related
injuries, status epilepticus, and SUDEP [6]. However, real-
time epileptic seizure detection is not possible without energy-
efficient wearable technologies, which are also key enablers
for long-term patient monitoring in ambulatory settings.

In this article, we adopt the notion of self-awareness to en-
able real-time long-term epilepsy monitoring. Self-awareness
is introduced to a system, so that it can obtain knowledge
about itself and also the environment in which it is oper-
ating. This information enables the system to monitor its
performance, adapt to changes and improve autonomously (in
terms of system’s objectives, such as, power consumption and
performance) [7], [8]. Self-awareness has two main phases
of learning and reasoning, which are driven by the system’s
goal. This is translated to an Observe-Decide-Act (ODA) loop
in self-aware systems, where a set of observations are done
according to the system’s goal. Then, a set of possible actions
are determined and, finally, a decision is made about the best
use of the available actions to meet the system’s goals [9].
Self-awareness can be indeed the key to design the next-
generation of intelligent medical wearable systems. To ensure
extreme energy efficiency, having knowledge about self and
environment is necessary for the system. Self-awareness can
be applied in seizure detection systems by fulfilling three
major properties: reflecting current situation, predicting the
possibilities to improve energy reduction and adopting the
right strategy in the system [10]-[12].

In the case of epilepsy monitoring, the gold standard to
identify and adopt suitable strategies is based on the video-
Electroencephalogram (EEG), which involves monitoring the
brain electrical activity of patients using EEG, together with
closed-circuit video observation. However, the long-term EEG
monitoring outside the hospital premises using hats and
caps can cause social stigmatization and discomfort for pa-
tients [13], due to their intrusive nature. Hence, there is
currently no viable scalp-EEG-based solution for the very
long-term (i.e. over weeks, months or years) ambulatory mon-
itoring of epileptic seizures. On the other hand, intracerebral
EEG monitoring can be performed over very long periods of
time, but represents an invasive and expensive technology.
Moreover, it can only be proposed to a small minority of
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patients [14].

Alternatives to scalp-EEG for non-invasive seizure detection
derive from their impact on motor activity, reflected in 3D-
accelerometry and electromyography (EMG) [15], [16], as
well as from their interaction with the autonomic nervous
system (ANS) [17], [18], with changes in both sympathetic and
parasympathetic nervous activities [19]. These changes in ANS
are reflected into changes in heart rate [20]-[26], respiratory
function [27]-[31], and electrodermal response [32]. The most
common cardiac change associated with seizures is ictal tachy-
cardia, often exceeding 100 bpm [33]-[35]. Seizures can also
affect respiratory function (e.g., tachypnea, hypopnea, apnea).
Neurogenic pulmonary edema, central apnea and asystolia
might also occur and can result in SUDEP [27]-[29]. A causal
analysis of these cardiac and respiratory characteristics can
only be performed by continuous monitoring of cardiorespi-
ratory functions.

Currently, wearable devices used for non-EEG seizure
detection can only reliably detect generalized tonic-cronic
seizure (GTCS), for which the associated motor activity and
ANS changes are both prominent and stereotyped. However,
these seizures only represent a minority of epileptic attacks.
There is thus a need to develop systems enable to identify
the more variable and difficult to detect non-generalized focal
seizures (FS). To this end, multi-parametric monitoring that
includes cardiorespiratory biosignals might prove useful.

In this article, we extend our previous work [36] and pro-
pose a novel wearable system by combining multi-parametric
biosignal processing and machine learning with the self-
awareness notion. Real-time monitoring and detection of
epileptic seizures is done based on the time series extracted
from the ECG signal. Our monitoring system is capable of
capturing the changes in real-time in both cardiac and respi-
ratory functions due to seizures, by extracting a novel set of
features, through detailed time- and frequency-domain analysis
of the ECG signal. Moreover, in our self-aware monitoring
system, the most energy-hungry tasks, such as complex signal
processing, are performed only if necessary, by utilizing the
self-awareness notion. As a result, the main contributions of
this article are as follows:

o The first key contribution of this work is a reliable
epileptic seizure detection system relying on wearable
technology, which is based on cardiac and respiratory
functions analysis using machine learning techniques,
which include a new feature set that has not been used
previously in the literature of epilepsy monitoring, and
which significantly improves previous works in terms of
detection quality. In addition, in this work we adopt a
random forest algorithm, instead of the support vector
machines, to obtain more robust results and avoid over-
fitting. In addition, by capitalizing on this new random
forest algorithm, we are able to expose the energy-quality
trade-off resulting from introducing the self-awareness
concept in our proposed epilepsy monitoring wearable
system. Furthermore, we validate our wearable system
based on a dataset provided by Lausanne University
Hospital (CHUV), which contains more than 211 hours
of recordings for 18 epileptic patients, instead of the

initial seven in our previous work, to rigorously evaluate
the proposed technique. Overall, our proposed detec-
tion machine-learning technique achieves a sensitivity of
88.66% and a specificity of 85.65%.

o The second key scientific innovation of this work is a
novel energy-management scheme for medical wearable
systems, which is based on the notion of self-awareness
in order to realize real-time and energy-aware monitoring
on a long-term basis. To reach our goal of improving
the battery lifetime, the confidence of the low-complexity
classifier of the system is being observed. Then, based on
this information, the decision of whether to invoke the
complex classifier is made. According to this decision,
the action of switching between the two classifiers takes
place. Our proposed technique is extensible because it
can be applied to different health monitoring systems that
use learning models for detection and prediction of health

pathologies.
e We implement our proposed epilepsy monitoring
approach, including this novel self-aware energy-

management technique, on the SmartCardia INYU wear-
able sensor [37] to demonstrate the real-time operation
and evaluate its battery lifetime. We also explore the
possible energy-quality trade-offs enabled by our new
self-aware energy-management technique in order to
demonstrate the extended battery lifetime of our wearable
system from 67.55 to 136.91 days. Finally, we compare
our proposed technique with state-of-the-art systems and
show that our proposed technique outperforms the exist-
ing techniques by achieving 85.54% to 79.33% geometric
mean (of specificity and sensitivity).

The rest of the article is organized as follows. In Section II,
we review epileptic seizure detection techniques and existing
wearable devices. In Section III, we present a high-level
description of our system. Section IV describes our proposed
features extraction procedure using times series. Section V
describes our seizure detection machine learning technique
and the energy management mechanism. Then, Section VI
presents our experimental setup and Section VII describes our
experimental results. Finally, in Section VIII, we summarize
the main conclusions of this work.

II. STATE OF THE ART

The state-of-the-art technology for ECG-based seizure de-
tection is that incorporated in the Vagus Nerve Stimulation
(VNS) therapy device [38]. This uses a pre-thoracic implanted
device to detect seizure-induced tachycardia and uses this
information to trigger antiepileptic electrical stimulation of
the left vagus nerve at the neck [39]. This represents an
invasive and relatively expensive medical procedure, with
some risks of adverse events, which is thus not appropriate
for solely monitoring seizure in the majority of patients with
epilepsy [40].

The gold standard in terms of non-invasive seizure detection
is EEG monitoring, which has been used for decades in
highly specialized and costful hospital environment (epilepsy
monitoring unit). However, the necessity to permanently wear
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a cap and the high susceptibility of EEG recordings to artefacts
as soon as patients are moving, has not yet enabled the use
of EEG for very ambulatory chronic monitoring. To extract
information from the EEG signal, several sets of features
are used in the literature. These features include the wavelet
transform [41], [42], entropies [42], [43], Hilbert marginal
spectrum [44], fusion features [45], and tunable Q-factor [46],
among other time-domain and frequency-domain features.
In [47], the authors consider a combination of EEG and ECG
monitoring to improve the results. To make collection and
labeling of personalized EEG data easier in [48] a self-learning
algorithm is used on new data.

Regarding non-invasive non-EEG based seizure detection
devices, bed sensors [49], [50] have shown to be effective for
detecting nocturnal convulsive seizures, but cannot monitor
day-time seizures [51]. In addition, arm-band electromyo-
graphy (EMG) and wrist-band devices [52], [53], which
monitor either accelerometry or electrodermal activity, also
proved reliable for detecting generalized tonic-clonic seizures
(GTCS) with high sensitivity and acceptable false-alarm rates.
However, it has been shown that they cannot detect other
seizure types [54], [55]. Moreover, GTCS only represent
approximately 15% of all epileptic seizures, stressing the need
for other seizure detection devices.

In this respect, ECG-based detection of epileptic seizures
has attracted a lot of attention. Heart rate fitting was used
in [56], leading to a sensitivity of above 90% and a positive
predictive value above 50%, but with a trade-off between the
sensitivity and positive predictive values that is not acceptable
for medical use. Then in [57], the authors propose an approach
that combines time-domain and frequency-domain features of
heart-rate variability, but it is limited to the specific case of
newborns, and it only reaches a sensitivity of 60% and a
specificity of 60%. In [58], using a similar approach, the
authors achieve a sensitivity of 70% and a corresponding
false-alarm rate of 2.11 per hour, which is still unacceptable
for medical use in ambulatory patients. Finally in [59], a
robust beat-detection algorithm was combined with a wireless
real-time epileptic seizure detector. The proposed algorithm
could detect successfully the seizures for only two out of
three studied patients, which is a very small set to be able to
draw statistically significant conclusions. In [60], the authors
use peak-to-peak intervals and average heart-rate for epileptic
seizure detection, but considering only three patients, which
is also not sufficient to obtain conclusive results.

In [61], the authors propose a semi-automatic (i.e., requires
manual intervention of medical experts) algorithm that consid-
ers peak-to-peak intervals and QRS-complex and uses several
mathematical techniques, including cubic spline interpolation,
principle component analysis, eigen-value decomposition, and
clustering techniques. The authors achieved positive predictive
values of 85.7% for focal seizures and 57.3% for GTCS.
In [62], the authors proposed an approach to detect epileptic
seizures, restricted to high-quality ECG signals, which are
selected manually by expert visual analysis. Hence, such
semi-automatic techniques cannot be adopted for monitoring
patients in real time, using wearable systems. The proposed
algorithm reached a false-negative rate of 14.5% with a high

false-positive rate of 1.1 per hour. Alternatively, the proposed
algorithm could be tuned to reach a better false-negative rate
of only 2%, but with an unacceptable false-positive rate of
9.5 per hour. This illustrates that such techniques cannot be
readily applied in the context of real-time wearable systems,
due to the complexity introduced by manual intervention of
medical experts, thus the design of an entirely automatic
seizure detection system represents a major challenge.

Another line of research in this topic has considered the
use of Lorenz plots parameters as features for detection of
epilepsy in [63], [64]. In these studies, epileptic seizures were
detected with an accuracy of 76.47% for the target set of
17 patients. Nonetheless, this detection figure still does not
fulfill the requirements for a reliable epilepsy detection system.
Then, in order to improve the detection performance, in [65],
the authors combined heart-rate variability and Lorenz-plot
features and achieved a sensitivity of 94.1% and a false-alarm
rate of 0.49 per hour. As it is shown in the experimental results
(Section VII), despite improving the detection quality, these
features do not result in acceptable detection performance,
in comparison with our proposed features. Moreover, this
work was performed in an offline setting (i.e., using a post-
processing analysis of the signal after seizures have already
occurred), hence it cannot be adopted by real-time wearable
systems. Finally, the authors also do not consider the energy
consumption and battery lifetime of the proposed techniques,
which is required for long-term real-time and ambulatory
monitoring of patients.

We consider the application of self-awareness in the con-
text of medical wearable systems. This is a new concept
that has been considered recently for embedded systems
to enable correct functionality within desired constraints, in
spite of highly dynamic changes in the applications and the
environment [66]-[71]. In particular, self-awareness has also
been applied to biomedical systems, where the quality of
the output of the system is significantly affected by different
conditions of the patient as well as the environment. In [72],
the authors adopt situation-awareness and personalized data
(such as age, gender, etc.) to increase the accuracy of remote
health monitoring. Furthermore, different priorities are given
to the sensory data collection to consider the energy efficiency
and dependability of the system. In [73], different parameters
such as system’s confidence are measured to improve the
observation process and get high-quality description of the
system from raw data. Therefore, although self-awareness is
used in a wide range of systems, it has not been considered
for detection of pathological health conditions up to this date.

In conclusion, previous studies in ECG-based epileptic
seizure detection systems have mainly focused on heart-rate
variability and Lorenz-plot features in controlled environments
and offline settings, which dramatically limit its possible use in
the context of real-time wearable medical systems. Also, in the
literature of biomedical systems the concept of self-awareness
has started to be explored, but never considering its use for
energy-efficient designs of systems monitoring pathologies.
Therefore, we take into account the limitation of such systems
in terms of computational resources and energy to exploit the
concept of self-awareness, while also considering its medical
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Figure 1: Overview of our proposed self-aware seizure detection system. The three main parts of our proposed system are

highlighted by dotted lines.

impact on real-time seizure detection based on both cardiac
and respiratory systems.

III. SELF-AWARE SEIZURE DETECTION SYSTEM
DESCRIPTION

In this section, the main architectural building blocks of
our proposed system are described. A high-level overview of
our real-time wearable seizure detection system is shown in
Figure 1. The details of our seizure detection machine learning
technique and energy-management strategy are explained in
Sections IV and V.

A. Cardio-Respiratory Time Series Analysis and Features Ex-
traction

In this paper, as the first step, the frequencies above
60 Hz are removed. Then, two time series, R-peak to R-
peak Interval (RRI) and ECG-Derived Respiration (EDR),
are extracted from the ECG signal. In particular, we extract
features to capture the distinctive patterns of epileptic seizures
in both physiological subsystems of humans. First, heart-rate
variability (HRV), Lorenz plot and multifractality features are
considered to capture the variations and fluctuations in the time
intervals among the heartbeats based on the RRI time series.
Second, the frequency content and the irregularity of EDR
are captured by using the Plomb transform and the entropy
features, respectively. The details of our proposed approach
using these two time series, together with the corresponding
features, are provided in Section IV.

B. Self-Aware Learning and Energy Management

To detect epileptic seizures in real-time with wearable de-
vices, we adopt the random forest algorithm [74], considering
the features extracted from the RRI and EDR time series.
Random forest shows not only high performance in terms of
the accuracy of detecting seizures, but it is also suitable to
be implemented on resource-constrained wearable embedded
systems, as we show in Section VII.

In addition, as real-time detection of seizure is not possible
without long-term monitoring systems, in order to maximize
the battery lifetime, we adopt the notion of self-awareness
to achieve energy efficiency and quality-scalability and enable
long-term epilepsy monitoring. In particular, we develop a self-
aware seizure detection technique where classification can be
done with either a simple set of features or a more complex
set. In fact, the entire set of features are not used for seizure
detection unless confident classification based on the set of
simple features is not possible. Then, we take advantage of the
multi-mode execution possibilities of the platform, in a self-
aware fashion, so that the energy consumption is reduced while
quality of system remains in an acceptable level for medical
use. Moreover, our system is kept in an ultra-low power
(energy-saving) mode when tasks terminate their executions.
A detailed description of our self-aware energy-management
mechanism is provided in Section V-B.

IV. CARDIO-RESPIRATORY TIME SERIES ANALYSIS AND
FEATURE EXTRACTION PHASE

In this section, we detail how we capture the cardiac
and respiratory responses by extracting two time series and
subsequently obtaining the relevant features from them.
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A. Cardiac System Analysis for Epileptic Seizures Detection

First, we extract the RRI time series and features from the
ECG signal to capture the cardiac function.

1) RRI Time Series Extraction: On a normal ECG, there
are typically up to three visible components: the P wave,
QRS complex (Q, R, and S), and T wave. The R-peak is
the most straightforward characteristic point to identify and
corresponds to ventricular depolarization. Accordingly, the
R-wave is distinguished by the peaks of the ECG signal.
Therefore, the distance between two successive R-peaks is
captured by RRI time series. In this paper, we adopt the Pan-
Tompkin algorithm [75] to detect the R-peaks and RRIs.

Guaranteeing high-quality features requires extraction of the
correct locations of the R-peaks. However, the delineation
algorithm may misdetect the peaks due to poor signal quality
and noise. Therefore, we remove these incorrect values based
on the Thompson-tau method [76], which is a statistical
algorithm that detects the outliers in the RRI time series.

2) RRI Feature Extraction: In order to capture the cardiac
function, the heart-rate variability (HRV), we extract Lorenz
plot and multifractality features from the RRI time series.
These features are chosen in order to reflect the changes
in cardiac system such as ictal tachycardia and bradycardia,
which, as discussed before, have direct impact on variability in
RR intervals. The HRV features we include are the following
ones:

e MeanNN: The mean of R-R intervals.

o SDNN: The standard deviation of R-R intervals.

o« RMSSD: The root mean square of difference between
adjacent R-R intervals.

o Total Power (TP): The variance of R-R intervals.

e NNS50: The number of pairs of adjacent R-R intervals
whose difference is greater than 50 msecs.

e LF: The power in the low-frequency band (0.04Hz —
0.15H z) of RRI. The power in the low-frequency band
reflects both the sympathetic and parasympathetic activity
of the nervous system [63].

o HF: The power in the high-frequency band (0.15Hz —
0.4Hz) of RRI. The power in the high-frequency band
reflects the parasympathetic nervous system activity [63].

o LF/HF: The ratio of LF to HF. This feature captures the
balance between the sympathetic nervous system activity
and the parasympathetic nervous system activity.

The second set of features we extract from the RRI time
series is the Lorenz plot features [63]. Lorenz plot (or Poincare
plot) is the process of plotting RRI(n) against RRI(n + 1).
Lorenz plot can capture the dynamic variation of the RR in-
tervals. These dynamics can be captured by extracting several
statistical properties from the Lorenz plot, as follows:

Sdl = a(?[RRI(l) ~ RRI(2), RRI(2) ~RRI(3) |
... RRI(k) — RRI(k +1)]),
V2
§d2 = o(*5-[RRI(1) + RRI(2), RRI(2) + RRI(3)

.y RRI(K) + RRI(k + 1)),

where o denotes the standard deviation of the time series.
The Lorenz plot features are the following ones:

o T: The transversal length is defined as 7" =4 - Sd1.

e L: The longitudinal length is defined as L = 4 - Sd2.

o CSI: The cardiac sympathetic index is defined as C'ST =
L

. I{/ICSI: The modified cardiac sympathetic index is defined
as MCSI = LTQ and emphasizes the longitudinal value
L, which increases during the pre-ictal and early ictal
phase [63].

e CVI: The cardiac vagal index is defined as CVI =
logyo(L - T).

The final set of features are multifractality ones, which
are extracted to reflect the fluctuation of RRI time series
and analyze more complex irregularities in heart-rates [77].
Monofractal signals are homogeneous because they have the
same scaling properties throughout the entire signal. Multi-
fractal signals, on the other hand, can be decomposed into
many subsets characterized by different local Hurst exponents
h. Then, the statistical properties of the different subsets
characterized by these exponents i can be quantified by the
function D(h):

D(h) = qh —7(q). 3)

The function 7(q) is calculated as shown in Equation (4),
where Z,(a) is the partition function that is defined as the
sum of the ¢ powers of the local maxima of the modulus of
the wavelet transform coefficients at scale a:

Z,(a) = a™@, 4)

In [77], the authors show that during the normal heart func-
tion we have significant value for D(h) for 0.05 < h < 0.27,
while in heart failure this function is centered near h =~ 0.22
with a very small radius. To capture the fluctuations in RRI
time series, we have chosen D(h) for different values of
parameter h as features, in the aforementioned interval.

B. Respiratory System

In this section, we detail the extraction of the EDR time
series and features from the ECG signal in order to capture
the respiratory function.

1) EDR Time Series Extraction: Respiration is a physiolog-
ical function that is modulated by the autonomic nervous sys-
tem (ANS). Then, the respiratory signal is typically recorded
by spirometry, pneumography, or plethysmography. However,
it is also possible to extract respiratory signals from the ECG
signal, which is known as the EDR signal [78]. Indeed, ECG-
derived respiratory methods exploit the respiratory-induced
changes of the ECG to provide an alternative respiratory
signal. In this paper, we adopt the algorithm proposed in [78]
for EDR extraction. Thus, after removing the baseline wander
from the ECG signal, the R-peaks are located on the pre-
processed signal (ECGfitereqd) and we obtain the EDR by
calculating the area enclosed in the regions that are 100 msec
beyond the R-peaks, as follows:
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Rp(n)+100msec

>

k=R,(n)—100msec

EDR(TL) = ‘ECGfiltered(k)L (5)

where I?,, is the location of the R-peaks described in Section
IV-Al.

2) EDR Feature Extraction: We extract two different sets of
features from the EDR time series. First, we extract features
related to different entropies, which are used to capture the
non-stationary and non-linearity characteristics of the EDR
signal. Then, we apply a discrete waveform transform (DWT)
by decomposition of the EDR time series to level seven
as a preprocessing step to improve entropy features quality
[79]. Hence, in this paper the following entropies are used as
features:

« Sample entropy: Given a time series X = z(1), ..., z(N),
sequences of length m (X, (7)) are extracted [80]. Two
patterns X,,,(7) and X,,(j) are similar if the difference
between any pair of corresponding measurements in the
patterns is less than r:

| X(G@+k)— XG4+ k)| <r,Vk=[0,m). (6)
The sample entropy is defined as:
Cin(r)
SampEn(x,m,r) = In(=———), @)
pEn(e,m,r) = (™ T
where Cp,(r) is the number of patterns in X, that

are similar to X,,(¢), excluding self-matches, after nor-
malization. In this work, we use m = 2, and r =
k.std(signal), where k € {0.2,0.35}, which are chosen
according to the experiments in Section VII.

o Permutation entropy: Given a time series {x:},_; .
where T is the length of the time series, all po§s1ble
n! permutations are calculated [81]. There are two pa-
rameters defined: parameter m which corresponds to the
permutation type, and parameter n which represents the
number of instances considered in order to estimate the
permutation entropy.

number of perms that have the type
p(m) = o . ®

The permutation entropy of order n > 2 is defined as:

Zp

« Renyi entropy: This entropy is calculated as proposed by
[82]:

)log(p(T)). ©))

RE(q) = (10)

1 q
qln > i,
where ¢ # 1 and p; defines the total spectral power in
the i-th band.

o Shannon entropy: This entropy is the special case of
Renyi entropy for ¢ = 1, namely:

SE = — hm RE(q

szln pz

(1)

o Tsallis entropy, which is defined as follows [82]:

1_q l_zpz

The second set of features, extracted from the EDR time
series, captures the power spectral density (PSD). However,
the EDR time series is unevenly sampled because it depends
on the varying heartbeats. Therefore, conventional spectral
analysis techniques, which assume uniformly-sampled signals,
cannot be used to extract the spectral content of the EDR time
series. Consequently, we use the Plomb transform to estimate
the PSD of non-uniformly sampled signals [83], [84]. This
transformation is based on the Lomb-Scargle method [83],
[84], which does not require resampling or interpolation and
works directly with the non-uniform sampled signals. Thus,
in our work, we adopt the Plomb transform to estimate the
PSD of the EDR time series. In this work the spectrum of
EDR is divided into several sub-bands and the power of these
sub-bands are used as features.

TE(q) = (12)

V. SELF-AWARE LEARNING AND ENERGY MANAGEMENT

In this section, we present our new self-aware energy-
management technique to enable real-time and long-term
epilepsy monitoring in ambulatory settings, while still main-
taining the reliability required in the medical domain. Also, we
introduce the notion of self-awareness in our epileptic seizure
detection system to improve its battery lifetime and energy
efficiency.

A. Machine Learning Algorithm

In our proposed self-aware wearable system, we adopt the
random forest classifier as the learning technique for the
classification of non-seizure (inter-ictal) and seizure (ictal)
segments.

Decision trees are tree-like structures in which each internal
node represents a decision on a feature, each branch represents
the outcome of the decision, and each leaf node represents
a class label (decision taken after computing all attributes).
Bagging (bootstrap aggregation) is an ensemble learning tech-
nique that is used for reducing the variance of a statistical
learning method. It reduces the variance by averaging over the
output of a set of n 1ndependent observations Y7, Y5, ..., Y,
each with variance o2 Tgle variance of the mean Y of the
observations is given by % - Given a training set D of size m,
bagging generates N new training sets D;, each of size m/,
by sampling from D uniformly and with replacement.

Hence, N different bootstrapped training sets are subsam-
pled from the single dataset and used to train a collection of
N decision trees, where every tree is trained only on one of
the subsampled training dataset. In testing new features, the
decision on the seizure/non-seizure class is made by majority
voting on the output predicted by each one of the N trees.
The value of N is chosen to be 100 in this paper to have
high quality detection and at the same time acceptable energy
consumption, as the complexity of the online classification
using this classifier depends only on number of bags used in
bootstrap aggregation. Therefore, we reduce the complexity
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Figure 2: Self-aware classification to improve energy efficiency. In the training phase, the classifiers and confidence models
are generated. Then, in the test phase, after calculating the confidence at each level, the level of the classifier to use is decided.

of implementation on resource-constrained medical wearable
platforms.

B. Self-Aware Energy Management

To detect epileptic seizures, often only a few prominent fea-
tures, which capture the cardiorespiratory response to epileptic
seizures, are sufficient for confident classification. However,
these few prominent features do not always cover the whole
spectrum of bio-markers reflecting seizures. In this section,
to keep the high detection performance, while improving
the energy efficiency, we propose a self-aware classification
technique.

The main idea of our self-aware energy-management tech-
nique is to use a simpler classification, with less features,
whenever the results are deemed reliable and, otherwise, a
more complex classification, with the full set of features. On
the one hand, the simple classifier, while energy-efficient,
cannot always provide high detection performance. On the
other hand, the complex classifier, while providing high de-
tection performance, cannot provide high energy-efficiency.
This technique can be generalized to multiple levels of clas-
sifiers which differ in terms of detection performance and
energy consumption. In this case we start with the simplest
classifier with minimum energy consumption and detection
performance. If the result is not deemed reliable, we switch
to the next classifier and continue this procedure until the
system is confident about its decision. Using this multi-
level approach, we can also control the trade-off between the
detection performance and the energy consumption according

to the constraints of the application. The overall flow (both the
train and test phases) of our self-aware classification technique
is shown in Figure 2.

The training phase of our classification procedure is shown
in Algorithm 1. In this procedure, first, we train the classifier
models which includes detection models of different levels
(Model;) based on the first part of the train data (X;,) and the
corresponding ground-truth labels (Labels) (Line 3). Then, we
use the generated models to predict the labels corresponding
to the second part of train data (X.,) (Line 4). For each level,
the ground-truth labels and the predicted ones (Label;) are
compared and the comparison result is used to train another
RF classifier (Line 5). This classifier also uses the level; set
of features and generates a model (M odel ;) that captures the
confidence in classification based on the level; classifier.

This procedure is not restricted to the class of the random
forest algorithm and can be applied considering any binary
classification technique. The random forest is chosen as it
achieves a higher quality with respect to the SVM classifi-
cation used in [36]. The random forest method adopted in
this work provides more robust results and avoids overfitting,
due to bootstrap aggregating techniques. Moreover, the random
forest algorithm has a special property that is very convenient
in the context of self-aware systems. In particular, the random
forest algorithm provides a confidence metric, based on the
number of individual decision trees that agree in their deci-
sions, which can be considered to explore the energy-quality
trade-offs in our proposed epilepsy detection system.

The test phase of our classification procedure is shown in
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Algorithm 1 Self-Aware Classification - train phase
function TRAIN(X¢,, X0, Labelg, L)

1:

2 for [ < 1to L do

3 Train: Level; RF (X, Labela) — Model,

4: Predict: Model;(Xco) — Label;

5: Train: Conf. RF(Xco, Labelg ® Label;) — Modelc;
6 return Models Modelc;, M odel;

7 end for

8: end function

Algorithm 2 Self-Aware Classification - test phase

1: fun;tiori TEST(X¢s, Modelciei:tevets)) s Modelje i ievets)))
2 =

3 Predict: Modelci(X+s) — Labelc:

4 while Modelc; is not con fident do

5: l=1+1

6 Predict: MOdelCl(th) — Labelcy

7 end while

8 return Label Label,;

9: end function

Algorithm 2. Based on the test data (X;,) and the confidence
models (Modelc;), the system is aware whether the level,
set of features can perform confident classification of the test
data (Line 3). While the classification based on the level; set
of features is not confident (Labels;), the number of levels
is increased (Line 5). We continue predicting the confidence
label (Labelc;) and checking if the result is confident until
the confidence is reached for a certain number of levels (Line
4-7).

In our proposed energy-management technique for the
seizure detection system we have used two levels of classifiers
and, as a result, the energy consumption of the system is also
divided into two parts: (1) the level; classification, where the
reduced set of features which are: meanNN, SDNN, RMSSD,
total power, and NN50 from HRV features plus Lorenz-
plot features are sufficient, and (2) the levels classification,
where all features are considered. Based on the probability of
invoking the first level classifier, the total execution time of
our wearable system can be calculated as follows:

Tezecution = To + P - Th +(1_P1) Ty, (13)

where T.iccution 1S the total execution time of our self-
aware classification technique, P is the probability of invok-
ing the level; model (depends on the dataset), and T, T
and T are the execution times of the confidence calculation,
levely classification, and levels classification, respectively.

Finally, while here we describe our self-aware classification
technique for only two levels, the proposed technique is not
limited in the number of levels and can be generalized to any
number of layers, as mentioned before. If n is the number
of levels and P; and 7T; are the probability (percentage) and
execution time of i-th level occurrence, respectively. Then, the
expected execution time is calculated as follows:

Tewecution = Tc + i P; - Tiv
i=1

(14)

which shows that the higher the probability of the simpler
classifiers is (which can depend on the dataset), the lower the
execution time of the entire system. Also as n increases, we
will have a more complex confidence measurement part and, as
a result, T> (which is the sum of all confidence measurement
parts at different levels) will increase.

VI. EXPERIMENTAL SETUP
A. Clinical Dataset

Our proposed system was tested based on a dataset provided
by the Lausanne University Hospital (CHUV). Data from
18 patients with epilepsy contributed to this dataset. Patients
underwent in-hospital recording of their seizures for diagnostic
purposes, and provided informed consent for their data to be
re-used for research. Seizure recordings were performed using
standard video-electroencephalography (EEG) together with
single lead thoracic ECG. The latter is being used to ensure
appropriate control of vital signs during seizure monitoring,
and was acquired at a sampling rate of 256 Hz. Video-EEG
recordings were reviewed by a medical expert in epilepsy
to annotate the onset and offset of all epileptic seizures.
Annotated ECG data were then extracted and fully anonymized
in order to be processed in this study. Overall, 211 hours of
recordings were made available for this study, including 154
focal seizures.

During these in-hospital epilepsy monitoring periods, al-
though patients are restraint to a hospital room, the clinical
protocol allows them to circulate freely in the room and
perform daily activities, i.e., walk around, sit at the table,
eat meals, play cards, change clothes, and even certain do
physical activities, e.g., ride stationary bikes. Therefore, a
certain level of motion artifacts are already present in these
signals. Consequently, as mentioned in Section III-A, we
apply noise filters in the preprocessing phase of our proposed
technique to remove the different types of noise, including
motion artifacts, muscle artifacts, baseline wander and power-
line interference. Nevertheless, while we have not analyzed
the performance of our proposed technique in the presence of
intense physical activities, it is probable that the quality of our
proposed seizure detection technique degrades in such extreme
cases and further studies are needed.

B. Performance Metrics

We use the leave-one-out method to evaluate the perfor-
mance of our proposed self-aware system, where out of K
recordings, one is used as the test data and the other K — 1
recordings are used as train data. This process is repeated to
test all the recordings. In other words, the recording to be
tested is left out and the model is trained on the remaining
ones. The performance of the proposed algorithm is evaluated
by measuring the specificity (Spec), sensitivity (Sen), and the
geometric mean (gmean), which are defined as follows:

TN
SPeC= Tp T TN as)
Sen e (16)

T TP+ FN’
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gmean =+/Spec - Sen,

where F'P, TN, TP and F'N definitions are the following
ones:

a7

« False positive (F'P): The patient is in the inter-ictal state,
but the sample is classified as ictal.

o True negative (I'N): The patient is in the inter-ictal state,
and the algorithm declared that.

o True positive (T'P): The patient is in the ictal state, and
the algorithm detected that.

« False negative (F'N): The patient is in the ictal state, and
the sample is not classified correctly.

The geometric mean gmean is adopted since its high values
reflect that both specificity (Spec) and sensitivity (Sen) are
high, which is equal to having high quality detection. Con-
versely, if the geometric mean gmean is low, it means that
Spec, Sen, or both are low, which is undesirable. Finally, we
include the geometric mean as it is the only correct average
of normalized measurements according to [85].

C. Comparisons with State-of-the-Art

We evaluate the efficiency of our wearable system against
two state-of-the-art techniques, regarding seizure detection
performance and energy efficiency.

The first technique [63] is based on the Lorenz plot and
uses the features discussed in Section IV-A2. This approach
reach an individual detection sensitivity of 100% for 13 out
of 17 patients while the total coverage is 74.4% (35 out of 47
seizures).

In the second technique [65], seven features of HR including
SDNN, RMSSD, LF, HF, SampEn (sampled entropy), CSI and
CVI are used. In this approach, the authors use the SVM
classifier with a Gaussian kernel for clinical data from 12
patients. The result is a sensitivity of 94.1% and a false-
positive rate of 0.49 per hour and uses an offline setting
without considering energy consumption and battery life-time
constraints.

D. Implementation Platform

The target hardware platform for our system is the Smart-
Cardia INYU wearable sensor [37]. In this device, a single-
lead ECG is recorded with the operating frequency between
250 Hz and 1 kHz. The device includes an ARM Cortex-M3
chipset (STM32L151RDT6) [86] for data analysis and classi-
fication, which is a low-power 32-bit microcontroller with 48
kB RAM and 384 kB flash storage, and a maximum frequency
of 32 MHz. This processor has several power-management
modes, including active and sleep modes, with the possibility
of dynamically switching between them. The INYU device is
powered by a 710 mAh battery. The ECG signal is acquired
using silver-chloride electrodes for impedance pneumography
[87]. The analog-to-digital converter (ADC) is the ADS7142
module [88], which is an event-driven ADC. This ADC has
a power consumption of 900 nW and works with a 0.5 uA
current.

Table I: Comparison among the quality of our proposed seizure
detection system and the state-of-the-art techniques.

Method Confidence % |Spec % |Sens % |Gmean %
Lorenz plot [63] 62.51 | 62.28 62.40
HRYV + Lorenz plot [65] 74.44 | 76.03 75.23

60 78.28 | 80.40 | 79.33
70 81.23 | 81.05 | 8L.14
Our system (SAEM) 80 81.09 | 85.42 | 83.60
90 83.50 | 87.54 | 85.54
Our system (WOEM) [N 85.65 | 83.66 | 87.15

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of our proposed
wearable system against state-of-the-art techniques, both in
terms of seizure detection performance and in terms of energy
efficiency. To demonstrate the effectiveness of our self-aware
energy-management technique, in addition to considering our
final proposed system with self-aware energy management
(referred to as SAEM), we also consider our system without
any energy management (referred to as WOEM).

A. Detection Performance

In Table I, we assess the performance of the new wearable
system against the state-of-the-art techniques [63], [65]. Our
WOEM system achieves a sensitivity of 88.66%, a specificity
of 85.65%, and a geometric mean of 87.15%. First, our results
show that epileptic seizures can be detected effectively by
monitoring the ECG signal. Second, WOEM outperforms the
approach in [63] by 24.75% and in [65] by 11.92%, in terms
of gmean related to detection performance. This demonstrates
the importance of the respiratory system in epileptic seizure
detection.

We also investigate the impact of our self-aware classifi-
cation and energy management on the detection performance
of our system. Table I shows that the proposed SAEM can
achieve different qualities according to the confidence per-
centage, which relates to invoking the full classifier or not. In
fact, it shows the minimum number of trees (out of 100) that
should agree on using the simple classifier. By increasing this
percentage, the simple classifier is used less frequently, and as
a result, the quality is increased. However, a higher threshold
increases the energy consumption (cf. Section VII-B). As we
increase the threshold to 90% by steps of 10%, the gmeans of
81.14%, 83.69% and 85.54% are achieved, which are 5.91%,
8.46% and 10.31% higher than [65], respectively. Therefore,
our proposed system is better than any existing real-time
wearable seizure detection system. Moreover, it reaches an
acceptable detection quality for long-term medical monitoring
setups.

B. Energy Efficiency

To calculate the energy figures of our system, the random
forest model parameters, which are calculated during the
offline training phase of Section V-A, are loaded and stored
in the 48 kB RAM of the microcontroller of our system. To
calculate the power consumption of the system, we consider
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Table II: Comparison among the battery lifetime of our pro-
posed approach with (SAEM) and without (WOEM) energy
management and the state-of-the-art techniques.

Method Execution part |Duty cycle % |Lifetime (days)

Delineation 0.17

Lorenz [63] Decomprgssion 0.57 257.79
Processing 0.18
System 0.92
Delineation 0.17

HRV + Lorenz [65] | Decompression 0.57 257.39
Processing 0.19
System 0.93
Delineation 0.17
Decompression 0.57

Our system (SAEM) [Level 1 classification 0.93 136.91
60% confidence Level 2 classification 5.46
System 1.90
Delineation 0.17
Decompression 0.57

Our system (SAEM) |Level 1 classification 0.93 67.55
90% confidence |Level 2 classification 5.46
System 4.01
Delineation 0.17

Our system (WOEM) Decompression 0.57 50.15
Processing 4.72
System 5.46

the current drawn in each processing mode and the duty cycle
of the process. The signal processing and detection algorithms
are executed every 60 seconds (Tyindow)- Thus, to calculate
the duty cycle, we consider the time of the whole procedure
(Tewecution)7 as follows:

Temecution

DutyCycle = (18)

window

During the process, including delineation, feature extraction,
and classification, the current is 10.5 mA. For the rest of the
time, the processor is put into the sleep mode and consumes
0.018 mA. The ADC is active during the entire process and,
as it is an event-driven converter, it draws a current of 0.5 uA.

The time complexity and battery lifetime of our proposed
system using the INYU device are compared to previous
studies [63], [65] in Table II. The two last methods in this table
are our proposed system before (WOEM) and after (SAEM)
applying our self-aware energy-management technique. The
processing time SAEM is calculated based on Equation (13)
and the probability of invoking the simple classifier, which is
decreased from 78.48% to 32.05% as the confidence threshold
is increased from 60% to 90%. As a result, the battery lifetime
of our system is increased to 136.91 days, compared to 50.15
days without any energy management. This demonstrates the
effectiveness of our self-aware energy-management technique.

Finally, we compare the quality-lifetime trade-off of state-
of-the-art and our proposed systems The results demonstrate
that, as shown in Table II, our SAEM technique clearly
outperforms state-of-the-art techniques in terms of detection
performance, while still running for more than 136 days.

VIII. CONCLUSION

In this article, we have proposed a novel medical wearable
system for long-term epilepsy monitoring and real-time de-
tection of epileptic seizures, based on the cardiorespiratory

function. We validated the detection performance and battery
lifetime of our solution based on a multi-patient epilepsy
dataset. Our proposed epilepsy detection wearable system
achieves a sensitivity of 88.66%, a specificity of 85.65%,
and a geometric mean of 87.15%. This proposed system
has been implemented using the state-of-the-art SmartCardia
INYU multi-parametric sensor hardware to show its system-
level real-time operation and energy scalability. Finally, by
using our event-driven energy-management method a battery
lifetime of 67.55-136.91 days is reached with reduction of only
1.61%-7.82% in detection performance.

ACKNOWLEDGEMENTS

This work has been partially supported by the MyPreHealth
research project (Hasler Foundation project No. 16073), the
WITNESS project (Promobilia Foundation project No. 18079),
and the Human Brain Project (HBP) SGA2 (GA No. 785907).
The authors also would like to thank M. Nassralla for an initial
implementation of a subset of the seizure detection features for
epileptic signals, which was revised and extended to define the
final set of used features.

REFERENCES

[11 W. H. Organization, Neurological disorders: public health challenges.
World Health Organization, 2006.

2] —. (2016) Epilepsy. [Online]. Available: hittps
/ /www.who.int/mental_health/neurology/epilepsy/en/

[3] D.J. Thurman, D. C. Hesdorffer, and J. A. French, “Sudden unexpected
death in epilepsy: assessing the public health burden,” Epilepsia, vol. 55,
no. 10, pp. 1479-1485, 2014.

[4] J. van Andel, R. D. Thijs, A. de Weerd, J. Arends, and F. Leijten, “Non-
eeg based ambulatory seizure detection designed for home use: what is
available and how will it influence epilepsy care?” Epilepsy & Behavior,
vol. 57, pp. 82-89, 2016.

[5] P.Ryvlin, C. Ciumas, I. Wisniewski, and S. Beniczky, “Wearable devices
for sudden unexpected death in epilepsy prevention,” Epilepsia, vol. 59,
pp. 61-66, 2018.

[6] A. Van de Vel, K. Cuppens, B. Bonroy, M. Milosevic, K. Jansen,
S. Van Huffel, B. Vanrumste, L. Lagae, and B. Ceulemans, “Non-eeg
seizure-detection systems and potential sudep prevention: state of the
art,” Seizure-European Journal of Epilepsy, vol. 22, no. 5, pp. 345-355,
2013.

[7] S. Kounev, J. O. Kephart, A. Milenkoski, and X. Zhu, Self-Aware Com-
puting Systems, 1st ed.  Springer Publishing Company, Incorporated,
2017.

[8] P.R.Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bahsoon,
J. Torresen, and X. Yao, A survey of self-awareness and its application
in computing systems, 2011.

[9]1 H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agar-

wal, “Seec: A framework for self-aware computing,” 2010.

M. Maggio, T. Abdelzaher, and L. Esterle, Self-adaptation for Individual

Self-aware Computing Systems. Springer International Publishing,

2017.

A. Jantsch, N. Dutt, and A. M. Rahmani, “Self-Awareness in Systems

on Chip-A Survey,” IEEE Design & Test, vol. 34, no. 6, pp. 8-26, 2017.

A. Aminifar, Analysis, design, and optimization of embedded control

systems. Linkoping University Electronic Press, 2016.

[13] A. Van de Vel, K. Cuppens, B. Bonroy, M. Milosevic, K. Jansen,

S. Van Huffel, B. Vanrumste, P. Cras, L. Lagae, and B. Ceulemans,

“Non-eeg seizure detection systems and potential sudep prevention: State

of the art: Review and update,” Seizure, vol. 41, pp. 141-153, 2016.

M. J. Morrell, “Responsive cortical stimulation for the treatment of

medically intractable partial epilepsy,” Neurology, vol. 77, no. 13, pp.

1295-1304, 2011.

S. Beniczky, I. Conradsen, O. Henning, M. Fabricius, and P. Wolf,

“Automated real-time detection of tonic-clonic seizures using a wearable

emg device,” Neurology, vol. 90, no. 5, pp. e428—e434, 2018.

[10]

(11]

[12]

[14]

[15]



ACM/SPRINGER JOURNAL OF MOBILE NETWORKS AND APPLICATIONS, VOL. X, NO.

[16]

[17]

(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39

[40]

[41]

C. A. Szabd, L. C. Morgan, K. M. Karkar, L. D. Leary, O. V. Lie,
M. Girouard, and J. E. Cavazos, “Electromyography-based seizure de-
tector: Preliminary results comparing a generalized tonic—clonic seizure
detection algorithm to video-eeg recordings,” Epilepsia, vol. 56, no. 9,
pp. 1432-1437, 2015.

O. Devinsky, K. Perrine, and W. H. Theodore, “Interictal autonomic
nervous system function in patients with epilepsy,” Epilepsia, vol. 35,
no. 1, pp. 199-204, 1994.

B. B. Wannamaker, “Autonomic nervous system and epilepsy,” Epilep-
sia, vol. 26, pp. 31-39, 1985.

K. Jansen and L. Lagae, “Cardiac changes in epilepsy,” Seizure, vol. 19,
no. 8, pp. 455460, 2010.

C. Sevcencu and J. J. Struijk, “Autonomic alterations and cardiac
changes in epilepsy,” Epilepsia, vol. 51, no. 5, pp. 725-737, 2010.

M. Zijlmans, D. Flanagan, and J. Gotman, “Heart rate changes and ecg
abnormalities during epileptic seizures: prevalence and definition of an
objective clinical sign,” Epilepsia, vol. 43, no. 8, pp. 847-854, 2002.
K. B. Nilsen, M. Haram, S. Tangedal, T. Sand, and E. Brodtkorb, “Is
elevated pre-ictal heart rate associated with secondary generalization in
partial epilepsy?” Seizure, vol. 19, no. 5, pp. 291-295, 2010.

P. Boon, K. Vonck, K. van Rijckevorsel, R. El Tahry, C. E. Elger,
N. Mullatti, A. Schulze-Bonhage, L. Wagner, B. Diehl, H. Hamer et al.,
“A prospective, multicenter study of cardiac-based seizure detection to
activate vagus nerve stimulation,” Seizure, vol. 32, pp. 52-61, 2015.

S. V. Kothare and K. Singh, “Cardiorespiratory abnormalities during
epileptic seizures,” Sleep medicine, vol. 15, no. 12, pp. 1433-1439, 2014.
O. Devinsky, “Effects of seizures on autonomic and cardiovascular
function,” Epilepsy currents, vol. 4, no. 2, pp. 4346, 2004.

D. Cogan, J. Birjandtalab, M. Nourani, J. Harvey, and V. Nagaraddi,
“Multi-biosignal analysis for epileptic seizure monitoring,” International
Journal of neural systems, vol. 27, no. 01, p. 1650031, 2017.

M. E. O’Regan and J. K. Brown, “Abnormalities in cardiac and respi-
ratory function observed during seizures in childhood,” Developmental
Medicine & Child Neurology, vol. 47, no. 1, pp. 4-9, 2005.

A. S. Blum, “Respiratory physiology of seizures,” Journal of Clinical
Neurophysiology, vol. 26, no. 5, pp. 309-315, 2009.

M. Seyal, L. M. Bateman, and C.-S. Li, “Impact of periictal interventions
on respiratory dysfunction, postictal eeg suppression, and postictal
immobility,” Epilepsia, vol. 54, no. 2, pp. 377-382, 2013.

L. M. Bateman, M. Spitz, and M. Seyal, “Ictal hypoventilation con-
tributes to cardiac arrhythmia and sudep: Report on two deaths in video-
eeg—monitored patients,” Epilepsia, vol. 51, no. 5, pp. 916-920, 2010.
L. M. Bateman, C.-S. Li, T.-C. Lin, and M. Seyal, “Serotonin reuptake
inhibitors are associated with reduced severity of ictal hypoxemia in
medically refractory partial epilepsy,” Epilepsia, vol. 51, no. 10, pp.
2211-2214, 2010.

M.-Z. Poh, T. Loddenkemper, N. C. Swenson, S. Goyal, J. R. Madsen,
and R. W. Picard, “Continuous monitoring of electrodermal activity
during epileptic seizures using a wearable sensor,” in Engineering in
Medicine and Biology Society (EMBC), 2010 Annual International
Conference of the IEEE. 1EEE, 2010, pp. 4415-4418.

K. S. Eggleston, B. D. Olin, and R. S. Fisher, “Ictal tachycardia: the
head-heart connection,” Seizure, vol. 23, no. 7, pp. 496-505, 2014.

K. Jansen, C. Varon, S. Van Huffel, and L. Lagae, “Peri-ictal ecg changes
in childhood epilepsy: implications for detection systems,” Epilepsy &
Behavior, vol. 29, no. 1, pp. 72-76, 2013.

K. Schiecke, M. Wacker, D. Piper, F. Benninger, M. Feucht, and
H. Witte, “Time-variant, frequency-selective, linear and nonlinear anal-
ysis of heart rate variability in children with temporal lobe epilepsy,”
IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1798—
1808, 2014.

F. Forooghifar, A. Aminifar, and D. Atienza, “Self-aware wearable
systems in epileptic seizure detection,” in Proceedings of Euromicro
Conference on Digital System Design (DSD) 2018. 1EEE, 2018.

S. Murali, F. Rincon, and D. Atienza, “A wearable device for physical
and emotional health monitoring,” in Computing in Cardiology Confer-
ence (CinC), 2015. 1EEE, 2015, pp. 121-124.

LivaNova. (2016) Vagus nerve stimulation (vns therapy). [Online].
Available: http://www.livanova.cyberonics.com

AspireSR.  (2016) Vagus nerve stimulation (vns therapy).
[Online]. Available: https://www.epilepsy.com/learn/treating-seizures-
and-epilepsy/devices/vagus-nerve-stimulation-vns

C. Hoppe, M. Feldmann, B. Blachut, R. Surges, C. E. Elger, and
C. Helmstaedter, “Novel techniques for automated seizure registration:

patients’ wants and needs,” Epilepsy & Behavior, vol. 52, pp. 1-7, 2015.
D. Wang, D. Ren, K. Li, Y. Feng, D. Ma, X. Yan, and G. Wang, “Epilep-

tic seizure detection in long-term eeg recordings by using wavelet-

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

(591

[60]

[61]

[62]

[63]

X, JULY XXXX 11

based directed transfer function,” IEEE Transactions on Biomedical
Engineering, 2018.

L. Guo, D. Rivero, and A. Pazos, “Epileptic seizure detection using
multiwavelet transform based approximate entropy and artificial neural
networks,” Journal of neuroscience methods, vol. 193, no. 1, pp. 156—
163, 2010.

S. Raghu, N. Sriraam, G. P. Kumar, and A. Hegde, “A novel approach
for real time recognition of epileptic seizures using minimum variance
modified fuzzy entropy,” IEEE Transactions on Biomedical Engineering,
2018.

K. Fu, J. Qu, Y. Chai, and T. Zou, “Hilbert marginal spectrum analysis
for automatic seizure detection in eeg signals,” Biomedical Signal
Processing and Control, vol. 18, pp. 179-185, 2015.

J.-L. Song, W. Hu, and R. Zhang, “Automated detection of epileptic
eegs using a novel fusion feature and extreme learning machine,”
Neurocomputing, vol. 175, pp. 383-391, 2016.

A. R. Hassan, S. Siuly, and Y. Zhang, “Epileptic seizure detection
in eeg signals using tunable-q factor wavelet transform and bootstrap
aggregating,” Computer methods and programs in biomedicine, vol. 137,
pp. 247-259, 2016.

M. Ravan, S. Sabesan, and D. O’Neill, “On quantitative biomarkers
of vns therapy using eeg and ecg signals,” IEEE Transactions on
Biomedical Engineering, vol. 64, no. 2, pp. 419-428, 2017.

D. Pascual, Aminifar, and D. Atienza, “A self-learning methodology for
epileptic seizure detection with minimally supervised edge labeling,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),

2019. 1IEEE, 2019.

E. Foundation. (2016) Sami. [Online]. Available:
https://www.samialert.com

Epi-Watcher. (2017) Epi-watcher. [Online]. Available:

http://www.vahlkamp.nl

A. P. Narechania, I. I. Garic, 1. Sen-Gupta, M. P. Macken, E. E. Gerard,
and S. U. Schuele, “Assessment of a quasi-piezoelectric mattress monitor
as a detection system for generalized convulsions,” Epilepsy & Behavior,
vol. 28, no. 2, pp. 172-176, 2013.

S. Monitor. (2016) Smartwatch. [Online]. Available: http://smart-
monitor.com/
Empatica. (2016) Embrace alert system. [Online]. Available:

https://www.empatica.com/embrace-watch-epilepsy-monitor

S. N. Larsen, I. Conradsen, S. Beniczky, and H. B. Sorensen, “Detection
of tonic epileptic seizures based on surface electromyography,” in En-
gineering in Medicine and Biology Society (EMBC), 2014 36th Annual
International Conference of the IEEE. 1EEE, 2014, pp. 942-945.

C. A. Szabo, L. C. Morgan, K. M. Karkar, L. D. Leary, O. V. Lie,
M. Girouard, and J. E. Cavazos, “Electromyography-based seizure de-
tector: Preliminary results comparing a generalized tonic—clonic seizure
detection algorithm to video-eeg recordings,” Epilepsia, vol. 56, no. 9,
pp. 1432-1437, 2015.

W. J. Van Elmpt, T. M. Nijsen, P. A. Griep, and J. B. Arends, “A model
of heart rate changes to detect seizures in severe epilepsy,” Seizure,
vol. 15, no. 6, pp. 366-375, 2006.

0. Doyle, A. Temko, W. Marnane, G. Lightbody, and G. Boylan,
“Heart rate based automatic seizure detection in the newborn,” Medical
engineering & physics, vol. 32, no. 8, pp. 829-839, 2010.

K. Vandecasteele, T. De Cooman, Y. Gu, E. Cleeren, K. Claes, W. V.
Paesschen, S. V. Huffel, and B. Hunyadi, “Automated epileptic seizure
detection based on wearable ecg and ppg in a hospital environment,”
Sensors, vol. 17, no. 10, p. 2338, 2017.

F. Masse, M. V. Bussel, A. Serteyn, J. Arends, and J. Penders, “Miniatur-
ized wireless ecg monitor for real-time detection of epileptic seizures,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 12,
no. 4, p. 102, 2013.

C. Ungureanu, V. Bui, W. Roosmalen, R. M. Aarts, J. B. Arends,
R. Verhoeven, and J. J. Lukkien, “A wearable monitoring system for noc-
turnal epileptic seizures,” in Medical Information and Communication
Technology (ISMICT), 2014 8th International Symposium on. 1EEE,
2014, pp. 1-5.

C. Varon, K. Jansen, L. Lagae, and S. Van Huffel, “Detection of epileptic
seizures by means of morphological changes in the ecg,” in Computing
in Cardiology Conference (CinC), 2013. 1EEE, 2013, pp. 863-866.

1. Osorio, “Automated seizure detection using ekg,” International journal
of neural systems, vol. 24, no. 02, p. 1450001, 2014.

J. Jeppesen, S. Beniczky, P. Johansen, P. Sidenius, and A. Fuglsang-
Frederiksen, “Using lorenz plot and cardiac sympathetic index of heart
rate variability for detecting seizures for patients with epilepsy,” in the
36th IEEE Annual International Conference of Engineering in Medicine
and Biology Society (EMBC). 1EEE, 2014, pp. 4563-4566.



ACM/SPRINGER JOURNAL OF MOBILE NETWORKS AND APPLICATIONS, VOL. X, NO.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

——, “Detection of epileptic seizures with a modified heart rate vari-
ability algorithm based on lorenz plot,” Seizure, vol. 24, pp. 1-7, 2015.
J. Pavei, R. G. Heinzen, B. Novakova, R. Walz, A. J. Serra, M. Reuber,
A. Ponnusamy, and J. L. Marques, “Early seizure detection based on
cardiac autonomic regulation dynamics,” Frontiers in Physiology, vol. 8,
p. 765, 2017.

N. Dutt, A. Jantsch, and S. Sarma, “Toward smart embedded systems:
A self-aware system-on-chip (soc) perspective,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 15, no. 2, p. 22, 2016.

J. S. Preden, K. Tammemae, A. Jantsch, M. Leier, A. Riid, and
E. Calis, “The benefits of self-awareness and attention in fog and mist
computing,” Computer, vol. 48, no. 7, pp. 37-45, 2015.

T. Chen, F. Faniyi, R. Bahsoon, P. R. Lewis, X. Yao, L. L. Minku, and
L. Esterle, “The handbook of engineering self-aware and self-expressive
systems,” arXiv preprint arXiv:1409.1793, 2014.

F. Faniyi, P. R. Lewis, R. Bahsoon, and X. Yao, “Architecting self-aware
software systems,” in Software Architecture (WICSA), 2014 IEEE/IFIP
Conference on. 1EEE, 2014, pp. 91-94.

A. Aminifar, P. Tabuada, P. Eles, and Z. Peng, “Self-triggered controllers
and hard real-time guarantees,” in Proceedings of the 2016 Conference
on Design, Automation & Test in Europe. EDA Consortium, 2016, pp.
636-641.

A. Aminifar, “Self-triggered controllers, resource sharing, and hard
guarantees,” in 2016 Second International Conference on Event-based
Control, Communication, and Signal Processing (EBCCSP). IEEE,
2016, pp. 1-7.

A. Anzanpour, I. Azimi, M. Gotzinger, A. M. Rahmani, N. TaheriNejad,
P. Liljeberg, A. Jantsch, and N. Dutt, “Self-awareness in remote health
monitoring systems using wearable electronics,” in Proceedings of the
Conference on Design, Automation & Test in Europe. European Design
and Automation Association, 2017, pp. 1056-1061.

N. TaheriNejad, A. Jantsch, and D. Pollreisz, “Comprehensive obser-
vation and its role in self-awareness; an emotion recognition system
example,” Self, vol. 11, p. 1, 2016.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5-32, 2001.

J. Pan and W. J. Tompkins, “A real-time qrs detection algorithm,” IEEE
Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp. 230-
236, 1985.

[76]

(771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]
[88]

X, JULY XXXX 12

R. Thompson, “A note on restricted maximum likelihood estimation with
an alternative outlier model,” Journal of the Royal Statistical Society.
Series B (Methodological), pp. 53-55, 1985.

P. C. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G.
Rosenblum, Z. R. Struzik, and H. E. Stanley, “Multifractality in human
heartbeat dynamics,” Nature, vol. 399, no. 6735, p. 461, 1999.

P. de Chazal, C. Heneghan, E. Sheridan, R. Reilly, P. Nolan, and
M. O’Malley, “Automated processing of the single-lead electrocardio-
gram for the detection of obstructive sleep apnoea,” IEEE Transactions
on Biomedical Engineering, vol. 50, no. 6, pp. 686—-696, 2003.

H. Ocak, “Automatic detection of epileptic seizures in eeg using dis-
crete wavelet transform and approximate entropy,” Expert Systems with
Applications, vol. 36, no. 2, pp. 2027-2036, 2009.

X. Chen, I. C. Solomon, and K. H. Chon, “Comparison of the use
of approximate entropy and sample entropy: applications to neural
respiratory signal,” in Engineering in Medicine and Biology Society,
2005. IEEE-EMBS 2005. 27th Annual International Conference of the.
IEEE, 2006, pp. 4212-4215.

C. Bandt and B. Pompe, “Permutation entropy: a natural complexity
measure for time series,” Physical review letters, vol. 88, no. 17, p.
174102, 2002.

U. R. Acharya, H. Fuyjita, V. K. Sudarshan, S. Bhat, and J. E. Koh,
“Application of entropies for automated diagnosis of epilepsy using eeg
signals: A review,” Knowledge-Based Systems, vol. 88, pp. 85-96, 2015.
Scargle and D. Jeffrey, “Studies in astronomical time series analysis.
ii. statistical aspects of spectral analysis of unevenly spaced data,”
Astrophysical Journal, vol. 263, pp. 835-853, 1982.

Lomb and R. Nicholas, “Least-squares frequency analysis of unequally
spaced data,” Astrophysics and Space Science, vol. 39, pp. 447462,
1976.

P. J. Fleming and J. J. Wallace, “How not to lie with statistics: the
correct way to summarize benchmark results,” Communications of the
ACM, vol. 29, no. 3, pp. 218-221, 1986.

STM32L151RD, Ultra-low-power ARM Cortex-M3 MCU with 384
Kbytes Flash, 32 MHz CPU, USB, 3xOp-amp - STMicroelectronics.
ECG electrode for sensitive skin, Ambu BlueSensor VLC.
T. Instruments. (2018) Ads7142. [Online].
http://www.ti.com/product/ADS7142/description

Available:



