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Abstract
The way in which cortical microcircuit components—most importantly neurons—and their

connectivity—the network—shape and constrain emergent dynamics is a long-standing ques-

tion in neuroscience. Experimentally observed dynamical properties can often be explained by

circuit models with different simplifying assumptions for the underlying neuron models and

their network structure, such as deterministic synapse models describing stochastic synapses,

or a uniform network structure describing heterogeneous synaptic connectivity. Intrinsic

neural variability, for example, can emerge from both stochastic synaptic properties (noise)

and deterministic network dynamics (chaos). It is therefore often not clear if models with ad

hoc simplifying assumptions for various biological details provide correct explanations for

the emergence of cortical dynamics. In this thesis, we set out to advance our understanding

of how detailed biological properties of cortical neurons and their network structure shape

emergent dynamics by studying a model of a prototypical neocortical microcircuit that was re-

constructed using all relevant available biological data. To make our predictions as biologically

accurate as possible, we used a “zero tweak” strategy wherein parameters in the model were

not adjusted to replicate specific experimentally observed dynamical properties, but instead

were constrained by biological data. This allowed us to characterize the effect of two biologi-

cal properties that are often abstracted away in ad hoc simplifications: stochastic synaptic

transmission and a heterogeneous network structure with complex higher-order connectivity.

Studying the model, we made several important predictions: (1) Stochastic synaptic trans-

mission, in an interplay with recurrent network dynamics, causes rapid chaotic divergence of

spontaneous activity. (2) Synaptic noise overshadows other local cellular noise sources. (3)

Amid the noise and chaos, neurons can reliably respond to external inputs with millisecond

spike-time precision. (4) This reliable response goes beyond mere feedforward suppression of

recurrent dynamics and is driven by the circuit at a near-critical excitation-inhibition balance.

(5) An abundance of high-dimensional cliques of all-to-all connected neurons which shape

correlations between neurons in a hierarchical manner. (6) This effect is strongly reduced

when synaptic connectivity is replaced by a rejected null model with reduced higher-order

network structure. We conclude that a detailed representation of cellular noise sources and

high-dimensional network structure is imperative to accurately model emergent cortical net-

work dynamics. Models that make ad hoc simplifying assumptions need to carefully justify

the exclusion of such details.

Keywords: neocortex, microcircuit, network dynamics, synaptic noise, chaos, variability,

topology, model, simulation
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Zusammenfassung
Wie die Komponenten von Mikroschaltkreisen im Cortex – vor allem Nervenzellen – und ih-

re Verbindungen – das Netzwerk – emergente Dynamik formen und einschränken, ist eine

lang bestehende Frage der Neurowissenschaften. Viele theoretische und computergestützte

Studien haben gezeigt, dass Schaltkreismodelle mit unterschiedlichen vereinfachenden An-

nahmen für Neuronenmodelle und Netzwerkstruktur oft so angepasst werden können, dass

sie dieselbe experimentell beobachtete Dynamik erklären können. Intrinsische neuronale

Variabilität kann zum Beispiel durch synaptisches Rauschen (englisch: Noise) und determi-

nistisches Netzwerkchaos entstehen. Diese Studien können zwar potenzielle Mechanismen

und neue Hypothesen aufzeigen, die in Experimenten getestet werden können, aber es ist

oft nicht klar, ob die verwendeten Modelle auch korrekte biologische Erklärungen für die

beobachtete Dynamik liefern. Das Ziel dieser Doktorarbeit war es ein besseres Verständnis

dafür zu entwickeln, wie detaillierte biologische Eigenschaften der Nervenzellen des Cortex

und ihre Netzwerkstruktur die entstehende Dynamik des Cortex formen und beschränken.

Dazu untersuchten wir ein biologisch motiviertes Modell eines prototypischen Mikroschalt-

kreises des Neocortex mit einer “Zero Tweak”-Strategie: Der Mikroschaltkreis, der mit allen

relevanten verfügbaren biologischen Daten rekonstruiert wurde, wurde nicht angepasst, um

eine spezifische experimentell beobachtete Netzwerkdynamik zu simulieren. Bei der Un-

tersuchung des Mikroschaltkreises konnten wir einige wichtige Vorhersagen treffen: (1) Die

stochastische synaptische Übertragung verursacht im Zusammenspiel mit der rekurrenten

Netzwerkdynamik eine schnelle chaotische Abweichung der spontanen Aktivität. (2) Wir sagen

quantitativ vorher, dass das synaptische Rauschen andere lokale zelluläre Rauschquellen über-

schattet. (3) Wir beobachteten, dass Neuronen inmitten vom Rauschen und Chaos zuverlässig

und mit einer Millisekunden-Zeitgenauigkeit auf externe Signale reagieren können. (4) Diese

zuverlässige Reaktion geht über die bloße Unterdrückung der rekurrenten Dynamik hinaus

und ist bei einem nahezu kritischen Gleichgewicht zwischen Erregung und Hemmung am

stärksten. (5) Als wir tiefer in die Netzwerkstruktur eintauchten, fanden wir einen Überfluss

an hochdimensionalen Cliquen aus miteinander verknüpften Nervenzellen, die hierarchi-

sche Korrelationen zwischen Nervenzellen formen. (6) In einem abgelehnten Nullmodell

der synaptischen Verbindungen mit reduzierter Netzwerkstruktur höherer Ordnung war die-

ser Effekt stark reduziert. Wir schließen daraus, dass das detaillierte Modellieren zellulärer

Rauschquellen und hochdimensionaler Netzwerkstruktur unerlässlich ist, um emergente

Netzwerkdynamik zu simulieren. Vereinfachte Modelle mit Ad-hoc-Annahmen müssen die

Auswirkungen der Nichtberücksichtigung dieser Details sorgfältig abwägen.
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1 Introduction

1.1 Motivation

The neocortex is the newest addition to the mammalian brain (Rakic, 2009) and is involved

in many higher-order brain functions, including decision-making (Walton et al., 2002).1 Un-

derstanding the structure and function of the neocortex has been a goal of neuroscience for

more than a century (Ramón y Cajal, 1911). The neocortex has a typical structure made up of

six layers, which is roughly conserved across cortical areas and mammalian species, albeit

with varying layer thicknesses across areas, varying total thickness, and drastically different

surface areas (Douglas and Martin, 2004; Rakic, 2009; Rockel et al., 1980). Many studies have

investigated the structure and function of neocortical circuitry in various mammalian species,

yet there is still no integrated view of how this structure leads to the emergence of observed

dynamics. In this thesis, we aim to shed light on the relationship between the structure and

emergent dynamics of the cortex by studying a model of a prototypical neocortical microcir-

cuit in the primary somatosensory cortex of the two-week old Wistar rat (Rattus norvegicus

domestica). As the neocortex is the largest part of the cerebral cortex, and since many proper-

ties of one neocortical area have been shown to generalize to other areas and species (Douglas

and Martin, 2004), we will often use the word “cortical” or “cortex” when in fact we mean the

primary somatosensory cortex of the two-week old Wistar rat.

1.1.1 What is the nature of the cortical neural code?

Most cortical neurons send signals to other neurons in the form of action potentials, also called

spikes. The nature of the neural code—i.e. how spikes encode information—appears to vary

between brain regions. Broadly speaking, there are two classes of hypothesis regarding the

implementation of this code (Shadlen and Newsome, 1994): The first is the idea that the exact

1While the cortex might indeed be important for many higher-order brain functions, it is interesting and
humbling to note that rats can still sense with putatively relevant parts of the sensory cortex surgically removed
(Hong et al., 2018), and male rats are able to copulate (and live) with the whole cortex removed (Whishaw and Kolb,
1985).
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spike times and patterns of interspike intervals (ISIs), be it of a single neuron or a population,

encode information—often referred to as spike-time coding. The other is that neurons are too

noisy for exact spike times to reliably encode signals, and that only the firing rate encodes

information, albeit with millisecond precision at the level of populations (Tchumatchenko

et al., 2011)—often referred to as spike-rate coding. Spike-rate and spike-time coding are not

as dichotomous as they seem, and they have been shown to coexist, for example for visual

information encoded in the cat thalamus (Reinagel and Reid, 2000), and for tactile information

recorded from human fingertip afferents (Johansson and Birznieks, 2004). In any case, the

“neural code” is perhaps better seen as a metaphor that is not to be taken too literally, as some

argue that the distributed and causal structure of the brain cannot be appropriately described

in terms of “coding” (Brette, 2019). However, what we would certainly like to understand, is to

what extent the occurrence of a particular spike in a cortical neuron matters. What is signal

and what is noise?

Figure 1.1 – Cortical variability: signal or noise? (Left) Spike trains of a neuron in the visual
cortex of a behaving macaque monkey in response to randomly seeded dynamic dot visual
stimuli, presented for two seconds each. (Right) Spike trains in response to a dynamic dot
stimulus with a repeated seed. Figure 1 of “Temporal Precision of Spike Trains in Extrastriate
Cortex of the Behaving Macaque Monkey” by Wyeth Bair and Christof Koch in Neural Computa-
tion Volume 8, Issue 6, August 15, 1996, p.1185-1202, reprinted courtesy of The MIT Press (Bair
and Koch, 1996).

In the early stages of different sensory systems, very small numbers of spikes in single neurons

carry significant information (Rieke et al., 1997). For example, neurons in the rat ventral

posteromedial nucleus of the thalamus (VPM) are highly selective to certain whisker deflection

features and respond with high temporal precision (Petersen et al., 2008), whereas neurons in
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1.1. Motivation

the somatosensory cortex that are innervated by the VPM and respond to the same deflection

features are less reliable and need to be combined into populations to retrieve the same

amount of information as one typical VPM neuron (Bale and Petersen, 2009). More generally

in the cortex, high variability of neural activity in response to repeated stimuli is widely

observed, including both a variable number of spikes and highly irregular interspike intervals

(Dean, 1981; Tolhurst et al., 1983; Softky and Koch, 1992; Britten et al., 1993; Shadlen and

Newsome, 1994; Stevens and Zador, 1998). Moreover, spike counts are often Poisson-like, or

even more variable, with Fano Factors (variance of spike counts divided by mean spike count)

≥ 1 (Shadlen and Newsome, 1998; Softky and Koch, 1993; Kohn and Smith, 2005; Churchland

et al., 2010; Nogueira et al., 2018). These results have led many people to conclude that the

cortex cannot rely on individual spike times and must employ a spike-rate code. Moreover,

it has been argued that computation itself might be inherently variable due to deterministic

approximations (Beck et al., 2012), making precise spikes superfluous.

1.1.2 How does cortical neural variability emerge?

However, there are many examples of experiments from different cortical areas demonstrating

precise and reliable spike times in response to stimulation (Petersen et al., 2001; Kayser et al.,

2010; Hires et al., 2015). Bair and Koch (1996) showed that recordings that were thought to be

highly variable (Newsome et al., 1989; Britten et al., 1992) were actually temporally precise

when all “noise” was kept fixed in the stimulus. Figure 1.1 shows the response of a neuron

to a dynamic visual stimulus with noise (left), and with frozen noise that is identical across

trials (right) in the macaque visual cortex, re-analyzed by Bair and Koch (1996). In line with

this observation, Kara et al. (2000) reported clearly sub-Poisson variability of neurons in the

visual cortex. Yet, variability of cortical responses seems widespread. One explanation for the

low variability could simply be that the recorded cortical cells receive feedforward input from

the thalamus, and that these neurons are thus less variable than those receiving only cortical

input (Movshon, 2000).

To further constrain the nature of the cortical neural code, we need to understand how the

observed variability emerges and untangle to what extent it is “noise” that carries no sig-

nal, and to what extent it conveys signals that only appear variable to the observer (Renart

and Machens, 2014). There are many potential sources of the observed variability (Fairhall,

2019) (summarized in Figure 1.2A). Two potential sources, namely intrinsic within-network

dynamics—which theoretical models predict to be chaotic (van Vreeswijk and Sompolinsky,

1996, 1998; London et al., 2010)—and unobserved noisy inputs from other brain areas and the

environment, imply that variability is at least partially true noise. There are, however, lines

of evidence supporting the notion that most cortical variability only appears variable due to

unobserved targeted inputs (Masquelier, 2013). Churchland et al. (2010) showed that at stimu-

lus onset, spike count variability in many cortical areas decreases. Further, a large amount

of variability can be explained by animal movement in addition to visual stimulation (Niell

and Stryker, 2010), and all of the cortex is strongly modulated by global movement-related
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Figure 1.2 – Potential sources of cortical variability. (A) Potential sources of cortical vari-
ability can be divided into external inputs (including from other brain regions) and into
intrinsic, within-network dynamics (Renart and Machens, 2014; Fairhall, 2019). Redrawn from
Fairhall (2019). (B) Illustration of potential sources of variability of within-network dynamics:
chaotic activity arising from a balance of excitation and inhibition (chaos) (van Vreeswijk and
Sompolinsky, 1996, 1998; London et al., 2010), stochastic opening of voltage-dependent ion
channels (ion channel noise) (Faisal et al., 2008), and stochastic synaptic neurotransmitter
release (synaptic noise) (Allen and Stevens, 1994). Note that synaptic noise includes both
spontaneous vesicle fusion and neurotransmitter release, and failure of vesicle fusion and
neurotransmitter release upon action potential arrival.
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activity (Musall et al., 2018). Finally, there is recent evidence that suggests that most variability

is not noise, but true signal: Simultaneous recordings from ~10’000 neurons across the mouse

brain show that most variability encodes behavioral information (Stringer et al., 2019). This

study implies that variability, which was interpreted to be noise when recording from a single

or a handful of neurons, is actually driven by brain-wide activity. It is thus likely that most

observed cortical variability arises from unobserved targeted inputs and global modulation

(Figure 1.2A).

1.1.3 Predicting emergent cortical network dynamics requires detailed modeling

But does this mean that each spike is reliable and encodes a signal, as some have argued

(Masquelier, 2013)? The studies above look at average spiking over relatively large timescales

(~1 second). To truly understand intrinsic cortical variability and the precision of spiking at the

millisecond timescale, we would need to monitor all inputs to a neuron or local population of

neurons, as cortical neurons respond with remarkable precision to small changes in membrane

potential (Mainen and Sejnowski, 1995). This—at least for the moment—is not possible in

vivo. An alternative, bottom-up approach is to study how the properties of single cortical

neurons and local networks constrain spike-time variability and reliability (Figure 1.2B).

Isolated cortical neurons in vitro are extremely reliable when they are injected with current

(Mainen and Sejnowski, 1995). By contrast, under in vivo conditions, neurons receive synaptic

inputs, which are subject to a considerable noise source: stochastic synaptic neurotransmitter

release (synaptic noise)2 (see Figure 1.2B). When a presynaptic spike arrives at a synapse, it

triggers an influx of C a2+, which allows docked vesicles to fuse with the membrane and release

neurotransmitter (Sudhof, 2004). This release mechanism is highly stochastic: quite often,

presynaptic spikes fail to cause neurotransmitter release (Katz and Miledi, 1969; Allen and

Stevens, 1994), and vesicles can also spontaneously fuse and release neurotransmitter (Katz

and Miledi, 1969; Faisal et al., 2008).

To go beyond a single neuron and understand how the dynamics of local populations of

neurons constrain variability, we can use models of neural networks, which have long been

utilized to understand and predict in vivo cortical dynamics (Vogels et al., 2005). Many studies

of network dynamics of balanced populations of excitatory and inhibitory neurons suggest that

cortical network dynamics are chaotic (van Vreeswijk and Sompolinsky, 1996, 1998; London

et al., 2010), meaning that any intrinsic noise such as synaptic noise would likely be amplified

and lead to highly variable network activity. Nonetheless, deterministic networks with chaotic

network dynamics can still be reliable (Rajan et al., 2010; Lajoie et al., 2013) and information

can even be encoded by spike times (Lajoie et al., 2016). However, it has also been shown

that synaptic noise in a recurrent cortical network can lead to Poisson-like spiking variability

2The term “synaptic noise” is sometimes used to describe the total “background noise” of a neuron, that is the
membrane voltage fluctuations arising from a combination of “noisy” presynaptic inputs and stochastic synaptic
release (Calvin and Stevens, 1968; Fellous et al., 2003; Destexhe et al., 2003). However, in this thesis, “synaptic
noise” always refers to “stochastic synaptic release” alone, making no assumptions on the structure of presynaptic
input (Faisal et al., 2008).
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(Moreno-Bote, 2014). Yet, some models suggest that very few synchronous synaptic inputs

can overcome synaptic noise and induce reliable spikes (Wang et al., 2010).3

The examples above illustrate that network models with varying degrees of biological detail

can exhibit similar dynamics through different mechanisms. Another study showed that

asynchronous network dynamics in simplified models can break down when accounting

for heterogeneous connectivity data, but can be recovered by including spike-frequency

adaptation mechanisms (Landau et al., 2016). Many of the classic balanced network models

connect neurons completely at random and with spatially uniform probability distributions.

However, it is known that distance-dependent connectivity can change emergent variability

(Rosenbaum et al., 2017). Furthermore, intrinsic shared variability can arise when time scales

of excitatory and inhibitory synapses are constrained using biological data (Huang et al., 2019).

Yet, none of these models consider intrinsic noise sources such as synaptic noise, which has

been shown to have a potentially large impact on emergent variability (Moreno-Bote, 2014).

How additional biological details of cortical circuits, such as differences across layers, different

cell types beyond excitatory and inhibitory populations, or higher-order connectivity motifs

(Song et al., 2005; Perin et al., 2011) may impact variability and emergent dynamics more

generally, is unknown.

Taken together, these studies demonstrate that neurobiological details matter, and that ad hoc

simplifying assumptions that leave out details without knowledge of their impact could funda-

mentally alter emergent network dynamics. This, in turn, can lead to misguided predictions

and incorrect explanations of observed phenomena. This is not to say that the use of simplified

models is wrong in any context, or that more detail is always better. Simplified models have

many advantages—they are easier to construct and more amenable to theoretical analysis.

However, for interpreting how well these models capture neurobiological mechanisms, any

simplification should ideally be informed and carefully justified.

In this thesis, we propose to study and untangle emergent cortical network dynamics using a

model that takes relevant available biological data into account and provides an integrative

view of neocortical microcircuitry (Markram et al., 2015). The goal is to make predictions about

which details of cortical circuitry matter, thus providing a guide for informed simplifications

and bridging levels of understanding.

3This result is likely due to an overestimated synaptic release probability, not adjusted from in vitro to in vivo
conditions, as we will explain in Chapter 2.
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1.2 Outline of the thesis

Figure 1.3 – Outline of the thesis. (A) Overview of the detailed neocortical microcircuit model
studied in this thesis—the NMC-model (Chapter 1.3). (B) How do local network dynamics
and cellular noise sources constrain spike variability and reliability (Chapter 2)? (C1) What is
the role of the network topology in emergent dynamics (Chapter 3)? (C2) How do emergent
dynamics change with a reduction in high dimensional topological network structure (Chapter
4)?

In Chapter 1.3 (“A detailed neocortical microcircuit model”), we give a brief introduction to

the Blue Brain Project’s neocortical microcircuit model (NMC-model), which provided the

foundation for the research in this thesis (Figure 1.3A). In Chapter 1.3.2, we demonstrate

why it is an adequate model to use for making predictions about in vivo neuronal activity.

All of Chapter 1.3 is based on the publication “Reconstruction and simulation of neocortical

microcircuitry” (Markram et al., 2015), and parts of Chapter 1.3.2 are original research as part

of this thesis (see contributions at start of Chapter 1.3).

Chapter 2 (“Reliability amid noise and chaos”) forms the backbone of this thesis, and answers

questions about how neuronal variability and reliability emerge in the NMC-model (Figure

1.3B). The chapter is a revised and extended version of the preprint “Cortical reliability amid

noise and chaos” (Nolte et al., 2018).

In Chapter 3 (“Cliques of neurons bound into cavities”) and Chapter 4 (“Impact of higher-order

network structure”) we dive deeper into the structural connectivity of the NMC-model, and

learn how components of the network topology of the NMC-model shape emergent dynamics

(Figure 1.3C1-2). Chapter 3 is a postprint of a publication that arose from a collaboration

with algebraic topologists called “Cliques of neurons bound into cavities provide a missing

link between structure and function” (Reimann et al., 2017b). In Chapter 4, we extend on the

findings from Chapter 3 by simulating a circuit model that has a substantial part of these

elements of network topology removed. Chapter 4 will be submitted for publication as “Impact

of higher-order network structure on emergent cortical activity”.
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Finally, in Chapter 5, we summarize the main contributions of this thesis and point to future

directions.
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1.3 A detailed neocortical microcircuit model

The following is a description of the detailed neocortical microcircuit model (NMC-model)

studied in this thesis. First, we briefly summarize how the NMC-model was reconstructed

from biological data and then used to simulate neuronal activity (Chapter 1.3.1). We then

describe how the NMC-model reproduces findings of spontaneous and evoked activity in

vivo (Chapter 1.3.2). Note that this chapter only provides a brief summary of the publication

“Reconstruction and simulation of neocortical microcircuitry” in which the NMC-model is

described in full detail (Markram et al. (2015); http://dx.doi.org/10.1016/j.cell.2015.09.029).

Note that Chapter 2.4.1 provides a summary of additional details such as the synapse model.

Contribution: I analyzed simulations run by Eilif B. Muller and generated Figures 1.8A1–3. I

contributed to the analysis and generation of Figures 1.9C–F together with Eilif B. Muller and

Giuseppe Chindemi. I contributed to the captions and text describing the results shown in

these two figures. I generated Figure 1.6 (not part of original publication).

1.3.1 Reconstruction and simulation of a neocortical microcircuit

Reconstruction

The NMC-model is a biologically detailed model of a prototypical microcircuit of the so-

matosensory cortex of the two-week old rat. One microcircuit contains 31’346 neurons that

were reconstructed with detailed anatomy and physiology from sparse data. Detailed neu-

ronal morphologies were reconstructed in vitro, and then repaired and cloned to replicate the

morphological diversity of neurons in the neocortex (Figure 1.4A). Neuronal morphologies

were then placed into a volume approximately defined to cover dendritic trees of neurons in

the center of the volume, according to experimentally constrained densities and frequencies

of individual morphological types (m-types) in each of the six layers (Figure 1.4B). Figure 1.5

is a detailed illustration of a subset of the 31’346 morphologies placed in the microcircuit

volume, colored according to their layer (defined by soma location).

Synaptic connectivity between neurons was predicted algorithmically (Figure 1.4C), by consid-

ering all appositions of axons and dendrites in the microcircuit as potential synapse locations

and then pruning connections according to biological constraints such as the number of

synapses per connection and bouton densities (Reimann et al., 2015). The resulting connec-

tome for a microcircuit of 31’346 neurons contains around ~8 million connections comprising

~36 million synapses. The connectome is a null-model with many predictions and interpo-

lations, but emergent properties, such as synapse densities and interbouton intervals, were

validated extensively against available biological data (Reimann et al., 2015).

Electrical models were generated by fitting ion-channel distributions to reproduce the be-

havior of distinct electrical neuron types (e-types) to somatic current injection protocols in

vitro, using a genetic optimization algorithm (Van Geit et al., 2016). E-types were assigned to

9
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Figure 1.4 – Workflow for data-driven reconstruction of neocortical microcircuitry. (A)
Morphological diversity of neurons. (a) Identify the morphological diversity in the neocortical
microcircuit (m-types). (b) Repair and then clone the various m-types with statistical vari-
ations to enrich the number of exemplars. (B) Microcircuit anatomy. (a) Define the spatial
dimensions of a unitary microcircuit. (b) Assemble individual neurons in 3D space according
to the frequency of occurrence of each m-type per layer, selecting the appropriate m-type
instance that satisfies laminar constraints on the axonal and dendritic distribution. (C) Re-
constructing microcircuit connectivity. Derive the number and location of synaptic contacts
formed between all neurons in the microcircuit, based on a series of synaptic connectivity
rules. (D) Electrical diversity of neurons. Map and model the electrical types (e-types) of each
m-type to account for the observed diversity of morpho-electrical subtypes (me-types). (E)
Synaptic diversity of neurons. Map and model the diversity of synaptic types (s-types) ob-
served between pre-post combinations of me-types, according to rules derived from synaptic
physiology. (F) Reconstructing virtual tissue volumes. Apply the above strategy to recon-
struct defined circuit volumes (microcircuits, slices, mesocircuits) for in silico experiments;
insert synapses formed by thalamocortical fibers for stimulation experiments. Figure 1 and
corresponding caption from Markram et al. (2015), reprinted courtesy of Cell Press.
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1.3. A detailed neocortical microcircuit model

Figure 1.5 – Detailed visualization of a randomly selected subset of neurons in the NMC-
model, colored according to cortical layer, from layer 1 at the top to layer 6 at the bottom.
Visualization: Cyrille Favreau & Blue Brain Scientific Visualization team.
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neurons according to their distributions in vitro (Figure 1.4D). 1’137 out of 31’346 neurons

exhibit irregular firing behavior and use stochastic potassium channels models.

Synaptic transmission is modeled using the stochastic Tsodyks-Markram synapse model,

which takes into account short-term plasticity including facilitation and depression, as well as

the stochastic release of vesicles. Model parameters were constrained to capture the diversity

of synapse types (s-types) observed in vitro (Figure 1.4E), resulting in six s-types. For a brief

overview of the synapse model, see Chapter 2.4.1.

To evoke activity on top of intrinsic circuit dynamics, thalamic synapses from fibers com-

ing from the ventral posteromedial nucleus (VPM) were added to the NMC-model. Each

connection between a thalamic fiber and a cortical neuron contains several synapses, with

experimentally constrained densities across layers, resulting in relatively more synapses near

the borders between layers 2/3 and 4, and layers 5 and 6, respectively (Meyer et al., 2010).

Simulation of neuronal activity

Figure 1.6 – Transition of neuronal activity. Spontaneous activity of all 31’346 neurons in the
microcircuit at increasing [C a2+]o (100% depolarization). The line indicates the population
firing rate.

The microcircuit has a unified set of network parameters constrained by the reconstruction

process. However, there were two unknown parameters required for simulating neuronal

network activity: Due to a difference in the chemical composition of the extracellular fluid

between in vitro and in vivo conditions, and also due to missing long-range inputs (approx-
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imately 80% of excitatory synapses come from long-range presynaptic neurons), neurons

need to be injected with a tonic somatic depolarizing current to be active. We expressed this

current as the percentage of the current required to drive a cell to threshold and make it spike

(rheobase). Another unknown which is different to in vitro conditions is the precise extracellu-

lar C a2+ concentration. [C a2+]o differentially modulates the release probability of inhibitory

and excitatory synapses (Rozov et al., 2001), and consequently their effective strength. At

[C a2+]o = 2.00 mM, the typical in vitro level of [C a2+]o , excitation is so strong compared to

inhibition that network dynamics are regenerative, with bursts of synchronous, microcircuit-

wide activity. When decreasing [C a2+]o to values that are closer to in vivo conditions, excitation

loses strength relative to inhibition, and activity transitions from this synchronous state to

more asynchronous activity (Figure 1.6). Notably, this transition was also observed in a slice

when lowering [C a2+]o (Markram et al., 2015).

Figure 1.7 – The regime map. Characterization of spontaneous and evoked activity under
different levels of depolarization and [C a2+]o . Figure 15D and corresponding caption from
Markram et al. (2015), reprinted courtesy of Cell Press.

Depending on the depolarization level, these bursts either form spontaneously (Figure 1.7,

spontaneous regenerative regime) or need to be evoked with thalamic input (Figure 1.7, evoked

regenerative regime). As [C a2+]o decreases, the dynamical regime suddenly and rapidly

transitions from regenerative to non-regenerative activity. At a 100% depolarization level, this

transition occurs between [C a2+]o = 1.30 to 1.275 mM.4 As this change in dynamics is similar

to a phase transition between two fundamentally different regimes in statistical physics, we

define this point as a critical point. At [C a2+]o = 1.25 mM, activity is thus in near-critical

regime, but still subcritical. It is nearly regenerative with synchronous bursts, but it is actually

still asynchronous and non-regenerative. It is at this point that the NMC-model can reproduce

an array of properties of spontaneous and evoked activity in vivo. We therefore refer to this

point as the in vivo-like state, which we will further describe in Chapter 1.3.2 below.

4This value is specific to the NMC-model, and could change with any other mechanisms that differentially
modulate the effective strength of excitatory and inhibitory synapses.
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1.3.2 Reproducing in vivo-like cortical dynamics

The NMC-model was reconstructed from—and validated against—in vitro slice data. While it

successfully reproduces a range of dynamic regimes including asynchronous activity, it was

not clear if the NMC-model also provides a good model for making predictions about in vivo

cortical activity. We therefore tested how well the microcircuit could reproduce properties

of spontaneous and evoked activity in vivo. Importantly, no tweaking of parameters was

performed—a “zero tweak” strategy. This is in contrast with many other models that often

tune parameters to reproduce certain experimental findings—instead, the parameters of the

NMC-model are constrained by biological data, and not tuned to match emergent function.

Spontaneous activity in vivo contains a rich structure of repeated spike patterns, including an

overexpression of spike triplet patterns that cannot be explained by random spike correlations

(Luczak et al., 2007). We found that the NMC-model exhibited these spike triplets, adding

more weight to the hypothesis that they arise intrinsically from local circuit properties (Luczak

et al., 2007). Notably, when moving from the near-critical state around [C a2+]o ≈ 1.25 mM

to lower [C a2+]o , the effect vanished, suggesting that the near-critical point close to the

transition to synchronous, regenerative activity best describes in vivo-like activity in the NMC-

model. Another feature of cortical spontaneous activity is a wide range of coupling to the

local population, from soloist neurons, that are weakly correlated to the network population,

to chorister neurons, that are highly correlated with the network population (Okun et al.,

2015). This range of population coupling also only emerged at the near-critical point. At lower

[C a2+]o (i.e. < 1.2), all neurons become weakly correlated, and at higher [C a2+]o (i.e. ≥ 1.3),

all neurons fire in strongly correlated bursts of network activity. Finally, in the in vivo-like

state at [C a2+]o = 1.25 mM, asynchronous activity emerges due to anti-correlated inhibitory

activity canceling out highly correlated excitatory activity (Figure 1.8B), as shown before in

a theoretical analysis (Renart et al., 2010). This anti-correlation of inhibitory and excitatory

inputs was previously observed in vivo (Okun and Lampl, 2008), another indication that the

NMC-model captures many properties of in vivo cortical dynamics.

Neuronal responses to thalamic input

Experimental evidence suggests that cortical responses to thalamic inputs are largely driven

by intrinsic cortical dynamics (MacLean et al., 2005). This implies that if the NMC-model

can approximate in vivo cortical dynamics, it should also be able to reproduce some of the

response structure to thalamic input. A recent study looked at the response of neurons in the

(anesthetized) rat barrel cortex in response to a full whisker deflection (Reyes-Puerta et al.,

2014). During such a whisker “flick”, many VPM neurons are active, but the exact population

response is unknown. We therefore gave the microcircuit a very simple thalamic stimulus

consisting of a single pulse of activity in the central 60 VPM fibers. Interestingly, a wide array

of cell-specific responses emerged in the microcircuit (Figure 1.8A). This included a diversity

of responses in terms of peristimulus time histograms (PSTHs) (Figure 1.8A1), including ON

cells that increased their firing, OFF cells that decreased their firing, and non-responding
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Figure 1.8 – Cell-type responses in vivo and E-I balance. (A1) Cellular response types to
simulated single-whisker deflection. Each subplot represents the activity of an individual
cell, containing the raster plot aligned to simulated whisker deflection and the PSTH. Upon
simulated whisker deflection, neurons increased their firing rate (ON cells), showed no change
in firing rate (NR cells), or decreased their firing rate (OFF cells). (A2) Comparison of mean
firing rates before and after whisker deflection plotted in logarithmic scale (2630 excitatory
and 550 inhibitory neurons). Empty symbols represent neurons showing no significantly
different activity in both periods (NR cells), and filled symbols represent neurons showing
significantly different (p < 0.05) activity (ON and OFF cells). (A3) Mean first-spike latencies
of inhibitory (INH) and excitatory (EXC) neurons to simulated whisker deflection, defined
by first spike occurrence within 30 ms after stimulation, mean over 200 trials, for all 31,346
neurons in the stimulated column. Each box plot represents median, interquartile, and range
of latencies; crosses represent outliers (2.5 times interquartile range). (B1) Raster (top) of
the spontaneous spiking activity of 500 excitatory (red) and inhibitory (blue) neurons under
in-vivo-like conditions (100% depolarization and [C a2+]o = 1.25 mM). Bottom curves show
tracking of instantaneous population-averaged activities (transformed to z-scores, bin size 3
ms). Average firing rates of E and I cells were 1.09 ± 1.0 Hz and 6.00 ± 8.95 Hz, respectively (n =
1,000; mean ± SD). (B2) Histogram of spike-spike correlations (black, count window 50 ms)
and of jittered spike trains (gray, jitter ± 500 ms). (B3) Population-averaged cross-correlograms
of the somatic membrane current, when cells are held at the reversal potential of inhibition
(blue) or of excitation (red) in both cells, or at one potential for one cell and at the other
potential for the other cell (magenta). The black curve is for pairs at resting potential. Figure
17 and corresponding caption from Markram et al. (2015), reprinted courtesy of Cell Press.
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Chapter 1. Introduction

(NR) cells. The distribution of response types and trans-laminar response latencies were

qualitatively similar to in vivo recordings by Reyes-Puerta et al. (2014) (Figure 1.8A2–3). These

findings pose an important question: Renart et al. (2010) showed that a recurrent neural

network can generate asynchronous activity even when there is shared excitatory input, by

finely anti-correlated inhibitory input. A mechanism that we showed also contributes to the

asynchronous activity in the NMC-model (Figure 1.8B). What, then, is the origin of the reliable

responses we observe for thalamocortical stimulation? Chapter 2 addresses this question in

detail.

Emergence of the in vivo-like state

The size of the NMC-model is not arbitrary, but was chosen to just encompass the full den-

dritic trees of neurons in the center of the microcircuit. However, is that size enough to make

accurate predictions about integrated microcircuit dynamics? To test the relationship between

the size of the circuit and its emergent dynamics, we compared activity in simulations with

varying numbers of neurons in a mesocircuit made up of seven microcircuits (see Figure 2.2b1

for an illustration). Each microcircuit is split up into 310 minicolumns. However, by design of

the reconstruction process, there is no boundary effect between either minicolumns or mi-

crocircuits. As the transition from non-regenerative, asynchronous dynamics to regenerative,

synchronous dynamics for increasing [C a2+]o was fundamental for the observation of the in

vivo-like properties described above, we compared how this transition changed for different

circuit sizes (Figure 1.9A-B). With significantly fewer minicolumns (< 100) than the microcir-

cuit (310), the point of transition from asynchronous to synchronous activity shifts towards

higher [C a2+]o . However in a circuit with 1000 minicolumns, more than three times the size

of the NMC-model, the point of transition is shifted to only marginally lower [C a2+]o , with

no qualitative changes (Figure 1.9A-B). At the size of the NMC-model (310 minicolumns), the

emergent transition from asynchronous to synchronous activity has thus become stabilized.

Another feature of in vivo neuronal activity is distance-dependence of correlations (Rosen-

baum et al., 2017). We therefore analyzed how correlations between clustered groups of

neurons at various spatial distances changed with circuit size (Figure 1.9C-F). We found a

clear distance-dependence, with decreasing correlation of firing rates for increasing distances

(Figure 1.9C). The overall correlation and its distance-dependence changed drastically from

smaller (50 minicolumns) to larger circuit size (Figure 1.9C). While there is still a change when

going from 300 to 400 and 1000 minicolumns, correlations, especially in the center of the

microcircuit, are fairly stable at the size of the NMC-model (310 minicolumns) (Figure 1.9F).

In summary, while the effect of circuitry beyond the size of the NMC-model clearly influences

emergent dynamics, dynamics in the center of the microcircuit are less affected, and there are

no qualitative changes.

We conclude that the NMC-model is suitable for making predictions about emergent cor-

tical dynamics, as it was reconstructed from data, with no network parameter “tweaking,”

yet captures many properties of in vivo cortical activity. However, this comes with a caveat:
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1.3. A detailed neocortical microcircuit model

Figure 1.9 – Emergence. (A) Transition between regenerative and non-regenerative regimes
as a function of circuit size and calcium concentration. Panels of raster plots (top) and
PSTHs (bottom) of spontaneous activity are shown for a selection of circuit sizes and calcium
concentrations (100% depolarization). (B) Overview of a broad range of circuit sizes and
calcium concentrations as in A. Red crosses and green dots indicate regenerative and non-
regenerative circuit behavior, respectively, as assessed by visual inspection. Black curve depicts
interpolated transition between regenerative and non-regenerative regimes. (C) Spatial profile
of instantaneous firing rates for circuits of increasing size. Mean instantaneous firing rates
were estimated for contiguous groupings (clusters) of approximately ten minicolumns using
a K-means algorithm. Six spatial firing rate profiles are shown, generated by interpolating
these rate estimates (see Experimental Procedures [in Markram et al. (2015)]) at two selected
times for three circuit sizes. Colored circles show five exemplary cluster centers. (D) Time
traces of firing rates for selected clusters. Firing rate time courses are shown for the clusters in
C in corresponding color for all three circuit sizes. Dashed boxes indicate the times, t1 and
t2, at which spatial profiles are compared in C. (E) Pairwise cross-correlation coefficients of
cluster firing rate time courses for all cluster combinations versus inter-cluster separation for
varying circuit sizes (50 to 1,000 minicolumns). Pairwise correlation decays exponentially with
distance (blue dashed line shows exponential fit to 1,000 minicolumn circuit dataset, space
constant λ = 202 mm). (F) Mean pairwise cluster correlation coefficients versus circuit size
for each circuit’s centermost five clusters (red circles) and for all clusters (blue circles). Error
bars indicate SD. Dashed curves indicate exponential fits to respective data. Figure 20 and
corresponding caption from Markram et al. (2015), reprinted courtesy of Cell Press.
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the microcircuit model was built from sparse data and makes many predictions that require

experimental validation, including the cellular composition of the microcircuit, the lengths

of dendrites and local axons, the total number of synapses, the number of connections and

connection types, quantal synaptic conductances, excitation-inhibition ratios, and many

more (see Markram et al. (2015) for a more complete overview). There are also many im-

portant neurobiological details missing, for example gap junctions, neuromodulation, glia,

and functional and structural plasticity. Some of these will be discussed in Chapter 2.3 and

Chapter 5. Nonetheless, the NMC-model integrates more detailed biological data than any

other cortical microcircuit model to date. In Chapter 2, we begin to untangle how these details

shape emergent network dynamics.
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2 Reliability amid noise and chaos

This chapter is a preprint of joint work with Michael W. Reimann, James G. King, Henry

Markram and Eilif B. Muller; it is currently under review. An earlier version is available as

“Cortical reliability amid noise and chaos” on bioRxiv (Nolte et al. (2018); https://doi.org/10.

1101/304121).

Contribution: I performed all simulations and analysis, and created all figures. J.K. developed

the ability to switch random seeds after resuming a simulation. I wrote the original draft, with

help by M.R.. All authors edited the draft manuscript. Further author contributions are listed

at the end of the chapter.

Summary

Typical responses of cortical neurons to identical sensory stimuli are highly variable. It has

thus been proposed that the cortex primarily uses a rate code. However, other studies have

argued for spike-time coding under certain conditions. The potential role of spike-time coding

is constrained by the intrinsic variability of cortical circuits, which remains largely unexplored.

Here, we quantified this intrinsic variability using a biophysical model of rat neocortical

microcircuitry with biologically realistic noise sources. We found that stochastic neurotrans-

mitter release is a critical component of this variability, which, amplified by recurrent network

dynamics, causes rapid chaotic divergence with a time constant on the order of 10-20 mil-

liseconds. Surprisingly, weak thalamocortical stimuli can transiently overcome the chaos,

and induce reliable spike times with millisecond precision. We show that this effect relies on

recurrent cortical connectivity, and is not a simple effect of feedforward thalamocortical input.

Our model shows that the noisy and chaotic network dynamics of recurrent cortical microcir-

cuitry are compatible with stimulus-evoked, millisecond spike-timing reliability, resolving a

long-standing debate.
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Chapter 2. Reliability amid noise and chaos

2.1 Introduction

The typical electrical activity of cortical neurons is highly variable, in the sense that membrane

potentials, spike times and interspike intervals vary during spontaneous activity as well as

across trials with identical sensory stimuli (Mohajerani et al., 2013; Shadlen and Newsome,

1998; Stern et al., 1997; Tolhurst et al., 1983). While part of this variability could be due

to intrinsic noise sources, a substantial part could also be due to hidden variables such

as unknown input from other parts of the brain, environmental parameters, or brain state

(Pachitariu et al., 2015; Renart and Machens, 2014). For instance, it has been shown in the

visual cortex that the act of running modulates responses of neurons to identical stimuli (Niell

and Stryker, 2010). Moreover, some neurons in sensory cortices can encode sensory input with

high spike-time precision (Hires et al., 2015; Kayser et al., 2010; Petersen et al., 2001). Taken

together, it is compelling to assume that intrinsic noise plays a negligible role, and that cortical

variability is essentially deterministic (Masquelier, 2013), encoding hidden or unobserved

variables. This view is also supported by the fact that neocortical neurons respond to somatic

current injections in vitro with high reliability (Mainen and Sejnowski, 1995). However, there

are two important reasons to believe that a large part of cortical variability is due to internally

generated noise that carries no signal.

First, all cortical neurons are subject to well-established cellular noise sources, such as stochas-

tic synaptic transmission and ion-channel noise (Faisal et al., 2008). These noise sources

ultimately originate from proteins susceptible to thermodynamic fluctuations, and are there-

fore indeed truly intrinsic sources of noise (Faisal et al., 2008; Renart and Machens, 2014).

In particular, synaptic transmission is based on a sequence of stochastic molecular events,

where the low numbers of molecules involved do not allow stochastic properties to average

out (Ribrault et al., 2011). In fact, in tightly controlled slice conditions in vitro, the probabil-

ity of vesicle release upon action potential arrival at a single cortical synapse is low (~50%

between thick tufted layer 5 pyramidal neurons (Markram et al., 1997a)), and estimated to

be substantially lower in vivo (Borst, 2010) (~10% between same neurons (Markram et al.,

2015)). The universal presence of synaptic noise suggests that cortical neurons respond far

less reliably to presynaptic inputs than to current injections. It has been shown, moreover,

that a simplified cortical network model with stochastic synapses can provide a sufficient

explanation for variable spiking (Moreno-Bote, 2014). Furthermore, in vitro, some types of

inhibitory neurons exhibit stochastic firing types. That is, they respond highly irregularly to

constant somatic current injections (Petilla Interneuron Nomenclature Group et al., 2008).

This is due to ion-channel noise that is amplified during action potential initiation (Mendonça

et al., 2016). Even activity in regular firing excitatory neurons can be subject to ion-channel

noise, for example during action potential propagation in thin axons (Faisal and Laughlin,

2007).

Second, models suggest (Vreeswijk and Sompolinsky, 1998; van Vreeswijk and Sompolinsky,

1996) and experiments show (London et al., 2010) that cortical networks have chaotic dynam-

ics. This implies, by definition, that small perturbations, such as those due to intrinsic cellular
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noise, are amplified. Thus, extra or missing spikes in the network, for example due to failed

synaptic transmission, could fundamentally alter the trajectories of spiking activity in the

network, leading in turn to large steady-state fluctuations.

In spite of their potential importance, the separate and combined impacts of network dynam-

ics and cellular noise sources on cortical neuronal variability remain largely unexplored. There

are several reasons why understanding what proportion of cortical neuronal variability is

generated internally—and how this variability arises—is crucial for understanding the neural

code.

First, strong internally generated variability due to chaotic network dynamics could prevent

coding based on spike timing past the sensory periphery, and favor theories of firing rate

coding (London et al., 2010). To test the feasibility of models of cortical coding that rely on

spike timing (Gütig and Sompolinsky, 2006; Luczak et al., 2015; Thorpe et al., 2001), we need

to understand internal variability and how it arises.

Second, variability could carry information and encode signals itself, for example perceptual

uncertainty (Orbán et al., 2016). It is thus essential to understand how to separate intrinsically

generated variability that is bona fide noise from variability that encodes an additional signal

or brain state.

Third, and more generally, optimal coding strategies for neural circuits depend on where noise

enters the circuit (Brinkman et al., 2016). That is, to understand the neural code, we need to

understand the mechanisms responsible for internally generated variability. Currently, it is

impossible to measure all external inputs to a local population of cortical neurons in vivo. As a

result, we are still unable to quantify how much of the experimentally observed variability is

generated internally by the local circuitry, and how much is generated externally.

In this study, we addressed these questions with a recently developed simulation-based

approach, namely a biologically constrained model of a prototypical neocortical microcircuit

in rat somatosensory cortex (the NMC-model; see Markram et al. (2015)). The NMC-model

incorporates several prominent sources of noise, including stochastic synaptic transmission

and ion channel noise, and reproduces a range of in vivo experiments with a unified parameter

set. Each of the noise sources is constrained to replicate experimentally observed variability.

This bottom-up modeling approach provides control over all noise sources, as well as external

inputs and internal states.

Through a series of simulation experiments, in which we selectively enabled noise sources

and recurrent network dynamics, we characterized intrinsic cortical variability and how it

arises. When cellular noise sources were disabled, we found that the underlying deterministic

network dynamics were chaotic, whereas when noise sources were enabled, an interplay

of stochastic synaptic transmission and network dynamics determined the rate by which

membrane potentials diverged. Surprisingly, the recurrent cortical circuitry can transiently

overcome these chaotic network dynamics in response to weak thalamocortical inputs and
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Chapter 2. Reliability amid noise and chaos

produce reliable spike timing. Thus, our model predicts that the recurrent cortical architecture

can transform relatively weak inputs into reliable patterns of activity amid high cellular noise

and chaotic network dynamics.

2.2 Results

2.2.1 Rapid divergence of spontaneous activity

Using the NMC-model of rat somatosensory cortex (31’346 neurons, ~8 million connections,

and ~36 million synapses; see Figure 2.1a), we simulated in vivo-like spontaneous neuronal

activity. The NMC-model contains three types of biological noise sources, all of which are

required to replicate neuronal responses to paired recordings and current injections in vitro

(Figure 2.1b). Each of the 36 million synapses in the model incorporates stochastic models of

vesicle release with biologically constrained variability, which display both failure of vesicle

release (a) and spontaneous release (b). The neuron types which exhibit irregular firing behav-

ior (1’137 neurons) also contain models of stochastic potassium channels (c), which induce

irregular firing in response to constant current injections in vitro. A fourth, tunable noise

source consisted of a noisy current (d) injected at the soma of each of the 31’346 neurons in

the model, used to account for other putative sources of depolarization in vivo (see Methods,

Markram et al. (2015)) (Figure 2.1b). In our initial experiments, we maintained the magnitude

of this generic noise far below the magnitude of the experimentally-constrained noise sources,

using it later for sensitivity analysis.

Independent trials of the network activity were simulated up to a time t0, at which point we

saved the full dynamical state of the simulation (base state). We then resumed the simulation

two times from the base state, i.e. we used identical initial conditions and histories in each

case, but with different sequences of random numbers. This allowed us to obtain two equally

valid probabilistic network trajectories for t > t0 for each base state. We observed that somatic

membrane potentials (Vm) for individual neurons, and the mean potentials for the population

both diverged rapidly between the two simulations (Figure 2.1c).

To quantify the time course of the divergence for each neuron n, we calculated the root-mean-

square deviation of its somatic membrane potential between two trials in time bins of size ∆t

starting from:

RMSDV (n,k; t ) =
√

1

∆t

∫ t+∆t/2

t−∆t/2
[Vm,1(n,k; t ′)−Vm,2(n,k; t ′)]2d t ′, (2.1)

where Vm,1(n,k; t ) and Vm,2(n,k; t ) denote the time series of somatic membrane potentials of

neuron n in the two respective trials resuming from the same base state k. We consequently

defined the mean root-mean-square deviation of the microcircuit RMSDV (t) as the mean
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2.2. Results

Figure 2.1 – Rapid divergence of spontaneous activity. (a) Morphologically-detailed model
of a neocortical microcircuit (NMC); depicted are 100 randomly selected neurons, out of 31’346
in total (~0.3%). Neurons are colored according to their layer. (b) Examples of simulated noise
sources in the NMC-model: stochastic synaptic transmission, including (a) vesicle release
failure and (b) spontaneous vesicle release (‘miniature PSPs’) at all 36 million synapses; (c)
probabilistic opening and closing of voltage-gated potassium channels in irregularly spiking
inhibitory neurons (1’137 out of 31’346 neurons); (d) a constant depolarizing current with
a weak white noise component (σ2

s ¿ µs) injected into the somata of all neurons. (c) The
membrane potential of four sample neurons (and population mean of all 31’346 neurons)
during a network simulation of in vivo-like spontaneous activity. At t0, the state of the micro-
circuit is saved, and then resumed twice with identical initial conditions, but with different
random seeds for all noise sources. (d) Root-mean square deviation (RMSDV (t)) and cor-
relation (rV (t)) of the somatic membrane potentials between pairs of resumed simulations
diverging from identical initial conditions (mean of all neurons and 40 saved base states
±95% confidence interval). The dashed lines depict the steady-state RMSDV (t) and rV (t)
between independent simulations (i.e. resumed from different base states). (e) The similarity
of the system (sRMSD and sr ) defined as the difference between the diverging and steady-state
RMSDV and rV , normalized to lie between 1 (identical) and 0 (fully diverged) (mean ±95%
confidence interval). Exponential fit of sRMSD and sr for t − t0 < 40 ms (estimated time con-
stant ±68% confidence interval of fit). (f1) Mean spike count and variance of spike count of 40
independent trials of 1000 ms duration for all neurons in the microcircuit, plotted separately
for excitatory neurons (red) and inhibitory neurons (blue). The dashed lines indicate the
expected values for a Poisson process. Black lines indicate minimum variance due to the fact
that the spike count has to be an integer. (f2) Distribution of Fano factors (variance divided by
mean spike count) corresponding to f1.
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of RMSDV (n,k; t) over all base states (K = 40) and neurons (N = 31′346). We observed

that RMSDV (t ) diverged rapidly from zero and eventually converged towards a steady-state

value RMSD∞ , equal to the RMSDV of independent trials that did not share the same base

state (Figure 2.1d, solid black and solid grey lines). The divergence was fast, with RMSDV (t )

reaching more than 50% of its steady-state value within 20 ms.

While the RMSDV (t ) of the circuit allowed us to accurately track the overall divergence of the

whole circuit, RMSDV (n,k; t) for individual neurons and trials were too noisy for in-depth

analysis (Supplementary Figure 2.9a1,b1). We note that while RMSDV (t ) quantifies the abso-

lute distance between membrane potentials, potentials can still be correlated independent

of this distance. To this end, we analogously computed the linear correlation of somatic

membrane potentials between two trials in time bins of size ∆t , starting from t0 (averaging

over t ′ in each time bin of size ∆t ):

rV (n,k; t ) = cov
(
Vm,1(n,k; t ′),Vm,2(n,k; t ′)

)
σ

(
Vm,1(n,k; t ′)

) ·σ(
Vm,2(n,k; t ′)

) , t − ∆t

2
< t ′ ≤ t + ∆t

2
(2.2)

We found that the mean correlation rV (t ) diverged faster than the absolute distance as mea-

sured by RMSDV (t) (Figure 2.1d, dashed blue line), again with a broad distribution across

individual neurons (Supplementary Figure 2.9a2,b2).

To better evaluate the difference between rV (t) and RMSDV (t), we defined the similarity

sRMSD (t) of the microcircuit activity as the normalized difference between diverging and

steady-state RMSDV (t) (and similarly sr (t) for rV (t)). When similarity sRMSD (t) = 0, mem-

brane potential traces are identical; when sRMSD (t) = 1 membrane potentials have reached

their steady-state distance RMSD∞. Similarly, when sr (t) = 1, membrane potentials have

a perfect linear relationship; when sr (t) = 0, they reached their steady-state correlation r∞.

Comparing sr (t ) and sRMSD (t ), we observed that rV (t ) diverged approximately twice as fast

as RMSDV (t ) (Figure 2.1e1 vs. Figure 2.1e2). More precisely, an exponential fit to the first 40

milliseconds revealed divergence time constants of τRMSD = 22.7±0.5 ms and τr = 11.5±0.2

ms (68% confidence interval of fit). These were conserved for different bins sizes ∆t in the

range of 1 ms to 50 ms (Supplementary Figure 2.10b1,2). We observe, however, that a sim-

ple exponential decay does not provide an adequate description of the whole time-course

of the similarity, as the time constant changes continuously, especially in the first several

milliseconds (Supplementary Figure 2.10a). While the initial divergence is rapid, a small but

statistically significant difference (p < 0.025) between diverging and independent activity

persists for around 400 ms for RMSDV (Supplementary Figure 2.9c1) and around 200 ms for

rV (Supplementary Figure 2.9c2).

The observed rapid time-scale of divergence demonstrates that spontaneous activity in the

NMC-model is inherently probabilistic, with a high internally generated variability. However,

this does not automatically imply high spike-count variability. This variability is commonly
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assessed using the Fano factor, which is 1 for a Poisson process (Moreno-Bote, 2014). Indeed,

for most neurons we found that the variance of spike counts across independent trials was

far lower than for a Poisson process, especially for larger firing rates (Figure 2.1f and Supple-

mentary Figure 2.11). Thus, our model predicts that Poisson-like variability does not arise

spontaneously in the microcircuit.

2.2.2 Variability is robust across dynamical states

In addition to the microscopic divergence of individual somatic membrane voltages, macro-

scopic fluctuations in population spiking activity (Figure 2.2a1) and population firing rate

(Supplementary Figure 2.12a) also diverged rapidly for t > t0. These global fluctuations in-

dicate substantial shared variability between individual neurons. However, the nature of

these global fluctuations depends on the balance between excitatory and inhibitory activity

(EI-balance) in the network (Brunel, 2000).

In the NMC-model, the EI-balance is determined by the integrated anatomical and physiolog-

ical data, and can be modulated by changes in extracellular calcium concentration ([C a2+]o)

through its effect on synaptic vesicle release probabilities (Borst, 2010; Markram et al., 2015).

Excitatory synapses are more strongly affected by [C a2+]o changes than inhibitory synapses,

whereby an increase in the concentration of [C a2+]o shifts the EI-balance of the network in

favor of excitation. It was previously shown that such changes in [C a2+]o induce a sharp tran-

sition in network activity, from asynchronous to regenerative synchronous activity (Markram

et al., 2015). This transition occurs around a critical point just above [C a2+]o = 1.25mM , with

activity below this point being subcritical (Figure 2.2a1) and activity above this point being

supercritical (Figure 2.2a2).

In the in vivo-like state analyzed here ([C a2+]o = 1.25mM), the microcircuit is in a just subcrit-

ical (Priesemann et al., 2014) state of asynchronous spontaneous activity, where it reproduces

spontaneous and evoked network dynamics previously observed in vivo (Markram et al., 2015)

While this asynchronous state might be important for efficient coding (Beggs and Plenz, 2003;

Denève and Machens, 2016), the exact EI-balance in vivo is difficult to determine, and is

likely to reconfigure dynamically as a function of the state of arousal and attentiveness of the

animal (Constantinople and Bruno, 2011). We therefore investigated the relationship between

the time course of divergence and different dynamical regimes. We observed that the rapid

divergence of electrical activity was approximately conserved across these different dynamical

states (Figure 2.2a3). While steady-state electrical activity was slightly more de-correlated in

the in vivo-like state, the time course of divergence was remarkably similar. We also found

that the synchronous state still displayed high shared variability, with unpredictable timing

of population bursts (Figure 2.2a2, t > t0). In our model, therefore, intrinsic variability, as

quantified by the time course of divergence, is conserved across a spectrum of dynamical

states and does not depend on the exact EI-balance.
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Figure 2.2 – Robust rapid divergence across dynamical states and microcircuit scale. (a1)
Population raster plot and population peristimulus time histogram (PSTH) for all 31’346
neurons in the microcircuit, during in vivo-like spontaneous activity. Neurons are ordered
according to cortical depth, with deep layers at the bottom and upper layers at the top. Each
row represents the spikes of one neuron. For visibility, raster lines extend over dozens of
rows for each neuron. For t < t0, the top and bottom raster plots show the same simulation,
whereas for t > t0, the raster plots depict two simulations resuming from identical initial
conditions at t0, but using different random number seeds. (a2) Same as a, but for supercritical
activity. (a3) RMSDV and rV across dynamical regimes (20 saved base states, mean ± 95%
confidence interval; same as Figure 2.1d for in vivo-like regime ([C a2+]o = 1.25mM)). (b1) The
microcircuit (center, blue), surrounded by 6 other microcircuits (grey), forming a continuous
mesocircuit of ~220’000 neurons, with no boundary effects between the circuits. (b2) rV for
the center microcircuit when simulated without surrounding circuits (black), and of the center
microcircuit when simulated as a mesocircuit (orange) (microcircuit: 40 saved base states;
mesocircuit: 20 saved base states; mean ± 95% confidence interval). (b3) Quantifying edge
effects. Difference of rV between the same neurons in the microcircuit and the mesocircuit
at 10-20 ms, plotted according to distance from horizontal center (mean ± 95% confidence
interval). (c) Similarity sr for subsets of neurons grouped by in-degree (bin size: 50; mean ±
95% confidence interval).
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2.2.3 Variability is nearly saturated at the scale of the microcircuit

It is possible that the amount of internally generated variability depends not just on the dynam-

ical state of the model circuit but also on its size. We have previously shown that increasing

the size of the model beyond the size described above does not alter the observed dynamical

states (Markram et al., 2015). At this size, dendritic trees and thus the afferent connections

of neurons in the lateral center of the microcircuit are fully located within the microcircuit.

However, a large fraction of their recurrent connections with neurons in the surrounding

tissue are with neurons beyond the periphery of the microcircuit. Since these neurons were

not included in the simulations, large portions of synaptic input to peripheral neurons were

missing. To quantify the effect of this additional input on variability in the microcircuit, we

surrounded the original microcircuit with six additional microcircuits, simulating a much

larger mesocircuit, providing missing synaptic input to the neurons at the periphery of the

microcircuit (Figure 2.2b1, blue and grey). Connectivity in this mesocircuit was homogeneous,

both within and between the individual microcircuits.

When we compared the divergence of membrane potentials between micro- and mesocircuit

simulations, we found that membrane potentials diverged slightly faster in the mesocircuit,

although the time courses of divergence followed similar trends (Figure 2.2b2). The mean

difference in rV (t ) was always below 0.06, and the steady state difference below 0.03. Consid-

ering the difference at 10-20 ms (which we found to be a good predictor of the relative order

of differences at any time), we found this difference to increase towards the periphery of the

microcircuit (Figure 2.2b3). This suggests that additional direct synaptic input onto a neuron

increases variability, but has only a weak effect on indirectly connected neurons. Thus, at the

scale of the microcircuit, the amount of internally generated variability is nearly saturated,

albeit underestimated for neurons at the periphery.

2.2.4 Highly connected neurons diverge faster

Next, we explicitly quantified how the time course of divergence depends on the amount of

the synaptic input. To this end, we examined the relationship between the similarity sr (t)

of a given neuron and the number of connections it receives from within the microcircuit

(in-degree). Once more, we found that the time course of divergence was faster, the more

synaptic inputs a neuron received, as summarized by sr (t) at 10-20 ms (Figure 2.2c). Thus,

neurons which are more strongly coupled to the local population (Okun et al., 2015) diverge

more quickly. Additionally, we found that for highly connected neurons, divergence increased

with their ratio of excitatory vs. inhibitory inputs (Supplementary Figure 2.12b). Repetition

of the analysis using RMSDV (t) instead of rV (t) gave qualitatively similar results (data not

shown). We note that RMSDV (t) and rV (t) are generally highly correlated (Supplementary

Figure 2.13a, abcd). In what follows, we hence present the divergence in terms of rV (t ), except

when there is a qualitative difference.
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Figure 2.3 – Noise amplified by chaos determines internally generated variability. (a1)
Time course of correlation rV after resuming at t0 from identical conditions with different
forms of perturbation. Full cellular noise as before, solid line (abcd); no cellular noise, but
perturbing with a single extra spike in one neuron, dashed line (f ); a miniscule step pulse per-
turbation in all neurons, dotted line (e). (abcd: 40 saved base states; e, f : 20 saved base states;
mean ± 95% confidence interval) (a2) Steady-state root-mean square deviation RMSD∞ and
correlation r∞ for stochastic (abcd) and deterministic simulations (e, f ) as defined in a1 (mean
± 95% confidence interval in black; individual base states in purple dots). (b1) As in a2, but
for decoupled, replayed simulations. (20 saved base states) (b2) Similarity sRMSD and sr at
10-20 ms with all noise sources enabled, for network and decoupled simulations (mean ±
95% confidence interval). (c1) Decoupled replay paradigm. Presynaptic spike trains from
a network simulation are saved and then replayed to the synapses of each neuron in a de-
coupled simulation, thereby removing variability due to feedback network dynamics. (c2)
Overview of sources of noise and perturbations. (d) Decoupled replay simulations (see c1)
for a representative L4 PC neuron, with somatic membrane potential differences between
the two trials only due to cellular noise sources (ab[c]d), a single extra presynaptic spike (f )
or a miniscule step-pulse perturbation (e). [c] indicates that for some neuron types in the
NMC-model, such as L4 PCs, no stochastic ion-channels are present.
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2.2.5 Noise amplified by chaos determines internally generated variability

Thus far, we have demonstrated a high level of variability which is robust across dynamical

states and nearly saturated at the scale of the microcircuit. We have also shown that divergence

is faster for neurons that are more tightly coupled to the local population (Figure 2.2c). This

suggests that the variability of individual neuron activity is driven by the variability of local

population activity, or that additional synaptic input simply adds more synaptic noise, or that

the noise is determined by some combination of the two effects. In other words, while cellular

noise is the only original source of variability in the NMC-model, the question remains to what

degree this noise is amplified by recurrent network connectivity.

To address this question, and more generally, to study the interaction of noise sources and

recurrent network dynamics, we performed two complementary sets of simulation experi-

ments. In the first set, we sought insights into the role of network dynamics without noise

sources, probing the sensitivity of a completely deterministic version of the model to a weak,

momentary perturbation. In the second, we studied the opposite case of variability due to

stochastic noise sources without amplification by the network.

To implement the first set of simulations, we disabled stochasticity of cellular noise sources,

including synaptic transmission, by using a fixed sequence of random numbers, which made

the random outcome deterministic (or alternatively by completely replacing the stochastic

model with a deterministic one, see below). This enabled us to observe amplification of

perturbations through the network without the effect of continuously varying cellular noise

sources. As the sole source of perturbation, we injected a single extra spike into one of the

neurons in the microcircuit (see Methods). We observed that the network diverged rapidly

(Figure 2.3a1, dashed line), though more slowly than with noise sources enabled (Figure

2.3a1, solid line). In fact, even a miniscule current injection, which shifted the majority of

spike times by less than 0.05 ms (see Methods), eventually led to a divergence of membrane

potentials similar to the divergence observed in the full model with noise sources (Figure 2.3a1,

dotted line). The slightly higher steady-state correlation r∞ in the deterministic simulation

was due to identical spontaneous release of neurotransmitter, identical ion-channel opening

probabilities, and the small, but identical, noisy component of the depolarizing current

injection. However, the relative difference in RMSD∞ was much smaller than the difference

between the deterministic and the stochastic simulations (Figure 2.3a2, top vs. bottom). That

is, any perturbation to the system eventually led to a similarly large steady-state divergence.

We conclude that the underlying dynamics of the circuit are chaotic, in the sense that small

perturbations, such as one injected spike, lead to completely different activity trajectories.

It is important to note that when using a fixed random seed to make the stochastic version

of the Tsodyks-Markram synapse model deterministic (Markram et al., 2015; Tsodyks and

Markram, 1997), any extra or missing presynaptic spike can change the outcome for the

next spike by advancing the sequence of random numbers. To avoid this difficulty, we ran

equivalent simulations using the deterministic version of the Tsodyks-Markram synapse
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model (see Methods). In these simulations, extra spikes and small perturbations produced

qualitatively similar divergence time courses (Supplementary Figure 2.14a vs. 2.14b, dark

green and pink lines).

We had shown that the network amplifies extra spikes or even small perturbations of mem-

brane potentials. This leads to chaotic divergence of activity with similar steady-state vari-

ability, but different time courses. It remained to be seen whether this high level of variability

requires network amplification or whether it could be generated by the noise sources alone.

To address this question, we implemented a second set of simulations to study the case of

ongoing noise sources without network propagation. In these decoupled replay simulations, in

contrast to regular network simulations, synaptic mechanisms were activated by spikes at fixed

times, recorded in an earlier simulation experiment (Figure 2.3c1). In this way, the network was

no longer able to amplify neuronal variability and neuronal variability was entirely due either

to cellular noise sources or perturbations (Figure 2.3d). We found with all noise sources turned

on, somatic membrane potentials still diverged rapidly, as quantified by sr,10−20ms (Figure

2.3b2) (as mentioned above, we found sr at 10-20 ms to be a good predictor of the relative

order of sr at any time). However, steady-state r∞ was higher and RMSD∞ was lower than in

the network simulations (Figure 2.3b1 vs. Figure 2.3a2). When the decoupled replay paradigm

was used with the deterministic version of the model, single extra spikes and brief current

injections only evoked small, transient perturbations (Figure 2.3d2,3). It follows that the high

level of variability observed in network simulations was due to chaotic network dynamics

which amplified rapid perturbations of activity from cellular noise sources.

2.2.6 Synaptic noise dominates variability

To understand the contribution of individual noise sources in this interplay of noise and recur-

rent network dynamics, we designed a series of simulation experiments where we selectively

disabled specific subsets of noise sources. We observed that disabling all noise sources except

synaptic failure produced a time course for rV (t ) and steady-state divergence r∞ which was

very similar to observations with all noise sources combined (Figure 2.4a1, black and green

lines). On the other hand, disabling all but ion channel noise or all but the noisy current

injection led to much slower divergence (Figure 2.4a1, orange and purple lines). As before,

we quantified the speed of divergence by the similarity sr at 10-20 ms after t0 (sr,10−20,ms)

(Figure 2.4a3, cyan). Our results suggest that simulations with synaptic failure give rise to

rapid divergence, whereas steady-state r∞ and RMSD∞ depend on noise sources only weakly

(Figure 2.3a2). We conclude that in the NMC-model, the time course of divergence depends

on synaptic noise, a combination of synaptic failure and spontaneous release, and that other

noise sources add little to no additional variability.
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Figure 2.4 – Synaptic noise dominates variability. (a1) Time course of correlation after re-
suming at t0 from identical conditions with different noise sources enabled (abcd: 40 bases
states; a, ab, c, d: 20 base states; mean ± 95% confidence interval). (a2) Steady-state root-mean
square deviation RMSD∞ (cyan) and correlation r∞ (purple) with different noise sources
enabled. Dots indicate individual trials; black error bars indicate 95% confidence interval.
(a3) Similarity sRMSD at 10-20 ms with different noise sources enabled, for all neurons (cyan)
and irregular e-types (orange). (b) Steady-state root-mean square deviation for decoupled
simulations, RMSD∞,dec , for all neurons (cyan) and irregular e-types (orange) (20 saved base
states). Only irregular e-types in (c), 1,137 out of 31,346 neurons. (c) Decoupled replay sim-
ulations for a representative L6 NBC neuron, with somatic membrane potential differences
between the two trials only due to synaptic noise (ab), ion-channel noise (c) or a noisy current
injection (d). (d1) The effect of changing random seeds for the noisy depolarization only, for
different noise strengths in a decoupled simulation. x: white noise variance as percentage
of mean injected current (d2) The decoupled steady-state membrane potential fluctuations
RMSDd

∞,dec evoked by different magnitudes of white noise without network dynamics, versus
the similarity sRMSD at 10-20 ms during network simulations when either turning on only the
white noise depolarization (d) or all noise sources (abcd). Similarly, in purple, RMSDab

∞,dec for
synaptic noise versus the similarity at 10-20 ms when only turning on synaptic noise (ab). All
error bars and shaded areas indicate 95% confidence intervals. Means for d2 are based on ten
base states.
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2.2.7 Ion-channel noise in irregular firing neurons is overshadowed by synaptic
noise

Synaptic noise in the NMC-model is modeled at every single synapse, while ion-channel noise

is limited to irregular firing e-types (Markram et al., 2015; Petilla Interneuron Nomenclature

Group et al., 2008). Irregular e-types are defined by high intrinsic spike-time variability in

response to constant current injections in vitro, even in the absence of synaptic noise. In

the NMC-model, irregular spiking is modeled with a subset of stochastic ion-channels, in

accordance with in vitro findings on the source of the irregular spiking patterns observed in

cortical interneurons (Mendonça et al., 2016). In contrast, regular firing e-types do not require

noisy ion-channels to replicate in vitro spiking behavior. To better understand the interplay

of ion-channel noise and synaptic noise, we focused our next analysis solely on irregular

firing e-types. We observed that irregular firing e-types diverged significantly faster than the

whole population (Figure 2.4a3, orange vs. cyan). However, synaptic noise still dominated

over ion-channel noise. Enabling ion-channel noise in addition to synaptic noise led to only

marginal gains in divergence rate; when ion-channel noise was enabled on its own, divergence

was significantly slower (Figure 2.4a3, orange, ab vs. abcd and c). This suggests that in in vivo

conditions, noise from stochastic ion-channels is overshadowed by synaptic noise.

2.2.8 Synaptic noise acts as a threshold for other noise sources

Several smaller noise sources are not included in our model (see Discussion). To understand

how additional noise sources of various magnitudes could influence divergence, we quantified

the somatic voltage fluctuations due to the previously used combinations of cellular noise

using the decoupled replay paradigm, i.e. with network propagation removed (RMSD∞,dec )

(Figure 2.4b; see Figure 2.4c1-3 for representative examples). We found that the rate of diver-

gence in a network simulation, sRMSD,10−20ms , is inversely proportional to RMSD∞,dec (Figure

2.4a3; see also Supplementary Figure 2.15 for an extensive comparison of noise sources across

simulation paradigms). In the NMC-model, synaptic noise leads to the largest RMSD∞,dec

and determines the rate of divergence. How strong would any other noise source have to be to

increase network variability beyond the level due to synaptic noise? To answer this question,

we studied how the magnitude of a generic white noise depolarizing current affects the time

course of divergence. Previously, the variance σ2
s had been set to 0.001% of the firing threshold

for each neuron—a level far lower than other sources of noise. When we increased the vari-

ance to values from 0.01% up to 10%, and disabled all other noise sources, we observed that

increasing variance led to more rapidly diverging network dynamics (Supplementary Figure

2.16a). However, when other noise sources were also enabled, the noisy current injection only

affected network dynamics beyond a certain threshold (Supplementary Figure 2.16b).

To characterize this threshold, we determined the magnitude of white noise required to cause

a noticeable change in the network divergence rate. To this end, we used a decoupled re-

play paradigm with only noisy current injection (as above), for various levels of σ2
s (Figure
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2.4d1). As above, we quantified the somatic voltage fluctuations due to this noise source,

denoted by RMSDdx

∞,dec (dx: only white noise, with magnitude x). In the corresponding net-

work simulations, the rate of divergence was strongly dependent on RMSDdx

∞,dec , with larger

values leading to faster divergence (Figure 2.4d2, dashed line). In contrast, when all noise

sources were enabled (Figure 2.4d2, solid line), there was only a meaningful influence of the

noise injection when it was beyond a threshold in the range 0.1%–0.5%. At this threshold,

RMSDd
∞,dec was just above 1 mV, approximately half of the value for synaptic noise sources

(RMSDab
∞,dec , Figure 2.4d2, vertical purple line “ab”). When σ2

s is increased even more, the

curves for sr,10−20ms with noisy current alone and with all noise sources eventually converge.

Thus, when RMSDd
∞,dec was larger than RMSDab

∞,dec the noisy current injection dominated

other noise sources. This suggests that the strongest source of cellular noise dominates over

other sources, unless they are of a comparable magnitude. Taken together, under biological

conditions, we predict that synaptic noise is the most important cellular noise source, deter-

mining the variability of neuronal responses to presynaptic inputs in vivo. This prediction

is consistent with previous findings that cortical neurons respond highly reliably to current

injections in vitro, where synaptic noise plays no role (Mainen and Sejnowski, 1995).

2.2.9 Rapid divergence of evoked, reliable activity

In the NMC-model, thalamic inputs can evoke responses with varying degrees of reliability

(Markram et al., 2015; Reimann et al., 2017b). What then are the roles of synaptic noise

and chaotic network dynamics during these evoked responses? To answer this question, we

simulated electrical activity in response to a naturalistic thalamocortical stimulus (Figure

2.5a1), consisting of spike trains recorded in the ventral posteromedial nucleus (VPM) during

replayed whisker deflection in vivo (Bale et al., 2015). These spike trains were then applied to

different feedforward VPM fibers in the model to achieve a biologically-inspired, time-varying

synchronicity among inputs (Figure 2.5a3; see Methods; see Reimann et al. (2017b)). To avoid

introducing external variability on top of the intrinsically generated microcircuit variability,

presynaptic inputs were kept identical across trials, but with thalamocortical synapses subject

to the same synaptic noise as cortical synapses. The thalamocortical presynaptic inputs were

not subject to recurrent network dynamics. Since this condition excludes variability in the

system up to and including the thalamus, it can be considered an intermediate stage between

the decoupled replay and regular network simulations. The simulations allowed us to identify

an upper bound on the reliability of thalamocortical responses. Mean rV (t) during evoked

activity was stronger than during spontaneous activity, moving between ~0.1 and ~0.4 (Figure

2.5a2), indicating that external input increases neuronal reliability.

To characterize the nature of chaotic network dynamics during this evoked, reliable activity,

we again resumed from identical initial conditions, with t0 at various times relative to the

stimulus onset at t = 0 ms (Figure 2.5b, for t0 = 100 ms). The population spiking activity

across pairs of trials after resuming appeared almost identical, even for time intervals much

larger than the divergence time characterized above (Figure 2.5b). At first glance, it would
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Figure 2.5 – Rapid divergence of evoked, reliable activity. (a1) Population raster plot and
population peristimulus time histogram (PSTH) for all 31’346 neurons in the microcircuit,
during evoked activity with a thalamic (VPM) stimulus. Neurons are ordered according to
cortical depth, with deep layers at the bottom and upper layers at the top, and each row
representing the spikes of one neuron. For visibility, raster lines extend over dozens of rows for
each neuron. (a2) Mean somatic membrane potential correlation rV between independent
simulations of the same VPM stimulus (mean ± 95% confidence interval). (a3) Schematic of
the VPM stimulus. Top: Raster plot spike times for the first 250 ms of the thalamic stimulus.
Bottom: 310 VPM fiber centers are assigned 30 colors, and those with identical colors are
provided with duplicate spike trains. The synapse density profile across layers for each fiber is
shown to the right. (b) For t < 100, the top and bottom raster plots show the same simulation,
whereas for t > 100, the raster plots depict two resumed simulations starting from the same
saved state at t0 = 100, using different random number seeds. (c1) Resuming from identical
initial conditions at different times: during (top), at onset (middle), or before the stimulus
(bottom). Mean rV between independent simulations (blue, as in a2), and mean rV between
simulations starting from the same base state (red; mean ± 95% confidence interval). (c2) The
similarity, sr , defined as the difference between the rV of diverging and independent trials,
normalized to lie between 1 (identical) and 0 (fully diverged) (mean ± 95% confidence interval).
Means are based on 20 base states.
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appear that the input had fully overcome the chaotic divergence. However, quantification

of variability by time course of divergence of membrane potentials, rV (t), showed that it

dropped rapidly towards the independent trial average (Figure 2.5c1, top). When we resumed

from identical initial conditions at different times, for example at the onset of evoked activity

(Figure 2.5c1, middle) or before onset (Figure 2.5c1, bottom), rV (t ) dropped in the same way,

subsequently converging to the average for independent trials. Indeed, sr (t ), the normalized

difference between the resumed and independent rV (t), showed a pattern of divergence

remarkably similar to the divergence observed in simulations of spontaneous activity (Figure

2.5c2). Resuming from a base state at the peak of evoked activity, sRMSD (t ) drops even faster

(Supplementary Figure 2.17a). A simpler stimulus, designed to imitate a whisker flick-type

experiment (Markram et al., 2015), yielded comparable results (Supplementary Figure 2.17b,c).

Hence, any neuronal activity, whether spontaneous and unpredictable, or evoked and reliable,

is ultimately subject to similar chaotic network dynamics.

2.2.10 Evoked reliable activity amid noise and chaos

At first glance, our observations of evoked reliable activity and chaotic divergence of membrane

potentials seem to be contradictory. To better understand how the reliable responses can

emerge, we quantified the respective contribution of network propagation and cellular noise

sources to variability. As before, we compared network simulations with decoupled replay

simulations (Figure 2.6a3). Unsurprisingly, rV (t ) was much larger in the decoupled simulations

(Figure 2.6a1, black) than in the network simulations (Figure 2.6a1, red; same as Figure 2.5a2).

However, the difference between the two was always smaller during evoked activity (Figure

2.6a2, after 0 ms) than during spontaneous activity (Figure 2.6a2, before 0 ms). This suggests

that network dynamics play a reduced role in generating variability during evoked activity.

Indeed, when we focused on individual neurons (Figure 2.6b), we saw that that the difference

between network and decoupled rV (t ) collapsed to zero at times (Figure 2.6c). This is in stark

contrast to spontaneous activity, where there is always a large difference between network

and decoupled rV (t ) (Supplementary Figure 2.18a,c1). Hence, it appears that, in response to

a stimulus, membrane potential variability due to network dynamics can intermittently be

completely overcome, with remaining variability being solely due to cellular noise—at least

for a sub-population of neurons in the network.

2.2.11 Spike-timing reliability

So how does the decreased membrane potential variability relate to spike-timing reliability?

Spike-timing is determined by a non-linear transformation of the somatic membrane potential.

First, we observed that during spontaneous activity, the increase in membrane potential

reliability in a decoupled replay does not directly translate into an increase in spike-timing

reliability (Supplementary Figure 2.18b,c2). In fact, we found a small negative correlation

(Supplementary Figure 2.18b,c3). However, during evoked activity, we observed from our
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Figure 2.6 – Spike-timing reliability amid noise and chaos. (a1) Mean somatic membrane
potential correlation, rV , between independent simulations, and between decoupled replays
of those simulations (network simulation identical to Figure 7A2). (a2) Difference in rV

for decoupled and network simulations. (a3) Schematic of network and decoupled replay
simulation paradigms, including thalamic input. (b) Somatic membrane potentials (Vm) of
three representative neurons for the time interval highlighted by the red box in a. Top: during
six independent trials. Bottom: five decoupled replay trials (green) with the same presynaptic
input as during the original network simulation trial (red), but with different random seeds. (c)
Network and decoupled rV as in a, but only for the three sample neurons in b. (d) Top: Raster
plot of spike times of the same three example neurons as in b, during 30 independent trials of
evoked activity. Bottom: Decoupled replay trials (green) of the same input received during 5
of the 30 original trials (dark red). (e1) Mean spike-timing reliability rspi ke of 2024 pyramidal
neurons from layers 4, 5, and 6 between independent network simulations, and between
decoupled replay simulations with identical presynaptic inputs. (e2) Difference between
rspi ke of decoupled and replayed simulations. (e3) Difference between rspi ke of decoupled
and replayed simulations versus position of somata across layers 4,5 and 6 of microcircuit
(1675 neurons).
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example neurons that there are periods of reliable spiking where network variability can go to

zero (Figure 2.6c vs. Figure 2.6d, top).

So far, we have analyzed the variability of spiking activity of neurons in terms of the Fano factor

of their spike count (Figure 2.1, see above). This measure quantifies average variability over

relatively long time-windows and therefore cannot quantify the transient periods of reliability

we observed. Therefore, we used a correlation-based measure, rspi ke (Schreiber et al., 2003),

to compare simulations with and without network dynamics for a population of neurons

during evoked activity (Figure 2.6d,e1). Contrary to the Fano factor, this measure is affected

by the precise timing of spikes in smaller time windows. We observed that removing network

dynamics only moderately increased spike-timing reliability (Figure 2.6e1, red vs solid black

line). In fact, increases in reliability were small for all neurons (Figure 2.6e2, solid black line).

In stark contrast to the spontaneous case (Supplementary Figure 2.18c2), a small population of

neurons in the evoked network simulations achieved close to perfect spike-timing reliabilities

(Figure 2.6e1). As expected, most of the noise effects could be explained by synaptic noise

alone (Figure 2.6e1,2, dotted black line).

We conclude that during spontaneous activity, the reliability of spike generation across time-

scales is directly, and severely constrained by synaptic noise, even without amplification

through network dynamics. However, external stimuli can sparsely and transiently overcome

chaotic network dynamics for sub-populations of neurons, with a residual variability—caused

by synaptic noise—that is much smaller than during spontaneous activity.

2.2.12 High reliability requires recurrent cortical connectivity

It is conceivable that the spike-timing reliability we observed could simply be a result of direct

and feedforward thalamic input (Wang et al., 2010). Indeed, when we look at changes in

reliability without network dynamics, the strongest increase in reliability is in neurons at the

bottom of layer six that receive comparatively little direct VPM input (Figure 2.6e3). On the

other hand, the VPM input was weak compared to the recurrent connectivity, making up only

7% of the connections onto neurons in layer 4, 4% for layer 5, and less than 3% for layer 6.

To test whether the intermittent suppression of chaotic dynamics is simply an effect of the

feedforward input, we compared simulations of single cells with network simulations. To

this end, we designed a new simulation paradigm similar to our previous decoupled replay,

where each neuron received a combination of replayed presynaptic inputs from a simulation

of spontaneous activity and from the direct feedforward VPM input it received in the evoked

network simulations (Figure 2.7a1). That is, each neuron receives input as in a spontaneous

activity trial through its recurrent synaptic contacts, and input as in an evoked trial through its

feedforward synaptic contacts.

In this mixed replay paradigm, the population response was much weaker (Figure 2.7a2). While

in simulations of evoked activity, all neurons showed higher reliability than in simulations of

spontaneous activity (Figure 2.7b1), in the mixed replay, the only cells that showed increased
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Figure 2.7 – High reliability requires recurrent cortical connectivity. (a1) Overview of three
simulation paradigms: spontaneous activity, network evoked activity (with network propaga-
tion intact and VPM input), and mixed replay (with network propagation replaced by replays
of spontaneous activity spike trains, and VPM input) (a2) Examples of population spiking
activity during the three simulation paradigms. (b1) Spike-timing reliability, rspi ke , during
spontaneous (blue) and evoked (purple) activity for 1675 excitatory neurons in the center of
layers 4, 5 and 6. (b2) Spike-timing reliability, rspi ke , during a mixed replay with VPM input
but with network propagation disabled for the same neurons as in b1. (c) Difference in rspi ke

between evoked activity with and without network propagation for 1892 excitatory neurons
in the center of layers 4, 5 and 6 (same for d1-3). (d1) The number of presynaptic VPM fibers
from which each neuron receives input versus rspi ke in evoked simulations with (network) and
without (mixed replay) network propagation. All reliabilities per neuron (points) are based
on 30 trials. Mean of neurons per bin indicated by line; shaded area depicts standard error of
mean of neurons in bin. Bins: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30+ VPM fibers.
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reliability were those close to the VPM synapses (Figure 2.7b2). Furthermore, the only neurons

to display similar reliability, with and without recurrent network propagation, were a small

group in layer 4 (Figure 2.7c). Taken together, these findings suggest that feedforward VPM

input alone is not enough to make the majority of neurons spike reliably.

To test this hypothesis, we compared the reliability between the two simulation paradigms to

the number of presynaptic VPM fibers innervating each neuron (Figure 2.7d1-3). We can see

that neurons in layer 4 that receive little direct VPM input responded more reliably with the

network enabled than neurons that receive a lot of VPM input in the mixed replay case (Figure

2.7d1). Neurons in layers 5 and 6 were more reliable in mixed replays when they had more

presynaptic VPM connections. However, this reliability increases drastically when network

dynamics are enabled (Figure 2.7d2,3). We conclude that the reliable spiking observed in

response to VPM inputs is propagated and amplified by recurrent cortical connectivity. This is

true both for neurons that receive large direct VPM input, and for neurons that receive little or

no such input. In brief, in spontaneous activity, recurrent connectivity amplifies variability; in

the evoked state, it amplifies reliability.

2.2.13 High reliability emerges near a critical EI-balance

What mechanisms allow the recurrent cortical circuitry to respond so reliably? We have

shown above that dynamics in the NMC-model depend on the balance between excitatory

and inhibitory activity (EI-balance). This balance can be altered by the extracellular calcium

concentration ([C a2+]o), which differentially modulates the effective strength of excitatory

and inhibitory synapses (see Markram et al. (2015) for full details). At [C a2+]o ≈ 1.25mM , the

circuit exhibits in vivo-like dynamics (Figure 2.8a2; Figure 2.2a1). For lower [C a2+]o , activity

becomes more and more asynchronous (Figure 2.8a1), for higher [C a2+]o , activity reaches a

critical point and abruptly transitions to synchronous, regenerative (supercritical) behavior

(Figure 2.8a3; Figure 2.2a2).

To understand how this affects spike-timing reliability, we repeated 30 trials of the thalamic

stimulus at eight different levels of [C a2+]o (Figure 2.8a and Figure 2.8b). As we go from

asynchronous to synchronous dynamics, the response properties visibly change (Figure 2.8a)

and spiking becomes more reliable (Figure 2.8c). As we approach the in vivo-like state at

[C a2+]o = 1.25mM , reliability increases sharply (Figure 2.8c), whereas the overall EI-balance

increases gradually (Figure 2.8d). As we transition to supercritical regenerative, synchronous

behavior the reliability begins to plateau. At the same time the population response becomes

erratic, with all-or-nothing network bursts (Figure 2.8b, Supplementary Figure 2.19).We previ-

ously showed that stimulus discriminatory power breaks down in this supercritical regime, as

it does far into the asynchronous regime (Markram et al., 2015).

We conclude that spike-timing reliability in the microcircuit is adaptive: any neuromodulator

that differentially targets inhibitory and excitatory synapses could adapt the response in the

microcircuit according to computational tasks by fine-tuning the global EI-balance.
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Figure 2.8 – High reliability emerges near a critical EI-balance. (a1-3) Raster plot of spike
times of the same three example neurons as in Figure 2.6d, during 30 independent trials of
evoked activity, for three different extracellular calcium concentrations ([C a2+]o = 1.15, 1.25,
1.35 mM). (b) Population firing rates for all 30 trials for eight different extracellular calcium
concentrations. Loss of stimulus discriminatory power away from [C a2+]o = 1.25 mM as
observed by Markram et al. (2015). (c) Mean reliability of 2024 pyramidal neurons from layers
4, 5 and 6 during the evoked response vs. extracellular calcium concentration (mean of 30
trials ± 95% confidence interval). (d) Total population firing rates for excitatory and inhibitory
subpopulations in the whole microcircuit during the evoked response.
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2.3 Discussion

In the present study, we used a biologically constrained model of a prototypical neocortical

microcircuit (Markram et al., 2015) to estimate the intrinsic variability of local neocortical

activity (Figures 2.1-2.4) and explore the implications for reliable stimulus encoding (Figures

2.5-2.8). We found that cortical circuitry supports millisecond-precision spike-timing relia-

bility amid highly variable, chaotic network activity. This resolves a long-standing question:

Is the cortex too noisy for the precise timing of a spike to matter (Hires et al., 2015; London

et al., 2010; Mainen and Sejnowski, 1995; van Vreeswijk and Sompolinsky, 1996)? Put simply, if

spiking is unreliable, information must be coded by firing rates estimated in populations of

neurons (London et al., 2010; van Vreeswijk and Sompolinsky, 1996), whereas if it is reliable,

precise spike timing of single neurons could contain significant information (Hires et al., 2015;

Mainen and Sejnowski, 1995). Here, we demonstrated that cortical circuitry naturally supports

both regimes.

This debate has persisted for decades, because the experimental manipulations required to

untangle the noise sources in the brain, and evaluate their impact on spike reliability, are

impossible to perform in vitro or in vivo. Using the NMC-model, we were able to perform a

series of simulation-based manipulations where we systematically added and removed noise

sources to quantify their impacts. These manipulations yielded several novel insights.

First, we found that spontaneous activity in cortical circuitry is intrinsically variable, both at

the single neuron and population level (Figures 2.1,2.2). While some of the effects of cellular

noise sources on variability had been studied in single biophysical Hodgkin-Huxley type

neuron models (Diba et al., 2006; Mendonça et al., 2016; Singh and Levy, 2017; Wang et al.,

2010), this is the first estimate of internally generated variability in an integrated, biologically

constrained model of a cortical circuit. Our results confirm previous predictions of simplified

network models that showed that biological details such as distance dependent connectivity

(Rosenbaum et al., 2017), feedback inhibition(Stringer et al., 2016), and differences in synaptic

time scales(Huang et al., 2019)—all intrinsically part of our model—can lead to internally

generated variability.

Our second insight was that stochastic synaptic transmission is amplified by chaotic network

dynamics to drive a rapid, chaotic divergence of the network, resulting in the above-mentioned

variability (Figures 2.3,2.4). Chaotic network dynamics without synaptic noise have been

extensively studied (London et al., 2010; van Vreeswijk and Sompolinsky, 1996, 1998), and it

has been suggested that synaptic noise can generate high neural variability in postsynaptic

neurons (Reich and Rosenbaum, 2013) and recurrent networks (Moreno-Bote, 2014). In

contrast to previous predictions from a simplified network (Moreno-Bote, 2014), our model

shows that synaptic noise and recurrent network dynamics do not necessarily lead to Poisson-

like spike-count variability (Figure 2.1f).

A third insight was that spike times were unreliable during spontaneous activity, but became

reliable during evoked activity (Figures 2.5,2.6). Comparatively weak thalamocortical input
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could switch the network to a highly reliable spiking regime. Left alone, the network is in a

chaotic regime, but transient inputs can push the network towards a temporally precise regime

where millisecond-precise spike-timing reliability is possible. This confirms that results of

deterministic models (Lajoie et al., 2016) are correct also in the presence of strong cellular

noise and weak thalamic inputs, and explains how patterns of activity generated by cortical

circuitry in response to sensory stimuli can often have millisecond spike-timing precision

(Luczak et al., 2015; Sato et al., 2012).

The fourth—and perhaps most surprising insight—is the mechanism for this dichotomous

behavior. We determined that the recurrent network architecture causes both the amplification

of synaptic noise during spontaneous activity, and the quenching of the noise sources in the

presence of input. In the former case, the network is driven towards a chaotic, divergent

regime, whereas in the latter, a temporally precise regime emerges (Figure 2.7). The critical

role of the recurrent network stands in contrast to previous modelling work which showed

that relatively few synchronous thalamic inputs maximize reliability in single neurons in cat

visual cortex (Wang et al., 2010). However, this study likely overestimated synaptic reliability—

synaptic release probabilities are lower in vivo than in vitro, both in general (Borst, 2010) and

in this specific pathway (Sedigh-Sarvestani et al., 2017). We conclude that the thalamic input

is the trigger, but that the input can only pull the neurons out of chaos with the help of the

network.

What network mechanisms achieve this? We found that the reliability of the response strongly

depended on the overall EI-balance in the network (Figure 2.8). The response reliability

rapidly increases towards a just subcritical dynamical state where the microcircuit reproduces

several in vivo findings and neurons have maximum discriminatory power to different stimuli

(Markram et al., 2015). Above the critical state, microcircuit dynamics are characterized by

whole-network bursts that lead to reliable but non-discriminating spiking. Fine-tuning of the

EI-balance by extracellular calcium or neuromodulators thus allows to adapt the microcircuit

response according to computational tasks.

The exact mechanism for this triggering of reliable spiking, and the means by which signals are

reliably propagated through the circuitry amid variable activity remains a subject for future

investigation. In a first step towards a characterization, we found that synchronous inputs that

arrive within in several milliseconds are well suited to elicit reliable responses (Supplementary

Figure 2.21), in line with previous predictions for single cells (Wang et al., 2010). One possible

explanation for the propagation of reliable activity is that certain connectivity motifs could

amplify reliability through redundant connectivity. Candidate motifs have already been

identified in the NMC-model, such as common neighbor motifs (Perin et al., 2011) and high-

dimensional cliques that shape spike correlations between neurons (Reimann et al., 2017b).

In fact, we found that neurons with high in-degrees were more reliable (Supplementary Figure

2.20a), and that neurons are less reliable the fewer higher-dimensional cliques (Reimann

et al., 2017b) they are part of (at similar in-degrees, Supplementary Figure 2.20b). Dendritic

nonlinearities, such as N-methyl-D-aspartate (NMDA)-mediated plateau potentials evoked by
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clustered synaptic inputs onto the dendritic tree could also play an important role (Antic et al.,

2018; Wilson et al., 2016).

The predicted mechanism of suppression of chaotic dynamics does not yet have a direct

experimental confirmation. However, the effect is related to the often observed quenching

of variability—in terms of trial-to-trial spike counts—at the onset of stimuli (Churchland

et al., 2010). In the NMC-model, spike count variance is low both during spontaneous (Figure

2.1f) and evoked activity to the same stimulus (Supplementary Figure 2.22b1). However,

in the intact animal, a neocortical microcircuit is integrated with the rest of the brain and

constantly receiving input: around 80% of corticocortical synapses are formed with non-local

neurons (Markram et al., 2015), which are not yet accounted for in the NMC-model. In the

behaving brain, most of this external input to the microcircuit will likely contain signals:

for example, visual cortex is strongly modulated by movement-related activity (Musall et al.,

2018). Indeed, when we stimulated the NMC-model with in vivo recordings of thalamic input

that was recorded across multiple trials (Supplementary Figure 2.22a1-3), instead of perfectly

identical input, Poisson-like spike count variances sometimes emerged (Supplementary Figure

2.22b2). When we stimulated the NMC-model with variable thalamic input to account for

the effect of hidden inputs, Fano factors increased to values observed in rat somatosensory

cortex in vivo (Bale and Petersen, 2009) (Supplementary Figure 2.23a1,a3,b1,b2,c2, t < 0

ms). When we added reliable input on top of the variable input, spike count variability was

quenched (Supplementary Figure 2.23a1,a3,b1,b2,c2, t > 0 ms), consistent with previous

reports (Churchland et al., 2010). Importantly, repeating one specific input out of the set of

variable inputs once again led to a low spike count variance (Supplementary Figure 2.23a2,c1).

Taken together, these results support the hypothesis that the observed cortical spike count

variability in vivo is actually a reliable response to unobserved input, i.e. variable inputs

projecting from diverse locations throughout the brain (Fairhall, 2019; Muller et al., 2018).

From this point of view, the observed quenching of variability at stimulus onset (Churchland

et al., 2010) reflects the statistical impact of knowledge of the stimulus (Masquelier, 2013).

2.3.1 Potential effects of missing biological detail

While the NMC-model is one of the most detailed models of neocortical circuitry to date,

several biological details are lacking. In terms of noise sources, the most important missing

detail is ion-channel noise. Other electrical noise sources such as thermal noise are orders of

magnitude smaller (Faisal et al., 2008).

The ion-channel noise in irregular firing neurons in the NMC-model (which is responsible for

the irregular initiation of action potentials in vitro (Mendonça et al., 2016)) is overshadowed

by synaptic noise under in vivo-like conditions (Figure 2.4). But how would additional ion-

channel noise in axons and dendrites of all neurons impact variability? In dendrites, ion-

channel noise is thought to evoke little to no variability in isolated back-propagating action

potentials (Diba et al., 2006). Thus, mean ion-channel models are likely sufficient for accurate
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action potential initiation.

Action potentials reliably permeate axonal arbors of neocortical pyramidal neurons without

failures (Cox et al., 2000). But as action potentials propagate along axons, their timing becomes

increasingly variable. Simulations predict that ion-channel noise affects action potential

timing in all axons with a diameter below 0.5 µm, with the standard deviation of action

potential variability predicted to increase by 0.6 ms per 2 mm in 0.2 µm diameter axons (Faisal

and Laughlin, 2007). In the NMC-model, axons have a mean axonal diameter of around 0.3

µm and are modeled deterministically. Therefore, ion-channel noise in longer axons could

increase variability of spike timing by up to several milliseconds.

The missing ion-channel noise might push the circuit towards a more variable state. On the

other hand, adding missing detail to the synapse models might increase reliability: The reliabil-

ity of synaptic transmission increases with the number of readily releasable vesicles (Rudolph

et al., 2015). Some studies have found univesicular synaptic transmission at cortical synapses

(Silver et al., 2003), while others have estimated there may be as many as ten releasable vesicles

per synapse (Loebel et al., 2009).

The current version of the NMC-model assumes one readily releasable vesicle per synapse,

and thus potentially underestimates synaptic reliability. To estimate the potential impact of

multivesicular release, we repeated the simulation experiments with an increasing number

of readily releasable vesicles (nr r p ) at all synapses (Supplementary Figure 2.24). As expected,

the time course of divergence slowed with increasing nr r p . Nonetheless, for mean nr r p values

which reproduce cortical PSP variability data (nr r p = 2−3; data not shown), synaptic noise

remains the dominant source of noise driving the rapid chaotic divergence. In addition, nr r p

may vary between and across synapse types, but a systematic exploration thereof is beyond

the scope of the present study.

There are other intrinsic mechanisms not yet included in the NMC-model such as gap junc-

tions, intra-circuit neuromodulation (Engelhardt et al., 2007) or active information transfer

from glia to neurons (Fiacco and McCarthy, 2018; Savtchouk and Volterra, 2018), whose con-

tributions to variability within cortical circuits are as yet poorly understood. However, for

these mechanisms to contribute significantly as additional noise sources above and beyond

synaptic noise, they would have to cause somatic membrane potential fluctuations on the

order of 1 mV (RMSDV ) (Figure 2.4).

2.3.2 Concluding remarks

This study provides, for the first time, a data-constrained biophysical framework that supports

theories of cortical coding along a spectrum from population firing rates to reliable individual

spike times. This study does not claim that cortex generally employs codes that rely on

individual spike-timing, only that it is principally capable of such codes. Even a highly reliable

cortex might be variable due to computational strategies that are intrinsically variable, such as

44



2.4. Methods

sub-optimal inference (Beck et al., 2012), or due to overcomplete representation of inputs, with

distributions of spike patterns encoding the same stimulus (Moreno-Bote and Drugowitsch,

2015). Encoding strategies might further be adjusted according to computational needs by fine-

tuning of the network near criticality (Wilting et al., 2018), for example due to neuromodulation

that shifts the balance between excitation and inhibition and with it spike-timing reliability.

We hypothesize that population firing rates might encode attentional states, general movement-

related activity, or other slow variables, whereas patterns of spikes with high temporal precision

(Luczak et al., 2015) might encode more particular information, such as the touch of a whisker

or, perhaps, perception of a specific object. The critical role of the recurrent network for

the reliable representation of information in these spike patterns further suggests that such

patterns might play an important role in computations across the hierarchy of cortical regions

(VanRullen and Thorpe, 2002). The present study provides a solid foundation for future stud-

ies in this direction, and ultimately towards a deeper understanding of cortical information

processing.

2.4 Methods

2.4.1 Simulation

Model of neocortical microcircuitry (NMC)

Simulations of electrical activity were performed on a previously published model of a neo-

cortical microcircuit based on data from two-week old rats. Reconstruction and simulation

methods are described extensively by Markram et al. (2015). In our study, we used a micro-

circuit consisting of 31,346 biophysical Hodgkin-Huxley NEURON models and around 7.8

million connections forming roughly 36.4 million synapses. Synaptic connectivity between 55

distinct morphological types of neurons (m-types) was predicted algorithmically by integrat-

ing anatomical data, such as layer-dependent cell type densities, morphologies and bouton

densities, to generate a wiring diagram (Reimann et al., 2015) with highly heterogeneous

connectivity (Gal et al., 2017; Reimann et al., 2017b,a). Consequently, the NMC-model exhibits

a naturally emerging structural and functional EI-balance (Gal et al., 2017), without relying

on assumptions about the exact level of coupling between excitatory and inhibitory currents.

The densities of ion-channels on morphologically-detailed neuron models were optimized

to reproduce the behavior of different electrical neuron types (e-types) as recorded in vitro

(Van Geit et al., 2016). We also used a larger mesocircuit comprising seven microcircuits (mean

of 36.5 million synapses per circuit), with no boundaries between the peripheral circuits and

the original microcircuit in the center (shown in Figure 2.2b). Simulations were run on a

BlueGene/Q supercomputer (BlueBrain IV) and an HPE SGI 8600 supercomputer (BlueBrain

V). NEURON (Hines and Carnevale, 1997) models and the connectome are available online at

bbp.epfl.ch/nmc-portal (Ramaswamy et al., 2015).
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Simulation of in vivo-like spontaneous activity

In the in vivo-like state, release probabilities for all synapses were modulated according to the

extracellular calcium concentration found in vivo, leading to substantially lower reliability

than in vitro (Borst, 2010). As described by Markram et al. (2015), the USE parameter for

synaptic transmission was modulated differentially as a function of extracellular calcium con-

centration ([C a2+]o), resulting in transitions from in vitro to in vivo-like dynamics. Neurons

were depolarized with a somatic current injection, with currents expressed as a percent of

first spike threshold for each neuron, to mimic, for example, the effect of depolarization due

to missing neuromodulators. Apart from a small white-noise component (with a variance

of 0.001% of the mean injected current per neuron, unless stated otherwise), the current

injection was constant. With mean injected currents at around 100% of first spike threshold

and [C a2+]o at 1.25 mM, the microcircuit exhibits in vivo-like spontaneous activity (Markram

et al., 2015).

Simulation of evoked activity

The microcircuit is innervated by 310 (virtual) thalamic fibers (Markram et al., 2015). In

vivo spike train recordings from 30 VPM neurons were randomly assigned to the 310 fibers,

to achieve varying degrees of naturalistic synchronous thalamic inputs. Spike trains were

recorded during replayed whisker motion in anesthetized rats (Bale et al., 2015). Full methods

are described in Reimann et al. (2017b). A variable version of the naturalistic input used in

vivo spike train recordings of the same 30 VPM neurons during 30 trials of the same replayed

whisker motion (Bale et al., 2015). Another stimulus consisted of synchronous spikes at

the 60 central thalamic fibers, with all 60 virtual thalamic neurons firing simultaneously, to

approximate a whisker ‘flick’ (see Markram et al. (2015)).

Save-resume

After running a simulation for some amount of biological time, the final states of all variables

in the system were written to disk using NEURON’s SaveState class. For large-scale simulations,

this required the various processes to coordinate how much data each needed to write, so that

each rank could then seek the appropriate file offset and together write in parallel without

interfering with the others. After restoring a simulation, the user could specify new random

seeds (see below).

Random numbers

In our simulations, we used random number generators (RNGs) to model all stochastic pro-

cesses: noisy current injection, stochastic ion channels, probabilistic release of neurotrans-

mitters and generation of spontaneous release events. Each synapse had two RNGs. One was

used to determine vesicle release on the arrival of an action potential. The other determined
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the spontaneous release signal. Similarly, each stochastic K +-channel model had an RNG

determining voltage-dependent opening and closing times. Finally, the white noise process

underlying the noisy depolarization was determined by one RNG per neuron. By using differ-

ent random seeds to initialize the RNGs, we obtained different sequences of random numbers,

and consequently different but equally valid simulation outcomes. In earlier versions of the

NEURON microcircuit simulation software, the user was given only a single random seed

parameter with which to alter the random number streams generated by all RNGs. We added

the option to separately change random seeds for RNGs for a specific type of stochastic com-

ponent. For example, “IonChannelSeed <value>” allows the specification of a seed which is

only given to the RNGs used by ion channel instances.

Stochastic synapses

The synapse models including parameters are described in detail in Markram et al. (2015),

and the models used can be found online at bbp.epfl.ch/nmc-portal. The model is based on

two previous models (Fuhrmann et al., 2002; Loebel et al., 2009). In short, each synapse has

a pool of readily releasable vesicles of size nr r p which are in one of two states: recovered or

depleted. Upon action potential arrival at the synapse, each recovered vesicle stochastically

releases with dynamic probability U (t ). The probability of vesicle release U (t ) is dynamic, to

implement synaptic facilitation, and is governed by an event-based equation:

U (t ) =U (ts yn) ·e
− t−ts yn

τ f ac +USE · (1−U (ts yn) ·e
− t−ts yn

τ f ac ) (2.3)

where USE is the release probability of a synapse that has not been activated in a long time, ts yn

is the time of arrival of the last presynaptic spike at the synapse, and τ f ac is the facilitation time

constant. For each released vesicle, postsynaptic AMPAR and NMDAR models are activated

with a conductance gmax /nr r p where gmax is the maximal postsynaptic conductance. After

successful vesicle release, the vesicle location is in a depleted state in which it has no vesicle

to release. The transition from the depleted state back to the recovered state is governed by a

Poisson process, according to a survival function:

Psur v (t ) = e
− t−ts yn

τdep (2.4)

where Psur v (t ) is the probability of remaining in the depleted state in the interval [tsyn, t], and

is the depression time constant. The univesicular case (nr r p = 1) is modeled, unless stated

otherwise.

A second stochastic process is used to generate event times for spontaneous ‘miniature’
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postsynaptic potentials. Spontaneous release is modelled as an independent Poisson process

with a rate λspont at each synapse. When the synapse receives the signal for a spontaneous

release event, it is treated as a presynaptic action potential.

Deterministic synapse model

The deterministic synapse model is implemented as previously described (Fuhrmann et al.,

2002). In this formulation, U (t ) is interpreted as the fraction of consumed resources, rather

than a release probability. Each release event activates a fraction of postsynaptic conductance

proportional to U (t ) ·R(t ), where R(t) is the fraction of vesicles in the recovered state. These

two state variables are governed by the following equations (Fuhrmann et al., 2002):

dR

d t
= 1−R

τr ec
−USE ·R ·δ(t − ts yn), (2.5)

dUSE

d t
=− USE

τ f aci l
+U 1 · (1−USE ) ·δ(t − ts yn), (2.6)

where τr ec and τ f aci l are the recovery and facilitation relaxation time constants, USE is a

dynamic variable that increases by an amount determined by U 1 for each presynaptic spike,

and ts yn is the time of arrival of presynaptic spikes at the synapse. The deterministic models

implemented in this way are equivalent to their stochastic (multivesicular) counterparts in

the limit as nr r p →∞.

Stochastic ion-channels

In some interneuron models, a potassium channel type with a stochastic implementation was

added using previously-described methods (Diba et al., 2006; Markram et al., 2015; Mendonça

et al., 2016; Steinmetz et al., 2000) to model ion channel noise. The full model is available

online at bbp.epfl.ch/nmc-portal. In brief, instead of a mean field model, the equations used

explicitly track the number of channels in a certain state and allow these numbers to evolve

stochastically, according to a binomial distribution, with the probability of transition between

states computed according to the deterministic rate functions α and β:

Open
α−*)−
β

C l osed (2.7)
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Single spike injection

We injected single spikes in twenty different layer 4 pyramidal neurons (and twenty random

neurons across the circuit, data not shown) by replaying (see below) an additional spike event

in one neuron per simulation. Thus, there were no shifted or missing spikes, as may occur

when injecting a spike in vivo. The spike was injected 0.1 ms after resuming the simulation

from identical initial conditions.

Step-pulse perturbation

We applied a microscopic current step-pulse to all neurons at their soma 0.1 ms after resuming

the simulation (duration: 0.1 ms, amplitude: 1 pA,). The current was chosen to have an almost

negligible effect on individual neurons, and was near the limit of the NEURON integrator. On

average, 108 ± 8 neurons out of 31,346 neurons had any changes in their spike times (mean of

19 trials ± STD). The majority of the shifted spikes were shifted by less than 0.05 ms (59.1%: <

0.05 ms; 33.1%: < 1 ms; 5.5%: < 20 ms; 1.8%: < 100 s; 0.5%: < 1 s). Finally, 3 ± 2 neurons had

extra or missing spikes. The median first occurrence of an extra or missing spike was at 257

ms (min: 11 ms, max: 946 ms after resuming).

Decoupled replay

When resuming a simulation at t0, we decoupled all connections by setting the connection

weights to zero, ensuring that action potentials would be delivered to the synapses of postsy-

naptic neurons. At the same time, we started replaying action potential times from a previous

resumed simulation, activating the synapses of postsynaptic neurons as if the presynaptic

neuron had fired an action potential, but actually replaying presynaptic action potentials from

the previous simulation. For computational reasons, spikes that had not been delivered at the

save time t0, were not delivered in the decoupled replay (meaning that a couple of presynaptic

spikes per neuron may have been lost, leading to a slight underestimation of divergence).

2.4.2 Analysis

RMSD and correlation

All analysis was performed using custom scripts written in Python 2.7 using the NumPy,

matplolib and SciPy libraries. Scripts were executed on a Linux cluster connected to the

same IBM GPFS file system that the simulation output was written to. Root-mean-square

deviation RMSDV and correlation rV as defined in Equations 2.1 and 2.2 were implemented

with NumPy.

49



Chapter 2. Reliability amid noise and chaos

Similarity

The similarity measure s(t ) was defined as the normalized difference between diverging rV (t )

(or RMSDV (t)), and steady-state rV (t) (or RMSDV (t)). The steady-state value was defined

as the continuous rV ,shu f f le (t ) computed by shuffling the soma voltages between simulation

trials, so that instead of 40 deviating pairs of trajectories, we compared 40 independent pairs

of trajectories. Alternatively, we defined it as the mean stationary, fully deviated r∞ for t > 1000

ms after resuming from identical initial conditions.

Firing rate

Firing rate was defined as the average number of spikes in a time interval of size ∆t , divided

by ∆t (∆t = 10ms, unless stated otherwise).

Neuron selection

We selected all excitatory neurons in layers 4, 5 and 6 that belonged to the 30 minicolumns

(out of 310 in total) in the center of microcircuit (n = 2024). The analysis was restricted to

neurons that spiked at least once in each of the compared simulation paradigms.

Spike-timing reliability

Spike-timing reliability was measured using a correlation-based measure first proposed by

Schreiber et al. (2003). Briefly, the spike times of each neuron in each trial were convolved

with a Gaussian kernel of width σS = 5ms to yield filtered signals s(n,k, ; t ) for each neuron n

and each trial k (∆tS = 1ms). The spike-timing reliability for each neuron was then defined

as the mean inner product between pairs of signals divided by their magnitude: rspi ke (n) =
2

K (K−1)

∑
k 6=l

s(n,k;t )·s(n,l ;t )
|s(n,k;t )|·|s(n,l ;t ) , (K = 30; independent trials). Decoupled replay: there are M=5

replays of each of the K=30 trials, and thus rspi ke (n) = 2
K M(M−1)

∑
m

∑
k 6=l

sm (n,k;t )·sm (n,l ;t )
|sm (n,k;t )|·|sm (n,l ;t ) .

Errors and statistical tests

Error bars and shaded areas indicate 95%-confidence intervals (CI), unless stated otherwise.

t-based CIs (n = 20; or n = 40 if stated) were computed using scipy.stats.sem and scipy.stats.t.ppf

to compute P-values from the CIs (one-sided). Errors for fit parameters, obtained with

scipy.optimize.curve_fit, are given as the square-root of the variance of the parameter estimate.

Data availability

NEURON models, microcircuit information, and the connectome are available for download

at https://bbp.epfl.ch/nmc-portal/downloads. The integrated microcircuit model is available
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upon reasonable request. Output spike times and output somatic membrane potentials are

available upon reasonable request.

Code availability

Software used for visualization of neurons in Figure 1 is available at https://github.com/

BlueBrain/RTNeuron. The NEURON simulation environment is available at https://www.

neuron.yale.edu/neuron/. The custom-written Python analysis and figure generation scripts

are available at https://github.com/maxnolte/deciphering_variability.

Author contributions

Conceptualization, M.N., M.R., H.M., E.M.; Methodology, M.N., M.R., H.M., E.M.; Software,

M.N., J.K.; Validation, M.N., J.K.; Investigation, M.N; Visualization, M.N.; Writing – Original

Draft, M.N., M.R.; Writing – Review & Editing, M.N., M.R., H.M., E.M.; Supervision, H.M., E.M.;

Funding Acquisition, H.M.

Acknowledgements

We thank Giuseppe Chindemi, Srikanth Ramaswamy, and Werner Van Geit for help with

synapse and ion channel models, and the rest of the Blue Brain team for developing and

maintaining the microcircuit model and computational infrastructure. We thank Taylor

Newton, Madineh Sedigh-Sarvestani, Richard Walker and Mickey London for discussions

and critical comments on the manuscript. We thank Oren Amsalem, Idan Segev, Wulfram

Gerstner and Alexandre Pouget for helpful discussions. This work was supported by funding

from the ETH Domain for the Blue Brain Project. The Blue Brain Project’s IBM BlueGene/Q

system, BlueBrain IV, and HPE SGI 8600 system, BlueBrain V, were funded by the ETH Board

and hosted at the Swiss National Supercomputing Center (CSCS).

51

https://github.com/BlueBrain/RTNeuron
https://github.com/BlueBrain/RTNeuron
https://www.neuron.yale.edu/neuron/
https://www.neuron.yale.edu/neuron/
https://github.com/maxnolte/deciphering_variability


Chapter 2. Reliability amid noise and chaos

2.5 Supplementary figures (2.9 to 2.24)

Figure 2.9 – Rapid divergence of electrical activity. (a) Root-mean square deviation
(RMSDV ) and correlation (rV ) of the somatic membrane potentials between pairs of resumed
simulations diverging from identical conditions, for five different base states (faded colors)
and the mean of 40 saved base states (red), with ∆t = 10 ms. Same neurons as in Figure 2.1c.
(b) Time evolution of distributions of mean RMSDV and rV values for individual neurons.
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Figure 2.10 – Quantifying the rapid divergence of electrical activity. (a) Mean divergence in
the first 10 ms, with ∆tV = 0.1 ms (mean of all neurons and 40 saved base states ± standard
deviation). (b) RMSDV and rV for different analysis bin sizes ∆t . The time step for the soma
voltage is ∆tV = 0.1 ms. (c) The similarity (sRMSD and sr ) (mean ± 95% confidence interval).
Dots signal time bins where sRMSD and sr are larger than 0, by a 95% confidence interval (p <
0.025).
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Figure 2.11 – Fano factors. (a) Mean spike count and variance of spike count of 40 indepen-
dent trials of increasing duration for all neurons in the microcircuit, plotted separately for
excitatory neurons (red) and inhibitory neurons (blue). The dashed lines indicate the expected
values for a Poisson process. (b) Distribution of Fano factors (variance divided by mean spike
count) corresponding to a.
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Figure 2.12 – Rapid divergence of population activity; in-degree and EI-balance. (a) Mean
population firing rate difference (∆t = 5 ms) between pairs of simulations diverging from
identical initial conditions (mean of all neurons and of 40 saved base states ± 95% confidence
interval). (b) Similarity sr for subsets of neurons grouped by in-degree, and by the ratio of
excitatory presynaptic connections over inhibitory connections (mean ± 95% confidence
interval).

55



Chapter 2. Reliability amid noise and chaos

Figure 2.13 – Linear relationship between RMSDV and rV . Root-mean square deviation
(RMSDV ) and correlation (rV ) of the somatic membrane potentials between pairs of simula-
tions diverging from identical initial conditions (mean of all neurons and saved base states).
(a) Changing random seeds for subsets of noise sources with the standard stochastic release
model. (b) Changing random seeds for subsets of noise sources with a mean release model. (c)
Standard stochastic release model for decoupled, replayed simulations. abcd: 40 base states;
all others: 20 base states.
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Figure 2.14 – Mean synaptic release model. (a) Correlation rV (as in Figure 2.4 and Supple-
mentary Figure 2.13), with pseudo-deterministic synaptic release by not changing the random
seeds for vesicle release (but with a change in ‘mini’ signals for b). (b) As in a, but with deter-
ministic synaptic release (mean release model), apart from abcd which has the fully stochastic
model. Based on 20 saved base states (abcd: 40 saved base states); mean of base states ± 95%
confidence interval.
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Figure 2.15 – Unravelling noise sources. (a) Correlation rV from identical initial conditions
with different cellular noise sources turned on, and when turning of cellular noise, but per-
turbing the system by a single extra spike (in one neuron) or a miniscule perturbation in all
neurons. (b) Steady-state membrane potential fluctuations (RMSD∞) and correlations (r∞)
for network simulations (b1) and decoupled, replayed simulations (b2) for different noise
sources. (c) Similarity sr /RMSD at 10-20 ms for network simulations (c1) and decoupled, re-
played simulations (c2) for different noise sources. (d-e) Same as b-c, but only for the subset
of neurons that have stochastic ion-channels (irregularly firing e-types, 1’137 out of 31’346
neurons). All error bars indicate 95% confidence intervals, based on 20 pairs of simulations
(40 for abcd). Blue and red dots indicate individual simulation pairs.
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Figure 2.16 – Predicting impact of other noise sources. (a) Similarity sRMSD when only
changing random seeds for noisy depolarization, but with different magnitudes of noise.
(b) As in a, but with all noise sources enabled by changing random seeds. Based on 10 saved
base states; mean of base states ± 95% confidence interval.
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Figure 2.17 – Divergence of evoked activity. (a) The similarity sRMSD defined as the differ-
ence between the RMSDV of diverging and independent trials, normalized to lie between 1
(identical) and 0 (fully diverged) (mean ± 95% confidence interval, 20 saved base states), for
the thalamic stimulus. (b) Population raster plot and population peristimulus time histogram
(PSTH) of all 31’346 neurons in the microcircuit, during evoked activity with a simplified
“whisker flick” stimulus (60 VPM neurons are firing at the same time, one spike). (c1) As a, but
for the “whisker flick” stimulus. (c2) As c1, but for sr instead of sRMSD .
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2.5. Supplementary figures

Figure 2.18 – Low trial-by-trial spike-timing reliability during spontaneous activity. (a) So-
matic membrane potentials (Vm) of three representative neurons. Top: during six independent
trials of spontaneous activity. Bottom: five decoupled replay trials (green) with the same presy-
naptic input as during the original network simulation trial (red), but with different random
seeds. (b) Top: Raster plot of spike times for the same example neurons as in a, during 30
independent trials of spontaneous activity. Bottom: 5 decoupled replay trials (green) of the
same input received during 5 of the 30 original trials (dark red). (c1) Mean somatic membrane
potential correlation rV of the 1666 (ab: 1670) most central (and spiking) pyramidal neurons
from layers 4, 5, and 6 between independent network simulations, and between decoupled re-
play simulations with identical presynaptic inputs. (c2) Mean spike-timing reliability rspi ke of
the same neurons. Decoupled and decoupled (ab) are overlapping. (c3) Change in correlation,
∆rV , versus change in spike-timing reliability, ∆rspi ke , for each neuron for decoupled replay
simulations relative to network simulations (linear fit with 68% confidence interval on slope
m, red line). Triangles indicate values of representative neurons in panel B.
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Figure 2.19 – Population response at different calcium concentrations. Spike raster of all
neurons in the microcircuit and mean population firing rate for two trials of evoked activity
with the same thalamic stimulus, for three different extracellular calcium concentrations.
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2.5. Supplementary figures

Figure 2.20 – In-degree and higher-dimensional connectivity. (a) In-degree (number of
presynaptic connections) vs. spike-timing reliability, for the same neurons as in Figure 2.8.
Mean of in-degree percentiles (the 10% of neurons with the lowest in-degree, the 10% of
neurons with the 2nd lowest indegree, etc.). Error bars indicate 95%-confidence interval. (b1)
Higher order connectivity. 1D: number of presynaptic neurons (one-dimensional directed
cliques). 2D: number of two-dimensional directed cliques a neuron is the sink of. 3D: Number
of three-dimensional directed cliques a neuron is the sink of. Example network: the white
neuron is the sink of 5 1D-cliques, 4 2D-cliques, and 1 3D-cliques, according to the definition
of directed cliques to the left. (b2) In-degree (1D) vs. number of 3D-directed-cliques a neuron
is the sink of (3D). Raster plot shows mean reliability of all neurons in a pixel. Grey indicates
that no neuron falls in this pixel. (b3) The 30% of neurons with the lowest indegree in black
(same as first three percentiles in a). Red: The same neurons reordered according to number
of 3D-directed-cliques a neuron is the sink of.
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Figure 2.21 – Input synchrony and reliability. (a1) Response of a layer 4 pyramidal cell to
a simple thalamic stimulus consisting of 40 synchronous spikes with increasing jitter (but
frozen across trials). (a2) The thalamic stimulus, with increasing normally-distributed jitter
with standard deviation σ. The stimulus is kept identical across 30 repetitions to study only
intrinsic cortical variability, as before. (b) Mean spike-timing reliability of 2024 pyramidal
neurons from layers 4, 5 and 6 (as before) versus jitter standard deviation σ (mean of 30 trials,
95%-CI smaller than marker symbols).
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Figure 2.22 – Variable thalamic input. (a1) In vivo recordings of five thalamic neurons during
30 trials of replayed whisker deflection. (a2) Variable input created from in vivo recordings.
(a3) Spike-timing reliability for no input (spontaneous activity), frozen input (same as Figures
2.5-2.8) and for variable input, for the same pyramidal neurons analyzed in Figures 2.5-2.8.
(b1) Variance vs. mean spike count of all neurons in the microcircuit over 30 trials with
identical inputs (same input as in Figures 2.5-2.8), for adjacent time bins of 500 ms duration.
(b2) Variance vs. mean spike count with variable input, and Fano factors of VPM input, across
30 trials.
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Figure 2.23 – Quenching of spike count variability. (a1) The central 100 VPM fibers innervat-
ing the microcircuit are activated with different inputs: 60 randomly chosen fibers contain
variable inputs that are correlated between the fibers (Poisson-spike train, FR = 4 Hz,σcor r = 50
ms), and different in each of 30 trials (5 shown). The other 40 fibers contain a reliable signal (FR
= 4 Hz) of randomly distributed spikes, that is highly correlated between the fibers (σcor r = 2
ms) and always arriving at roughly the same time between trials. The variable input lasts from
-4000 to 3000 ms, whereas the reliable input only starts after t = 0 ms. (a2) Spike response
of example L4 PC across 30 trials to one of the 30 inputs from a1 (top stimulus). (a3) Spike
response of same example L4 PC across 30 trials to all 30 inputs from a1. (b1) Variance of spike
count vs. mean spike count of central 2024 excitatory neurons in layers 4, 5, and 6 (as before)
for the 30 variable input trials, split in bins of 500 ms duration. (b2) Fano factors for the same
neurons and time bins as in b1. (c1) Mean Fano factor (blue) and standard deviation (light
blue) across trials with the same identical input. (c2) Mean Fano factor (blue) and standard
deviation (green) of the neurons in b1 and b2 across trials with variable input.
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Figure 2.24 – Multivesicular release. Change in divergence time course depending on the
size of the pool of readily releasable vesicles (nr r p ), quantified by similarity of the somatic
membrane potentials diverging from identical initial conditions: (a) sRMSD and (b) sr . (mean
of all neurons and n base states ± 95% confidence interval; UVR: n = 40; all others: n = 20).
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3 Cliques of neurons bound into cavi-
ties

This chapter is a postprint of joint work with Michael W. Reimann, Martina Scolamiero,

Katharine Turner, Rodrigo Perin, Giuseppe Chindemi, Paweł Dłotko, Ran Levi, Kathryn Hess

and Henry Markram; it has been published as “Cliques of neurons bound into cavities provide

a missing link between structure and function” in Frontiers in Computational Neuroscience

(Reimann et al. (2017b); https://doi.org/10.3389/fncom.2017.00048).

Contribution: I applied custom software written by M.R. and P.D. to compute all connection

matrices and all simplicial complexes. I designed the thalamic stimulus and ran all simulations

of evoked activity. M.R. and I jointly contributed to the analysis in Figure 3.2. I solely performed

the analysis of the simplicial architecture and how simplices shape correlations in Figures

3.3 and 3.4. I created Figure 3.6 jointly with M.R.. I assembled all final figures, other than

Figure 3.1. The original draft was written jointly with M.R., R.L., K.H. and H.M.. Further author

contributions are listed at the end of the chapter.

Summary

The lack of a formal link between neural network structure and its emergent function has

hampered our understanding of how the brain processes information. We have now come

closer to describing such a link by taking the direction of synaptic transmission into account,

constructing graphs of a network that reflect the direction of information flow, and analyzing

these directed graphs using algebraic topology. Applying this approach to a local network of

neurons in the neocortex revealed a remarkably intricate and previously unseen topology of

synaptic connectivity. The synaptic network contains an abundance of cliques of neurons

bound into cavities that guide the emergence of correlated activity. In response to stimuli,

correlated activity binds synaptically connected neurons into functional cliques and cavities

that evolve in a stereotypical sequence towards peak complexity. We propose that the brain

processes stimuli by forming increasingly complex functional cliques and cavities.

69

https://doi.org/10.3389/fncom.2017.00048


Chapter 3. Cliques of neurons bound into cavities

3.1 Introduction

How the structure of a network determines its function is not well understood. For neural

networks specifically, we lack a unifying mathematical framework to unambiguously describe

the emergent behavior of the network in terms of its underlying structure (Bassett and Sporns,

2017). While graph theory has been used to analyze network topology with some success

(Bullmore and Sporns, 2009), current methods are usually constrained to analyzing how

local connectivity influences local activity (Chambers and MacLean, 2016; Pajevic and Plenz,

2012) or global network dynamics (Hu et al., 2014), or how global network properties like

connectivity and balance of excitatory and inhibitory neurons influence network dynamics

(Renart et al., 2010; Rosenbaum et al., 2017). One such global network property is small-

worldness. While it has been shown that small-worldness optimizes information exchange

(Latora and Marchiori, 2001), and that adaptive rewiring during chaotic activity leads to small

world networks (Gong and Leeuwen, 2004), the degree of small-worldness cannot describe

most local network properties, such as the different roles of individual neurons.

Algebraic topology (Munkres, 1984) offers the unique advantage of providing methods to

describe quantitatively both local network properties and the global network properties that

emerge from local structure, thus unifying both levels. More recently, algebraic topology has

been applied to functional networks between brain regions using fMRI (Petri et al., 2014)

and between neurons using neural activity (Giusti et al., 2015), but the underlying synaptic

connections (structural network) were unknown. Furthermore, all formal topological analyses

have overlooked the direction of information flow, since they analyzed only undirected graphs.

We developed a mathematical framework to analyze both the structural and the functional

topology of the network, integrating local and global descriptions, enabling us to establish a

clear relationship between them. We represent a network as a directed graph, with neurons

as the vertices and the synaptic connections directed from pre- to postsynaptic neurons as

the edges, which can be analyzed using elementary tools from algebraic topology (Munkres,

1984). The structural graph contains all synaptic connections, while a functional graph is a

sub-graph of the structural graph containing only those connections that are active within a

specific time bin (i.e. in which a postsynaptic neuron fires within a short time of a presynaptic

spike). The response to a stimulus can then be represented and studied as a time series of

functional graphs.

Networks are often analyzed in terms of groups of nodes that are all-to-all connected, known

as cliques. The number of neurons in a clique determines its size, or more formally, its

dimension. In directed graphs it is natural to consider directed cliques, which are cliques

containing a single source neuron and a single sink neuron and reflecting a specific motif of

connectivity (Perin et al., 2011; Song et al., 2005), wherein the flow of information through

a group of neurons has an unambiguous direction. The manner in which directed cliques

bind together can be represented geometrically. When directed cliques bind appropriately by

sharing neurons, and without forming a larger clique due to missing connections, they form
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cavities (“holes”, “voids”) in this geometric representation, with high-dimensional cavities

forming when high-dimensional (large) cliques bind together. Directed cliques describe the

flow of information in the network at the local level, while cavities provide a global measure of

information flow in the whole network. Using these naturally arising structures, we established

a direct relationship between the structural graph and the emergent flow of information in

response to stimuli, as captured through time series of functional graphs.

We applied this framework to digital reconstructions of rat neocortical microcircuitry that

closely resemble the biological tissue in terms of the numbers, types, and densities of neu-

rons and their synaptic connectivity (a “microconnectome” model for a cortical column,

Figures 3.1A and 3.1B, see Markram et al. (2015); Reimann et al. (2015)). Simulations of the

reconstructed microcircuitry reproduce multiple emergent electrical behaviors found exper-

imentally in the neocortex (Markram et al., 2015). The microcircuit, formed by ∼8 million

connections (edges) between ∼31’000 neurons (vertices), was reconstructed from experimen-

tal data, guided by biological principles of organization, and iteratively refined until validated

against a battery of independent anatomical and physiological data obtained from experi-

ments. Multiple instantiations of the reconstruction provide a statistical and biological range

of microcircuits for analysis.

We found a remarkably high number and variety of high-dimensional directed cliques and

cavities, which had not been seen before in neural networks, either biological or artificial, and

in far greater numbers than those found in various null models of directed networks. Topo-

logical metrics reflecting the number of directed cliques and cavities not only distinguished

the reconstructions from all null models, they also revealed subtle differences between re-

constructions based on biological datasets from different animals, suggesting that individual

variations in biological detail of neocortical microcircuits are reflected in the repertoire of

directed cliques and cavities. When we simulated microcircuit activity in response to sensory

stimuli, we observed that pairwise correlations in neuronal activity increased with the number

and dimension of the directed cliques to which a pair of neurons belongs, indicating that the

hierarchical structure of the network shapes a hierarchy of correlated activity. In fact, we found

a hierarchy of correlated activity between neurons even within a single directed clique. During

activity, many more high-dimensional directed cliques formed than would be expected from

the number of active connections, further suggesting that correlated activity tends to bind

neurons into high-dimensional active cliques.

Following a spatio-temporal stimulus to the network, we found that during correlated activity,

active cliques form increasingly high-dimensional cavities (i.e. cavities formed by increasingly

larger cliques). Moreover, we discovered that while different spatio-temporal stimuli applied

to the same circuit and the same stimulus applied to different circuits produced different

activity patterns, they all exhibited the same general evolution, where functional relationships

among increasingly higher dimensional cliques form and then disintegrate.
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Figure 3.1 – A: Thin (10 µm) slice of a in silico reconstructed tissue. Red: A clique formed by
five pyramidal cells in layer 5. B1: Full connection matrix of a reconstructed microcircuit with
31’146 neurons. Neurons are sorted by cortical layer and morphological type within each layer.
Pre-/postsynaptic neurons along the vertical/horizontal axis. Each grayscale pixel indicates
the connections between two groups of 62 neurons each, ranging from white (no connections)
to black (≥8% connected pairs). B2: Zoom into the connectivity between two groups of 434
neurons each in layer 5, i.e., 7 by 7 pixels in A, followed by a further zoom into the clique of 5
neurons shown in A. Black indicates presence, and white absence of a connection. B3: Zoom
into the somata of the clique in A and representation of their connectivity as a directed graph.
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3.2 Results

3.2.1 The case for directed simplices

Networks of neurons connected by electrical synapses (gap junctions) can be represented as

undirected graphs, where information can flow in both directions. Networks with chemical

synapses, which impose a single direction of synaptic communication from the pre- to the

postsynaptic neuron (Figures 3.1B2 and B3), are more accurately represented as directed

graphs. Sub-sampling networks of neurons experimentally has revealed small motifs of

synaptic connectivity, but not large cliques of neurons (Perin et al., 2011; Song et al., 2005).

Knowing the complete directed network of neurons, as we do in the case of the microcircuit,

enables us to detect all cliques, directed and otherwise (Figure 3.1).

When the direction of connections is not taken into account, a great deal of information is

lost. For example, in the undirected case, there is only one possible configuration for a clique

of four fully connected neurons (Figure 3.2A1, left). However, in the directed case, there are

36 = 729 possible configurations, as each of the six connections can be in one of three states (i

→ j, j ← i, or i ↔ j connection types; Figure 3.2A1 right).

A clique with reciprocal connections contains two or more cliques consisting only of uni-

directional connections (Figure 3.2A2). When only uni-directional connections are considered,

there are 26 possible configurations of four fully connected neurons, which are of two types:

those that contain cycles (40 configurations; Figure 3.2A3 left; Materials and Methods 3.4.1)

and those that do not (24 configurations; Figure 3.2A3 right). Directed cliques are exactly the

acyclic cliques. The net directionality of information flow through any motif can be defined as

the sum over all neurons of the squares of the differences between their in-degree and their

out-degree (see Equation 3.2, Figure S3.7). Directed cliques have the highest net directionality

among all cliques with no reciprocal connections (Figure S3.7; Materials and Methods 3.4.1).

A clique that contains cycles always decomposes into directed cliques with the same number

of neurons or fewer, at the very least any single connection between two neurons forms a 2-

clique. A cyclical clique of three neurons therefore decomposes into three 2-cliques. Following

the conventions in algebraic topology, we refer to directed cliques of n neurons as directed

simplices of dimension n-1 or directed (n-1)-simplices (which reflects their natural geometric

representation as (n-1)-dimensional polyhedra) (see Figure S3.8; Materials and Methods 3.4.1).

Correspondingly, their sub-cliques are called sub-simplices.

3.2.2 An abundance of directed simplices

Reconstructed neocortical microcircuitry

We analyzed 42 variants of the reconstructed microconnectome, grouped into six sets, each

comprised of seven statistically varying instantiations (Markram et al. (2015); Materials and

Methods 3.4.3). The first five sets were based on specific heights of the six layers of the
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Figure 3.2 – A1: A 4-clique in the undirected connectivity graph has one of 729 configurations
in the directed graph. A2: Configurations containing bidirectional connections are resolved by
considering all sub-graphs without bidirectional connections. A3: Without bidirectional con-
nections 64 possible configurations remain, 24 of which are acyclic, with a clear sink-source
structure (directed simplices, in this case of dimension 3). B: Number of simplices in each
dimension in the reconstruction (shaded area: standard deviation of seven instances) and in
three types of random control networks. C: Examples of neurons forming high-dimensional
simplices in the reconstruction. Bottom: Their representation as directed graphs. D: (Left)
Number of directed simplices of various dimensions found in 55 in vitro patch-clamp experi-
ments sampling groups of pyramidal cells in layer 5. (Right) Number of simplices of various
dimensions found in 100’000 in silico experiments mimicking the patch-clamp procedure.
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neocortex, cell densities, and distributions of different cell types experimentally measured in

five different rats (Bio1-5), while the sixth represents the mean of these measurements (Bio-

M). Individual instantiations within a set varied with the outcome of the stochastic portions

of the reconstruction process. Surprisingly, we found that the reconstructions consistently

contained directed simplices of dimensions up to 6 or 7, with as many as 80 million directed

3-simplices (Figure 3.2B; blue). This is the first indication of the existence of such a vast

number of high-dimensional directed simplices in the neocortical microcircuitry, or in any

neural network.

Control models

To compare these results with null models, we examined how the numbers of directed sim-

plices in these reconstructions differed from those of artificial circuits and from circuits in

which some of the biological rules of connectivity were omitted (see Materials and Methods

3.4.4). For one control, we generated five Erdős-Rényi random graphs (ER) of equal size

(∼31’000 vertices) and the same average connection probability as the Bio-M circuit (∼0.8%;

∼8 million edges) (Figure 3.2B; dark green). For another, we constructed a circuit with the

same 3D model neurons as the Bio-M circuit, but connected the neurons using a random

connectivity rule (“Peters’ Rule” (Peters and Feldman, 1976), PR; Figure 3.2B, red). For the last

control we connected the neurons in the Bio-M circuit according to the distance-dependent

connection probabilities between the different morphological types of neurons. Since this con-

trol is similar to deriving connectivity from the average overlap of neuronal arbors (Shepherd

et al., 2005), it retains the general biological (GB) features of connectivity between different

types of neurons (Reimann et al., 2015), excluding only explicit pairwise connectivity between

individual neurons, which is determined by the overlap of their specific arbors (Figure 3.2B,

yellow). In all cases, the number of directed simplices of dimensions larger than 1 was far

smaller than in the Bio-M circuit. In addition, the relative differences between the Bio-M and

the null models increased markedly with dimension.

In vitro

Simplices of high dimensions (such as those depicted in Figure 3.2C) have not yet been

observed experimentally, as doing so would require simultaneous intracellular recording of

large numbers of neurons. To obtain an indication of the presence of many high-dimensional

directed simplices in the actual neocortical tissue, we performed multi-neuron patch-clamp

experiments with up to 12 neurons at a time in in vitro slices of the neocortex of the same age

and brain region as the digitally reconstructed tissue (Materials and Methods 3.4.5). Although

limited by the number of neurons we could simultaneously record from, we found a substantial

number of directed simplices up to dimension 4 in just 55 multi-neuron recording experiments

(Figure 3.2D, left). We then mimicked these experiments on the reconstructed microcircuit by

repeating the same multi-neuron patch-clamp recordings in silico (Materials and Methods

3.4.5) and found a similar shape of the distribution of 4-, 3- and 2-simplices, though in lower
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frequencies than in the actual tissue (Figure 3.2D, right). These findings not only confirm that

high-dimensional directed simplices are prevalent in the neocortical tissue, they also suggest

that the degree of organization in the neocortex is even greater than that in the reconstruction,

which is already highly significant (see Discussion).

C. elegans

To test whether the presence of large numbers of high-dimensional directed simplices is a

general phenomenon of neural networks rather than a specific phenomenon found in this

part of the brain of this particular animal and at this particular age, we computed the numbers

of directed simplices in the C. elegans connectome (Varshney et al., 2011) (Materials and

Methods 3.4.6). Again, we found many more high-dimensional simplices than expected from

a random circuit with the same number of neurons (Figure S3.9).

Simplicial architecture of neocortical microcircuitry

To understand the simplicial architecture of the microcircuit, we began by analyzing the sub-

graphs formed only by excitatory neurons, only by inhibitory neurons, and only in individual

layers by both excitatory and inhibitory neurons. Restricting to only excitatory neurons barely

reduces the number of simplices in each dimension (Figure 3.3A1), while simplex counts in

inhibitory sub-graphs are multiple orders of magnitude smaller (Figure 3.3A2), consistent with

the fact that most neurons in the microcircuitry are excitatory. Analyzing the sub-graphs of

the layers in isolation shows that layers 5 and 6, where most of the excitatory neurons reside

(Markram et al., 2015), contain the most simplices and the largest number of high-dimensional

simplices (Figure 3.3A3).

The large number of simplices relative to the number of neurons in the microcircuit implies

that each neuron belongs to many directed simplices. Indeed, when we counted the number

of simplices to which each neuron belongs across dimensions, we observed a long-tailed dis-

tribution such that a neuron belongs on average to thousands of simplices (Figure 3.3B). Both

the mean maximal dimension and the number of simplices a neuron belongs to are highest

in the deeper cortical layers (Figure 3.3C). Neurons in layer 5 belong to the largest number

of simplices, many spanning multiple layers (Figure 3.3D), consistent with the abundance

of neurons with the largest morphologies, which are connected to all layers. On the other

hand, layer 6 has the largest number of simplices that are fully contained in the layer (Figure

3.3A3), consistent with the fact that layer 6 contains the most neurons. While the number of

simplices that can form in the microcircuitry depends essentially on the number of neurons,

the number of simplices to which a single neuron belongs depends fundamentally on its

number of incoming and outgoing connections (its degree), which in turn depends on its

morphological size (Figure 3.3E).
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Figure 3.3 – A1: Number of simplices in each dimension in the excitatory subgraph (shaded
area: standard deviation across seven instantiations). A2: Same, for the inhibitory subgraph.
A3: Same, for the subgraphs of individual layers. B: Distribution across seven instantiations
of the complete graph of the number of 3-simplices an excitatory (red) or inhibitory (blue)
neuron belongs to (simplices / neuron). C: Mean over neurons in individual layers of the
highest dimension of a simplex that they belong to. D: Correlation of 3-simplices / neuron
and degree in the graph for all neurons. E: Simplices / neuron by layer and dimension.

3.2.3 Topology organizes spike correlations

The presence of vast numbers of directed cliques across a range of dimensions in the neocortex,

far more than in null models, demonstrates that connectivity between these neurons is highly

organized into fundamental building blocks of increasing complexity. Since the structural

topology of the neural network takes into account the direction of information flow, we

hypothesized that emergent electrical activity of the microcircuitry mirrors its hierarchical

structural organization. To test this hypothesis, we simulated the electrical activity of the

microcircuit under in vivo-like conditions (Markram et al., 2015).

Stimuli, configured as nine different spatio-temporal input patterns (Figure 3.4A), were in-

jected into the reconstructed microcircuit through virtual thalamo-cortical fibers in which

spike trains were induced using patterns recorded in vivo (Bale et al. (2015); Figure S3.10;

Materials and Methods 3.4.7). These stimuli differed primarily in the degree of synchronous

input received by the neurons. As expected, the neurons in the microcircuit responded to the

inputs with various spiking patterns, in a manner that depended on their positions within

simplices (Figures 3.4B1 and 3.4B4). We then calculated for each connected pair of neurons the

correlation of their spiking activity (Figure 3.4C) and found a broad distribution of correlation

coefficients, with only ∼12% of connections where either the pre- or postsynaptic neuron

77



Chapter 3. Cliques of neurons bound into cavities

failed to respond during all stimuli.

To avoid redundant sampling when testing the relationship between simplex dimension and

activity, we restricted our analysis to maximal simplices, i.e., directed simplices that are not

part of any higher-dimensional simplex (Materials and Methods 3.4.1). A connection can be

part of many higher dimensional maximal simplices, unless it is itself a maximal 1-simplex.

Despite the restriction to maximal simplices, we retained all information about the structure

of the microcircuit because the complete structure is fully determined by its list of maximal

simplices (Materials and Methods 3.4.1). Correlations were calculated from histograms of the

average spiking response (peri-stimulus time histogram, PSTH; bin size, 25 ms) to five seconds

of thalamo-cortical input over 30 repetitions of a given input pattern (Figure 3.4B3). We then

calculated the normalized cross-covariance of the histograms for all connections (Figure 3.4B4;

Materials and Methods 3.4.8) and compared it to the number of maximal simplices associated

with each connection in each dimension (see Figure 3.4D).

The neurons forming maximal 1-simplices displayed a significantly lower spiking correlation

than the mean (Figure 3.4D), an indication of the fragility and lack of integration of the connec-

tion into the network. The mean correlation initially decreased with the number of maximal

2-simplices a connection belongs to, and then increased slightly. We observed that the greater

the number of maximal 2-simplices a connection belongs to, the less likely it is to belong to

higher dimensional maximal simplices, with the minimum correlation occurring when no

connection belongs to any simplices of dimension higher than 3. In higher dimensions, the

correlation increased with the number of maximal simplices to which a connection belongs.

While very high mean correlation can be attained for connections belonging to many maximal

3- or 4-simplices, the mean correlation of connections belonging to just one maximal 5- or

6-simplex was already considerably greater than the mean. These findings reveal a strong rela-

tionship between the structure of the network and its emergent activity and specifically that

spike correlations depend on the level of participation of connections in high-dimensional

simplices.

To determine the full extent to which the topological structure could organize activity of

neurons, we examined spike correlations between pairs of neurons within individual simplices.

These correlations increased with simplex dimension (Figure 3.4E, blue), again demonstrating

that the degree of organization in the activity increases with structural organization. Spike

correlation between pairs of neurons is normally an ambiguous measurement of connection

strength because it is influenced by the local structure, specifically by indirect connections

and/or shared inputs (Brody, 1999; Palm et al., 1988). However, since in our case the local

structure is known and described in terms of directed simplices, we could infer how the local

structural organization influences spike correlations. We compared the impact of indirect

connections and of shared inputs on correlated activity by calculating the average correlation

of pairs of neurons at different positions in a simplex when ordered from source to sink (Figure

3.4E, right panel). The number of indirect connections is highest for the pair consisting of

the first (source) and last (sink) neurons (Figure 3.4E, purple), while the number of shared
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Figure 3.4 – A: Patterns of thalamic innervation in the reconstruction. Each circle represents
the center of innervation of a thalamic fiber. Each color represents a unique thalamic spike
train assigned to that fiber. B1: Exemplary directed simplex in a microcircuit. B2: Connectivity
and morphological types of neurons in the exemplary simplex. B3: Raster plot and PSTH
(∆t =10 ms) of spiking response of neurons in B1,2 to stimulus S30b. B4: Correlation coeffi-
cients of all pairs of PSTHs in B3. C: Correlation coefficients of PSTHs for all stimuli and all
connected pairs of neurons in a microcircuit (∆t =25 ms). D: Mean correlation coefficients
for connected pairs of neurons against the number of maximal simplices the edge between
them belongs to, dimension by dimension. Means of fewer than 1000 samples omitted. E:
Mean correlation coefficient of pairs of neurons, given their position within a simplex and its
dimension.

inputs is highest for the last and second-to-last neurons (Figure 3.4E, red). The first (source)

and second neurons (Figure 3.4E, green) serve as a control because they have the smallest

numbers of both indirect connections and shared inputs in the simplex.

We found that correlations were significantly higher for the last two neurons in the simplex,

suggesting that shared input generates more of the pairwise correlation in spiking than indirect

connections in directed simplices (p < 8·10−6, all dimensions except 1D). Moreover, the spiking

correlation of the source and sink neurons was similar to the correlation of the first and second

neurons (Figure 3.4E, green and purple), further suggesting that spike correlations tend to

increase as shared input increases. These results hold for a range of histogram time bin sizes

(Figure S3.11). The specific positions of neurons in local structures such as directed simplices

therefore shape the emergence of correlated activity in response to stimuli.

3.2.4 Cliques of neurons bound into cavities

Simplices are the mathematical building blocks of the microcircuitry. To gain insight into

how its global structure shapes activity, it is necessary to consider how simplices are bound
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together. This can be achieved by analyzing the directed flag complex, which is the set of all

directed simplices, together with the set of all sub-simplices for each simplex (Figure S3.12,

Materials and Methods 3.4.1). The directed flag complex is a complete representation of the

graph, including in particular the cycles neglected when examining directed simplices in

isolation. The relationship between any two directed simplices depends on how they share

sub-simplices. Just as any simplex can be realized as a polyhedron, a directed flag complex

can be realized as a geometric object, built out of these polyhedra. If two simplices share a

sub-simplex, the corresponding polyhedra are glued together along a common face (Figure

3.5A). The “shape” (or, more precisely, the topology) of this geometric object fully describes

the global structure of the network.

To analyze directed flag complexes we computed two descriptors, the Euler characteristic and

Betti numbers (Materials and Methods 3.4.1). The Euler characteristic of a flag complex is

given by the alternating sum of the number of simplices in each dimension, from zero through

the highest dimension (Figure 3.5A). The Betti numbers together provide an indication of the

number of cavities (or more precisely, homology classes) fully enclosed by directed simplices

in the geometric object realizing the directed flag complex, where the dimension of a cavity

is determined by the dimension of the enclosing simplices. The nth Betti number, denoted

βn , indicates the number of n-dimensional cavities. For example, in Figure 3.5A, there is

one 2-dimensional cavity (and therefore β2 = 1) enclosed by the eight triangles; if an edge

were added between any two non-connected nodes, then the geometric object realizing the

corresponding flag complex would be filled in with solid tetrahedra, and the cavity would

disappear. In the flag complexes of the reconstructions, it was not possible to compute more

than the zero and top nonzero Betti numbers, as lower dimensions were computationally too

expensive (Materials and Methods 3.4.2). We could easily compute all Betti numbers for the C.

elegans connectome, however, as it has many fewer nodes and edges (Figure S3.9).

The Betti number computations showed that there are cavities of dimension 5 (cavities com-

pletely enclosed by 5-simplices/six-neuron directed cliques) in all seven instances of each

of the reconstructions (Bio1-Bio5, Figure 3.5B; Bio-M not shown). In contrast, the ER- and

PR-control models have no cavities of dimension higher than 3, and the GB-model has no cav-

ities of dimension higher than 4, demonstrating that there are not only non-random building

blocks in the reconstruction, but also non-random relationships among them. We found as

well that the information encoded in β5 and the Euler characteristic together captures enough

of the structure of the flag complex of a reconstruction to reveal subtle differences in their

connectivity arising from the underlying biological data (Figure 3.5B, different colors).

3.2.5 Cliques and cavities in active sub-graphs

Thus far we have shown that the structural network guides the emergence of correlated activity.

To determine whether this correlated activity is sufficiently organized to bind neurons together

to form active cliques and cliques together to form active cavities out of the structural graph,
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we represented the spiking activity during a simulation as a time series of sub-graphs for

which we computed the corresponding directed flag complexes. Each sub-graph in this series

comprises the same nodes (neurons) as the reconstruction, but only a subset of the edges

(synaptic connections), which are considered active, i.e., the presynaptic neuron spikes in a

time bin of size∆t1 and the postsynaptic neuron spikes within a time∆t2 after the presynaptic

spike (Figures 3.5C and S3.13, Materials and Methods 3.4.9). By considering subsequent, non-

overlapping time bins of constant size ∆t1, we obtain a time series of transmission-response

(TR) graphs reflecting correlated activity in the microcircuitry. We converted the time series of

TR graphs in response to the different patterns of thalamo-cortical inputs (see Figure 3.4A)

into time series of directed flag complexes. We found significantly more simplices in the

TR graphs (∆t1 = 5 ms, ∆t2 = 10 ms) than would be expected based on the number of edges

alone (Figure 3.5D), indicating that correlated activity becomes preferentially concentrated in

directed simplices.

The nine stimuli generated different spatio-temporal responses and different numbers of

active edges (Figure 3.6A). The variation in Betti numbers and Euler characteristic over time

indicates that neurons become bound into cliques and cavities by correlated activity (Figures

3.6A and S3.14). When we plotted the number of cavities of dimension 1 (β1) against the

number of those of dimension 3 (β3) (the highest dimension in which cavities consistently

occur), the trajectory over the course of approximately 100 ms (Figure 3.6B) began ∼50 ms

after stimulus onset with the formation of a large number of 1-dimensional cavities, followed

by the emergence of 2-dimensional (not shown) and 3-dimensional cavities. The decrease

in β1 began while β3 was still increasing and continued until β3 reached its peak, indicating

that higher dimensional relationships between directed simplices continued to be formed by

correlated activity as the lower dimensional relationships subside.

Different stimuli led to Betti number trajectories of different amplitudes, where higher degrees

of synchrony in the thalamic input produced higher amplitudes. The trajectories all followed

a similar progression of cavity formation towards a peak level of functional organization

followed by relatively rapid disintegration. The center of the projection of each trajectory

onto the β1-axis (its β1-center) was approximately the same. Together, these characteristics of

the trajectories reveal a stereotypical evolution of cliques and cavities in response to stimuli.

These observations are consistent with experimentally recorded in vivo responses to sensory

stimuli in terms of onset delay, response duration, and the presence of distinct phases of the

response (Luczak et al., 2015).

To determine the neurons involved in this robust evolution of functional organization, we

recorded the mean levels of spiking activity at different spatial locations within the microcircuit

for one exemplary stimulus (Figure 3.6C). The activity started at depths that correspond to the

locations of the thalamo-cortical input (Markram et al., 2015; Meyer et al., 2010), increasing in

layer 4 and at the top of layer 6, before propagating downwards, reaching the top of layer 5

and the center of layer 6 as β1 peaks, consistent with the finding that most directed simplices

are in these layers. The transition from increasing β1 to increasing β3 coincided with the
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Figure 3.5 – A: Example of the calculation of the Euler characteristic of a directed flag complex
as an alternating sum of Betti numbers or simplex counts. B: Euler characteristic against the
highest non-zero Betti number (β5) for seven instances of reconstructed microcircuits based
on five different biological datasets (Bio 1-5). C: Top: The transmission-response (TR) graph
of the activity of a microcircuit is a subgraph of its structural connectivity containing all nodes,
but only a subset of the edges (connections). Bottom: An edge is contained if its presynaptic
neuron spikes in a defined time bin and its postsynaptic neurons spikes within 10 ms of the
presynaptic spike. D: Fraction of edges active against fraction of high-dimensional simplices
active in TR graphs for various time bins of a simulation. Error bars indicate the standard
deviation over 10 repetitions of the simulation. Blue triangles: 4-dimensional simplices, blue
squares: 5-dimensional simplices. Red symbols and dashed lines indicate the results for
choosing edges randomly from the structural graph and the number expected for random
choice, respectively.
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Figure 3.6 – A: Number of edges, β1, β3 and Euler characteristic of the time series of TR graphs
in response to the stimulus patterns shown in Figure 3.4 (mean and SEM of 30 repetitions of
each stimulus). B: Trace of the time series of β1 against β3 for three of the stimuli. Shading
of colors indicates Gaussian profiles at each time step with means and standard deviations
interpolated from 30 repetitions of each stimulus. C: Trace for one of the stimuli in B, along
with the mean firing activity at different locations of the microcircuit during time steps of 2
ms. D: Like B, but for TR graphs of Bio 1-5, in response to stimulus S15b.
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spread of the upper activity zone deeper into layer 5 and the top of layer 6, consistent with

the presence there of the highest dimensional directed simplices. The bottom activity zone

also continued moving deeper, until it eventually subsided. As the top activity zone reached

the bottom of layer 5, β3 attained its peak. The zones of activity at the peaks of β1 and β3 are

highly complementary: zones active at the peak of β1 were generally inactive at the peak of β3

and vice versa. The activity zone then remained in layer 5 until the cavities collapsed.

Finally, we applied the same stimulus to the reconstructions based on variations in the under-

lying biological data (see Figure 3.5B, Bio-1 to 5) and found similar Betti number trajectories,

indicating that the general sequence of cavity formation toward peak functional organization

followed by disintegration is preserved across individuals. On the other hand, we observed

markedly different amplitudes, indicating that biological variability leads to variation in the

number of high-dimensional cavities formed by correlated activity (Figure 3.6D). We also

found that, unlike the case of different stimuli applied to the same microcircuit (Figure 3.6B),

trajectories arising from different biological variations have differentβ1-centers. In some cases,

we observed reverberant trajectories that also followed a similar sequence of cavity formation,

though smaller in amplitude. The general sequence of cavity formation and disintegration,

however, appears to be stereotypic across stimuli and individuals.

3.3 Discussion

This study provides a simple, powerful, parameter-free, and unambiguous mathematical

framework for relating the activity of a neural network to its underlying structure, both locally

(in terms of simplices) and globally (in terms of cavities formed by these simplices). Using this

framework revealed an intricate topology of synaptic connectivity containing an abundance of

cliques of neurons and of cavities binding the cliques together. The study also provides novel

insight into how correlated activity emerges in the network and how the network responds to

stimuli.

Such a vast number and variety of directed cliques and cavities had not been observed before

in any neural network. The numbers of high-dimensional cliques and cavities found in the

reconstruction are also far higher than in null models, even in those closely resembling the

biologically-based reconstructed microcircuit, but with only some of the biological constraints

released. We verified the existence of high-dimensional directed simplices in actual neocortical

tissue. We further found similar structures in a nervous system as phylogenetically different

as that of the worm C. elegans (Varshney et al., 2011) suggesting that the presence of high-

dimensional topological structures is a general phenomenon across nervous systems.

We showed that the spike correlation of a pair of neurons strongly increases with the num-

ber and dimension of the cliques they belong to and that it even depends on their specific

position in a directed clique. In particular, spike correlation increases with proximity of

the pair of neurons to the sink of a directed clique, as the degree of shared input increases.

These observations indicate that the emergence of correlated activity mirrors the topological
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complexity of the network. While previous studies have found a similar link for motifs built

from 2-dimensional simplices (Chambers and MacLean, 2016; Pajevic and Plenz, 2012), we

generalize this to higher dimensions. The fact that each neuron belongs to many directed

cliques of various dimensions explains in vivo observations that neurons can “flexibly join

multiple ensembles” (Miller et al., 2014). Braids of directed simplices connected along their

appropriate faces could possibly act as synfire chains (Abeles, 1982), with a superposition of

chains (Bienenstock, 1995) supported by the high number of cliques each neuron belongs to.

Topological metrics reflecting relationships among the cliques revealed biological differences

in the connectivity of reconstructed microcircuits. The same topological metrics applied to

time-series of transmission-response sub-graphs revealed a sequence of cavity formation

and disintegration in response to stimuli, consistent across different stimuli and individual

microcircuits. The size of the trajectory was determined by the degree of synchronous input

and the biological parameters of the microcircuit, while its location depended mainly on the

biological parameters. Neuronal activity is therefore organized not only within and by directed

cliques, but also by highly structured relationships between directed cliques, consistent with a

recent hypothesis concerning the relationship between structure and function (Luczak et al.,

2015).

The higher degree of topological complexity of the reconstruction compared to any of the null

models was found to depend on the morphological detail of neurons, suggesting that the local

statistics of branching of the dendrites and axons is a crucial factor in forming directed cliques

and cavities, though the exact mechanism by which this occurs remains to be determined (but

see Stepanyants and Chklovskii (2005)). The number of directed 2-, 3-, and 4-simplices found

per 12-patch in vitro recording was higher than in the digital reconstruction, suggesting that

the level of structural organization we found is a conservative estimate of the actual complexity.

Since the reconstructions are stochastic instantiations at a specific age of the neocortex, they

do not take into account rewiring driven by plasticity during development and learning.

Rewiring is readily triggered by stimuli as well as spontaneous activity (Le Be and Markram,

2006), which leads to a higher degree of organization (Chklovskii et al., 2004; Holtmaat and

Svoboda, 2009) that is likely to increase the number of cliques. The difference may also partly

be due to incomplete axonal reconstructions that would lead to lower connectivity, but such

an effect would be minor because the connection rate between the specific neurons recorded

for this comparison is reasonably well constrained (Reimann et al., 2015).

The digital reconstruction does not take into account intracortical connections beyond the

microcircuit. The increase in correlations between neurons with the number of cliques to

which they belong should be unaffected when these connections are taken into account

because the overall correlation between neurons saturates already for a microcircuit of the

size considered in this study, as we have previously shown (Markram et al., 2015). However,

the time course of responses to stimuli and hence the specific shape of trajectories may be

affected by the neighboring tissue.
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In conclusion, this study suggests that neocortical columns process information through a

stereotypical progression of clique and cavity formation and disintegration, consistent with

a recent hypothesis of common strategies for information processing across the neocortex

(Harris and Shepherd, 2015). We conjecture that a stimulus may be processed by binding

neurons into cliques of increasingly higher dimension, as a specific class of cell assemblies,

possibly to represent features of the stimulus (Braitenberg, 1978; Hebb, 1949), and by binding

these cliques into cavities of increasing complexity, possibly to represent the associations

between the features (Engel and Singer, 2001; Knoblauch et al., 2009; Willshaw et al., 1969).

3.4 Materials and methods

3.4.1 The topological toolbox

Specializing basic concepts of algebraic topology, we have formulated precise definitions of

cliques (simplices) and cavities (as counted by Betti numbers) associated to directed networks.

What follows is a short introduction to directed graphs, simplicial complexes associated to

directed graphs, and homology, as well as to the notion of directionality in directed graphs

used in this study. We define, among others, the following terms and concepts (Table 3.1

below).

Table 3.1 – The topological toolbox

Term Description Page
Directed graph Network where each edge has a source and a target 86
Simplex Clique of all-to-all connected nodes 87
Directed simplex Simplex in a directed graph, with a source and a sink 88
Source (of simplex) The node that is only a source of edges in a directed sim-

plex
88

Sink (of simplex) The node that is only a target of edges in a directed sim-
plex

88

Face (of simplex) Obtained by leaving out one node of a simplex 87
Simplicial complex Description of a graph in terms of its simplices and their

relations
87

Maximal simplex Not a face of any larger simplex 87
Directionality Formalized, intuitive measure of directionality in a graph 88
Betti numbers Description of a graph in terms of the number of cavities 89
Euler characteristic Alternating sum of number of simplices 90

Directed graphs

A directed graph G consists of a pair of finite sets (V ,E) and a function τ= (τ1,τ2) : E →V ×V .

The elements of the set V are the vertices of G , the elements of E are the edges of G , and the

function τ associates with each edge an ordered pair of vertices. The direction of an edge e

with τ(e) = (v1, v2) is taken to be from τ1(e) = v1, the source vertex, to τ2(v) = v2, the target
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vertex. The function τ is required to satisfy the following two conditions.

1. There are no (self-) loops in the graph (i.e., for each e ∈ E , if τ(e) = (v1, v2), then v1 6= v2).

2. For any pair of vertices (v1, v2), there is at most one edge directed from v1 to v2 (i.e., the

function τ is injective).

Notice that a directed graph may contain pairs of vertices that are reciprocally connected, i.e.,

there may exist edges e,e ′ ∈ E such that τ(e) = (v1, v2) and τ(e ′) = (v2, v1) (Figure S3.12A1(ii)).

A vertex v ∈ G is said to be a sink if there exists no e ∈ E such that v = τ1(e), but there is at

least one edge e ′ ∈ E such that τ2(e ′) = v . Similarly v is said to be a source is if there exists no

e ∈ E such that v = τ2(e), but there is at least one e ′ ∈ E such that τ1(e ′) = v (Figure S3.12A1(i)

and (iii)). A path in a directed graph G consists of a sequence of edges (e1, ...,en) such that for

all 1 ≤ k < n, the target of ek is the source of ek+1, i.e., τ2(ek ) = τ1(ek+1) (Figure S3.12A1(iii)).

The length of the path (e1, ...,en) is n. If, in addition, target of en is the source of e1, i.e.,

τ2(en) = τ1(e1), then (e1, ...,en) is an oriented cycle. A graph that contains no oriented cycles is

said to be acyclic (Figure S3.12A1(i)).

A directed graph is said to be fully connected if for every pair of distinct vertices, there exists an

edge from one to the other, in at least one direction.

Simplices, simplicial complexes, and flag complexes

An abstract directed simplicial complex is a collection S of finite, ordered sets with the property

that if σ ∈S , then every subset τ of σ, with the natural ordering inherited from σ, is also a

member of S . A subcomplex of an abstract directed simplicial complex is a sub-collection

S ′ ⊆ S that is itself an abstract directed simplicial complex. Abstract directed simplicial

complexes are a variation on the more common ordinary abstract simplicial complexes, where

the sets forming the collection S are not assumed to be ordered. To be able to study directed

graphs, we use this slightly more subtle concept. Henceforth, we always refer to abstract

directed simplicial complexes as simplicial complexes.

The elements σ of a simplicial complex S are called its simplices. We define the dimension of

σ (denoted dim(σ)) to be the cardinality of the set σ minus one. If σ is a simplex of dimension

n, then we refer to σ as an n-simplex of S . The set of all n-simplices of S is denoted Sn . A

simplex τ is said to be a face of σ if τ is a subset of σ of a strictly smaller cardinality. A front

face of an n-simplex σ= (v0, ..., vn) is a face τ= (v0, ..., vm) for some m < n. Similarly, a back

face of σ is a face τ′ = (vi , . . . , vn) for some 0 < i < n. If σ = (v0, . . . , vn) ∈ Sn then, for each

0 ≤ i ≤ n, the i th face of σ is the (n −1)-simplex σi obtained from σ by removing the vertex

vn−i . A simplex that is not a face of any other simplex is said to be maximal. The set of all

maximal simplices of a simplicial complex determines the entire simplicial complex, since

every simplex is either maximal itself or a face of a maximal simplex.
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A simplicial complex gives rise to a topological space by geometric realization. A 0-simplex is

realised by a single point, a 1-simplex by a line segment, a 2-simplex by a (filled in) triangle,

and so on for higher dimensions (see Munkres (1984), Section 1). To form the geometric

realization of the simplicial complex, one then glues the geometrically realized simplices

together along common faces. The intersection of two simplices in S , neither of which is

a face of the other, is a proper subset, and hence a face, of both of them. In the geometric

realization this means that the geometric simplices that realize the abstract simplices intersect

on common faces, and hence give rise to a well-defined geometric object.

If S is a simplicial complex, then the union S (n) =Sn ∪·· ·∪S0, called the n-skeleton of S ,

is a subcomplex of S . We say that S is n-dimensional if S = S (n), and n is minimal with

this property. If S is n-dimensional, and k ≤ n, then the collection Sk ∪ . . .∪Sn is not a

subcomplex of S because it is not closed under taking subsets. However if one adds to that

collection all the faces of all simplices in Sk ∪ . . .∪Sn , one obtains a subcomplex of S called

the k-coskeleton of S , which we will denote by S(k). Coskeleta are important for computing

homology (see Materials and Methods 3.4.2).

Simplicial complexes of directed graphs

Directed graphs give rise to directed simplicial complexes in a natural way. The directed

simplicial complex associated to a directed graph G is called the directed flag complex of G

(Figure S3.12A2). This concept is a variation on the more common construction of a flag

complex associated with an undirected graph Aharoni et al. (2005). If G = (V ,E ,τ) is a directed

graph, then the directed flag complex associated to G is the abstract directed simplicial

complex S = S (G ), with S0 = V and whose directed n-simplices Sn for n ≥ 1 are (n +1)-

tuples (v0, . . . , vn), of vertices such that for each 0 ≤ i < j ≤ n, there is an edge in G directed

from vi to v j . The vertex v0 is called the source of the simplex (v0, . . . , vn), as there is an edge

directed from v0 to vi for all 0 < i ≤ n. Conversely, the vertex vn is called the sink of the simplex

(vn , . . . , vn), as there is an edge directed from vi to vn for all 0 ≤ i < n.

Notice that because of the assumptions on τ, an n-simplex in S is characterized by the (or-

dered) sequence (v0, . . . , vn), but not by the underlying set of vertices. For instance (v1, v2, v3)

and (v2, v1, v3) are distinct 2-simplices with the same set of vertices.

Directionality of directed graphs

We give an intuitive, mathematical definition of the notion of directionality in directed graphs,

and prove that directed simplices are fully connected directed graphs with maximal direction-

ality. Let G = (V ,E ,τ) be a directed graph. For each vertex v ∈G , define the signed degree of v

to be

sd(v) = Indeg(v)−Outdeg(v). (3.1)
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Note that for any finite graph G ,
∑

v∈G sd(v) = 0. We define the directionality of G , denoted

Dr(G ), to be the sum over all vertices of the square of their signed degrees (Figure S3.7),

Dr(G ) = ∑
v∈V

sd(v)2. (3.2)

Let Gn denote a directed n-simplex, i.e., a fully connected directed graph on n +1 vertices

such that every complete subgraph has a unique source and a unique sink. Note that a

directed n-simplex has no reciprocal connections. If G is any directed graph on n +1 vertices,

then Dr(G ) ≤ Dr(Gn). If additionally G is a fully connected directed graph without reciprocal

connections, then equality holds if and only if G is isomorphic to Gn as a directed graph. A full

proof of these statements is given in the supplementary methods (Appendix A.1.1).

Homology

Betti numbers and Euler characteristic are numerical quantities associated to simplicial com-

plexes that arise from an important and very useful algebraic object one can associate with any

simplicial complex, called homology. Homology serves to measure the “topological complex-

ity” of simplicial complexes, leading us to refer to Betti numbers and Euler characteristic as

topological metrics. In this study we use only mod-2 simplicial homology, computationally the

simplest variant of homology, which is why it is very commonly used in applications (Bauer

et al., 2017). What follows is an elementary description of homology and its basic properties.

Betti numbers Let F2 denote the field of two elements. Let S be a simplicial complex.

Define the chain complex C∗(S ,F2) to be the sequence {Cn =Cn(S ,F2)}n≥0, such that Cn is

the F2-vector space whose basis elements are the n-simplices σ ∈Sn , for each n ≥ 0. In other

words, the elements of Cn are formal sums of n-simplices in S .

For each n ≥ 1, there is a linear transformation called a differential

∂n : Cn →Cn−1 (3.3)

specified by ∂n(σ) = σ0 +σ1 + ·· ·+σn for every n-simplex σ, where σi is the i -th face of σ,

as defined above. Having defined ∂n on the basis, one then extends it linearly to the entire

vector space Cn . The n-th Betti number βn(S ) of a simplicial complex S is the F2-vector

space dimension of its n-th mod 2 homology group, which is defined by

Hn(S ,F2) = Ker(∂n)/Im(∂n+1) (3.4)

for n ≥ 1 and

H0(S ,F2) =C0/Im(∂1). (3.5)

For all n ≥ 1, there is an inclusion of vector subspaces Im(∂n+1) ⊆ Ker(∂n) ⊆Cn , and thus the
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definition of homology makes sense.

Computing the Betti numbers of a simplicial complex is conceptually very easy. Let |Sn |
denote the number of n-simplices in the simplicial complex S . If one encodes the differential

∂n as a
(|Sn−1|× |Sn |

)
-matrix Dn with entries in F2, then one can easily compute its nullity,

null(∂n), and its rank, rk(∂n), which are the F2-dimensions of the null-space and the column

space of Dn , respectively. The Betti numbers of S are then a sequence of natural numbers

defined by

β0(S ) = dimF2 (C0)− rk(∂1), and βn(S ) = null(∂n)− rk(∂n+1). (3.6)

Since Im(∂n+1) ⊆ Ker(∂n) for all n ≥ 1, the Betti numbers are always non-negative. The n-

th Betti number βn gives an indication of the number of “n-dimensional cavities” in the

geometric realization of S .

Euler characteristic If S is a simplicial complex, and |Sn | denotes the cardinality of the set

of n-simplices in S , then the Euler characteristic of S is defined to be

χ(S ) = ∑
n≥0

(−1)n |Sn |. (3.7)

There is a well known, close relationship between Euler characterstic and Betti numbers

(Munkres, 1984, Theorem 22.2), which is expressed as follows. If
{
βn(S )

}
n≥0 is the sequence

of Betti numbers for S , then

χ(S ) = ∑
n≥0

(−1)nβn(S ). (3.8)

3.4.2 Computation of simplices and homology

Generating directed flag complexes with hasse diagrams

To obtain the simplices, Betti numbers and Euler characteristic of a directed graph, we first

generate the directed flag complex associated to the graph. Our algorithm encodes a directed

graph and its flag complex as a Hasse diagram. The Hasse diagram then gives immediate

access to all simplices and simplex counts. The algorithm to generate the Hasse diagrams is

fully described in the Supplementary Methods Section 2.2, and the C++ implementation of

the code is publicly available at http://neurotop.gforge.inria.fr/.

Homology computations

Betti numbers and Euler characteristic are computed from the directed flag complexes. All

homology computations carried out for this paper were made with F2 coefficients, using the

boundary matrix reduced by an algorithm from the PHAT library (Bauer et al., 2017).
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The complexity of computing the n-th Betti numbers scales with the number of simplices in

dimensions n −1, n and n +1. In particular, it requires the computation of rank and nullity of

matrices with shapes (n−1)×n and n× (n+1). Due to the millions of simplices in dimensions

2 and 3 in the reconstructed microcircuits (see Results), the calculation of Betti numbers

above 0 or below 5 was computationally not viable. Nevertheless, our Euler characteristic

computations imply that at least one of β2 or β4 must be nonzero, and it is highly likely the βk

is nonzero for all k ≤ 5.

3.4.3 Model of neocortical microcircuitry

Analyses of connectivity and simulations of electrical activity are based on a previously pub-

lished model of neocortical microcircuitry and related methods (Markram et al., 2015). We

analyzed microcircuits that were reconstructed with layer height and cell density data from

five different animals (Bio-1-5), with seven microcircuits per animal forming a mesocircuit

(35 microcircuits in total). In addition, we analyzed microcircuits that were reconstructed

using average data (Bio-M, seven microcircuits). Simulations were run on one microcircuit

each of Bio-1-5 and Bio-M. Each microcircuit contains approximately 31,000 neurons and

approximately 8 million connections. Data about the microcircuit and the neuron models

used in the simulations is available on https://bbp.epfl.ch/nmc-portal/ (Ramaswamy et al.,

2015).

3.4.4 Control networks

Additional control models of connectivity were constructed by removing different biological

constraints on connectivity. We created three types of random matrices of sizes and connection

probabilities identical to the connectivity matrices of the reconstructed microcircuits.

ER-model (random-independent graph)

An empty square connection matrix of the same size as the connection matrix of the recon-

struction was instantiated and then randomly selected off-diagonal entries were activated.

Specifically, entries were randomly selected with equal probabilities until the same number

of entries as in the reconstruction were active. The directed graph corresponding to such a

matrix is the directed analog of an Erdős-Rényi random graph (Erdos and Rényi, 1960).

PR-model (morphology-only, “Peters’ rule”)

A square connection matrix was generated based on the existence of spatial appositions

between neurons in the reconstruction, i.e., instances where the axon of one neuron is within

1 µm of a dendrite of the other neuron. Appositions were then randomly removed from the

matrix with equal probabilities until the same number of connections as in the reconstruction
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remained.

GB-model (shuffled, preserving distance dependence)

The connection matrix of a reconstructed microcircuit was split into 552 submatrices based

on the morphological types of pre- and postsynaptic neurons. Each submatrix was then

randomized by shuffling its connections as follows. Connections in a sub-matrix were first

grouped into bins according to the distance between the somata of their pre- and postsynaptic

cells. Next, for each connection a new postsynaptic target was randomly selected from the

same distance bin. We selected a distance bin size of 75µm, which was the largest bin size that

preserved the distribution of soma-distances of connected pairs of neurons in all sub-matrices

(no statistically significant difference; p > 0.05, KL-test).

3.4.5 Patch clamp experiments

In vitro

Connectivity between layer 5 thick-tufted pyramidal cells was analyzed using multiple somatic

whole-cell recordings (6 to 12 cells simultaneously) on 300µm slices of primary somatosensory

cortex of fourteen- to sixteen-day-old rats. Monosynaptic, direct excitatory connections were

identified by stimulation of a presynaptic cell with a 20-70 Hz train of 5-15 strong and brief

current pulses (1 - 2 nA, 2 - 4 ms). Experiments were carried out according to the Swiss national

and institutional guidelines. Further details are explained in the supplementary methods

(Appendix A.1).

In silico

In order to obtain in silico cell groups comparable to their patched in vitro counterparts, we

designed a cell selection procedure approximating several of the experimental constraints of

the in vitro patch-clamp setup used in this study and explained above. In brief, layer 5 thick-

tufted pyramidal cells were selected from a volume with dimensions of 200µm ×200µm ×
20µm. The size of the volume was chosen to match the field of view usually available in

the in vitro patch-clamp setup and to account for the tendency to patch nearby cells, which

increases the probability of finding connected cells. The total number of cells was then

reduced by randomly discarding a fraction of them, approximating the limited number of

patching pipettes available in vitro (twelve) and the failure rate of the patching. This filtering

step was optimized to match the in silico and in vitro cluster size distributions.

3.4.6 C. elegans connectome

We analyzed part of the C. elegans connectome (Varshney et al., 2011), consisting of 6393

directed chemical synapses, obtained from www.wormatlas.org/neuronalwiring.html.
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3.4.7 Simulation of electrical activity

We performed simulations of neuronal electrical activity during stimulation with spatio-

temporal patterns of thalamic input at the in vivo-like state (as in Markram et al. (2015)),

in the central microcircuit of Bio-M. Additionally, we repeated the same simulations in the

central microcircuits of the Bio-1-5 reconstructions. We ran simulations using nine different

organizations of thalamic input spike trains (see below).

Thalamic stimulation

We used spike trains of 42 VPM neurons extracted from extracellular recordings of the response

to texture-induced whisker motion in anesthetized rats, with up to nine cells in the same

barreloid recorded simultaneously (Bale et al., 2015). Each reconstructed microcircuit is

innervated by 310 virtual thalamo-cortical fibers (Markram et al., 2015). To generate sets

of stimuli with different degrees of synchronous input, we assigned to each fiber one of 5

(SS5), 15 (SS15) or 30 (SS30) spike trains, recorded from distinct VPM neurons. In addition,

we used k-means clustering to form clusters of fibers of size 1 (SSa), 5 (SSb), and 10 (SSc)

(scikit-learn, sklearn.cluster.KMeans, Pedregosa et al. (2011)) that were assigned the same

spike train. This leads to different spatial arrangements of the identical thalamic inputs, and

therefore to different degrees of synchronous input to individual neurons in the microcircuit.

3.4.8 Spike train correlations

We constructed post-stimulus time histograms (PSTHs) for each neuron for each stimulus,

using the mean response to 30 trials of five seconds of thalamic stimulation (with bin size of

25 ms; for additional control, bin sizes of 10, 50, 100, 250, and 500 ms were also used). We then

computed the normalized covariance matrix of the PSTHs of all neurons

Ri j =
Ci j√

Ci i C j j
, (3.9)

where Ci j is the covariance of the PSTHs of neurons i and j . PSTHs of simulations with

different thalamic stimuli were concatenated for each neuron to yield an average correlation

coefficient for all stimuli. In total, correlations are based on the response of all neurons during

30 trials of nine stimuli for five seconds of activity (22.5 minutes).

3.4.9 Transmission-response matrices

The temporal sequence of transmission-response matrices associated to a simulation of

neuronal activity of duration T is defined as

TR(∆t1,∆t2) := {A(n) = A(n,∆t1,∆t2)}N
n=1, (3.10)
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where the n-th matrix, A(n), is a binary matrix describing spiking activity in the time interval

[n ·∆t1, (n +1) ·∆t1 +∆t2], and where N = T /∆t1. The ( j ,k)-coefficient of A(n) corresponding

to the n-th time bin is 1 if and only if the following three conditions are satisfied, where s j
i

denotes the time of the i -th spike of neuron j .

(1) The ( j ,k)-coefficient of the structural matrix is 1, i.e., there is a structural connection

from the neuron with GID j to the neuron with GID k, so that they form a pre-post

synaptic pair.

(2) There is some i such that n∆t1 ms ≤ s j
i < (n + 1)∆t1 ms, i.e., the neuron with GID j

spikes in the n-th time bin.

(3) There is some l such that 0 ms < sk
l − s j

i < ∆t2 ms, i.e., the neuron with GID k spikes

after the neuron with GID j , within a ∆t2 ms interval.

In other words, a non-zero entry in a transmission-response matrix denotes a presynaptic

spike, closely followed by a postsynaptic spike, maximizing the possibility of a causal relation-

ship between the spikes. Based on firing data from spontaneous activity in the reconstructed

microcircuit, we optimized the ∆ti , such that the resulting transmission-response matrices

best reflect the actual sucessful transmission of signals between the neurons in the microcir-

cuit (see supplementary methods, Appendix A.1). Unless noted otherwise, ∆t1 = 5 ms and

∆t2 = 10 ms were used throughout the study.

3.4.10 Data analysis and statistical tests

Analysis of the model and simulations was performed on a Linux computing-cluster using

Python 2.7, including the numpy and scipy libraries (Jones et al., 2001), and custom Python

scripts. We calculated p-values using Welch’s t-test (scipy.stats), unless noted otherwise.
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3.5 Supplementary figures (3.7 to 3.14)

Figure 3.7 – Examples of 5-cliques with various degrees of directionality, as well as the square
of the difference of the in-degree and out-degree of all their nodes.
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Figure 3.8 – Directed simplices of dimensions 2-7, directionality as in Figure S3.7
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Figure 3.9 – The number of simplices and Betti numbers for the C. elegans connectome, and
for an ER-graph with the same number of nodes and the same connection probability.
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3.5. Supplementary figures

Figure 3.10 – A: Same as Figure 3.4A. Each symbol represents the center of innervation of one
of 310 thalamic fibers. B: Spike trains assigned to each thalamic fiber, during first 250 ms of
each stimulus.
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Figure 3.11 – A: Same as Figure 3.4E, but for different PSTH time bin sizes. B: Probability of
both neurons in a connection firing at least once during all stimuli.
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3.5. Supplementary figures

Figure 3.12 – A1: Examples of directed graphs. (i) An acyclic graph. Vertex 1 is a source.
Vertices 2 and 3 are sinks. (ii) A graph with one reciprocal connection, two cycles and no
sources or sinks. (iii) A graph containing a cycle on the vertices 2, 3 and 4. Vertex 1 is a
source. There are two directed paths from vertex 1 to vertex 3: 1-4-3 and 1-2-4-3. A2: Directed
flag complexes associated to the directed graphs in A1. (i) Two 2-simplices correspond to
the two directed 3-cliques. (ii) One 2-simplex corresponds to one directed 3-clique. The
reciprocal connection contributes an additional 1-simplex, but not another 2-simplex. (iii)
One 2-simplex corresponds to a single directed 3-clique. The cycle does not contribute a
2-simplex. B: (i) A Hasse diagram that is not stratified, due to the edge from the vertex 1 to 5.
(ii) A stratified Hasse diagram, where vertices 5, 6, and 7 are the vertices of level 0, vertices 2, 3,
and 4 are of level 1, and vertex 1 is of level 2. This is also an admissible Hasse diagram, where
the outgoing edges are ordered from left to right. Vertex 2 is a front face of vertex 1, while vertex
3 is neither a front nor a back face of a vertex 1, and vertex 4 is back face of a vertex 1. C1: The
geometric realization of a simplicial complex consisting of seven 0-simplices (labeled 1,...,7),
ten 1-simplices, and four 2-simplices. The orientation on the edges is denoted by arrows,
i.e., the tail of an arrow is its source vertex, while the head of an arrow is its target. C2: The
Hasse diagram corresponding to the simplicial complex above. Level k vertices correspond to
k-simplices of the complex and are labeled by the ordered sets of vertices that constitute the
corresponding simplex. Note that, e.g., vertex 23 is a back face of a vertex 123 and a front face
of a vertex 234.
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Figure 3.13 – A: Exemplary connectivity motif of six neurons B: Random spikes generated
for all six neurons. Dashed lines indicate time steps of 10 ms. C: Left: Structural connection
matrix, Right: Resulting transmission-response (TR) matrices for eight time steps indicated
in B. Additionally, structural connections that are not active in the TR graph are indicated in
red, and instances of a spike sequence within ∆t = 7.5 ms that lack a structural connection are
indicated in green.
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Figure 3.14 – A: Mean pairwise correlation of neurons in microcircuit during the first 250ms
of each stimulus, vs. mean firing rate in the same time range. B-F: Correlation vs. topological
metrics.
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4 Impact of higher-order network struc-
ture

This chapter is a preprint of joint work with Eyal Gal, Eilif B. Muller, Henry Markram and

Michael W. Reimann, to be submitted for publication as “Impact of higher-order network

structure on emergent cortical activity.”

Contribution: I performed all simulations and analysis, and created all figures. M.R. devel-

oped the control circuit models. E.G. computed small-worldness. I wrote the original draft

with help by M.R.. Further author contributions are listed at the end of the chapter.

Summary

Synaptic connectivity between neocortical neurons is highly structured. The network struc-

ture of synaptic connectivity includes first-order properties, such as strengths of connections

between different neuron types and distance-dependent connectivity, and higher-order prop-

erties, such as an abundance of cliques of all-to-all connected neurons and small-world

topology. The relative impact of first- and higher-order structure on emergent cortical network

activity is unknown. Here, we compared network topology and emergent activity in two

neocortical microcircuit models with different null models of synaptic connectivity. Both

models have a similar first-order structure, but only one model includes higher-order structure

arising from morphological diversity within neuronal types. We found that morphological

diversity within neuronal types creates more heterogeneous degree distributions, increases

in-degrees at the bottom of layer six, increases the number of cliques, and contributes to a

small-world topology. The increase in higher-order network structure was accompanied by

more nuanced changes in neuronal firing patterns, including increased activity and response

reliability at the bottom of layer six. Without this structure, the dependence of pairwise cor-

relations on the positions of neurons in cliques was reduced. Our study shows that circuit

models with very similar first-order structure of synaptic connectivity can have a drastically

different higher-order network structure, and suggests that the higher-order structure imposed

by morphological diversity within neuronal types has an impact on emergent cortical activity.
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4.1 Introduction

Local synaptic connectivity between neocortical neurons is highly structured (Song et al.,

2005; Perin et al., 2011). Details of first-order structure that can be described by pairwise statis-

tics include distinct mean connection strengths between different neuron types, distance-

dependent connectivity that changes between neuron types, and a bias for reciprocal connec-

tions (Markram et al., 2015). This first-order structure is undoubtedly important for emergent

electrical activity, for example by constraining the interlaminar flow of spiking activity (Reyes-

Puerta et al., 2014) and constraining the excitation-inhibition balance (Rosenbaum et al.,

2017).

Local synaptic connectivity also contains significant higher-order structure, that cannot be

described by pairwise statistics (Benson et al., 2016). Examples are an overexpression of certain

triplet motifs of neurons (Song et al., 2005; Perin et al., 2011), an abundance of cliques of

all-to-all connected neurons (Reimann et al., 2017b) and increased small-worldness (Gal et al.,

2017). Such higher-order structure has been hypothesized to be important for computation

(Braitenberg, 1978; Hebb, 1949; Willshaw et al., 1969; Knoblauch et al., 2009). On the other

hand, modern artificial neural networks have demonstrated impressive computational ca-

pabilities without complex higher-order micro-structures (Simonyan and Zisserman, 2014).

Whether computation in the cortex relies on higher-order structure such as multi-neuron

motifs on top of evidently already complex first-order structure is unknown.

Answering this question in vivo will require simultaneous access to both detailed synaptic

connectivity and electrical activity. While detailed synaptic connectivity of larger areas en-

compassing thousands of neurons might soon become available (Kasthuri et al., 2015), it

will remain difficult to study the direct impact of the network structure on electrical activity,

and even then it would be difficult to quantify the relative impact of first- and higher-order

structure. A modelling approach can help bridge this gap. An algorithmic approach can use

available data to generate emergent connectivity in a neocortical microcircuit model with

diverse morphologies (Reimann et al., 2015). When simulated, this neocortical microcircuit

model (NMC-model) can reproduce an array of in vivo-like neuronal activity (Markram et al.,

2015), and allows us to compare and manipulate detailed—predicted—structure and function.

Here, we utilized a recent finding that first-order connectivity is largely constrained by mor-

phological diversity between neuronal types, and higher-order connectivity by morphological

diversity within neuronal types (Reimann et al., 2017a). Both aspects are captured by the

NMC-model, leading to a biologically realistic micro-structure (Gal et al., 2017).

By connecting neurons according to average axonal and dendritic morphologies (cloud-model)

(Figure 4.1), we created a control circuit that has very similar first order structure, but highly

reduced higher-order structure. We found that this reduced higher-order structure—caused

by disregarding morphological diversity within neuronal types—included more homogeneous

degree distributions, reduced in-degrees at the bottom of layer six, less cliques, and decreased

small-world topology. When we compared electrical activity in the two circuit models, we
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found that the changes in higher-order connectivity were accompanied by nuanced, but

significant changes in neuronal firing patterns, firing rates, response reliabilities and pairwise

correlations.

Our study introduces a rigorous method to reduce higher-order network structure of a neocor-

tical microcircuit model while leaving first-order structure largely intact, and suggests that

higher-order network topology of neocortical microcircuitry shapes cortical function.

4.2 Results

4.2.1 Reducing higher-order network structure

We studied a previously published neocortical microcircuit model (NMC-model) (Markram

et al., 2015). The NMC-model consists of 31’346 neurons belonging to 55 different morpho-

logical types (m-types). Synaptic connectivity between the neurons was derived by consid-

ering appositions of dendrites and axons as potential synapse locations (Figure 4.1A, left),

which were then filtered according to biological constraints (Reimann et al., 2015). While

this connectome is merely a null model of connectivity, it matches a large array of biological

measurements, both in terms of its first-order structure (which we define as structure that can

be described by pairwise statistics, e.g. connection strengths between different m-types and

distance-dependent connectivity) and its higher-order structure (which we define as struc-

ture involving more than two neurons, e.g. common-neighbor bias, over-representation of

cliques of all-to-all connected neurons, and also degree distributions). Neuronal and synaptic

physiology in the model are equally well constrained (Markram et al., 2015).

To assess the specific role of the higher-order synaptic structure on neuronal activity, we

had to reduce the higher-order structure while simultaneously impacting the first-order

structure as little as possible. To this end, we used an alternative cloud-based approach to

derive synaptic connectivity based on the overlap of average dendritic and axonal shapes of

the various morphological neuron types (Figure 4.1A, bottom, right; cloud-model) instead

of specific axo-dendritic appositions of individual neurons. This approach yields similar

properties of first-order structure of the microcircuit connectome, such as distinct connection

strengths between different m-types (and consequently between layers), distance-dependent

connectivity and a bias for reciprocal connections (Reimann et al., 2017a). However, the

cloud-model cannot reproduce an experimentally observed bias for connected neocortical

neurons to share a common neighbor (Perin et al., 2011; Reimann et al., 2017a), indicating a

reduced complexity of its higher-order structure. By comparing electrical activity between the

NMC-model and the cloud-model in a number of simulation experiments, we can thus study

the relative impact of first- and higher-order structure on electrical activity.

To build the control cloud-model, we first generated alternative cloud-based connectomes

for the NMC-model (Figure 4.1B1, red to green), using methods introduced by Reimann et al.

(2017a). Briefly, average axon and dendrite shapes were calculated from reconstructions for
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Figure 4.1 – Reducing higher-order network structure in a neocortical microcircuit model.
(A) Deriving synaptic connectivity between neocortical neurons: Connectivity in the NMC-
model is based on a touch-based approach that considers appositions of dendrites and axons
(Reimann et al., 2015). Connectivity in the control cloud-model considers overlap of average
dendritic and axonal clouds (Reimann et al., 2017a). (B1) We computed network properties
for seven statistical instantiations of the microcircuit (Markram et al., 2015), and simulated
one of them (the NMC-model). The connectome of the NMC-model can be rewired by using
the existing neurons, but reassigning synaptic connectivity according to the cloud-based
approach (see panel A). We then implemented one of the alternative connectomes within
the existing synapses of the NMC-model, resulting in the cloud-model. The rewiring was
restricted to excitatory connections. (B2) Number of connections across connectomes. By
design, the cloud-connectomes have roughly the same number of connections as the NMC-
model. The implemented cloud-model has 0.12% less total connections due to a mismatch in
new connections and available synapses. (C) The cloud connectome is implemented within
the NMC-model by using existing synapses of the same connection type, that is identical
combinations of pre- and postsynaptic morphological neuron types (m-type). (D) The NMC-
and cloud-models have a completely different micro-connectome in terms of connections
between individual neurons (D1) but very similar macro-connectome in terms of number of
connections between the 55 different m-types in the model (D2).
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all morphological neuron types. Next, for each combination of neuron types, their axon- and

dendrite volumes were convolved (see Figure 4.1A, top, right) to yield the expected strength

of their overlap for all possible relative soma locations. Soma locations of neurons were

taken from the NMC-model and used to look up the overlap strengths for all neuron pairs.

Connection probabilities for all pairs were then proportional to the square of the overlap and

normalized such that the total number of connections for each combination of neuron types

matches the NMC-model (Figure 4.1B2, red asterisk and green diamond).

A neuron-to-neuron connection matrix was then instantiated from the probabilities (the

cloud-connectome) and transplanted into the NMC-model, to generate an instance of the

cloud-model that was identical to the NMC-model in terms of neuronal composition, and

morphology and physiology of all individual neurons (Figure 4.1B1). Similarly, the physiology

of individual synapses (strength, kinetics and short-term dynamics) and their locations on

dendrites were taken from the NMC-model; we only changed which presynaptic neurons

innervated them to implement the cloud-based connection matrix (Figure 4.1C). This re-

assignment of innervation was constrained to select a new innervating neuron only from

the same morphological type that innervated it in the NMC-model to preserve the pathway-

specific synaptic physiology, where a pathway is defined as a specific combination of pre- and

postsynaptic m-types, e.g. L4 PC (layer 4 pyramidal cell) to L5 MC (layer 5 Martinotti cell).

However, while synaptic physiology is conserved in this approach, the axonal path length, the

time it takes for a action potential to propagate from the soma to the synapse, is potentially

incorrect. While the average path lengths per pathway are conserved, an action potential

might potentially arrive earlier or later than is appropriate for the distance between pre- and

postsynaptic neuron.

In the cloud-based connection matrix, a small number of neurons received input from m-

types that did not innervate them in the NMC-model. Consequently, a small fraction of

connections could not be instantiated within the existing synapses of the NMC-model and

had to be left out. The loss was minor for excitatory connections (0.12% loss of connections),

but posed a significant problem for inhibitory connections. We therefore implemented the

cloud-connectome only for excitatory connections and kept inhibitory connectivity in the

cloud-model identical to the NMC-model. Supplementary Figures 4.6B and 4.6C provide an

overview of connection losses in the cloud-model. However, note that the loss of connections

is very small compared to the variability in connections between statistical instantiations

of the NMC-model (Figure 4.1B2, orange diamonds), which all have very similar dynamical

properties (Markram et al., 2015).

To control for the minor loss of excitatory connectivity and the shuffling of axonal path lengths

within pathways, we generated an additional control circuit, NMC-modelcloud-control: a total

of 0.12% of excitatory connections were randomly removed from the NMC-model to match

the pathway-specific connection losses in the cloud-model (as in Supplementary Figure 4.6B).

Connections with the the same presynaptic excitatory m-type for each neuron were then

shuffled and assigned new synapses to account for the scrambling of axonal path lengths in
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Table 4.1 – Overview of circuit models and connectomes analyzed in this study.

Circuit Description
NMC-model Simulated neocortical microcircuit model (Markram

et al., 2015).a

NMC-connectomes (n = 6) Additional statistical instantiations of NMC-model
(Markram et al., 2015).a

cloud-connectomes (n = 5) Alternative connectomes for the NMC-model (Reimann
et al., 2017a).

cloud-model Implementation of one cloud-connectome in NMC-
model (excitatory connections only).

NMC-modelcloud-control Control for axon path length shuffle and 0.12% connec-
tion loss in cloud-model.

amc2_Column and mc[0, 1, 3-6]_Column respectively at bbp.epfl.ch/nmc-portal/
downloads → AVERAGE.

Table 4.2 – Overview of control model conservation of NMC-model properties.

Microcircuit properties cloud-model NMC-modelcloud-control

Specific neuron electrophysiology & morphology X X
Pathway-specific synaptic physiology X X
Average (pathway specific) axonal path length X X
Macro-connectome (between m-types) (X)a (X)a

Micro-connectome (between specific neurons) x (X)a

Specific axonal path length x x
a0.12% excitatory connection loss.

the cloud-model (See Figure 4.1C). All circuits and connectomes analyzed in this study are

summarized in Table 4.1.

In summary, our approach ensured that for each neuron in the NMC-model, there was a

corresponding neuron in the cloud-model with identical location, morphology, electrophys-

iology, synaptic physiology, inhibitory innervation and average innervation patterns. On a

larger scale, both models also had nearly identical macro-connectomes in terms of the num-

ber of connections between morphological types (Figure 4.1D2, Supplementary Figure 4.6A

and 4.6B), and consequently also between layers, and between excitatory and inhibitory

sub-populations (Supplementary Figure 4.6C1-3). Only the micro-connectomes defined by

connections between individual neurons were changed within tight global constraints (Fig-

ure 4.1D1). An overview of what is conserved between NMC-model and cloud-model, and

NMC-modelcloud-control can be found in Table 4.2.

4.2.2 Decreased heterogeneity of degree-distributions in cloud-model

As the many features of higher-order connectivity are intrinsically linked, it is virtually im-

possible to predict how changing one will affect the others. As such, we started our analysis
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4.2. Results

Figure 4.2 – Higher-order structure differences between NMC- and cloud-models. (A1) In-
degree distributions of neurons in NMC-model (red), additional NMC-connectomes (orange),
the cloud-model (blue), and the five cloud-connectomes (light blue). Insets show the same
distributions starting from 600 for easier comparison. (A2) As A1, but for out-degree distribu-
tions. (B) Hub-neurons in NMC- and cloud-models. (B1) Scatter plot of in-degree in NMC-
vs. cloud-model for the same neurons. Horizontal lines indicate 2.0% and 0.5% percentile in
NMC-model. (B2) In-hubs in NMC-model by neuronal type in red, in-hubs in cloud-model in
blue (larger than 2.0% and 0.5% percentile in NMC-model). (B3) As B1 but for out-degree. (B4)
As B2 but for out-degree. (C1) In- vs. out-degree scatter plot for NMC-and cloud model for
excitatory neurons in layer 4. (C2) In- vs. out-degree scatter plot for NMC-and cloud model
for excitatory neurons in layer 6. (D1) Difference in in-degree of neurons between NMC- and
cloud model, across cortical depth. The bright red line indicates the mean across y-bins, the
dark red line the standard error of the mean, and the outer, faded line the standard deviation.
(D2) As D1, but for out-degree. (E1) Number of directed cliques (simplices) per dimension
in the different connectomes. (E2) Euler characteristic. (E3) Participation at the sink of 1D
simplices vs. 2D simplices. (F1) Characteristic path length l of the different connectomes. (F2)
Clustering coefficient c of the different connectomes. (F3) Relative small-worldness c/l of the
different connectomes.

111



Chapter 4. Impact of higher-order network structure

by fully characterizing the anatomical differences in the micro-structure of NMC-model and

cloud-model. As shown before (Reimann et al., 2017a), the cloud-model has a reduced higher-

order structure in terms of a bias for two connected neurons to share common neighbors

(common neighbor bias). Another important higher-order characteristic of a network are the

in- and out-degree distributions, which directly shape cortical network dynamics (Landau

et al., 2016). We can see that both in- and out-degree distributions are much more heteroge-

neous in the NMC-model than in the cloud-model (Figure 4.2A1 and 4.2A2, red), across all

layers (Supplementary Figure 4.7).

To better understand the significance of this discrepancy, we next analyzed the connectivity of

the additional six statistical variants of the NMC-model (Figure 4.2 A1, A2 orange). Similarly,

we analyzed the five instances of the cloud-connectome (of which we used one for simulations

where only the excitatory connections were changed, see above) (Figure 4.2 A1, A2 teal). The

difference between cloud-connectome (cloud-based excitatory and inhibitory connections)

and the cloud-model (which differs from the NMC-model only in the excitatory connections)

is very small, showing that inhibitory connections would only have a minor impact on higher-

order structure differences between NMC-model and cloud-model.

The stark difference in connectivity between NMC- and cloud-models is also reflected by hub

neurons, previously defined as the top 0.5% of neurons in terms of in- or out-degree (Gal

et al., 2017), which almost vanish in the cloud-model when using the same cut-off value as

in the NMC-model (Figure 4.2B). This increased heterogeneity of degree distributions in the

NMC-model vs. the cloud-model also extends to the correlations between in- and out-degree

(Figure 4.2C1 and 4.2C2 for excitatory neurons in layers 4 and 6, see Supplementary Figure

4.8 for all neurons), indicating a stronger specialization into input- and output neurons in

the NMC-model. We further found that there was a redistribution of connectivity in terms of

in- and out-degree from the bottom to the top of layer 6 in the cloud-model compared to the

NMC-model (Figure 4.2D1 and 4.2D2). In summary, the cloud-model has a strongly reduced

heterogeneity of connectivity in terms of distributions of in- and out-degrees.

4.2.3 Fewer directed simplices and decreased small-worldness in cloud-model

In addition to the common neighbor bias and heterogeneous degree distributions, the NMC-

model also contains an abundance of all-to-all connected cliques of neurons called simplices

(Reimann et al., 2017b), high-dimensional Betti-numbers describing the topological com-

plexity of the network in terms of cavities formed by the simplices (Reimann et al., 2017b),

and is a small-world network (Gal et al., 2017). While simplices of the same dimensions are

present in cloud- and NMC-models (Supplementary Figure 4.9A), the numbers of simplices of

the same dimension are much larger in the NMC- than in the cloud-model (Figure 4.2E1). A

very different Euler Characteristic (Figure 4.2E2) and different Betti-numbers (Supplementary

Figure 4.9B) further illustrate the drastic change in global properties of network topology

between NMC- and cloud-models (see Methods). The increase in simplex numbers in the
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NMC-model is correlated with the more heterogeneous degree distributions, as neurons with

larger degrees are generally part of more simplices (Figure 4.2E3). Simplex counts in the

cloud-model are much closer to the NMC-model than in simpler control models (Reimann

et al., 2017b). In a previously used control that conserves only the distance-dependence of

connectivity, but ignores the shapes of axonal and dendritic clouds, we found a more drastic

decrease from around 80 million to 40 million 2D-simplices (Reimann et al., 2017b), while the

cloud-model has more than 60 million 2D-simplices.

The decrease in higher-order structure also manifests itself in a change in small-worldness

due to decreased clustering. The characteristic path length l between cloud- and NMC-model

is very similar (Figure 4.2F1), while the clustering coefficient c is much larger in the NMC-

model (Figure 4.2F2), meaning that the NMC-model is more of a small-world network (c/l )

than the cloud-model (Figure 4.2F3). The decrease in the global clustering coefficient can be

attributed to the previously described reduction in the common-neighbor bias (Reimann et al.,

2017a). In summary, the cloud model—with its disregard for morphological diversity within

neuronal types—has strongly reduced numbers of high-dimensional cliques and reduced

small-worldness.

4.2.4 Simulating neuronal activity in NMC- and cloud-models

Impact of higher-order structure on spontaneous activity

We have established that the cloud-model has strongly reduced structural heterogeneity,

which can affect the structural and, consequently, functional excitation-inhibition (EI) balance

(Landau et al., 2016). The functional EI-balance also depends on the extracellular calcium level

([C a2+]o), which differentially modulates the release probability of excitatory and inhibitory

synapses (Markram et al., 2015). In the NMC-model, at low [C a2+]o , the network is in an

asynchronous state of activity (Figure 4.3A1, [C a2+]o = 1.2 mM,1.25 mM). At high [C a2+]o , the

circuit is in a non-biological synchronous state of activity with spontaneous network bursts

(Figure 4.3A1, [C a2+]o = 1.3 mM,1.35 mM). At [C a2+]o = 1.25 mM, just before the transition

from the asynchronous to synchronous state, activity in the microcircuit is in a in vivo-like

state in which it exhibits many properties of in vivo spontaneous and evoked activity (Markram

et al., 2015).

The transition from asynchronous to synchronous states in the cloud-model remains remark-

ably similar to the NMC-model (Figure 4.3A2). The cloud-model appears to transition at

lower [C a2+]o than the NMC-model, but firing rates are nearly identical at [C a2+]o = 1.25 mM

(Figure 4.3B1–3). However, this effect could simply be due to the stronger loss of E → I con-

nections (Supplementary Figure 4.6E1, 1.1% loss) than of E → E connections (Supplementary

Figure 4.6D1, 0.09% loss), rather than the reduced higher-order structure. We therefore also

simulated a control model that takes the connection loss (and also the non-conserved axonal

path lengths) into account (NMC-modelcloud-control; see Tables 4.1 & 4.2). Interestingly, the

inhibitory firing in the NMC-modelcloud-control is significantly reduced compared to the cloud-
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Figure 4.3 – Simulating spontaneous activity in NMC- and cloud-models. (A1) Spontaneous
activity of all neurons in the NMC-model for two trials at different levels of [C a2+]o . Each
spike is represented by a vertical line, whose position on the y-axis is ordered by soma position
in the microcircuit, which was then rasterized. Colored lines depict the population firing rate
(∆t = 10 ms). (A2) Spontaneous activity of all neurons in the cloud-model. (A3) Spontaneous
activity of all neurons in the NMC-modelcloud-control. (B1) Mean firing rate during spontaneous
activity for all neurons. Mean of 20 trials of 1000 ms, error bars indicate standard error of
the mean. (B2) Mean firing rate during spontaneous activity for excitatory neurons. Mean
of 20 trials of 1000 ms, error bars indicate standard error of the mean. (B3) Mean firing rate
during spontaneous activity for inhibitory neurons. Mean of 20 trials of 1000 ms, error bars
indicate standard error of the mean. (C) Total spike count of excitatory neurons divided by the
spike count of inhibitory neurons. Mean of 20 trials of 1000 ms, error bars indicate standard
error of the mean. (D1) All neurons in the microcircuit were divided into 100 interlaminar
clusters (k-means clustering). The red cross marks the geographic center of all neurons for
each cluster. (D2) Correlation-coefficients between combined PSTHs of all neurons of each
combination of clusters vs. distance between clusters. From [C a2+]o = 1.200 mM (bottom
fitted curve, bright yellow dots) to [C a2+]o = 1.300 mM (top fitted curve, dark brown dots).
The fitted line indicates an exponential fit e−d/λ+ c. (D3) As in D2, but at [C a2+]o = 1.25 mM.
The fitted line indicates an exponential fit e−d/λ+ c, parentheses indicate the standard error
of the fit.
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model (Figure 4.3B3), while excitatory firing is conserved (Figure 4.3B2), despite both models

having the same amount of lost connections compared to the NMC-model. Taken together,

this implies that the increased higher-order structure in the NMC-model shifts the ratio of

excitatory and inhibitory activity towards more excitation (Figure 4.3C).

Correlation coefficients of spiking activity between neurons decrease with distance (Markram

et al., 2015). The overall strength of these correlations and their dependence on distance also

depend on [C a2+]o , as we can see in Figure 4.3D2. At the transition from asynchronous to

synchronous activity, correlations coefficients rapidly increase. However, we can see that

at [C a2+]o = 1.25 mM correlations between cloud-and NMC-model are very similar (Figure

4.3D3). While correlations drop slightly faster in the cloud- than in the NMC-model, this can

be fully explained by the non-topological changes controlled for in the NMC-modelcloud-control.

We thus conclude that the higher-order network structure has an impact on emergent dynam-

ics, such as the increase in effective excitation, but does not fundamentally alter the dynamics

of spontaneous activity.

Impact of higher-order structure on evoked activity

We next stimulated the NMC- and cloud-models with thalamic input (Figure 4.4A1) to compare

more detailed dynamic properties between the models, such as spike responses to stimuli,

response reliability (Nolte et al., 2018) and correlations between individual neurons (Reimann

et al., 2017b). Similar to spontaneous activity, the response of the circuits to the input de-

pended on [C a2+]o (Figure 4.4A2-3). As we established that the NMC-model and cloud-models

have a slightly different transition between dynamic states, we compared evoked activity for

up to five [C a2+]o values around the in vivo-like state at [C a2+]o = 1.25 mM. Overall, evoked

activity in the cloud-model looks very similar to evoked activity in the NMC-model (Figure

4.4A2-3). However, over shorter timescales, spike patterns are altered, depending on [C a2+]o

(Figure 4.4B1-3). Activity in NMC-model and NMC-modelcloud-control is very similar (Supple-

mentary Figure 4.10A1–3 and 4.10B1–3), and we thus conclude that the difference in activity

between NMC- and cloud-models arises primarily from the change in higher-order network

structure.

The ratio of overall excitatory to inhibitory activity is increased in the cloud-model, mainly

through a decrease of inhibitory activity at all [C a2+]o levels (Figure 4.4C1-2). However,

consistent with our observation for spontaneous activity, inhibitory activity in the NMC-

modelcloud-control is even lower than in the cloud-model (Supplementary Figure 4.10C), sug-

gesting that most of the loss in inhibitory firing was due to the 1.1% loss of excitatory con-

nections innervating inhibitory neurons and the reduction of higher-order structure in the

cloud-model partly restored it. Similarly, excitatory activity is also higher in the cloud-model

than in the NMC-modelcloud-control, further demonstrating that higher-order structure leads to

a small net loss in neuronal spiking activity. To gain a deeper understanding, we next looked at

the changes in firing rates between models for individual neurons. Excitatory firing rates var-

ied according to the change in in-degree across cortical depth (Figure 4.4D2 vs. Figure 4.2D1),
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Figure 4.4 – Simulating evoked activity in NMC- and cloud-models. (A1) Illustration of the
first 250 ms of the thalamic input stimulating the microcircuit from t = 0 to 5 s. (A2) Evoked
activity for all neurons in the NMC-model in response to input from A1 at three different
[C a2+]o-levels. (A3) Evoked activity for all neurons in the cloud-model at three different
[C a2+]o-levels. (B1) Population firing rate for NMC-model (blue) and cloud-model (red) for a
250 ms time period during the evoked activity (shaded red area in A23) at [C a2+]o = 1.225 mM.
Faint lines: population means for all 30 trials. Thick line: mean of all 30 trials. Bins size: ∆t =
5 ms. (B2) As B1, but for [C a2+]o = 1.25 mM. (B3) As B1 and B2, but for [C a2+]o = 1.275 mM.
(C1) Mean population firing rate of inhibitory neurons during evoked activity at different
[C a2+]o-levels. Error bars indicate standard error of the mean over 30 trials. Note that error
bars for excitatory neurons are smaller than linewidth. (C2) Mean population firing rate
of excitatory neurons during evoked activity at different [C a2+]o-levels. Error bars indicate
standard error of the mean over 30 trials. (D1) Difference in firing rate of inhibitory neurons
during evoked activity at [C a2+]o = 1.25 mM. Blue dots indicate values for individual neurons,
ordered along their soma positions with respect to the y-axis (cortical depth). Lines indicate,
mean (bright red), standard-error (dark red), and standard deviation. Inset: Distribution of all
mean firing rates. (D2) As D1, but for excitatory neurons.
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but not inhibitory firing rates (Figure 4.4D1). The mean change directly reflects the change in

in-degree shown in Figure 4.2D1—which is not surprising as any change in in-degree in the

cloud-model is restricted to excitatory connections. The higher-order structure is thus directly

affecting the structural EI-balance of individual neurons in the network and consequently

shaping firing rates.

We previously showed that the in-degree also influences the spike-timing reliability (Nolte

et al., 2018)—that is how precisely spikes occur at the same time in response to repeated trials

of a thalamic stimulus. Overall, there is little change in spike-timing reliability going from

NMC- to cloud-model (Supplementary Figure 4.11A1 and 4.11A2). However, we found that

there was a drop in reliability near the top of layer 5, which also displays a large in-degree

reduction in the cloud model. We further noted that as the neurons have reduced in-degrees

towards the bottom of layer 6 and spike less, they also become less reliable (Supplementary

Figure 4.11B1–2). While neurons in the cloud-model seem to be generally slightly more

reliable (Supplementary Figure 4.11C1), this can be explained by the slightly shifted EI-balance

(Supplementary Figure 4.11C2). Similar to the firing rate, the change in spike-timing reliability

is clearly correlated with the change in in-degree (Supplementary Figure 4.13A and 4.13B).

Consequently, the change in reliability is also strongly correlated with the change in firing rate

(Supplementary Figure 4.12C1–2 and Supplementary Figure 4.12D). A comparison against

the NMC-modelcloud-control (Supplementary Figure 4.13) confirms that the observed shift in

reliability is primarily caused by the change in higher-order network structure.

Impact on ordering of correlations in cliques

We showed that numbers of directed simplices in the cloud-model are strongly reduced (see

Figure 4.2E1). We previously observed that average pairwise correlations between neurons in

simplices increased with the dimension of the simplex, and also with the position of the pair

of neurons in the simplex (Reimann et al., 2017b). To assess whether there was a change in

this relationship in the cloud-model, we computed pairwise correlations of spiking activity in

response to the thalamic stimulus between all pairs of active neurons (Figure 4.5A). Similar

to correlations between populations of neurons (see Figure 4.3D2), correlation distributions

between individual neurons were very similar between NMC- and cloud-models. The cloud-

model was, however, slightly closer to the transition from asynchronous to synchronous

activity, with consequently generally higher correlation coefficients. Next, we calculated the

average correlation coefficient of a pair of neurons in a n-dimensional simplex. To fairly

compare correlations in NMC- and cloud-models, we compared correlation coefficients at

various [C a2+]o-levels (Figure 4.5B1–2). We found that the average correlation increased with

dimension and position for both NMC- and cloud-models (Figure 4.5B1–2). However, the

magnitude of the dependence on the position of the connection within the simplex changed:

The difference between average correlation coefficients for connections at the source and

the sink position was highly reduced in the cloud-model (Figures 4.5B1–2 and 4.5B3). Note

that to avoid redundancy, the average correlation in Figures 4.5B1–3 is for maximal simplices,
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Figure 4.5 – Simplices and correlations in NMC- and cloud-models. (A1) Correlation coeffi-
cients of the firing rates (∆t = 20 ms) of all connected pairs of active neurons in the microcircuit
for NMC-model, cloud-model, and NMC-modelcloud-control, during the 30 trials of the thalamic
stimulus. (B1) Average correlation coefficient of a connected pair of neurons in a (maximal)
simplex of a certain dimension, depending on the position of the pair in the simplex; for the
NMC-model, for three different [C a2+]o-levels. Black triangles indicate the average correlation
for a pair of neurons at the sink of a simplex, grey squares the average correlation for a pair at
the source of a simplex. (B2) As B1, but for cloud-model. (B3) Difference in average correlation
coefficient for connections of neurons at the sink and the source of a (maximal) simplex.
Solid lines: NMC-model; dashed lines: cloud-model. (C1) Participation of connections in the
source vs. sink of (non-maximal) 2D-simplices in NMC- and cloud-models (constrained to
connections at the center of layers 4, 5, 6). (C2) Participation of connections in the source vs.
sink of (non-maximal) 3D-simplices in NMC- and cloud-models (constrained to connections
at the center of layers 4, 5, 6). (C3) Participation of connections in the source vs. sink of
(non-maximal) 4D-simplices in NMC- and cloud-models (constrained to connections at the
center of layers 4, 5, 6). (D1) Mean correlation given the participation of a connection in
(non-maximal) 2D-simplices at the source and sink, from bright yellow (low correlation) to
dark red (high correlation); in NMC-model, constrained to connections at the center of layers
4, 5, 6. (D2) As D1, but for the cloud-model.
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simplices that are not part of any higher dimensional simplices (Reimann et al., 2017b).

A possible explanation for this diminished hierarchical organization of correlations in sim-

plices could be the higher homogeneity of connectivity in terms of correlations of in- and

out-degrees (see Figure 4.2C1). In fact, this effect extends from the in- and out-degree of

individual neurons to the participation of connections at the source and sink of simplices. The

correlation between the participation of pairs of neurons in simplices as the sink or the source

was highly reduced (Figure 4.5C1–3). Similar to in- and out-degrees for individual neurons,

pairs of neurons in the NMC-model are thus also more specialized into input and output con-

nections. In fact, we found that the expected correlation of a connection is highly influenced

by the participation in simplices as the sink, but not as the source (Figure 4.5D1–2). Taken

together, this illustrates that the increased heterogeneity of synaptic connectivity from cloud-

to NMC-model extends to higher-dimensional motifs of neurons, and shapes the correlation

structure of emergent activity.

4.3 Discussion

We introduced a method to reduce the higher-order structure of synaptic connectivity in a

neocortical microcircuit model, based on a previously published control connectome with a

reduced common-neighbor bias (Reimann et al., 2017a). In this control cloud-model, excita-

tory synaptic connectivity between neurons was derived from average morphologies rather

than appositions of axons and dendrites of individual neurons, as was done in the original

NMC-model (Figure 4.1). We showed that the reduction in higher-order structure in the cloud-

model includes more homogeneous in- and out-degree distributions, the disappearance of

hub neurons, less connectivity towards the bottom of layer 6, less all-to-all directed cliques

of neurons and reduced small-worldness (Figure 4.2). Spontaneous and evoked dynamics in

the NMC-model and cloud-model are superficially very similar (Figures 4.3-4.4), a result that

is not surprising given the conserved first-order structure, including conserved interlaminar

connectivity, structural EI-balance and distance-dependent connectivity. However, some

properties of neuronal activity changed. Global firing patterns diverged, and spike counts

and spike time-reliability of individual neurons changed according to in-degrees (Figure 4.4

& Supplementary Figure 4.11). Most importantly, a hierarchical dependence of correlation

strength on the position of a pair of neurons in directed cliques (simplices) was weaker in

the cloud-model than in the NMC-model (Figure 4.5). In summary, we established a method

that can reduce the higher-order structure of cortical circuitry without changing first-order

structure, leading to very similar global dynamical properties. Nuanced changes in electrical

activity, such as the more homogenous correlation structure in directed cliques, suggest that

higher-order network structure is important for computation in the cortex, for example in

shaping functional plasticity by influencing correlations (Hebb, 1949; Markram et al., 1997b;

Kempter et al., 1999).

Our definition of higher-order structure includes degree distributions of neurons, since these
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cannot be described by the properties of neurons (edges) or connections (vertices) alone,

consistent with previous definitions of higher-order network structure (Benson et al., 2016).

Nevertheless, reducing higher-order network structure while keeping degree distributions

fixed is possible, and such higher-order structure can have an impact on network dynamics

(Ritchie et al., 2014). To better understand the respective impact of changes in in- and out-

degrees on one side, and clustering and high-dimensional motifs on the other side, it will be

necessary to create a more refined control model that conserves degree distributions on top of

first-order structure.

The comparison between NMC- and cloud-models comes with several caveats. Distance-

dependent connectivity in the cloud-model is not perfectly preserved for all m-type combi-

nations (Reimann et al., 2017a). Distance-dependance is however much better conserved

than in a previous control model that disregarding the average shapes of m-types, result-

ing in much fewer simplices (Reimann et al., 2017b). The cloud-model further neglects to

account for inhibitory higher-order structure. However, the structural similarity between

cloud-connectomes (changed excitatory and inhibitory connectivity) and the cloud-model

(changed excitatory connectivity only) suggests that the contribution of inhibitory connections

to higher-order network structure in the NMC-model is negligible. This could potentially be

due to an underestimation of inhibitory higher-order structure in the NMC-model, either due

to insufficient biological data constraining the connectivity, or because inhibitory structure

might only emerge through plasticity (Vogels et al., 2011).

Indeed, this brings us to the most important caveat: The NMC-model is a statistical recon-

struction of a prototypical microcircuit from sparse data. While it captures a high level of

detail of synaptic connectivity (Gal et al., 2017), with strong constraints on the space of con-

nectivity that can be explored by structural plasticity (Reimann et al., 2017a), the model has

not learned to respond to specific stimuli or perform certain computations. This is illustrated

by the fact that the discrimination accuracy to thalamic stimuli targeting different areas of

the microcircuit is almost identical between NMC- and cloud-models (see Supplementary

Figure 4.14). A comparison of numbers of simplices observed in in vitro slice experiments with

similar in silico recordings replicated in the NMC-model shows that the number of simplices

in the NMC-model is likely underestimated by an order of magnitude (Reimann et al., 2017b).

This suggests that a large fraction of biological higher-order structure is not captured by the

NMC-model. This leads to at least two interesting questions to be explored in the future:

Firstly, what is the functional impact of that additional higher-order structure on network

dynamics? Secondly, given a biologically plausible model of structural plasticity, could the

network reach similar higher-order structure starting from both NMC- and cloud-models?

Our method of separating first and higher-order structure need not only be applied to models

that use detailed morphologies, but might also be useful for the interpretation of future dense

reconstructions of brain tissue using electron microscopy (Kasthuri et al., 2015). Once a volume

large enough to contain several neurons of different m-types can be reconstructed, comparing

the “cloud” connectivity of average reconstructed neurons to the actual biological connectivity
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could serve as a powerful control to interpret the structure of synaptic connectivity.

In summary, we introduced a rigorous method for investigating the functional impact of

higher-order network structure of neocortical microcircuitry by comparing a detailed mi-

crocircuit model (Markram et al., 2015) with a control model that disregards morphological

diversity within neuronal types, resulting in a conserved first-order, but reduced higher-order

network structure (Reimann et al., 2017a). Going beyond the common neighbor bias de-

scribed by Reimann et al. (2017a), our analysis demonstrates just how many higher-order

structural properties are constrained by neuronal diversity within neuronal types. In line with

previous theoretical work showing that higher-order structure can impact network dynamics

(Ritchie et al., 2014), our comparison between the two models suggests that the higher-order

network structure of cortical synaptic connectivity impacts emergent dynamics and might be

a non-negligible component of cortical function.

4.4 Methods

4.4.1 Circuit models

Neocortical microcircuit model (NMC-model)

Methods are based on a previously published model of a neocortical microcircuit of the so-

matosensory cortex of the two week-old rat, here called the NMC-model (Markram et al., 2015).

Synaptic connectivity (with adjacency matrix M NMC) between 31’346 neurons belonging to 55

different morphological types (m-types) was derived algorithmically starting from the apposi-

tions of dendrites and axons, and then taking into account further biological constraints such

as number of synapses per connection and bouton densities (Reimann et al., 2015). Neuronal

activity in the NMC-model was then simulated in the NEURON simulation environment

(www.neuron.yale.edu/neuron/). Detailed information about the circuit, NEURON mod-

els and the seven connectomes of the different statistical instantiations of the NMC-model

analyzed in this study are available at bbp.epfl.ch/nmc-portal/ (Ramaswamy et al., 2015).

Simulations and analysis were performed on an HPE SGI 8600 supercomputer (BlueBrain V).

cloud-connectome

Synaptic connectivity based on average morphologies (with adjacency matrix M cloud) was

computed with methods previously described by Reimann et al. (2017a). In brief, for each

m-type mi out of the 55 m-types, we computed V dendr i te
mi

(x, y) and V axon
mi

(x, y), the mean

dendrite and axon density of each m-type, based on 10 reconstructed morphologies per m-

type, with a resolution of 2 µm ×2 µm. Next, we computed for all combinations of m-types

the convolution of axon and dendrite densities V cloud-overlap
mi→m j

(∆y,∆x) =V dendr i te
mi

∗V axon
m j

. This

yielded a measure of the expected strength of the overlap of axon and dendrite for pairs of

neurons at all potential relative soma positions. We then looked up this value for all pairs of
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neurons of a given combination of m-types mi → m j , based on their locations in the NMC-

model and formed a matrix of overlap strengths Ocloud
mi→m j

(stored in a table). We next applied a

transfer function Õ =O2, which was chosen to conserve distance-dependent connectivity from

the NMC-model for most m-type combinations (Reimann et al., 2017a). We then normalized

the matrix Õcloud
mi→m j

to yield a matrix of connection probabilities such that the expected number

of connected pairs equals the number of pairs in the NMC-model:

P cloud
mi→m j

=
Õcloud

mi→m j

c
with c chosen such that P cloud

mi→m j
= M NMC

mi→m j
, (4.1)

where P cloud
mi→m j

is the average connection probability for mi → m j in the cloud-model, and

M NMC
mi→m j

is the average connection probability for mi → m j in the NMC-model. The adjacency

matrix M cloud was then randomly generated from the normalized connection probabilities for

all 55×55 mi → m j combinations.

Five example connectomes for each of the seven NMC-connectomes are available at bbp.epfl.

ch/nmc-portal/downloads → AVERAGE (Reimann et al., 2017a).

cloud-model

We implemented one of the cloud model connectomes(M cloud) within the existing NMC-

model, using pre-existing synapses from the NMC-model. To keep physiological properties

such as mean number of synapses per connection conserved, we rewired connections by

changing the source of netCon in NEURON for all synapses in a connection to a new presynap-

tic neuron according to M cloud, and we constrained this rewiring to connections with the same

presynaptic m-type in the cloud- as in the NMC-model. If there were less connections of a

mi → m j combination than required by M cloud, we duplicated connections and their synapses.

As some neurons receive input in M cloud from neurons that they did not receive input in in

M NMC, some connections could not be implemented. This was a particular problem for in-

hibitory connections, and we therefore only implemented M cloud for excitatory neurons. This

resulted in a connectivity matrix M cloud-model that uses M cloud for excitatory connections (with

a 0.12% loss of connections), and conserved connectivity M NMC for inhibitory connections.

NMC-modelcloud-control

To ensure that any changes in emergent activity were not due to the 0.12% of missing con-

nections, or to a shuffling of path lengths (shuffled delays of action potential propagation

from soma to synapse), we created a control circuit in which we randomly removed exactly

the same number of connections per pathway (0.12%) from the NMC-model as could not be
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implemented in the cloud-model, i.e.:

M NMCcloud-control
mi→m j

= M cloud-model
mi→m j

(4.2)

We then shuffled connections with the same presynaptic m-type for each postsynaptic neuron

(only for excitatory neurons), keeping the connectivity matrix identical but the locations of

synapses randomized as in the cloud-model (and consequently incorrect axonal path lengths).

4.4.2 Simulation

Spontaneous activity

Simulation methods are identical to methods described by Markram et al. (2015): To simulate

spontaneous activity, neurons were injected with a depolarizing somatic current, with currents

expressed as a percent of first spike threshold for each neuron (100% current used). The

USE parameter for synaptic transmission of inhibitory and excitatory synapses was then

differentially modulated by changing the extracellular calcium concentration [C a2+]o . At

[C a2+]o = 1.25 mM, the circuit was in an in vivo-like state of asynchronous activity with a

global balance of excitation and inhibition. We simulated 20 trials of spontaneous activity

(2 seconds) in the NMC-model, cloud-model, and NMC-modelcloud-control at five different

[C a2+]o concentrations around the in vivo-like state at [C a2+]o = 1.25 mM. We further added

two trials of two second duration at other [C a2+]o concentrations to illustrate the transition

from asynchronous to synchronous activity. The first second of activity was discarded, as the

circuit has not yet reached a resting state.

Evoked activity

We simulated spontaneous activity for seven seconds, as described above. After one second

(at t = 0 ms, as we discard the first second) we apply a thalamic stimulus through synapses of

310 VPM fibers that innervate the microcircuit. The stimulus lasts five seconds (t = 0 to 5 s)

and is identical to a previously described stimulus (Reimann et al., 2017b; Nolte et al., 2018)

based on in vivo thalamic recordings to whisker deflection (Bale et al., 2015). We simulated 30

trials of the same stimulus in the NMC-model, cloud-model and NMC-modelcloud-control at

five different [C a2+]o concentrations around the in vivo-like state at [C a2+]o = 1.25 mM.

Spatial discrimination

We stimulated the microcircuit by activating five different clusters of five thalamic fibers at five

different locations in the microcircuit (−50,−25, 0, 25, and 50 µm from center). We simulated

activity in the NMC-model and cloud-model 20 times each for the five different stimulus

locations at three [C a2+]o concentrations around the in vivo-like state at [C a2+]o = 1.25 mM.

The stimulus consists of a single spike in each of the five fibers at t = 0, 50, 100, 150, 200, and
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250 ms.

4.4.3 Analysis

In-degree

Number of presynaptic connections a neuron forms with other neurons in the microcircuit.

Out-degree

Number of postsynaptic connections a neuron forms with other neurons in the microcircuit.

Simplices

A simplex is a clique of all-to-all connected neurons. Methods and definitions were adapted

from Reimann et al. (2017b). In brief, if G = (V ,E) is a directed graph, where V is a set of

vertices (neurons) and E a set of ordered pairs of vertices (directed connections between

neurons), then its directed nD-simplices for n ≥ 1 are (n + 1)-tuples (v0, . . . , vn) of vertices

such that for each 0 ≤ i < j ≤ n, there is an edge in G directed from vi to v j . Neuron 0 (the

vertex v0), the source of the simplex (v0, . . . , vn), receives no input from within the simplex, but

innervates all neurons in the simplex (there is an edge directed from v0 to vi for all 0 < i ≤ n).

Neuron 1 (v1), receives input from Neuron 0, and innervates Neurons 2 (v1) to n (vn), and

so forth. Neuron n, the sink, receives input from all neurons in the simplex, but does not

innervate any (there is an edge directed from v0 to vi for all 0 < i ≤ n). See Figure 4.2E1 for

an illustration. Note that reciprocal connections are counted separately: an n-simplex in

G is defined by the (ordered) sequence (v0, . . . , vn), but not by the underlying set of vertices

(neurons). For instance (v1, v2, v3) and (v2, v1, v3) are distinct 2D-simplices with the same

neurons. We computed simplices using flagser (https://github.com/luetge/flagser).

Higher-order in-degree

We define the N D-in-degree as the number of N D-simplices a neuron is the sink of. For

1D-simplices (a pair of connected neurons), this is simply the in-degree.

Simplex participation of pairs of neurons

We define as the N D-participation of connections at the source or the sink of a simplex how

many N D-simplices a connection is part of as the source (neurons 0 and 1) or at the sink

(neurons N −1 and N ). See inset next to Figure 4.11B for an illustration.
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Betti numbers

In brief, Betti numbers describe the number of “cavities” or “holes” formed by the simplices

in each dimension. Betti numbers were computed using flagser (https://github.com/luetge/

flagser). Detailed methods are as previously described by Reimann et al. (2017b).

Euler characteristic

The alternating sum of the number of simplices in each dimension (and of non-zero Betti-

Numbers).

Small-worldness

Methods are as defined by Gal et al. (2017) and were computed using the Brain Connectivity

Toolbox (Rubinov and Sporns, 2010). In brief, we first computed the characteristic path length

of the network, defined as the mean shortest path length of all pairs of neurons (N = 31346):

l = 1

N (N −1)

∑
i 6= j

li j (4.3)

We next defined the network-wide clustering coefficient as:

c = 1

N

∑
i

(M +M T )3
i i

2(d tot
i (d tot

i −1)−2M 2
i i )

(4.4)

where M is the binary connection matrix and d tot
i the combined in- and out-degree of each

neuron i . Thus, c = 0 indicates that there are no common neighbors, and c = 1 indicates

that all neighbors are mutually connected. The ratio of c/l gives indication about the small-

worldness of the network. We showed previously that the NMC-model has a small-world

topology by comparing it to different control models (Gal et al., 2017). A smaller value of c/l

for the cloud-than NMC-model thus shows that small-worldness decreases.

Firing rate

We defined the firing rate (FR) as the average number of spikes in a time bin of size ∆t , divided

by ∆t .

Spike-timing reliability

Spike-timing reliability was quantified with a correlation-based measure (Schreiber et al.,

2003). The spike times of each neuron n in each trial k (K = 30 trials) were convoluted with a

Gaussian kernel of width σS = 5 ms to result in filtered signals s(n,k, ; t ) for each neuron n and

each trial k (∆tS = 0.5 ms). For each neuron n, the spike-timing reliability is defined as the
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mean inner product between all pairs of signals divided by their magnitude:

rspi ke (n) = 2

K (K −1)

∑
k 6=l

s(n,k; t ) · s(n, l ; t )

|s(n,k; t )| · |s(n, l ; t )
(4.5)

Computation of spike-timing reliability is identical to a previous study (Nolte et al., 2018).

Correlation coefficients

We computed peristimulus time histograms (PSTHs) for each neuron i to the 30 trials of the

thalamic stimulus (with a bin size ∆t=20 ms), and next computed the normalized covariance

matrix of the PSTHs of all neurons:

Ri j =
Ci j√

Ci i C j j
(4.6)

Ci j is the covariance of PSTHs of neurons i and j . The analysis is replicating a previous

analysis by Reimann et al. (2017b).

Logistic regression

We used scikit-learn "sklearn.linear_model.LogisticRegression" (solver=’liblinear’, max_iter=100,

multi_class=’ovr’; otherwise default parameters) (Pedregosa et al., 2011) to classify the spike-

count responses of neurons in layers 4, 5, and 6 in response to five different stimuli at three

[C a2+]o concentrations. We used the total spike count for each of 20 trials for each neuron

between t = 0 and 300 ms. We randomly picked 1, 10, 20, ..., or 100 neurons from layer 4, upper

layer 5, lower layer 5, upper layer 6 or lower layer 6. For each of the 11×5×3 combinations

(number of neurons × neuron location × [C a2+]o), we randomly selected the right number of

neurons and then kept 80% as a training and 20% as a test set. Classification accuracy was

then based on the mean accuracy of 300 runs with randomly selected neurons.

Supporting information

Supporting information includes Supplementary Figures 4.6-4.14.
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4.5 Supplementary figures (4.6 to 4.14)

Figure 4.6 – Macro-connectome of NMC- and cloud-models. (A) Total number of connec-
tions between m-types in NMC-model. (B) Relative loss of connections from NMC- to cloud-
model between each pathway (combination of pre- and postsynaptic m-types). (C1) Relative
loss of connections from NMC- to cloud-model between layers and excitatory and inhibitory
neurons. (C2) Total loss of connections from NMC- to cloud-model between layers and excita-
tory and inhibitory neurons. (C3) Total number of connections in NMC-model between layers
and excitatory and inhibitory neurons. (D1) Out-degree of excitatory neurons counting only
excitatory (E) connections. Numbers describe total numbers of E-to-E connections in NMC-
and cloud-models. (D2) In-degree of excitatory neurons counting only excitatory connections.
(E1) Out-degree of excitatory neurons counting only connections formed with postsynaptic
inhibitory (I ) neurons. Numbers describe total numbers of E-to-I connections in NMC- and
cloud-models. (E2) In-degree of inhibitory neurons counting only excitatory connections.
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Figure 4.7 – In- and out-degrees across layers. (A) In-degrees of neurons in NMC- and cloud-
models, by layer and excitatory/inhibitory sub-type. (B) Out-degrees of neurons in NMC- and
cloud-models, by layer and excitatory/inhibitory sub-type.
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Figure 4.8 – In- and out-degree correlations. (A) Correlations between in- and out-degree for
all inhibitory neurons in NMC- and cloud-models, sorted by layer. (B) Correlations between
in- and out-degree for all excitatory neurons in NMC- and cloud-models, sorted by layer.
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Figure 4.9 – Simplices and Betti-numbers. (A) Number of simplices of dimensions 4, 5, 6 and
7 across circuits. Same legend as B. (B) Betti-numbers across circuits.
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Figure 4.10 – PSTHs and firing rates. (A1-3) Peristimulus time histograms (PSTHs) for NMC-
model, cloud model and NMC-modelcloud-control for different [C a2+)]o levels. Thick line indi-
cates the mean of 30 trials, the faint lines show the individual trials. (B1-3) Same data as in A1-3,
but ordered by model instead of [C a2+)]o . (C) Population firing rate during evoked activity at
different [C a2+)]o levels, across models and excitatory and inhibitory sub-populations.
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Figure 4.11 – Spike-timing reliability. (A1) Spike-timing reliability rspi ke in NMC-model at
[C a2+]o = 1.25 mM. The bright red line indicates the mean of all neurons per 50 µm bin,
solid black lines indicate standard error of the mean, and the outer dashed lines the standard
deviation, for around 3000 excitatory neurons in the center of the microcircuit. (A2) Difference
in spike-timing reliability ∆rspi ke between NMC- and cloud-models at [C a2+]o = 1.25 mM.
The bright red line indicates the mean of all neurons per 50 µm bin, solid black lines indicate
standard error of the mean, and the outer dashed lines the standard deviation, for around 3000
excitatory neurons in the center of the microcircuit. (B1) Spike raster of neurons at different
locations in layer 6, in NMC- and cloud-models. (B2) Difference in spike-timing reliability
∆rspi ke between NMC- and cloud-models at [C a2+]o = 1.25 mM. The bright red line indicates
the mean of all neurons per 50 µm bin, dark red lines indicate standard error of the mean,
and the outer lines the standard deviation, for 1092 excitatory neurons in the center of layer
6. (C1) Spike-timing reliability rspi ke in NMC- and cloud-models at [C a2+]o = 1.25 mM, for
1092 excitatory neurons in the center of layer 6. (C2) Spike-timing reliability rspi ke NMC- and
cloud-models at different [C a2+]o-levels, for 1092 excitatory neurons in the center of layer 6.
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Figure 4.12 – Spike-timing reliability and firing rate. (A) In-degree vs. spike-timing reliability
rspi ke for NMC- and cloud-models for 1092 excitatory neurons in the center of layer 6.. (B)
Difference in in-degree vs. difference in spike-timing reliability ∆rspi ke between NMC- and
cloud-models for 1092 excitatory neurons in the center of layer 6. (C1) Firing rate vs. spike-
timing reliability for 1092 layer 6 excitatory neurons in the center of the NMC-model. (C2)
Firing rate vs. spike-timing reliability for selected layer 6 excitatory neurons in NMC-model.
(D) Difference in Firing rate vs. spike-timing reliability between NMC- and cloud-models
(same neurons as in A–C).
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Figure 4.13 – Spike-timing reliability and firing rate in NMC-modelcloud-control. (A1) Differ-
ence in firing rate of excitatory neurons during evoked activity at [C a2+]o = 1.25 mM between
NMC-model and NMC-modelcloud-control. Blue dots indicate values for individual neurons,
ordered along their soma positions with respect to the y-axis (cortical depth). Lines indicate
mean (bright red), standard-error (black), and standard deviation (dashed). (A2) As A1, but
between NMC-modelcloud-control and cloud-model. (B1) As A1, but for spike-timing reliability
in L6. (B2) As B1, but between NMC-modelcloud-control and cloud-model. (C1) Expected corre-
lation coefficients between connections of neurons at the sink and the source of a simplex
of a given dimension, for NMC-modelcloud-control. (C2) Difference in expected correlation
coefficients between connections of neurons at the sink and the source of a simplex of a given
dimension, for NMC-model and NMC-modelcloud-control.
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Figure 4.14 – Stimulus discrimination (A) Deviation of firing rate to mean in response to a
stimulus at different positions (−50 µm to −50 µm from center) (B) Discrimination accuracy
given the number of randomly chosen neurons used to classify the stimulus with logistic
regression.
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5 Conclusion

At the beginning of this thesis, we set out to untangle emergent cortical dynamics. This

was motivated by the observation that in vivo responses of cortical neurons to the same

stimulus are often highly variable across trials, but sometimes extremely reliable. There are

many competing explanations for how the observed variability might emerge within a local

network of cortical neurons, from neuronal properties—such as synaptic noise—to network

properties—such as chaos. It remained unclear how reliable responses arise and how they

relate to the observed variability.

To tackle this question, we chose a simulation-based approach in order to have a complete view

of, and exert full control over, the structure and function of a local neocortical microcircuit.

Given the state of current technology, this is still rather difficult to achieve in vitro or in vivo. We

argue that making meaningful qualitative and quantitative predictions about how observed

cortical dynamics emerge requires a data-constrained model without ad hoc simplifying

assumptions (Chapter 1.1.3). Different models can often explain the same function, making

it hard to interpret how the mechanisms of the model relate to the true neurobiological

mechanisms (Landau et al., 2016). For example, different cellular noise sources and chaotic

network dynamics can provide explanations for observed cortical variability in vivo (Moreno-

Bote, 2014; London et al., 2010). Therefore, making predictions about the impact of these

sources of variability requires data-constrained estimates of their magnitudes.

5.1 Summary of main conclusions

We simulated neuronal activity in a neocortical microcircuit model of the somatosensory

cortex of the two-week old rat—the NMC-model (Markram et al., 2015)—to make predictions

about how the dynamics of spontaneous and evoked activity emerge from the structure of

neocortical microcircuitry. Below is a summary of the most important original findings that

form part of this thesis:

1. Cell-type specific whisker flick responses emerge at the microcircuit level (Chapter 1.3.2).
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We showed that the NMC-model, which was reconstructed according to available bio-

logical data without ad hoc simplifying assumptions, exhibits fundamental properties

of spontaneous and evoked neocortical activity in vivo. In particular, in response to

a strong thalamic stimulus imitating a whisker ’flick’, reliable and cell-type specific

responses emerged, as previously observed in vivo (Reyes-Puerta et al., 2014). This adds

to the growing evidence that many spike-patterns arise from the general structure of

neocortical microcircuitry (MacLean et al., 2005; Luczak et al., 2007). This result also

raised an important question which we were able to address using our model: How

can reliable responses emerge in a microcircuit that models many biological noise

sources, which, according to a signifcant body of theoretical and experimental evidence,

is ostensibly chaotic (van Vreeswijk and Sompolinsky, 1996, 1998; London et al., 2010)?

2. Synaptic noise forms an integral part of cortical chaotic network dynamics (Chapter

2). We confirmed that intrinsic cortical network dynamics in a deterministic version

of the NMC-model are chaotic, but found that the timescale of chaotic divergence is

orders of magnitude faster when simulating biological noise sources, most importantly

synaptic noise. Stochastic synaptic release is often not taken into account, for example

even when studying origins of internally generated variability (Huang et al., 2019). Our

finding adds to the growing evidence that synaptic noise is a non-negligible component

of cortical network dynamics (Moreno-Bote, 2014).

3. Synaptic noise overshadows other local cellular noise sources (Chapter 2). We added

additional noise to predict the impact of missing ion-channel noise, and found that it

would have to be almost as large as synaptic noise (> 1 mV) to have an impact on intrin-

sic chaotic dynamics beyond synaptic noise. While a comparison with more detailed

models of missing cellular noise sources is required, this suggests that other intrinsic

noise sources need not always be modeled when incorporating voltage fluctuations due

to synaptic noise.

4. Reliable responses and chaotic, divergent dynamics are not mutually exclusive (Chapter

2). We observed that the dynamics of chaotic divergence during evoked, reliable activity

followed exactly the same timescale as during spontaneous activity. This adds to the

theoretical evidence that reliability and chaos can coexist in cortical networks (Rajan

et al., 2010; Lajoie et al., 2013, 2016), even in the face of intrinsic biological noise sources

driving the chaotic dynamics with constant perturbations.

5. A near-critical EI-balance enables cortical circuitry to respond reliably amid noise and

chaos (Chapter 2). We found that the reliability of the response strongly depends on the

global EI-balance, with a steep increase in reliability near the “critical” point of transition

from asynchronous to synchronous activity, adding to the growing evidence that the

brain maintains a near-critical state (Shew et al., 2009), and specifically supporting the

hypothesis that the cortex operates just below the critical threshold (Priesemann et al.,

2014). The reliability of the response can thus be fine-tuned by any mechanism that

shifts the EI-balance, such as neuromodulation (Colangelo et al., 2019).
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6. Poisson-like spike count variability does not emerge at the microcircuit level, but reflects

reliable responses to uncontrolled inputs to the local circuitry (Chapter 2). Even though

intrinsic variability in the NMC-model was high in terms of chaotic divergence, we

found fairly low spike count variability in the absence of external inputs, contradicting a

previous simplified study (Moreno-Bote, 2014). Our findings suggest that Poisson-like

spike count variability does not arise from intrinsic, within-network dynamics, but is

caused by unobserved inputs, be it hidden inputs from other brain areas, external noise,

or global modulation (Fairhall, 2019; Musall et al., 2018; Muller et al., 2018).

7. Cortical circuitry contains an abundance of directed, all-to-all connected cliques of

neurons called simplices (Chapter 3 & 4). We applied basic methods of algebraic topology

to the microcircuit model and observed an abundance of all-to-all connected cliques

of neurons (Chapter 3) that was highly diminished in control models (Chapters 3 &

4), providing further evidence of the highly non-random structure of cortical circuitry

(Song et al., 2005; Perin et al., 2011).

8. These simplices shape a hierarchy of spiking correlations (Chapters 3 & 4). We found

that these simplices shape pairwise spike correlations between neurons, with a hier-

archical ordering of expected correlation coefficients according to simplex dimension

and position of a connection within the simplex (Chapter 3). When we simulated a

neurobiologically invalid control model with a substantial reduction in higher-order

structure (Reimann et al., 2017a) (and consequently far fewer simplices), this position-

dependence was notably weaker (Chapter 4).

Taken together, these simulation results show that neurobiological details such as stochastic

synaptic release and higher-order structure of synaptic connectivity shape emergent cortical

network dynamics, and that the impact of omitting such details in a simplified cortical network

model requires careful evaluation.

5.2 Future directions

The predictions of the NMC-model come with many caveats. The NMC-model, while very

detailed and constrained to biological data, uses interpolation and generalization to fill in

gaps where data is missing. Notably, there are several important features of local cortical

microcircuitry that could shift dynamics in the NMC-model—though in which direction these

shifts would occur remains to be seen. We discussed many of these details extensively in

Chapter 2.3. Below, we address what we identify as the three most significant caveats for the

predictions in this thesis, which will need to be tested in the near future: the role of dendritic

non-linearities such as NMDA-spikes (Figure 5.1A), structural and functional plasticity (Figure

5.1B), and whole-brain integration (Figure 5.2).
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Figure 5.1 – Future directions I. (A) Dendritic non-linearities. Spike-timing reliability rspike in
response to a thalamic stimulus for the same neurons and methods as in Chapter 2 vs. rspike

for a decoupled replay in which synapses are directly placed on the soma. A filter accounts for
the effective attenuation and delay to the synaptic current caused by the dendrite (Rössert
et al., 2016). Using this second approach, the effect of the dendrite onto the synaptic current is
approximately conserved for each individual synaptic input, but any interactions between
different synaptic inputs are removed. (B) Structural and functional plasticity. Structural
plasticity could lead to increased higher-order structure without violating known biological
constraints.

5.2.1 Dendritic non-linearities

Nonlinear dendritic events are widespread throughout the cortex and have important compu-

tational functions (London and Häusser, 2005). For example, dendritic events shape orien-

tation selectivity by a nonlinear response to functionally clustered synaptic inputs (Wilson

et al., 2016). In the NMC-model, we can easily compare neuronal activity with and without

interactions of synaptic inputs in the dendrite by using the decoupled replay mechanism

introduced in Chapter 2 together with an automated synaptic filtering approach (Rössert et al.,

2016). In a first preliminary investigation, we repeated the thalamic stimulus and reliability

analysis from Chapter 2 with filtered synapses on the soma (i.e. with synaptic interactions

removed), and found that there was a slight, but systematic increase in reliability when re-

moving dendritic interactions (Figure 5.1). However, we observed no fundamental change

in network dynamics. A specific type of nonlinear dendritic event, long lasting N-methyl-D-

aspartate-mediated plateau potentials (NMDA-spikes), can be evoked by clustered synaptic

inputs onto the dendritic tree (Schiller et al., 2000; Antic et al., 2010). These plateau potentials

can facilitate faster, and perhaps more reliable, responses to inputs (Antic et al., 2018; Shai

et al., 2014). However, we did not observe emergent NMDA-spikes in the NMC-model. This

could have several explanations: The NMDA-receptor model used in the NMC-model (Jahr

and Stevens, 1990) might not be suitable to model NMDA-spikes (Chindemi, 2018). Moreover,
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while NMDA-spikes have been observed in several cortical areas and species (Antic et al.,

2010), there is—to the best of our knowledge—no direct evidence yet of NMDA-spikes in the

somatosensory cortex of the two-week-old rat. Finally, synaptic clustering in the NMC-model

is lower than in vivo, as synapses from long-range connections are missing (around 80% of

excitatory synapses, see below). The impact of dendritic plateau events on emergent cortical

network dynamics thus remains to be studied in a more refined version of the NMC-model,

with more accurate NMDA-receptor models, increased synaptic clustering due to inputs from

other brain areas, and increased synaptic clustering due to structural and functional plasticity.

5.2.2 Structural and functional plasticity

The NMC-model uses data from different rats to build a prototypical microcircuit model. This

means that any specific structure unique to one rat is lost. However, neurobiologically realistic

models of functional and structural plasticity might recover some of that specific structure

(Chindemi, 2018). There is reason to believe that the higher-order structure of the microcircuit

could drastically increase: In Chapter 3, we approximated the in vitro 12 patch-clamp setup

in silico to compare the number of simplices observed in the NMC-model to the number

of simplices found in vitro (Figure 3.2). As it is difficult to exactly simulate and validate the

patching process, we refrained from comparing relative frequencies of simplices in vitro and in

the NMC-model. When dividing the number of observed simplices in Figure 3.2 by the number

of real and simulated experiments respectively, we find that there are around 0.7−0.8 2D-

simplices per simulated 12 patch-clamp experiment in the microcircuit, but 4.7 2D-simplices

per 12 patch-clamp experiment in vivo. Similarly, there are around 0.04−0.06 3D-simplices

per experiment in the NMC-model, compared to 0.7 in vitro. While these estimates should be

treated cautiously, they suggest that the NMC-model in its naive form underestimates sim-

plices by an order of magnitude. Simulating neurobiologically constrained structural plasticity

might still take some time, but it will soon be possible to study the impact of a biophysical

model of long-term functional synaptic plasticity in the NMC-model (Chindemi, 2018). Pre-

liminary data suggest that the dependence of pairwise correlations on simplices shown in

Chapter 3 increases. Following the findings of Chapter 4, we can expect that an increase in

higher-order structure due to structural plasticity will further increase this dependence and

shape emergent network dynamics.

5.2.3 Whole-brain integration

This thesis focused on the intrinsic dynamics of a local neocortical microcircuit. While it

is certainly important to understand the structural and functional properties of individual

components of the whole brain, local dynamics are of course also influenced by global inputs

and long range recurrent connectivity. It is estimated that around 80% of cortical inputs

to the local circuit come from other cortical areas (Reimann et al., 2017a). It might soon

be possible to start untangling the impact of whole-brain integration on local microcircuit

dynamics (Reimann et al., 2019). Figure 5.2 shows a mouse microcircuit model of similar size
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Figure 5.2 – Future directions II. Whole-brain integration: A mouse microcircuit (colored
detailed morphologies) with a similar number of neurons as the NMC-model, embedded in a
draft model of the primary somatosensory cortex (S1; point neurons), embedded in the whole
brain (translucent). Visualization: Cyrille Favreau & Blue Brain Scientific Visualization team.

to the NMC-model (in terms of neurons; colored detailed morphologies) embedded in the

primary somatosensory cortex (point neurons). Perhaps more important, especially for our

predictions from Chapter 2, is integration with the thalamus, which controls cortical states

(Poulet et al., 2012), including recurrent connections, which may soon be possible. Indeed,

models of thalamic neurons are already available (Iavarone et al., 2019). Non-local inputs

also include neuromodulators such as acetylcholine that might fundamentally alter emergent

cortical dynamics with cell-type and synapse-type specific effects (Colangelo et al., 2019).

5.3 Concluding remarks

The results of this thesis are predictions that require experimental validation. Yet, we are

certain that neuroscience will eventually reach a point where interpretation of some experi-

mental results will require simulation of validated models that integrate diverse data, similar

to many branches of physics. For example, in particle physics, interpretation of the data

coming out of the Large Hardron Collider, and subsequently the discovery of the Higgs boson,

required detailed simulations, from particle collisions to detector physics (Aad et al., 2010).

Neuroscience might still be decades away from this point, however we believe that the results

in this thesis are a step in that direction. Untangling emergent cortical dynamics across scales

of biological detail will require models with carefully validated components and informed

simplifications.
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A Appendix: Cliques of neurons bound
into cavities

This appendix contains the supplementary methods for joint work with Michael W. Reimann,

Martina Scolamiero, Katharine Turner, Rodrigo Perin, Giuseppe Chindemi, Paweł Dłotko,

Ran Levi, Kathryn Hess and Henry Markram; it has been published as “Cliques of neurons

bound into cavities provide a missing link between structure and function” in Frontiers in

Computational Neuroscience (Reimann et al. (2017b); https://doi.org/10.3389/fncom.2017.

00048).

Contribution: Editing—The appendix is included in the thesis for completeness only. Proof of

maximal directionality: M.R. and R.L.; Generation of directed flag complexes: P.D., R.L. and

K.H.; In vitro slice experiments: R.P.; Optimization of the parameters: M.R.

A.1 Supplementary methods

A.1.1 Proof: Maximal directionality of directed simplices

We defined the directionality of G to be the sum over all vertices of the square of their signed

degrees, i.e.,

Dr(G ) = ∑
v∈V

sd(v)2.

Let Gn denote a directed n-simplex, i.e., a fully connected directed graph on n +1 vertices

such that every fully connected subgraph has a unique source and a unique sink, and which

therefore has no reciprocal connections.

Proposition 1. If G is a directed graph on n +1 vertices, then Dr(G ) ≤ Dr(Gn). If additionally

G is a fully connected directed graph without reciprocal connections, then equality holds if and

only if G is isomorphic to Gn as a directed graph.

Proof. We prove this result by induction on n. Observe that it holds trivially for n = 1, since
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every complete directed graph on two vertices is a directed 1-simplex. Assume that the

proposition holds for all n < N , and let G be a complete directed graph on N +1 vertices,

v0, ..., vN . Without loss of generality, suppose that the signed degree of v0 is maximal, i.e.,

sd(v0) ≥ sd(vi ) for all i ≥ 1.

Create a new graph G ′ by reversing the direction of each edge that is directed away from v0, so

that v0 becomes a sink in G ′. Let v ′
0, . . . , v ′

N denote the vertices of G ′, such that v ′
i is the vertex

corresponding to vi . Then sd(v ′
0) = N , and for each i ≥ 1 such that the edge from v0 to vi was

reversed, one has

sd(v ′
i ) = sd(vi )−2,

since only edges involving v0 can change when passing from G to G ′.

Let k be the number of edges in G that change orientation in passing from G to G ′. Observe

that

Dr(G ′) = (sd(v0)+2k)2 + ∑
edge from v0
unchanged

sd(v j )2 + ∑
edge from v0

reversed

(sd(vi )−2)2

= Dr(G )+4
∑

edge from v0
reversed

(sd(v0)− sd(vi )︸ ︷︷ ︸
≥0∀i

)+4k2 +4k

≥ Dr(G ),

where equality holds if and only if k = 0, i.e., if v0 is already a sink in G . Note that if k 6= 0, so

that v0 is not already a sink in G , then no vertex of G is a sink, since sd(v0) ≥ sd(vi ) for all i ≥ 1,

and a vertex v of a complete directed graph on N +1 vertices is a sink if and only if sd(v) = N .

The subgraph G ′′ of G ′ spanned by the vertices v ′
1, . . . , v ′

N is a complete directed graph on N

vertices. By induction, Dr(G ′′) ≤ Dr(GN−1), with equality holding if and only if G ′′ is a directed

(N −1)-simplex. Therefore

Dr(G ) ≤ Dr(G ′) = Dr(G ′′)+N 2 ≤ Dr(GN−1)+N 2 = Dr(GN ),

with equality holding only if v0 is a sink in G , and G ′′ is a directed (N −1)-simplex, i.e., if and

only if G is a directed N -simplex.

Directionality of directed simplices is proportional to the cube of their dimension.

Lemma 2. For each n ≥ 1,

Dr(Gn) = n(n +1)(n +2)

3
.

Proof. Let v0, . . . vn be the vertices of Gn ordered from sink to source. It is easy to see that the
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associated sequence of signed degrees takes the form

n,n −2,n −4, . . . ,2,0,−2, . . . ,4−n,2−n,−n,

if n is even, and

n,n −2,n −4, . . . ,1,−1, . . . ,4−n,2−n,−n,

if n is odd. Hence

Dr(Gn) =


2
(∑n

k=1 k2 −∑ n
2
j=1(2 j −1)2

)
, n even

2

(∑n
k=1 k2 −∑ n−1

2
j=1(2 j )2

)
, n odd

.

Recall the well known formulas

n∑
k=1

k2 = n(n +1)(2n +1)

6
, and

n∑
k=1

k = n(n +1)

2
.

If n is even then, using these formulas,

n
2∑

j=1
(2 j −1)2 = 4

n
2∑

j=1
j 2 −4

n
2∑

j=1
j + n

2
= n(n +1)(n +2)

6
− n(n +2)

2
+ n

2
= n(n −1)(n +1)

6
.

Similarly for n odd,

n−1
2∑

j=1
(2 j )2 = 4

n−1
2∑

j=1
j 2 = n(n −1)(n +1)

6
.

Hence,

Dr(Gn) = 2

(
n(n +1)(2n +1)

6
− n(n −1)(n +1)

6

)
= n(n +1)(n +2)

3
,

as claimed.

A.1.2 Generation of directed flag complexes

Hasse diagrams

A Hasse diagram, otherwise known as a directed acyclic graph, is a directed graph H =
(V ,E ,τ) with no oriented cycles (Figure 3.12B). Hasse diagrams can be used to encode various

combinatorial, geometric, and topological structures, such as posets, cubical complexes and

simplicial complexes. Below we explain in detail how to encode simplicial complexes via

Hasse diagrams.

A Hasse diagram H is said to be stratified if for each v ∈V , every path from v to any sink in H
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has the same length. Thus in a stratified Hasse diagram the vertices are naturally partitioned

into disjoint strata, where every directed path from a vertex in the k-th stratum Vk to any sink

is of length k. In particular, the 0-th stratrum V0 is the set of sinks of H . Moreover, for all e ∈ E ,

there exists k > 0 such that τ1(e) ∈Vk and τ2(e) ∈Vk−1.

A Hasse diagram H is said to be oriented if for every vertex v ∈H , it is equipped with a linear

ordering of the set Ev of edges with source v . A Hasse diagram is said to be admissible if it is

stratified and oriented.

Vertices in the k-th stratum of a stratified Hasse diagram H are said to be of level k. If k < n,

and v,u are vertices of levels k and n respectively, then we say that v is a face of u if there is a

directed path in H from u to v . If H is also oriented and therefore admissible, and there is a

directed path (e1, ...,en−k ) from u to v such that ei is the first element of Eτ1(ei ) with respect

to the ordering on that set, for all 1 ≤ i ≤ n −k, we say that v is a front face of u. Similarly, v

is a back face of u if there is a path (e1, ...,en−k ) from u to v such that ei is the last element of

the set Eτ1(ei ) with respect to the ordering on it, for all 1 ≤ i ≤ n −k. (Supplementary Figure

3.12B(ii) and C2).

If G = (V ,E ,τ) is a directed graph, then G can be equivalently represented by an admissible

Hasse diagram with level 0 vertices V , level 1 vertices E , and directed edges from each e ∈ E to

its source and target. The ordering on the edges in the Hasse diagram is determined by the

orientation of each edge e in G .

Every directed simplicial complex S gives rise to an admissible Hasse diagram HS as follows

(Supplementary Figure 3.12C1 and C2). The level d vertices of HS are the d-simplices of S .

There is a directed edge from each d-simplex to each of its (d −1)-faces. The stratification on

HS is thus given by dimension, and the orientation is given by the natural ordering of the

faces of a simplex from front to back.

A data structure for Hasse diagrams

The algorithm we use in order to produce the directed flag complex of a directed graph uses

Hasse diagrams as both input and output. Hence the input directed graph G = (V ,E ,τ) must

first be turned into a Hasse diagram. The output of the algorithm is again an admissible Hasse

diagram that encodes the directed flag complex of the graph.

We represent an admissible Hasse diagram H using vectors to store the references to the

vertices of the diagram. Thus, each vertex v ∈H stores the following information.

1. Ver(v): A vector of the level 0 vertices of H that is a list of the 0-faces of v ordered

according to the orientation of H . If v is at level 0, then Ver(v) =;.

2. Tar(v): A vector of references to the vertices that are targets of edges with source v . If v

is at level 0, then Tar(v) =;.
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3. Src(v): A vector of references to the vertices that are sources of edges with target v .

If H encodes a directed simplicial complex, then Ver(v) determines the simplex to which v

corresponds, and the vectors Tar(v) and Src(v) determine the faces and co-faces of the simplex

to which v corresponds, respectively.

If H is admissible Hasse diagram of maximal level d , then H is represented by an ordered

set of d vectors, where for each 1 ≤ n ≤ d , the n-th vector contains the references to all level n

vertices.

In addition, for every vertex v in H of level n ≥ 1 such that Ver(v) = [v0, . . . , vi ], the algorithm

temporarily records an auxiliary vector Uv of references to level 0 vertices u in H that satisfy

the following properties:

1. u 6= vi for all 0 ≤ i ≤ n, and

2. for every u ∈Uv and every 0 ≤ i ≤ n, there exists an edge in G from vi to u.

The vector Uv is dismissed once its function has been fulfilled.

Let Sint denote the size of integer data types, and for any finite set X , let |X | denote its cardinal-

ity. Each edge of an Hasse diagram H is stored in two vertices of the diagram. If each reference

requires Sint storage, then we require O(|E | ·Sint) space to store all references, where E is the

edge set of H . In addition, each vertex v in H the corresponding data structure stores the

vectors Ver(v), Tar(v) and Src(v), as explained above, which requires an additional O(Si nt ·d) of

space per vertex. The total size of a Hasse diagram is thus bounded by O((Sint ·d)·|V |+|E |·Sint),

where V is the vertex set of H . In particular, the required storage space grows linearly with

the number of vertices and with the number of edges.

Directed flag complex generation algorithm

The discussion below refers to the pseudo-code given in Algorithm 1.

Line 1: The Hasse diagram H takes as an initial value the input Hasse diagram encoding a

directed graph G = (V ,E ,τ).

Lines 2 - 7: The for loop initialises the creation of the vectors Ue for level 1 vertices e ∈H . For

every level 1 vertex e, the vector Ue stores the references to all the level 0-vertices that, together

with e, will form a level 2 vertex.

The if condition (Line 3) ensures that whenever the code finds two level 1 vertices {e1,e2}

and a level 0 vertex u that satisfy the conditions, the vertex u will be the terminal vertex of

the level 2 vertex tu that will be created in the first iteration of the repeat-until loop (Line 8).

Notice also that the same if condition ensures that each triple of level 1 vertices (e,e1,e2) is
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Algorithm 1 : Directed flag complex generation.

Input: A Hasse diagram H i n encoding the directed graph G = (V ,E ,τ), (cf. ST4.1.1).
Output: A Hasse diagram H representing the directed flag complex associated to G .

1: Set H =H i n

2: for every level 1 vertex e ∈H do
3: if exist e1, e2 such that τ1(e1) = τ1(e), τ1(e2) = τ2(e) and τ2(e1) = τ2(e2) = u then
4: Add u to Ue ;
5: end if
6: end for
7: di m = 2;
8: repeat
9: next_level_nodes – empty vector of references to nodes;

10: for top–level vertex e ∈H do
11: for Every u ∈Ue do
12: Create a node tu of a Hasse diagram;
13: Ver(tu) = [Ver(e),u];
14: Utu =Ue ;
15: Add e to Tar(tu);
16: Add tu to Src(e);
17: for Every bd ∈ Tar(e) do
18: for Every cbd ∈ Src(bd) do
19: if u is the last vertex in Ver(cbd) then
20: Add cbd to Tar(t );
21: Add tu to Src(cbd);
22: Utu =Utu ∩Ucbd ;
23: end if
24: end for
25: end for
26: Add tu to next_level_nodes;
27: end for
28: end for
29: Add next_level_nodes to H ;
30: di m = di m +1;
31: until next_level_nodes = ;
32: Return H ;

naturally ordered as the front, middle and back faces of a an oriented 2-simplex associated

with tu . In particular, e is the front face of tu , and hence the ordering of Ver(e) can be extended

to ordering of Ver(tu), as in Line 13.

Lines 8 - 31: This repeat-until loop is where the complex is generated, where each iteration

increases the dimension by 1.

Fix n ≥ 1, and suppose by induction that all vertices of level less than or equal to n have been

constructed. Fix a level n vertex s with Ver(s) = [v0, . . . , vn] and let u ∈Us . By definition of the

set Us , the code creates a vertex tu (Line 10), creates Ver(tu) as [Ver(s),u] = [v0, . . . , vn ,u], so u is

the last vertex in Ver(tu) (Line 11), and initiates Utu as Us (Line 12). In the next two lines (Lines

13 and 14) s becomes a target of tu and tu a source of s. Next, in the two for loops of Lines 15

and 16, the code checks for each level n −1 vertex bd that is a target of s, and every level n

148



A.1. Supplementary methods

vertex cbd that is a source of bd , whether u is the last vertex in Ver(cbd) (Line 17). In that case

cbd becomes a target of tu and tu becomes a source of cbd (Lines 18, 19). Since u is the last

vertex in Ver(tu), it must be the last vertex in any face of tu that contains it for the orientation to

be preserved, whence the restriction in Line 17. This accounts of all the co-dimension 1 faces

(targets) of tu that are different from s, and by induction hypothesis these faces are already

constructed. Hence tu is declared a new level n +1 vertex in H . Since in a directed simplicial

complex (in particular a directed flag complex) every simplex is characterised by its ordered list

of vertices, a level n+1 vertex t in H with Ver(t ) = [v0, . . . , vn ,u] can only be constructed once,

and hence is equal to tu . On the other hand, Line 20 ensures that all potential vertices of level

larger than n +1 of which tu is a target will be accounted for. It follows that Algorithm 1 does

indeed construct construct the Hasse diagram corresponding to the directed flag complex of

the input graph.

If w is a level n +1 vertex with Ver(w) = [v0, . . . vn ,u], then the level n vertex v that is the front

face of w is a target of w , and u is clearly not present in Ver(v). On the other hand, u is listed in

Uv . From Lines 12 and 20 of the algorithm it is clear that Uw ⊂Uv and moreover that u 6∈Uw ,

and so the inclusion is proper. The cardinalities of the sets U(−) are therefore strictly decreasing

for the newly created vertices. New level n +1 vertices are created only if there exists at least

one level n vertex t , such that Ut 6= ;. Since the cardinality of the U(−) decreases with each

iteration of the repeat-until loop (Line 6), the algorithm will terminate.

A.1.3 In vitro slice experiments

Slice preparation

Experiments were carried out according to the Swiss national and institutional guidelines.

Fourteen- to sixteen-day-old nonanesthetized Wistar rats were quickly decapitated, and their

brains were carefully removed and placed in iced artificial cerebrospinal fluid (ACSF). Slices

(300 µm) were cut on an HR2 vibratome (Sigmann Elektronik). Parasagittal slices, 1.7−2.2

mm lateral to the midline, were cut to access primary somatosensory cortex (SSC; above the

anterior extremity of the hippocampus ±1 mm). Slices were incubated at 37◦C for 30 to 60 min

and then left at room temperature until recording. Cells were visualized by infrared differential

interference contrast video microscopy using a VX55 camera (Till P-hotonics) mounted on an

upright BX51WI microscope (Olympus). Layer 5 thick-tufted pyramidal cells (L5TTPCs) were

selected according to their large soma size (15−25 µm) and their apparent large trunk of the

apical dendrite. Care was taken to use only parallel slices (i.e., slices that had a cutting plane

parallel to the course of the apical dendrites and the primary axonal trunk). This ensured

sufficient preservation of the PCsO axonal and dendritic arborizations.
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Chemicals and solutions

Slices were continuously superfused with ACSF containing 125 mM NaCl, 25 mM NaHCO3,

2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, 1 mM MgCl2, and 25 mM D-glucose bubbled

with 95% O2 and 5% CO2. The intracellular pipette solution contained 110 mM potassium

gluconate, 10 mM KCl, 4 mM ATP-Mg, 10 mM phosphocreatine, 0.3 mM GTP, 10 Hepes, and 13

mM biocytin adjusted to pH 7.3-7.4 with 5 M KOH. Osmolarity was adjusted to 290-300 mOsm

L−1 with D-mannitol (25−35 mM). The membrane potential values given were not corrected

for the liquid junction potential, which is approximately −14 mV. Chemicals were from Sigma

Aldrich or Merck.

Electrophysiological recordings

Multiple somatic whole-cell recordings (6 to 12 cells simultaneously) were performed with

Multiclamp 700B amplifiers (Molecular Devices) in the current clamp mode at 34±1◦C bath

temperature. Data acquisition was performed through an ITC-1600 board (Instrutech) con-

nected to a PC running a custom-written routine (PulseQ) under IGOR Pro (Wavemetrics).

Sampling rates were 5 kHz, and the voltage signal was filtered with a 2-kHz Bessel filter. Patch

pipettes were pulled with a Flaming/Brown micropipette puller P-97 (Sutter Instruments) or

a DMZ puller (Zeitz Instruments) and had an initial resistance of 3-8 MΩ. Recordings were

achieved with custom C++ software that controlled manipulators, amplifiers, oscilloscopes,

pipette pressure, and video display.

Stimulation protocols

Monosynaptic, direct excitatory connections were identified by stimulation of a presynaptic

cell with a 20−70 Hz train of 5−15 strong and brief current pulses (1−2 nA, 2−4 ms) followed

by a so-called recovery test response 0.5s after the end of the train (not shown in the traces),

all precisely and reliably eliciting action potentials (APs).

Final somatic positions

The soma positions were recorded relative to an arbitrary reference point, and the z-axis

was oriented perpendicular to the surface of the slice. After morphological stainings were

ready, the y-axis axis was rotated around the z-axis axis to match the orientation of the apical

dendrites. The x-axis was rotated by the same amount and remained orthogonal to the other

two axes.

Connection amplitudes

The amplitude of excitatory postsynaptic potentials (EPSPs) was measured for events that

followed a resting period of at least 15 s, during which time the presynaptic neurons were not
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stimulated to produce APs.

A.1.4 Optimization of the parameters for the transmission-response matrices

Starting with firing data from spontaneous activity in the reconstructed microcircuit, we

generated sequences of 20 transmission-response matrices for ∆ti ∈ {1,2,5,10,20,50,100} ms,

thus creating 49 such sequences corresponding to every possible choice of the pair (∆t1,∆t2).

We refer to each of these sequences as the true transmission-response matrices corresponding

to the pair (∆t1,∆t2). Here, we describe the procedure for optimizing the choice of the time

intervals ∆t1 and ∆t2 so that the associated true transmission-response matrices best reflect

the actual successful transmission of signals between neurons in the microcircuit.

Properties of the transmission-response matrix

The nonzero coefficients in a transmission-response matrix are a subset of those in the struc-

tural matrix. Due to the partly stochastic behavior of the in silico microcircuit, the subset will

vary even for subsequent applications of the same stimulus. In fact, even an exact repetition

of the same conditions will lead to different transmission-response matrices, if the random

number generator is seeded differently. It follows that the generation of the transmission-

response matrices for a given stimulus should be considered as a stochastic process. With

the correct choice of the parameters ∆ti , the matrices should reflect how the microcircuit

processes a stimulus and thus take into account parameters of neural processing, such as

pre-/postsynaptic interaction.

To find parameters ∆t1 and ∆t2 that maximize the degree to which neural processing is

captured by the transmission-response matrices, we first develop a stochastic model for

synaptic firing that takes into account neural processing and that depends on ∆t1 and ∆t2.

For the purpose of this analysis, we assume that the true transmission-response matrices are

compatible with this model.

Based upon our model for synaptic firing, we formulate a simplified model that ignores neural

processing. For this simplified model and for any choice of parameters∆t1 and∆t2, we explain

how to obtain transmission-response matrices from actual firing data, by shuffling the firing

data appropriately, then applying the algorithm for generating a transmission-response matrix

of the previous section. Finally, for each choice of the parameters∆t1 and∆t2, we compare the

true transmission-response matrices for spontaneous activity in the reconstructed microcir-

cuit to those obtained by the simplified generation process. The parameters that we work with

in the main body of the paper are the ∆t1 and ∆t2 that maximize the difference (measured by

the ratio of the numbers of ones in the matrices) between the actual transmission-response

matrices and those resulting from the simplified model.
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Stochastic model with neural processing

Fix time intervals ∆t1 and ∆t2. Let A = (ai j ) denote the structural matrix of a reconstructed

microcircuit, and let A(n) = (an
i j ) denote the transmission-response matrix of the n-th time

bin, based on firing data from a trial of simulated activity in the microcircuit, for the given

intervals ∆t1 and ∆t2. If an
i j = 1 for any n, then ai j = 1. It is reasonable to consider A to be

static, at least over the time periods considered here.

We want to compute the probability that an
i j = 1, given that ai j = 1, so we need to determine

on which parameters and properties this probability depends. According to the definition of

transmission-response matrices, a presynaptic and a postsynaptic spike are required for an
i j to

be 1. To simplify the analysis somewhat, we assume that each neuron ni has a time-dependent,

instantaneous firing rate F i (t ) that determines spiking probability at time t , i.e. spiking can

be described as an inhomogeneous Poisson process. Under this assumption, the expected

number mi
∆t1

(t0) of spikes of neuron ni in the interval [t0, t0 +∆t1] can be computed as

mi
∆t1

(t0) =
∫ t0+∆t1

t0

F i (u)du.

If K i
∆t1

(t0) denotes the probability that neuron ni spikes at least once in the interval [t0, t0+∆t1],

then

K i
∆t1

(t0) = 1−P
(
mi
∆t1

(t0)
)= 1−e−mi

∆t1
(t0),

where P (λ) is the Poisson probability mass function with parameter λ at 0. (Recall that if X is

a random variable that counts the number of spikes of neuron ni in the interval [t0, t0 +∆t1],

then P
(
mi
∆t1

(t0)
)

is the probability that X = 0.) If the change in F i (t ) is slow compared to ∆t1,

then mi
∆t1

(t ) ≈ F i (t ) ·∆t1. Moreover, 1−P (λ) ≈λ for small values of λ. For small enough ∆t1,

the expected number mi
∆t1

(t0) of spikes of neuron ni will certainly be small, and change in

F i (t ) will be slow in compared to ∆t1, so that we may assume that

K i
∆t1

(t0) ≈ F i (t0) ·∆t1.

For the postsynaptic spike the situation is more complicated. As there is a causal relation

between presynaptic and postsynaptic firing, mediated by synaptic transmission, we need to

estimate the conditional probability of at least one postsynaptic spike, given that at least one

presynaptic spike occured. Let ni and n j denote neurons such that ai j = 1. Let s0 ∈ [t0, t0+∆t1]

denote the time of the first presynaptic spike in this interval. Let X j
∆t2

(s0) denote the random

variable whose value is the number of times neuron n j spiked in the time window [s0, s0+∆t2].

Let Y i
∆t1

(t0) denote the random variable whose value is the number of times neuron ni spiked

in the time interval [t0, t0 +∆t1]. We need to estimate the conditional probability

P
(
X j
∆t2

(s0) > 0 |Y i
∆t1

(t0) > 0
)
.

152



A.1. Supplementary methods

The nature of this interaction is very intricate and depends on the identities of the presynaptic

and postsynaptic neurons, the spiking history of the presynaptic neuron before s0, and all

other synaptic input the postsynaptic neuron received. It can be described as governed by

some function G i j modulating the spiking probability of the postsynaptic neuron n j . This

function takes as parameters the expected number of spikes of neuron n j in the interval

[s0, s0+∆t2], the time t0, and the “spiking history” of the presynaptic neuron ni until s0, which

we write as a function si∗(t ) evaluated at s0, giving rise to the expression

P
(
X j
∆t2

(s0) > 0 |Y i
∆t1

(t0) > 0
)= 1−e−G i j (m j

∆t2
(s0),t0,si

∗(s0)).

Summarizing the analysis above, the following formula provides a good estimate of the prob-

ability that an
i j = 1 if ai j = 1, for small enough ∆t1 and ∆t2, where s0 denotes the time of the

first presynaptic spike in the interval [n∆t1, (n +1)∆t1] and t0 = n∆t1.

P
(
an

i j = 1|ai j = 1
)
=

(
1−e−mi

∆t1
(t0)

)
·
(
1−e−G i j (m j

∆t2
(s0),t0,si

∗(s0))
)

≈ F i (t0) ·∆t1 ·G i j (F j (s0) ·∆t2, t0, si
∗(s0)

)
.

(A.1)

This conditional probability encodes not only the distinctive features of the structural connec-

tivity (via ai j ) but also the potentially stimulus-dependant neuron-specific firing rates (via F i

and F j ) and their co-variation. Most crucially, it captures the stimulus-dependent functional

modulation of postsynaptic firing by a presynaptic spike as well. We assume that the true

transmission-reponse matrices capture the actual transmission of spikes according to the

model of synaptic firing described by this formula.

Null hypotheses: no neural processing

We introduce here a simplified model of synaptic spiking that is based upon Equation A.1 but

that ignores any pre-/postsynaptic interaction. We then explain how to obtain transmission-

response matrices that correspond to this simplified model from firing data arising from

simulated activity.

We begin by setting each G i j to be the projection onto the first component, ignoring the

pre-/postsynaptic interaction. After this simplification, the approximation obtained in the

previous section now reads

P (an
i j = 1|ai j = 1) ≈ F i (t0) ·F j (s0) ·∆t1 ·∆t2,

where s0 denotes the time of the first presynaptic spike that occurs in the interval [n∆t1, (n +1)∆t1]

and t0 = n∆t1, as before. Since this drastic simplification neglects the central aspect of neural

computation—pre-/postsynaptic interaction—it gives rise to control cases for each pair of

parameters (∆t1,∆t2) and each choice of firing rate functions F i (t ). Comparison of the true

transmission-response matrices for each pair of parameters to the corresponding control ma-
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trices for the same pair and a specific choice of the functions F i (t ) will allow us to determine

values for ∆t1 and ∆t2 for which the true transmission-response matrix optimally reflects

neural processing.

We assume moreover that the individual firing rates consist of a neuron-dependent frequency

that is up- or down-regulated by a global time series, i.e., that F i (t) = f (i ) ·F (t), for some

function F (t) and some constant f (i ) for each neuron ni . Transmission-response matri-

ces corresponding to this simplified model for fixed ∆t1 and ∆t2, which we call simplified

transmission-response matrices, can be generated by first shuffling all recorded spikes from

simulated activity in the reconstructed microcircuit, while preserving both the number of

spikes per neuron and per time bin, then applying the usual transmission-response matrix

generation method.

Optimization of parameters

The difference between the true transmission-response matrices and the control case de-

scribed above is a consequence of the pre-/postsynaptic interaction. Comparison with the

control case enables us therefore to measure how well that interaction is captured in the true

transmission-response matrices. In particular, it is reasonable to optimize the parameters

∆t1 and ∆t2 so that the difference between the true transmission response matrices arising

from actual simulation data and those arising in the control cases is maximized, as a maximal

difference indicates that the effect of the pre-/postsynaptic interaction is captured optimally

by the true transmission-response matrices.

Figure A.1 – Optimization of the parameters for the transmission-response matrices

The comparison between the true transmission-response matrices and the control cases

was carried out by first producing 20 true transmission-response matrices and 20 simplified

transmission-response matrices based on firing data obtained from spontaneous activity in

the reconstructed microcircuit for every pair (∆t1,∆t2), where ∆ti ∈ {1,2,5,10,20,50,100} ms

for i = 1,2. The number of ones in each matrix was then computed and the average taken

over each set of 20 matrices. Since no stimulus was applied to the microcircuit, the averages
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computed are meaningful, since the firing data should be fairly homogeneous across the time

bins. The average number of ones in the transmission-response matrix arising from simulated

actitivity in the reconstructed microciruit, as a function of ∆t1 and ∆t2, is illustrated in the

figure above, which shows the ratio of the average number of ones in the true transmission-

response matrices to the average number of ones in the simplified transmission-response

matrices, for various values of∆t1 and∆t2. In all cases we find that the maximum lies between

∆t2 = 5 ms and ∆t2 = 10 ms, leading us to choose to work with ∆t2 = 10 ms. For ∆t1 we find a

maximum at 50 ms, but we use ∆t1 = 5 ms (for which the maximum ratio is only slightly lower

than for ∆t1 = 50 ms) instead to avoid more than one spike per neuron per bin.
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