
2019

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Alp YURTSEVER

Présentée le 27 août 2019

Thèse N° 9598

Scalable Convex Optimization Methods for Semidefinite
Programming

Prof. O. N. A. Svensson, président du jury
Prof. V. Cevher, directeur de thèse
Prof. J. A. Tropp, rapporteur
Prof. S. Sra, rapporteur
Prof. M. Jaggi, rapporteur

à la Faculté des sciences et techniques de l’ingénieur
Laboratoire de systèmes d’information et d’inférence
Programme doctoral en informatique et communications

Devranın değişmez düzeni vardır.

Çözen, çözemeyen yenilir ona.

Onu okumanın bir dili vardır.

Bilimler bilimi denilir ona.

— Hüseyin Yurtsever (2012)

Sayılar Bilimi - Bilinmezlik Deryası

To my family,

dedicated to the memory of my father, Hüseyin Yurtsever.

Acknowledgements
Before we go into the technical content, I would like to add a few words to express my appreci-

ation to the people who supported me during my studies as a PhD candidate.

A very special gratitude goes to my PhD advisor Volkan Cevher. I am grateful to him not only

for our research discussions and his technical supervision; but also for being an advisor with

genuine concern for my welfare, for sharing the excitement of my accomplishments, and for

being a heartfelt friend.

I spent three months at MIT as a visiting student in the fall semester of 2018. I am thankful to

Suvrit Sra for hosting me during this visit, and to Volkan for arranging this research visit and

making it possible in the first place. I really enjoyed my time at MIT and I am looking forward

to joining there as a postdoc. I would also like to thank Joel Tropp for his guidance on our

collaborated research for more than 3 years, for all our research discussions, and for inviting

and hosting me at Caltech multiple times during this collaboration.

I was fortunate to have worked with so many great collaborators during my PhD. I am deeply

grateful to all my collaborators. In particular, this dissertation is based on some joint works

with Volkan Cevher, Olivier Fercoq, Ya-Ping Hsieh, Francesco Locatello, Suvrit Sra, Quoc

Tran-Dinh, Joel Tropp, and Madeleine Udell.

I was honored to have Volkan Cevher, Martin Jaggi, Suvrit Sra, Ola Svensson, and Joel Tropp as

my thesis defense committee members. I am grateful for their time and valuable comments.

I would also like to thank my colleagues Ahmet Alacaoglu, Ali Kavis, Fatih Sahin, and Maria

Vladarean for reading my thesis and providing feedback, and to Paul Rolland for proofreading

my French in the abstract.

I am thankful to our lab members and the alumni for the collaborations, research discussions,

and the friendly working environment. I am indebted to our administrative assistant Gosia

Baltaian for her help on many occasions and for her friendliness.

I would also like to take this opportunity to thank my friends. My PhD years coincided with

some unfortunate incidents in my personal life. Without the love and support of my friends, I

would never have recovered. My life is more meaningful with the memorable times that we

spent together. Finally, I acknowledge the effort of my teachers over the years, which played a

critical role in shaping my academic identity and interests.

Last but certainly not least, I would like to thank my parents Çiğdem and Hüseyin, my sister

Bengi, and my brother Emre for their love and constant support. I dedicate this dissertation to

the memory of my father. Without his encouragement, I would never have started this journey.

Lausanne, 10 July 2019 A. Y.

v

Abstract
With the ever-growing data sizes along with the increasing complexity of the modern problem

formulations, contemporary applications in science and engineering impose heavy compu-

tational and storage burdens on the optimization algorithms. As a result, there is a recent

trend where heuristic approaches with unverifiable assumptions are overtaking more rigorous,

conventional methods at the expense of robustness and reproducibility.

My recent research results show that this trend can be overturned when we jointly exploit

dimensionality reduction and adaptivity in optimization at its core. I contend that even the

classical convex optimization did not reach yet its limits of scalability.

Many applications in signal processing and machine learning cast a fitting problem from

limited data, introducing spatial priors to be able to solve these otherwise ill-posed problems.

Data is small, the solution is compact, but the search space is high in dimensions. These

problems clearly suffer from the wasteful use of storage resources by the classical optimization

algorithms.

This problem is prevalent. Storage is a critical bottleneck that prevents us from solving many

important large-scale optimization problems. For example, semidefinite programs (SDP)

often have low-rank solutions. However, SDP algorithms require us to store a matrix decision

variable in the ambient dimensions.

This dissertation presents a convex optimization paradigm which makes it possible to solve

trillion dimensional SDP relaxations to combinatorial decision problems on a regular personal

computer. The key idea is to use an optimization procedure that performs compact updates,

and to maintain only a small sketch of the decision variable. Once the iterations terminate, we

can recover an approximate solution from the information stored in this sketch.

We start by formalizing this idea for a model problem with low-rank solutions. Based on the

classical conditional gradient method, we propose the first convex optimization algorithm

with optimal storage guarantees for this model problem. Then, we develop and describe the

key ingredients to extend our results for a broader set of problems, SDP in particular.

SDP formulations are key in signal processing, machine learning, and other engineering

applications. By greatly enhancing the scalability of optimization algorithms for solving SDP

formulations, we can potentially unlock new results in important scientific applications.

Key words: Convex optimization, semidefinite programming, low-rank matrix optimization,

primal-dual methods, conditional gradient methods, low-rank matrix sketching

vii

Résumé
Avec la taille toujours croissante des données massives et la complexité des formulations

de problèmes modernes, les applications actuelles en sciences et en ingénierie imposent de

lourdes charges de calcul et de stockage. En conséquence, il existe une tendance récente où

les approches heuristiques avec des hypothèses invérifiables dépassent les méthodes plus

rigoureuses et conventionnelles au détriment de la robutesse et de la reproductibilité.

Mes résultats récents montrent que cette tendance peut être renversée si nous exploitons

conjointement la réduction de la dimensionnalité et l’adaptivité dans l’optimisation. Je sou-

tiens que même l’optimisation convexe classique n’a pas encore atteint ses limites.

De nombreuses applications dans le traitement du signal et l’apprentissage automatique

posent un problème d’ajustage à partir de données limitées, en introduisant des informations

préalables spatiales afin de pouvoir résoudre ces problèmes. Les données et la solution sont

compactes, mais l’espace de recherche est de grande dimension. Clairement, ces problèmes

souffrent de l’utilisation inutile des ressources de stockage par les algorithmes d’optimisation.

Ce problème est très répandue. Le stockage est un goulot d’étranglement critique qui nous

empêche de résoudre de nombreux problèmes d’optimisation à grande échelle. Par exemple,

les programmes semi-définies (SDP) ont souvent des solutions de rang faible. Cependant,

les algorithmes SDP nous obligent à stocker une variable de décision matricielle dans les

dimensions ambiantes.

Cette thèse présente un paradigme d’optimisation convexe qui permet de résoudre des ins-

tances de programmation semi-définie à grande échelle de trillions de dimensions sur un

ordinateur personnel ordinaire. L’idée clé est d’utiliser un algorithme d’optimisation qui effec-

tue des mises à jour compactes, et de ne conserver qu’un petit sketch de la variable de décision.

Une fois la procédure terminée, nous pouvons récupérer une solution approximative à partir

des informations stockées dans le sketch.

Nous commençons par la formalisation de cette idée pour un problème de modèle avec

des solutions à faible rang. Sur la base de la méthode classique du gradient conditionnel,

nous proposons le premier algorithme d’optimisation convexe avec des garanties de stockage

optimales pour ce problème de modèle. Ensuite, nous développons et décrivons les ingrédients

clés pour étendre nos résultats à d’autres modèles de problèmes, SDP en particulier.

Les formulations SDP jouent un rôle clé dans le traitement du signal, l’apprentissage au-

tomatique, et d’autres applications d’ingénierie. En améliorant l’évolutivité des méthodes

d’optimisation pour la résolution des formulations SDP, nous pouvons potentiellement obtenir

de nouveaux résultats dans des applications scientifiques importantes.

ix

Résumé

Mots clés : Optimisation convexe, programmation semi-définie, optimisation matricielle

de rang faible, méthodes primales-duales, méthodes de gradient conditionnel, sketch pour

des matrices de rang faibles

x

Bibliographic Note

This dissertation is based on the following publications:

• [YTDC15a] Alp Yurtsever, Quoc Tran-Dinh, Volkan Cevher. "A Universal Primal-Dual

Convex Optimization Framework." Conference on Neural Information Processing Sys-

tems (NeurIPS), 2015.

• [YHC15] Alp Yurtsever, Ya-Ping Hsieh, Volkan Cevher. "Scalable Convex Methods for

Phase Retrieval." IEEE International Workshop on Computational Advances in Multi-

Sensor Adaptive Processing (CAMSAP), 2015.

• [YUTC17] Alp Yurtsever, Madeleine Udell, Joel Aaron Tropp, Volkan Cevher "Sketchy

Decisions: Convex Low-rank Matrix Optimization with Optimal Storage." International

Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

• [TYUC17b] Joel Aaron Tropp, Alp Yurtsever, Madeleine Udell, Volkan Cevher. "Practical

Sketching Algorithms for Low-rank Matrix Approximation." SIAM Journal on Matrix

Analysis and Applications (SIMAX), 2017.

• [TYUC17a] Joel Aaron Tropp, Alp Yurtsever, Madeleine Udell, Volkan Cevher. "Fixed-

rank Approximation of a Positive-Semidefinite Matrix from Streaming Data." Conference

on Neural Information Processing Systems (NeurIPS), 2017.

• [YFLC18] Alp Yurtsever, Olivier Fercoq, Francesco Locatello, Volkan Cevher. "A Condi-

tional Gradient Framework for Composite Convex Minimization with Applications to

Semidefinite Programming." International Conference on Machine Learning (ICML),

2018.

• [YFC19] Alp Yurtsever, Olivier Fercoq, Volkan Cevher. "A Conditional Gradient-Based

Augmented Lagrangian Framework." International Conference on Machine Learning

(ICML), 2019.

• [YSC19] Alp Yurtsever, Suvrit Sra, Volkan Cevher. "Conditional Gradient Methods via

Stochastic Path-Integrated Differential Estimator." International Conference on Ma-

chine Learning (ICML), 2019.

• [TYUC19] Joel Aaron Tropp, Alp Yurtsever, Madeleine Udell, Volkan Cevher. "Streaming

Low-Rank Matrix Approximation with an Application to Scientific Simulation." Accepted

to SIAM Journal on Scientific Computing (SISC), 2019.

xi

Bibliographic Note

My other publications relevant to this research, but not covered in this dissertation, are:

• [YVC16] Alp Yurtsever, Bang Cong Vu, Volkan Cevher. "Stochastic Three-Composite Con-

vex Minimization." Conference on Neural Information Processing Systems (NeurIPS),

2016.

• [OLY+16] Gergely Odor, Yen-Huan Li, Alp Yurtsever, Ya-Ping Hsieh, Quoc Tran-Dinh,

Marwa El Halabi, Volkan Cevher. "Frank-Wolfe works for non-Lipschitz Continuous

Gradient Objectives: Scalable Poisson Phase Retrieval." IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2016.

• [CVY18] Volkan Cevher, Bang Cong Vu, Alp Yurtsever. "Stochastic Forward Douglas-

Rachford Splitting Method for Monotone Inclusions." in Large-Scale and Distributed

Optimization, Chapter 7. Springer, Cham, (2018)

• [LYC18] Kfir Levy, Alp Yurtsever, Volkan Cevher. "Online Adaptive Methods, Universality

and Acceleration." Conference on Neural Information Processing Systems (NeurIPS),

2018.

• [DYC+19] Lijun Ding, Alp Yurtsever, Volkan Cevher, Joel Aaron Tropp, Madeleine Udell.

"An Optimal-Storage Approach to Semidefinite Programming Using Approximate Com-

plementarity." Manuscript (arXiv:1902.03373), 2019.

• [CVY19] Volkan Cevher, Bang Cong Vu, Alp Yurtsever. "Inertial Three-Operator Splitting

Method and Applications." Manuscript (arXiv:1904.12980), 2019.

• [LYFC19] Francesco Locatello, Alp Yurtsever, Olivier Fercoq, Volkan Cevher. "Stochastic

Conditional Gradient Method for Composite Convex Minimization." Manuscript (arXiv:

1901.10348), 2019.

xii

Contents
Acknowledgements v

Abstract (English/Français) vii

Bibliographic Note xi

List of figures xvi

List of tables xvii

1 Introduction 1

1.1 Problem Formulation . 2

1.2 Semidefinite Programming . 3

1.2.1 Relax and Round . 4

1.3 Arithmetics: Crisis and Opportunity . 5

1.4 Storage: Crisis and Opportunity . 6

1.5 State of the Research in the Field . 7

1.6 Organization and Contributions . 9

1.7 Notation and Terminology . 10

2 Storage-Efficient Convex Optimization 13

2.1 Conditional Gradient . 15

2.1.1 Opportunity . 15

2.1.2 CGM Iteration . 16

2.2 ThinCGM . 17

2.2.1 Thin SVD Updates . 17

2.2.2 ThinCGM Iteration . 18

2.2.3 A Numerical Study on the Rank Expansion 20

2.3 SketchyCGM . 21

2.3.1 Randomized Sketch . 21

2.3.2 SketchyCGM Iteration . 22

2.3.3 Convergence Results for SketchyCGM . 24

2.4 Extensions for Semidefinite Programming . 25

2.5 Numerical Experiments . 26

2.5.1 Matrix completion . 26

xiii

Contents

2.5.2 Phase Retrieval Problems . 27

3 Universal Primal-Dual Methods 33

3.1 Preliminaries . 35

3.2 Universal Primal-Dual Method . 35

3.2.1 Efficiency Considerations and Hölder Smoothness 36

3.2.2 UPD Iteration . 37

3.2.3 Guarantees . 38

3.2.4 Application to the SDP template . 39

3.3 Accelerated Universal Primal-Dual Method . 41

3.3.1 AUPD Iteration . 41

3.3.2 Guarantees . 42

3.3.3 Application to the SDP template . 42

3.4 Numerical Experiments . 43

3.4.1 Quantum tomography with Pauli operators 43

3.4.2 Matrix completion with MovieLens dataset 44

3.5 CGM is Dual Averaging Subgradient Method . 46

3.6 Appendix: Proofs . 48

4 CGM for Composite Problems 59

4.1 Preliminaries . 61

4.1.1 Nesterov Smoothing . 61

4.1.2 Quadratic Penalty . 62

4.2 Homotopy CGM . 63

4.2.1 HCGM Iteration . 63

4.2.2 Stopping Criterion . 64

4.2.3 Guarantees . 64

4.2.4 Convergence with Inexact Oracles . 65

4.2.5 Application to the SDP template . 67

4.3 Applications & Related Work . 68

4.3.1 Smooth Problems . 68

4.3.2 Regularized Problems . 68

4.3.3 Non-Smooth Problems . 69

4.3.4 Minimax Problems . 69

4.3.5 Problems with Affine Constraints . 70

4.3.6 Minimization via Splitting . 71

4.4 Numerical Experiments . 72

4.4.1 Clustering the MNIST dataset . 72

4.4.2 Robust PCA . 73

4.5 Appendix: Proofs . 75

xiv

Contents

5 CGM via Augmented Lagrangian 81

5.1 Augmented Lagrangian Penalty . 82

5.2 Conditional Gradient Augmented Lagrangian Method 83

5.2.1 CGAL Iteration . 83

5.2.2 Guarantees . 84

5.2.3 Application to the SDP template . 85

5.3 Numerical Experiments . 86

5.3.1 Max-cut . 87

5.3.2 k-means Clustering . 87

5.3.3 Generalized Eigenvector Problem . 89

5.4 Appendix: Proofs . 93

6 Low-Rank Matrix Sketching from Streaming Data 99

6.1 Two Component Sketch . 101

6.1.1 The Sketch . 101

6.1.2 The Basic Reconstruction Algorithm . 102

6.1.3 The Fixed-Rank Reconstruction Algorithm 103

6.1.4 Computing a PSD Approximation . 103

6.2 Three Component Sketch . 104

6.2.1 The Sketch . 104

6.2.2 Computing Truncated Low-Rank Approximations 105

6.2.3 Analysis of Initial and Truncated Approximations 105

6.3 Nyström Sketch for PSD Matrices . 106

6.3.1 The Sketch . 106

6.3.2 Fixed-Rank Nyström Approximation . 107

6.4 Numerical Experiments . 108

6.4.1 Sketching and Reconstruction Methods in our Experiments 108

6.4.2 Experimental Setup . 109

6.4.3 Classes of Input Matrices . 109

6.4.4 Comparison of Formulas for General Low-Rank Matrices 111

6.4.5 Comparison of Formulas for Low-Rank PSD Matrices 111

7 CGM with Stochastic Path-Integrated Differential Estimator 117

7.1 Related Works . 118

7.1.1 Conditional Gradient Sliding . 119

7.1.2 Stochastic Path-Integrated Differential Estimator 119

7.2 Preliminaries . 119

7.3 SPIDER Frank-Wolfe . 121

7.3.1 Convex Finite-Sum . 122

7.3.2 Convex Expectation Minimization . 123

7.3.3 Non-convex Finite-Sum . 123

7.3.4 Non-convex Expectation Minimization . 124

7.4 SPIDER Conditional Gradient Sliding . 125

xv

Contents

7.4.1 Convex Finite-Sum . 125

7.4.2 Convex Expectation Minimization . 127

7.4.3 Non-convex Finite-Sum . 127

7.4.4 Non-convex Expectation Minimization . 128

7.5 Comparison & Discussion . 129

7.5.1 Convex Optimization Camp . 129

7.5.2 Non-convex Optimization Camp . 130

7.5.3 Results from Concurrent Research . 131

8 Conclusion & Future Directions 151

Bibliography 166

Curriculum Vitae 167

xvi

List of Figures
1.1 Hierarchies in convex optimization. 3

1.2 Graph cut on a toy graph. 4

1.3 Black-box model for solving an SDP relaxation. 6

2.1 Rank expansion of CGM estimates. 20

2.2 Performance of SketchyCGM for solving matrix completion (MovieLens 100K). 26

2.3 Performance of SketchyCGM for solving matrix completion (MovieLens 10m). . 27

2.4 Memory scaling for five convex optimization algorithms for phase retrieval. . . 28

2.5 Gaussian and Poisson phase retrieval under Poisson noise. 29

2.6 Evolution of the Reconstruction Quality of SketchyCGM for Fourier Ptychography. 30

2.7 Three algorithms for Fourier ptychographic imaging via phase retrieval. 31

3.1 Comparison of UPD and CGM for solving quantum tomography problem. . . . 45

3.2 Comparison of UPD and CGM for solving matrix completion problem. 45

4.1 HCGM for clustering SDP with preprocessed MNIST dataset. 72

4.2 HCGM for image inpainting with robust PCA. 74

4.3 PSNR and SSIM vs iteration counter for formulations with �1 and �2 loss. 74

5.1 Empirical performance of various methods for solving max-cut problem. 88

5.2 Empirical comparison of UPD, HCGM and CGAL for max-cut problem. 88

5.3 Comparison of CGAL and HCGM for clustering SDP. 88

5.4 Comparison of CGAL, HCGM and UPD for generalized eigenvector SDP. 89

5.5 Comparison of projection-free methods for max-cut SDP [Part 1]. 91

5.6 Comparison of the projection-free methods for max-cut SDP [Part 2]. 92

6.1 Spectra of input matrices for numerical experiments. 110

6.2 Comparison of fixed-rank reconstruction formulas: Synthetic examples. 112

6.3 Comparison of fixed-rank reconstruction formulas: Real data examples. 113

6.4 Comparison of fixed-rank PSD reconstruction formulas: Synthetic examples. . 114

6.5 Comparison of fixed-rank PSD reconstruction formulas: Real data examples. . 115

6.6 Numerical stability in implementing Nyström approximation formulas. 116

xvii

List of Tables
7.1 Comparison of conditional gradient methods for stochastic optimization. . . . 129

xix

1 Introduction

We can recognize almost every problem in science and engineering as an optimization prob-

lem. Whether it is a finance problem where we want to maximize the profit based on a financial

model, a problem in physics where the aim is to identify a minimum energy state under the

constraints imposed by the laws of physics, or a machine learning problem for designing an

autonomous self-driving vehicle, we can model it as a mathematical optimization problem.

Convex optimization is an important subclass of mathematical optimization. One major

benefit of formulating an application as a convex optimization problem is its robustness.

Convex optimization provides a unified modeling framework for solving problems across

diverse disciplines. To find an approximate solution, convex optimization algorithms rely on

favorable geometric structures and functional properties present in the convex optimization

templates, avoiding further assumptions on the problem data as much as possible.

Unfortunately, with the ever-growing data sizes along with the increasing complexity of the

modern applications, contemporary problems in science and engineering impose heavy

computational and storage burdens on the optimization algorithms. As a result, there is

a recent trend where heuristic approaches with unverifiable assumptions on the problem

data are overtaking more rigorous, conventional methods at the expense of robustness and

reproducibility.

My recent research results show that this trend can be overturned, when we jointly exploit

dimensionality reduction and adaptivity in optimization at its core. I contend that even the

classical convex optimization did not reach yet its limits of scalability. In particular, this

dissertation presents a convex optimization paradigm which makes it possible to solve some

trillion dimensional semidefinite programming problems on a regular laptop.

The design of an end-product algorithm with a more detailed cost analysis, along with a

well-tuned, stable and robust implementation and numerical demonstrations in cutting-edge

applications are deferred to a follow-up paper.

1

Chapter 1. Introduction

1.1 Problem Formulation

The importance of convex optimization in machine learning has increased dramatically in the

last decade. Indeed, a large class of learning formulations can be addressed by the following

constrained convex minimization template:

minimize
x

f (x) subject to Ax ∈K, x ∈X . (1.1)

whereX ⊂Rp is a convex and compact (nonempty, bounded, closed) set, and its 0-dimensional

faces (i.e., its vertices) are called atoms. f :X →R∪ {+∞} is a proper closed convex function,

A : Rp →Rd is a linear map, and K⊆Rd is a convex set.

This template covers in particular semidefinite programming (SDP) formulations. Let us focus

on the following SDP template:

minimize
X

〈C , X 〉
subject to 〈Ai , X 〉 = bi for i = 1, . . . ,d

X ∈Sn
+ and Tr X =α

(1.2)

Here, Sn+ denotes the cone of n ×n positive semidefinite matrices. C , A1, A2, . . . , Ad ∈Sn (i.e.,

n ×n dimensional and symmetric), and b1,b2, . . . ,bd ∈R. This is the standard SDP template

except the Tr X =α constraint that we add to ensure the boundedness of the problem domain.

This additional constraint is not restrictive, since we can compute (or approximate) the trace of

a solution a priori, either from the problem formulation or from the data in many applications.

We will use the following standard compact notation for the affine constraints

A : Sn
+ →Rd where AX =

[
〈A1, X 〉 . . . 〈Ad , X 〉

]
;

A∗ : Rd →Sn
+ where A∗z =∑d

i=1 zi Ai .
(1.3)

Then, we can reformulate the model problem (1.2) as

minimize
X

〈C , X 〉 subject to AX = b, X ∈Sn
+, Tr X =α︸ ︷︷ ︸

X ∈X
, (1.4)

where the vector b := (b1, . . . ,bd) ∈ Rd is the constraint (measurement) vector. Clearly (1.4)

is an instance of (1.1). We restrict ourselves to equality constraint AX = b for notational

simplicity. All results that we present in this dissertation can be extended for the affine

inclusion constraint AX ∈K. Similarly, extension for Tr X ≤α constraint is straightforward.

In most applications, the cost matrix C and the constraint matrices Ai have low intrinsic

dimensionality, e.g., they are low rank, or sparse. Hence, storing and applying these matrices

do not put a substantial cost on our computational budget.

2

1.2. Semidefinite Programming

1.2 Semidefinite Programming

There is a common misconception between convexity and tractability of an optimization

problem. In full generality, convex optimization problems are not solvable in polynomial time,

unless P = NP. There are examples of NP-hard combinatorial decision problems that can be

formulated as a convex optimization problem over the copositive cone1. As a consequence,

it is not possible to design a generic solver for the complete class of convex optimization

problems, and we need to define (or identify) a problem subclass before designing (resp.

applying) a convex optimization algorithm.

This identification process of an appropriate algorithmic template requires field expertise.

In order to circumvent this need, disciplined convex programming introduces a set of con-

ventions to follow when formulating optimization problems. This yields a natural hierarchy

of programming templates in convex optimization. Semidefinite programming (SDP) sits

somewhere on top of this hierarchy. It covers most of the other well-known templates, from

linear programming to second-order cone programming, as a special case.

LP

QP

QCQP

SOCP

SDP

CP

Linear programming

Quadratic programming

Quadratically constrained QP

Second order cone programming

Cone programming

... ...

Semidefinite programming

Figure 1.1 – Disciplined convex programming yield a natural hierarchy in convex optimization.
SDP sits somewhere on top of this hierarchy.

Semidefinite programming relaxations are powerful for obtaining approximate solutions to

countless problems in computer science [KN12, Lov03], machine learning [MNS15, SSGB07],

and signal processing [Sin11, SS11, CKS15]. Many recent studies have revealed the deep

and surprising phenomenon that, for many of these problems, one cannot obtain better

approximations beyond the semidefinite relaxation. A famous example (see [Rag08]) in com-

puter science is that, assuming a strengthened P �=NP conjecture, called the Unique Games

Conjecture, it is NP-hard to beat semidefinite relaxation for a large class of combinatorial

optimization problems.

1The definition of copositivity can be traced back to [Mot52]. For a recent survey, see [HUS10].

3

Chapter 1. Introduction

1.2.1 Relax and Round

Let us derive a basic SDP relaxation for a combinatorial decision problem, maximum cut

problem (max-cut), in order to present some common structures in these formulations. Similar

ideas arise in many other SDP applications.

x� =

⎡
⎢⎢⎢⎢⎣

1
−1
−1
1

−1

⎤
⎥⎥⎥⎥⎦

v2
v1

v3

v4

v5

c1,2

c1,3

c2,4

c3,4
c4,5

c3,5

Figure 1.2 – Graph cut on a toy graph.

Given an undirected graph G = (V ,E) with ver-

tices V = {v1, v2, . . . , vn} and a set of weights

c : E → R+ associated to each edge on the

graph, the aim is to define cut that partitions

the vertices into two distinct sets, such that

the sum of the weights that correspond to the

edges that we cross is maximized.

We can mathematically formulate this problem

as a combinatorial optimization problem:

maximize
x∈Rn

1

2

∑
{i , j }∈E

ci , j (1−xi x j) subject to xi ∈ {−1,+1}, i = 1,2, . . . ,n. (1.5)

This problem is NP-hard, and the difficulty arises from the quadratic terms in the objective

value xi x j , and the integer valued constraint xi ∈ {−1,+1}.

To deal with this difficulty, we can lift the problem into the matrix space: Define the matrix

variable X = x x∗. Then, we can equivalently formulate (1.5) as a rank constrained matrix

optimization problem:

maximize
X

1

2

∑
{i , j }∈E

ci , j (1− Xi j) subject to diag X = 1 X ∈Sn
+, rank X = 1. (1.6)

where the linear map diag : Sn+ → Rn extracts the diagonal of a matrix. This problem is still

NP-hard, but we translated the difficulty into the non-convex rank constraint.

Nest step is to relax by dropping the rank constraint:

maximize
1

2

∑
{i , j }∈E

ci , j (1− Xi j) subject to diag X = 1 X ∈Sn
+. (1.7)

This is the SDP relaxation of the combinatorial max-cut problem [GW95]. We can add Tr X = n

constraint to (1.7), which is already implied by diag X = 1.

We can solve (1.7), in polynomial time, and get an approximate solution X� to (1.7). However,

X� is not rank-one in general. Hence, in order to provide an approximate solution to the

original problem (1.5), we need a rounding step. Goemans and Williamson [GW95] describe a

randomized rounding procedure which produces approximately optimal cuts with theoretical

guarantees.

4

1.3. Arithmetics: Crisis and Opportunity

1.3 Arithmetics: Crisis and Opportunity

Within the last two decades, developments in machine learning applications have led to

revolutionary changes in our expectations from optimization in many ways. The stupen-

dous amount of data involved in the problem descriptions forced us to consider improving

scalability of the optimization algorithms as the primary goal.

Given a fixed amount of computational resources, and a fixed target approximation accuracy,

the scalability (to problem size) of an optimization procedure for a specific task can be the-

oretically bounded. In other words, in order to scale our algorithms to very large problems

beyond some theoretical bound, we have to sacrifice from the approximation accuracy. It is for

this reason that we typically consider the problem dimensions and the accuracy as variables

when we derive iteration complexity of an optimization algorithm, and suppress all other

data-dependent constants.

Fortunately, this compromise is theoretically well-justified in machine learning. In many

machine learning applications, one minimizes a loss function that corresponds to a statistical

estimator of the true model (to which we do not have access). This incurs modeling error

to the overall system. As a consequence, solving the optimization problem to very high

accuracy, orders beyond the estimation error, can only provide an insignificant amount of

extra information about the overall system. Indeed, high accuracy solutions to these problems

are not even desirable because it can cause overfitting. Accordingly, at first, first-order methods,

and more recently their stochastic extensions became increasingly popular despite their slow

sublinear convergence rates.

We can argue that this phenomenon is not specific to machine learning applications. Consider

an SDP relaxation to a combinatorial decision problem, such as the max-cut example. We

relax the original NP-hard problem as an SDP formulation by dropping the non-convex rank

constraint. We approximately solve the SDP problem using an iterative optimization procedure.

Then, we execute a rounding step to produce an approximate solution to the original problem.

We can view this whole procedure, which consists of relaxation, optimization, and rounding, as

a black-box model for solving the original combinatorial optimization problem, see Figure 1.3.

The goals of optimization and modeling are tightly connected. Relaxation imposes a modeling

error to the overall system. Hence, solving the optimization step to very high accuracy, beyond

the relaxation accuracy, do not have a significant effect on the final estimation quality. We

demonstrate this phenomenon numerically for the SDP formulation of a clustering problem

in Section 4.4.1. These arguments exclude a small class of examples for which the empirical

study suggests that the relaxation is exact.

5

Chapter 1. Introduction

Relax RoundOptimize
data estimate

The goals of optimization and modeling are tightly connected:

‖Xt −X�‖︸ ︷︷ ︸
estimation accuracy

≤ ‖Xt −X�‖︸ ︷︷ ︸
optimization accuracy

+ ‖X� −X�‖︸ ︷︷ ︸
relaxation accuracy

X�: solution of the true model (lifted, X� = x�x�∗)
X�: solution obtained by SDP relaxation
Xt: estimation obtained at iteration t

Figure 1.3 – Black-box model for solving an SDP relaxation: Relax, Optimize and Round.

1.4 Storage: Crisis and Opportunity

The majority of the semidefinite relaxation formulations relies on lifting the decision variable

to a higher dimensional search-space. Recall the max-cut example, the original formulation

(1.5) corresponds to an n-dimensional combinatorial problem, whereas the SDP relaxation

(1.7) lies in an (n ×n)-dimensional space.

Storage cost is the critical bottleneck that prevents us from solving many important problems

in large-scale. This becomes evident even in a simple max-cut example, considering the size of

modern social or transportation network graphs, which can easily reach to millions of nodes.

Even just the decision variable requires storing a huge, millions by millions matrix!

Decision variable is a core internal variable for optimization. Any reasonable optimization

algorithm must output an approximate solution to the problem. Consequently, we cannot

completely discard the decision variable from our optimization procedure, and the only hope

that remains is to exploit the structures of a solution for storing it in intrinsic dimensions.

Solutions to SDP problems are often low-rank, or close to low-rank. Consider an SDP relaxation

to a combinatorial optimization problem, such as the max-cut example. Even though we drop

the rank constraint, roughly speaking, a solution to the relaxation is informative only if it is

close to the solution set of the original problem. Accordingly, the solution (to SDP) typically

exhibits a fast decay in singular value spectrum, even if it is not exactly low-rank.

Moreover, many SDP problems have low-rank solutions due to the widely known Pataki-

Barvinok bound, see [Bar95] and [Pat98]. Under some mild technical assumptions, SDP

problem (1.4) has a solution with rank r ≤ r PB for some r PB =Θ(

d). In other words, SDP

problems provably have low-rank solutions when d � n2. Recall that d = n in max-cut.

6

1.5. State of the Research in the Field

Unfortunately the storage issue remains, even if the solution has low intrinsic dimensional-

ity. Virtually all convex optimization methods require storing the n ×n dimensional matrix

decision variable in the ambient dimensions, simply because the intermediate estimates

might be incompressible. In fact, this fundamental burden has been seen as a natural limit

for scalability, and the researchers switched their focus to non-convex frameworks to attain

scalable solutions at the expense of robustness. In 2015, while proposing the non-convex

Wirtinger-Flow method for solving phase retrieval problems, Candès et al. [CLS15b] explain

the reason of using a non-convex template as follows:

“For certain random models, some recent SDP relaxations such as PhaseLift [CESV13] are

known to provide exact solutions (up to global phase) to the generalized phase retrieval

problem using a near minimal number of sampling vectors [CLS15a, CSV12]. While in

principle SDP based relaxations offer tractable solutions, they become computationally

prohibitive as the dimension of the signal increases. Indeed, for a large number of

unknowns in the tens of thousands, say, the memory requirements are far out of reach

of desktop computers so that these SDP relaxations are de facto impractical.”

Our recent research results show that this trend can be overturned. In Chapter 2, we describe

a storage-optimal convex optimization paradigm for solving large-scale matrix optimization

problems with low-rank solutions. The key idea is to maintain only a sketch of the matrix

decision variable, and to use an algorithm that is compatible with these sketches. To demon-

strate the scalability of our framework, we exhibit numerical solutions to a phase-retrival

imaging problem with 25′600 pixel images containing human blood cells from a working

Fourier ptychograpy system [HCO+15]. Our approach can scale to problems of millions of

dimensions on a regular personal computer.

1.5 State of the Research in the Field

The first reliable algorithms for solving semidefinite programs were based on interior-point

methods, introduced independently by Nesterov & Nemirovski [NN89, NN94] and Alizadeh

[Ali91, Ali93]. Unfortunately, interior point methods are not effective for solving large-scale

problems. This is simply because they typically rely on a second order optimization algorithm

as an oracle to query at each iteration. In other words, each iteration of an interior point

method itself is a difficult optimization problem that does not scale well.

The success in solving SDP problems led researchers to investigate new applications. In return,

invention of new applications put the existing optimization frameworks under more and more

pressure to accommodate larger-scale problems. As a result of the increased popularity of

SDP formulations in machine learning and signal processing applications, researchers started

to search for more scalable procedures for solving SDP problems. Accordingly, first-order

methods are proposed as an alternative to interior point methods for large-scale applications.

The majority of these algorithms are direct adaptations of some classical methods in the

7

Chapter 1. Introduction

literature for an SDP template, such as the proximal gradient approach and its accelerated

variants [Roc70, BT09] or the alternating direction method of multipliers [BPC+11].

A substantial challenge for the first-order methods is the computational cost of the projection

oracle. Recall that projection onto positive semidefinite cone might require a full eigende-

composition, which imposes O(n3) arithmetic cost per-iteration. Coupled with the slow,

sublinear convergence rate of first-order methods, this creates an undesirable computational

burden. The conditional gradient method (CGM, also known as the Frank-Wolfe algorithm) is

extremely powerful in this setup, since it avoids projection steps by leveraging the so-called

linear minimization oracle that can be solved efficiently using iterative linear algebra routines

such as the power method or Lanczos algorithm [FW56, Haz08, Jag13].

Hazan [Haz08] proposed using CGM for solving smooth problems over positive semidefinite

cone. However, CGM is not as flexible as the proximal first-order methods, and no extant

practical variant of CGM exists in the literature for solving the SDP template (1.4). To this

end, [Haz08, GH11, GH16] suggest solving a sequence of feasibility problems with the least

squares loss and applying binary search to the objective value. Renegar [Ren14] develops a

subgradient method for linear and semidefinite programming with similar per-iteration cost

as CGM. None of these methods, however, addresses the storage bottleneck.

Despite the advancements in reducing the arithmetic costs, our progress in reducing the

storage footprint is minimal in the convex realm. Almost all convex optimization methods

require storing the n × n dimensional matrix decision variable, which eliminates them in

large-scale.

This promoted a new trend of non-convex algorithms that apply to non-convex reformulations

of the SDP template. The majority of these heuristics are based on the factorization idea of

Burer & Monteiro [BM03], where the matrix variable is factorized as X = UU∗, such that

U ∈Rn×r for some splitting rank r ≤ n:

minimize 〈C , UU∗〉 subject to A(UU∗) = b. (1.8)

One can apply a wide range of optimization methods to find a stationary point of this problem

with respect to the factor U . See [BM03, JNS13, Bou15, BKS16, CLS15b] for some examples.

The main advantage of the non-convex heuristics is the reduced size of the decision vari-

able. Some methods also benefit from locally linear convergence rates. On the other hand,

these algorithms are provable only under stringent, unverifiable and (sometimes) unrealistic

statistical assumptions on the problem data.

Very recently, we have developed a new storage-optimal algorithm for solving SDP in standard

form, based on the approximate complementarity principle [DYC+19]. The main idea is to

solve the low-dimensional dual SDP approximately, and then to recover the primal SDP by

solving a compressed SDP problem to the eigenspace with the small eigenvalues of the dual

slack matrix. We do not cover this work in this dissertation.

8

1.6. Organization and Contributions

1.6 Organization and Contributions

This dissertation presents a novel convex optimization paradigm to design scalable algorithms

for solving the general SDP template (1.4). In particular, the contributions of each chapter are

as follows:

◦ In Chapter 2, we propose a novel paradigm for designing optimization algorithms for

large-scale convex problems with structured solutions. It specifically focuses on a fun-

damental class of convex matrix optimization problems with low-rank solutions. The

two key ideas are (i) to maintain only a sketch of the decision variable and (ii) to use

algorithmic templates that are compatible with these sketches. It develops and analyzes

a new sketch-based algorithm for a model problem from this class. This algorithm,

SketchyCGM, modifies a standard convex optimization scheme, the conditional gradi-

ent method. In contrast to nonconvex heuristics, the guarantees for SketchyCGM do

not rely on statistical models for the problem data. Numerical evidence establishes the

benefits of SketchyCGM.

In order to adapt SketchyCGM for solving the SDP template (1.4), we need to design compatible

algorithms for (1.4). To this end, Chapters 2 and 3 develop new optimization methods for (1.1),

with similar characteristics as the conditional gradient method.

◦ In Chapter 3, we describe a new primal-dual optimization method for the prototypical

constrained convex optimization template (1.1). In contrast to existing primal-dual

algorithms, our framework avoids the proximity operator of the objective function

altogether. We instead leverage computationally cheaper, Fenchel-type operators,

which are the main workhorses of the generalized conditional gradient type methods.

Unlike standard CGM, our algorithm can also handle the affine constraints Ax ∈K. Our

algorithms are universal in the sense that they can automatically adapt to the unknown

Hölder smoothness orders within the template.

◦ In Chapter 4, we introduce a generalized conditional gradient method, Homotopy-

CGM, for the constrained convex optimization template (1.1). Our approach combines

smoothing (quadratic penalty) and homotopy techniques under the CGM framework,

and provably achieves O(1/

t) convergence rate, where t denotes the iteration counter.

We demonstrate that the same rate holds if the linear subproblems are solved approxi-

mately with additive or multiplicative error.

◦ In Chapter 5, We extend our HomotopyCGM algorithm from quadratic penalty to

an augmented Lagrangian framework. The resulting algorithm, CGAL, retains the

strong theoretical guarantees of HomotopyCGM while exhibiting significantly superior

empirical performance. Numerical evidence demonstrates the benefits of CGAL in

various SDP applications.

SketchyCGM adopts a sketching model as a natural mechanism for reducing the dimension-

ality of the decision variable. Consequently, designing practical sketching algorithms for

low-rank matrix approximation is a fundamental aspect of our research.

9

Chapter 1. Introduction

◦ In Chapter 6, we develop a suite of new algorithms for fixed-rank approximation from

a sketch. These methods can preserve structural properties of the input matrix, such

as positive-semidefiniteness. Each method is accompanied by an informative error

bound. The algorithms are simple, accurate, numerically stable, and provably correct.

We implement our algorithms as a MATLAB Toolbox open for public access. Computer

experiments show that the proposed methods dominate alternative techniques across a

wide range of examples.

Many SDP algorithms require the problem data to be readily available. However, most prob-

lems in engineering and machine learning contains some degree of randomness. Therefore,

an interesting future research direction is the stochastic extension of our findings.

◦ In Chapter 7, we present our preliminary study for the stochastic extension, where

we aim to identify and present the stochastic CGM variants with the best theoretical

guarantees. We study expectation minimization and finite-sum settings, both with

and without the convexity assumption. We propose a class of novel variance-reduced

stochastic CGM algorithms, and improve the best known rates in the literature for

various problem settings.

◦ Finally in Chapter 8, we summarize the main contributions of this dissertation and

describe some future research directions.

1.7 Notation and Terminology

For notational simplicity, we work on the Rp /Rn×n and Rd spaces with the Euclidean norms.

We write ‖·‖ for the Euclidean norm, ‖·‖F for the Frobenius norm, and ‖·‖S1 for the Schatten 1-

norm (aka the trace norm or the nuclear norm). Depending on context, 〈·, ·〉 refers to the

Euclidean or Frobenius inner product. The symbol ∗ denotes the conjugate transpose of a

vector or matrix, as well as the adjoint of a linear map. The dagger † refers to the pseudoinverse.

The symbol [X]r stands for a best rank-r Frobenius-norm approximation of the matrix X .

The symbol � denotes the semidefinite order. The function dist(z ;K) returns the minimum

Euclidean distance from z to a set K, i.e., dist(z ;K) := minu∈K ‖z −u‖. Similarly, the function

dist(X ;X) returns the minimum Frobenius-norm distance from X to a set X . For a convex

function f , we use ∇ f both for its subgradient and gradient. We denote the diameter of X by

DX = maxx1,x2∈X ‖x1 −x2‖. We use the computer science interpretation of the order notation

O,Õ,Ω,Θ.

Next, we recall some basic notions from convex analysis that will be used especially in Chap-

ters 3 and 4 to design new optimization methods for solving (1.1).

Subdifferential. The subdifferential of a function f at a point x ∈Rp is defined as

∂ f (x) =
{

u ∈Rp : f (v)− f (x) ≥ 〈v −x , u〉, ∀v ∈Rp
}

. (1.9)

10

1.7. Notation and Terminology

Elements of the subdifferential set are called subgradients, and we denote an arbitrary subgra-

dient of f at x by ∇ f (x). If ∂ f (x) is a singleton, then f is a differentiable function, and we call

∇ f (x) as the gradient of f at x .

Lipschitz continuity. We say that a function g : Rd →R is L-Lipschitz continuous if it satisfies

|g (x1)− g (x2)| ≤ L‖x1 −x2‖, ∀x1, x2 ∈Rd .

Smoothness. A differentiable function f :X →R is L f -smooth if its gradient ∇ f is L f -Lipschitz

continuous:

‖∇ f (x1)−∇ f (x2)‖ ≤ L f ‖x1 −x2‖, ∀x1, x2 ∈X .

Proximal operator. The proximal operator of a function g : Rd →R is defined as follows

proxg (z) = arg min
y∈Rd

{
g (y)+ 1

2
‖y − z‖2

}
. (1.10)

Roughly speaking, the proximal operator is tractable when the computation of (1.10) is cheap.

If g is the indicator function of a nonempty, closed convex subset K, its proximity operator is

the projection operator on K.

Linear minimization oracle. As the problem dimensions become increasingly larger, the

proximal tractability assumption can be restrictive. This fact increased the popularity of the

conditional gradient methods (CGM, aka Frank-Wolfe algorithms), which instead leverage the

following linear minimization oracle:

lmoX (x) = argmin
u∈X

〈u, x〉. (1.11)

Lagrange saddle point. Introduce a slack variable v ∈ K, and define the Lagrangian of (a

reformulation of) the problem (1.1) by

L(x , v , y) := f (x)+〈y , Ax −v〉. (1.12)

For the SDP template (1.4), we define the Lagrangian as L(X , y) = f (X)+〈y , AX −b〉.

Then, we can formulate the primal and dual problems as follows:

max
y∈Rd

min
x∈X
v∈K

L(x , y)

︸ ︷︷ ︸
dual

≤ min
x∈X
v∈K

max
y∈Rd

L(x , y)

︸ ︷︷ ︸
pr i mal

. (1.13)

We assume that the strong duality holds, i.e., the relation above holds with equality.

11

Chapter 1. Introduction

Slater’s condition is a sufficient condition for strong duality. By Slater’s condition, we mean

relint(X ×K) ∩ {(x , v) ∈Rp ×Rd :Ax = v } �= �, (1.14)

where relint stands for the relative interior.

Solution set. We denote an exact solution of (1.1) by x� (resp., solution of (1.4) by X�), and the

set of all solutions by X�.

Similarly, we denote a solution of the dual problem by y�, and the solution set by Y�.

Throughout this dissertation, we assume that the solution sets X� and Y� are non-empty.

ε-solution. Our goal is to approximately solve (1.1) (resp. (1.4)) to obtain xε in the following

sense: Given an accuracy level ε> 0, a point xε ∈X is said to be an ε-solution of (1.1) if

f (xε)− f� ≤ ε, and dist(Axε,K) ≤ ε. (1.15)

Here, we call | f (xε) − f�| the primal objective residual and dist(Axε,K) the feasibility gap.

We use the same ε for the objective residual and the feasibility gap for notational simplicity.

Distinct choices can be handled simply by scaling f .

Remark that f (xε)− f� can take negative values, but the following inequality characterizes the

maximum super-optimality in terms of the feasibility gap:

f (xε)− f� ≥−‖y�‖ ·dist(Axε,K) for any dual solution y�. (1.16)

This is an algorithm-independent bound.

Proof. From the Lagrange saddle point theory, we know that the following bound holds ∀x ∈X
and ∀v ∈K:

f� ≤L(x , v , y�) = f (x)+〈y�, Ax −v〉 ≤ f (x)+‖y�‖‖Ax −v‖ (1.17)

where the last inequality holds due to the Cauchy-Schwarz inequality. By setting x = xε ∈X in

this inequality and optimizing with respect to v ∈K, we get

f (xε)− f� ≥−min
v∈K

‖y�‖‖Axε−v‖ =−‖y�‖dist(Axε,K). (1.18)

12

2 Storage-Efficient Convex Optimization

This chapter introduces a storage optimal convex optimization paradigm. As a model example,

we consider a fundamental class of convex matrix optimization problems with low-rank

solutions. We argue that the main obstacle that prevents us from solving these problems at

scale is the storage cost. As a proof of concept, we exhibit the first provably correct algorithm,

SketchyCGM, for these problems, with optimal storage.

This chapter is based on two distinct joint works, with Ya-Ping Hsieh and Volkan Cevher

[YHC15], and with Madeleine Udell, Joel A. Tropp and Volkan Cevher [YUTC17].

Introduction

We consider a fundamental class of matrix optimization problems:

minimize
X ∈Rm×n

f (AX) subject to ‖X ‖S1 ≤α. (2.1)

� f is a smooth convex loss function;

�A : Rm×n →Rd is a given linear map;

� α ∈R+ is a given model parameter.

Nuclear norm constraint is a powerful proxy that promotes low-rank solutions [Faz02]. Whenα

is well-tuned, we expect solutions to problem (2.1) to be (approximately) low-rank. Validating

template (2.1) for low-rank matrix optimization problems is beyond the scope of our work.

Our focus is to overcome computational challenges for solving (2.1) in large-scale.

Problem (2.1) is smooth minimization within a nuclear norm-ball of radius α, which is consid-

erably easier to solve than the SDP template (1.4), especially in terms of the arithmetic cost.

Nevertheless, this template suffers from the same storage burden, which is evident especially

in the data-limited setting where d � mn. This is a natural assumption since d typically

reflects the amount of data, which is typically smaller than the ambient dimensions of the

problem. An example of this phenomenon is matrix completion, where the aim is to recover

the complete matrix using only a small sample set of its entries.

13

Chapter 2. Storage-Efficient Convex Optimization

Let us formalize the challenges that we face in storing the matrix variable.

◦ We need only d units of memory space to store measurements AX , or the problem data.

We also assume that A has an intrinsic structure that makes it easy to store and access. If we

think about the matrix completion example, storing indices that are associated with the given

sample set is enough to implement A.

◦ Suppose that a solution to problem (2.1) is (approximately) low-rank, denoting the rank by

r � min(m,n). Then, we can store this solution (resp. a rank-r approximation of this solution)

using only r (m +n) units of memory space in factorized form.

◦ Almost all classical algorithms in the convex optimization literature for solving (2.1) requires

initializing and storing a matrix decision variable in the ambient dimensions, which requires a

storage unit of size Θ(mn), much larger than the storage we need for storing the data and a

solution!

Our goal is to find a solution to problem (2.1) with rigorous approximation guarantees, but

without ever initializing a matrix decision variable in the ambient dimensions.

Contributions

In this chapter, we design two variants of conditional gradient method (CGM) with reduced

memory footprint. We can summarize our contributions as follows:

◦ We introduce ThinCGM. ThinCGM operates much like CGM, but it stores a singular value

decomposition (SVD) of the matrix variable. While ThinCGM is not theoretically guaranteed

to alleviate the expansion of the memory usage, it often keeps a low memory footprint in

comparison with the classical CGM. The procedure is exactly the same as CGM, except the

way that matrix variable is stored in the memory. Therefore, ThinCGM should be viewed as a

careful implementation of CGM rather than a new algorithm.

◦ We initiate the discussion about exploring the limits of storage efficiency for convex opti-

mization algorithms. We formalize the concept of storage-optimality, and we introduce a new

paradigm to design storage-optimal convex optimization methods.

◦ We propose SketchyCGM. SketchyCGM is the first storage-optimal convex optimization

method for problem (2.1). SketchyCGM maintains a small randomized linear image (a sketch)

of the matrix variable. After the oprimization procedure is terminated, this sketch is used to

extract a provably good low-rank approximation of the solution.

◦ We present computational evidence that SketchyCGM can solve large-scale instances of (2.1)

that are not accessible to other convex optimization algorithms in the literature.

Most importantly, our results demonstrate that storage alone is not a reason to drop convexity.

14

2.1. Conditional Gradient

2.1 Conditional Gradient

Conditional gradient method (CGM) plays a crucial role in designing convex optimization

algorithms for solving large-scale low-rank matrix optimization problems.

CGM is proposed for the first time in the seminal work of Frank and Wolfe [FW56] for solving

smooth convex optimization problem on a polytope. Following the machine learning revo-

lution in optimization, this classical method underwent a significant increase in popularity,

especially for matrix factorization problems. It is extended for the smooth convex minimiza-

tion over the simplex by Clarkson [Cla10], for the spactrahedron by Hazan [Haz08], and finally

for an arbitrary compact convex set by Jaggi [Jag13].

Intuition. In essence, at each iteration, CGM solves a linear program formed by the best

linear underestimate of the smooth loss function at the current iterate X t . Then, a solution

to the original problem is obtained as a convex combination of the solutions to these linear

programs.

One can also view CGM as an instance of the dual averaging subgradient method of Nes-

terov [Nes09]. See Section 3.5 for the details on this relation.

2.1.1 Opportunity

CGM does not need a projection oracle. This is the characteristic feature that makes CGM

an irreplaceable algorithm for sparse signal recovery. The reason is simple: The solution to

a linear program over a compact set, is provably an extreme point of this set. Since CGM

constructs the solution as a convex combination of these extreme points, it is automatically

feasible, leaving no reason to perform a projection step.

Why is this a big deal? Because the efficiency of implementing the projection step becomes

questionable in large-scale problems. For the low-rank matrix optimization problem, for

instance, projection corresponds to a soft-thresholding on the singular values. Hence, it

requires computing a full SVD first. On the other hand, a linear minimization over the same

nuclear norm-ball requires only the top singular vectors, which is arguably an easier task. In

addition, CGM is robust against noise in the linear minimization step. Consequently, we can

implement it with an approximate singular vector, which can be obtained efficiently using

iterative linear algebra routines such as power method.

An auxiliary benefit is the interpretability of the primal averaging sequence of CGM. CGM

forms the decision variable as a convex combination of the extreme points of the problem

domain. The extreme points, naturally, have low intrinsic dimensionality. For example, in our

model problem (2.1), extreme points are rank-one. Therefore, CGM constructs a solution to

(2.1) as the sum of a streaming rank-one matrices. This model of streaming atomic updates is

key to tackle the storage burden.

15

Chapter 2. Storage-Efficient Convex Optimization

2.1.2 CGM Iteration

We describe the application of CGM for solving (2.1). Choose a feasible initial estimate:

X0 ∈Rm×n where ‖X0‖S1 ≤α. (2.2)

As described, at each iteration t = 0,1,2, . . . , CGM minimizes a linear approximation:

Ht = argmin
H

{
f (AX t)+〈H − X t , A∗(∇ f (AX t))〉 : ‖H‖S1 ≤α

}
= argmin

H

{
〈H , A∗(∇ f (AX t))〉 : ‖H‖S1 ≤α

}
.

(2.3)

We can implement (2.3) using the following operations:

Ht =−αut v∗
t where (ut , vt) = MaxSingVec(A∗(∇ f (AX t))). (2.4)

MaxSingVec returns the left and right singular vectors that correspond to the maximum

singular value. Note that we can efficiently implement MaxSingVec using power-method or

Lanczos algorithm.

Finally, we update the decision variable:

X t+1 = (1−ηt)X t +ηt Ht where ηt = 2/(t +2). (2.5)

Stopping Rule

CGM comes with a natural and easily computable duality gap certificate that can be used to

implement a simple stopping criterion.

From convexity of f , we know

f � ≥ f (AX t)+〈X�− X t , A∗(∇ f (AX t))〉
≥ min

H

{
f (AX t)+〈H − X t , A∗(∇ f (AX t))〉 : ‖H‖S1 ≤α

}
.

(2.6)

Hence, once we compute Ht in (2.4), we can use it to compute the following surrogate:

〈AX t −AHt , ∇ f (AX t)〉 ≥ f (AX t)− f �. (2.7)

As a consequence, given a target suboptimality parameter ε> 0, we can terminate CGM when

〈AX t −AHt , ∇ f (AX t)〉 ≤ ε. (2.8)

This ensures that f (AX t)− f � ≤ ε.

16

2.2. ThinCGM

2.2 ThinCGM

The goal is to solve a matrix optimization problem. We are not allowed to form and store a

matrix explicitly in ambient dimensions. We assume that the solution is low-rank so that it

can be stored efficiently. What is the most straightforward action? Trying to store the matrix

variable in a factored form, for example as an SVD.

This idea, however, should be taken with care. None of the algorithmic steps should require the

explicit form of the matrix variable internally. In particular, we need an algorithmic procedure

to compute SVD of the new estimate after an additive rank-one update (2.5).

2.2.1 Thin SVD Updates

In this section, we overview an algorithmic procedure that computes SVD of X t+1 from SVD of

X t , without generating X t in the ambient dimensions. This procedure is a direct application

of Brand’s ThinSVD updates in [Bra06].

Let X have rank r̂ , and (U ,Σ,V) ∈Rm×r̂ ×Rr̂×r̂ ×Rn×r̂ be its SVD, so that

X =UΣV ∗. (2.9)

We want to compute SVD of the next estimate defined by the update rule (2.5). Let us define

the internal variables

m =U∗u, p = u −Um, p̂ = p

‖p‖ , (2.10)

n = V ∗v , q = v −V n, q̂ = q

‖q‖ . (2.11)

Then, we compute (Û ,Σ̂,V̂) by solving a small (r̂ +1)× (r̂ +1) dimensional SVD problem

Û Σ̂V̂ ∗ = (1−η)

[
Σ 0

0 0

]
−ηα

[
m

‖p‖

][
n

‖q‖

]∗
(2.12)

Now we can perform the CGM update (2.5) as follows:

U ←
[
UÛ p̂Û

]
and V ←

[
V V̂ q̂V̂

]
and Σ← Σ̂, (2.13)

without ever generating X t in the ambient space.

Remark. This scheme can also be generalized for additive modifications of any fixed rank.

See [Bra06] for more details.

17

Chapter 2. Storage-Efficient Convex Optimization

2.2.2 ThinCGM Iteration

Choose a low-rank initial estimate directly in the form of an SVD. We consider X0 = 0. Then,

perform the initialization:

U0 = 0 ∈Rm , V0 = 0 ∈Rn , Σ0 = 0 ∈R, and y0 =AUΣV ∗ = 0 ∈Rd . (2.14)

Optionally, fix an ε> 0 for the stopping condition, in order to prescribe a target accuracy.

At each iteration t = 0,1,2, . . . , evaluate the linear minimization following the recipe

ht =A(−αut v∗
t) where (ut , vt) = MaxSingVec(A∗(∇ f (yt))). (2.15)

Set the learning rate ηt = 2/(t +2). Update the "dual iterate" yt , and also the factors of the

primal variable using the procedure described in Section 2.2.1:

yt+1 = (1−ηt)yt +ηt ht ;

(Ut+1,Σt+1,Vt+1) = SVDUPDATE(Ut ,Σt ,Vt ,ut ,α, vt ,ηt).
(2.16)

If a stopping criteria is defined, continue until the condition is satisfied:

〈yt −ht , ∇ f (yt)〉 ≤ ε. (2.17)

See Algorithm 2.1 for a complete pseudocode.

An important detail here is that we can evaluate MaxSingVec in (2.15) without forming

A∗(∇ f (yt)) in ambient dimensions! To emphasize how, let us consider the compact notation

of A, in the same spirit as (1.3):

A : Rm×n →Rd where AX =
[
〈A1, X 〉 . . . 〈Ad , X 〉

]
;

A∗ : Rd →Rm×n where A∗z =∑d
i=1 zi Ai .

(2.18)

By assumption, A has low intrinsic complexity, which translates into (2.18) as each coefficient

matrix Ai ∈Rm×n has only a few degrees of freedom. For the matrix completion problem, for

instance, each Ai is one-sparse.

To evaluate MaxSingVec, we just need to run an iterative procedure such as power method,

Lanczos algorithm or randomized SVD [HMT11]. These procedures require only an oracle to

compute matrix-vector multiplications involving the matrix A∗(∇ f (y)):

A∗(∇ f (y)) : Rn →Rm where A∗(∇ f (y))u =∑d
i=1 zi Ai u(A∗(∇ f (y))

)∗ : Rm →Rn where
(A∗(∇ f (y))

)∗ v =∑d
i=1 zi A∗

i v
(2.19)

Notice that these oracles work in Rm and Rn dimensions.

18

2.2. ThinCGM

Algorithm 2.1 ThinCGM for model problem (2.1)

Require: Data for (2.1); (optional) suboptimality ε

1: function THINCGM
2: (U ,Σ,V) ← (0,0,0) and y ← 0
3: for t ← 0,1,2,3, . . . do
4: (u, v) ← MaxSingVec(A∗(∇ f (y)))
5: h ←A(−αuv∗)
6: if 〈y −h, ∇ f (y)〉 ≤ ε then break for
7: end if
8: η← 2/(t +2)
9: y ← (1−η)y +ηh

10: (U ,Σ,V) ← SVDUPDATE(U ,Σ,V ,u,α, v ,η)
11: end for
12: return (U ,Σ,V)
13: end function

————————————————————————————

14: function SVDUPDATE(U , Σ, V , u, α, v , η)
15: m ←U∗u and n ← V ∗v
16: p ← u −Um and q ← v −V n
17: p̂ ← p/‖p‖ and q̂ ← q/‖q‖
18: (Û ,Σ̂,V̂) ← svd

(
(1−η)

[
Σ 0
0 0

]
−ηα

[
m
‖p‖
][

n
‖q‖
]∗)

19: U ← [UÛ p̂Û
]

and V ← [V V̂ q̂V̂
]

and Σ← Σ̂

20: return (U ,Σ,V)
21: end function

Suppose that the CGM iteration (2.2)–(2.5) generates the sequence (X t : t = 0,1,2, . . .). It is

easy to verify that the ThinCGM iteration generates the sequences (Ut ,Σt ,Vt : t = 0,1,2, . . .)

such that UtΣt V ∗
t = X t . In other words, ThinCGM is a careful implementation of the standard

CGM, rather than a new method. Consequently, ThinCGM maintains the same convergence

guarantees as the standard method.

While ThinCGM is not theoretically guaranteed to alleviate the expansion of the rank, it often

keeps a low memory footprint in comparison with the classical CGM. The weak point of

ThinCGM is that the rank of X t can increase with t . There is no bound on the rank, beyond the

fact that it is clearly less than t (recall that each step brings a rank-one update). CGM exhibits

a slow, sublinear convergence rate, which means that we need to run it for many iterations

before reaching an approximate solution. As a result, the peak rank of the iterates is often

much larger than the rank of the solution.

Remark. After we submitted [YHC15] for review, a discussion on the idea of using thin SVD

updates to implement CGM-type methods appeared also in a concurrent work by Freund et

al., see Section 3.6 in [FGM17].

19

Chapter 2. Storage-Efficient Convex Optimization

2.2.3 A Numerical Study on the Rank Expansion

ThinCGM is a CGM implementation for (2.1), which attempts to maintain a low-rank repre-

sentation of the decision variable. The intermediate estimates, however, are not guaranteed to

be low-rank, even when the sequence starts from and converges towards low-rank points.

Consider the matrix completion problem that arises in machine learning applications such as

collaborative filtering [SRJ04]. Suppose that we are trying to construct an unknown, low-rank

matrix X� ∈Rm×n from a small sample set E of its entries:

bi j = (X�)i j +ξi j for (i , j) ∈ E , (2.20)

where ξi j models the noise. Let us consider a Gaussian noise model, under which we can

formulate the problem as an instance of (2.1) with the following setting:

� Each coefficient matrix (2.18) associated with A is a distinct, one-sparse (m ×n) matrix.

� b :=AX�+ξ ∈Rd is a vectorized representation of samples (2.20).

� f (z) := 1
2‖z −b‖2 corresponds to negative log-likelihood estimator of the Gaussian model.

We consider MovieLens 100K dataset [HK16], which consists of 100′000 ratings (1 to 5) from

943 users in 1682 movies. We use a very basic preprocessing step, which only removes the

movies that are not rated by any user, and the users that have not provided any ratings.

Figure 2.1 shows the expansion of the rank. On the left panel, we draw the evolution of ε-rank

of the estimate. By ε-rank, we mean the number of singular values that exceed εσ1, where σ1

is the largest singular value. On the right panel, we plot the singular singular value spectrum

of the ground truth, obtained by solving the optimization problem to high accuracy. It is clear

from this picture that the rank of the intermediate iterates can be much higher than the rank

of the solution.

iteration
0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

σj/σ1 ≥ 10−4

σj/σ1 ≥ 10−3

σj/σ1 ≥ 10−2

σj/σ1 ≥ 10−1

(a) The ε-rank of CGM iterates

j
0 50 100 150 200

σ
j
/
σ
1

10-3

10-2

10-1

100
iteration 10000

(b) Singular value spectrum of a solution

Figure 2.1 – Rank expansion of CGM estimates. ThinCGM is applied to the matrix completion
problem with MovieLens 100K dataset.

20

2.3. SketchyCGM

2.3 SketchyCGM

Our numerical study on matrix completion problem demonstrates that the rank increases

steadily, even when the solution has an approximately low-rank representation with a fast

decay in the singular value spectrum.

There also appears an auxiliary question in implementing ThinCGM. Due to numerical error,

strictly speaking, each rank-one update increases the numerical rank. Then, we need to

answer the question which singular values should we consider as noise and truncate. Without

going into these details, we present a new approach with provable guarantees on the storage.

Notice that ThinCGM does not use variables (U ,Σ,V) at any step, except for updating the

variables itself. In other words, these variables are maintained only to output a solution in the

end. Instead, yt contains all information about X t that we need to drive CGM iterations. This

observation is the important piece to create a CGM variant with optimal storage guarantees.

We propose a new approach, SketchyCGM, which completely discards the exact storage of

the decision variable X , or its factors. Instead, we maintain a randomized linear image (a

sketch) of X which contains enough information to reconstruct a low-rank approximation of

the solution once we converge.

Since the iterations are driven by the low-dimensional dual variable y , SketchyCGM follows

exactly the same solution path as the standard CGM. It does not, however, store matrix

decision variable, and reconstructs it from a randomized sketch at the end of the optimization

procedure. This reconstruction is provably accurate, if the solution attained by CGM is

(approximately) low-rank.

Let us summarize a randomized sketching method that we introduced in [TYUC17b]. We

provide a more complete overview of this approach in Chapter 6.

2.3.1 Randomized Sketch

Draw and fix two independent standard normal matrices Ω and Ψ where

Ω ∈Rn×k with k = 2r +1 and Ψ ∈R�×m with �= 4r +3. (2.21)

The sketch consists of two matrices Y and W that capture the range and co-range of X :

Y = XΩ ∈Rm×k and W =ΨX ∈R�×n . (2.22)

We can efficiently update the sketch (Y ,W) to reflect a rank-one update (2.5).

21

Chapter 2. Storage-Efficient Convex Optimization

The following procedure provides a rank-r approximation X̂ of matrix X from its sketch:

Y =QR and B = (ΨQ)†W and X̂ =Q[B]r , (2.23)

where Q and R are the orthogonal and triangular factors. This procedure yields a rank-r

approximation X̂ that satisfies

E‖X − X̂ ‖F ≤ 3

2‖X − [X]r ‖F. (2.24)

Similar bounds hold with high probability. See Theorem 6.2 or Theorem 4.3 in [TYUC17b] for

more details.

Remark. The recommended sketch size parameters (k,�) in (2.21) are chosen to balance

storage against reconstruction quality.

2.3.2 SketchyCGM Iteration

Let us introduce SketchyCGM, the first storage-optimal convex optimization method that

produces a low-rank approximation of a solution to (2.1) with rigorous guarantees.

Fix the target rank r . Optionally, also set a suboptimality parameter ε. Independently draw

and fix standard normal test matrices Ω ∈Rn×k and Ψ ∈R�×m as in (2.21).

Initialize the iterate and the sketches:

y0 = 0 ∈Rd and Y0 = 0 ∈Rm×k and W0 = 0 ∈R�×n . (2.25)

At each iteration t = 0,1,2, . . . , resolve a solution to the linear minimization subproblem:

ht =A(−αut v∗
t) where (ut , vt) = MaxSingVec(A∗(∇ f (yt))). (2.26)

Set the learning rate ηt = 2/(t +2), and update the variables:

yt+1 = (1−ηt)yt +ηt ht ;

Yt+1 = (1−ηt)Yt +ηt (−αut v∗
t)Ω;

Wt+1 = (1−ηt)Wt +ηtΨ(−αut v∗
t).

(2.27)

If a stopping criterion is defined, continue this loop until the condition is satisfied:

〈yt −ht , ∇ f (yt)〉 ≤ ε. (2.28)

Otherwise, continue until the maximum number of iterations is reached.

Once the iterations terminate, form a rank-r approximate solution X̂ t using the procedure (2.23).

See Algorithm 2.2 for a complete pseudocode.

22

2.3. SketchyCGM

Algorithm 2.2 SketchyCGM for model problem (2.1)

Require: Data for (2.1); suboptimality ε; target rank r

1: function SKETCHYCGM
2: SKETCH.INIT(m,n,r)
3: y ← 0
4: for t ← 0,1,2,3, . . . do
5: (u, v) ← MaxSingVec(A∗(∇ f (y)))
6: h ←A(−αuv∗)
7: if 〈y −h, ∇ f (y)〉 ≤ ε then break for
8: end if
9: η← 2/(t +2)

10: y ← (1−η)y +ηh
11: SKETCH.CGMUPDATE(−αu, v ,η)
12: end for
13: (U ,Σ,V) ← SKETCH.RECONSTRUCT()
14: return (U ,Σ,V)
15: end function

——————— Methods for SKETCH object ———————

16: function SKETCH.INIT(m, n, r)
17: k ← 2r +1 and �← 4r +3
18: Ω← randn(n,k) and Ψ← randn(�,m)
19: Y ← zeros(m,k) and W ← zeros(�,n)
20: end function

21: function SKETCH.CGMUPDATE(u, v , η)
22: Y ← (1−η)Y +ηu(v∗Ω)
23: W ← (1−η)W +η(Ψu)v∗

24: end function

25: function SKETCH.RECONSTRUCT()
26: Q ← orth(Y)
27: B ← (ΨQ)\W
28: (U ,Σ,V) ← svds(B ,r)
29: return (QU ,Σ,V)
30: end function

The cost of storing a dual variable yt is Θ(d), and the test matrices (Ω,Ψ) and the sketches

is (Y ,W) is Θ(r (m +n)). The MaxSingVec subroutine can be implemented with a working

storage of size Θ(d +m +n). Overall, total storage cost of SketchyCGM is Θ(d + r (m +n)).

Definition. We call the amount of storage that we need to specify the problem data and to

write an approximate solution as the optimal storage cost. For example, the optimal storage

cost of the matrix completion problem in Section 2.2.3 is Θ(d + r (m + n)), where Θ(d) is

required to store b and Θ(r (m +n)) to write a rank-r approximate solution. If the total storage

cost of an algorithm does not exceed the optimal storage cost, we say that the algorithm is

storage-optimal. On this regard, SketchyCGM is a storage-optimal method!

23

Chapter 2. Storage-Efficient Convex Optimization

2.3.3 Convergence Results for SketchyCGM

Suppose that the CGM iterations yield a sequence (X t : t = 0,1, . . .) which is converging towards

a low-rank point. Then, the SketchyCGM iterations maintain the sketch of X t , from which

we can recover an accurate approximation of the low-rank solution. The following theorem

formalizes this intuition.

Theorem 2.1. Suppose that the sequence (X t : t = 0,1, . . .) constructed by CGM for solving

(2.1) is converging to a matrix Xcgm. Let X̂ t be the rank-r approximation of X t produced by

SketchyCGM. Then,

lim
t→∞E‖X̂ t − Xcgm‖F ≤ 3

2‖Xcgm − [Xcgm]r ‖F. (2.29)

In particular, if rank(Xcgm) ≤ r , then

E‖X̂ t − Xcgm‖F → 0. (2.30)

Corollary 2.1. Suppose that all solutions to problem (2.1) are rank-r or less. Then SketchyCGM

produces a sequence of approximations that approaches to the solution set X�:

EdistF(X̂ t ,X�) → 0. (2.31)

Recall that the rank of the intermediate estimates can get much higher than the solution rank.

Obviously, the information stored in the sketches might not contain enough information to

recover an accurate approximation of these intermediate estimates. As a result, a convergence

rate guarantee for the general problem template is not achievable.

Nevertheless, we identified a setting where it is possible to prove a bound on the convergence

rate. Naturally, this requires stronger assumptions. In particular, we assume that the unique

solution is stable in the sense that the objective value increases as we get far from the solution.

Theorem 2.2. Fix κ> 0 and ν> 0. Suppose the (unique) solution X� of (2.1) has rank(X�) ≤ r ,

and that it is stable in the sense that

f (AX)− f (AX�) ≥κ‖X − X�‖νF (2.32)

for all feasible X . Then we have the error bound

E‖X̂ t − X�‖F ≤ 6

(
2Cκ−1

t +2

)1/ν

for t = 0,1,2, . . . (2.33)

where C is the curvature constant of the problem (2.1). See Eqn. (3) in [Jag13] for the definition

of the curvature constant. We can also replace C by L f D2, where L f is the smoothness constant

of f and D is the domain diameter.

We refer to the supplements of [YUTC17] for the proofs.

24

2.4. Extensions for Semidefinite Programming

2.4 Extensions for Semidefinite Programming

The principal idea of SketchyCGM can be adopted to design storage-optimal convex optimiza-

tion algorithms for other structured convex programs. In particular, this dissertation focuses

on the SDP template (1.4). We describe the key ingredients to generalize SketchyCGM for

solving a broad set of SDP formulations.

First, notice the difference of the domain constraint between the two formulations. The

specific domain constraint in CGM affects the linear minimization subproblem. Consider the

positive semidefinite (PSD) cone constraint with bounded trace, X = {X : X ∈Sn+,Tr X =α}. In

order to adapt ThinCGM and SketchyCGM to handle problems in this domain, we replace

computation (2.26) with

ht =A(−αut v∗
t) where (λt ,ut) = MinEig(A∗(∇ f (yt))). (2.34)

MinEig returns the minimum eigenvalue λt and an associated eigenvector ut of a conjugate

symmetric matrix. Similarly, we can also handle X = {X : X ∈Sn+,Tr X ≤α} by using

ht =
⎧⎨
⎩A(αut u∗

t), λt ≤ 0

0, otherwise, where (λt ,ut) = MinEig(A∗(∇ f (yt))).
(2.35)

We also make small changes in the matrix sketch, in order to preserve PSD structure in the

reconstruction algorithm, as described in our Algorithm 9 in [TYUC17b]. Alternatively, we can

also develop more efficient sketching methods specifically for PSD matrices, see Section 6.3

and Algorithm 3 [TYUC17a].

Recall that CGM does not apply for problems with affine constraints. Consequently, we cannot

directly use SketchyCGM for solving SDP in standard form. One quick remedy is to use the

standard reduction approach of the SDP template to a sequence of feasibility problems by

performing a binary search over the optimal value of 〈C , X 〉, see Section 1.2 in [Gar12]. In large-

scale instances, however, the binary search over the model parameters imposes additional

computational cost.

Instead, we design new practical optimization algorithms that are compatible with sketching

for solving SDP template (1.4). We describe these methods in the following chapters.

We say SketchyCGM is storage-optimal because the working storage is O(d + r (m +n)), which

does not exceed the storage required to store the data and a solution. We conclude this section

by highlighting a recent result from Waldspurger and Waters [WW18], which demonstrates

that the non-convex Burer-Monteiro factorization idea (1.8) cannot lead to storage-optimal

algorithms for the standard form SDP template. In particular, they show that the factorization

rank must be set in the order Pataki-Barvinok rank even for some problems with a unique

rank-one solution, in order to avoid spurious stationary points in the problem formulation.

Accordingly, convexity seems to be the key to achieve storage-optimality!

25

Chapter 2. Storage-Efficient Convex Optimization

2.5 Numerical Experiments

We present our numerical experiments on matrix completion and phase retrieval problems, to

demonstrate flexibility, scalability and robustness of our algorithms.

2.5.1 Matrix completion

Instate the matrix completion problem description from Section 2.2.3. SketchyCGM is flexible,

i.e., it can solve any instance of (2.1). In Section 2.2.3, we considered a Gaussian noise model,

which yields a quadratic loss function. In this section, we also consider Gauss–Laplace and

Bernoulli noise models, which correspond to the huber and logistic loss, respectively.

With logistic loss, we consider a binary classification model. Only for this experiment, we

binarize the data using the formula b ← sign(b −3.5) as part of the preprocessing. For other

experiments, with quadratic and huber loss, we keep the ratings intact, with no preprocessing.

For the MovieLens 100K dataset, we use the default ub train and test partition of the data. For

each loss function, we sweep α from 3′000 to 10′000 in steps of 500. We select the value of α

that provides the best test error after 10′000 iterations of CGM. A similar procedure applies

to the MovieLens 10M dataset with the rb partition. This time, we sweep α from 50′000 to

250′000 in steps of 25′000.

We compute the test error as follows: At the end of each iteration, we execute sketch recon-

struction procedure to obtain a rank-r approximate solution. Then, we evaluate the loss

function for each datapoint in the test set, and compute the average loss of the test partition.

We report this average value as the test error.

Figures 2.2 and 2.3 present the evolution of test error for SketchyCGM as a function of the

iteration counter, for various values of the rank parameter r in SketchyCGM. For the 100K

dataset, rank r = 50 yields test error similar with the CGM solution. For the 10M dataset, rank

r = 200 yields equivalent performance.

iterations
102 103 104

te
st

er
ro
r

0.6

0.7

0.8

0.9

1

1.1

1.2
1.3
1.4

Quadratic Loss

iterations
102 103 104

te
st

er
ro
r

0.6

0.8

1

1.2

1.4

1.6

1.8
Huber Loss

iterations
101 102 103 104

te
st

er
ro
r

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Logistic Loss

SketchyCGM: r = 10
SketchyCGM: r = 25
SketchyCGM: r = 50
CGM

Figure 2.2 – MovieLens 100K Dataset. Convergence of test error for SketchyCGM with three
loss functions. The parameter α is chosen by cross-validation on the final CGM solution:
α= 7,000 for quadratic loss, 7,500 for Huber loss, and 4,500 for logistic loss.

26

2.5. Numerical Experiments

iterations
103 104

te
st

er
ro
r

0.5

0.6

0.7

0.8

0.9

1

1.1
Quadratic Loss

iterations
103 104

te
st

er
ro
r

0.5

1

1.5

Huber Loss

iterations
101 102 103 104

te
st

er
ro
r

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Logistic Loss

SketchyCGM: r = 25
SketchyCGM: r = 50
SketchyCGM: r = 100
SketchyCGM: r = 200
CGM

Figure 2.3 – MovieLens 10M Dataset. Convergence of test error for SketchyCGM with three
loss functions. The parameter α is chosen by cross-validation on the final CGM solution:
α= 150,000 for quadratic and logistic losses, and 175,000 for Huber loss.

2.5.2 Phase Retrieval Problems

The problem of retrieving the phase of a signal from its intensity-only measurements has

regained significant attention recently [CSV12, SEC+15, CZH+17]. Formally, phase retrieval

problem aims to recover a signal x� ∈Cn from d noisy quadratic measurements

bi = |〈ai , x�〉|2 +ξi for i = 1, . . . ,d . (2.36)

where ai ∈ Cn are the given measurement vectors, and ξi model the unknown noise. This

problem arises in many applications, including X-ray crystallography, astronomical imaging

and microscopy imaging.

As an estimation problem, the nonlinear observation model (2.36) poses significant difficulties,

since the standard maximum likelihood estimators yield non-convex optimization problems.

Convex relaxation is useful in this setting. Let us recast the quadratic measurements (2.36) as

bi = |〈ai , x�〉|2 +ξi

= a∗
i x�x∗

� ai +ξi

= Tr(a∗
i x�x∗

� ai)+ξi

= Tr(ai a∗
i x�x∗

�)+ξi

= 〈Ai , X�〉+ξi where Ai = ai a∗
i , and X� = x�x∗

� ∈Sn
+

(2.37)

This leads to the following linear observation model in the lifted dimensions:

b =AX�+ξ, where X� = x�x∗
� ∈Sn

+ (2.38)

As a result, data fidelity costs can be measured using convex functions, albeit in terms of matrix

variables with rank constraint. We relax the problem to a convex formulation by dropping the

rank constraint and obtain an SDP problem.

27

Chapter 2. Storage-Efficient Convex Optimization

Scalability Test with Synthetic Phase Retrieval with Gaussian Noise

Let us first investigate the scalability of our approach on a synthetic phase retrieval setup. We

consider a measurement model based on random coded diffraction patterns with octonary

modulation; see [CLS15b].

We construct a synthetic data, here are the details. We draw a vector x� ∈ Cn from the stan-

dard normal distribution. Then we acquire d = 10n intensity measurements (2.36), with iid

Gaussian noise such that the SNR is 20 dB. We choose α= d−1∑d
i=1 bi , which gives an accurate

estimate. See Section II of [YHC15] for more details on this particular choice of α.

We compare five convex optimization algorithms: the classic proximal gradient method

(PGM) [Roc76]; the Auslender–Teboulle (AT) accelerated method [AT06]; the classic CGM

algorithm [Jag13]; the PSD variants of ThinCGM and SketchyCGM (with rank parameter r = 1).

We solve the following convex optimization template

minimize
X ∈Cn×n

f (AX) subject to X ∈Sn
+, Tr X ≤α, (2.39)

with quadratic loss (f (AX) := 1
2‖AX −b‖2).

Figure 2.4(A) displays storage costs for each algorithm as the signal length n increases. We

approximate memory usage by reporting the total workspace allocated by MATLAB for the

algorithm. PGM, AT, and CGM have static allocations, but they use a matrix variable of size

n2. ThinCGM attempts to maintain a low-rank approximation of the decision variable, but

the rank increases steadily, so the algorithm fails after n = 105. In contrast, SketchyCGM has a

static memory allocation of Θ(n). It already offers the best memory footprint for n = 102, and

it still works when n = 106.

Signal length (n)
101 102 103 104 105 106

M
em

o
ry

(b
y
te
s)

104

106

108

1010

AT
PGM
CGM
ThinCGM
SketchyCGM

Figure 2.4 – Memory Scaling. Memory scaling for five convex optimization algorithms applied
to a synthetic instance of the convex phase retrieval problem.

28

2.5. Numerical Experiments

Flexibility Test with Synthetic Phase Retrieval with Poisson Noise

Poisson noise model can capture the physics of an imaging system better than a Gaussian

noise model [SEC+15, OLY+16, CLDM18]. In this section, we demonstrate the flexibility of

SketchyCGM by solving (2.39) with Poisson loss function: f (z) :=∑i zi −bi log(zi).

Remark that Poisson loss is not a smooth function, hence the standard CGM does not directly

apply. In [OLY+16], however, we show that CGM can be adapted to solve this problem with

minor modifications on the step-size and initialization: We initialize the algorithm with the

dual vector y0 = d−1/21 and set the learning rate ηt = 2/(3+ t).

We consider a similar setup to the previous section with Gaussian noise model, but we use

real images rather than random signals so that we can visualize the effects of choosing the

appropriate noise model. We choose a small image x� ∈Cn with n = 240×320 = 76′800 pixels.

We acquire d = 20n measurements of the form (2.36) using the same coded diffraction model

as in Gaussian noise model. Each ξi ∈Rd is drawn iid from a Poisson distribution. We choose

the mean of this distribution so that the SNR is 20 dB. Once again, we set α to the average of

the measurements bi .

We set the rank parameter r = 1, and run SketchyCGM for 100 iterations. To recover an

approximate solution of the imaging problem, we take the top singular vector of the solution.

Figure 2.5 displays the recoveries of obtained. We compare against the recovery obtained with

the Gaussian noise model. As expected, the Poisson formulation performs better.

(a) Original image (240×320) (b) Gaussian loss: PSNR 26.89 dB (c) Poisson loss: PSNR 32.12 dB

Figure 2.5 – Gaussian and Poisson phase retrieval under Poisson noise. See Section 2.5.2 for
details.

29

Chapter 2. Storage-Efficient Convex Optimization

Fourier Ptychography

Lifting yields an obvious curse of dimensionality, expanding the search space from n to n2

dimensions. As a result, SDP relaxations have been thought to be impractical for phase

retrieval problems of a realistic size.

In this section, we demonstrate an application of SketchyCGM to a phase retrieval problem

from a real-world microscopy imaging application. The authors of [HCO+15] provided mea-

surements of a slide containing human blood cells from a working Fourier ptychography

microscopy system. See [HCO+15] for the technical details of this imaging modality.

The measurement vectors ai are obtained from windowed discrete Fourier transforms. The

data consists of 29 image samples of (80×80) pixels from different illuminations. Hence, the

number of measurements d = 29 ·80 ·80 = 185′600. The final image resolution is (160×160),

which we treat as a vector of size 25′600. After lifting, this yields a complex valued (25′600×
25′600) dimensional PSD matrix problem. We consider the phase retrieval problem with

Gaussian noise model (i.e., with quadratic loss function), and we choose α= 1′400.

We run SketchyCGM with rank parameter r = 1 for 10′000 iterations. We use the standard basic

rounding step, which takes the leading eigenvector of the solution. We compare against two

non-convex approaches. The Wirtinger Flow method [CLS15b] that we implemented with the

recommended parameters, and the Burer–Monteiro method [BM03] (reconstruction provided

by the authors of [HCO+15]).

First row of Figure 2.7 displays the phase of the reconstruction obtained as a result of this

procedure. Roughly, the phase indicates the thickness of the sample at a given location.

Second and third rows show the phase gradient to provide an alternative view. SketchyCGM

produces a superior quality image than the non-convex heuristics. These results are consistent

with Figure 4 in [HCO+15], which indicates 5–10 dB improvement of convex optimization over

non-convex heuristics.

Figure 2.6 displays snapshots of the SketchyCGM iterates as the algorithm proceeds. We see

that SketchyCGM already achieve a diagnostic quality image even after 1′000 iterations.

(a) iteration 10 (b) iteration 100 (c) iteration 1,000 (d) iteration 10,000

Figure 2.6 – Evolution of the Reconstruction Quality of SketchyCGM for Fourier Ptychography.
Hue indicates the complex phase of the signal.

30

2.5. Numerical Experiments

(a) SketchyCGM (b) Burer-Monteiro[BM03, HCO+15] (c) Wirtinger Flow [CLS15b]

Figure 2.7 – Three algorithms for Fourier ptychographic imaging via phase retrieval. [top]
Brightness indicates the complex phase of a pixel. Only relative differences in brightness
are meaningful. Red boxes mark malaria parasites in blood cells. [middle] The horizontal
differences of the phase maps presented. [bottom] The vertical differences of the phase maps.

31

3 Universal Primal-Dual Methods

In Chapter 2, we described a storage-optimal convex optimization paradigm for solving low-

rank matrix optimization problems. Two major efficiencies of the conditional gradient method

(CGM) play a crucial role in our paradigm:

◦ CGM executes rank one updates on the decision variable X ,

◦ Even if we discard the decision variable X from the workspace, CGM iterations can be

driven by a low-dimensional “dual” variable.

In order to extend our framework for solving the SDP formulation (1.4), we need to develop

algorithms for the model problem, which maintain these two characteristic features.

In this chapter, we describe our primal-dual (sub)gradient methods with these two features.

Our algorithms are based on the Nesterov’s universal gradient method [Nes15] applied to the

non-smooth dual formulation of the model problem (1.1). We equip our algorithms with a new

primal averaging mechanism to construct the primal decision variable through structured

updates, which exhibits rank one updates when we use our algorithms for solving instances

from the SDP formulation (1.4).

The content in this chapter is based on the joint work with Quoc Tran-Dinh and Volkan Cevher

[YTDC15a].

Introduction

Processing the affine constraint (Ax ∈K) in (1.4) require significant computational effort in

large-scale setting. The majority of scalable numerical algorithms for constrained optimization

are primal-dual-type, including decomposition, augmented Lagrangian and alternating direc-

tion methods: See [CP08, BPC+11, GEB13, ST14, TDC14, LM15] and the references therein.

Primal-dual methods are a natural choice for designing storage-optimal methods. This is

simply because we can use the low-dimensional dual variable to drive iterations in the dual

space. Nevertheless, the majority of the primal-dual methods rely on a proximal-type (or

33

Chapter 3. Universal Primal-Dual Methods

projection-type) oracle to recover the primal variable from the dual methods. As the problem

dimensions become increasingly larger, the proximal tractability assumption can be restrictive.

More importantly, the proximal operator requires full dimensional computations in the primal

problem space, which eliminates the storage benefits.

Contributions

This chapter describes our universal primal-dual convex optimization algorithms.

◦ Our algorithmic approach features a gradient method and its accelerated variant that oper-

ates on the dual formulation of (1.1). Given the dual method, we then use a new averaging

scheme to construct primal-iterates for the problem template (1.1). This averaging scheme

results in streaming rank one updates on the primal decision variable when solving our model

SDP template (1.4). Consequently, our algorithms are amenable to thin SVD updates for

increased storage efficiency, or to sketching for storage optimality.

◦ Our algorithms trade-off the computational difficulty in the primal subproblems with the

difficulty of optimization in the dual subproblems by avoiding the proximal mappings and

using a subgradient approach instead. The dual subgradient mapping requires evaluation of

a Fenchel-type oracle that we call as the sharp operator. Sharp operator can be viewed as a

generalization of the linear minimization oracle (lmo) of CGM. In particular, when applied to

the SDP template (1.4), our sharp operator can be cast as an instance of the lmo.

◦ Unlike CGM, our approach can handle non-smooth objectives and affine constraints in (1.4)

efficiently. Due to the special structure of the dual problem, we can always assume that it

has some Hölder smoothness (also called as weak smoothness) of order ν ∈ [0,1]. As a result,

we tailor the universal gradient algorithms of Nesterov [Nes15] for solving the dual problem.

Although our algorithms do not require the knowledge of the smoothness parameters a priori,

they achieve the optimal worst-case complexity guarantees in the sense of first-order black-box

models [NY83], with respect to the smoothness order of the dual problem.

◦ We extend the convergence analysis in Nesterov’s universal gradient methods [Nes15] to the

primal-dual setting. We provide a rigorous analysis of the convergence rate and the worst-case

complexity of these algorithms.

◦ We present an accelerated variant of our algorithm based on the combination of our analysis

with the FISTA approach [BT09]. This variant requires fewer evaluations of projection onto K
than a direct extension of the fast universal gradient method of Nesterov [Nes15].

◦ We present numerical experiments in matrix completion and quantum tomography applica-

tions to demonstrate the flexibility and scalability of the proposed approach.

34

3.1. Preliminaries

3.1 Preliminaries

Let us first recall some basic notions from the primal-dual optimization.

Introduce a slack variable v =Ax ∈K, and form the Lagrangian:

L(x , v , y) := (x)+〈y , Ax −v〉. (3.1)

Minimize the Lagrangian over the constraint set to obtain the dual function φ:

φ(y) := min
x∈X

min
v∈K

L(x , v , y) = min
x∈X

min
v∈K

f (x)+〈y , Ax −v〉

= min
x∈X

f (x)+〈A∗y , x〉−max
v∈K

〈y , v〉.
(3.2)

Now we can write the dual problem as

maximize
y∈Rd

φ(y). (3.3)

This is an unconstrained concave maximization problem.

To follow the common notational convention, we define the negation of the dual function as

g (y) :=−φ(y) and work with a convex minimization formulation. In the rest of this chapter,

we will call g as the dual function relaxing the mathematical terminology, but recall that it is

in fact the negation of it. We decompose g as

g (y) = gx (y)+ gv (y) where gx (y) =−min
x∈X
[

f (x)+〈A∗y , x〉]
and gv (y) = max

v∈K
〈y , v〉.

(3.4)

Now we can write an equivalent (negated) dual problem as

minimize
y∈Rd

gx (y)+ gv (y). (3.5)

This is a composite convex minimization formulation. Since gx and gv are generally non-

smooth, FISTA and its proximal-based analysis [BT09] are not directly applicable.

3.2 Universal Primal-Dual Method

In this section, we introduce our universal primal-dual (sub)gradient method, UPD, for solv-

ing (1.1). UPD applies Nesterov’s universal gradient method from [Nes15] for solving the dual

problem (3.5). To recover the primal variable, we introduce an ergodic averaging mechanism.

Let us first define a Fenchel-type oracle, that we call as the sharp operator in the rest of this

dissertation. The sharp operator plays an important role in our algorithmic design. Given an

35

Chapter 3. Universal Primal-Dual Methods

input variable x ∈Rp , the sharp operator returns h ∈Rp such that

h = sharp f ,X (x) where h ∈ argmin
u∈X

f (u)+〈x , u〉. (3.6)

We can view the sharp operator as a generalization of the lmo of CGM, as it becomes a linear

minimization subproblem over the the domain X when f is a linear function.

Using the sharp operator, we can write a subgradient of gx , defined in (3.5), as follows:

∇gx (y) =−Ah where h = sharp f ,X (A∗y). (3.7)

3.2.1 Efficiency Considerations and Hölder Smoothness

The difficulty of solving an unconstrained optimization problem depends on the problem

geometry, i.e., the functional properties of the objective function, such as the smoothness and

the strong convexity.

For instance, when the objective function is smooth, we can use accelerated first-order meth-

ods with O(1/

ε) iteration complexity, to achieve an ε-suboptimal solution. On the other

hand, iteration complexity for solving non-smooth problems is incomparably worse, on the

order of O(1/ε2).

The classical optimization literature tackles smooth and non-smooth (with bounded subgradi-

ent) problems with distinct algorithms, specifically designed to get the optimal guarantees

for the target problem. However, designing a single algorithm which works for both cases,

without any prior information about the smoothness, is desirable for two practical reasons:

1. Smoothness of the problem might be unknown a priori, or it might be expensive to

evaluate the smoothness parameters.

2. Locally, the problem might possess more favorable structures than the global geometry.

We might expect a better empirical performance from an adaptive method in this case.

Motivated by its practical significance, there is a recent attempt to design universal gradient

methods. Universal, in this context, means that the method can adapt to the unknown

smoothness level and smoothness parameters of the problem, as defined by Nesterov in

[Nes15].

Nesterov’s universal gradient methods are the first to achieve this goal [Nes15]. His methods

are based on an inexact line-search strategy with an additional slackness term. More recently,

some line-search-free universal methods are introduced [Lev17]. These methods typically rely

on an online-to-offline conversion of the AdaGrad method [DHS11]. We have also contributed

to this line of research, by introducing the first line-search-free accelerated method with

learning rate adaptation [LYC18].

36

3.2. Universal Primal-Dual Method

Hölder smoothness. To close the gap between the complexity bounds for smooth and non-

smooth problems, Nesterov’s universal gradient methods also consider the Hölder smoothness

as the intermediate class.

Let ∇gx be a subgradient of gx . We define the Hölder smoothness constant of order ν≥ 0 as

Mν := max
y1,y2∈Rd

y1 �=y2

‖∇gx (y1)−∇gx (y2)‖
‖y1 − y2‖ν

(3.8)

Note that the parameter Mν explicitly depends on ν. We are interested in the case ν ∈ [0,1],

and especially the two extremal cases: ν= 1 corresponds to the smooth problems with Lipschitz

continuous gradients, and ν = 0 corresponds to the non-smooth problems with bounded

subgradients.

Assumption. We assume that there exists a finite smoothness constant M defined as

M := min
0≤ν≤1

Mν(g) <+∞. (3.9)

This is a reasonable assumption. We explain this claim with the following examples:

◦ If X is bounded, then ∇gx (·) is also bounded. Indeed, we have

‖∇gx (y)‖ = ‖−A∗h‖ ≤ DX ‖A‖ since h = sharp f ,X (A∗y)

∈ argmin
u∈X

f (u)+〈A∗y , u〉.
(3.10)

Hence, we can choose ν= 0 and M = DX ‖A‖. Our SDP template (1.4) fits into this case.

◦ If f is uniformly convex with convexity parameter μ f > 0 and degree q ≥ 2, i.e.,

〈∇ f (x1)−∇ f (x2), x1 −x2〉 ≥μ f ‖x1 −x2‖q ∀x1, x2 ∈Rp , (3.11)

then gx satisfies (3.8) with ν= 1
q−1 and M = (μ−1

f ‖A‖2
) 1

q−1 , as shown in [Nes15].

◦ In particular, if f is μ f -strongly convex (i.e., uniformly convex with degree q = 2), then ν= 1

and gx is smooth with parameter M =μ−1
f ‖A‖2.

3.2.2 UPD Iteration

Set the desired accuracy ε > 0, and an initial step-size σ−1. Initialize the primal and dual

variable, and the algorithm parameters

x0 ∈Rp and y0 ∈Rd and S−1 = 0. (3.12)

37

Chapter 3. Universal Primal-Dual Methods

At each iteration t = 0,1,2, . . . , compute a subgradient using the sharp operator:

∇gx (yt) =−Aht where ht = sharp f ,X (A∗yt). (3.13)

Then, evaluate the partial dual objective

gx (yt) =− f (ht)−〈yt , Aht 〉 (3.14)

UPD executes a line-search to find an appropriate dual step-size as follows:

For j =−1,0,1, . . . , compute a trial point

ŷ = proxσ̂gv
(yt − σ̂∇gx (yt))

= yt − σ̂∇gx (yt)− σ̂ projK(σ̂−1(yt − σ̂∇gx (yt))) where σ̂= 2 jσt−1.
(3.15)

The second line follows from the Moreau decomposition, since gv is the support function of

K. We continue to the line-search procedure until the following condition is satisfied:

gx (ŷ) ≤ gx (yt)+〈∇gx (yt), ŷ − yt 〉+ 1

2σ̂
‖ŷ − yt‖2 + ε

2
. (3.16)

This is the usual descent lemma for smooth convex minimization, except the additional

slackness term ε/2. Once the condition is satisfied, we set yt+1 = ŷ and σt = σ̂.

It only remains to update the primal variable. First, update the accumulated sum of the old

step-sizes, St . Then, compute the primal step-size ηt as follows:

ηt =σt /St where St = St−1 +σt . (3.17)

Finally, perform CGM-like update on the primal variable

xt+1 = (1−ηt)xt +ηt ht . (3.18)

3.2.3 Guarantees

Theorem 3.1. Suppose that we apply UPD for solving the constrained minimization problem

(1.1). Assume that strong duality holds. Further assume that the objective function f has Hölder

continuous (sub)gradients of some order ν ∈ [0,1], i.e., the assumption (3.9) holds. Then, the

sequence (xt : t = 0,1, . . .) generated by UPD satisfies

f (xt)− f� ≥−‖y�‖ ·dist(Axt ,K) (3.19)

f (xt)− f� ≤ M̂ε‖y0‖2

t +1
+ ε

2
(3.20)

dist(Axt ,K) ≤ 4M̂ε

t +1
‖y0 − y�‖+

√
2εM̂ε

t +1
(3.21)

38

3.2. Universal Primal-Dual Method

where y� denotes any solution of the dual problem, and

M̂ε :=
[

1−ν

1+ν

1

ε

] 1−ν
1+ν

M
2

1+ν
ν , for a given target accuracy ε> 0. (3.22)

Corollary 3.1 (Iteration complexity). Instate the assumptions of Theorem 3.1. Then, UPD

provably achieves an ε-solution of (1.1) after at most tε iterations, where

tε =O
((Mν

ε

) 2
1+ν
)

. (3.23)

This matches the iteration complexity of the non-accelerated first-order methods, which is

optimal for ν= 0, but not for ν ∈ (0,1]. See [NY83].

Corollary 3.2 (Oracle complexity). Instate the assumptions of Theorem 3.1. Then, the total

number of oracle queries Nt after t iterations of UPD is bounded as:

Nt ≤ 2(t +1)+1+ log2(σ−1)+ inf
ν∈[0,1]

{
1−ν

1+ν
log2

(
1−ν

1+ν

1

ε

)
+ 2

1+ν
log2(Mν)

}
. (3.24)

As a consequence, Nt ≈ 2t in the long run (as t →∞), i.e., UPD requires approximately 2 oracle

queries per iteration on the average.

3.2.4 Application to the SDP template

We can use UPD for solving instances from the SDP template (1.4), by setting

f (X) = 〈C , X 〉 and X = {X : X ∈Sn
+,Tr X =α} and K= {b} . (3.25)

Then, we can formulate the sharp operator as

Ht = lmoX (A∗yt) ∈ argmin
X ∈X

〈C +A∗yt , X 〉. (3.26)

This is the same form as an lmo of CGM. Consequently, we can implement it using

Ht =αut u∗
t where (ut ,λt) = MinEigVec(C +A∗yt). (3.27)

We can form the partial dual objective and the subgradient as

∇gx (yt) =−AHt where gx (yt) =−αλt . (3.28)

Since projK(·) = b independently of its input, we can cast the dual update rule (3.15) as

ŷ = yt + σ̂(AHt −b) where σ̂= 2 jσt−1. (3.29)

Algorithm 3.1 shows the complete pseudocode of UPD for this template.

39

Chapter 3. Universal Primal-Dual Methods

Remark. After the first iteration, we can reuse (û, λ̂) computed in the line-search procedure of

the previous iteration to implement (3.27), in order to avoid unnecessary repetitive calls of

the sharp operator. As a consequence, UPD requires jt +2 queries of the sharp operator at

iterations t , also counting j =−1 and 0.

Algorithm 3.1 UPD for the standard SDP formulation (1.4)

Require: Data for (1.4); target accuracy ε> 0; initial dual variable y ∈Rd

1: function UPD
2: X ← 0 and S ← 0
3: for t ← 0,1,2,3, . . . do
4: (u,λ) ← MinEigVec(C +A∗y)
5: H ←αuu∗ and gx ←−αλ
6: for j ←−1,0,1, . . . do
7: σ̂← 2− jσ

8: ŷ = y + σ̂(AH −b)
9: (û, λ̂) ← MinEigVec(C +A∗ ŷ)

10: ĝx ←−αλ̂
11: if ĝx ≤ gx +〈∇gx (yt), ŷ − yt 〉+ 1

2σ̂‖ŷ − yt‖2 + ε
2 then break for

12: end if
13: end for
14: y ← ŷ and σ← σ̂

15: S ← S +σ

16: η←σ/S
17: X ← (1−η)X +ηH
18: end for
19: return X
20: end function

40

3.3. Accelerated Universal Primal-Dual Method

3.3 Accelerated Universal Primal-Dual Method

We now develop AUPD, an accelerated variant of UPD. For the accelerated scheme, we study

an alternative to the fast universal gradient method of Nesterov [Nes15]. We design our

accelerated variant based on FISTA scheme [BT09], in order to reduce the number of queries

to the projK oracle per iteration.

3.3.1 AUPD Iteration

Set the desired accuracy ε> 0, and an initial step-size σ−1. Initialize the primal and the dual

variables, as well as the algorithm parameters:

x0 ∈Rp , y0 = z0 ∈Rd , τ0 = 1, and S−1 = 0. (3.30)

At each iteration t = 0,1,2, . . . , compute a (sub)gradient using the sharp operator:

∇gx (yt) =−Aht where ht = sharp f ,X (A∗yt). (3.31)

Then, compute the partial dual objective gx (yt) using (3.14).

AUPD executes a line-search procedure to find an appropriate dual step-size as follows:

For j = 0,1,2, . . . , compute a trial point

ẑ = proxσ̂gv
(yt − σ̂∇gx (yt))

= yt − σ̂∇gx (yt)− σ̂ projK(σ̂−1(yt − σ̂∇gx (yt))) where σ̂= 2− jσt

(3.32)

until the following line-search condition holds:

gx (ẑ) ≤ gx (yt)+〈∇gx (yt), ẑ − yt 〉+ 1

2σ̂
‖ẑ − yt‖2 + ε

2τt
. (3.33)

Once the condition is satisfied, set zt+1 = ẑ and σt = σ̂.

Update the accumulated sum St of old step-sizes, then compute the primal step-size ηt as

ηt = τtσt /St where St = St−1 +τtσt . (3.34)

Update the acceleration parameter τt , and perform the acceleration step

yt+1 = zt+1 + τt −1

τt+1
(zt+1 − zt) where τt+1 = 1

2
(1+
√

1+4τ2
t). (3.35)

Finally, update the primal-variable

xt+1 = (1−ηt)xt +ηt ht . (3.36)

41

Chapter 3. Universal Primal-Dual Methods

Remark. We use a decaying ε
2τt

slackness term in the line-search condition (3.33) of AUPD in

order to prevent error accumulation, in contrast to the constant ε
2 slackness in UPD.

3.3.2 Guarantees

Theorem 3.2. Instate the assumptions of Theorem 3.1. Then, the primal sequence (xt : t =
0,1, . . .) generated by AUPD satisfies

f (xt)− f� ≥−‖y�‖ ·dist(Axt ,K) (3.37)

f (xt)− f� ≤ 4M̂ε‖y0‖2

(t +2)
1+3ν
1+ν

+ ε

2
, (3.38)

dist(Axt ,K) ≤ 16M̂ε

(t +2)
1+3ν
1+ν

‖y0 − y�‖+
√√√√ 8εM̂ε

(t +2)
1+3ν
1+ν

(3.39)

where y� denotes any solution to the dual problem, and M̂ε is defined as in (3.22).

Corollary 3.3 (Iteration complexity). Instate the assumptions of Theorem 3.1. Then, AUPD

provably gets an ε-solution of (1.1) after at most tε iterations, where

tε =O
((Mν

ε

) 2
1+3ν
)

. (3.40)

This is the optimal iteration complexity for any smoothness order ν ∈ [0,1], in the sense of

first-order black box models [NY83], with respect to the smoothness of the dual problem.

Corollary 3.4 (Oracle complexity). Instate the assumptions of Theorem 3.1. Then, the total

number of oracle queries Nt after t iterations of AUPD is bounded as:

Nt ≤ 2(t +1)+1+ log2(σ−1)+ inf
ν∈[0,1]

{
1−ν

1+ν
log2

(
1−ν

1+ν

t +1

ε

)
+ 2

1+ν
log2(Mν)

}
. (3.41)

Roughly speaking, AUPD requires approximately 2 oracle queries per iteration on average on

the long-run.

3.3.3 Application to the SDP template

Algorithm 3.2 shows the complete pseudocode of AUPD for the standard SDP formulation (1.4).

We omit the details for brevity, which are similar to the details of UPD described in Sec-

tion 3.2.4.

Remark. Unlike UPD, we cannot reuse the output of the sharp operator on the step 5 of

Algorithm 3.2, because the input of MinEigVec are different in steps 5 and 10. As a result,

AUPD requires jt +2 queries of the sharp operator at iterations t . That is, one for the step 6,

and jt +1 in the line-search procedure also counting j = 0.

42

3.4. Numerical Experiments

Algorithm 3.2 AUPD for the standard SDP formulation (1.4)

Require: Data for (1.4); target accuracy ε> 0; initial dual variable y ∈Rd

1: function AUPD
2: X ← 0 and z ← y
3: τ← 1 and S ← 0
4: for t ← 0,1,2,3, . . . do
5: (u,λ) ← MinEigVec(C +A∗y)
6: H ←αuu∗ and gx ←−αλ
7: for j ← 0,1, . . . do
8: σ̂← 2− jσ

9: ẑ = y + σ̂(AH −b)
10: (û, λ̂) ← MinEigVec(C +A∗ ẑ)
11: ĝx ←−αλ̂
12: if ĝx ≤ gx +〈∇gx (yt), ẑ − yt 〉+ 1

2σ̂‖ẑ − yt‖2 + ε
2τ then break for

13: end if
14: end for
15: σ← σ̂

16: τ+ ← 0.5(1+

1+4τ2)
17: y ← ẑ + τ−1

τ+ (ẑ − z)
18: z ← ẑ
19: S ← S +τσ

20: η← τσ/S
21: X ← (1−η)X +ηH
22: τ← τ+

23: end for
24: return X
25: end function

3.4 Numerical Experiments

In this section, we illustrate the scalability and flexibility of our primal-dual framework, by

providing numerical experiments in quantum tomography and matrix completion problems.

3.4.1 Quantum tomography with Pauli operators

We consider the quantum tomography problem which aims to extract information from a

physical quantum system. A q-qubit quantum system is mathematically characterized by its

density matrix, which is a complex n ×n positive semidefinite Hermitian matrix X�, where

n = 2q .

We can provably deduce the quantum state by performing compressive linear measurements

based on the Pauli operators [GLF+10]: b = AX ∈ Cd . While the size of the density matrix

grows exponentially in q , a significantly fewer compressive measurements, in the order of

43

Chapter 3. Universal Primal-Dual Methods

d =O(n logn), suffices to recover a pure state q-qubit density matrix by solving the following

convex optimization problem:

minimize
X ∈Cn×n

1

2
‖AX −b‖2 subject to X ∈Sn

+, Tr X = 1 (3.42)

Since the objective function is smooth, we can also apply CGM to this problem. Since the

formulation is tuning-free, this problem provides an ideal scalability test for comparing our

framework against CGM. We remain within the noiseless setting, so that we can verify the

performance of the algorithms with respect to the ground-truth in large-scale. The behavior

of the algorithms are similar under polarization and additive Gaussian noise.

Here are the details of our test setup. We generate a random pure quantum state (a rank-one

X� = x�x∗
�

), and we take d = 2n logn random Pauli measurements. For q = 14 qubits system,

this corresponds to a 268′435′456 dimensional problem with n = 317′983 measurements.

To apply our algorithms, we recast (3.42) into (1.1) by introducing a slack variable u =AX −b:

minimize
u, X

1

2
‖u‖2 subject to AX −u = b, X ∈Sn

+, Tr X = 1 (3.43)

We set ε= 2×10−4 for our methods and we set a wall-time of 2×104 seconds for all methods.

We performed the experiments in MATLAB, using a computational resource of 16 CPUs of 2.40

GHz and 512 GB memory space.

Computing the sharp operator requires one query of MinEigVec, that we implement by using

the MATLAB’s built-in eigs function.

Figure 3.1 illustrates iteration and time complexities. UPD, with an average of 1.978 line-search

steps per iteration, exhibits a similar empirical performance to CGM with standard step-size.

AUPD, with an average of 1.057 line-search steps, exhibits a superior performance.

The line-search variant of CGM improves over the standard approach. We also implement a

similar line-search strategy in the primal-step for our methods. In this heuristic, we choose ηt

greedily such that it minimizes the objective function. We observe a significant improvement

in the practical performance of our methods with this line-search variant. Note however, the

improvement due to line-search is typically less significant in more realistic noisy problem

setups, both for CGM and our methods.

3.4.2 Matrix completion with MovieLens dataset

To demonstrate the flexibility of our algorithms, we consider the popular matrix completion

problem. In matrix completion, we seek to estimate a low-rank matrix X ∈ Rm×n from its

subsampled entries b ∈Rd , where A : Rm×n →Rd samples d entries from the matrix that it is

applied to.

44

3.4. Numerical Experiments

iteration
100 101 102

o
b
je
ct
iv
e
va
lu
e

10-4

10-3

10-2

10-1

100

101

102

CGM
UPD
AUPD

time (sec)
102 103 104

o
b
je
ct
iv
e
va
lu
e

10-4

10-3

10-2

10-1

100

101

iteration
100 101 102

re
la
ti
ve

d
is
ta
n
ce

to
so
lu
ti
o
n

10-2

10-1

100

time (sec)
102 103 104

re
la
ti
ve

d
is
ta
n
ce

to
so
lu
ti
o
n

10-2

10-1

100

Figure 3.1 – The convergence behavior of algorithms for the q = 14 qubits quantum tomog-
raphy problem. [Solid lines] correspond to the theoretical averaging scheme. [Dashed lines]
correspond to the line-search variants (in the primal step).

iteration
100 101 102 103

o
b
je
ct
iv
e
re
si
d
u
a
l

10-2

10-1

100

101

102

CGM
UPD
AUPD

iteration
100 101 102 103

(R
M
S
E

-
R
M
S
E
�
)
/
R
M
S
E
�

10-2

10-1

100

iteration
0 1000 2000 3000 4000 5000

R
M
S
E

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

time (min)
0 1 2 3 4

R
M
S
E

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

Figure 3.2 – The performance of the algorithms for the matrix completion problems. [Dashed
lines] correspond to the line-search variants (in primal steps). [Empty] and the [Filled] markers
correspond to the formulation (3.44) and (3.45) respectively.

Convex formulations involving the nuclear norm have been shown to be effective in estimating

low-rank matrices from limited number of measurements [CR12]. For instance, we can solve

the following least-squares formulation with nuclear norm constraint:

minimize
X ∈Rm×n

1

2
‖AX −b‖2 subject to ‖X ‖S1 ≤α. (3.44)

We can solve (3.44) with CGM. In this formulation, α is a tuning parameter.

Unlike CGM, we can apply our algorithms to the following parameter-free formulation:

minimize
X ∈Rm×n

1

d
‖X ‖2

S1
subject to AX = b (3.45)

While the nonsmooth objective of (3.45) lets us drop the tuning parameter, it clearly burdens

the computational efficiency of the convex optimization algorithms.

We solve the matrix completion problem with MovieLens 100K dataset. We use our algorithms

for solving (3.44) and (3.45). In comparison, we use CGM for solving (3.44). Recall that CGM

does not apply to (3.45).

45

Chapter 3. Universal Primal-Dual Methods

For this experiment, we do not perform any pre-processing, and we use the default ub test

and training data partition. We set the target accuracy ε = 10−3, and we choose the tuning

parameter α= 9975/2 as in [JS10].

The sharp operator requires the computation of the top singular vectors. We use lansvd

function from PROPACK1 to implement the sharp operator.

The first two plots in Figure 3.2 draw the performance of the algorithms for solving (3.44). Our

metrics are the normalized objective residual and the root mean squared error (test RMSE).

Other two plots in Figure 3.2 compare the performance of the formulations (3.44) and (3.45)

which are represented by empty and filled markers respectively. The dashed line for AUPD

corresponds to the line-search heuristic, where we use greedy ηt that minimizes the feasibility

gap (which is equivalent to the training RMSE).

3.5 CGM is Dual Averaging Subgradient Method

This section reviews a simple relation between CGM and the dual averaging subgradient

method of Nesterov [Nes09]. We presented this relation in the appendix of [YTDC15b], which

is an initial version of [YTDC15a]. For a more detailed study of the duality between the

subgradient methods and CGM, we refer to [Bac15].

Consider the CGM template

minimize
x

f (x) subject to x ∈X , (3.46)

with the smooth and convex objective function f : Rp →R, and convex a compact domain X .

Let us reformulate this problem by introducing a slack variable u = x :

minimize
u,x

f (u) subject to u = x , x ∈X . (3.47)

The dual averaging subgradient method is perhaps one of the most efficient variants in the

class of subgradient methods for solving (3.47). In order to apply this method, we first derive

the dual function:

φ(y) : = min
u∈Rp

{
f (u)−〈u, y〉}+min

x∈X
〈y , x〉

=− f ∗(y)+min
x∈X

〈y , x〉
(3.48)

where f ∗ is the Fenchel conjugate of f .

1R.M.Larsen. PROPACK Software for large and sparse SVD calculations. Available from "http://sun.stanford.
edu/~rmunk/PROPACK/"

46

3.5. CGM is Dual Averaging Subgradient Method

We can characterize the dual averaging subgradient method for solving the formulation (3.48)

with the following two-step iterative update scheme:

xt+1 = xt +ηt∇φ(yt)

yt+1 = argmax
y

{〈y , xt+1〉−βtψ(y)
} (3.49)

Here, βt is a non-increasing sequence of positive numbers, and ψ : Rp →R is a strongly convex

function (also called as proximity function) to be chosen.

Let us choose βt = 1 for all t , and ψ= f ∗. Recall that f is smooth, hence f ∗ is strongly convex

due to the Baillon-Haddad theorem [BC11].

Then, from the identity of the second step, yt+1 = argmaxy
{〈y , xt+1〉−βt f ∗(y)

}
, we have

xt+1 ∈ ∂ f ∗(yt+1), or equivalently, yt+1 =∇ f (xt+1). (3.50)

This equivalence follows from the standard properties of the Fenchel duality.

∇φ(yt) in (3.49) denotes any subgradient of φ at yt . We can compute a subgradient by

∇φ(yt) = ht −ut , where ht := lmoX (yt), ∀ut ∈ ∂ f ∗(yt). (3.51)

In particular, we can choose ut := xt , since xt ∈ ∂ f ∗(yt), as shown in (3.50).

Considering these choices, we can formulate an instance of (3.52) as follows:

xt+1 = xt +ηt (ht −xt) where ht = lmoX (yt+1)

yt+1 =∇ f (xt+1)
(3.52)

This is nothing but a simple rearrangement of the standard CGM for solving (3.46).

47

Chapter 3. Universal Primal-Dual Methods

3.6 Appendix: Proofs

The following Lemma that we borrow from [Nes15] provides the key properties for constructing

universal gradient algorithms. We refer to [Nes15] for the proof of this lemma.

Lemma 3.3 (Lemma 2 of [Nes15]). Let gx be Hölder smooth of order ν for some ν ∈ [0,1].

Then, for any δ> 0 and

M ≥ M̂δ :=
[

1−ν

1+ν

1

δ

] 1−ν
1+ν

M
2

1+ν
ν , (3.53)

the following statement holds:

gx (z) ≤ gx (y)+〈∇gx (y), z − y〉+ M

2
‖z − y‖2

︸ ︷︷ ︸
QM (z ,y)

+δ

2
, ∀y , z ∈Rd . (3.54)

This lemma introduces an approximate quadratic upper bound for gx with the additional slack-

ness term. The bound depends on the choice of the slackness parameter δ and the smoothness

parameter ν. If we know in advance that ν= 1, then we can set M to the smoothness constant,

and we can drop the slackness term δ/2.

UPD and AUPD are based on the proximal (sub)gradient step (3.15), which comes with the

following estimation guarantee.

Lemma 3.4. Suppose that y+, which is defined by

y+ := proxσgv
(y −σ∇gx (y)) (3.55)

for some σ> 0 satisfies

gx (y+) ≤ gx (y)+〈∇gx (y), y+ − y〉+ 1

2σ
‖y+ − y‖2 + δ

2
for some δ ∈R. (3.56)

Then, the following inequality holds ∀z ∈Rd :

g (y+) ≤ gx (y)+〈∇gx (y), z − y〉+ gv (z)+ 1

2σ

(‖z − y‖2 −‖z − y+‖2)+ δ

2
. (3.57)

Proof. Start with the optimality condition of (3.55)

0 ∈∇gx (y)+ 1

σ
(y+ − y)+∂gv (y+) =⇒ y − y+ =σ(∇gx (y)+∇gv (y+)), (3.58)

where we denote a subgradient of gv at y+ by ∇gv (y+) ∈ ∂gv (y+).

48

3.6. Appendix: Proofs

The rest of the proof is as follows:

1

2σ

(‖z − y+‖2 −‖z − y‖2)
= 1

σ
〈y − y+, z − y+〉− 1

2σ
‖y − y+‖2 (3.59)

= 〈∇gx (y)+∇gv (y+), z − y+〉− 1

2σ
‖y − y+‖2 (3.60)

=−〈∇gx (y), y+ − y〉+ 1

2σ
‖y+ − y‖2 +〈∇gv (y+), z − y+〉+〈∇gx (y), z − y〉 (3.61)

≤ gx (y)− gx (y+)+ δ

2
+〈∇gv (y+), z − y+〉+〈∇gx (y), z − y〉 (3.62)

≤ gx (y)− gx (y+)+ δ

2
+ gv (z)− gv (y+)+〈∇gx (y), z − y〉 (3.63)

= gx (y)+〈∇gx (y), z − y〉+ gv (z)+ δ

2
− g (y+) (3.64)

(3.60) follows from (3.58), (3.62) uses the line-search condition (3.56), and (3.63) is based on

the convexity of gv .

Clearly, (3.56) holds if σ ≤ 1/M̂δ due to Lemma 3.3, where M̂δ is defined by (3.53). If ν and

Mν are known, we can directly set σ= 1/M̂δ, as it provably satisfies the line-search condition

(3.56). In general, however, we do not know ν and Mν a priori. In this case, we determine the

step-size σ by using a line-search procedure.

The following lemma guarantees that the line-search terminates after a finite number of trials.

Lemma 3.5. The line-search procedure in UPD terminates after at most

jt =
⌊

log2(M̂εσt−1)
⌋
+1 iterations. (3.65)

Similarly, the line-search procedure in AUPD terminates after at most

jt =
⌊

log2

(t +1

ε

)
+ log2

(
M

2
1+ν
ν σt−1

)⌋
+1 iterations. (3.66)

Proof. First recall that Mν is finite due to the the Hölder smoothness assumption.

In UPD, we choose the slackness parameter δ= ε, where ε is the target accuracy. For a given

ε> 0, M̂ε is also finite. Moreover, our line-search condition is provably satisfied whenσ≤ 1/M̂ε.

Since σ̂= 2− jσt−1, the line-search procedure is terminated after at most j = �log2(M̂εσt−1)�+1

trials.

In AUPD, we choose the slackness parameter δ= ε/τt . Remark that

τt+1 = 1

2

(
1+
√

1+4τ2
t

)
≤ 1

2
(1+ (1+2τt)) = τt +1, and τ0 = 1. (3.67)

49

Chapter 3. Universal Primal-Dual Methods

Hence, by induction, we can show τt ≤ t +1. Using this bound, we get

M̂ε/τt =
[

1−ν

1+ν

τt

ε

] 1−ν
1+ν

M
2

1+ν
ν ≤

[τt

ε

] 1−ν
1+ν

M
2

1+ν
ν ≤

[
t +1

ε

] 1−ν
1+ν

M
2

1+ν
ν . (3.68)

The line-search condition is provably satisfied if σ ≤ 1/M̂ε/τt . As a result, our line-search

procedure is terminated after at most j = �log2(t+1
ε)+ log2(M

2
1+ν
ν σt−1)�+1 trials. We can show

this simply by combining (3.68) with the fact that σ̂= 2− jσt−1.

Convergence analysis of UPD

We first provide the convergence guarantee of the dual function in Theorem 3.6. Then, we

prove the convergence rate and the iteration complexity guarantees of UPD.

Theorem 3.6. Let (yt : t = 0,1,2, . . .) be a sequence generated by UPD. Then,

g (ȳt)− g (y) ≤ ḡ t − g (y) ≤ M̂ε

t +1
‖y0 − y‖2 + ε

2
∀y ∈Rd , (3.69)

where the two averaging sequences (ȳt : t = 0,1,2, . . .) and (ḡt : t = 0,1,2, . . .) are defined as

ȳt := 1

St

t∑
i=0

σi yi+1 and ḡt := 1

St

t∑
i=0

σi g (yi+1). (3.70)

In particular, by choosing y = y� in (3.69), we get

g (ȳt)− g (y�) ≤ M̂ε

t +1
‖y0 − y�‖2 + ε

2
. (3.71)

Proof. The following inequality follows directly from Lemma 3.4:

g (yi+1) ≤ g (y)+ ε

2
+ 1

2σi

[‖y − yi‖2 −‖y − yi+1‖2] , ∀y ∈Rd . (3.72)

Taking the weighted sum of this inequality over i , we get

ḡ t ≤ g (y)+ ε

2
+ 1

2St

[‖y − y0‖2 −‖y − yt+1‖2] , ∀y ∈Rd . (3.73)

Lemma 3.3 proves that the line-search condition (3.56) is satisfied if σ ≤ 1/M̂ε, where M̂ε

defined as in (3.22). Considering the algorithmic design of our line-search procedure, this

ensures that σi ≥ 1/(2M̂ε). As a consequence, we have

St =
t∑

i=0
σi ≥

t∑
i=0

1

2M̂ε

= t +1

2M̂ε

. (3.74)

Substituting (3.74) into (3.73), we obtain (3.69). Since g is convex, g (ȳt) ≤ ḡ t .

50

3.6. Appendix: Proofs

Proof of Theorem 3.1

We use the following identities to relate the convergence in the dual problem to the primal:

gx (yi) =− f (hi)−〈yi , Ahi 〉
∇gx (yi) =−hi

g (yi) ≥ g� := g (y�) =− f�, for i = 0,1,2, . . .

(3.75)

Substituting these expressions into Lemma 3.4, we get the following estimate

f (hi)− f� ≤−〈Ahi , y〉+ gv (y)+ ε

2
+ 1

2σi

(‖y − yi‖2 −‖y − yi+1‖2) , ∀y ∈Rd . (3.76)

Taking the weighted sum of this inequality over i , and using the convexity of f , we get

f (xt)− f� ≤−〈Axt , y〉+ gv (y)+ ε

2
+ 1

2St

(‖y − y0‖2 −‖y − yk+1‖2) , ∀y ∈Rd . (3.77)

Choosing y = 0 (note that gv (0) = 0), we get (3.20)

f (xt)− f� ≤ ε

2
+ ‖y0‖2

2St
≤ ε

2
+ M̂ε‖y0‖2

t +1
. (3.78)

(3.19) follows from the Lagrange saddle point formulation:

f� ≤L(x ,r , y�) = f (x)+〈y�, Ax −r 〉 ≤ f (x)+‖y�‖‖Ax −r ‖, ∀r ∈K and ∀x ∈X . (3.79)

The last inequality follows from the Cauchy-Schwarz inequality. We get (3.19) by setting x = xt .

Next, we prove (3.38). Start from the following saddle point formulation:

f� ≤L(x ,r , y�) = f (x)+〈y�, Ax −b −r 〉, ∀r ∈K and ∀x ∈X . (3.80)

Set x = xt in this inequality, and substitute it into (3.77):

min
r∈K

{
〈Axt −r , y − y�〉− 1

2St

[‖y − y0‖2 −‖y − yt+1‖2]}≤ ε

2
, ∀y ∈Rd (3.81)

=⇒ min
r∈K

{
〈Axt −r , y − y�〉− 1

2St
‖y − y0‖2

}
≤ ε

2
, ∀y ∈Rd (3.82)

=⇒ max
y∈Rd

min
r∈K

{
〈Axt −r , y − y�〉− 1

2St
‖y − y0‖2

}
≤ ε

2
(3.83)

⇐⇒ min
r∈K

max
y∈Rd

{
〈Axt −r , y − y�〉− 1

2St
‖y − y0‖2

}
≤ ε

2
(3.84)

⇐⇒ min
r∈K

{
〈Axt −r , y0 − y�〉+ St

2
‖Axt −r ‖2

}
≤ ε

2
, (3.85)

(3.81) follows the definition of gv , (3.82) removes a positive term on the left-hand-side, (3.83)

51

Chapter 3. Universal Primal-Dual Methods

maximizes over the free variable y , (3.84) holds due to the Sion’s minimax theorem [Sio58],

finally (3.85) analytically solves the inner maximization subproblem.

Denote by

r̄ ∈ argmin
r∈K

{
〈Axt −r , y0 − y�〉+ St

2
‖Axt − r ‖2

}
(3.86)

Then, we can rewrite (3.85) as

〈Axt − r̄ , y0 − y�〉+ St

2
‖Axt − r̄ ‖2 ≤ ε

2
. (3.87)

Using Cauchy-Schwarz inequality, this implies

−‖Axt − r̄ ‖ ·‖y0 − y�‖+ St

2
‖Axt − r̄ ‖2 ≤ ε

2
. (3.88)

Solving this second order inequality for ‖Axt − r̄ ‖, we get

‖Axt − r̄ ‖ ≤ 1

St

(
‖y0 − y�‖+

√
‖y0 − y�‖2 +εSt

)
≤ 1

St

(
2‖y0 − y�‖+

√
εSt

)
.

(3.89)

By definition of the distance function,

dist(Axt ,K) ≤ ‖Axt −r ‖, ∀r ∈K. (3.90)

Finally by substituting St ≥ t+1
2M̂ε

, we get (3.38).

Proof of Corollary 3.1

To provably get an ε-solution, we need to guarantee both dist(Axt ,K) ≤ ε and f (xt)− f� ≤ ε.

If we combine these conditions with the bounds from Theorem 3.1, we obtain the following

conditions on tε:

4M̂ε

tε+1
‖y0 − y�‖+

√
2εM̂ε

tε+1
≤ ε, and

M̂ε‖y0‖2

tε+1
+ ε

2
≤ ε. (3.91)

For the objective residual, we can get the bound on tε by a simple rearrangement

tε+1 ≥ 2M̂ε‖y0‖2

ε
. (3.92)

52

3.6. Appendix: Proofs

For the feasibility gap, we need to solve a second order inequality with respect to 1
tε+1

1
tε+1

≤
−
√

2εM̂ε+
√

2εM̂ε+16εM̂ε‖y0 − y�‖
8M̂ε‖y0 − y�‖

. (3.93)

Rearranging and simplifying, we get

tε+1 ≥ (8M̂ε‖y0 − y�‖)2

4εM̂ε+16εM̂ε‖y0 − y�‖−
√

16ε2M̂ 2
ε +128ε2M̂ 2

ε‖y0 − y�‖
(3.94)

= (8‖y0 − y�‖)2

4+16‖y0 − y�‖−√16+128‖y0 − y�‖
M̂ε

ε
(3.95)

Both (3.92) and (3.95) imply that tε =O(M̂ε

ε

)
. Using the definition (3.22) of M̂ε, we can get the

following order representation in terms of ε:

tε =O
(

inf
ν∈[0,1]

(
1−ν

1+ν

) 1−ν
1+ν
(

Mν

ε

) 2
1+ν
)
=O
(

inf
ν∈[0,1]

(
Mν

ε

) 2
1+ν
)

. (3.96)

Proof of Corollary 3.2

Similar to the analysis in [Nes15], we estimate the total number of oracle quires of UPD.

The total number of oracle quires up to the iteration t is given by the formula

Nt =
t∑

i=0
(ji +2). (3.97)

We designed the line-search procedure such that σi = 2 ji σi−1. Consequently,

Nt =
t∑

i=0
(log2(σi /σi−1)+2)

=
t∑

i=0
(log2(σi)− log2(σi−1)+2)

= 2(t +1)+ log2(σ−1)− log2(σt).

(3.98)

Recall that σt ≥ 1/(2M̂ε), hence we get

Nt ≤ 2(t +1)+1+ log2(σ−1)+ log2(M̂ε)

= 2(t +1)+1+ log2(σ−1)+ inf
ν∈[0,1]

{
1−ν

1+ν
log2

(
1−ν

1+ν

1

ε

)
+ 2

1+ν
log2(Mν)

}
.

(3.99)

The second line simply follows from the definition (3.22) of M̂ε.

53

Chapter 3. Universal Primal-Dual Methods

Convergence analysis of AUPD

Consider the following dual update scheme of zt+1 and wt+1 from yt and wt :

⎧⎪⎨
⎪⎩

yt = (1−τt)zt + τ̄t wt

zt+1 = proxσt gv

(
yt −σt∇gx (yt)

)
wt+1 = wt − 1

τ̄t

(
yt − zt+1

)
,

(3.100)

where w0 = z0, τ̄0 = 1 and

τ̄2
t = τ̄2

t−1(1− τ̄t). (3.101)

The parameter σt is determined based on the following line-search condition:

g (zt+1) ≤ g (yt)+〈∇g (yt), zt+1 − yt 〉+ 1

2σt
‖zt+1 − yt‖2 + ετ̄t

2
, (3.102)

with σt ≤σt−1 for t ≥ 0.

Next, we show that (3.100) is equivalent to AUPD update scheme in the dual.

Lemma 3.7. The scheme (3.100) can be restated as follows:⎧⎪⎪⎨
⎪⎪⎩

zt+1 = proxσt gv
(yt −σt∇gx (yt))

τt+1 = 1
2

(
1+
√

1+4τ2
t

)
yt+1 = zt+1 + τt −1

τt+1
(zt+1 − zt),

(3.103)

where y0 = z0 and τ0 = 1, and σt is determined based on the line-search.

This dual scheme is in the form of FISTA [BT09], except for the line-search procedure.

Proof. Set τt = τ̄−1
t , then t0 = τ−1

0 = 1. From (3.100), we have

wt −wt+1 = 1

τ̄t
(yt − zt+1) = τt (yt − zt+1). (3.104)

We also have yt = (1− τ̄t)zt + τ̄t wt , which leads to

wt = 1

τ̄t
(yt − (1− τ̄t)zt) = τt (yt − (1−τ−1

t)zt). (3.105)

Combining these expressions, we get

τt (yt − zt+1) = wt −wt+1

= τt (yt − (1−τ−1
t)zt)−τt+1(yt+1 − (1−τ−1

t+1)zt+1).
(3.106)

54

3.6. Appendix: Proofs

Then, we simplify as follows:

τt+1 yt+1 = τt zt+1 +τt+1(1−τ−1
t+1)zt+1 −τt (1−τ−1

t)zt

= (τt +τt+1 −1)zt+1 − (τt −1)zt .
(3.107)

Hence yt+1 = zt+1 + τt −1
τt+1

(zt+1 − zt), which is the third step of (3.103).

Next, from the condition (3.101), we have τ2
t+1 −τt+1 −τ2

t = 0. Hence, τt+1 = 1
2

(
1+
√

1+4τ2
t

)
,

which is exactly the second step of (3.103).

Proof of Theorem 3.2

Start from Lemma 3.4:

g (zt+1) ≤ (gx (yt)+〈∇gx (yt), y − yt 〉+ gv (z)
)+ ε

2τt

+ 1

σt
〈yt − zt+1, yt − y〉− 1

2σt
‖zt+1 − yt‖2, ∀y ∈Rd (3.108)

≤ g (z)+ ε

2τt
+ 1

σt
〈yt − zt+1, yt − y〉− 1

2σt
‖zt+1 − yt‖2, ∀y ∈Rd . (3.109)

Next, subtract g� from (3.108) to get

g (zt+1)− g� ≤ (gx (yt)+〈∇gx (yt), y − yt 〉+ gv (y)− g�

)+ ε

2τt

+ 1

σt
〈yt − zt+1, yt − y〉− 1

2σt
‖zt+1 − yt‖2, ∀y ∈Rd . (3.110)

Set y = zt in (3.109), and subtract g� from the both sides:

g (zt+1)− g� ≤ g (zt)− g�+ ε

2τt
− 1

2σt
‖zt+1 − yt‖2 + 1

σt
〈yt − zt+1, yt − zt 〉. (3.111)

Multiply (3.110) by τ−1
t , (3.111) by (1−τ−1

t), and sum them up

g (zt+1)− g� ≤ (1−τ−1
t)
(
g (zt)− g�

)+ 1

2σtτ
2
t

(‖wt − y‖2 −‖wt+1 − y‖2)+ ε

2τt

+ 1

τt

(
gx (yt)+〈∇gx (yt), y − yt 〉+ gv (y)− g�

)
, ∀y ∈Rd . (3.112)

Multiply (3.112) by σtτ
2
t , and sum over t to get

t∑
i=0

σiτ
2
i (g (zi+1)− g�) ≤

y∑
i=0

[
σiτ

2
i (1−τ−1

i)
(
g (zi)− g�

)+ 1

2

(‖wi − y‖2 −‖wi+1 − y‖2)
+ σiτiε

2
+σiτi

(
g (yi)+〈∇gx (yi), y − yi 〉+ gv (y)− g�

)]
, ∀y ∈Rd . (3.113)

55

Chapter 3. Universal Primal-Dual Methods

By design of the update rules and the line-search procedure (since σt ≤σt−1), we have

τ0 = 1 and σtτ
2
t (1−τ−1

t) ≤σt−1τ
2
t−1 for t = 1,2, . . . (3.114)

Substitute (3.114) into (3.113) to get

t∑
i=0

σiτ
2
i (g (zi+1)− g�) ≤ 1

2

(‖w0 − y‖2 −‖wt+1 − y‖2)+ t∑
i=1

[
σi−1τ

2
i−1

(
g (zi)− g�

)]
+

t∑
i=0

[
σiτi

(
gx (yi)+〈∇gx (yi), y − yi 〉+ gv (y)− g�+ ε

2

)]
, ∀y ∈Rd . (3.115)

This implies

σtτ
2
t

St

(
g (zt+1)− g�

)≤ 1

St

t∑
i=0

[
σtτt

(
gx (yi)+〈∇gx (yi), y − yi 〉+ gv (y)− g�

)]
+ 1

2St

[‖w0 − y‖2 −‖wt+1 − y‖2]+ ε

2
, ∀y ∈Rd . (3.116)

Note that g (zt+1)− g� ≥ 0, hence by rearranging we get

− 1

St

t∑
i=0

σiτi

(
gx (yi)+〈∇gx (yi), y−yi 〉+gv (y)−g�

)
≤ 1

2St

(‖w0−y‖2−‖wt+1−y‖2)+ε

2
. (3.117)

Now, we use the following identities to map this estimate for the primal variable

g (yi) = − f (hi)−〈yi , Ahi 〉
∇gx (yi) = −Ahi ,

g� = − f�.

(3.118)

Then, using Jensen’s inequality and convexity of f we get

f (xt)− f� ≤−〈Axt , y〉+ gv (y)+ ε

2
+ 1

2St

(‖w0 − y‖2 −‖wt+1 − y‖2), ∀y ∈Rd (3.119)

≤ ε

2
+ ‖y0‖2

2Ŝk
, (3.120)

where (3.120) follows by setting y = 0 in (3.119).

We can reformulate the update rule of τt in (3.103) as

τt = τ2
t −τ2

t−1, for t = 1,2, . . . (3.121)

Also note that

t +2

2
≤ τt < t +2, for t = 0,1,2, . . . (3.122)

56

3.6. Appendix: Proofs

Using (3.121), (3.122), and the fact that

σ0 ≥σi ≥σt ≥ 1

2M̂ε/τt

= 1

2τ
1−ν
1+ν
t M̂ε

≥ 1

2(t +2)
1−ν
1+ν M̂ε

, (3.123)

one can show

St =
t∑

i=0
σiτi ≥

t∑
i=0

τi

2M̂ε/τt

= 1

2M̂ε/τt

[
1+

t∑
i=1

(
τ2

i −τ2
i−1

)]

≥ τ2
t

2(t +2)
1−ν
1+ν M̄ε

≥ (t +2)
1+3ν
1+ν

8M̂ε

. (3.124)

We get (3.38) by substituting (3.124) into (3.120).

Inequality (3.37) follows the saddle point formulation (3.79) by setting x = xt .

Finally, the proof for (3.39) follows similarly to the proof in Theorem 3.1. One can show

dist(Axt ,K) ≤ 2‖y0 − y�‖
St

+
√

ε

St
, (3.125)

and we complete the proof by substituting (3.124) into this estimate.

Proof of Corollary 3.3

Using the bounds from Theorem 3.2, we obtain the following conditions on tε:

16M̂ε

(tε+2)
1+3ν
1+ν

‖y0 − y�‖+
√√√√ 8εM̂ε

(tε+2)
1+3ν
1+ν

≤ ε, and
4M̂ε‖y0‖2

(tε+2)
1+3ν
1+ν

+ ε

2
≤ ε. (3.126)

For the objective residual, we can get the bound on tε by a simple rearrangement

tε+2 ≥
(

8M̂ε‖y0‖2

ε

) 1+ν
1+3ν

. (3.127)

For the feasibility gap, we solve a second order inequality with respect to 1√
(tε+2)

1+3ν
1+ν

1√
(tε+2)

1+3ν
1+ν

≤
−
√

8εM̂ε+
√

8εM̂ε+64εM̂ε‖y0 − y�‖
32M̂ε‖y0 − y�‖

. (3.128)

Rearranging and simplifying, we get

tε+2 ≥
(

(25‖y0 − y�‖)2

24 +26‖y0 − y�‖−
√

28 +211‖y0 − y�‖
M̂ε

ε

) 1+ν
1+3ν

(3.129)

57

Chapter 3. Universal Primal-Dual Methods

Using the definition (3.22) of M̂ε, together with the bounds (3.127) and (3.129), we can show

tε =O
(

inf
ν∈[0,1]

(
1−ν

1+ν

) 1−ν
1+3ν
(

Mν

ε

) 2
1+3ν

)
=O
(

inf
ν∈[0,1]

(
Mν

ε

) 2
1+3ν

)
. (3.130)

Proof of Corollary 3.4

Similar to the proof of Corollary 3.2, the total number of oracle quires up to the iteration t is

Nt =
t∑

i=0
(ji +2) = 2(t +1)+ log2(σ−1)− log2(σt). (3.131)

Recall that σt ≥ 1/(2M̂ε/τt). Using the definition of M̂ε/τt , and (3.122), we get

Nt ≤ 2(t +1)+1+ log2(σ−1)+ inf
ν∈[0,1]

{
1−ν

1+ν
log2

(
1−ν

1+ν

τt

ε

)
+ 2

1+ν
log2(Mν)

}

≤ 2(t +1)+1+ log2(σ−1)+ inf
ν∈[0,1]

{
1−ν

1+ν
log2

(
1−ν

1+ν

t +2

ε

)
+ 2

1+ν
log2(Mν)

}
.

(3.132)

58

4 CGM for Composite Problems

CGM features significantly reduced computational costs (in comparison with the projected

gradient methods) in key machine learning applications. As we discussed in Chapter 2, it also

exhibits structured updates on the decision variable which are amenable for further storage

benefits via sketching. Unfortunately, standard CGM cannot handle affine inclusion constraint

Ax ∈K efficiently, which restricts its applicability to the key machine learning applications as

well as the SDP formulations.

To this end, we describe a generalized CGM approach for a composite convex minimization

template with broad applications. In particular, the proposed method applies to our model

problems (1.1) and (1.4).

This chapter is based on the joint work with Francesco Locatello, Olivier Fercoq and Volkan

Cevher [YFLC18].

Introduction

In this chapter, we consider the following composite convex minimization formulation:

minimize
x∈X

F (x) := f (x)+ g (Ax), (4.1)

Again, f : X →R is a smooth proper closed and convex function, and g : Rd →R∪ {+∞} is a

proper closed convex function which is possibly non-smooth. A : Rp →Rd is a given linear

map. This template covers affine inclusion contraint Ax ∈K as a special case, since we can

choose g as the indicator function of K.

By using the powerful operator-splitting framework, many problems that belong to the tem-

plate (4.1) can be solved efficiently. These methods make use of the gradient of the smooth

part f , along with the prox-operator of the non-smooth part g and the projection onto the

domain X .

59

Chapter 4. CGM for Composite Problems

CGM-type algorithms (also called as projection-free methods) are desirable when the pro-

jection onto the problem domain is a computational bottleneck. A classical example is the

positive semi-definite cone, for which the projection requires computing a full eigendecom-

position.

Unfortunately, the standard CGM cannot handle the non-smooth term in (4.1). When the

non-smooth part is an indicator function, one could take the linear minimization oracle (lmo)

with respect to the intersection between X and the set represented by g (Ax). Unfortunately,

even the lmo itself can be a difficult optimization problem in this case.

To this end, we propose a novel CGM framework for solving the composite problem (4.1)

with rigorous convergence guarantees. Our approach retains the simplicity of projection-free

methods, but it allows us to disentangle the complexity of the lmo from the non-smooth

component g (Ax).

Our method combines the ideas of smoothing [Nes05] and homotopy under the CGM frame-

work. Lan [Lan14] proposed a similar approach for non-smooth problems, which is also

extended for the conditional gradient sliding framework in their follow-up papers [LZ16] and

[LPZZ17]. Their analysis, however, is restricted with a Lipschitz continuity assumption on the

non-smooth part. As a consequence, their methods and analyses do not apply to the problems

with affine constraints. See Sections 4.3.5 and 4.3.6.

Contributions

Our main contributions in this chapter are as follows:

◦ We introduce a simple, easy to implement CGM framework for solving the instances from

composite minimization template (4.1).

◦ When the non-smooth part is a Lipschitz-continuous regularizer, we prove that the proposed

method, HCGM, achieves the optimal O(1/

t) convergence rate. When the non-smooth

term is an indicator function, i.e., when the problem has affine constraints, we prove that

the proposed method gets O(1/

t) convergence rate, both in the objective residual and the

feasibility gap.

◦ We analyze the convergence guarantees of the proposed method for the case where the

linear minimization oracle is noisy, with additive and/or multiplicative errors. We show that

our approach is robust.

◦ We present key instances of our framework, including the non-smooth minimization, mini-

mization with affine inclusion constraints, and convex splitting. We provide a summary of the

related work for each case.

◦ We present empirical evidence supporting our findings.

60

4.1. Preliminaries

4.1 Preliminaries

Our method is based on the idea of combining smoothing and homotopy under the CGM

framework. Hence, we first review the smoothing approach of Nesterov [Nes05], which plays a

crucial role in our algorithmic design.

4.1.1 Nesterov Smoothing

Nesterov smoothing exploits an important class of non-smooth functions ψ(x) that can be

written in the following max-form:

ψ(x) = max
u∈U
{〈Ax , u〉− φ̂(u)

}
, (4.2)

for some convex and compact set U ⊂Rd and a convex function φ̂ :U →R.

Let us consider a prox-function on U (i.e., a strongly convex continuous function), and denote

it by δ(u). In this work, we use the Euclidean prox-function δ(u) = 1
2‖u‖2.

Smooth approximation ψβ(x) with smoothness parameter β> 0 is defined as

ψβ(x) = max
u∈U
{〈Ax , u〉− φ̂(u)−βδ(u)

}
. (4.3)

Then, ψβ is well defined, differentiable, convex and smooth. Moreover, it uniformly approxi-

mates ψ, in the sense that it satisfies the following envelop property:

ψβ(x) ≤ψ(x) ≤ψβ(x)+βDU (∀x ∈X), (4.4)

where DU = maxu∈U δ(u). See Theorem 1 in [Nes05] for the proof and more details.

If we assume g (A ·) is Lipschitz continuous, then we can write it in the max form by choosing

ψ(x) = g (Ax) and φ̂(u) = g∗(u). Here, g∗ is the Fenchel conjugate of g , defined as

g∗(u) = max
z

{〈u, z〉− g (z)
}

. (4.5)

Since g is convex and lower semicontinuous, Fenchel duality holds, and we have

g (Ax) = g∗∗(Ax). (4.6)

Moreover, Lipschitz continuity assumption on g imposes the boundedness of the dual domain.

See Lemma 5 in [DFTJ16] for a proof of this well-known result in the convex analysis.

61

Chapter 4. CGM for Composite Problems

4.1.2 Quadratic Penalty

Quadratic penalty approach is an effective proxy for handling the affine constraint Ax ∈K. It

works by replacing the constraint with a penalty function which favors the feasibility of the

solution. We consider the squared Euclidean distance as the penalty function: 1
2β dist2(Ax ,K),

where β> 0 is the so-called penalty parameter. Surprisingly, quadratic penalty approach is

structurally equivalent to a de facto instance of the Nesterov smoothing.

Let us start by writing the Fenchel conjugate of the indicator function ιK(·),

ι∗K(z) = max
v∈K

〈v , z〉, where ιK(y) =
⎧⎨
⎩0 if y ∈K

+∞ otherwise.
(4.7)

Then, we can write the affine constraint in the max form by choosing φ̂(z) = ι∗K(z), and using

the following relation:

ιK(Ax) = max
z

{
min
v∈K

〈Ax −v , z〉}
= max

z

{〈Ax , z〉− ι∗K(z)
}

.
(4.8)

Choosing the standard Euclidean prox-function, we get the following “smooth approximation”:

ιKβ(Ax) = max
z

{
min
v∈K

〈Ax −v , z〉− β

2
‖z‖2
}

(4.9)

= min
v∈K

max
z

{
〈Ax −v , z〉− β

2
‖z‖2
}

(4.10)

= 1

2β
dist2(Ax ,K), (4.11)

where the inversion of min and max holds due to the Sion’s minimax theorem [Sio58].

In summary, we can obtain the quadratic penalty form by applying Nesterov smoothing

procedure to the indicator of an affine constraint. However, quadratic penalty does not serve

as a uniform approximation, because the dual domain is unbounded and the envelop property

(4.4) does not hold. Consequently, the common analysis techniques for smoothing does not

apply for quadratic penalty methods.

Nevertheless, we exploit this structural similarity to design algorithms that work for both cases;

composite problems with smoothing-friendly non-smooth regularizers and problems with

affine constraints.

62

4.2. Homotopy CGM

4.2 Homotopy CGM

Consider the following auxiliary optimization problem:

minimize
x∈X

Fβ(x) := f (x)+ gβ(Ax) (4.12)

where gβ is the smooth approximation of g :

gβ(Ax) = max
u∈Rd

{
〈Ax , u〉− g∗(u)− β

2
‖u‖2

}
. (4.13)

Note that Fβ is a smooth and convex function.

Solutions of (4.12) and (4.1) do not coincide for any particular β. Nevertheless, as β→ 0, any

sequence of solutions of (4.12) converges to a solution of (4.1).

Based on these observations, we design HCGM as follows: At iteration t , we take a conditional

gradient step with respect to the smooth approximation Fβt . Then, we choose the next penalty

parameter βt+1 slightly smaller than βt to guide the iterates toward the solution of the original

problem (4.1).

4.2.1 HCGM Iteration

Let β0 > 0 be an initial smoothing parameter. Begin with an arbitrary choice x0 ∈X for the

decision variable. At each iteration t = 0,1,2, . . . , we compute the gradient ∇Fβt (xt);

∇Fβt (xt) =∇ f (xt)+∇gβt (Axt), where βt = β0
t +2

. (4.14)

The argument of the maximization subproblem (4.13) can be written as proxβ−1g∗(β−1Ax).

Hence, we can compute the gradient of gβt by using

∇gβ(Axt) =A∗proxβ−1g∗(β−1Axt)

=β−1A∗
(
Axt −proxβg (Axt)

)
,

(4.15)

where the second line follows from the well-known Moreau decomposition.

Next, we evaluate the linear minimization oracle

ht = lmoX
(∇Fβt (xt)

)
. (4.16)

Finally, we update the matrix variable as follows:

xt+1 = (1−ηt)xt +ηt ht , where ηt = 2/(t +2). (4.17)

63

Chapter 4. CGM for Composite Problems

4.2.2 Stopping Criterion

We can design a stopping criterion for HCGM. If g : Rd →R is a Lipschitz continuous function,

then we can use the following condition to stop our algorithm:

〈∇Fβt (xt), xt −ht 〉 ≤ ε, which ensures F (xt)−F� ≤ ε. (4.18)

If g is an indicator function, then we can use the following criterion to guarantee an ε-solution

in the sense (1.15):

〈∇Fβt (xt), xt −ht 〉 ≤ ε and ‖Axt −projK(Axt)‖ ≤ ε. (4.19)

We can also choose different target accuracies for the objective residual and the feasibility gap.

4.2.3 Guarantees

Theorem 4.1. Sequence (xt : t = 1,2, . . .) generated by HCGM satisfies

Fβt−1 (xt)− f� ≤ 2DX
(

L f

t +1
+ ‖A‖2

β0

t +1

)
. (4.20)

Theorem 4.1 does not directly guarantee the convergence of xt to a solution of (1.1), since

the bound is on smoothed gap Fβt−1 (xt)− f�. To relate Fβt−1 back to F , one usually assumes

Lipschitz continuity. This well known perspective leads us to Theorem 4.2, which is a direct

extension of Theorem 4 in [Lan14] for composite functions.

Theorem 4.2. Assume that g : Rd →R is Lg -Lipschitz continuous. Then, the sequence (xt : t =
1,2, . . .) generated by HCGM satisfies the following convergence bound:

F (xt)−F� ≤ 2D2
X

(
L f

t +1
+ ‖A‖2

β0

t +1

)
+

β0L2
g

2

t +1
. (4.21)

Furthermore, if the constants DX , ‖A‖ and Lg are known or easy to approximate, we can choose

β0 = 2DX ‖A‖/Lg to get the following convergence rate:

F (xt)−F� ≤ 2D2
X L f

t +1
+ 2DX ‖A‖Lg

t +1
. (4.22)

Lipschitz continuity assumption in Theorem 4.2 leaves many important applications out

(see Sections 4.3.5 and 4.3.6). In Theorem 4.3, we take a step further and characterize the

convergence when the non-smooth part is an indicator function.

64

4.2. Homotopy CGM

Theorem 4.3. Sequence (xt : t = 1,2, . . .) generated by HCGM satisfies:

f (xt)− f� ≥−‖y�‖ ·dist(Axt ,K) (4.23)

f (xt)− f� ≤ 2DX
(

L f

t +1
+ ‖A‖2

β0

t +1

)
(4.24)

dist(Axt ,K) ≤ 2
t +1

(
β0‖y�‖+DX

√
β0L f

t +1
+‖A‖2

)
(4.25)

Remark. xt is not guaranteed to be a feasible point, since the condition Axt ∈ K is not

guaranteed. Nevertheless, it converges towards the feasible set, and the sequence (xt : t =
0,1,2, . . .) is asymptotically feasible.

Remark. Similar to the classical CGM, we can consider a line-search variant of HCGM (which

replaces the step size by ηt = minη∈[0,1] Fβt ((1 −η)xt +ηht)), and a fully corrective variant

(which replaces the last step by xt+1 = argminx∈conv(h1,...,ht) Fβt (x)). All results that we present

in this chapter remain valid for these two design variants.

4.2.4 Convergence with Inexact Oracles

Finding an exact solution of lmo can be expensive in practice. On the other hand, approximate

solutions can be much more efficient. For instance, exact computation of MinEigVec that

we use in the SDP examples is costly, while we can use Lanczos method for an approximate

computation.

Different notions of inexact lmo are already explored for CGM and greedy optimization

frameworks, see [LJJSP13, LKTJ17, LTRJ17]. We revisit the notion of additive and multiplicative

errors which we adapt here for our setting.

Inexact Oracle with Additive Error

At iteration t , for the given gradient direction ∇Fβt (xt), we assume that the approximate lmo

returns an element h̃t ∈X such that:

〈∇Fβt (xt), h̃t 〉 ≤ 〈∇Fβt (xt), ht 〉+δ
ηt

2
D2

X

(
L f + ‖A‖2

βt

)
for some δ> 0, (4.26)

where ht denotes the exact solution of the lmo. As for the classical CGM, we require the

accuracy of lmo to increase [Jag13] as the algorithm progresses.

Replacing the exact lmo with the approximate oracles of the form (4.26) in HCGM, we get the

following convergence guarantees:

65

Chapter 4. CGM for Composite Problems

Theorem 4.4. Sequence (xt : t = 1,2, . . .) generated by HCGM with approximate lmo (4.26)

satisfies:

Fβt−1 (xt)− f� ≤ 2D2
X

(
L f

t +1
+ ‖A‖2

β0

t +1

)
(1+δ). (4.27)

Theorem 4.5. Assume that g is Lg -Lipschitz continuous. Then, the sequence xt generated by

HCGM with approximate lmo (4.26) satisfies:

F (xt)−F� ≤ 2D2
X

(
L f

t +1
+ ‖A‖2

β0

t +1

)
(1+δ)+

β0L2
g

2

t +1
. (4.28)

Theorem 4.6. Sequence (xt : t = 1,2, . . .) generated by HCGM with approximate lmo (4.26)

satisfies:

f (xt)− f� ≥−‖y�‖ ·dist(Axt ,K) (4.29)

f (xt)− f� ≤ 2D2
X

(
L f

t +1
+ ‖A‖2

β0

t +1

)
(1+δ) (4.30)

dist(Axt ,K) ≤ 2
t +1

(
β0‖y�‖+DX

√(
β0L f

t +1
+‖A‖2

)
(1+δ)

)
. (4.31)

Inexact Oracle with Multiplicative Error

We consider the multiplicative inexact oracle. Given a gradient direction ∇Fβt (xt), we assume

that the approximate lmo returns an element h̃t ∈X such that:

〈∇Fβt (xt), h̃t −xt 〉 ≤ δ · 〈∇Fβt (xt), ht −xt 〉 for some δ ∈ (0,1], (4.32)

where ht denotes the exact solution of the lmo. Replacing the exact lmo with the approximate

oracles of the form (4.32) in HCGM, we get the following convergence guarantees:

Theorem 4.7. Sequence (xt : t = 1,2, . . .) generated by HCGM with approximate lmo (4.32), and

modifying ηt = 2
δt+2 and βt = β0

δ(t+1)+1
satisfies:

Fβt−1 (xt+1)− f� ≤ 2

δ

(
D2

X L f +δE
δ(t +1)+2

+ D2
X ‖A‖2

β0

δ(t +1)+2

)
where E = F (x0)− f�. (4.33)

Theorem 4.8. Assume that g is Lg -Lipschitz continuous. Then, the sequence (xt : t = 1,2, . . .)

generated by HCGM with approximate lmo (4.32), and modifying ηt = 2
δt+2 and βt = β0

δ(t+1)+1
satisfies:

F (xt)−F� ≤ 2

δ

(
D2

X L f +δE
δ(t +1)+1

+ D2
X ‖A‖2

β0

δ(t +1)+1

)
+

β0L2
g

2

δ(t +1)+1

, where E = F (x0)−F�.

66

4.2. Homotopy CGM

Theorem 4.9. Sequence (xt : t = 1,2, . . .) generated by HCGM with approximate lmo (4.32), and

modifying ηt = 2
δt+2 and βt = β0

δ(t+1)+1
satisfies:

f (xt)− f� ≥−‖y�‖ ·dist(Axt ,K) (4.34)

f (xt)− f� ≤ 2

δ

(
D2

X L f +δE
δ(t +1)+1

+ D2
X ‖A‖2

β0

δ(t +1)+1

)
(4.35)

dist(Axt ,K) ≤ 2β0
δ(t +1)+1

⎛
⎝‖y�‖+

√
D2

XC0 +δE
β0δ

⎞
⎠ (4.36)

where E = F (x0)− f� and C0 = L f +‖A‖2/β0.

4.2.5 Application to the SDP template

We can use HCGM for solving instances from the SDP template (1.4), by choosing

f (X) = 〈C , X 〉, and X = {X : X ∈Sn
+,Tr X =α}, and K= {b} . (4.37)

We can compute the gradient of the smooth-objective Fβt at X t by

∇Fβt (X t) =C +β−1
t A∗(AX −b) where βt = β0

t +2
. (4.38)

Then, we can evaluate lmoX by using MinEigVec which returns the minimum eigenvalue

eigenvector pair:

Ht =αut u∗
t where (ut ,λt) = MinEigVec(C +β−1

t A∗(AX −b)) (4.39)

Algorithm 4.1 shows the complete pseudocode of HCGM for this template.

Algorithm 4.1 HCGM for the standard SDP formulation (1.4)

Require: initial state X ; initial penalty parameter β0; (optional) target accuracy ε

1: function HCGM
2: for t ← 0,1,2, . . . do
3: β←β0/

t +2

4: (u,λ) ← MinEigVec
(
C +β−1A∗(AX −b)

)
5: H ←αuu∗

6: if 〈X − H , C +β−1A∗(AX −b)〉 ≤ ε and ‖AX −b‖ ≤ ε then break for
7: end if
8: η← 2/(t +2)
9: X ← (1−η)X +ηH

10: end for
11: return X
12: end function

67

Chapter 4. CGM for Composite Problems

4.3 Applications & Related Work

CGM is proposed for the first time in the seminal work of Frank and Wolfe [FW56] for solving

smooth convex optimization on a polytope. It is then progressively generalized for more

general settings in [LP66, DH78, Dun79, Dun80]. Nevertheless, with the introduction of the

fast gradient methods with O(1/t 2) rate by Nesterov [Nes83], the development of CGM-type

methods entered into a stagnation period.

The recent developments in machine learning applications with vast data brought the scala-

bility of the first order methods under scrutiny. As a result, there has been a renewed interest

in CGM in the last decade. We compare our framework with the recent developments of CGM

literature in different camps of problem templates below.

4.3.1 Smooth Problems

CGM is extended for the smooth convex minimization over a simplex by Clarkson [Cla10], for

a spactrahedron by Hazan [Haz08], and for an arbitrary compact convex set by Jaggi [Jag13].

When applied to smooth problems, HCGM is equivalent to the classical CGM, and it recovers

the known optimalO(1/t) convergence rate. We refer to [Jag13] for a review on the applications

of the smooth template.

We need to mention that Nesterov [Nes17] relaxes the smoothness assumption, by showing

that CGM also converges for weakly-smooth objectives, i.e., objectives with Hölder continuous

gradients of order ν ∈ (0,1].

4.3.2 Regularized Problems

CGM for composite problems is considered by Nesterov [Nes17] and Xu [Xu17]. A similar but

slightly different template, where X and g are assumed to be a closed convex cone and a norm

respectively, is also studied by Harchaoui et al. [HJN15]. However, these works are based on

the resolvents of a modified oracle instead of the standard lmo,

argmin
x∈X

〈x , v〉+ g (Ax), (4.40)

which can be expensive to compute unless X ≡Rp , or g = 0.

HCGM applies to the problem template (4.1) by leveraging the prox of the regularizer and the

lmo of the domain separately. This allows us to consider additional sparsity, group sparsity

and structured sparsity promoting regularizations, elastic-net regularization, total variation

regularization and many others under the CGM framework.

The semi-proximal mirror-prox method [HH15] is also based on the smoothing idea, but the

motivation of this method is fundamentally different than ours. This method considers the

regularizers for which the prox is difficult to compute, but can be approximated via CGM.

68

4.3. Applications & Related Work

4.3.3 Non-Smooth Problems

Template (4.1) covers the non-smooth convex minimization template as a special case:

minimize
x∈X

g (Ax). (4.41)

Unfortunately, the classical CGM provably cannot handle the non-smooth minimization, as

shown by the following counter-example from [Nes17].

Example. Let X be the unit Euclidean norm ball in R2, and g (x) = max{x(1), x(2)}. Clearly,

x� = [− 1
2

,− 1
2

]∗. Choose an initial point x0 �= x�. We can use an oracle that returns a

subgradient ∇ f (x) ∈ [10],[01]} at any point x ∈ X . Therefore, lmo returns
[-1

0

]
or
[0

-1

]
at each

iteration, and xt belongs to the convex hull of {x0,
[-1

0

]
,
[0

-1

]
} which does not contain the solution.

Our framework escapes such issues by leveraging the prox of the objective function g . In the

example above, proxg corresponds to the projection onto the simplex. Often times the cost of

proxg is negligible in comparison to the cost of lmoX .

Assume that g : Rd →R is Lg -Lipschitz continuous. As a consequence of Theorem 4.2, HCGM

for solving (4.41) by choosing β0 = 2DX ‖A‖/Lg satisfies

g (Axt)− g� ≤ 2DX ‖A‖Lg
t +1

. (4.42)

We recover the method proposed by Lan [Lan14] in this specific setting. He also proves that

this rate is optimal for any algorithm that approximates the solution of (4.41) as a convex

combination of lmo outputs.

We extend the analysis in this setting for inexact oracles. In contrast to the smooth case, where

the additive error should decrease byO(1/t) rate, definition (4.26) implies that we can preserve

the convergence rate in the non-smooth case as long as the additive error is O(1/

t).

4.3.4 Minimax Problems

We consider the minimax problems of the following form:

min
x∈X

max
y∈Y

L(Ax , y) (4.43)

where L is a smooth convex-concave function, i.e., L(·, y) is convex ∀y ∈ Y and L(Ax , ·)
is concave ∀x ∈ X . Note that this formulation is a special instance of (4.41) with g (Ax) =
maxy∈YL(Ax , y). Consequently, we can apply HCGM if proxg is tractable.

69

Chapter 4. CGM for Composite Problems

When Y admits an efficient projection oracle, proxg is also efficient for bilinear saddle point

problems L(Ax , y) = 〈Ax , y〉. By Moreau decomposition, we have

proxg (Axt) =Axt −projY (Axt), (4.44)

hence ∇Fβt (xt) takes the form

∇Fβt (xt) =∇ f (xt)+ 1

βt
A∗projY (Axt). (4.45)

Gidel et al. [GJLJ17] propose a CGM variant for the smooth convex-concave saddle point

problems. This method processes both x and y via the lmo, and hence it also requires Y to be

bounded. Our method, on the other hand, is more suitable when projY is easy.

Bilinear saddle point problem covers the maximum margin estimation of structured output

models [TLJJ06] and minimax games [VNM44]. In particular, it also covers an important

semidefinite programming formulation [GH16], where X is a spactrahedron and Y is the

simplex. Our framework fits perfectly here since the projection onto the simplex can be

computed efficiently. We defer the extension of our framework with the entropy Bregman

smoothing for future.

Note that the CGM is applicable also for the variational inequality problems beyond (4.1), see

[Ham84], [JN16] and [CJN17].

4.3.5 Problems with Affine Constraints

Our algorithms apply to smooth convex minimization problems with affine constraints over a

convex compact set:

minimize
x∈X

f (x) subject to Ax ∈K, (4.46)

by setting g (Ax) in (4.1) as indicator function of set K.

Since the prox operator of the indicator function is the projection, ∇Fβt (xt) becomes

∇Fβt (xt) =∇ f (xt)+ 1

βt
A∗(Axt −projK(Axt)

)
. (4.47)

We implicitly assume that projK is tractable. We can use a splitting scheme when it is compu-

tationally more advantageous to use lmoK instead. See Section 4.3.6 for the details.

This template covers the standard semidefinite programming in particular. Applications in-

clude clustering [PW07], optimal power-flow [LL12], sparse PCA [dGJL07], kernel learning

[LCG+04], blind deconvolution [ARR14], community detection [BBV16], etc. Besides machine

learning applications, this formulation has a crucial role in the convex relaxation of combina-

torial problems.

70

4.3. Applications & Related Work

A significant example is the problems over the doubly nonnegative cone (i.e., the intersection

of the positive semidefinite cone and the positive orthant) with a bounded trace norm [YM10].

Note that the lmo over this domain can be costly since the lmo can require full dimensional

updates [HJL96, LTRJ17]. Our framework can handle these problems ensuring the positive

semidefiniteness by lmoX , and can still ensure the convergence to the first orthant via projK.

4.3.6 Minimization via Splitting

We can take advantage of splitting since we can handle affine constraints. This lets us to

disentangle the complexity of the constraints. Consider the following optimization template:

minimize
x∈X1∩X2

f (x)+ g (A1x)

subject to A2x ∈K, A3x ∈S
(4.48)

where X1,X2 ⊂Rp are two convex compact sets, A1,A2 and A3 are known linear maps.

Suppose that

· lmoX1 and lmoX2 are easy to compute, but not lmoX1∩X2

· proxg is easy to compute

· K is a simple convex set and projK is efficient

· S is a convex compact set with an efficient lmo.

We can reformulate this problem introducing slack variables ξ ∈X2 and ζ ∈S as follows:

minimize
x∈X1 ξ∈X2

ζ∈S
f (x)+ g (A1x)

subject to A2x ∈K, A3x = ζ, x = ξ.

(4.49)

This formulation is in the form of (4.1) with respect to the variable (x ,ξ,ζ) ∈ X1 ×X2 ×S .

It is easy to verify that HCGM leverages lmoX1 , lmoX2 , lmoS , proxg and projK separately.

This approach can be generalized for an arbitrary finite number of non-smooth terms in a

straightforward way.

71

Chapter 4. CGM for Composite Problems

4.4 Numerical Experiments

This section presents numerical experiments supporting our theoretical findings in clustering

and robust PCA examples.

4.4.1 Clustering the MNIST dataset

We consider the model-free k-means clustering SDP formulation of Peng and Wei [PW07]:

minimize 〈C , X 〉 subject to X 1 = 1, X ≥ 0︸ ︷︷ ︸
AX ∈K

, X ∈Sn
+, Tr X = k︸ ︷︷ ︸

X ∈X
. (4.50)

where C ∈Rn×n is the Euclidean distance matrix.

We use the setup described in [MVW17] and made available online by the authors. We can

briefly describe this setup as follows: First, meaningful features from MNIST dataset1 which

consists of 28×28 grayscale images that can be stacked as 784×1 vectors, are extracted using

a one-layer neural network. This gives us a weight matrix W ∈ R784×10 and a bias vector

b ∈R10. Then, the trained neural network is applied to the first 1000 elements of the test set,

which gives the probability vectors for these 1000 test points, where each entry represents the

probability of being each digit.

iteration
100 101 102 103 104 105 106

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101

102

iteration
100 101 102 103 104 105 106

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−2

10−1

100

101

102

iteration
100 101 102 103 104 105 106

m
is
cl
a
ss
ifi
ca
ti
o
n
ra
te

0.09

0.1

0.11

0.12

0.13

0.14
Ground truth

Figure 4.1 – Clustering MNIST: Empirical performance of our method. Blue dashed line on the
misclassification plot represents the value reported in [MVW17].

[MVW17] runs a relax-and-round algorithm which solves (4.50) by SDPNAL+ [YST15] followed

by a rounding scheme (see Section 5 of [MVW17] for details), and compares the results against

MATLAB’s built-in k-means++ implementation. Relax-and-round method is reported to

achieve a misclassification rate of 0.0971. This rate matches with the all-time best rate for

k-means++ after 100 different runs with random initializations.

For this experiment, we solve (4.50) by using HCGM. Then, we cluster data using the same

rounding scheme as [MVW17]. We initialize our method from 0 and choose β0 = 1. We

implement the lmo using the built-in MATLAB function eigs with tolerance 10−9.

1LeCun & Cortes. MNIST handwritten digit database. Available at "http://yann.lecun.com/exdb/mnist/"

72

4.4. Numerical Experiments

We present the results of this experiment in Figure 4.1. We observe empirical O(1/

t) rate

both in the objective residual and the feasibility gap. Surprisingly, the method attains the

best misclassification rate around 1000 iterations, achieving 0.0914. This improves the value

reported in [MVW17] by 5.8%.

This example supports the claims that a low-to-medium accuracy solution is enough for

many important SDP formulations, where we need a rounding step. In this example, the

low-accuracy solution generalizes as well as the optimal point, even better.

4.4.2 Robust PCA

Suppose that we are given a large matrix that can be decomposed as the summation of a

low-rank and a sparse (in some representation) matrix. Robust PCA aims to recover these

components accurately, and it has many applications in machine learning and data science,

such as collaborative filtering, system identification, genotype imputation, etc. Here, we focus

on an image decomposition problem so that we can visualize the decomposition error results.

Our setting is similar to the setup described in [ZS18]. We consider a scaled grayscale photo-

graph with pattern from [LMWY13], and we assume that we only have access to an occluded

image. Moreover, the image is contaminated by salt and pepper noise of density 1/10. We seek

to approximate the original from this noisy image.

This is essentially a matrix completion problem, and most of the scalable techniques rely on

the Gaussian noise model. Note however the corresponding least-squares formulation is a

good model against outliers:

minimize
‖X ‖S1≤ρ

1

2
‖AX −b‖2 subject to 0 ≤ X ≤ 1, (4.51)

where A : Rp×p →Rd is the sampling operator.

Our framework also covers the following least absolute deviations formulation :

minimize
‖X ‖S1≤ρ

‖AX −b‖1 subject to 0 ≤ X ≤ 1, (4.52)

We solve both formulations with HCGM, starting from all zero matrix, running 1000 iterations,

and assuming that we know the true nuclear norm of the original image. We choose β0 = 1 in

both cases.

This experiment demonstrates the implications of the flexibility of our framework in a simple

machine learning setup. We compile the results in Figure 4.2, where the non-smooth for-

mulation recovers a better approximation with 5dB higher peak signal to noise ratio (PSNR)

and 0.27 higher structural similarity index (SSIM). Evaluation of PSNR and SSIM vs iteration

counter are shown in Figure 4.3.

73

Chapter 4. CGM for Composite Problems

original input image

PSNR = 11.1477
SSIM = 0.25476

�2 minimization

PSNR = 21.0496
SSIM = 0.53145

�1 minimization

PSNR = 26.0336
SSIM = 0.80205

Figure 4.2 – Image inpainting from noisy test image (493×517): Robust PCA recovers a better
approximation with 5dB higher PSNR.

iteration
100 101 102 103

P
S
N
R

(d
B
)

5

10

15

20

25

�1-loss
�2-loss

iteration
100 101 102 103

S
S
IM

0

0.2

0.4

0.6

0.8

1

Figure 4.3 – PSNR and SSIM vs iteration counter for formulations with �1 and �2 loss.

74

4.5. Appendix: Proofs

4.5 Appendix: Proofs

Preliminaries

The following properties of smoothing are key to derive the convergence rate of our algorithms.

Let g : Rd → R∩ {+∞} be a a proper, closed and convex function, and denote its smooth

approximation by

gβ(z) = max
y∈Rd

〈z , y〉− g∗(y)− β

2
‖y‖2 (4.53)

where g∗ represents the Fenchel conjugate of g and β> 0 is the smoothing parameter. Then,

gβ is convex and 1
β -smooth. Let us denote the unique maximizer of this concave problem by

y∗
β(z) = argmax

y∈Rd
〈z , y〉− g∗(y)− β

2
‖y‖2 (4.54)

= arg min
y∈Rd

1

β
g∗(y)− 1

β
〈z , y〉+ 1

2
‖y‖2 + 1

2
‖ 1

β
z‖2 (4.55)

= arg min
y∈Rd

1

β
g∗(y)+ 1

2
‖y − 1

β
z‖2 (4.56)

= proxβ−1g∗(β−1z) = 1

β

(
z −proxβg (z)

)
(4.57)

where the last equality is known as the Moreau decomposition. Then, the followings hold for

∀z1, z2 ∈Rd and ∀β,γ> 0

gβ(z1) ≥ gβ(z2)+〈∇gβ(z2), z1 − z2〉+ β

2
‖y∗

β(z2)− y∗
β(z1)‖2 (4.58)

g (z1) ≥ gβ(z2)+〈∇gβ(z2), z1 − z2〉+ β

2
‖y∗

β(z2)‖2 (4.59)

gβ(z1) ≤ gγ(z1)+ γ−β

2
‖y∗

β(z1)‖2 (4.60)

Proofs can be found in Lemma 10 from [TDFC18].

Suppose that g is Lg -Lipschitz continuous. Then, for any β> 0 and any z ∈Rd , the following

bound holds:

gβ(z) ≤ g (z) ≤ gβ(z)+ β

2
L2

g (4.61)

Proof follows from equation (2.7) in [Nes05] with a remark on the duality between Lipshitzness

and bounded support (see Lemma 5 in [DFTJ16] for a statement of this well-known duality).

75

Chapter 4. CGM for Composite Problems

Convergence analysis

We skip the proofs of Theorems 4.1 to 4.3 since we can get these results as a special case by

setting δ= 0 in Theorems 4.4 to 4.6.

Proof of Theorem 4.4

First, we use smoothness of Fβt to upper bound the progress. Note that Fβt is (L f +‖A‖2/βt)-

smooth:

Fβt (xt+1) ≤ Fβt (xt)+ηt 〈∇Fβt (xt), h̃t −xt 〉+
η2

t

2
‖h̃t −xt‖2(L f + ‖A‖2

βt
) (4.62)

≤ Fβt (xt)+ηt 〈∇Fβt (xt), h̃t −xt 〉+
η2

t

2
D2

X (L f + ‖A‖2

βt
), (4.63)

where h̃t denotes the atom selected by the inexact lmo, and the second inequality follows

since h̃t ∈X .

By definition of inexact oracle (4.26), we have

〈∇Fβt (xt), h̃t −xt 〉 ≤ 〈∇Fβt (xt), ht −xt 〉+δ
ηt

2
D2

X (L f + ‖A‖2

βt
) (4.64)

≤ 〈∇Fβt (xt), x�−xt 〉+δ
ηt

2
D2

X (L f + ‖A‖2

βt
) (4.65)

= 〈∇ f (xt), x�−xt 〉+〈A∗∇gβt (Axt), x�−xt 〉+δ
ηt

2
D2

X (L f + ‖A‖2

βt
), (4.66)

where the second line follows since ht is a solution of minx∈X 〈∇Fβt (xt), x〉.

Now, convexity of f ensures 〈∇ f (xt), x�−xt 〉 ≤ f (x�)− f (xt). Using property (4.59), we have

〈A∗∇gβt (Axt), x�−xt 〉 = 〈∇gβt (Axt), Ax�−Axt 〉 (4.67)

≤ g (Ax�)− gβt (Axt)− βt

2
‖y∗

βt
(Axt)‖2. (4.68)

Putting these altogether, we get the following bound

Fβt (xt+1) ≤ Fβt (xt)+ηt

(
f (x�)− f (xt)+ g (Ax�)− gβt (Axt)− βt

2
‖∇y∗

βt
(Axt)‖2

)

+ η2
t

2
D2

X (L f + ‖A‖2

βt
)(1+δ) (4.69)

= (1−ηt)Fβt (xt)+ηt F�− ηtβt

2
‖∇y∗

βt
(Axt)‖2 + η2

t

2
D2

X (L f + ‖A‖2

βt
)(1+δ).

76

4.5. Appendix: Proofs

Now, using (4.60), we get

Fβt (xt) = f (xt)+ gβt (Axt) (4.70)

≤ f (xt)+ gβt−1 (Axt)+ βt−1 −βt

2
‖y∗

βt
(Axt)‖2 (4.71)

= Fβt−1 (xt)+ βt−1 −βt

2
‖y∗

βt
(Axt)‖2. (4.72)

We combine this with (4.69) and subtract F� from both sides to get

Fβt (xt+1)−F� ≤ (1−ηt)
(
Fβt−1 (xt)−F�

)+ η2
t

2
D2

X (L f + ‖A‖2

βt
)(1+δ)

+ ((1−ηt)(βt−1 −βt)−ηtβt
)1

2
‖y∗

βt
(Axt)‖2.

(4.73)

Let us choose ηt and βt in a way to vanish the last term. By choosing ηt = 2
t+2 and βt = β0

t+2
for t ≥ 0 with some β0 > 0, we get (1−ηt)(βt−1 −βt)−ηtβt < 0. Hence, we end up with

Fβt (xt+1)−F� ≤ (1−ηt)
(
Fβt−1 (xt)−F�

)+ η2
t

2
D2

X (L f + ‖A‖2

βt
)(1+δ). (4.74)

By recursively applying this inequality, we get

Fβt (xt+1)−F�

≤
t∏

j=0
(1−η j)

(
Fβ j−1 (xt)−F�

)
+ 1

2
D2

X (1+δ)
t∑

�=0
η2
�

t∏
j=�

(1−η j)(L f + ‖A‖2

β�
) (4.75)

≤
t∏

j=0
(1−η j)

(
Fβ j−1 (xt)−F�

)
+ 1

2
D2

X (L f + ‖A‖2

βt
)(1+δ)

t∑
�=0

η2
�

t∏
j=�

(1−η j) (4.76)

= 1

2
D2

X (L f + ‖A‖2

βt
)(1+δ)

t∑
�=0

η2
�

t∏
j=�

(1−η j), (4.77)

where the second inequality follows since βt ≤β j for any positive integer j ≤ t , and the last

line since η0 = 1.

Now, we use the following relation

t∑
�=0

η2
�

t∏
j=�

(1−η j) =
t∑

�=0

4

(�+2)2

t∏
j=�

j

j +2
=

t∑
�=0

4

(�+2)2

�(�+1)

(t +1)(t +2)
≤ 4

t +2
, (4.78)

which yields the first result of Theorem 4.4 as

Fβt (xt+1)−F� ≤ 2

t +2
D2

X (L f + ‖A‖2

βt
)(1+δ) = 2D2

X (
L f

t +2
+ ‖A‖2

β0

t +2
)(1+δ). (4.79)

77

Chapter 4. CGM for Composite Problems

Proof of Theorem 4.5

Now, we further assume that g : Rd →R∪ {+∞} is Lg -Lipschitz continuous. From (4.61), we

get

g (Axt+1) ≤ gβt (Axt+1)+
βt L2

g

2
= gβt (Axt+1)+

β0L2
g

2

t +2
. (4.80)

We complete the proof by adding f (xt+1)−F� to both sides:

F (xt+1)−F� ≤ Fβt (xt+1)−F�+
β0L2

g

2

t +2
. (4.81)

Proof of Theorem 4.6

From the Lagrange saddle point theory, we know that the following bound holds ∀x ∈X and

∀v ∈K:

f� ≤L(x , v , y�) = f (x)+〈y�, Ax −v〉 ≤ f (x)+‖y�‖‖Ax −v‖, (4.82)

Since xt+1 ∈X , we get

f (xt+1)− f� ≥−min
v∈K

‖y�‖‖Axt+1 −v‖ =−‖y�‖dist(Axt+1,K). (4.83)

This proves the first bound in Theorem 4.6.

The second bound directly follows by Theorem 4.4 as

f (xt+1)− f� ≤ f (xt+1)− f�+ 1

2βt
dist2(Axt+1,K) := Fβt (xt+1)− f� (4.84)

≤ 2D2
X (

L f

t +2
+ ‖A‖2

β0

t +2
)(1+δ). (4.85)

Denote by φt := 2D2
X (

L f

t + ‖A‖2

β0

t
)(1+δ). Then, we combine this with (4.83), and we get

−‖y�‖dist(Axt+1,K)+ 1

2βt
dist2(Axt+1,K) ≤φt+2. (4.86)

This is a second order inequality in terms of dist(Axt ,K). Solving this inequality, we get

dist(Axt+1,K) ≤βt

(
‖y�‖+

√
‖y�‖2 +2

φt+2

βt

)
(4.87)

≤ 2
t +2

(
β0‖y�‖+DX

√(
L f β0

t +2
+‖A‖2

)
(1+δ)

)
. (4.88)

78

4.5. Appendix: Proofs

Proof of Theorem 4.7

Let us define the multiplicative error δ of the LMO:

〈∇Fβt (xt), h̃t −xt 〉 ≤ δ〈∇Fβt (xt), ht −xt 〉 (4.89)

For the proof we assume that x0 is feasible. First, we use the smoothness of Fβt to upper bound

the progress. Note that Fβt is (L f +‖A‖2/βt)-smooth.

Fβt (xt+1) ≤ Fβt (xt)+ηt 〈∇Fβt (xt), h̃t −xt 〉+
η2

t

2
‖h̃t −xt‖2(L f + ‖A‖2

βt
) (4.90)

≤ Fβt (xt)+ηt 〈∇Fβt (xt), h̃t −xt 〉+
η2

t

2
D2

X (L f + ‖A‖2

βt
), (4.91)

where h̃t denotes the atom selected by the inexact linear minimization oracle, and the second

inequality follows since h̃t ∈X . By definition of inexact oracle (4.89), we have

〈∇Fβt (xt), h̃t −xt 〉 ≤ δ〈∇Fβt (xt), ht −xt 〉 (4.92)

≤ δ〈∇Fβt (xt), x�−xt 〉 (4.93)

= δ〈∇ f (xt), x�−xt 〉+δ〈A∗∇gβt (Axt), x�−xt 〉, (4.94)

where the second line follows since ht is a solution of minx∈X 〈∇Fβt (xt), x〉.

Now, convexity of f ensures 〈∇ f (xt), x�−xt 〉 ≤ f (x�)− f (xt). Using property (4.59), we have

〈A∗∇gβt (Axt), x�−xt 〉 = 〈∇gβt (Axt), Ax�−Axt 〉 (4.95)

≤ g (Ax�)− gβt (Axt)− βt

2
‖y∗

βt
(Axt)‖2. (4.96)

Putting these altogether, we get the following bound

Fβt (xt+1) ≤ Fβt (xt)+ηtδ

(
f (x�)− f (xt)+ g (Ax�)− gβt (Axt)− βt

2
‖∇y∗

βt
(Axt)‖2

)

+ η2
t

2
D2

X (L f + ‖A‖2

βt
) (4.97)

= (1−δηt)Fβt (xt)+δηt F�− δηtβt

2
‖∇y∗

βt
(Axt)‖2 + η2

t

2
D2

X (L f + ‖A‖2

βt
).

Now, using (4.60), we get

Fβt (xt) = f (xt)+ gβt (Axt) (4.98)

≤ f (xt)+ gβt−1 (Axt)+ βt−1 −βt

2
‖y∗

βt
(Axt)‖2 (4.99)

= Fβt−1 (xt)+ βt−1 −βt

2
‖y∗

βt
(Axt)‖2. (4.100)

79

Chapter 4. CGM for Composite Problems

We combine this with (4.97) and subtract F� from both sides to get

Fβt (xt+1)−F� ≤ (1−δηt)
(
Fβt−1 (xt)−F�

)+ η2
t

2
D2

X (L f + ‖A‖2

βt
) (4.101)

+ ((1−δηt)(βt−1 −βt)−δηtβt
)1

2
‖∇y∗

βt
(Axt)‖2. (4.102)

By choosing ηt = 2
δt+2 and βt = β0

δ(t+1)+1
for some β0 > 0, we get (1−δηt)(βt−1−βt)−δηtβt < 0

for any t ≥ 0 (with the convention β−1 =β0, hence we end up with

Fβt (xt+1)−F� ≤ (1−δηt)
(
Fβt−1 (xt)−F�

)+ η2
t

2
D2

X (L f + ‖A‖2

βt
). (4.103)

Let us call for simplicity C := D2
X (L f + ‖A‖2

βt
), and Et+1 := Fβt (xt+1)−F� Therefore, we have

Et+1 ≤ (1−δηt)Et +
η2

t

2
C (4.104)

We now show by induction that:

Et ≤ 2
1
δC +E1

δt +2
(4.105)

The base case t = 0 is trivial as C > 0. Call for simplicity K := δt +2. Note that K ≥ 2. Under

this notation we can write ηt = 2
δt+2 = 2

K For the induction step, we add a positive term (E0 is

positive as x0 is assumed feasible) to (4.104) and use the induction hypothesis:

Et+1 ≤ (1−δηt)Et +
η2

t

2
C +2δ

E1

K 2 (4.106)

≤ (1−δ
2

K
)Et + 2

K 2 C +2δ
E1

K 2 (4.107)

≤ (1−δ
2

K
)2

1
δC +E1

K
+ 2

K 2 C +2δ
E1

K 2 (4.108)

= (1−δ
2

K
)2

1
δC +E1

K
+2δ

(
1
δC

K 2 + E1

K 2

)
(4.109)

= 2
1
δC +E1

K

(
1−δ

2

K
+ δ

K

)
(4.110)

= 2
1
δC +E1

K

(
1− δ

K

)
≤ 2

1
δC +E1

K +δ
(4.111)

noting that K +δ= δ(t +1)+2 concludes the proof.

Proof of Theorems 4.8 and 4.9 follows similarly to the proofs of Theorems 4.5 and 4.6.

80

5 CGM via Augmented Lagrangian

In the previous chapter, we introduced a CGM extension with quadratic penalty (HCGM)

for solving problems from template (1.4). HCGM is easy to implement with simple and

interpretable steps. Unfortunately, many times, it performs poor in practice despite its strong

theoretical guarantees.

To this end, we extend HCGM from quadratic penalty to an augmented Lagrangian framework

in this chapter. The call the new variant as conditional gradient augmented Lagrangian frame-

work (CGAL). CGAL retains similar guarantees as HCGM but it performs better in practice.

We demonstrate the empirical superiority of CGAL against HCGM, as well as some other

projection-free algorithms in the literature, in various numerical experiments.

This chapter is based on the joint work with Olivier Fercoq and Volkan Cevher [YFC19].

Introduction

As we have shown in Theorem 4.6, convergence rate of CGM is bounded above by O(1/

t),

both in objective residual and feasibility gap. However, in various numerical experiments, we

observed that the method exhibits this “worst-case” rate in practice even when we are solving

an arguably simple problem instance. Unfortunately, this undesirable behavior strains the

practical impact of the method for solving problems at scale. In this chapter, we introduce

CGAL, an extension HCGM from quadratic penalty to an augmented Lagrangian framework, in

the spirit of [Ber76]. To address this issue, we introduce an extension of HCGM, from quadratic

penalty to an augmented Lagrangian framework in the spirit of [Ber76].

Contributions

◦ We introduce a new algorithm for solving the problem template (1.1), based on a combina-

tion of CGM iterations and an augmented Lagrangian formulation. We show that the proposed

method attains O(1/

t) convergence rate both in objective residual and feasibility gap.

81

Chapter 5. CGM via Augmented Lagrangian

◦ We identify an implementable step-size rule for the dual updates thanks to the simplicity

of our analysis. The cost of evaluating the proposed step-size is negligible. It retains the

desirable theoretical convergence rates of HCGM while significantly enhancing the practical

performance.

◦ We demonstrate the empirical superiority of CGAL in various SDP examples, in comparison

with HCGM and some other CGM-type methods from the literature.

5.1 Augmented Lagrangian Penalty

First, we present a short overview of the augmented Lagrangian penalty and describe its

relationship with the Nesterov smoothing and quadratic penalty techniques.

Similar to the quadratic penalty technique, we replace the affine constraint with a "feasibility-

promoting" continuous penalty function in the augmented Lagrangian framework. Likewise,

this penalty function is parametrized by the penalty parameter β> 0. However, in contrast

with the quadratic penalty, we now introduce a "dual variable" y ∈Rd (also called as Lagrange

multiplier). We can write the augmented Lagrangian penalty function as follows:

min
v∈K

{
〈y , Ax −v〉+ 1

2β
‖Ax −v‖2

}
. (5.1)

We can also view this function as a shifted quadratic penalty, since

argmin
x

f (x)+min
v∈K

{
〈y , Ax −v〉+ 1

2β
‖Ax −v‖2

}
(5.2)

= argmin
x

f (x)+min
v∈K

1

2β
‖Ax −v +βy‖2 (5.3)

= argmin
x

f (x)+ 1

2β
dist2(Ax +βy ,K). (5.4)

Recall our discussion in Section 4.1 on the similarity between the quadratic penalty and

Nesterov smoothing techniques. It is not surprising that we can also relate the augmented

Lagrangian with Nesterov smoothing. The derivation follows similarly as in Section 4.1.2 for

the quadratic penalty, but instead of the simple Euclidean prox-function δ(v) = 1
2‖v‖2, this

time we use a shifted prox-function δ(v) = 1
2‖v − y‖2:

ιKβ(Ax) = max
z

{
min
v∈K

〈Ax −v , z〉− β

2
‖z − y‖2

}
(5.5)

= min
v∈K

max
z

{
〈Ax −v , z〉− β

2
‖z − y‖2

}
(5.6)

= min
v∈K

{
〈y , Ax −v〉+ 1

2β
‖Ax −v‖2

}
. (5.7)

Sion’s minimax theorem [Sio58] justifies the inversion of the order of min and max.

82

5.2. Conditional Gradient Augmented Lagrangian Method

In conclusion, we can say that the augmented Lagrangian formulation is structurally equiv-

alent to a de facto instance of the Nesterov smoothing technique, applied to the indicator

function of K, and with a shifted Euclidean prox-function. Moreover, the dual variable corre-

sponds to the center point of this prox-function.

5.2 Conditional Gradient Augmented Lagrangian Method

Consider the augmented Lagrangian of (1.1):

Lβ(x , y) : = f (x)+min
v∈K

{
〈y , Ax −v〉+ 1

2β
‖Ax −v‖2

}

= f (x)− β

2
‖y‖2 + 1

2β
dist2(Ax +βy ,K).

(5.8)

Clearly Lβ(x , y) is a smooth and convex function with respect to x .

One CGAL iteration is composed of three basic steps:

� Primal step (conditional gradient step on x),

� Penalty parameter update (decrement of β),

� Dual step (gradient step on y).

5.2.1 CGAL Iteration

Primal step. CGAL is characterized by a conditional gradient step on the primal variable with

respect to Lβ(· , y). At iteration t = 0,1, . . ., we evaluate

∇xLβt (xt , yt) =∇ f (xt)+A∗yt +β−1
t A∗(Axt −projK(Axt +βyt)

)
. (5.9)

Then, we compute the linear minimization oracle

ht = lmoX
(∇xLβt (xt , yt)

)
. (5.10)

Finally, we form the next iterate by a generic conditional gradient step

xt+1 = (1−ηt)xt +ηt ht , where ηt = 2/(t +2). (5.11)

Penalty parameter update. We decrease the penalty parameter in CGAL at a controlled rate:

βt = β0
t +2

for some β0 > 0. (5.12)

83

Chapter 5. CGM via Augmented Lagrangian

Dual step. After computing xt+1 and updating the penalty parameter, we update the dual

variable as follows:

yt+1 = yt +σt+1∇yLβt+1 (xt+1, yt)

= yt +σt+1
(Axt+1 −projK(Axt+1 +βt+1 yt)

)
.

(5.13)

The choice of dual step-size σt+1 has a significant effect on the performance of CGAL. We

identify a performant choice as follows: First, define σ̂t+1 as

σ̂t+1 := min

(
1

β0
,

(ηt‖A‖DX)2

2βt+1‖Axt+1 −projK(Axt+1 +βt+1 yt)‖2

)
, (5.14)

Then, the recipe for σt+1 is the following:

σt+1 =
⎧⎨
⎩σ̂t+1 if ‖yt + σ̂(Axt+1 −projK(Axt+1 +βt+1 yt)‖ ≤ DY

0 otherwise.
(5.15)

Here, DY > 0 is the dual search-space parameter to be input by the user.

We emphasize that computing σt+1 does not require an iterative line-search procedure. In-

stead, we can evaluate it by simple vector operations, hence the computational cost of finding

σt+1 is negligible in most applications.

5.2.2 Guarantees

Theorem 5.1. Sequence (xt : t = 1,2, . . .) generated by CGAL satisfies:

f (xt)− f� ≥−‖y�‖ ·dist(Axt ,K) (5.16)

f (xt)− f� ≤ 4D2
X

(
L f

t +1
+ ‖A‖2

β0

t +1
+ 2‖A‖2

β0(t +1)1.5

)
+

β0D2
Y

2

t +1
(5.17)

dist(Axt ,K) ≤ 1
t +1

(
β0
(
DY +2‖yt − y�‖

)+DX

√
8L f β0

t +1
+ (8+ 1

t +1

)‖A‖2

)
. (5.18)

Considering these inequalities, we suggest choosing DY proportional to DX ‖A‖/β0.

Remark. Similar to HCGM, we can extend CGAL for composite problems with Lipschitz

continuous regularizers. In this case, dual update of CGAL corresponds to updating the center

point of the prox-function. We omit the details.

Remark. We omit design variants of CGAL with line-search and fully corrective updates.

84

5.2. Conditional Gradient Augmented Lagrangian Method

5.2.3 Application to the SDP template

Similar to HCGM, we can apply CGAL for solving instances of the SDP template (1.4). We can

compute the directional derivative of the augmented Lagrangian function by

∇X Lβt (X t , yt) =C +A∗yt +β−1
t A∗(AX −b). (5.19)

Then, we can evaluate the linear minimization oracle by using MinEigVec:

Ht =αut u∗
t where (ut ,β−1

t) = MinEigVec
(
C +A∗yt +β−1

t A∗(AX −b)
)
. (5.20)

Finally, since projK(·) = b for all inputs, the dual update of CGAL takes the following form:

yt+1 = yt +σt+1(AX t+1 −b), (5.21)

where the dual step size is chosen as

σt+1 =
⎧⎨
⎩σ̂t+1 if ‖yt + σ̂(AX t+1 −b)‖ ≤ DY

0 otherwise
where σ̂t+1 = min

(
1
β0

, (ηt ‖A‖DX)2

2βt+1‖AX t+1−b‖2

)
(5.22)

for some DY > 0 to be specified by the user. Algorithm 5.1 shows the complete pseudocode.

Algorithm 5.1 CGAL for the standard SDP formulation (1.4)

Require: Data for (1.4); initial penalty parameter β0; dual search-space parameter DY

1: function CGAL
2: X ← 0 and y ← 0
3: for t ← 0,1,2, . . . do
4: β←β0/

t +2

5: (u,λ) ← MinEigVec
(
C +A∗y +β−1A∗(AX −b)

)
6: H ←αuu∗

7: η← 2/(t +2)
8: X ← (1−η)X +ηH
9: β+ ←β0/

t +3

10: σ← DUALSTEPSIZE(X , y ,β0,β+,η)
11: y ← (1−η)y +σ(AX −b)
12: end for
13: return X
14: end function

————————————————————————————

15: function DUALSTEPSIZE(X ,y ,β0,β+,η)

16: σ← min((η‖A‖DX)2

2β+‖AX −b‖2 ,1/β0)

17: if ‖y +σ(AX −b)‖ > DY then σ← 0 � No dual step if ‖y‖ is growing too much
18: end if
19: return σ

20: end function

85

Chapter 5. CGM via Augmented Lagrangian

5.3 Numerical Experiments

In this section, we compare the empirical performance of CGAL against some existing methods

in the literature in various SDP examples. Let us first provide a brief overview of the baseline

methods that we will use in the comparisons.

Baseline methods

◦ HCGM that we introduced in [YFLC18] and described in Chapter 4, is the predecessor of

CGAL. It has O(1/

t) rate guarantee both in the objective residual and feasibility gap.

◦ UPD and AUPD, the universal primal-dual methods that we introduced in [YTDC15a] and

described in Chapter 3: These methods are based on a primal-dual (sub)gradient formulation.

Remark that the main template of UPD and AUPD is different from the template of CGAL. For

example, they do not require the smoothness of f . Instead, they assume Hölder smoothness

in the dual formulation. Nevertheless, both methods approaches work for the model SDP

formulation (1.4). UPD and AUPD do not directly work with lmo. However, their sharp-

operator can be cast as an instance of lmo for the SDP template (1.4).

These methods adopt an inexact line-search strategy by Nesterov [Nes15], which requires the

target accuracy ε as an input parameter. Moreover, they are guaranteed to converge only up to

ε/2 accuracy, i.e., f (x)− f� ≤O(1/

t)+ε/2.

◦ FW-AL is a CGM-based augmented Lagrangian framework [GPLJ18]. Similar to CGAL, this

method is characterized by one CGM step on Lβ(·, yt) followed by one dual gradient ascent

step on Lβ(xt+1, ·). In contrast to CGAL, the penalty parameter of the FW-AL is kept constant

throughout the optimization process. Originally, FW-AL is proposed for Ax = 0 type of

constraints, but it can be applied to Ax = b case by using a simple product space technique.

The analysis of the FW-AL relies on the error bounds (see Theorem 1 in [GPLJ18] for the

conditions, and [BNPS17] for more details about error bounds). Their dual step-size σt+1

depends on the error bound constant α, as σt+1 = 2σ0
t+2 with σ0 ≤ min{ 2

λ , α
2

2δ }. As a results, σ0

comes into algorithm as a tuning parameter, and the method has guarantees only if σ0 is

chosen small enough.

◦ IAL is an inexact augmented Lagrangian method, where the Lagrangian subproblems are

approximately solved by using CGM up to a prescribed accuracy [LLM19]. With theoretical

analysis, the error tolerance for this subproblem is determined as εt = ε0/t for some ε0 > 0. IAL

has a double-loop structure, where each outer iteration (or epoch) executes multiple iterations

CGM, followed with a dual step.

IAL provably generates an ε-solution after O(1/ε2) outer iterations, by choosing the penalty

parameter β appropriately (proportional to

ε). This method, however, requires multiple

calls of lmo at each iteration. The number of lmo calls to achieve the prescribed accuracy in

the subproblem is bounded by O(1/εt) (see Theorem 2.2 in [LLM19]). Hence, the overall lmo

complexity of this method becomes O(1/ε4).

86

5.3. Numerical Experiments

5.3.1 Max-cut

Maximum cut is an NP-Hard combinatorial problem from computer science. Denoting the

graph Laplacian matrix by L, an SDP relaxation of this problem can be formulated as [GW95]:

minimize − 1
4 〈L, X 〉 subject to diag(X) = 1, Tr X = n, X ∈Sn

+. (5.23)

Tuning all baseline methods requires substantial computational effort, especially because

some of these methods have multiple tuning parameters. To this end, we first consider a

small scale max-cut instance where we compare all baseline methods. In this setup we use

GD97_b dataset1, which corresponds to a 47×47 dimensional problem. In Figure 5.1, we

present the performance of each method with the best parameter choice obtained after an

extensive search. We also provide the performance of each algorithm at all trials at the end of

this chapter in Figures 5.5 and 5.6.

Next, we consider a medium scale experiment, where we compare CGAL, HCGM and UPD

for max-cut with G1 (800×800) and G40 (2000×2000) datasets2. We compile the results in

Figure 5.2. Observe that HCGM converges with O(1/

t) (which is the worst case bound) while

CGAL achieves a faster rate.

5.3.2 k-means Clustering

Consider the SDP formulation of the model-free k-means clustering problem [PW07]:

minimize 〈C , X 〉 subject to X 1 = 1, X ≥ 0︸ ︷︷ ︸
AX ∈K

, X ∈Sn
+, Tr X = k︸ ︷︷ ︸

X ∈X
. (5.24)

C is the Euclidean distance matrix and k is the number of clusters. We denote the vector of

ones by 1, hence X 1 = 1 and X ≥ 0 together implies that each row of X is on the unit simplex.

The same applies for columns of X due to symmetry.

We use the problem setup from [MVW17] that we have also considered in Section 4.4.1. This

setup contains a 1000×1000 dimensional dataset generated by sampling and preprocessing

the MNIST dataset3 using a one-layer neural network. Further details on this setup and the

dataset can be found in [MVW17]. In Figure 5.3, we observe once again that CGAL outperforms

HCGM, achieving O(1/t) empirical convergence rate.

1V. Batagelj and A. Mrvar. Pajek datasets. Available at "http://vlado.fmf.uni-lj.si/pub/networks/data/"
2Y. Ye. Gset random graphs. Available at "https://www.cise.ufl.edu/research/sparse/matrices/gset/"
3LeCun & Cortes. MNIST handwritten digit database. Available at "http://yann.lecun.com/exdb/mnist/"

87

Chapter 5. CGM via Augmented Lagrangian

lmo

100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

FW-AL
IAL
UPD
HCGM
CGAL

lmo

100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

Figure 5.1 – Empirical performance of various methods for solving max-cut problem.

lmo
100 101 102 103 104 105

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−8

10−6

10−4

10−2

100
G1

UPD
HCGM
CGAL

lmo
100 101 102 103 104 105

fe
a
si
b
il
it
y
g
a
p

10−5

10−4

10−3

10−2

10−1

100

101

G1

lmo
100 101 102 103 104 105

re
la
ti
v
e
o
b
je
ct
iv
e
re
si
d
u
a
l

10−8

10−6

10−4

10−2

100

G40

lmo
100 101 102 103 104 105

fe
a
si
b
il
it
y
g
a
p

10−5

10−4

10−3

10−2

10−1

100

101

102
G40

Figure 5.2 – Empirical comparison of UPD, HCGM and CGAL for max-cut problem.

iteration

fe
as

ib
ili

ty
 g

ap

iteration

re
la

tiv
e

ob
je

ct
iv

e
re

si
du

al

Figure 5.3 – Comparison of CGAL and HCGM for clustering SDP.

88

5.3. Numerical Experiments

iteration
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−12

10−10

10−8

10−6

10−4

10−2

Gaussian

UPD
HCGM
CGAL

iteration
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−12

10−10

10−8

10−6

10−4

10−2

100
Gaussian

iteration
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−12

10−10

10−8

10−6

10−4

10−2

PolyDecay

iteration
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−12

10−10

10−8

10−6

10−4

10−2

100
PolyDecay

iteration
100 101 102 103 104

re
la
ti
v
e
o
b
je
ct
iv
e
re
si
d
u
a
l

10−12

10−10

10−8

10−6

10−4

10−2

ExpDecay

iteration
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−12

10−10

10−8

10−6

10−4

10−2

100
ExpDecay

iteration
100 101 102 103 104

re
la
ti
v
e
o
b
je
ct
iv
e
re
si
d
u
a
l

10−12

10−10

10−8

10−6

10−4

10−2

MaxCut SDP

iteration
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−12

10−10

10−8

10−6

10−4

10−2

100
MaxCut SDP

Figure 5.4 – Empirical comparison of CGAL, HCGM and UPD for solving generalized eigen-
vector problem with 4 different synthetic setups. Dotted lines present objective residual and
feasibility gap of the atoms chosen by linear minimization oracle (ht).

5.3.3 Generalized Eigenvector Problem

Consider the SDP relaxation of the generalized eigenvector problem [BVB18]:

maximize 〈C , X 〉 subject to 〈D , X 〉 = 1, X ∈Sn
+, Tr X ≤α. (5.25)

where C and C are symmetric matrices and α > 0 is a model parameter. We synthetically

generate D with iid Gaussian entries and consider 4 different cases for C :

◦ Gaussian - C generated by taking symmetric part of 103 ×103 iid Gaussian matrix

◦ PolyDecay - C generated by randomly rotating diag(1−i ,2−i , . . . ,1000−i) (i = 1)

◦ ExpDecay - C generated by randomly rotating diag(10−i ,10−2i , . . . ,10−1000i) (i = 0.025)

◦ MaxCut SDP - C is a solution of the max-cut SDP with G40 dataset (2000×2000)

This problem highlights an important observation that partially explains the reason why CGAL

outperforms HCGM. First, note that this problem has a rank-1 solution by design if we set α

right. In this scenario, if the problem formulation is well-conditioned, we could expect lmo to

pick this solution (or some close points). CGAL updates the dual variable (which corresponds

to the center point of a quadratic penalty) and adapts better to the geometry. In Figure 5.4, we

provide an empirical evidence of this adaptation: Dotted lines correspond to extreme points

chosen by lmo. These points (ht) converge (quickly with linear rates) to a solution for CGAL.

On the ohter hand, we do not observe the same behavior for HCGM, because the condition

number grows too much and lmo fails to pick good atoms. We omit lmo outputs of UPD in

the figure because it does not converge to a solution.

89

Chapter 5. CGM via Augmented Lagrangian

Observations & Concluding Remarks

CGAL outperformed the alternative methods in all of our experiments. HCGM performed

with the guaranteed "worst-case" rate in our experiments.

UPD and AUPD requires the target suboptimality level ε as an input parameter, and these

methods have convergence guarantees only up to this target accuracy. Indeed, we can observe

the saturation effect in the objective residual in our numerical experiments.

In our experiments, we observed similar performance from UPD and AUPD when solving

max-cut problems. Remark that both methods have similar guarantees for this problem, since

the dual subgradient is Hölder continuous or order ν= 0. Surprisingly, AUPD did not exhibit

the saturation in practice. We can explain this as follows: Both UPD and AUPD are based on

the inexact line-search procedure, but UPD lets a constant ε
2 slackness term in the line-search

condition, while AUPD has a more stringent slackness term ≈ ε
2t . The is required from the

theoretical perspective, in order to prevent error accumulation due to acceleration. However,

the actual error accumulation might be much less than the worst-case scenario. As a result, by

decreasing the slackness term we prevent the saturation.

Remark that, we can also design a non-saturating variant of UPD, by decreasing the slackness

term at a controlled rate. This rate can be characterized from the theory. Note however, as we

decrease it, we would also need more accurate evaluations of the sharp operator. In large-scale

problems, where we use inexact oracles, this causes stability problems in the line-search

procedure. Under noise, our line-search condition might become ill-defined, and the method

can get stuck in the line-search procedure.

FW-AL iterations are very similar to CGAL, but the empirical behavior of the algorithm is

different. The analysis of FW-AL relies on the error bound parameter, which is proved to

be positive (assuming that Slater’s condition holds). However, this parameter is typically

unknown a priori, and we argue that it can be arbitrarily small. Hence, it might be difficult to

tune in practice FW-AL for some problems.

IAL performed better in practice, in comparison with the O(1/ε4) lmo complexity bound.

Nevertheless, the method is arguably difficult to tune, as it involves multiple tuning parameters.

IAL has a double-loop structure, and only the outer iterates are informative. This results in

stair-like plots.

90

5.3. Numerical Experiments

lmo
100 101 102 103 104

re
la
ti
v
e
o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

101
CGAL

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101
CGAL

λ0 = 100

λ0 = 101

λ0 = 102

λ0 = 103

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

101
UPD

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101
UPD

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

101
AUPD

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101
AUPD

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

101
HCGM

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101
HCGM

λ0 = 100

λ0 = 101

λ0 = 102

λ0 = 103

λ0 = 104

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

101
FWAL λ=0.001

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101
FWAL λ=0.001

ρ = 10−8
ρ = 10−7
ρ = 10−6
ρ = 10−5
ρ = 10−4
ρ = 10−3
ρ = 10−2
ρ = 10−1
ρ = 100

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

101
FWAL λ=0.01

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101
FWAL λ=0.01

ρ = 10−8
ρ = 10−7
ρ = 10−6
ρ = 10−5
ρ = 10−4
ρ = 10−3
ρ = 10−2
ρ = 10−1
ρ = 100

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

101
FWAL λ=0.1

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101
FWAL λ=0.1

ρ = 10−8
ρ = 10−7
ρ = 10−6
ρ = 10−5
ρ = 10−4
ρ = 10−3
ρ = 10−2
ρ = 10−1
ρ = 100

Figure 5.5 – Comparison of projection-free methods for max-cut SDP [Part 1].

91

Chapter 5. CGM via Augmented Lagrangian

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

0.0000

0.0001

0.001

0.01

0.1

1

10
FWAL λ=1

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

0.001

0.01

0.1

1

10
FWAL λ=1

ρ = 10−8
ρ = 10−7
ρ = 10−6
ρ = 10−5
ρ = 10−4
ρ = 10−3
ρ = 10−2
ρ = 10−1
ρ = 100

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

0.0000

0.0001

0.001

0.01

0.1

1

10
FWAL λ=10

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

0.001

0.01

0.1

1

10
FWAL λ=10

ρ = 10−8
ρ = 10−7
ρ = 10−6
ρ = 10−5
ρ = 10−4
ρ = 10−3
ρ = 10−2
ρ = 10−1
ρ = 100

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

101
IAL λ=0.1

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101
IAL λ=0.1

ε = 101

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

ε = 107

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

101
IAL λ=1

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101
IAL λ=1

ε = 101

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

ε = 107

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

101
IAL λ=10

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101
IAL λ=10

ε = 101

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

ε = 107

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

101
IAL λ=100

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101
IAL λ=100

ε = 101

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

ε = 107

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

101
IAL λ=1000

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101
IAL λ=1000

ε = 101

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

ε = 107

lmo
100 101 102 103 104

re
la
ti
ve

o
b
je
ct
iv
e
re
si
d
u
a
l

10−5

10−4

10−3

10−2

10−1

100

101
IAL λ=10000

lmo
100 101 102 103 104

fe
a
si
b
il
it
y
g
a
p

10−3

10−2

10−1

100

101
IAL λ=10000

ε = 101

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

ε = 107

Figure 5.6 – Comparison of the projection-free methods for max-cut SDP [Part 2].

92

5.4. Appendix: Proofs

5.4 Appendix: Proofs

We formulate the augmented Lagrangian function with three variables, including the slack

variable v =Ax ∈K, as follows:

Lβ(x , v , y) : = f (x)+〈y , Ax −v〉+ 1

2β
‖Ax −v‖2, (5.26)

where y ∈Rd is the Lagrange multiplier and β> 0 is the penalty parameter.

We can write the directional derivatives of the augmented Lagrangian function as

∇xLβ(x , v , y) =∇ f (x)+A∗y +β−1A∗(Ax −v) (5.27)

∇vLβ(x , v , y) =−y −β−1(Ax −v) (5.28)

∇yLβ(x , v , y) =Ax −v . (5.29)

Clearly, Lβt is L̄t -smooth, where we denote by L̄t := (L f + ‖A‖2

βt
). Now, let us define

vt := projK(Axt +βt yt) = argmin
v∈K

Lβt (xt , v , yt). (5.30)

Then, using the Taylor expansion, we get the following estimate:

Lβt+1 (xt+1, vt , yt) ≤Lβt+1 (xt , vt , yt)+〈∇xLβt+1 (xt , vt , yt), xt+1 −xt 〉+ L̄t+1

2
‖xt+1 −xt‖2

=Lβt+1 (xt , vt , yt)+ηt 〈∇xLβt+1 (xt , vt , yt), ht −xt 〉+η2
t

L̄t+1

2
‖ht −xt‖2 (5.31)

≤Lβt (xt , vt , yt)+ηt 〈∇xLβt (xt , vt , yt), ht −xt 〉+η2
t

L̄t+1

2
D2

X

+ 1

2
(β−1

t+1 −β−1
t)‖Axt −vt‖2 +ηt (β−1

t+1 −β−1
t)〈Axt −vt , Aht −Axt 〉. (5.32)

Now, we can bound the inner product term as follows:

〈∇xLβt (xt , vt , yt), ht −xt 〉
≤ 〈∇xLβt (xt , vt , yt), x�−xt 〉 (5.33)

= 〈∇ f (xt), x�−xt 〉+〈yt +β−1
t (Axt −vt), Ax�−Axt +vt −vt 〉 (5.34)

= 〈∇ f (xt), x�−xt 〉−β−1
t ‖Axt −vt‖2 −〈yt , Axt −vt 〉

+〈yt +β−1
t (Axt −vt), Ax�−vt 〉 (5.35)

≤ f�− f (xt)−β−1
t ‖Axt −vt‖2 −〈yt , Axt −vt 〉

+〈yt +β−1
t (Axt −vt), Ax�−vt 〉 (5.36)

=L�−Lβt (xt , vt , yt)− 1

2βt
‖Axt −vt‖2 +〈yt +β−1

t (Axt −vt), Ax�−vt 〉 (5.37)

≤L�−Lβt (xt , vt , yt)− 1

2βt
‖Axt −vt‖2. (5.38)

93

Chapter 5. CGM via Augmented Lagrangian

The first inequality holds because ht is the solution of the linear minimization oracle. The

second inequality simply follows from the convexity of f . Finally, the last inequality comes

from the optimality condition. We also use the strong duality assumption to ensure f� =L�.

By definition of vt in (5.30), the following holds:

〈yt +β−1
t (Axt −vt), v −vt 〉 =−〈∇vLβt (xt , vt , yt), v −vt 〉 ≤ 0, ∀v ∈K, (5.39)

and in particular for v =Ax� ∈K.

Substituting (5.38) back into (5.32), we get

Lβt+1 (xt+1, vt , yt) ≤ (1−ηt)Lβt (xt , vt , yt)+ηtL�+ (β−1
t+1 − (1+ηt)β−1

t

) 1

2
‖Axt −vt‖2

+η2
t

L̄t+1

2
D2

X +ηt (β−1
t+1 −β−1

t)〈Axt −vt , Aht −Axt 〉. (5.40)

We define v̄t+1 as

v̄t+1 := projK(Axt+1 +β−1
t+1 yt) = argmin

v∈K
Lβt+1 (xt+1, v , yt). (5.41)

Hence, we obtain

Lβt+1 (xt+1, v̄t+1, yt) ≤Lβt+1 (xt+1, vt , yt) (5.42)

≤ (1−ηt)Lβt (xt , vt , yt)+ηtL�+ (β−1
t+1 − (1+ηt)β−1

t

) 1

2
‖Axt −vt‖2

+η2
t

L̄t+1

2
D2

X +ηt (β−1
t+1 −β−1

t)〈Axt −vt , Aht −Axt 〉 (5.43)

≤ (1−ηt)Lβt (xt , v̄t , yt)+ηtL�+ (β−1
t+1 − (1+ηt)β−1

t

) 1

2
‖Axt −vt‖2

+η2
t

L̄t+1

2
D2

X +ηt (β−1
t+1 −β−1

t)‖Axt −vt‖‖A‖DX , (5.44)

where the last line follows from the Cauchy-Schwarz inequality.

Now, we use the following bound:

(
β−1

t+1 − (1+ηt)β−1
t

) 1

2
‖Axt −vt‖2 +ηt (β−1

t+1 −β−1
t)‖Axt −vt‖‖A‖DX

≤ η2
t (β−1

t+1 −β−1
t)2

2
(
(1+ηt)β−1

t −β−1
t+1

)‖A‖2D2
X , (5.45)

which is obtained by considering the maximum value of the second order polynomial in terms

of ‖Axt −vt‖.

94

5.4. Appendix: Proofs

Remark that,

η2
t (β−1

t+1 −β−1
t)2

2
(
(1+ηt)β−1

t −β−1
t+1

) ≤β−1
0

2
(t+2)2

(
t +3−

t +2
)2

(1+ 2
t+2)

t +2−

t +3
≤β−1

0

1
2(t+2)3

(1+ 2
t+2)

t +2−

t +3

≤ β−1
0

1
2(t+2)2.5

(1+ 2
t+2)(t +2)− (t +2)

≤ 1

4β0(t +2)2.5 . (5.46)

Combining all these bounds and subtracting L� from both sides, we end up with

Lβt+1 (xt+1, v̄t+1, yt)−L� ≤ (1−ηt)(Lβt (xt , vt , yt)−L�)+η2
t

L̄t+1

2
D2

X + ‖A‖2D2
X

4β0(t +2)2.5 .

(5.47)

In order to obtain a recurrence relation, we use

Lβt+1 (xt+1, vt+1, yt+1) ≤Lβt+1 (xt+1, v̄t+1, yt+1) (5.48)

=Lβt+1 (xt+1, v̄t+1, yt)+〈yt+1 − yt , Axt+1 − v̄t+1〉 (5.49)

=Lβt+1 (xt+1, v̄t+1, yt)+σt+1‖Axt+1 − v̄t+1‖2. (5.50)

We choose σt+1 ≥ 0 such that

σt+1 ≤ 1/β0 & σt+1‖Axt+1 − v̄t+1‖2 ≤ η2
t

L̄t+1

2
D2

X & ‖yt+1‖ ≤ DY . (5.51)

Note that σt+1 is well defined, in the sense that there always exists σt+1 ≥ 0 which satisfies all

conditions. This is because σt+1 = 0 simultaneously satisfies them in a trivial way.

Therefore, we finally obtain

Lβt+1 (xt+1, vt+1, yt+1)−L� ≤ (1−ηt)(Lβt (xt , vt , yt)−L�)+η2
t L̄t+1D2

X + ‖A‖2D2
X

4β0(t +2)2.5 .

(5.52)

Applying this inequality recursively, we get

Lβt+1 (xt+1, vt+1, yt+1)−L�

≤
t∏

j=0
(1−η j)

(Lβ0 (x0, v0, y0)−L�
)+ t∑

�=0

(
η2
�L̄�+1D2

X + ‖A‖2D2
X

4β0(�+2)2.5

)
t∏

j=�
(1−η j) (5.53)

=
t∑

�=0

(
η2
�L̄�+1D2

X + ‖A‖2D2
X

4β0(�+2)2.5

)
t∏

j=�
(1−η j) (5.54)

≤
t∑

�=0

(
η2
�L̄t+1D2

X + ‖A‖2D2
X

4β0(�+2)2.5

)
t∏

j=�
(1−η j) (5.55)

where (5.54) follows since η0 = 1, and (5.55) holds because L̄t+1 ≥ L̄�+1 for �= 1,2, . . . , t .

95

Chapter 5. CGM via Augmented Lagrangian

By using

t∑
�=0

η2
�

t∏
j=�

(1−η j) =
t∑

�=0

4

(�+2)2

t∏
j=�

j

j +2
=

t∑
�=0

4

(�+2)2

(�+1)�

(t +1)(t +2)
≤ 4

t +2
, and (5.56)

t∑
�=0

1

(�+2)2.5

t∏
j=�

j

j +2
=

t∑
�=0

1

(�+2)2.5

(�+1)�

(t +1)(t +2)
≤ 2

(t +2)1.5 , (5.57)

we get the following bound on the augmented Lagrangian:

Lβt+1 (xt+1, vt+1, yt+1)−L� ≤ 4

t +2
D2

X L̄t+1 + ‖A‖2D2
X

2β0(t +2)1.5 (5.58)

= D2
X

(
4L f

t +2
+ 4‖A‖2/β0

t +2
+ ‖A‖2/β0

2(t +2)1.5

)
. (5.59)

Next, we translate this bound to the convergence guarantees in the objective residual and

feasibility gap.

Convergence in objective residual. We start from the definition of augmented Lagrangian:

f (xt+1) =Lβt+1 (xt+1, vt+1, yt+1)+ βt+1

2
‖yt+1‖2 − 1

2βt+1
dist2

(
Axt+1 +βyt+1,K

)

≤Lβt+1 (xt+1, vt+1, yt+1)+
βt+1D2

Y
2

.

(5.60)

Then, we subtract f� from both sides (recall that f� =L� due to strong duality)

f (xt+1)− f� ≤Lβt+1 (xt+1, vt+1, yt+1)−L�+
βt+1D2

Y
2

≤ D2
X

(
4L f

t +2
+ 4‖A‖2/β0

t +2
+ ‖A‖2/β0

2(t +2)1.5

)
+

D2
Yβ0

2

t +2
.

(5.61)

This completes the proof of the upper bound.

Now, by using the classical Lagrange saddle point theory, we get

f� ≤L(x , v , y�) = f (x)+〈y�, Ax −v〉 ≤ f (x)+‖y�‖‖Ax −v‖, ∀(x , v) ∈X ×K. (5.62)

In particular, by choosing x = xt+1 and v = projK(Axt+1), and rearranging, we obtain

f (xt+1)− f� ≥−‖y�‖ ·dist(Axt+1,K) , (5.63)

which is our lower bound on the objective residual.

96

5.4. Appendix: Proofs

Convergence in feasibility gap. Denote by φt := D2
X
(

4L f

t + 4‖A‖2/β0
t

+ ‖A‖2/β0

2t 1.5

)
. We combine

(5.58) and (5.62) with x = xt+1 and v = vt+1, and use Cauchy-Schwartz inequality:

〈yt+1 − y�, Axt+1 −vt+1〉+ 1

2βt
‖Axt+1 −vt+1‖2 ≤φt+2

=⇒ −‖yt+1 − y�‖‖Axt+1 − vt+1‖+ 1

2βt
‖Axt+1 − vt+1‖2 ≤φt+2 (5.64)

This is a second order inequality with respect to ‖Axt+1 −vt+1‖. Solving this inequality we get

‖Axt+1 −vt+1‖ ≤βt

(
‖yt+1 − y�‖+

√
‖yt+1 − y�‖2 + 2φt+2

βt

)
(5.65)

≤βt

(
2‖yt+1 − y�‖+

√
2φt+2

βt

)
(5.66)

≤ 1
t +2

(
2β0‖yt+1 − y�‖+DX

√
8L f β0

t +2
+ (8+ 1

t +2

)‖A‖2

)
. (5.67)

Finally, the bound on the feasibility gap follows by

dist(Axt+1,K) = ‖Axt+1 − v̇t+1‖
= ‖Axt+1 −vt+1 +vt+1 − v̇t+1‖
≤ ‖Axt+1 −vt+1‖+‖vt+1 − v̇t+1‖
≤ ‖Axt+1 −vt+1‖+‖Axt+1 −Axt+1 +βt+1 yt+1‖
≤ ‖Axt+1 −vt+1‖+DYβt+1,

(5.68)

where v̇t+1 = projK(Axt+1), and the fourth line follows from the non-expansiveness.

97

6 Low-Rank Matrix Sketching from
Streaming Data

Our storage-optimal convex optimization paradigm adopts a sketching model as a mechanism

for reducing the cost of storing the decision variable. Consequently, designing practical sketch-

ing algorithms for low-rank matrix approximation is a fundamental aspect of our research.

This chapter is based on the three joint works with Joel A. Tropp, Madeleine Udell, and Volkan

Cevher; [TYUC17a], [TYUC17b], and [TYUC19]. Some details are taken from the preliminary

versions [TYUC17c] and [TYUC18].

This section mainly consists of some excerpts quoted verbatim with minor modifications

from these works, with the aim of providing a brief overview of our main results. These

manuscripts are written by Joel A. Tropp, and he is the first author and the primary contact for

these works. The author of this dissertation contributed to this research line primarily on the

implementation of software and the execution of the computer experiments. Our motivation

for studying low-rank matrix approximation from streaming data comes from the specific

optimization application [YUTC17].

Introduction

In Chapter 2, we introduced SketchyCGM, the first provable algorithm which produces a

rank-r approximate solution to a class of SDP problems with low-rank solutions using optimal

storage. CGM forms a sequence of approximate low-rank solutions via the iteration

X1 ← 0 and X t+1 ← (1−ηt)X t +ηt ut u∗
t , for some ηt ∈ [0,1]. (6.1)

SketchyCGM only maintains a random low-dimensional linear image of the evolving solution

X t . When the iteration terminates, it computes a rank-r approximation from this linear image.

This chapter presents a framework for computing structured low-rank approximations of a

matrix from a sketch, a randomized low-dimensional linear image of the matrix. Suppose

that X ∈ Rm×n (or Cm×n) is an arbitrary matrix. Let r be a target rank parameter where

99

Chapter 6. Low-Rank Matrix Sketching from Streaming Data

r � min{m,n}. The computational problem is to produce a low-rank approximation X̂ of X

whose error is comparable to a best rank-r approximation:

‖X − X̂ ‖F ≈ min
rank(B)≤r

‖X −B‖F. (6.2)

Contributions

Our aim is to construct a random sketching map that acquires enough information to solve the

low-rank matrix approximation problem (6.2). We must also design algorithms for computing

a reconstruction X̂ from the sketch without direct access to the matrix X itself. We can

summarize the main features of our approach and the contributions as follows:

◦ We design sketching maps that minimizes the size of the sketch (and the test matrices) to

achieve approximations that satisfy (6.2).

◦ We propose novel reconstruction algorithms that are reliable, numerically stable, and efficient

in terms of storage and computation.

◦ We present a systematic mechanism to maintain structural properties of the input matrix in

our approximations, such as symmetry or positive-semi-definiteness.

◦ We present explicit a priori error bounds for the algorithms so that we can determine a

sketch size that suffices to achieve a specific approximation goal.

◦ Our precise error bounds with respect to the tail energy of the input matrix offers con-

crete guidance on the best sketch-size parameters. (details excluded in this dissertation, see

Section 4.5 in [TYUC17b] and Section 5.4 in [TYUC19])

◦ We document numerical experiments on real and synthetic data to demonstrate that our

methods dominate existing techniques. Our codes are available online1 as a MATLAB toolbox.

◦ Our toolkit includes an a posteriori error estimator for validating the quality of the approxi-

mation. This estimator also provides a principled mechanism for selecting the precise rank of

the final approximation. (details excluded in this dissertation, see Section 6 in [TYUC19])

◦ We demonstrate an application of our approach as a tool to compress large-scale scientific

data from several scientific simulations and measurement processes. (details excluded in this

dissertation, see Section 7 in [TYUC19])

This chapter overviews only the key features of our results. We omit all proofs and technical

details in this short summary. We refer to the original papers for more details.

1Available at "https://github.com/alpyurtsever/SKETCH"

100

6.1. Two Component Sketch

Preliminaries

The methods apply for the real field (F=R) and for the complex field (F=C). We introduce a

parameter α that reflect the field over which we are working:

α :=α(F) :=
⎧⎨
⎩1, F=R

0, F=C
(6.3)

Let us also introduce a function that we use to simplify many of our error bounds:

ω(u, v) := u

v −u −α
for integers that satisfy v > u +α>α. (6.4)

Observe that the function ω(u, ·) is decreasing, with range (0,u].

Standard normal matrix. A matrix G ∈ Rm×n has the real standard normal distribution if

the entries form an independent family of standard normal random variables (i.e., Gaussian

with mean zero and variance one). A matrix G ∈ Cm×n has the complex standard normal

distribution if it has the form G = G1 + iG2 where G1 and G2 are independent, real standard

normal matrices. Standard normal matrices are also known as Gaussian matrices.

Throughout, we present the analysis of the case where the linear dimension reduction maps

(test matrices) are statistically independent and follow the standard normal distribution. We

describe other potential distributions for the test matrices in Section 3.9 of [TYUC17b] and

Section 3 of [TYUC19].

6.1 Two Component Sketch

This section presents a brief summary of our approach introduced in [TYUC17b].

6.1.1 The Sketch

To form the sketch of the target matrix, we independently draw and fix two test matrices:

Ω ∈ Fn×k and Ψ ∈ F�×m . (6.5)

The sketch of the target matrix X ∈ Fm×n consists of two matrices:

Y := XΩ ∈ Fm×k and W :=ΨX ∈ F�×n . (6.6)

The matrix Y collects information about the action of X , while the matrix W collects informa-

tion about the action of X ∗.

101

Chapter 6. Low-Rank Matrix Sketching from Streaming Data

6.1.2 The Basic Reconstruction Algorithm

The first step in the reconstruction is to compute an orthobasis Q for the range of Y by means

of an orthogonal–triangular factorization:

Y =: QR where Q ∈ Fm×k . (6.7)

The second step uses the co-range sketch W to form the matrix

B := (ΨQ)†W ∈ Fk×n . (6.8)

Then, we report the rank-k approximation

X̂ :=QB ∈ Fm×n where Q ∈ Fm×k and B ∈ Fk×n . (6.9)

Intuition. To motivate the algorithm, we recall a familiar heuristic from randomized linear

algebra (see Section 1 in [HMT11]), which states

X ≈QQ∗X . (6.10)

Although we would like to form the rank-k approximation Q(Q∗X), we cannot compute the

factor Q∗X without revisiting the target matrix X . Instead, we exploit the information in the

co-range sketch W =ΨX . Notice that

W =Ψ(QQ∗X)+Ψ(X −QQ∗X) ≈ (ΨQ)(Q∗X). (6.11)

The heuristic (6.10) justifies dropping the second term. Multiplying on the left by the pseu-

doinverse (ΨQ)†, we arrive at the relation

B = (ΨQ)†W ≈Q∗X . (6.12)

These considerations suggest that

X̂ =QB ≈QQ∗X ≈ X . (6.13)

This explanation is inspired by the discussion in Section 5.5 in [HMT11].

Theorem 6.1. Assume the sketch size parameters satisfy k > r +α and �> k +α. Draw random

test matrices Ω ∈ Fn×k and Ψ ∈ F�×m independently from the standard normal distribution.

Then the rank-k approximation X̂ obtained from formula (6.9) satisfies

E‖X − X̂ ‖2
F ≤ (1+ω(r,k)

) · (1+ω(k,�)
) · ‖X − �X �r ‖2

F. (6.14)

102

6.1. Two Component Sketch

In particular, the selection k = 2r +α and �= 2k +α yields the error bound

(
E‖X − X̂ ‖2

F

)1/2 ≤ 2 · ‖X − �X �r ‖F. (6.15)

We recommend this parameter choice because it achieves a good tradeoff between the size of the

sketch and the accuracy of the reconstruction.

Similar bounds hold with high probability.2

Remark. We can extend the reconstruction error bound in Theorem 6.1, reformulating the

bound with respect to tail energy instead of the optimal rank-r error ‖X −�X �r ‖F. This provides

a good description of the actual behavior. As a consequence, we can offer a concrete guidance

on the sketch size parameters based on the spectral decay of the input matrix. See Theorem 4.3

and Section 4.5 in [TYUC17b] for more details.

6.1.3 The Fixed-Rank Reconstruction Algorithm

Suppose that we wish to compute a rank-r approximation of the target matrix X ∈ Fm×n .

First, we form an initial rank-k approximation X̂ := QB using the procedure (6.9). Then we

obtain a rank-r approximation �X̂ �r of the target matrix by replacing X̂ with its best rank-r

approximation in Frobenius norm:

�X̂ �r = �QB�r = (QU)�Σ�r V ∗ =Q�B�r , where B =UΣV ∗ is an SVD of B . (6.16)

Theorem 6.2. Assume the sketch size parameters satisfy k > r +α and �> k +α. Draw random

test matrices Ω ∈ Fn×k and Ψ ∈ F�×m independently from the standard normal distribution.

Then the rank-r approximation �X̂ �r obtained from the formula eq. (6.16) satisfies

E‖X − �X̂ �r ‖F ≤
√

1+ω(r,k) · (1+2
√
ω(k,�)

) · ‖X − �X �r ‖F. (6.17)

In particular, the selection k = 2r +α and �= 2k +α yields the error bound

E‖X − �X̂ �r ‖F ≤ 3

2 · ‖X − �X �r ‖F. (6.18)

Similar results hold with high probability.

6.1.4 Computing a PSD Approximation

Suppose that the target matrix X belongs to the closed, convex set X ⊂ Fm×n . Let X̂in ∈
Fm×n be an initial approximation of X . We can produce a new approximation projX (X̂in) by

projecting the initial approximation onto the constraint set. This procedure always improves

the approximation quality. This result is well known in convex analysis.

2 The expectation bounds in this and the following results also describe the typical behavior because of measure
concentration effects. One can develop high-probability bounds using the methods from Section 10.3 in [HMT11].

103

Chapter 6. Low-Rank Matrix Sketching from Streaming Data

We often encounter the problem of approximating a PSD (or conjugate symmetric) matrix.

Projection onto PSD cone can be efficiently performed on the factors, avoiding forming large

matrices. See Section 5 in [TYUC17b] for the details.

Last of all, consider the situation where we need to approximate a structured matrix by a

structured matrix with fixed rank. The most direct approach is to replace an initial structured

approximation by the nearest structured rank-r matrix. Projecting a PSD (respectively, con-

jugate symmetric) matrix onto the set of fixed-rank matrices preserves PSD (the conjugate

symmetric property). The set of matrices with a fixed rank is not convex, however, so the

previous analysis does not apply. To this end, we provide the following general bound for

fixed-rank approximation with structure. This bound is typically somewhat loose.

Theorem 6.3. Let X ∈ Fm×n be a target matrix, and let X̂in ∈ Fm×n be an approximation. For

any rank parameter r ,

‖X − �X̂in�r ‖F ≤ ‖X − �X �r ‖F +2‖X − X̂in‖F. (6.19)

6.2 Three Component Sketch

This section presents the key features of our new sketching approach with three components

[TYUC19]. The new algorithm is a hybrid of the methods from [Upa16] and our previous

approach with two components. The new algorithm performs better than its predecessors.

6.2.1 The Sketch

Independently, draw and fix four randomized linear dimension reduction maps:

Υ ∈ Fk×m and Ω ∈ Fk×n ;

Φ ∈ Fs×m and Ψ ∈ Fs×n ,
(6.20)

such that r0 ≤ k ≤ s ≤ min{m,n}, where r0 is the target rank.

The sketch itself consists of three matrices:

W :=ΥX ∈ Fk×n , Y := XΩ∗ ∈ Fm×k , and Z :=ΦXΨ∗ ∈ Fs×s . (6.21)

The first two matrices (W ,Y) capture the co-range and the range of X . The core sketch (Z)

contains fresh information that improves our estimates of the singular values and singular

vectors of X ; it is responsible for the superior performance of the new method.

104

6.2. Three Component Sketch

6.2.2 Computing Truncated Low-Rank Approximations

The first two components (W ,Y) of the sketch are used to estimate the co-range and the range

of the matrix X . Compute thin QR factorizations:

W ∗ =: P R1 where P ∈ Fn×k ;

Y =: QR2 where Q ∈ Fm×k .
(6.22)

The third sketch Z is used to compute the core approximation B , which describes how X acts

between range(P) and range(Q):

B := (ΦQ)†Z ((ΨP)†)∗ ∈ Fk×k . (6.23)

This step is implemented by solving a family of least-squares problems. Next, form a rank-k

approximation X̂ of the input matrix X via

X̂ :=QB P∗ (6.24)

We refer to X̂ as the “initial” approximation. The initial approximation can contain spurious

information. To produce an approximation that is fully reliable, we must truncate the rank

of the initial approximation (6.24). For a truncation parameter r , we construct a rank-r

approximation by replacing X̂ with its best rank-r approximationin Frobenius norm:

�X̂ �r =Q�B�r P∗. (6.25)

We refer to �X̂ �r as a “truncated” approximation.

Remark. We can form other structured approximations of X by projecting X̂ onto a set of

structured matrices as in Section 6.1.4. We omit the details.

6.2.3 Analysis of Initial and Truncated Approximations

Theorem 6.4 (Initial Approximation: Error Bound). Let X ∈ Fm×n be an arbitrary input matrix.

Assume the sketch size parameters satisfy s ≥ 2k +α. Draw independent Gaussian dimension

reduction maps (Υ,Ω,Φ,Ψ), as in (6.20). Extract a sketch (6.21) of the input matrix. Then the

rank-k approximation X̂ , constructed in (6.24), satisfies the error bound

E‖X − X̂ ‖2
F ≤ (1+ω(k, s)

) · (1+2ω(r,k)
) · ‖X − �X �r ‖2

F. (6.26)

In particular, k = 4r0 +α and s = 2k +α yields

E‖X − X̂ ‖2
F ≤ 10

3 · ‖X − �X �r ‖2
F. (6.27)

Similar bounds hold with high probability.

105

Chapter 6. Low-Rank Matrix Sketching from Streaming Data

Remark. In Theorem 6.4, we have imposed the condition s ≥ 2k +α because theoretical

analysis and empirical work both suggest that the restriction is useful in practice. The approxi-

mation (6.24) only requires that k ≤ s.

Remark. We can extend the reconstruction error bound in Theorem 6.4, reformulating the

bound with respect to the tail energy, in order to provide a concrete guidance on the sketch size

parameters based on the spectral decay of the input matrix. See Theorem 5.1 and Section 5.4

in [TYUC19] for more details.

Corollary 6.1 (Truncated Approximation: Error Bound). Instate the assumptions of Theo-

rem 6.4. Then the rank-r approximation �X̂ �r satisfies the error bound

E‖X − �X̂ �r ‖F ≤
(
1+2
√(

1+ω(k, s)
) · (1+2ω(r,k)

)) · ‖X − �X �r ‖F (6.28)

Similar results hold with high probability.

This statement is an immediate consequence of Theorem 6.4 and Theorem 6.3.

6.3 Nyström Sketch for PSD Matrices

This section presents a brief summary of our Nystöm Sketch for fixed-rank approximation of a

positive-semidefinite (PSD) matrix in [TYUC17a].

6.3.1 The Sketch

Suppose that X ∈ Fn×n is a PSD matrix. Fix a sketch size parameter k in the range r ≤ k ≤ n.

Independent from X , we draw and fix a random test matrix

Ω ∈ Fn×k . (6.29)

The sketch of the matrix X takes the form

Y = XΩ ∈ Fn×k . (6.30)

To find a good approximation, we must set the sketch size k larger than r . But storage costs

and computation also increase with k. One of our main contributions is to clarify the role of k.

Intuition. The Nyström method is a general technique for low-rank PSD matrix approximation.

Various instantiations appear in the papers [WS00, Pla05, FBCM04, DM05, HMT11, Git11,

CD13, Git13, GM16, LLS+17].

106

6.3. Nyström Sketch for PSD Matrices

Given the test matrix Ω and the sketch Y = XΩ, the Nyström method constructs a rank-k PSD

approximation of the PSD matrix X via

X̂ nys = Y (Ω∗Y)†Y ∗. (6.31)

In most work on the Nyström method, the test matrix Ω depends adaptively on X , so these

approaches are not valid in the streaming setting. Gittens’s framework [Git11, Git13, GM16]

covers the streaming case.

Fixed-Rank Nyström Approximation: Prior Art. To construct a Nyström approximation with

exact rank r from a sketch of size k, the standard approach is to truncate the center

X̂ nysfix
r = Y (�Ω∗Y �r)†Y ∗. (6.32)

The truncated Nyström approximation (6.32) appears in the many papers, including [Pla05,

DM05, CD13, GM13]. We have found that the truncation method (6.32) performs poorly in

the present setting. This observation motivated us to search for more effective techniques.

Fixed-Rank Nyström Approximation: Proposal. Our purpose is to develop, analyze, and

evaluate a new approach for fixed-rank approximation of a PSD matrix under the streaming

model. We propose a more intuitive rank-r approximation:

X̂r = �X̂ nys�r . (6.33)

That is, we report a best rank-r approximation of the full Nyström approximation (6.31).

6.3.2 Fixed-Rank Nyström Approximation

We outline a numerically stable and very accurate implementation of (6.33), based on an idea

from [Tyg14, LLS+17]. In Section 6.4, we show that a poor implementation may produce an

approximation with 100% error!

Fix a small parameter ν> 0. Instead of approximating the PSD matrix X directly, we approxi-

mate the shifted matrix Xν = X +νI and then remove the shift. Here are the steps:

1. Construct the shifted sketch Yν = Y +νΩ.

2. Form the matrix B =Ω∗Yν.

3. Compute a Cholesky decomposition B =CC∗.

4. Compute E = YνC−1 by back-substitution.

5. Compute the (thin) singular value decomposition E =UΣV ∗.

6. Form X̂r =U�Σ2 −νI�r U∗.

Related, but distinct, methods were proposed by Williams & Seeger [WS00] and analyzed in

Gittens’s thesis [Git13].

107

Chapter 6. Low-Rank Matrix Sketching from Streaming Data

Theorem 6.5. Assume 1 ≤ r < k ≤ n. Let X ∈ Fn×n be a PSD matrix. Draw a test matrix Ω ∈ Fn×k

from the Gaussian distribution, and form the sketch Y = XΩ. Then the approximation X̂r given

by (6.31) and (6.33) satisfies

E‖X − X̂r ‖S1 ≤ (1+ω(r,k)
) · ‖X − �X �r ‖S1 ; (6.34)

E‖X − X̂r ‖S∞ ≤ ‖X − �X �r ‖S∞ +ω(r,k) · ‖X − �X �r ‖S1 . (6.35)

Similar results hold with high probability.

6.4 Numerical Experiments

This section presents computer experiments that are designed to evaluate the performance of

the proposed sketching algorithms for low-rank matrix approximation. We include compar-

isons with alternative methods from the literature.

6.4.1 Sketching and Reconstruction Methods in our Experiments

We use the following algorithms in our numerical experiments:

◦ The [HMT11] method in Section 5.5, Remark 5.4 of [HMT11] is a simplification of the method

from Section 5.2 of Woolfe et al. [WLRT08], and they perform similarly. There are two sketches,

and the sketch size depends on one parameter k. The total storage cost T = k(m +n).

◦ The [TYUC17b] method is our two component sketch, implemented as described in Algo-

rithm 7 of [TYUC17b]. It involves two sketches, controlled by two parameters k,�. The total

storage cost T = km +�n.

◦ The [Upa16] method in Section 3.3 of [Upa16] simplifies a complicated approach from

Theorem 12 in Boutsidis et al. [BWZ16]. This algorithm involves three sketches, controlled by

two parameters k, s. The total storage cost T = k(m +n)+ s2.

◦ The [TYUC2019] method in is our three component sketching approach, implemented as

described in Algorithm 4.4 of [TYUC19]. It uses three sketches, controlled by two parameters

k, s. The total storage cost T = k(m +n)+ s2.

For our tests on fixed-rank reconstruction of a PSD in Section 6.4.5, we use:

◦ The standard Nyström approximation (6.32), and the proposed approach (6.33), (imple-

mented as described in Algorithm 3 of [TYUC17a]). These methods involve one sketch, con-

trolled by a single parameters k. The total storage cost T = kn.

◦ The [TYUC17b] method is our two component sketch, implemented for PSD matrices as

described in Algorithm 9 of [TYUC17b]. It involves two sketches, controlled by two parameters

k,�. The total storage cost T = (k +�)n.

108

6.4. Numerical Experiments

6.4.2 Experimental Setup

Fix an input matrix X ∈ Fn×n and a truncation rank r . Select sketch size parameters. For each

trial, draw dimension reduction maps and form the sketch of the input matrix. Compute a

rank-r approximation X̂out using a specified reconstruction algorithm. The approximation

error is calculated relative to the best rank-r approximation error in Schatten p-norm:

Sp relative error = ‖X − X̂out‖p

‖X − �X �r ‖p
−1. (6.36)

We perform 20 independent trials and report the average error.

6.4.3 Classes of Input Matrices

We consider several different types of synthetic and real input matrices. See Figure 6.1 for a

plot of the spectra of these input matrices.

Synthetic Examples. We work over the complex field C. The matrix dimensions m = n =
103, and we introduce an effective rank parameter R. We compute an approximation with

truncation rank r = 10.

◦ Low-rank + noise: Let ξ≥ 0 be a signal-to-noise parameter. These matrices take the form

X = diag(1, . . . ,1︸ ︷︷ ︸
R

,0, . . . ,0)+ξn−1C ∈Cn×n , (6.37)

where C =GG∗ for a standard normal matrix G ∈ Fn×n .

LowRankLowNoise (ξ= 10−4), LowRankMedNoise (ξ= 10−2), LowRankHiNoise (ξ= 10−1)

◦ Polynomial decay: For a decay parameter p > 0, consider matrices

X = diag(1, . . . ,1︸ ︷︷ ︸
R

,2−p ,3−p , . . . , (n −R +1)−p) ∈Cn×n . (6.38)

PolyDecaySlow (p = 0.5), PolyDecayMed (p = 1), PolyDecayFast (p = 2).

◦ Exponential decay: For a decay parameter q > 0, consider matrices

X = diag(1, . . . ,1︸ ︷︷ ︸
R

,10−q ,10−2q , . . . ,10−(n−R)q) ∈Cn×n . (6.39)

ExpDecaySlow (q = 0.01), ExpDecayMed (q = 0.1), ExpDecayFast (q = 0.5)

109

Chapter 6. Low-Rank Matrix Sketching from Streaming Data

j

100 101 102 103

j
t
h
si
n
g
u
la
r
va
lu
e

10-5

10-4

10-3

10-2

10-1

100

HiNoise
MedNoise
LowNoise

(a) Low-Rank + Noise

j

100 101 102 103

10-6

10-5

10-4

10-3

10-2

10-1

100

PolySlow
PolyMed
PolyFast

(b) Polynomial Decay

j

100 101 102 103

j
t
h
si
n
g
u
la
r
va
lu
e

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

ExpSlow
ExpMed
ExpFast

(c) Exponential Decay

j

100 101 102 103
10-15

10-12

10-9

10-6

10-3

100

StreamVel
MinTemp
MaxCut
PhaseRet

(d) Data Matrices

Figure 6.1 – Singular value spectrum for each of the synthetic and real data classes.

Application Examples. We present some low-rank data matrices that arise in applications.

◦ Navier–Stokes: This data is courtesy of Beverley McKeon and Sean Symon. The real m ×n

matrix StreamVel contains streamwise velocities at m = 10,738 points for each of n = 5,001

time instants.

◦ Weather: This data is courtesy of William North. The real m ×n matrix MinTemp contains

the minimum temperature recorded at m = 19,264 stations on each of n = 7,305 days, across

the northeastern United States during the years 1981–2016.

We also consider matrices that arise in our optimization problems:

◦ MaxCut: This is a real psd matrix with m = n = 2,000 that gives a high-accuracy solution to

the max-cut SDP for a sparse graph [GW95].

◦ PhaseRetrieval: This is a complex psd matrix with m = n = 25,921 that gives a low-accuracy

solution to a phase retrieval SDP [HCO+15].

110

6.4. Numerical Experiments

6.4.4 Comparison of Formulas for General Low-Rank Matrices

Figure 6.2 presents the results of the following experiment. For synthetic matrices with effective

rank R = 10 and truncation rank r = 10, we compare the relative error eq. (6.36) achieved by

each of the four algorithms as a function of storage. We use Gaussian dimension reduction

maps in these experiments.

Figure 6.3 contains the results of the following experiment. For each of the four algorithms, we

display the relative error eq. (6.36) as a function of storage. We use sparse dimension reduction

maps, see Section 3.3 in [TYUC19] for the details.

We plot the oracle error3 attained by each method. Since the oracle error is not achievable in

practice, we also chart the performance of each method at the a priori parameter selection.

The numerical work here supports the superiority of the proposed methods.

6.4.5 Comparison of Formulas for Low-Rank PSD Matrices

Figures 6.4 and 6.5 display the performance of the three fixed-rank psd approximation meth-

ods. The vertical axis is the Schatten 1-norm relative error (6.36). The variable T is the storage

required for the sketch only. For the Nyström-based approximations (6.32) and (6.33), we have

the correspondence T /n = k. For Algorithm 9 in [TYUC17b], we have T /n = k +�.

Figure 6.6 gives evidence about the numerical challenges involved in implementing Nyström

approximations, such as (6.33). Our implementation is based on the Nyström approximation

routine eigenn released by Tygert [Tyg14] to accompany the paper [LLS+17]. We compare with

another implementation strategy described in the text of the same paper, Eqn. (13) in [LLS+17].

It is surprising to discover very different levels of precision in two implementations designed

by professional numerical analysts.

The experiments demonstrate that the proposed method (6.33) has a significant benefit over

the alternatives for input matrices that admit a good low-rank approximation.

3To make fair comparisons among algorithms, we can fix the storage budget and identify the parameter choices
that minimize the (average) relative error incurred over the repeated trials. We refer to the minimum as the oracle
error for an algorithm. The oracle error is not attainable in practice.

111

Chapter 6. Low-Rank Matrix Sketching from Streaming Data

Storage: T/(m+ n)
12 24 48 96 192

R
el
a
ti
v
e
E
rr
o
r
(S

2
)

10-2

10-1

100

(a) LowRankHiNoise

Storage: T/(m+ n)
12 24 48 96 192

10-1

100

(b) LowRankMedNoise

Storage: T/(m+ n)
12 24 48 96 192

10-1

100

(c) LowRankLowNoise

Storage: T/(m+ n)
12 24 48 96 192

R
el
a
ti
ve

E
rr
o
r
(S

2
)

10-2

10-1

100

(d) PolyDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10-2

10-1

100

(e) PolyDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10-6

10-4

10-2

100

(f) PolyDecayFast

Storage: T/(m+ n)
12 24 48 96 192

R
el
a
ti
ve

E
rr
o
r
(S

2
)

10-4

10-3

10-2

10-1

100

[HMT11]
[UPA16]
[TYUC17b]
[TYUC19]

(g) ExpDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10-8

10-6

10-4

10-2

100

(h) ExpDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10-8

10-6

10-4

10-2

100

(i) ExpDecayFast

Figure 6.2 – [Comparison of reconstruction formulas: Synthetic examples.] (Gaussian maps,
effective rank R = 10, approximation rank r = 10, Schatten 2-norm.) We compare the oracle
error achieved by different fixed-rank approximation methods.

112

6.4. Numerical Experiments

Storage: T/(m+ n)
12 24 48 96 192

R
el
a
ti
v
e
E
rr
o
r
(S

2
)

10-2

10-1

100

[HMT11]
[UPA16]
[TYUC17b]
[TYUC19]

(a) MinTemp (r = 10)

Storage: T/(m+ n)
12 24 48 96 192

10-8

10-6

10-4

10-2

100

(b) StreamVel (r = 10)

Storage: T/(m+ n)
12 24 48

R
el
a
ti
ve

E
rr
o
r
(S

2
)

10-8

10-6

10-4

10-2

(c) MaxCut (r = 1)

Storage: T/(m+ n)
24 48 96 192

10-3

10-2

10-1

100

(d) MaxCut (r = 14)

Storage: T/(m+ n)
12 24 48

R
el
a
ti
ve

E
rr
o
r
(S

2
)

10-8

10-6

10-4

10-2

(e) PhaseRetrieval (r = 1)

Storage: T/(m+ n)
12 24 48 96

10-8

10-6

10-4

10-2

100

(f) PhaseRetrieval (r = 5)

Figure 6.3 – [Comparison of reconstruction formulas: Real data examples.] We compare the
relative error achieved by different fixed-rank approximation methods. [Solid lines] are oracle
errors; [dashed lines] are errors with “natural” parameter choices. (There is no dashed line for
[HMT11].) See Section 5.4 in [TYUC19] for the theoretical guidance on sketch-size parameters.

113

Chapter 6. Low-Rank Matrix Sketching from Streaming Data

Storage: T/n
12 24 48 96 192

R
el
a
ti
v
e
E
rr
o
r
(S

1
)

10-3

10-2

10-1

[TYUC17b, Alg. 9]
Standard (6.37)
[TYUC17a, Alg. 3]

(a) LowRanHiNoise

Storage: T/n
12 24 48 96 192

10-2

10-1

(b) LowRankMedNoise

Storage: T/n
12 24 48 96 192

10-1

100

(c) LowRankLowNoise

Storage: T/n
12 24 48 96 192

R
el
a
ti
ve

E
rr
o
r
(S

1
)

10-3

10-2

10-1

100

(d) PolyDecayFast

Storage: T/n
12 24 48 96 192

10-2

10-1

(e) PolyDecayMed

Storage: T/n
12 24 48 96 192

10-2

10-1

(f) PolyDecaySlow

Storage: T/n
12 24 48 96 192

R
el
a
ti
ve

E
rr
o
r
(S

1
)

10-8

10-6

10-4

10-2

100

(g) ExpDecayFast

Storage: T/n
12 24 48 96 192

10-8

10-6

10-4

10-2

100

(h) ExpDecayMed

Storage: T/n
12 24 48 96 192

10-8

10-6

10-4

10-2

100

(i) ExpDecaySlow

Figure 6.4 – [Comparison of fixed-rank PSD reconstruction formulas: Synthetic examples.]
The data series show the performance of three algorithms for rank-r PSD approximation
with r = 10. [Solid lines] are generated from the Gaussian sketch; [dashed lines] are from
the scrambled subsampled randomized Fourier transform (SSRFT) sketch. See Section 3 in
[TYUC19] for a discussion on the different randomized linear dimension reduction maps.

114

6.4. Numerical Experiments

Storage: T/n
1 2 4 8 16 32 64 128

R
el
a
ti
v
e
E
rr
o
r
(S

1
)

10-8

10-6

10-4

10-2

(a) PhaseRetrieval r = 1

Storage: T/n
8 16 32 64 128

10-8

10-6

10-4

10-2

100

(b) PhaseRetrieval r = 5

Storage: T/n
1 2 4 8 16 32 64 128

R
el
a
ti
ve

E
rr
o
r
(S

1
)

10-8

10-6

10-4

10-2

(c) MaxCut r = 1

Storage: T/n
16 32 64 128 256

10-2

10-1

100

101

102 [TYUC17b, Alg. 9]
Standard (6.37)
[TYUC17a, Alg. 3]

(d) MaxCut r = 14

Figure 6.5 – [Comparison of fixed-rank PSD reconstruction formulas: Real data examples.]
The data series show the performance of three algorithms for rank-r psd approximation.
[Solid lines] are generated from the Gaussian sketch; [dashed lines] are from the scrambled
subsampled randomized Fourier transform (SSRFT) sketch. See Section 3 in [TYUC19] for a
discussion on different randomized linear dimension reduction maps.

115

Chapter 6. Low-Rank Matrix Sketching from Streaming Data

Storage: T/n
10 20 40 80 160 320

R
el
a
ti
ve

E
rr
o
r
(S

1
)

10-6

10-4

10-2

100

(a) ExpDecayFast, R = 5

Storage: T/n
10 20 40 80 160 320

10-12

10-10

10-8

10-6

10-4

10-2

100

(b) ExpDecayMed, R = 5

Storage: T/n
10 20 40 80 160 320

10-12

10-10

10-8

10-6

10-4

10-2

100

(c) ExpDecaySlow, R = 5

Storage: T/n
10 20 40 80 160 320

R
el
a
ti
ve

E
rr
o
r
(S

1
)

10-10

10-8

10-6

10-4

10-2

100

(d) ExpDecayFast, R = 10

Storage: T/n
10 20 40 80 160 320

10-12

10-10

10-8

10-6

10-4

10-2

100

(e) ExpDecayMed, R = 10

Storage: T/n
10 20 40 80 160 320

10-12

10-10

10-8

10-6

10-4

10-2

(f) ExpDecaySlow, R = 10

Storage: T/n
10 20 40 80 160 320

R
el
a
ti
v
e
E
rr
o
r
(S

1
)

10-14

10-12

10-10

10-8

10-6

10-4

(g) ExpDecayFast, R = 20

Storage: T/n
10 20 40 80 160 320

10-14

10-12

10-10

10-8

10-6

10-4

10-2

(h) ExpDecayMed, R = 20

Storage: T/n
10 20 40 80 160 320

10-14

10-12

10-10

10-8

10-6

10-4

10-2

[LLS+17]
[TYUC17a, Alg. 3]

(i) ExpDecaySlow, R = 20

Figure 6.6 – [Numerical stability in implementing Nyström approximation formulas.] The
series are generated by two implementations of the fixed-rank PSD approximation (6.33).
We compare our implementation with another approach [LLS+17] proposed at Eqn. (13)
in [LLS+17]. (Approximation Rank r = 10) [Solid lines] are generated from the Gaussian sketch;
[dashed lines] are from the scrambled subsampled randomized Fourier transform (SSRFT)
sketch. See Section 3 in [TYUC19] for a discussion on different randomized linear dimension
reduction maps.

116

7 CGM with Stochastic Path-Integrated
Differential Estimator

So far, we have discussed the problems where data is readily available. Unfortunately, most

problems in engineering and machine learning contain randomness to some degree. For

instance, the data might be distributed over time and space without being accessible in its

entirety at any given time instance.

Extending our results to the stochastic setting is an important piece of future work. This

chapter aims to identify and present stochastic CGM variants with the best oracle complexity

guarantees as a preliminary study for this direction. The work was done jointly with Suvrit Sra

and Volkan Cevher [YSC19].

Introduction

We study two problem settings in this chapter: The stochastic expectation minimization

template, and the so-called finite-sum setting which is an important special case of the former.

minimize
x∈X

F (x) :=

⎧⎪⎪⎨
⎪⎪⎩

Eξ f (x ,ξ) (expectation)

1

n

n∑
i=1

fi (x) (finite-sum)
(7.1)

�X ⊂Rp is the convex and compact domain;

� F , f and fi are differentiable (and possibly non-convex);

� ξ∼P is a random variable, supported on Ξ⊆Rq .

The expectation objective covers a large number of applications in machine learning and

statistics. The finite-sum template frequently arises in M-estimation and empirical risk mini-

mization problems. Template (7.1) can be solved by using the well-known projected stochastic

gradient descent method (SGD). At each iteration, SGD takes a stochastic gradient step fol-

lowed by a projection to ensure feasibility of the new point. However, in many applications,

projection onto X can impose a computational bottleneck (e.g., projection onto the nuclear

117

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

norm-ball may require a full singular value decomposition), or it can be even intractable (e.g.,

dual structural SVMs [LJJSP13]).

There are many applications for stochastic conditional gradient methods, both in convex

and non-convex settings. This includes low-rank matrix and tensor factorizations, structured

sparse matrix estimation, dictionary learning applications, multi-class classification (consid-

ered as a motivating example in [HL16]), constrained deep learning problems (e.g., [RDLS18]

presents an application in computer vision), and many more.

To this end, we focus on the theoretical complexity of CGM-type algorithms for stochastic and

finite-sum setting, for both convex and non-convex objectives. In the following sections, we

identify and present the tightest results known so far.

Contributions

◦ We propose a class of novel variance-reduced stochastic optimization algorithms, based on

the recent stochastic path-integrated differential estimator technique (SPIDER) [FLLZ18]. By

combining SPIDER with CGM, we introduce SPIDER-FW (FW stands for Frank-Wolfe).

◦ We extend our framework with the conditional gradient sliding (CGS) technique [LZ16], and

propose SPIDER-CGS. This method further reduces the stochastic first-order oracle complexity

of SPIDER-FW in various settings.

◦ For the non-convex setting, we present a new and compact proof for CGS along with its

extension to the stochastic setting. To the best of our knowledge, our analysis is the first to

provide convergence results for CGS in terms of the FW-gap (FW-gap is a widely used measure

for the convergence of CGM-type methods, see Section 7.2). Although CGS does not seem

to provide any improvement upon FWin this setup, we use the proof technique to extend

SPIDER-CGS for the non-convex settings

◦ Finally, we use a learning rate schedule which depends on the global iteration counter, which

in turn enables us to provide induction-free proofs. This approach differs from the majority

of variance reduced FW methods, as they rely on an induction with respect to the outer loop

counter, along with a sufficient improvement condition for each epoch.

Notation. We use the notation [n] = {1,2, . . . ,n}.

7.1 Related Works

CGM literature in the stochastic setting is much younger compared to the projection-based

stochastic gradient methods. We can trace it back to a variant for online learning proposed by

Hazan & Kale [HK12]. More recently, Hazan & Luo [HL16] introduced stochastic FW methods

with and without variance reduction for finite-sum problems. Very recently, Mokhtari et al.

[MHK18] proposed an alternative scheme for the expectation minimization setting.

118

7.2. Preliminaries

CGM variants for non-convex stochastic learning are relatively understudied, with the most

of the known results being due to Reddi et al. [RSPS16]. We discuss more details on the

theoretical aspects of all these CGM variants in Section 7.5.

7.1.1 Conditional Gradient Sliding

Lan & Zhou [LZ16] have recently developed the conditional gradient sliding (CGS) method,

which uses a modified version of the Nesterov’s acceleration scheme [Nes83] where the pro-

jection subproblems are solved inexactly using CGM. In other words, CGS establishes the

convergence of an inexact version of the accelerated gradient method. CGS has superior

first-order oracle complexity compared to CGM, although they have the same lmo complexity.

We discuss more details and variants of CGS in Section 7.5.

7.1.2 Stochastic Path-Integrated Differential Estimator

There has been an extensive research on the variance reduced stochastic optimization meth-

ods, in order to address the needs of big data applications in machine learning. Therefore,

various variance reduction techniques are proposed in the last few years such as SAG [RSB12],

SVRG [JZ13], SAGA [DBLJ14], and more recently SARAH [NLST17], SNVRG [ZXG18], and SPI-

DER [FLLZ18].

Among these approaches, SARAH and SPIDER are closely related, since they use the same

sequential update rule for the gradient estimator v k :

v k =∇ fS (xk)−∇ fS (xk−1)+v k−1. (7.2)

However, SARAH uses this estimator in the classical gradient descent template, while SPIDER

adopts a normalized gradient approach. As a consequence, the results and the analyses differ.

As described by Wang et al. [WJZ+18], the original SPIDER framework has a restrictive step-size

(proportional with the target accuracy ε), which makes the algorithm impractical despite its

theoretical appeal. Fortunately, this problem does not translate into the CGM-type analysis.

7.2 Preliminaries

As we consider a new template in this chapter, we need to renew some of the definitions we

made in Section 1.7, such as the solution set and ε-solution.

Solution. We denote a solution of problem (7.1) by x�. Similarly, F� respectively represents

the optimal value.

x� ∈ argmin
x∈X

F (x) and F� = F (x�). (7.3)

119

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Measure of non-stationarity. For unconstrained non-convex problems, the typical measure

of non-stationarity is the gradient norm, because ‖∇ f (x)‖→ 0 as x converges to a stationary

point. However, this measure cannot be used for constrained problems, because ‖∇ f (x)‖
might not converge to 0 when we approach a solution on the boundary.

Instead, we will use a quantity called FW-gap, which naturally appears in the analysis of

CGM-type algorithms.

G(x) := max
u∈X

〈u −x , −∇F (x)〉. (7.4)

The FW-gap is always non-negative, and it gets 0 if and only if we are looking at a stationary

point or a solution. As a consequence, FW-gap is a meaningful measure of non-stationarity,

and it is widely used for CGM-type algorithms, see [LJ16], [RSPS16] and the references therein.

ε-solution. Due to the fundamental difference in the measure of non-stationarity, we use

different definitions of approximate solutions for convex and non-convex problems:

� If F is convex, we say xε ∈X is an ε-solution if

F (xε)−F� ≤ ε. (7.5)

� If F is non-convex, we say that a random variable xε chosen uniformly from a finite set of

points {x1, x2, . . . , x t } is an ε-solution if

E[G(xε)] ≤ ε. (7.6)

It is common to provide convergence guarantees in expectation for a randomly chosen iterate

in the non-convex setting. See [RSPS16].

Oracle models. We adopt the following black-box oracle model from [RSPS16], to establish a

ground for comparing the convergence speed of different algorithms:

◦ Stochastic first-order oracle (sfo)

For a stochastic function Eξ f (· ,ξ) with ξ∼P , sfo returns a pair (f (x ,ξ′),∇ f (x ,ξ′)) where

ξ′ is an iid sample from P . [NY83]

◦ Incremental first-order oracle (ifo)

For a finite-sum, ifo takes an index i ∈ [n] and returns (fi (x),∇ fi (x)). [AB15]

◦ Linear minimization oracle (lmo)

Well-known oracle of FW-type methods.

Assumptions (finite-sum). For the finite-sum setting, we assume that fi (x) has an averaged

L-Lipschitz gradient:

E‖∇ fi (x)−∇ fi (y)‖2 ≤ L2‖x − y‖2, ∀(x , y) ∈X 2. (7.7)

120

7.3. SPIDER Frank-Wolfe

This also implies F is L-smooth, since

‖∇F (x)−∇F (y)‖2 = ‖E(∇ fi (x)−∇ fi (y))‖2 ≤ E‖∇ fi (x)−∇ fi (y)‖2 ≤ L2‖x − y‖2. (7.8)

Assumptions (expectation). For the expectation minimization, we assume that ∇ f (x ,ξ) is an

unbiased estimate of the gradient:

E∇ f (x ,ξ) =∇F (x). (7.9)

We also assume that the variance is bounded:

E‖∇ f (x ,ξ)−∇F (x)‖2 ≤σ2 <∞, ∀ξ ∈Ξ, ∀x ∈X . (7.10)

And finally, we assume an averaged L-Lipschitz gradient condition, i.e., the following condition

holds ∀ξ ∈Ξ:

E‖∇ f (x ,ξ)−∇ f (y ,ξ)‖2≤L2‖x − y‖2, ∀(x , y) ∈X 2. (7.11)

Similar to the finite-sum, this implies the smoothness of F .

Assumptions (non-convex). Let us denote the initial point by x̄1. Initial suboptimality F (x̄1)−
F� arisess in the convergence bounds for the non-convex setting. For notational convenience,

we denote an upper bound on this term by E :

F (x̄1)−F� ≤ E (7.12)

Suppose that F� is finite, then there exists a finite E which satisfies this bound. This is a direct

consequence of the smoothness of F and the boundedness of domain.

All these assumptions are mild and frequently used in the analysis of stochastic methods and

CGM-type algorithms.

7.3 SPIDER Frank-Wolfe

This section presents SPIDER-FW algorithm and its convergence guarantees under various

problem settings.

Our methods have a double loop structure, hence the iterates and the parameters have two

different iteration counters t and k, such as x t ,k . For notational brevity, we drop the first

counter when there is no ambiguity, such as xk . Throughout, st ,k denotes the global iteration

counter, indexed by the kth iteration of the t th epoch. In our pseudocodes, draw samples

means iid samples for expectation minimization, and uniform selection with replacement in

the finite-sum setting.

121

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Algorithm 7.1 SPIDER Frank-Wolfe

1: Input: x̄1 ∈X
2: for t = 1,2, . . . ,T do
3: Set x1 = x̄ t

4: Draw Qt samples Qt

5: Compute v 1 =∇ fQt (x1)
6: Compute w 1 = lmoX (v 1)
7: Update x2 = x1 +ηt ,1 (w 1 −x1)
8: for k = 2,3, . . . ,Kt do
9: Draw St ,k samples St ,k

10: Compute v k =∇ fSt ,k (xk)−∇ fSt ,k (xk−1)+v k−1

11: Compute w k ∈ lmoX (v k)
12: Update xk+1 = xk +ηt ,k (w k −xk)
13: end for
14: Set x̄ t+1 = xKt +1

15: end for

7.3.1 Convex Finite-Sum

We consider SPIDER-FW with

Kt = 2t−1 for t = 1,2, . . . ,T.

We choose the sampling parameters and the learning rate parameter

St ,k = Kt Qt = [n] ηt ,k = 2

st ,k +1
where st ,k = Kt +k −1.

Theorem 7.1. Consider the convex finite-sum optimization template, and suppose that the

assumptions in Section 7.2 for this template hold. Then, estimate x t ,k of SPIDER-FW with the

parameter setting described above satisfies

E[F (x t ,k)]−F� =O
(

LD2

st ,k

)
(7.13)

Corollary 7.1. The ifo and lmo complexities of SPIDER-FW for achieving ε-solution in this

setting are as follows:

#(ifo) =O(n ln(LD2

ε)+ L2D4

ε2

)
#(lmo) =O(LD2

ε)
(7.14)

122

7.3. SPIDER Frank-Wolfe

7.3.2 Convex Expectation Minimization

We consider SPIDER-FW with

Kt = 2t−1 for t = 1,2, . . . ,T.

We choose the sampling parameters and the learning rate parameter as

St ,k = Kt Qt = � σ2K 2
t

5L2D2 ηt ,k = 2

st ,k +1
where st ,k = Kt +k −1.

Theorem 7.2. Consider the convex expectation minimization template, and suppose that the

assumptions in Section 7.2 for this template hold. Then, estimate x t ,k of SPIDER-FW with the

parameter setting described above satisfies

E[F (x t ,k)]−F� =O
(

LD2

st ,k

)
(7.15)

Corollary 7.2. The sfo and lmo complexities of SPIDER-FW for achieving ε-solution in this

setting are as follows:

#(sfo) =O(σ2D2+L2D4

ε2

)
#(lmo) =O(LD2

ε)
(7.16)

SPIDER-FW has the same asymptotic oracle complexities as SCGS [LZ16] in this setting.

7.3.3 Non-convex Finite-Sum

We consider SPIDER-FW with

Kt = K = �n .

We choose the parameters and the learning rate parameter

St ,k = S = �n Qt = [n] ηt ,k = η= 1
sT,K

where sT,K = T K .

Theorem 7.3. Consider the non-convex finite-sum template, and suppose that the assumptions

in Section 7.2 for this template hold. Denote by xout an iterate x t ,k of SPIDER-FW chosen

uniformly random over all (t ,k) pairs up to (T,K). Then, the following bound on the FW-gap

holds:

E[G(xout)] =O
(E +LD2

sT,K

)
(7.17)

123

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Although it is impractical to store all estimates until the final iteration, all stochastic methods

for the non-convex setting shown in Table 7.1 have this type convergence guarantees (see

[RSPS16]). More stringently, [LJ16] shows convergence of the non-convex FW in terms of

the running best iterate. In the stochastic setting, however, we cannot keep track of the best

estimate, simply because we cannot measure the FW-gap.

Corollary 7.3. The ifo and lmo complexities of SPIDER-FW for achieving ε-solution in the

non-convex finite-sum setting are as follows:

#(ifo) =O
(

n
ε2 (E2+L2D4)

)
#(lmo) =O

(
1
ε2 (E2+L2D4)

) (7.18)

SPIDER-FW has better ifo complexity than state-of-the-art in the non-convex finite-sum

setting, and it improves the dependence on sample size n. See Table 7.1 for comparison.

7.3.4 Non-convex Expectation Minimization

We consider SPIDER-FW with

Kt = K = �σ/ε .

We choose the parameters and the learning rate parameter

St ,k = S = �σ/ε Qt =Q = �4(σ/ε)2 ηt ,k = η= 1
sT,K

where sT,K = T K .

Theorem 7.4. Consider the non-convex expectation minimization template, and suppose that

the assumptions in Section 7.2 for this template hold. Denote by xout an iterate x t ,k of SPIDER-

FW chosen uniformly random over all (t ,k) pairs up to (T,K). Then, the following bound holds:

E[G(xout)] =O
(E +LD2

sT,K

)
+ ε

2
. (7.19)

Corollary 7.4. The sfo and lmo complexities of SPIDER-FW for achieving ε-solution in this

setting are as follows:

#(sfo) =O (σ
ε3 (E2+L2D4)

)
#(lmo) =O (1

ε2 (E2+L2D4)
) (7.20)

Once again, SPIDER-FW enjoys superior sfo complexity while maintaining the same lmo

complexity as its competitors. SVRF was the state-of-the-art with O(ε−10/3), see [RSPS16].

124

7.4. SPIDER Conditional Gradient Sliding

7.4 SPIDER Conditional Gradient Sliding

This section presents SPIDER-CGS (as shown in Algorithm 7.2) and its convergence guarantees

for various settings.

7.4.1 Convex Finite-Sum

We consider SPIDER-CGS with

Kt = �2t/2 for t = 1,2, . . . ,T.

We choose the sampling parameters and the learning rate parameter as

St ,k = 9Kt s2
t ,Kt

Qt = [n] γt ,k = 3

st ,k +2
where st ,k =

t−1∑
τ=1

Kτ+k.

Furthermore, we choose the CndG subsolver parameters as

βt ,k = 3

2
Lγt ,k αt ,k = 2LD2

(st ,k +1)2 .

Theorem 7.5. Consider the convex finite-sum template, and suppose that the assumptions

in Section 7.2 for this template hold. Then, estimate y t ,k of SPIDER-CGS with the parameter

setting described above satisfies

E[F (y t ,k)−F�] =O
(

LD2

s2
t ,k

)
(7.21)

Corollary 7.5. The ifo and lmo complexities of SPIDER-CGS for achieving ε-solution in this

template are as follows:

#(ifo) =O
(
n ln
(LD2

ε

)+ L2D4

ε2

)
#(lmo) =O(LD2

ε)
(7.22)

125

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Algorithm 7.2 SPIDER Conditional Gradient Sliding

1: Input: x̄1 = ȳ 1 ∈X
2: for t = 1,2, . . . ,T do
3: Set x1 = x̄ t and y 1 = ȳ t

4: Update z1 = y 1 +γt ,1 (x1 − y 1)
5: Draw Qt samples Qt

6: Compute v 1 =∇ fQt (z1)
7: x2 = CNDG(x1, v 1,αt ,1,βt ,1)
8: Update y 2 = y 1 +γt ,1 (x2 − y 1)
9: for k = 2,3, . . . ,Kt do

10: Update zk = y k +γt ,k (xk − y k)
11: Draw St ,k samples St ,k

12: Compute v k =∇ fSt ,k (zk)−∇ fSt ,k (zk−1)+v k−1

13: xk+1 = CNDG(xk , v k ,αt ,k ,βt ,k)
14: Update y k+1 = y k +γt ,k (xk+1 − y k)
15: end for
16: Set x̄ t+1 = xKt +1 and ȳ t+1 = y Kt +1

17: end for

————————————————————————————

18: function u+ = CNDG(u, v ,α,β)
19: Set u1 = u
20: for k = 1,2, . . . do
21: Compute w k = lmoX (v +β (uk −u))
22: Evaluate ζk = 〈v +β (uk −u),uk −w k〉
23: if ζk ≤α then
24: break
25: end if
26: Set θk = min{1,ζk /(β‖w k −uk‖2)}
27: Update uk+1 = uk +θk (w k −uk)
28: end for
29: Set u+ = uk

30: end function

126

7.4. SPIDER Conditional Gradient Sliding

7.4.2 Convex Expectation Minimization

We consider SPIDER-CGS with

Kt = �2t/2 for t = 1,2, . . . ,T.

We choose the sampling parameters and the learning rate parameter as

St ,k = 9Kt s2
t ,Kt

Qt = �
σ2s4

t ,Kt

L2D2 γt ,k = 2

st ,k +1
where st ,k =

t−1∑
τ=1

Kτ+k.

Furthermore, we choose the CndG subsolver parameters as

βt ,k = 3

2
Lγt ,k αt ,k = 2LD2

(st ,k +1)2 .

Theorem 7.6. Consider the convex expectation minimization template, and suppose that the

assumptions in Section 7.2 for this template hold. Then, estimate y t ,k of SPIDER-CGS with the

parameter setting described above satisfies

E[F (y t ,k)−F�] =O
(

LD2

s2
t ,k

)
(7.23)

Corollary 7.6. The sfo and lmo complexities of SPIDER-CGS for achieving ε-solution in convex

expectation minimization problems are as follows:

#(sfo) =O
(
σ2D2+L2D4

ε2

)
#(lmo) =O(LD2

ε)
(7.24)

7.4.3 Non-convex Finite-Sum

We consider SPIDER-CGS with

Kt = K = �n .

We choose the sampling parameters and the learning rate parameter as

St ,k = K Qt = [n] γt ,k = γ= 1
sT,K

where sT,K = T K .

Furthermore, we choose the CndG subsolver parameters as

βt ,k = 3

2
Lγ αt ,k = LD2γ.

127

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Theorem 7.7. Consider the non-convex finite-sum template, and suppose that the assumptions

in Section 7.2 for this template hold. Denote by y out an iterate y t ,k of SPIDER-CGS chosen

uniformly random over all (t ,k) pairs up to (T,K). Then, the following bound on the FW-gap

holds:

E[G(y out)] =O
(E +LD2

sT,K

)
(7.25)

Corollary 7.7. The ifo and lmo complexities of SPIDER-CGS for achieving ε-solution in non-

convex finite-sum are

#(ifo) =O
(

n
ε2 (E2+L2D4)

)
#(lmo) =O

(
1
ε2 (E2+L2D4)

) (7.26)

7.4.4 Non-convex Expectation Minimization

We consider SPIDER-CGS with

Kt = K = �σ/ε .

We choose the sampling parameters and the learning rate parameter as

St ,k = K Qt = �4(σ/ε)2 γt ,k = γ= 1
sT,K

where sT,K = T K .

Furthermore, we choose the CndG subsolver parameters as

βt ,k = 3

2
Lγ αt ,k = LD2γ.

Theorem 7.8. Consider the non-convex expectation minimization template, and suppose that

the assumptions in Section 7.2 for this template hold. Denote by y out an iterate y t ,k of SPIDER-

CGS chosen uniformly random over all (t ,k) pairs up to (T,K). Then, the following bound holds:

E[G(y out)] =O
(E +LD2

sT,K

)
+ ε

2
(7.27)

Corollary 7.8. The sfo and lmo complexities of SPIDER-CGS for achieving ε-solution in non-

convex expectation minimization problems are as follows:

#(sfo) =O (σ
ε3 (E2+L2D4)

)
#(lmo) =O (1

ε2 (E2+L2D4)
) (7.28)

128

7.5. Comparison & Discussion

convex non-convex

finite-sum expectation finite-sum expectation

(ifo) (lmo) (sfo) (lmo) (ifo) (lmo) (sfo) (lmo)

FW O(nε−1) O(ε−1) - - O(nε−2) O(ε−2) - -

CGS O(nε−1/2) O(ε−1) - - O(nε−2) O(ε−2) - -

SFW O(ε−3) O(ε−1) O(ε−3) O(ε−1) O(ε−4) O(ε−2) O(ε−4) O(ε−2)

SFW-1 O(ε−3) O(ε−3) O(ε−3) O(ε−3) - - - -

Online-FW O(ε−4) O(ε−2) O(ε−4) O(ε−2) - - - -

SCGS O(ε−2) O(ε−1) O(ε−2) O(ε−1) O(ε−4) O(ε−2) O(ε−4) O(ε−2)

SVRF / SVFW O(n ln(ε−1)+ε−2) O(ε−1) - - O(n +n2/3ε−2) O(ε−2) O(ε−10/3) O(ε−2)

STORC† O(n ln(ε−1)+ε−3/2) O(ε−1) - - - - - -

SPIDER-FW O(n ln(ε−1)+ε−2) O(ε−1) O(ε−2) O(ε−1) O(n1/2ε−2) O(ε−2) O(ε−3) O(ε−2)

SPIDER-CGS O(n ln(ε−1)+ε−2) O(ε−1) O(ε−2) O(ε−1) O(n1/2ε−2) O(ε−2) O(ε−3) O(ε−2)

Table 7.1 – Comparison of conditional gradient methods for stochastic optimization. Our
contribution is highlighted with red font. See Section 7.5 for more details.
FW [FW56, Jag13] , CGS [LZ16] , SFW [HL16, RSPS16] , SFW-1 [MHK18] , Online-FW [HK12] , SCGS [LZ16] , SVRF /

SVFW [HL16, RSPS16] , STORC [HL16]

7.5 Comparison & Discussion

Next, we present an extensive comparison of the theoretical aspects of the CGM-type algo-

rithms. We compile a summary of this comparison in Table 7.1.

7.5.1 Convex Optimization Camp

Batch setting. CGM achieves an ε-solution after O(1/ε) iterations. This iteration complexity

is optimal for a large class of methods that construct the decision variable through convex

combination of lmo outputs [Lan14]. CGS, on the other side, enjoys O(1/

ε) first order

oracle complexity while maintaining the optimal O(1/ε) lmo complexity, by reusing the same

gradients over multiple iterations [LZ16].

Stochastic setting. Hazan & Kale [HK12] propose Online-FW for an online-learning setting.

As mentioned later by Hazan & Luo [HL16], these results can be translated to the stochastic

template, by means of a standard online to stochastic conversion approach. This conversion

yields O(1/ε4) sfo and O(1/ε2) lmo complexities.

Algorithm 7.3 presents the most straightforward extension of CGM for the stochastic setting.

This method, SFW, converges with O(1/k) rate when the sample size Sk =Θ(k2) [HL16]. As a

result, it provably achieves an ε-solution after O(1/ε3) sfo and O(1/ε) lmo calls.

Lan & Zhou introduce an extension of CGS for the stochastic setting (see Section 3 in [LZ16]).

This variant, SCGS, achieves O(1/ε2) sfo complexity, while maintaining the optimal O(1/ε)

lmo complexity. Under strong convexity, the lmo complexity becomes O(1/ε).

129

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Algorithm 7.3 Stochastic Frank-Wolfe

1: Input: x1 ∈X
2: for k = 1,2, . . . ,K do
3: Draw Sk samples Sk

4: Compute w k = lmoX (∇ fSk (xk))
5: Update xk+1 = xk +ηk (w k −xk)
6: end for

Hazan & Luo introduce the stochastic variance reduced Frank-Wolfe method, SVRF [HL16].

This method adopts the variance reduction techniques from [JZ13] and [MZJ13]. SVRF is

designed specifically for the finite-sum setting, and it requires O(n ln(1/ε)) calls of the full

gradient oracle, besides O(1/ε2) ifo and O(1/ε) lmo calls, to get an ε-solution.

In order to improve the ifo complexity of the SVRF, Hazan & Luo [HL16] also design a variant

based on the CGS. This variant, STORC, also requires O(n ln(1/ε)) calls to the full gradient

oracle and O(1/ε) calls to lmo, but it enjoys a reduced number of ifo calls, at the order of

O(1/ε1.5). Compared to the SVRF, however, STORC requires an additional assumption on the

Lipschitz continuity of F . STORC gets better guarantees under strong convexity assumption,

however we omit the details.

Lu & Freund [LF18] propose a stochastic CGM variant with O(1/ε) lmo and O(n +1/ε) ifo

complexity for the convex finite-sum setting. However, the proposed method relies on a

special structure of the objective function, where fi are univariate functions of the fitted value

〈ai , x〉 for some given data sample ai .

All stochastic FW variants we discussed up to know are based on an increasing mini-batch

size. Very recently, Mokhtari et al. [MHK18] have proposed an alternative scheme (SFW-1) for

expectation minimization setting, which requires a single sfo at each iteration. Nevertheless,

SFW-1 has an arguably worse computational complexity compared to SFW, with its O(1/ε3)

calls to sfo and lmo. We emphasize the applications of SFW-1 in submodular maximization,

but this is beyond the scope of this dissertation.

For the convex finite-sum setting, SPIDER-FW and SPIDER-CGS share the same complexities

as SVRF.

7.5.2 Non-convex Optimization Camp

Batch setting. CGM converges to a stationary point, see Section 2.2 in [Ber99] for details. This

early result guarantees an asymptotical convergence, but does not provide any information

about the convergence rate. To our knowledge, the first convergence rate for CGM in the

non-convex setting is shown by Yu et al. [YZS14]. More recently, Lacoste-Julien has presented

a non-asymptotic O(1/

k) rate in FW-gap [LJ16].

130

7.5. Comparison & Discussion

Stochastic setting. The majority of the results known in the literature for this setting are

derived by Reddi et al. in [RSPS16]. The basic stochastic CGM extension, SFW, provably gets

an ε-solution after O(1/ε4) sfo and O(1/ε2) lmo calls. Equipped with a variance reduction

technique, SVRF achieves this accuracy with O(1/ε10/3) sfo and O(1/ε2) lmo complexity. In the

finite-sum setting, the ifo complexity gets O(n +n2/3/ε2). We omit the details of the SAGAFW

approach, also present in [RSPS16], due to a technical flaw in its analysis (while telescoping

Eq.(14) in page 1249 in [RSPS16]).

Qu et al. [QLX18] show the convergence rate for special instances of CGS and SCGS in the

non-convex setting. However, they consider a different convergence criterion based on a

proximal gradient mapping rather than the conventional FW-gap. Consequently, their results

are incomparable with the rest of the literature. For the fact that we are running a projection-

free method, the FW-gap is a more natural choice than the projection/proximal gradient

norm.

We provide a parameter setting and a compact proof for CGS and SCGS in the supplemen-

tal material. Note however this setting simply gets the same guarantees as FW and SFW

respectively. Whether CGS can provide improved oracle complexities compared to FW in the

non-convex setting is an open problem.

For the non-convex setting, SPIDER-FW and SPIDER-CGS have the same oracle complex-

ities, superior to SVRF (which is the state-of-the-art to our knowledge) for finite-sum and

expectation minimization problems.

7.5.3 Results from Concurrent Research

By the time we prepared our manuscript [YSC19], the idea of combining SPIDER with CGM

analysis was not explored yet. However, there are a few concurrent works that appeared online

while our paper was under review. In this section, we discuss these works.

The recent work by Shen et al. [SFZ+19] is very closely related to our approach. They propose a

class of methods based on CGM and various variance reduction techniques for the non-convex

finite-sum setting, including the SPIDER-FW. Besides, they also propose extensions that use

second-order approximations. Finally, they provide simulation studies to compare empirical

performance of different variants. We refer to this paper for a numerical comparison.

Hassani et al. [HKMS19] introduce a novel variance reduced CGM method, but their work

focuses primarily on the submodular maximization. Accordingly, they consider a more general

expectation minimization template (the so-called non-oblivious setting) where the probability

distribution depends on the decision variable x and may change during the optimization

procedure. Therefore, the proposed method requires some further assumptions and modifica-

tions involving computations with the Hessian approximation. Finally, Zhang et al. [ZCM+19]

consider a stochastic CGM approach with SPIDER in the distributed and quantized settings.

131

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Concluding Remarks

We have proposed two novel FW-type methods based on the idea of blending the recent

variance reduction technique SPIDER into FW and CGS frameworks. We have shown that

the resulting methods enjoy superior oracle complexities in various convex and non-convex

optimization templates. Extension of our framework for the strongly convex case is left

open. Developing a well-tuned implementation, including one that incorporates parallel

optimization, is an important piece of future work.

132

7.5. Comparison & Discussion

Appendix: Proofs

Preliminaries

This section presents some known results from the existing literature, key to our analysis, for

the sake of completeness.

The following Lemma from [FLLZ18] provides an error bound for the estimator vk obtained

by the SPIDER approach.

Lemma 7.9 (Lemma 1 from [FLLZ18], more specifically Eqn.(A.3) in its supplements). Suppose

thatSt ,k is a subset that samples St ,k iid realizations from the distributionP . Let the stochastic

estimator ∇ fSt ,k satisfy the averaged L-Lipschitz gradients condition from Section 7.2. Set the

estimator v k as

v k =∇ fSt ,k (xk)−∇ fSt ,k (xk−1)+v k−1. (7.29)

Then, the following bound holds:

E‖∇F (xk)−v k‖2 ≤ L2

St ,k
‖xk −xk−1‖2 +‖∇F (xk−1)−v k−1‖2. (7.30)

The next Lemma draws a well-known bound on the variance in terms of the mini-batch size.

Lemma 7.10 (Eqn.(3.5) from [LZ16], or Lemma 2 from [RSPS16]). Suppose that St ,k is a subset

that samples St ,k iid realizations from the distribution P . Let the stochastic estimator ∇ fSt ,k

satisfy the bounded variance condition from Section 7.2. Then, the following bound holds:

E‖∇ fSt ,k (x)−∇F (x)‖2 ≤ σ2

St ,k
∀x ∈X . (7.31)

Finally, we recall the convergence guarantees for the CndG procedure of CGS-type methods.

Lemma 7.11 (Similar to Theorem 2.2 part (c) from [LZ16], or more generally Theorem 2 from

[Jag13]). Remark that CndG procedure simply applies CGM (with exact line-search) for the

following projection subproblem:

minimize
x∈X

β

2
‖x −u + 1

β
v‖2. (7.32)

The objective function in this subproblem is β-smooth, hence CGM requires at most O(4βD2

α)

iterations to satisfy the convergence criterion.

We refer to the associated references for the proofs.

133

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Non-convex Conditional Gradient Sliding

In this section, we prove convergence of a CGS instance, and derive its oracle complexities in

the non-convex settings. We also extend our results for the stochastic variant SCGS.

Proof of convergence for non-convex CGS

Algorithm 7.4 Conditional Gradient Sliding

1: Input: x1 ∈X
2: Set: α= γLD2, β= γL/2, γ= 1/

K

3: for k = 1,2, . . . ,K do
4: Update zk = y k +γ(xk − y k)
5: xk+1 = CndG(xk ,∇F (zk),α,β)
6: Update y k+1 = y k +γ (xk+1 − y k)
7: end for

Theorem 7.12. Consider the CGS algorithm with the parameters as described in Algorithm 7.4

(in the batch setting). Denote by y out a random iterate y k drawn uniformly random over all

iterates of the CGS. Then, the following bound holds:

E[G(y out)] = E +3LD2

K

(7.33)

Corollary 7.9. The ifo and lmo complexities of CGS for achieving an ε-solution in the non-

convex minimization setting are

#(ifo) =O
(
(E2 +L2D4)

n

ε2

)
#(lmo) =O

(
(E2 +L2D4)

1

ε2

) (7.34)

Proof. We start by the Taylor expansion and smoothness:

F (y k+1) ≤ F (y k)+〈∇F (y k), y k+1 − y k〉+ L

2
‖y k+1 − y k‖2

= F (y k)+γ〈∇F (y k), xk+1 − y k〉+γ2 L

2
‖xk+1 − y k‖2

≤ F (y k)+γ〈∇F (y k), xk+1 − y k〉+γ2 L

2
D2

= F (y k)+γ〈∇F (y k), w k
�− y k〉+γ〈∇F (y k), xk+1 −w k

�〉+γ2 L

2
D2

= F (y k)−γG(y k)+γ〈∇F (y k), xk+1 −w k
�〉+γ2 L

2
D2

(7.35)

where we define w k
� = argmaxx∈X 〈x , −∇F (y k)〉.

134

7.5. Comparison & Discussion

We can equivalently write this inequality as

F (y k+1) ≤ F (y k)−γG(y k)+γ〈∇F (y k)−∇F (zk), xk+1 −w k
�〉

+γ〈∇F (z k), xk+1 − w k
�〉+γ2 L

2
D2 (7.36)

Focus on the last inner-product term

γ〈∇F (zk), xk+1 −w k
�〉 = γ〈∇F (z k)+β(xk+1 −xk), xk+1 −w k

�〉−γβ〈xk+1 −xk , xk+1 −w k
�〉

≤ γα−γβ〈xk+1 −xk , xk+1 −w k
�〉

≤ γα+γβD2 (7.37)

where the first inequality follows from the role of α in CndG, and the second one from the

Cauchy-Schwarz inequality.

Combining these two inequalities, we obtain

F (y k+1) ≤ F (y k)−γG(y k)+γ〈∇F (y k)−∇F (zk), xk+1 −w k
�〉+γα+γβD2 +γ2 L

2
D2

≤ F (y k)−γG(y k)+γD‖∇F (y k)−∇F (zk)‖+γα+γβD2 +γ2 L

2
D2

≤ F (y k)−γG(y k)+γ2LD‖xk − y k‖+γα+γβD2 +γ2 L

2
D2

≤ F (y k)− 1
K
G(y k)+ 3LD2

K

(7.38)

Taking expectation of both sides, rearranging, and summing over all iterations, we obtain

1
K

K∑
k=1

E[G(y k)] ≤ F (x̄1)−E[F (y K)]+
K∑

k=1

3LD2

K
≤ F (x̄1)−F (x�)+3LD2 (7.39)

Hence, by definition of y out, we get

E[G(y out)] ≤ F (x̄1)−F (x�)
K

+ 3LD2

K

= E +3LD2

K

(7.40)

This completes the convergence rate proof.

To get ε-solution, we set the number of iterations Kε such that

E[G(y out)] ≤ E +3LD2

Kε

≤ ε. (7.41)

135

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Hence, we can calculate the lmo complexity by using Lemma 7.11 as

#(lmo) =O
(
Kε

4βD2

α

)
=O
(
(E2 +L2D4)

1

ε2

)
(7.42)

which completes the proof.

Proof of convergence for the non-convex SCGS

Algorithm 7.5 Stochastic Conditional Gradient Sliding

1: Input: x1 ∈X
2: Set: α= γLD2, β= γL/2, γ= 1/

K

3: for k = 1,2, . . . ,K do
4: Update zk = y k +γ(xk − y k)
5: Draw K samples Sk

6: xk+1 = CndG(xk ,∇ fSk (zk),α,β)
7: Update y k+1 = y k +γ (xk+1 − y k)
8: end for

Theorem 7.13. Consider the SCGS algorithm with the parameters as described in Algorithm 7.5.

Assume that the conditions for the expectation minimization from Section 7.2 hold. Denote

by y out a random iterate y k drawn uniformly random over all iterates of the SCGS. Then, the

following bound holds:

E[G(y out)] = E +σD +3LD2

K

(7.43)

Corollary 7.10. The sfo and lmo complexities of SCGS for achieving ε-solution in the non-

convex minimization setting are

#(sfo) =O
(
(E +σD +LD2)4 1

ε4

)
and #(lmo) =O

(
(E +σD +LD2)2 1

ε2

)
(7.44)

Proof. From (7.35), and similar to (7.36) and (7.37), we can show

F (y k+1) ≤ F (y k)−γG(y k)+γ〈∇F (y k)−∇ fSk (zk), xk+1 −w k
�〉+γα+γβD2 +γ2 L

2
D2 (7.45)

where w k
� = argmaxx∈X 〈x , −∇F (y k)〉.

136

7.5. Comparison & Discussion

Focusing on the inner-product term, we get the following bound:

γ〈∇F (y k)−∇ fSk (zk), xk+1 −w k
�〉 ≤ γ‖∇F (y k)−∇ fSk (zk)‖‖xk+1 −w k

�‖
≤ γD‖∇F (y k)−∇ fSk (zk)‖
≤ γD‖∇F (y k)−∇F (zk)‖+γD‖∇F (zk)−∇ fSk (zk)‖
≤ γLD‖y k − zk‖+γD‖∇F (zk)−∇ fSk (zk)‖
= γ2LD‖xk − y k‖+γD‖∇F (zk)−∇ fSk (zk)‖
≤ γ2LD2 +γD‖∇F (zk)−∇ fSk (zk)‖

(7.46)

Substituting back and taking expectations, we obtain

E[F (y k+1)] ≤ E[F (y k)]− 1
K
E[G(y k)]+ D

K
E‖∇F (zk)−∇ fSk (zk)‖+3γ2LD2

= E[F (y k)]− 1
K
E[G(y k)]+ D

K
E‖∇F (zk)−∇ fSk (zk)‖+ 3LD2

K

(7.47)

Now, we use Lemma 7.10 with the Jensen’s inequality to obtain

E[F (y k+1)] ≤ E[F (y k)]− 1
K
E[G(y k)]+ σD +3LD2

K
(7.48)

From here, we follow the same steps as in the proof of CGS and get (7.43).

Then, to achieve an ε-solution, we can calculate sfo complexity as

#(sfo) =
Kε∑

k=1
Kε = K 2

ε =O
(
(E +σD +LD2)4 1

ε4

)
(7.49)

Finally, lmo complexity can be found using Lemma 7.11

#(lmo) =O
(
Kε

4βD2

α

)
=O
(
(E +σD +LD2)2 1

ε2

)
(7.50)

This completes the proof.

Proofs for SPIDER-FW

Lemma 7.14. Suppose that the assumptions listed in Section 7.2 hold. Then, for k = 1, . . . ,Kt ,

we have the following bounds:

Convex finite-sum E‖∇F (xk)−v k‖ ≤ 2LD/Kt (7.51)

Convex expectation E‖∇F (xk)−v k‖ ≤ 3LD/Kt (7.52)

Non-convex finite-sum E‖∇F (xk)−v k‖ ≤ LD/

T K (7.53)

Non-convex expectation E‖∇F (xk)−v k‖ ≤ LD/

T K +ε/2 (7.54)

137

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Proof. From Lemma 7.9, we have the following inequality for k = 2,3, . . . ,Kt :

E‖∇F (xk)−v k‖2 ≤ L2

St ,k
‖xk −xk−1‖2 +‖∇F (xk−1)−v k−1‖2. (7.55)

By definition, ‖xk−1 −xk‖2 = ‖ηt ,k−1(w k−1 −xk−1)‖2 ≤ η2
t ,k−1D2. Hence, we get

E‖∇F (xk)−v k‖2 ≤
η2

t ,k−1L2D2

St ,k
+‖∇F (xk−1)−v k−1‖2. (7.56)

Convex finite-sum:

We take the telescopic sum of (7.56) from i = 2 to k

E‖∇F (xk)−v k‖2 ≤
k∑

i=2

η2
t ,i−1L2D2

St ,i
+ ‖∇F (x1)−v 1‖2︸ ︷︷ ︸

0, since we take full batch

≤ 4L2D2

Kt

k∑
i=2

1

(st ,i−1 +1)2 (7.57)

By definition of st ,k , for any i ≥ 2 we have

st ,i−1 +1 = Kt + i −1 ≥ Kt . (7.58)

Hence, we get

E‖∇F (xk)−v k‖2 ≤ 4L2D2

K 3
t

k∑
i=2

1 ≤ 4L2D2

K 3
t

k ≤ 4L2D2

K 2
t

. (7.59)

By using Jensen’s inequality, we get (7.51).

Convex expectation minimization:

We take the telescopic sum of (7.56) from i = 2 to k

E‖∇F (xk)−v k‖2 ≤ 4L2D2

K 2
t

+‖∇F (x1)−v 1‖2 ≤ 9L2D2

K 2
t

, (7.60)

where the bound on ‖∇F (x1)−v 1‖2 follows from Lemma 7.10 as

‖∇F (x1)−v 1‖2 ≤ σ2

Qt
= 5L2D2

K 2
t

. (7.61)

We get (7.52) by using Jensen’s inequality.

138

7.5. Comparison & Discussion

Non-convex finite-sum:

We take the telescopic sum of (7.56) from i = 2 to k

E‖∇F (xk)−v k‖2 ≤
k∑

i=2

η2
t ,i L2D2

St ,i
+ ‖∇F (x1)−v 1‖2︸ ︷︷ ︸

0, since we take full batch

≤ L2D2

T K 2

k∑
i=2

1 ≤ L2D2

T K
(7.62)

We get (7.53) by using Jensen’s inequality.

Non-convex expectation minimization:

We take the telescopic sum of (7.56) from i = 2 to k

E‖∇F (xk)−v k‖2 ≤ L2D2

T K
+‖∇F (x1)−v 1‖2 ≤ L2D2

T K
+ ε2

4
(7.63)

where the bound on ‖∇F (x1)−v 1‖2 follows from Lemma 7.10 as

‖∇F (x1)−v 1‖2 ≤ σ2

Qt
≤ ε2

4
(7.64)

We get (7.54) by using Jensen’s inequality.

Proof for Theorem 7.1 and Corollary 7.1

We start by the Taylor expansion and smoothness:

F (xk+1) ≤ F (xk)+〈∇F (xk), xk+1 −xk〉+ L

2
‖xk+1 −xk‖2

≤ F (xk)+ηt ,k〈∇F (xk), w k −xk〉+η2
t ,k

L

2
D2

= F (xk)+ηt ,k〈v k , w k −xk〉+ηt ,k〈∇F (xk)−v k , w k −xk〉+η2
t ,k

L

2
D2

(7.65)

By definition of w k , we have

〈v k , w k −xk〉 = min
x∈X

〈v k , x −xk〉 ≤ 〈v k , x�−xk〉 (7.66)

Substituting this inequality back, and rearranging, we get

F (xk+1) ≤ F (xk)+ηt ,k〈v k , x�−xk〉+ηt ,k〈∇F (xk)−v k , w k −xk〉+η2
t ,k

L

2
D2

= F (xk)+ηt ,k〈∇F (xk), x�−xk〉+ηt ,k〈∇F (xk)−v k , w k −x�〉+η2
t ,k

L

2
D2

(7.67)

From convexity of F , we know

〈∇F (xk), x�−xk〉 ≤ F�−F (xk) (7.68)

139

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

and by using Cauchy-Schwarz, we have

〈∇F (xk)−v k , w k −x�〉 ≤ ‖∇F (xk)−v k‖‖w k −x�‖ ≤ ‖∇F (xk)−v k‖D (7.69)

Putting (7.68) and (7.69) back into (7.67), and subtracting F� from both sides, we obtain:

F (xk+1)−F� ≤ (1−ηt ,k)(F (xk)−F�)+ηt ,k D‖∇F (xk)−v k‖+η2
t ,k

L

2
D2 (7.70)

Then, we take the expectation of both sides and use (7.51) to get

E[F (xk+1)]−F� ≤ (1−ηt ,k)(E[F (xk)]−F�)+ηt ,k DE‖∇F (xk)−v k‖+η2
t ,k

L

2
D2

≤ (1−ηt ,k)(E[F (xk)]−F�)+ηt ,k
2LD2

Kt
+η2

t ,k

L

2
D2

(7.71)

Telescopic sum of this inequality over (t ,k) pairs gives

E[F (xk+1)]−F� ≤ ∑
(τ,i)

(
ητ,i

2LD2

Kτ
+η2

τ,i
L

2
D2
) (t ,k)∏

(τ′, j)=(τ,i)
(1−ητ′, j)

+ (E[F (x1,1)]−F�)
∏

(τ,i)
(1−ητ,i) (7.72)

The last term vanishes due to 0 factor (η1,1 = 1). Remark that

(t ,k)∏
(τ′, j)=(τ,i)

(1−ητ′, j) =
Kτ∏

r=i

sτ,r −1

sτ,r +1

t−1∏
τ′=τ+1

Kτ′∏
j=1

sτ′, j −1

sτ′, j +1

k∏
�=1

st ,�−1

st ,�+1
= (sτ,i −1)sτ,i

st ,k (st ,k +1)
(7.73)

Combining these, we get

E[F (xk+1)]−F� ≤ ∑
(τ,i)

(
ητ,i

2LD2

Kτ
+η2

τ,i
L

2
D2
)

(sτ,i −1)sτ,i

st ,k (st ,k +1)
. (7.74)

We focus on the individual terms:

∑
(τ,i)

ητ,i
2LD2

Kτ

(sτ,i −1)sτ,i

st ,k (st ,k +1)
≤ 8LD2

st ,k (st ,k +1)

∑
(τ,i)

1 ≤ 8LD2

st ,k +1
(7.75)

∑
(τ,i)

η2
τ,i

L

2
D2 (sτ,i −1)sτ,i

st ,k (st ,k +1)
≤ 2LD2

st ,k (st ,k +1)

∑
(τ,i)

1 ≤ 2LD2

Kt +k
(7.76)

We proved the convergence rate:

E[F (xk+1)]−F� ≤ 10LD2

st ,k +1
(7.77)

140

7.5. Comparison & Discussion

To get ε-solution, we set the number of outer iterations Tε such that

E[F (x̄Tε)]−F� ≤ 10LD2

KTε

≤ ε. (7.78)

Then, it is sufficiant to choose

Tε = log2

(
10LD2

ε

)
+1. (7.79)

Then, to achieve an ε-solution, we can calculate the ifo complexity as

#(ifo) =
Tε∑

t=1

(
Qt +

Kt∑
k=2

St ,k

)
=

Tε∑
t=1

(
n +

Kt∑
k=2

2t−1

)

≤
Tε∑

t=1

(
n +22(t−1))

=O (nTε+22Tε
)=O

(
n ln

(
LD2

ε

)
+ L2D4

ε2

)
(7.80)

and the lmo complexity as

#(lmo) =
Tε∑

t=1
Kt ≤ 2KTε

= 2Tε =O
(

LD2

ε

)
. (7.81)

Proof for Theorem 7.2 and Corollary 7.2

Proof is similar to that for finifte-sum setting, but we use (7.52) instead of (7.51) at (7.71),

hence the constants change:

E[F (xk+1)]−F� ≤ 14LD2

Kt +k
. (7.82)

To get ε-solution, we set the number of outer iterations Tε as

Tε = log2

(
14LD2

ε

)
+1. (7.83)

Then, to achieve (1−ε) accuracy, we can calculate sfo complexity as

#(sfo) =
Tε∑

t=1

(
Qt +

Kt∑
k=2

St ,k

)
≤

Tε∑
t=1

(
� σ2K 2

t

5L2D2 +K 2
t

)
=O
(
σ2D2

ε2 + L2D4

ε2

)
. (7.84)

The lmo complexity is same as the finite-sum case.

141

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Proof for Theorem 7.3 and Corollary 7.3

We start by the Taylor expansion and smoothness:

F (xk+1) ≤ F (xk)+〈∇F (xk), xk+1 −xk〉+ L

2
‖xk+1 −xk‖2

≤ F (xk)+η〈∇F (xk), w k −xk〉+η2 L

2
D2

= F (xk)+η〈v k , w k −xk〉+η〈∇F (xk)−v k , w k −xk〉+η2 L

2
D2

≤ F (xk)+η〈v k , w k
�−xk〉+η〈∇F (xk)−v k , w k −xk〉+η2 L

2
D2

= F (xk)+η〈∇F (xk), w k
�−xk〉+η〈∇F (xk)−v k , w k −w k

�〉+η2 L

2
D2

≤ F (xk)−ηG(xk)+ηD‖∇F (xk)−v k‖+η2 L

2
D2

(7.85)

where w k
� = argmaxx∈X 〈x , −∇F (xk)〉. Taking expectation of both sides and using (7.53),

E[F (xk+1)] ≤ E[F (xk)]− 1
T K

E[G(xk)]+ 3LD2

2T K
(7.86)

Rearranging, and summing over all (t ,k) pairs up to (T,K), we obtain

1
T K

(T,K)∑
(τ,i)

E[G(xτ,i)] ≤ F (x̄1)−E[F (xT,K)]+
(T,K)∑
(τ,i)

3LD2

2T K
≤ F (x̄1)−F (x�)+ 3LD2

2
. (7.87)

Hence, by definition of xout, we have

E[G(xout)] ≤ F (x̄1)−F (x�)
T K

+ 3LD2

2

T K
= 2E +3LD2

2

T K
(7.88)

This completes the convergence rate proof.

To get ε-solution, we set the number of outer iterations Tε such that

E[G(xout)] ≤ 2E +3LD2

2

TεK
≤ ε. (7.89)

Hence, it suffices to choose

Tε =
(

2E +3LD2

2ε

K

)2
= (2E +3LD2)2

4ε2K
. (7.90)

142

7.5. Comparison & Discussion

Then, to achieve and ε-solution, we can calculate ifo complexity as

#(ifo) =
Tε∑

t=1

(
Qt +

K∑
k=2

St ,k

)
=

Tε∑
t=1

(
n +

K∑
k=2

K

)
≤ (n +K 2)Tε ≤

n
3(2E +3LD2)2

4ε2

=O
(
(E2 +L2D4)

n

ε2

) (7.91)

and the lmo complexity as

#(lmo) =
Tε∑

t=1
K = K Tε = (2E +3LD2)2

4ε2 =O
(
(E2 +L2D4)

1

ε2

)
(7.92)

Proof for Theorem 7.4 and Corollary 7.4

Proof is similar to that for non-convex finifte-sum setting, but we use (7.54) instead of (7.53)

at (7.85), and we get

E[F (xk+1)] ≤ E[F (xk)]− 1
T K

E[G(xk)]+ 3LD2

2T K
+ ε

2

T K
(7.93)

Rearranging, and summing over all (t ,k) pairs up to (T,K), we get

1
T K

(T,K)∑
(τ,i)

E[G(xτ,i)] ≤ F (x̄1)−E[F (xT,K)]+
(T,K)∑
(τ,i)

(
3LD2

2T K
+ ε

2

T K

)

≤ F (x̄1)−F (x�)+ 3LD2

2
+ ε

T K

2
.

(7.94)

Hence, by definition of xout, we have

E[G(xout)] ≤ F (x̄1)−F (x�)
T K

+ 3LD2

2

T K
+ ε

2
= 2E +3LD2

2

T K
+ ε

2
(7.95)

This completes the convergence proof.

To get ε-solution, we set the number of outer iterations Tε such that

E[G(xout)] ≤ 2E +3LD2

2

TεK
+ ε

2
≤ ε. (7.96)

Then, to achieve an ε-solution, we can calculate sfo complexity as

#(sfo) =
Tε∑

t=1

(
Qt +

K∑
k=2

St ,k

)
=

Tε∑
t=1

(
n +

K∑
k=2

K

)
≤ (�4(σ/ε)2 + (�σ/ε)2)Tε

=O
(
(E2 +L2D4)

σ

ε3

) (7.97)

Finally, lmo complexity is same as the non-convex finite-sum case.

143

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Proofs for SPIDER-CGS

Lemma 7.15. Suppose that the assumptions listed in Section 7.2 hold. Then, for k = 1, . . . ,Kt ,

we have the following bounds:

Convex finite-sum E‖∇F (zk)−v k‖ ≤ 2

2LD/(st ,k +1)2 (7.98)

Convex expectation E‖∇F (zk)−v k‖ ≤ 3LD/(st ,k +1)2 (7.99)

Non-convex finite-sum E‖∇F (zk)−v k‖ ≤ 2LD/

T K (7.100)

Non-convex expectation E‖∇F (zk)−v k‖ ≤ 2LD/

T K +ε/2 (7.101)

Proof. From Lemma 7.9, we have the following inequality for all k = 2, . . . ,Kt :

E‖∇F (zk)−v k‖2 ≤ L2

St ,k
‖zk − zk−1‖2 +‖∇F (zk−1)−v k−1‖2. (7.102)

By definition,

z k = y k +γt ,k (xk − y k)

= y k−1 +γt ,k−1(xk − y k−1)+γt ,k (xk − y k)

& zk−1 = y k−1 +γt ,k−1(xk−1 − y k−1)

=⇒ ‖zk − zk−1‖2 = ‖γt ,k−1(xk −xk−1)+γt ,k (xk − y k)‖2

= γ2
t ,k−1‖xk −xk−1‖2 +γ2

t ,k‖xk − y k‖2 +2γt ,k−1γt ,k〈xk − y k , xk −xk−1〉
≤ γ2

t ,k−1‖xk −xk−1‖2 +γ2
t ,k−1‖xk − y k‖2 +2γ2

t ,k−1‖xk − y k‖‖xk −xk−1‖
≤ 4γ2

t ,k−1D2

(7.103)

Substituting into (7.102), we get

E‖∇F (zk)−v k‖2 ≤
4γ2

t ,k−1L2D2

St ,k
+‖∇F (zk−1)−v k−1‖2. (7.104)

Convex finite-sum:

We take the telescopic sum of (7.104) from i = 2 to k

E‖∇F (zk)−v k‖2 ≤
k∑

i=2

4γ2
t ,i−1L2D2

St ,i
+ ‖∇F (z 1)−v 1‖2︸ ︷︷ ︸

0, since we take full batch

= 4L2D2

9Kt (st ,Kt +1)2

k∑
i=2

9

(st ,i−1 +2)2 = 4L2D2

Kt (st ,Kt +1)2

k∑
i=2

1

(st ,i +1)2

(7.105)

144

7.5. Comparison & Discussion

Clearly, st ,i +1 ≥ st ,Kt +1
2

for all 2 ≤ i ≤ Kt . Hence, we get

E‖∇F (zk)−v k‖2 ≤ 8L2D2

Kt (st ,Kt +1)2

k∑
i=2

1

(st ,Kt +1)2 ≤ 8L2D2

(st ,k +1)4
(7.106)

We get (7.98) by using Jensen’s inequality.

Convex expectation minimization:

We take the telescopic sum of (7.104) from i = 2 to k

E‖∇F (zk)−v k‖2 ≤ 8L2D2

(st ,k +1)4 +‖∇F (z1)−v 1‖2 ≤ 8L2D2

(st ,k +1)4 + σ2

Qt
≤ 9L2D2

(st ,k +1)4 (7.107)

where the bound on ‖∇F (x1)−v 1‖2 follows from Lemma 7.10.

We get (7.99) by using Jensen’s inequality.

Non-convex finite-sum:

We take the telescopic sum of (7.104) from i = 2 to k

E‖∇F (zk)−v k‖2 ≤
k∑

i=2

4γ2L2D2

S
+ ‖∇F (z 1)−v 1‖2︸ ︷︷ ︸

0, since we take full batch

≤
k∑

i=2

4L2D2

T K 2 ≤ 4L2D2

T K
(7.108)

We get (7.100) by using Jensen’s inequality.

Non-convex expectation minimization:

We take the telescopic sum of (7.104) from i = 2 to k

E‖∇F (zk)−v k‖2 ≤
k∑

i=2

4γ2L2D2

S
+‖∇F (z1)−v 1‖2 ≤ 4L2D2

T K
+ ε2

4
(7.109)

where the bound on ‖∇F (z1)−v 1‖2 follows from Lemma 7.10. We get (7.101) by using Jensen’s

inequality.

145

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Proof for Theorem 7.5 and Corollary 7.5

We start by Taylor expansion and smoothness:

F (y k+1) ≤ F (z k)+〈∇F (zk), y k+1 − zk〉+ L

2
‖y k+1 − zk‖2

= F (z k)+〈∇F (zk), y k − zk〉+γt ,k〈∇F (zk), xk+1 −x�〉

+γt ,k〈∇F (zk), x�− y k〉+
Lγ2

t ,k

2
‖xk+1 −xk‖2

= (1−γt ,k)(F (zk)+〈∇F (z k), y k − zk〉)+γt ,k (F (zk)+〈∇F (zk), x�− zk〉)

+γt ,k〈∇F (z k), xk+1 −x�〉+
Lγ2

t ,k

2
‖xk+1 −xk‖2

(7.110)

From the convexity of F , we have

F (y k) ≥ F (z k)+〈∇F (z k), y k − zk〉 and F� ≥ F (z k)+〈∇F (zk), x�− zk〉 (7.111)

Hence, we get

F (y k+1) ≤ (1−γt ,k)F (y k)+γt ,k F�+γt ,k〈∇F (zk), xk+1 −xk〉+
Lγ2

t ,k

2
‖xk+1 −xk‖2

= (1−γt ,k)F (y k)+γt ,k F�+γt ,k〈v k +βt ,k (xk+1 −xk), xk+1 −x�〉
−γt ,kβt ,k〈xk+1 −xk , xk+1 −x�〉+γt ,k〈∇F (zk)−v k , xk+1 −x�〉

+
Lγ2

t ,k

2
‖xk+1 −xk‖2

≤ (1−γt ,k)F (y k)+γt ,k F�+γt ,kαt ,k −γt ,kβt ,k〈xk+1 −xk , xk+1 −x�〉

+γt ,k〈∇F (zk)−v k , xk+1 −x�〉+
Lγ2

t ,k

2
‖xk+1 −xk‖2

= (1−γt ,k)F (y k)+γt ,k F�+γt ,kαt ,k + βt ,kγt ,k

2

(
‖xk −x�‖2 −‖xk+1 −x�‖2

)
+γt ,k

(
Lγt ,k −βt ,k

2
‖xk+1 −xk‖2 +〈∇F (zk)−v k , xk+1 −x�〉

)

≤ (1−γt ,k)F (y k)−γt ,k F�+γt ,kαt ,k + βt ,kγt ,k

2

(
‖xk −x�‖2 −‖xk+1 −x�‖2

)
+γt ,k D‖∇F (zk)−v k‖

(7.112)

where the second inequality follows from the definition of αt ,k , and the last inequality from

the fact that βt ,k ≥ Lγt ,k together with Cauchy-Schwarz inequality. Then, we subtract F� from

both sides, take the expectation of both sides, and compute the telescopic sum over (t ,k). The

first term vanishes due to the (1−γ1,1) = 0 factor.

146

7.5. Comparison & Discussion

Denoting by Et ,k := E‖xk −x�‖2, and Et ,k+ := E‖xk+1 −x�‖2, we get

E[F (y k+1)−F�]

≤ ∑
(τ,i)

[
γτ,iατ,i +

βτ,iγτ,i

2

(Eτ,i −Eτ,i+
)+γt ,k DE‖∇F (zk)−v k‖

] (t ,k)∏
(τ′, j)=(τ,i)

(1−γτ′, j).
(7.113)

Remark that

(t ,k)∏
(τ′, j)=(τ,i)

(1−γτ′, j) =
Kτ∏

r=i

sτ,r −1

sτ,r +2

t−1∏
τ′=τ+1

Kτ′∏
j=1

sτ′, j −1

sτ′, j +2

k∏
�=1

st ,�−1

st ,�+2
= (sτ,i −1)sτ,i (sτ,i +1)

st ,k (st ,k +1)(st ,k +2)
(7.114)

Now we focus on the individual terms

∑
(τ,i)

γτ,iατ,i
(sτ,i −1)sτ,i (sτ,i +1)

st ,k (st ,k +1)(st ,k +2)
≤ ∑

(τ,i)

3

sτ,i +2

2LD2

s2
τ,i

(sτ,i −1)sτ,i (sτ,i +1)

st ,k (st ,k +1)(st ,k +2)
(7.115)

Now, show that

∑
(τ,i)

βτ,iγτ,i

2

(Eτ,i −Eτ,i+
) (t ,k)∏

(τ′, j)=(τ,i)
(1−γτ′, j)

= ∑
(τ,i)

27L

4

1

(sτ,i +2)2

(sτ,i −1)sτ,i (sτ,i +1)

st ,k (st ,k +1)(st ,k +2)

(Eτ,i −Eτ,i+
)

= 27L

4st ,k (st ,k +1)(st ,k +2)

∑
(τ,i)

(sτ,i −1)sτ,i (sτ,i +1)

(sτ,i +2)2

(Eτ,i −Eτ,i+
)

(7.116)

Remark that

st ,k∑
sτ,i =1

(sτ,i −1)sτ,i (sτ,i +1)

(sτ,i +2)2 Eτ,i −
st ,k∑

sτ,i =1

(sτ,i −1)sτ,i (sτ,i +1)

(sτ,i +2)2 Eτ,i+

=
st ,k−1∑
sτ,i =1

sτ,i (sτ,i +1)(sτ,i +2)

(sτ,i +3)2 Eτ,i+ −
st ,k∑

sτ,i =1

(sτ,i −1)sτ,i (sτ,i +1)

(sτ,i +2)2 Eτ,i+

≤
st ,k∑

sτ,i =1

sτ,i (sτ,i +1)(sτ,i +2)

(sτ,i +3)2 Eτ,i+ −
st ,k∑

sτ,i =1

(sτ,i −1)sτ,i (sτ,i +1)

(sτ,i +2)2 Eτ,i+

≤ D2
st ,k∑

sτ,i =1

(
sτ,i (sτ,i +1)(sτ,i +2)

(sτ,i +3)2 − (sτ,i −1)sτ,i (sτ,i +1)

(sτ,i +2)2

)

≤ D2st ,k

(7.117)

147

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Hence, we get

∑
(τ,i)

βτ,iγτ,i

2

(Eτ,i −Eτ,i+
) (t ,k)∏

(τ′, j)=(τ,i)
(1−γτ′, j) ≤ 27LD2

4(st ,k +1)(st ,k +2)
(7.118)

Finally, we focus on the last term:

∑
(τ,i)

γτ,i DE‖∇F (zτ,i)−vτ,i‖ (sτ,i −1)sτ,i (sτ,i +1)

st ,k (st ,k +1)(st ,k +2)

≤ LD2
st ,k∑

sτ,i =1

6

2

(sτ,i +2)(sτ,i +1)2

(sτ,i −1)sτ,i (sτ,i +1)

st ,k (st ,k +1)(st ,k +2)

≤ 6

2LD2

(st ,k +1)(st ,k +2)

(7.119)

Combining these bounds, we obtain

E[F (y k+1)−F�] =O
(

LD2

(st ,k +1)(st ,k +2)

)
(7.120)

Easy to verify by induction that Kt ≤ st ,k ≤ 4Kt . Hence, st ,k =Θ(Kt) =Θ(2t/2).

Hence, E[F (y k+1)−F�] =O(LD22−t). Therefore, to get ε-solution, we set Tε as

Tε =Θ

(
log2

(
LD2

ε

))
(7.121)

Then, to achieve this accuracy, we can calculate ifo complexity as

#(ifo) =
Tε∑

t=1

(
Qt +

Kt∑
k=2

St ,k

)
=O
(

Tε∑
t=1

(
n +

Kt∑
k=2

23t/2

))
=O
(

nTε+
Tε∑

t=1
22t

)

=O (nTε+22Tε
)

=O
(
n ln

(
LD2

ε

)
+ L2D4

ε2

) (7.122)

Finally, we can find lmo complexity by using Lemma 7.11:

#(lmo) =O
(

Tε∑
t=1

Kt∑
k=1

4βt ,k D2

αt ,k

)
=O
(

Tε∑
t=1

K 2
t

)
=O (2Tε

)=O
(

LD2

ε

)
(7.123)

148

7.5. Comparison & Discussion

Proof for Theorem 7.6 and Corollary 7.6

Similar to the proof of finifte-sum setting, but we use (7.99) instead of (7.98), hence the

constants at (7.119) change.

To get ε-solution, we can calculate sfo complexity as

#(sfo) =
Tε∑

t=1

(
Qt +

Kt∑
k=2

St ,k

)
=O
(

Tε∑
t=1

(
σ2K 4

t

L2D2 +
Kt∑

k=2
23t/2

))
=O
((

σ2

L2D2 +1

) Tε∑
t=1

22t

)

=O
((

σ2

L2D2 +1
)

2Tε

)
=O
(
σ2D2 +L2D4

ε2

)
(7.124)

The lmo complexity is same as the convex finite-sum case.

Proof for Theorem 7.7 and Corollary 7.7

We start by (7.35), and rearrange it to obtain

F (y k+1) ≤ F (y k)−γG(y k)+γ〈∇F (y k)−v k , xk+1−w k
�〉+γ〈v k , xk+1−w k

�〉+γ2 L

2
D2 (7.125)

where w k
� = argmaxx∈X 〈x , −∇F (y k)〉.

Focus on the last inner-product term

γ〈v k , xk+1 −w k
�〉 = γ〈v k +β(xk+1 −xk), xk+1 −w k

�〉−γβ〈xk+1 −xk , xk+1 −w k
�〉

≤ γα−γβ〈xk+1 −xk , xk+1 −w k
�〉

≤ γα+γβD2

(7.126)

The first inequality follows from the role of α in CndG, and the second from Cauchy-Schwarz.

Now we use

γ〈∇F (y k)−v k , xk+1 −w k
�〉 ≤ γD‖∇F (y k)−v k‖

≤ γD‖∇F (y k)−∇F (zk)‖+γD‖∇F (zk)−v k‖
≤ γLD‖y k − zk‖+γD‖∇F (zk)−v k‖
= γ2LD‖xk − y k‖+γD‖∇F (zk)−v k‖
= γ2LD2 +γD‖∇F (zk)−v k‖

(7.127)

Combining these bounds, we obtain

F (y k+1) ≤ F (y k)−γG(y k)+γD‖∇F (zk)−v k‖+γα+γβD2 + 3

2
γ2LD2

= F (y k)− 1
T K

G(y k)+ D
T K

‖∇F (zk)−v k‖+ 4LD2

T K

(7.128)

149

Chapter 7. CGM with Stochastic Path-Integrated Differential Estimator

Now we take expectation of both sides and use (7.100), and we obtain

E[F (y k+1)] ≤ E[F (y k)]− 1
T K

E[G(y k)]+ 6LD2

T K
(7.129)

Rearranging, and summing over all (t ,k) pairs up to (T,K), we get

1
T K

∑
(τ,i)

E[G(yτ,i)] ≤ F (x̄1)−F (x�)+6LD2 (7.130)

Hence, by definition of y out, we get

E[G(y out)] ≤ E +6LD2

T K

(7.131)

This completes the convergence rate proof.

Proof for the ifo complexity follows similarly to the one for SPIDER-FW.

To show lmo complexity, we use

#(lmo) =O
(

Tε∑
t=1

K∑
k=1

4βD2

α

)
=O
(

Tε∑
t=1

K∑
k=1

6

)
=O (6K Tε) =O

(
(E2 +L2D4)

1

ε2

)
(7.132)

Proof for Theorem 7.8 and Corollary 7.8

Follows similarly as in the non-convex finite-sum case, but we use (7.101) instead of (7.100),

hence we have additional ε/2 term on the right-hand-side of (7.131). sfo complexity follows

similarly as in SPIDER-FW. lmo complexity is the same as the finite-sum case.

150

8 Conclusion & Future Directions

This chapter presents an overview of our main contributions along with some future directions.

In this dissertation, we considered a fundamental class of constrained convex optimization

problem (1.1) with broad applications. In particular, we focused on an SDP formulation (1.4),

which can be written as a special instance of this problem template. As we described in

Chapter 1, storing the matrix decision variable is the critical bottleneck that prevents us from

solving many important applications of this SDP formulation at scale.

• In Chapter 2, we introduced a novel convex optimization paradigm for designing algorithms

with optimal storage cost, which constructs an approximate solution with rigorous guarantees

to large-scale problems with structured solutions. The two key ingredients are to maintain only

a sketch of the large decision variable and to use algorithmic templates that are compatible

with these sketches. A natural target for this approach is the class of matrix optimization

problems with low-rank solutions. We presented the first storage-optimal algorithm for this

problem class, SketchyCGM, which modifies the standard conditional gradient method (CGM)

to work with sketches. In spite of recent enthusiasm for nonconvex heuristics, our research

justifies that the convex optimization did not reach yet its limits of scalability and that it still

remains as a viable option at large-scale.

Based on this paradigm, our recent research is focused on designing a practical convex op-

timization solver for a broad set of semidefinite programming (SDP) instances. Some main

ingredients for this design are presented in the subsequent sections. The detailed analysis

and implementation of the resulting method for this specific template, with potent numerical

demonstrations in cutting-edge applications, is left for future work.

Our paradigm is beyond low-rank optimization. As an immediate future direction, we may

consider convex optimization problems with other types of structured solutions. There are

different dimensionality reduction techniques to store and retrieve structured objects. One

example in this line is designing a storage-optimal convex optimization algorithm for problems

with sparse or group-sparse solutions, with potential applications in optimal transport.

151

Chapter 8. Conclusion & Future Directions

• In Chapter 3, we proposed and studied new primal-dual optimization algorithms for solving

a generic constrained convex optimization template, which covers our model SDP formulation

(1.4) as a special instance. The proposed methods, UPD and its accelerated variant AUPD,

have several key advantages compared to the existing primal-dual methods in the literature.

As opposed to the smoothing (of the dual problem), we preserve the original structure of the

dual problem. Then, we apply a (sub)gradient method to this dual problem, and recover the

primal variable as a weighted sum of the solutions to the primal subproblem. This primal

averaging sequence is crucial for our storage-optimal optimization paradigm. Moreover, our

algorithms are adaptive to the unknown smoothness level (Hölder-smoothness order) of the

dual problem, as our analysis leads to optimal iteration complexity guarantees in the sense of

first-order black-box models [NY83].

Unfortunately, these algorithms have some substantial limitations at the current stage. Our

algorithms borrow a line-search strategy introduced by Nesterov [Nes15] for his universal

gradient methods in the unconstrained setting, to achieve adaptivity in the dual problem.

Unfortunately, this line-search procedure, hence also our algorithms explicitly depend on

the target accuracy input ε, and the methods only guarantee convergence towards an ε-

suboptimal set. As a consequence, it is difficult to tune these algorithms without a rough

knowledge of the optimal value. Also note that oracle errors can cause these algorithms to get

stuck in the line-search procedure.

The literature on adaptive optimization has recently evolved, following the increased interest

in stochastic and online learning settings. AdaGrad and its variants attempt to adapt the

learning rate using an accumulation of the gradient norms. These developments in the

stochastic setting can be translated to the deterministic setting via some online to offline

conversion mechanisms to design first-order algorithms that adapt to the smoothness, see

[CBCG04, Lev17]. In this line, we introduced an accelerated adaptive method [LYC18]. Our

method, AcceleGrad, can be viewed as an accelerated variant of AdaGrad in the deterministic

setting. In contrast to AdaGrad, AcceleGrad achieves optimal rates for both smooth and

non-smooth problems. It also has convergence guarantees in the stochastic setting.

These results, so far, remained in the unconstrained optimization setting. An important future

direction with significant potential impact is extending these results to the constrained setting.

We might expect the resulting algorithms to maintain the key benefits of our universal primal-

dual convex optimization framework, while addressing most of its seeming limitations. In

various problem instances, we observed significant empirical improvement with a heuristic

primal-dual variant of AcceleGrad, against UPD and AUPD.

• In Chapter 4, we presented an extension of CGM for solving a generic composite convex

minimization template over a convex and compact domain. Our method (HCGM) combines

the ideas of smoothing (of the primal problem) and homotopy for the smoothness parameter

under the standard CGM template. By means of set-indicator functions, HCGM can also be

applied to the problems with affine constraints, and in particular to our model SDP formu-

152

lation (1.4). In this case, we can view HCGM as a quadratic penalty method. We proved that

the method achieves an optimal O(1/

t) convergence rate, which holds even when the linear

minimization oracles are noisy with additive or multiplicative errors.

The numerical evaluation of HCGM for the clustering SDP (in Section 4.4.1) also reveals an

important phenomenon that supports our claims about trading accuracy for scalability. It is

clear from Figure 4.1 that the overall error after rounding (the misclassification rate in this

case) saturates after a low-to-medium accuracy level (that we achieved after ∼1000 iterations

in this example), and solving the optimization problem beyond this accuracy does not lead to

any further useful information. This observation can be generalized for the majority of the

SDP formulations obtained as the relaxation of a combinatorial decision problem, excluding

the examples where the empirical study suggests that the relaxation is exact.

• The slow empirical convergence of HCGM strains its practical impact in solving large-scale

SDP instances. In Chapter 5, we address this issue by introducing a natural extension of

HCGM, going from quadratic penalty to an augmented Lagrangian formulation. The new

method, CGAL, retains the strong theoretical guarantees of HCGM, but it exhibits significantly

superior empirical performance. This improvement is due to the dual updates, which can be

viewed as shifting the center point of the quadratic penalty in a favorable direction adaptively.

In a selection of numerical test setups with SDP formulations, we observed empirical O(1/t)

convergence rate for CGAL, compared against O(1/

t) rate of HCGM.

An immediate future direction is finding a theoretical explanation for this performance im-

provement, beyond an educated intuition. Remark that we empirically observed O(1/t)

convergence rate for CGAL in various numerical experiments. It might be possible to prove

this rate, maybe under more stringent assumptions such as a quadratic growth condition.

HCGM and CGAL preserve the key features of the standard CGM, such as the cheap linear

minimization oracles and the structured updates on the decision variable. As a result, they are

also amenable to sketching for storage-optimal extensions. Considering its superior empirical

performance; CGAL, in particular, might be the key ingredient for the next phase of large-scale

SDP solvers.

• Our storage-optimal optimization paradigm is based on a sketching model to truncate the

storage costs. Hence, designing practical sketching algorithms for low-rank approximation is

a fundamental aspect of our research. In Chapter 6, we summarized our contributions.

Based on the specific role of sketching in our approach, we focus on minimizing the sketch size.

Moreover, our sketching algorithms are specifically intended for environments where the data

matrix is presented as a stream of linear updates. Our aim is to address questions that arise

when using sketching algorithms in practice, that had been often neglected in the literature.

Unlike the majority of the existing works, our algorithms are accompanied by informative

error bounds, which provide guidance when we set the sketch-size parameters. In addition,

we also address the numerical stability problems.

153

Chapter 8. Conclusion & Future Directions

We designed a benchmark for numerical evaluation of streaming low-rank matrix approxi-

mation, with synthetic and real datasets. We presented extensive numerical experiments to

compare our methods and the other methods in the literature, in order to identify methods

that produce the best approximations in practice, under various scenarios. We implemented

our methods as well as the other methods that we consider in these experiments, treating the

sketch as an abstract data type using ideas from object-oriented programming. Beyond opti-

mization, we also presented concrete applications on “on-the-fly compression” of large-scale

scientific data. We omit most of these details in this dissertation for brevity, we refer to our

original manuscripts for these details. We published our code online, which is available at

“https://github.com/alpyurtsever/SKETCH” as a software toolbox for MATLAB. This toolbox

also includes various dimensionality reduction maps, optional a posteriori error estimator

that allows the user to validate the quality of the reconstructed matrix, as well as the codes to

regenerate the results of our numerical experiments.

See the follow-up paper [SGL+19] of our collaborators on an algorithm for low-rank Tucker

approximation of a tensor from streaming data as an extension in this line of research.

• Lastly, in Chapter 7, we studied the theoretical complexity of the CGM variants for stochastic

expectation minimization and finite-sum formulations, in order to identify and present the

tightest results known so far. In this chapter, we also introduced a class of novel variance-

reduced stochastic CGM variants, based on the recent stochastic path-integrated differential

estimator (SPIDER) technique [FLLZ18].

An interesting future direction is to extend these algorithms for solving problems with affine

constraints, in a similar way to HCGM or CGAL. In this line, we have already taken an initial

step in our recent work [LYFC19], by combining our homotopy smoothing approach with a

stochastic CGM framework by Mokhtari et al. [MHK18], and demonstrated the application of

the proposed method for solving some basic stochastic SDP problems. While the guaranteed

rate of our method is not very fast, this is the first stochastic CGM variant for solving problems

with affine constraints. We can expect to achieve better rates using our SPIDER-CGM approach

as the base method. Developing a well-tuned implementation is another important piece of

future work.

SDP formulations are key in signal processing, machine learning, and other engineering ap-

plications. Most aspects of my research are immediately applicable in addition to their long

term promise. By greatly enhancing the scalability of optimization methods for solving SDP

problems, we can potentially unlock new results in important scientific applications.

154

Bibliography

[AB15] A. Agarwal and L. Bottou. A lower bound for the optimization of finite sums. In

Proc. 32nd Int. Conf. Machine Learning, 2015.

[Ali91] F. Alizadeh. Combinatorial optimization with interior point methods and semi-

definite matrices. PhD thesis, University of Minnesota, 1991.

[Ali93] F. Alizadeh. Interior point methods in semidefinite programming with applica-

tions to combinatorial optimization. SIAM J. Optim., 5(1):13–51, 1993.

[ARR14] A. Ahmed, B. Recht, and J. Romberg. Blind deconvolution using convex program-

ming. IEEE Trans. on Inf. Theory, 60(3):1711–1732, 2014.

[AT06] A. Auslender and M. Teboulle. Interior gradient and proximal methods for convex

and conic optimization. SIAM J. Optim., 16(3):697–725, 2006.

[Bac15] F. Bach. Duality between subgradient and conditional gradient methods. SIAM J.

Optim., 25(1):115–129, 2015.

[Bar95] A. Barvinok. Problems of distance geometry and convex properties of quadratic

maps. Discrete & Computational Geometry, 13(2):189–202, 1995.

[BBV16] A.S. Bandeira, N. Boumal, and V. Voroninski. On the low-rank approach for

semidefinite programs arising in synchronization and community detection. In

29th Annual Conference on Learning Theory, 2016.

[BC11] Heinz H. Bauschke and Patrick L. Combettes. Convex analysis and monotone

operator thoery in Hilbert spaces. Springer, New York, NY, 2011.

[Ber76] D. P. Bertsekas. On penalty and multiplier methods for constrained minimization.

SIAM J. Control Optim., 14(2):216–235, 1976.

[Ber99] D. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999.

[BKS16] S. Bhojanapalli, A. Kyrillidis, and S. Sanghavi. Dropping convexity for faster

semi-definite optimization. J. Mach. Learn. Res., 49:1–53, 2016.

155

Bibliography

[BM03] S. Burer and R. D. C. Monteiro. A nonlinear programming algorithm for solving

semidefinite programs via low-rank factorization. Math. Program., 95(2, Ser.

B):329–357, 2003.

[BNPS17] J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter. From error bounds to the

complexity of first-order descent methods for convex functions. Math. Program.,

165(2):471–507, 2017.

[Bou15] N. Boumal. A riemannian low-rank method for optimization over semidefinite

matrices with block-diagonal constraints. arXiv:1506.00575v2, 2015.

[BPC+11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization

and statistical learning via the alternating direction method of multipliers. Found.

Trends Machine Learning, 3(1):1–122, 2011.

[Bra06] M. Brand. Fast low-rank modifications of the thin singular value decomposition.

Linear Algebra Appl., 415(1):20–30, 2006.

[BT09] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM J. Imaging Sciences, 2(1):183–202, 2009.

[BVB18] N. Boumal, V. Voroninski, and A.S. Bandeira. Deterministic guarantees for Burer–

Monteiro factorizations of smooth semidefinite programs. arXiv:1804.02008v1,

2018.

[BWZ16] C. Boutsidis, D. Woodruff, and P. Zhong. Optimal principal component analysis in

distributed and streaming models. In Proc. 48th ACM Symp. Theory of Computing,

2016.

[CBCG04] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of

on-line learning algorithms. IEEE Trans. on Inf. Theory, 50(9):2050–2057, 2004.

[CD13] J. Chiu and L. Demanet. Sublinear randomized algorithms for skeleton decompo-

sitions. SIAM J. Matrix Anal. Appl., 34(3):1361–1383, 2013.

[CESV13] E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix

completion. SIAM J. Imaging Sciences, 6(1):199–225, 2013.

[CJN17] B. Cox, A. Juditsky, and A. Nemirovski. Decomposition techniques for bilinear sad-

dle point problems and variational inequalities with affine monotone operators.

J. Optim. Theory Appl., 2(402–435), 2017.

[CKS15] K. N. Chaudhury, Y. Khoo, and A. Singer. Global registration of multiple point

clouds using semidefinite programming. SIAM J. Optim., 25(1):468–501, 2015.

[Cla10] K. L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe

algorithm. ACM Trans. Algorithms, 6(4), 2010.

156

Bibliography

[CLDM18] H. Chang, Y. Lou, Y. Duan, and S. Marchesini. Total variation–based phase retrieval

for poisson noise removal. SIAM J. Imaging Sciences, 11(1):24–55, 2018.

[CLS15a] E. J. Candès, X. Li, and M. Soltanolkotabi. Phase retrieval from coded diffraction

patterns. Applied and Computational Harmonic Analysis, 39(2):277–299, 2015.

[CLS15b] E. J. Candès, X. Li, and M. Soltanolkotabi. Phase retrieval via Wirtinger Flow:

Theory and algorithms. IEEE Trans. Inform. Theory, 61(4):1985–2007, 2015.

[CP08] P. L. Combettes and J.-C. Pesquet. A proximal decomposition method for solving

convex variational inverse problems. Inverse Problems, 24(6):065014, 2008.

[CR12] E. Candès and B. Recht. Exact matrix completion via convex optimization. Com-

munications of the ACM, 55(6):111–119, 2012.

[CSV12] E. J. Candès, T. Strohmer, and V. Voroninski. Phaselift: Exact and stable signal

recovery from magnitude measurements via convex programming. Communica-

tions on Pure and Applied Mathematics, 2012.

[CVY18] V. Cevher, B. C. Vu, and A. Yurtsever. Stochastic forward Douglas-Rachford split-

ting method for monotone inclusions. In P. Giselsson and A. Rantzer, editors,

Large–Scale and Distributed Optimization, chapter 7, pages 149–179. Springer

International Publishing, 2018.

[CVY19] V. Cevher, B. C. Vu, and A. Yurtsever. Inertial three-operator splitting method and

applications. arXiv:1904.12980v1, 2019.

[CZH+17] R. Chandra, Z. Zhong, J. Hontz, V. McCulloch, C. Studer, and T. Goldstein. Phasep-

ack: A phase retrieval library. Asilomar Conference on Signals, Systems, and

Computers, 2017.

[DBLJ14] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient

method with support for non-strongly convex composite objectives. In Advances

in Neural Information Processing Systems 28, 2014.

[DFTJ16] C. Dünner, S. Forte, M. Takác, and M. Jaggi. Primal–dual rates and certificates. In

Proc. 33rd Int. Conf. Machine Learning, 2016.

[dGJL07] A. d’Aspremont, L.E. Ghaoui, M.I. Jordan, and G.R.G. Lanckriet. A direct formula-

tion for sparse PCA using semidefinite programming. SIAM Review, 49(3):434–448,

2007.

[DH78] J. Dunn and S. Harshbarger. Conditional gradient algorithms with open loop step

size rules. J. Math. Anal. Appl., 62(2):432–444, 1978.

[DHS11] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online

learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, 2011.

157

Bibliography

[DM05] P. Drineas and M. W. Mahoney. On the Nyström method for approximating a Gram

matrix for improved kernel-based learning. J. Mach. Learn. Res., 6:2153–2175,

2005.

[Dun79] J. Dunn. Rates of convergence for conditional gradient algorithms near singular

and nonsinglular extremals. SIAM J. Control Optim., 17(2):187–211, 1979.

[Dun80] J. Dunn. Convergence rates for conditional gradient sequences generated by

implicit step length rules. SIAM J. Control Optim., 18(5):473–487, 1980.

[DYC+19] L. Ding, A. Yurtsever, V. Cevher, J. A. Tropp, and M. Udell. An optimal-storage

approach to semidefinite programming using approximate complementarity.

arXiv:1902.03373v1, 2019.

[Faz02] M. Fazel. Matrix rank minimization with applications. PhD thesis, Stanford Univ.,

2002.

[FBCM04] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the

Nyström method. IEEE Trans. Pattern Anal. Mach. Intell., 26(2):214–225, Jan.

2004.

[FGM17] R. M. Freund, P. Grigas, and R. Mazumder. An extended Frank–Wolfe method

with "in-face" directions and its application to low-rank matrix completion. SIAM

J. Optim., 27(1):319–346, 2017.

[FLLZ18] C. Fang, C. J. Li, Z. Lin, and T. Zhang. Spider: Near-optimal non-convex optimiza-

tion via stochastic path-integrated differential estimator. In Advances in Neural

Information Processing Systems 32, 2018.

[FW56] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research

Logistics Quarterly, 3:95–110, 1956.

[Gar12] D. Garber. Approximating Semidefinite Programs in Sublinear Time. PhD thesis,

Israel Institute of Technology, 2012.

[GEB13] T. Goldstein, E. Esser, and R. Baraniuk. Adaptive primal-dual hybrid gradient

methods for saddle point problems. arXiv:1305.0546v1, 2013.

[GH11] D. Garber and E. Hazan. Approximating semidefinite programs in sublinear time.

In Advances in Neural Information Processing Systems 25, 2011.

[GH16] D. Garber and E. Hazan. Sublinear time algorithms for approximate semidefinite

programming. Math. Program., Ser. A, (158):329–361, 2016.

[Git11] A. Gittens. The spectral norm error of the naïve Nyström extension.

arXiv:1110.5305, 2011.

158

Bibliography

[Git13] A. Gittens. Topics in Randomized Numerical Linear Algebra. PhD thesis, California

Institute of Technology, 2013.

[GJLJ17] G. Gidel, T. Jebara, and S. Lacoste-Julien. Frank-Wolfe algorithms for saddle point

problems. In Proc. 20th Int. Conf. Artificial Intelligence and Statistics, 2017.

[GLF+10] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert. Quantum state tomogra-

phy via compressed sensing. Phys. Rev. Lett., 105, 2010.

[GM13] A. Gittens and M. W. Mahoney. Revisiting the Nyström method for improved

large-scale machine learning. arXiv:1303.1849, 2013.

[GM16] A. Gittens and M. W. Mahoney. Revisiting the Nyström method for improved

large-scale machine learning. J. Mach. Learn. Res., 17:Paper No. 117, 65, 2016.

[GPLJ18] G. Gidel, F. Pedregosa, and S. Lacoste-Julien. Frank-Wolfe splitting via augmented

Lagrangian method. In Proc. 21st Int. Conf. Artificial Intelligence and Statistics,

2018.

[GW95] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming. J.

Assoc. Comput. Mach., 42(6):1115–1145, 1995.

[Ham84] H. J. Hammond. Solving asymmetric variational inequality problems and systems

of equations with generalized nonlinear programming algorithms. PhD thesis,

MIT, 1984.

[Haz08] E. Hazan. Sparse approximate solutions to semidefinite programs. In Proc. 8th

Latin American Conf. Theoretical Informatics, pages 306–316, 2008.

[HCO+15] R. Horstmeyer, R. Y. Chen, X. Ou, B. Ames, J. A. Tropp, and C. Yang. Solving

ptychography with a convex relaxation. New J. Physics, 17(5):053044, 2015.

[HH15] N. He and Z. Harchaoui. Semi–proximal mirror–prox for nonsmooth composite

minimization. In Advances in Neural Information Processing Systems 28, 2015.

[HJL96] C. L. Hamilton-Jester and C.-K. Li. Extreme vectors of doubly nonnegative matri-

ces. Rocky Mountain J. Math., 26(4):1371–1383, 1996.

[HJN15] Z. Harchaoui, A. Juditsky, and A. Nemirovski. Conditional gradient algorithms for

norm–regularized smooth convex optimization. Math. Program., Ser. A, (152):75–

112, 2015.

[HK12] E. Hazan and S. Kale. Projection–free online learning. In Proc. 29th Int. Conf.

Machine Learning, 2012.

[HK16] F. M. Harper and J. A. Konstan. The movielens datasets: History and context. Acm

Trans. Interative Interlligent Systems, 5(4):19, 2016.

159

Bibliography

[HKMS19] H. Hassani, A. Karbasi, A. Mokhtari, and Z. Shen. Stochastic conditional gradi-

ent++. arXiv:1902.06992, 2019.

[HL16] E. Hazan and H. Luo. Variance-reduced and projection-free stochastic optimiza-

tion. In Proc. 33rd Int. Conf. Machine Learning, 2016.

[HMT11] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness:

probabilistic algorithms for constructing approximate matrix decompositions.

SIAM Rev., 53(2):217–288, 2011.

[HUS10] J.-B. Hiriart-Urruty and A. Seeger. A variational approach to copositive matrices.

SIAM Review, 52(4):593–629, 20010.

[Jag13] M. Jaggi. Revisiting Frank–Wolfe: Projection–free sparse convex optimization. In

Proc. 30th Int. Conf. Machine Learning, 2013.

[JN16] A. Juditsky and A. Nemirovski. Solving variational inequalities with monotone

operators on domains given by Linear Minimization Oracles. Math. Program.,

156(1-2):221–256, 2016.

[JNS13] P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank matrix completion using alternat-

ing minimization. In Proc. 45th Ann. ACM Symp. Theory of Computing, 2013.

[JS10] M. Jaggi and M. Sulovský. A Simple Algorithm for Nuclear Norm Regularized

Problems. In Proc. 27th Int. Conf. Machine Learning, 2010.

[JZ13] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive

variance reduction. In Advances in Neural Information Processing Systems 26,

2013.

[KN12] S. Khot and A. Naor. Grothendieck-type inequalities in combinatorial optimiza-

tion. Communications on Pure and Applied Mathematics, 65(7):992–1035, 2012.

[Lan14] G. Lan. The complexity of large–scale convex programming under a linear opti-

mization oracle. arXiv:1309.5550v2, 2014.

[LCG+04] G.R.G. Lanckriet, N. Cristianini, L.E. Ghaoui, P. Bartlett, and M.I. Jordan. Learning

the kernel matrix with semidefinite programming. J. Mach. Learn. Res., 5:27–72,

2004.

[Lev17] K. Y. Levy. Online to offline conversions, universality and adaptive minibatch

sizes. In Advances in Neural Information Processing Systems, pages 1612–1621,

2017.

[LF18] H. Lu and R. M. Freund. Generalized stochastic Frank-wolfe algorithm

with stochastic" substitute”gradient for structured convex optimization.

arXiv:1807.07680, 2018.

160

Bibliography

[LJ16] S. Lacoste-Julien. Convergence rate of frank-wolfe for non-convex objectives.

arXiv:1607.00345, 2016.

[LJJSP13] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate Frank-

Wolfe optimization for structural SVMs. In Proc. 30th Int. Conf. Machine Learning,

2013.

[LKTJ17] F. Locatello, R. Khanna, M. Tschannen, and M. Jaggi. A unified optimization

view on generalized matching pursuit and Frank-Wolfe. In Proc. 20th Int. Conf.

Artificial Intelligence and Statistics, 2017.

[LL12] J. Lavaei and H.L. Low. Zero duality gap in optimal power flow problem. IEEE

Trans. on Power Syst., 27(1):92–107, February 2012.

[LLM19] Y.-F. Liu, X. Liu, and S. Ma. On the non-ergodic convergence rate of an inexact aug-

mented Lagrangian framework for composite convex programming. Mathematics

of Operations Research, 44(2):632–650, 2019.

[LLS+17] H. Li, G. C. Linderman, A. Szlam, K. P. Stanton, Y. Kluger, and M. Tygert. Algorithm

971: An implementation of a randomized algorithm for principal component

analysis. ACM Trans. Math. Softw., 43(3):28:1–28:14, Jan. 2017.

[LM15] G. Lan and R. D. C. Monteiro. Iteration-Complexity of First-Order Augmented

Lagrangian Methods for Convex Programming. Math. Program., pages 1–37, 2015.

[LMWY13] J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing

values in visual data. IEEE Trans. Pattern Anal. Mach. Intell, 35(1):208–230, 2013.

[Lov03] L. Lovász. Semidefinite programs and combinatorial optimization. In Recent

advances in algorithms and combinatorics, pages 137–194. Springer, 2003.

[LP66] E. Levitin and B. Polyak. Constrained minimization methods. USSR Comput.

Math. & Math. Phys., 6(5):1–50, 1966.

[LPZZ17] G. Lan, S. Pokutta, Y. Zhou, and D. Zink. Conditional accelerated lazy stochastic

gradient descent. In Proc. 34th Int. Conf. Machine Learning, 2017.

[LTRJ17] F. Locatello, M. Tschannen, G. Rätsch, and M. Jaggi. Greedy algorithms for cone

constrained optimization with convergence guarantees. In Advances in Neural

Information Processing Systems 30, 2017.

[LYC18] K. Y. Levy, A. Yurtsever, and V. Cevher. Online adaptive methods, universality and

acceleration. In Advances in Neural Information Processing Systems, 2018.

[LYFC19] F. Locatello, A. Yurtsever, O. Fercoq, and V. Cevher. Stochastic conditional gradient

method for composite convex minimization. arXiv:1901.10348v2, 2019.

161

Bibliography

[LZ16] G. Lan and Y. Zhou. Conditional gradient sliding for convex optimization. SIAM J.

Optim., 26(2):1379–1409, 2016.

[MHK18] A. Mokhtari, H. Hassani, and A. Karbasi. Stochastic conditional gradient methods:

From convex minimization to submodular maximization. arXiv:1804.09554, 2018.

[MNS15] E. Mossel, J. Neeman, and A. Sly. Consistency thresholds for the planted bisection

model. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory

of Computing, pages 69–75. ACM, 2015.

[Mot52] T. S. Motzkin. Copositive quadratic forms. Technical report, National Bureau of

Standards Report No. 1818, 1952.

[MVW17] D. G. Mixon, S. Villar, and R. Ward. Clustering subgaussian mixtures by semidefi-

nite programming. Information and Inference: A Journal of the IMA, 6(4):389–415,

2017.

[MZJ13] M. Mahdavi, L. Zhang, and R. Jin. Mixed optimization for smooth functions. In

Advances in Neural Information Processing Systems 26, 2013.

[Nes83] Y. Nesterov. A method of solving a convex programming problem with conver-

gence rate O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[Nes05] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program.,

103:127–152, 2005.

[Nes09] Y. Nesterov. Primal-dual subgradient methods for convex problems. Math. Pro-

gram., 120(1, Ser. B):221–259, 2009.

[Nes15] Y. Nesterov. Universal gradient methods for convex optimization problems. Math.

Program., 152(1-2):381–404, 2015.

[Nes17] Y. Nesterov. Complexity bounds for primal-dual methods minimizing the model

of objective function. Math. Program., 2017.

[NLST17] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takác. SARAH: A novel method for

machine learning problems using stochastic recursive gradient. In Proc. 34th Int.

Conf. Machine Learning, 2017.

[NN89] Y. Nesterov and A. Nemirovski. Self-concordant functions and polynomial time

methods in convex programming. USSR Academy of Sciences, Central Economic

& Mathematic Institute, 1989.

[NN94] Y. Nesterov and A. Nemirovski. Interior-point polynomial algorithms in convex

programming. Society for Industrial and Applied Mathematics, 1994.

[NY83] A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in Opti-

mization. John Wiley & Sons, 1983.

162

Bibliography

[OLY+16] G. Odor, Y.-H. Li, A. Yurtsever, Y.-P. Hsieh, Q. Tran-Dinh, M. El Halabi, and

V. Cevher. Frank-Wolfe works for non-lipschitz continuous gradient objectives:

Scalable poisson phase retrieval. In 41st IEEE Int. Conf. Acoustics, Speech & Signal

Processing, 2016.

[Pat98] G. Pataki. On the rank of extreme matrices in semidefinite programs and the multi-

plicity of optimal eigenvalues. Mathematics of Operations Research, 23(2):338–358,

1998.

[Pla05] J. C. Platt. FastMap, MetricMap, and Landmark MDS are all Nyström algorithms.

In Proc. 10th Int. Workshop Artificial Intelligence and Statistics, 2005.

[PW07] J. Peng and Y. Wei. Approximating K–means–type clustering via semidefinite

programming. SIAM J. Optim., 18(1):186–205, 2007.

[QLX18] C. Qu, Y. Li, and H. Xu. Non-convex conditional gradient sliding. In Proc. 35th Int.

Conf. Machine Learning, 2018.

[Rag08] P. Raghavendra. Optimal algorithms and inapproximability results for every CSP?

In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages

245–254, 2008.

[RDLS18] S. N. Ravi, T. Dinh, V. S. R. Lokhande, and V. Singh. Constrained deep learning us-

ing conditional gradient and applications in computer vision. arXiv:1803.06453v1,

2018.

[Ren14] J. Renegar. Efficient first-order methods for linear programming and semidefinite

programming. arXiv:1409.5832, 2014.

[Roc70] R. T. Rockafellar. Convex analysis. Princeton Mathematical Series. Princeton

University Press, 1970.

[Roc76] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J.

Control Optim., 14(5):877–898, 1976.

[RSB12] N. L. Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an

exponential convergence rate for finite training sets. In Advances in Neural

Information Processing Systems 26, 2012.

[RSPS16] S. J. Reddi, S. Sra, B. Póczos, and A. Smola. Stochastic Frank-Wolfe methods for

nonconvex optimization. In 54th Annual Allerton Conf. Communication, Control,

and Computing, 2016.

[SEC+15] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev.

Phase retrieval with application to optical imaging. IEEE Signal Process. Mag.,

32(3):87–109, 2015.

163

Bibliography

[SFZ+19] Z. Shen, C. Fang, P. Zhao, J. Huang, and H. Qian. Complexities in projection-free

stochastic non-convex minimization. In Proc. 22nd Int. Conf. Artificial Intelligence

and Statistics, 2019.

[SGL+19] Y. Sun, Y. Guo, C. Luo, J. A. Tropp, and M. Udell. Low-rank Tucker approximation

of a tensor from streaming data. arXiv:1904.10951v1, 2019.

[Sin11] A. Singer. Angular synchronization by eigenvectors and semidefinite program-

ming. Applied and computational harmonic analysis, 30(1):20–36, 2011.

[Sio58] M. Sion. On general minimax theorems. Pacific J. Math., 8(1):171–176, 1958.

[SRJ04] N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorizations. In

Adv. Neural Information Processing Systems 17, Vancouver, Dec. 2004.

[SS11] A. Singer and Y. Shkolnisky. Three-dimensional structure determination from

common lines in cryo-EM by eigenvectors and semidefinite programming. SIAM

J. Imaging Sciences, 4(2):543–572, 2011.

[SSGB07] L. Song, A. Smola, A. Gretton, and K. M. Borgwardt. A dependence maximization

view of clustering. In Proc. 20th Int. Conf. Machine Learning, 2007.

[ST14] R. Shefi and M. Teboulle. Rate of Convergence Analysis of Decomposition Meth-

ods Based on the Proximal Method of Multipliers for Convex Minimization. SIAM

J. Optim., 24(1):269–297, 2014.

[TDC14] Q. Tran-Dinh and V. Cevher. Constrained convex minimization via model-based

excessive gap. In Advances in Neural Information Processing Systems 27, 2014.

[TDFC18] Q. Tran-Dinh, O. Fercoq, and V. Cevher. A smooth primal-dual optimization

framework for nonsmooth composite convex minimization. SIAM J. Optim.,

28(1):96–134, 2018.

[TLJJ06] B. Taskar, S. Lacoste-Julien, and M.I. Jordan. Structured prediction, dual extragra-

dient and Bregman projections. J. Mach. Learn. Res., 2006.

[Tyg14] M. Tygert. Beta versions of Matlab routines for principal component analysis.

Available at http://tygert.com/software.html, 2014.

[TYUC17a] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher. Fixed-rank approximation

of a positive-semidefinite matrix from streaming data. In Advances in Neural

Information Processing Systems 30, 2017.

[TYUC17b] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher. Practical sketching algorithms

for low-rank matrix approximation. SIAM J. Matrix Anal. Appl., 38(4):1454–1485,

2017.

164

Bibliography

[TYUC17c] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher. Randomized single-view algo-

rithms for low-rank matrix approximation. ACM Report 2017-01, Caltech, Jan.

2017.

[TYUC18] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher. More practical sketching algo-

rithms for low-rank matrix approximation. ACM Report 2018-01, Caltech, Oct.

2018.

[TYUC19] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher. Streaming low–rank matrix

approximation with an application to scientific simulation. arXiv:1902.08651,

2019.

[Upa16] J. Upadhyay. Fast and space-optimal low-rank factorization in the streaming

model with application in differential privacy. arXiv:1604.01429v3, 2016.

[VNM44] J. Von Neumann and O. Morgenstern. Theory of games and economic behavior.

Princeton press, 1944.

[WJZ+18] K. Wang, K. Ji, Y. Zhou, Y. Liang, and V. Tarokh. SpiderBoost: A class of faster

variance-reduced algorithms for nonconvex optimization. arXiv:1810.10690,

2018.

[WLRT08] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert. A fast randomized algorithm for

the approximation of matrices. Appl. Comput. Harmon. Anal., 25(3):335–366,

2008.

[WS00] C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel

machines. In Advances in Neural Information Processing Systems 13, 2000.

[WW18] I. Waldspurger and A. Waters. Rank optimality for the Burer-Monteiro factoriza-

tion. arXiv:1812.03046v1, 2018.

[Xu17] H.-K. Xu. Convergence analysis of the Frank–Wolfe algorithm and its generaliza-

tion in Banach spaces. arXiv:1710.07367v1, 2017.

[YFC19] A. Yurtsever, O. Fercoq, and V. Cevher. A conditional gradient-based augmented

lagrangian framework. In Proc. 36th Int. Conf. Machine Learning, 2019.

[YFLC18] A. Yurtsever, O. Fercoq, F. Locatello, and V. Cevher. A conditional gradient frame-

work for composite convex minimization with applications to semidefinite pro-

gramming. In Proc. 35th Int. Conf. Machine Learning, 2018.

[YHC15] A. Yurtsever, Y.-P. Hsieh, and V. Cevher. Scalable convex methods for phase

retrieval. In 6th IEEE Intl. Workshop on Computational Advances in Multi-Sensor

Adaptive Processing, 2015.

165

Bibliography

[YM10] A. Yoshise and Y. Matsukawa. On optimization over the doubly nonnegative cone.

In IEEE International Symposium on Computer-Aided Control System Design,

2010.

[YSC19] A. Yurtsever, S. Sra, and V. Cevher. Conditional gradient methods via stochastic

path-integrated differential estimator. In Proc. 36th Int. Conf. Machine Learning,

2019.

[YST15] L. Yang, D. Sun, and K-.C. Toh. SDPNAL+: A majorized semismooth Newton–CG

augmented Lagrangian method for semidefinite programming with nonnegative

constraints. Math. Program. Comput., 7(3):331–366, 2015.

[YTDC15a] A. Yurtsever, Q. Tran-Dinh, and V. Cevher. A universal primal-dual convex opti-

mization framework. In Advances in Neural Information Processing Systems 28,

2015.

[YTDC15b] A. Yurtsever, Q. Tran-Dinh, and V. Cevher. Universal primal-dual proximal-

gradient methods. arXiv:1502.03123v1, 2015.

[YUTC17] A. Yurtsever, M. Udell, J.A. Tropp, and V. Cevher. Sketchy decisions: Convex low-

rank matrix optimization with optimal storage. In Proc. 20th Int. Conf. Artificial

Intelligence and Statistics, 2017.

[YVC16] A. Yurtsever, B. C. Vu, and V. Cevher. Stochastic three-composite convex mini-

mization. In Advances in Neural Information Processing Systems 29, 2016.

[YZS14] Y. Yu, X. Zhang, and D. Schuurmans. Generalized conditional gradient for sparse

estimation. arXiv:1410.4828v1, 2014.

[ZCM+19] M. Zhang, L. Chen, A. Mokhtari, H. Hassani, and A. Karbasi. Quantized Frank-

Wolfe: Communication-efficient distributed optimization. arXiv:1902.06332,

2019.

[ZS18] W.-J. Zeng and H. C. So. Outlier–robust matrix completion via �p -minimization.

IEEE Trans. on Sig. Process, 66(5):1125–1140, 2018.

[ZXG18] D. Zhou, P. Xu, and Q. Gu. Stochastic nested variance reduction for nonconvex

optimization. In Advances in Neural Information Processing Systems 32, 2018.

166

Alp Yurtsever
EPFL STI IEL LIONS
ELD 244 (Bâtiment ELD)
Station 11, 1015 Lausanne
Switzerland

Website: alpyurtsever.github.io
E-mail : alpyurtsever@gmail.com

Education

Sep 2013 – June 2019 PhD École Polytechnique Fédérale de Lausanne, Lausanne
Computer and Communication Sciences (EDIC)
Laboratory of Information and Inference Systems (LIONS)
Thesis topic : Scalable convex optimization methods for
semidefinite programming
Thesis supervisor : Prof. Volkan Cevher

Sep 2018 – Dec 2018 Visitor Massachusetts Institute of Technology, Cambridge
Institute for Data, Systems and Society (IDSS)
Laboratory for Information and Decision Systems (LIDS)
Hosting faculty : Prof. Suvrit Sra

Sep 2009 – June 2013 BSc Middle East Technical University, Ankara
Electrical and Electronics Engineering
Physics (Double Major)

Awards and Fellowships

• SNF Early PostDoc.Mobility
The fellowship includes a grant towards living costs, awarded by Swiss National Science
Foundation for 18 months to successful early-career postdocs who wish to enhance their
scientific profile by working at a research institution abroad.

• IEEE CAMSAP 2015 student paper award
Three best student papers of the workshop among the papers by graduate or undergrad-
uate students are identified by the committee, in Cancun, Mexico, in December 2015.

• EDIC fellowship One year fellowship program that is granted for the promising appli-
cants with strong academic record, by the doctoral school of IC department at EPFL.

Service to the community

Reviewing activities

OXFORD Academic: IMA Journal of Numerical Analysis (IMAJNA)
IEEE Transactions on Signal and Information Processing over Networks (SIPN)
IEEE Transactions on Signal Processing (T-SP)
Journal of Selected Topics in Signal Processing (J-STSP)
International Journal of Control, Automation and Systems (IJCAS)
Operations Research Letters
International Conference on Machine Learning (ICML)
Neural Information Processing Systems (NeurIPS)

167

Ce document a été imprimé au Centre d’impression EPFL,
imprimerie climatiquement neutre, certifiée myClimate.

