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Abstract

We introduce a sequence-dependent coarse—grain model of double-stranded DNA
with an explicit description of both the bases and the phosphate groups as interacting
rigid—bodies. The model parameters are trained on extensive, state—of-the-art large
scale molecular dynamics (MD) simulations. The model paradigm relies on three
main approximations: 1) nucleic acid bases and phosphate groups are rigid, 2) in-
teractions are nearest-neighbour and can be modelled with a quadratic energy, 3)
model parameters have dimer sequence dependence. For an arbitrary sequence, the
model predicts a sequence-dependent Gaussian equilibrium probability distribution.
The parameter set comprises dimer-based elements, which are used to reconstruct
mean configurations, called ground-states, which can have strong non-local sequence
dependence, and precision matrices, or stiffness matrices, for any sequence of any
length. This prediction step is sufficiently efficient that it is straightforward to con-
struct probability density functions for millions of fragments each of length a few
hundred base—pairs. The estimation of a parameter set consists in minimising the
sum of Kullback-Leibler divergences between Gaussians predicted by the model and
analogous Gaussians estimated directly from MD simulations of a training library
of sequences. The training library comprises a short list of short palindromic DNA
sequences. We designed the palindromic library using an ad hoc algorithm to include
multiple instances of all independent tetramer sub-sequences. We exploit palindromic
symmetry properties to study the convergence of the statistics extracted from MD
simulations of palindromes and to define palindromically symmetrised estimators of
first and second centred moments. The computation of the parameter set is delicate
and needs the use of sophisticated numerics. We present an efficient and reliable
procedure for estimating a complete parameter set which involves a generalisation
of the classic Fisher information matrix and its relationship to the relative entropy,
or Kullback-Leibler divergence. The model is a computationally efficient tool that
allows the study of the mechanical properties of double-stranded DNA of arbitrary
length and sequence. We use the model to study the sequence-dependent rigidity
of DNA and we compute sequence—dependent apparent and dynamic persistence
lengths. The explicit treatment of the phosphate group also allows computation of
sequence-dependent grooves widths. Moreover, with fine-grained representation of
predicted ground-states, we can also study sequence-dependence of sugar puckering
modes and BI-BII backbone conformations.
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Résumé

Dans cette these, nous introduisons un modeéle gros—-grains d’ADN a deux brins qui dé-
pend de la séquence, avec une description explicite des bases et des groupes phosphate
en tant que corps rigides en interaction. Les parametres du modéle sont déterminés
par des simulations approfondies de dynamique moléculaire (DM) a large échelle.
Le paradigme du modele repose sur trois approximations principales : 1) les bases
d’acide nucléique et les groupes phosphate sont rigides, 2) les interactions sont locales
et de type "plus proche voisin", et peuvent étre modélisées par une énergie quadra-
tique, 3) les parametres du modele ont une dépendance au niveau des dimeres de la
séquence. Pour une séquence donnée, le modele prédit une densité de probabilité
a I'équilibre gaussienne qui dépend de cette séquence. Lensemble de parametres
du modele inclut des éléments liés aux dimeres, qui sont utilisés pour reconstituer,
pour des séquences de longueur arbitraire, d’'une part des configurations moyennes,
appelées états de base, et qui peuvent avoir une forte dépendance non locale au
sein de la séquence, et d’autre part des matrices de précision, ou matrices de rigidité.
Cette étape de prédiction est suffisamment efficace pour qu’il soit aisé de construire
des fonctions de densité de probabilité pour des millions de fragments qui soient
chacun d’une longueur de quelques centaines de paires de bases. L'estimation de
I'ensemble des parametres consiste en une minimisation de la somme des divergences
de Kullback-Leibler entre des gaussiennes prédites par le modele et des gaussiennes
obtenues directement par des simulations de DM sur une librairie de séquences. La
librairie comprend une bréve liste de courtes séquences palindromiques d’ADN. La
librairie palindromique est générée en utilisant un algorithme ad-hoc afin d’inclure de
multiples exemples de toutes les sous-séquences indépendantes de tetrameres. On
exploite les propriétés de symétrie palindromique pour étudier la convergence des
estimateurs statistiques extraits des simulations de DM des palindromes et pour définir
des estimateurs palindromiquement symétrisés des premier et des second moments
centrés. Le calcul de '’ensemble des parametres est délicat et nécessite I'utilisation de
techniques sophistiquées d’analyse numérique. Nous présentons une facon efficace
et fiable pour estimer un ensemble complet de parametres, qui fait intervenir une
généralisation de la matrice classique d’information de Fisher ainsi que sa relation
avec l'entropie relative, ou divergence de Kullback-Leibler. Le modele est un outil,
computationnellement robuste, qui permet I’étude des propriétés mécaniques d'un
double brin d’ADN de longueur et de séquence arbitraire. Ce modele est utilisé pour
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Résumé

étudier la rigidité en fonction de la séquence d’ADN ; en particulier, nous calculons
les longueurs de persistance apparente et dynamique, dépendant de la séquence. Le
traitement explicite des groupes phosphate permet aussi un calcul de la largeur des
sillons, une quantité qui dépend de la séquence. De plus, la représentation a grains fins
des configurations moyennes prédites par le modeéle permet une étude des différents
"puckerings" du sucre et des conformations du squelette BI-BII.



Riassunto

In questa tesi introduciamo un modello “coarse-grain” della doppia elica del DNA con
dipendenza a livello della sequenza e con descrizione esplicita delle basi azotate e dei
gruppi fosfati. I parametri del modello sono determinati a partire da delle simulazioni
di dinamica molecolare. Il paradigma del modello si base su tre ipotesi principali: 1)
le basi azotate e i gruppi fosfati sono unita rigide 2) le interazioni fisiche sono locali
e di tipo “piu vicine” 3) i parametri del modello hanno dipendenza dalla sequenza a
livello dei dimeri. Per una sequenza data, il modello predice una funzione di densita
di probabilita di Gauss. Linsieme dei parametri che sono utilizzati per ricostruire
il vettore della media, detto anche stato fondamentale, e la inversa della matrice di
covarianza, detta anche matrice di rigidezza. Lo stato fondamentale dipende non
localmente rispetto alla sequenza, mentre la matrice di rigidezza ha una dipendenza
locale. La ricostruzione dei parametri della distribuzione di Gauss ¢ sufficientemente
efficace, permettendo di ricostruire milioni di funzioni di distribuzione di probabi-
lita per sequenze di lunghezza di alcune centinaia di basi. La stima dei parametri
del modello consiste nel minimizzare la somma di divergenze Kullback-Leibler tra
gaussiane predette dal modello e gaussiane empiriche. Quest'ultime sono ottenute da
simulazione di dinamica molecolare di una libreria di sequenze. Una libraria consiste
in una lista di corte sequenze palindromiche. La libreria palindromica é stata generata
da un algoritmo appositamente sviluppato per includere tutte le sotto sequenze di
lunghezza pari a quattro paia di basi. La simmetria palindromica e in seguito usata
per studiare la convergenza degli stimatori associati alle simulazione di dinamica
molecolare di queste sequenze. Ottenere I'insieme dei parametri del modello &€ un
processo delicato che necessita I'utilizzo di metodi numerici sofisticati. In questo
lavoro presentiamo un metodo efficace e robusto che utilizza una generalizzazione
della matrice d’'informazione di Fisher e la sua relazione con la divergenza di Kullback-
Leibler. Il modello € uno strumento computazionalmente efficiente che permette
lo studio delle proprieta meccaniche di filamenti di DNA di lunghezza e sequenza
arbitrarie. Quest’ultimo pu0 essere impiegato per lo studio della rigidita del DNA
(sequenza—dipendente) ed in particolare per il calcolo della lunghezza persistente
apparente e dinamica (anch’esse sequenza—dipendenti). Il trattamento esplicito dei
gruppi fosfati permette, per sequenze arbitrarie, il calcolo del loro solco maggiore
e minore. Inoltre, per ogni configurazione media predetta dal modello, & possibile
derivare una rappresentazione atomistica della molecola per studiare il “puckering”
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Riassunto

degli zuccheri pentosi e le conformazioni dello scheletro fosfato—deossiribosio, dette
BI-BII.
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Introduction

Deoxyribonucleic acid, or DNA, is the molecule that is responsible for much of the
functioning of the cell of any living organism. DNA is a molecule consisting of two
chains, called strands, which are attached one to another via hydrogen bonding be-
tween the nucleic acid bases. The interaction between the two strands leads to the
typical double helix. Each backbone is composed of alternating phosphate groups
and sugar rings with attached nucleic bases. There are four standard nucleic acid
bases Adenine, Thymine, Guanine, and Cytosine, respectively abbreviated by A,T,G,
and C. In the double helix the two strands interact at the level of the base—pair, and
the standard Crick-Watson pairing rule states that A and T always pair, and G and
C always pair. A significant feature of DNA is that its shape has been observed to
have a strong sequence-dependence. For example, it has been noticed that some
DNA sequences containing a specific succession of bases have an intrinsic bend [76,
43, 22]. A particular example showing the relation between sequence and shape are
phased runs of three to six Adenine nucleic acid base, or A-tracts, repeated with a
helical periodicity which leads to a significant global curvature of the double helix
molecule [22]. A second significant physical property of the DNA molecule is its local
rigidity, or stiffness, that also has been shown to have a complex sequence-dependent
behaviour [51, 71]. A combination of both intrinsic shape and local stiffness properties,
characterises the overall deformations or fluctuations of the DNA which consequently
show a considerable variation between different sequences. In particular, it remains
an interesting, yet non trivial, problem to fully quantify these properties.

From an experimental point the rigidity of naked DNA is estimated in different ways.
Here we mention two classic approaches: cyclisation experiments, for fairly short
fragments, and single molecule tweezers, for longer fragments. The first experimen-
tal method consists in the quantification of the probability of closed loop formation
starting from multiple copies of a linear piece for the same DNA with cohesive, or
sticky, ends. In the second technique a bead is attached to an end of a single linear
molecule of DNA by magnetic or optical tweezers or a micropipette then the molecule
is pulled and twisted. However, for both experiments, a mechanical model is needed
to rationalise the outcomes and to use of the results as a prediction tools.

Modelling the mechanical properties of DNA is strongly related to the length scales
of interest. Different length scales lead to different models in terms of the number of
model parameters, in terms of data to be fitted, and in terms of target applications of
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Introduction

the model. For long length scales, the most widely used models have a comparatively
low number of parameters and just model the DNA as a single uniform sequence-
independent rod or wormlike chain, see for example [31]. At shorter length scales a
full atomistic approach leads to a very detailed mechanical model of DNA, which can
be used in the study of local properties of the molecule. The main drawback of the full
atomistic model is its high computational cost due to the large numbers of degrees of
freedom and associated parameters involved in the model particularly if the solvent
is treated explicitly. which is often thought to be necessary to capture the detailed
electrostatics of DNA. A third method for modelling the mechanical property of the
DNA is based on coarse—graining fully atomistic models by introducing additional
assumptions that control the level of detail present in the model. The rigid—-base—pair
model [51, 78] identifies each base—pair as a rigid unit resulting in a single, rigid—body
chain representation of the DNA molecule. The sequence dependence is typically
taken into account at the dimer sequence level and the resulting model is local in both
shape and stiffness. On the other hand, a rigid—base [55, 19] model identifies each
base as a rigid unit, which consequently leads to a more detailed model, and the DNA
structure is represented as the interactions between two single chains, one for each
strand.

The cgDNA rigid—base model presented in [55, 19] is the starting point for this work.
The cgDNA model is a coarse-grain sequence—dependent rigid—base model of DNA
in solution. For an arbitrary DNA sequence composed in the standard alphabet
{A,T,G,C}, the cgDNA model predicts a Gaussian stationary or equilibrium dis-
tribution for the underlying dynamics by reconstructing a mean configuration, or
configuration of the minimal energy state, and a stiffness matrix. One of the main prop-
erties of the model is that an arbitrary DNA fragment has an intrinsic shape that has
non-local sequence-dependence as a consequence of the fact that each base cannot
minimize the interaction energy between all of its neighbours. The latter phenomenon
is called frustration, and is an implication of the specific banded, but not block diago-
nal, pattern of the stiffness matrix. The banded sparsity pattern of the stiffness matrix
corresponds to each base interacting with five nearest neighbours. Consequently the
configuration of a minimal state of a given sequence exhibits a non-local behaviour
under single letter mutation in the sequence, although the stiffness matrix changes
locally. cgDNA can be used for model-based analysis of different features of the DNA.
For example in [45], the authors exploited the cgDNA predicted Gaussian to compute
the apparent and dynamic persistence lengths for a large number of sequences, and in
particular, they introduced and computed sequence-averaged apparent and dynamic
persistence lengths.

This work is divided into four parts. Part I is dedicated to background material. In Part
IT we estimate and compare different cgDNA parameter sets extracted from different
MD protocols and introduce some enhancements to the cgDNA model. Part III is the
central contribution of the thesis. It presents the cgDNA+ model, which is a refinement
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Introduction

of cgDNA that introduces additional degrees of freedom associated with an explicit
description of the configurations of the phosphate groups. Part IV contains some
illustrative applications of the cgDNA+ model.

Chapter 1 has as its primary goal the presentation of all the basic notions that are
useful for the complete understanding of the cgDNA and cgDNA+ models. We start
with the standard chemical detail about DNA. The text presents the primary, secondary,
and tertiary structures of DNA by giving the main definitions and notation that are
used throughout this work. In addition to the classic DNA notions associated to bases,
the torsional angles and sugar ring puckering will be important in the applications of
the cgDNA+ model, while ideal bases will be the starting point for the coarse-grain
process of modelling the full atomistic representation of the DNA.

Chapter 2 presents the core mathematical ideas that will be useful in the development
of our coarse—grain models. Section 2.1 presents the properties of the Lie groups SO(3)
and SE(3) which are the main geometrical objects involved in the modelling procedure.
In particular, these Lie matrix groups are important for the formalisation of the bichain
interpretation of DNA, which leads to a set of internal coordinates leading to a tractable
and apparently rather accurate quadratic energy in our model.

Chapter 3 briefly introduces the state—of-the—art molecular dynamics simulations that
we have used to train our coarse—-grain models. In particular we present the computa-
tional workflow that we implement for post-processing the large scale trajectory data
set produced by the full atomistic computations. From time series of atom positions,
we extract a time series of bichain internal coordinates. First and second (centred)
moments are then computed using standard estimators. We also present an algorithm,
as developed in [18, 20], for estimating a stiffness, or precision, matrix with a prescribed
sparsity pattern from a full covariance matrix with dense inverse.

Chapter 4 presents the cgDNA model [55, 19]: from the main assumptions underpin-
ning the coarse—grain model to its applications to the study of sequence-dependent
persistence lengths. The importance of this chapter to this thesis relies on the multiple
concepts and mathematical notions that form the core of the dogma of the cgDNA
coarse—-graining methodology, and which will be the starting point for the development
of the enhanced cgDNA+ model.

The last chapter of the background part, Chapter 5, is entirely dedicated to the es-
timation of the cgDNA parameter sets from MD data. In this chapter, we recall the
Kullback-Leibler divergence and present its properties. Then we introduce the detail
of cgDNA parameter set extraction procedures along with the definition of a positive—
definite best-fit parameter set.

Part II of the thesis is dedicated to the comparison of different best—fit cgDNA parame-
ter sets computed for various different MD simulations protocols, which in this work
are all modifications of the ABC protocol [8, 15].

In Chapter 6 we compare cgDNA parameter sets extracted from MD data sets based
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Introduction

on protocols with different simulation durations, sequence libraries, force fields, and
ion types and concentrations. An elementary one-at-a—time sensitivity analysis is
then performed to compare the coarse-grain best-fit parameter sets. We present a
parameter continuation algorithm that we use to compute all the different cgDNA
parameter sets based on different MD training data. An average per degree of freedom
Kullback-Leibler divergence is used to quantify the differences between the various
cgDNA parameter sets and the MD data set used in the fitting procedure. Moreover,
persistence lengths are computed for all the parameter sets to study the impact of the
MD protocol on the overall rigidity of the DNA.

In Chapter 7 we focus our attention on the design of MD training libraries. In particular
we present an algorithm that we have developed which searches for a library composed
of only palindromic sequences. In particular, the sequence library, which we call the
palindromic library, is composed of 16 sequences each of length 24 base—pairs. The
algorithm searches for a palindromic library which contains at least two copies of all
non-palindromic independent tetramers. We recall that a palindrome has the property
that the sequence on the reading strand matches the complementary sequence when
both strands are read in the 5’ — 3’ direction. In the context of the prediction of cgDNA
ground-states, we have a simple linear relation between the internal coordinates of a
sequence read on one strand and the internal coordinates read from its complemen-
tary strand. In particular, for a palindromic sequence, the latter relation states that the
internal coordinates of a ground-state of a palindrome is invariant under a change of
reading strand. This property leads to the idea of quantifying the lack of convergence
in the MD simulations of a palindromic sequence by computing the error between the
mean estimator and its palindromically symmetrized version. We then apply the same
idea to compute the convergence error for the estimated covariance matrix. With this
approach, we have a quantifiable way of testing the quality of the training library data,
and also a way of estimating the palindromic symmetrised first and (centred) second
moment that will be used in the parameter set extraction. We complete Chapter 7 by
introducing a new cgDNA parameter set format which has dimer dependent blocks for
the ten independent interior blocks, and sixteen end dimer blocks. The new format of
the parameter set leads to a non uniqueness of the best-fit parameter set, although the
reconstructions of the mean and the stiffness matrix of any sequence remain unique.
Having additional dedicated dimer-dependent end blocks seems to lead to a signifi-
cant improvement in the accuracy of the cgDNA model.

The central part of this work is Part III where we introduce the coarse-grain model we
call cgDNA+ which add an explicit treatment of the phosphate groups. The modelling
dogma behind cgDNA+ is similar to the one of cgDNA. In fact, in the cgDNA+ model
we add extra degrees of freedom based on the assumption of rigidity of the phosphate
groups atoms.

In Chapter 8 we introduce the mathematical background underlying the cgDNA+
model. More precisely, we generalize the concept of double chains, and the bichain
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representation introduced in [21] that are pertinent to the cgDNA model to double in-
teracting strands and tetrachains. To treat the phosphate groups explicitly, we consider
an extra set of six degrees of freedom between each base and its associated phosphate
group. We give a general definition of internal coordinates for the tetrachains, and
derive the Crick—-Watson symmetry transformation describing the relation between
the internal coordinates of a sequence and the internal coordinates read with respect
to its complementary strand. Then we introduce a nearest-neighbour energy for the
tetrachain model and compute its first variation. Consequently, we can compute the
expression for the total external load acting on a single phosphate group necessary to
hold it in equilibrium in any configuration. We give expressions for the variations in
both coordinates free and coordinate specific cases.

Chapter 9 contains all the detail about the cgDNA+ model. The internal coordinates are
defined by base-to—phosphate degrees of freedom in the relatively rigid—-body motion
from the base to its 5 phosphate group. Once the definition of internal coordinates
is chosen we investigate, using the palindromic MD data set, the sparsity pattern of
the observed stiffness matrices. Remarkably a block structure appears which leads
to the definition of the assumed cgDNA+ model sparsity pattern. We then compute
the palindromic error in the mean and covariance estimators for the cgDNA+ internal
coordinates and the palindromic data set in order to understand the convergence
rate of the base-to—phosphate degrees of freedom. After introducing all the model
assumptions, we define the cgDNA+ parameter set format which contains only dimer-
dependent stiffness matrices and sigma vectors. As already done for the modified
cgDNA model described in Chapter 7, we allow dimer specific blocks for the ten in-
dependent interior dimers and sixteen additional for the end ones. In the case of
cgDNA+ this is necessary because the end blocks have a different dimension to the
interior blocks because there is no 5’ phosphates associated to the bases forming the
first and last base pairs. We then show how to compute a first cgDNA+ parameter
set trained on the palindromic data set. This step required the introduction of a new
computational approach due to the large number of parameters to be estimated. To
that end, we introduce the Fisher information matrix and its relationship with the
second derivatives of Kullback-Leibler divergence. We then show how to take advan-
tage of the relation between Fisher information and Kullback-Leibler divergence to
compute a good initial guess for the fitting optimization problem. In collaboration
with O. Gonzalez, we introduce a Fisher-informed gradient flow which shows very
good performance in numerically solving the fitting problem. Once the first cgDNA+
parameter set has been computed, we show how to prove that the best-fit parameter
set is, in fact, positive definite, meaning that for any arbitrary sequence the predicted
stiffness matrix is positive—definite. This exercise is not trivial as the format of the
parameter set leads to a non-injective reconstruction scheme due to a freedom in the
overlaps. Thus, the best-fit parameter set is not unique and thanks to this feature we
can take advantage of the null-space in order to prove the positiveness of a cgDNA+
parameter set. We continue by illustrating the performance of the best-fit cgDNA+
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parameter set in approximating the observed ground-states and the tangent-tangent
correlations for the Palindromic data set. Finally, we discuss the number of degrees of
freedom introduced in the cgDNA+ model compared to the improvement in the level
of approximation of the observed data. In particular, we use the Akaike information
criterion to quantify the actual gains consequent upon introducing the extra degree of
freedoms in cgDNA+. Moreover, we discuss a possible further extension of the model
by allowing additional blocks in the imposed sparsity pattern of the stiffness matrix
corresponding to local interactions beyond nearest neighbour.

Part IV is dedicated to four applications of the cgDNA+ model, and in particular to
applications which are only possible thanks to the explicit treatment of the phosphate
groups.

In Chapter 10, we start by computing the spectra of persistence lengths (apparent
and dynamic). In Chapter 11, we study packing forces computed for two different
crystal structures of the Drew—Dickerson dodecamer sequence by considering only
the external load acting on the phosphate group. Chapter 12 is all about the backbone
and in particular sugar ring puckering. In fact, from a cgDNA+ predicted ground-state
we can embed the ideal atoms for each base and each phosphate group. Then, we can
recompute the position of the sugar ring atoms which are not explicitly considered
in the cgDNA+ degrees of freedom. Consequently, we can compute the torsional en-
docyclic angles of the sugar ring and categorise its conformation using the value of
a pseudorotation phase angle. Then we can compute the backbone torsional angles
(conventionality named ¢ and ¢) which can be used to compute the conformation of
the backbone as being call BI or BII. We can then study the repartition of BI and BII
backbone configurations for each dimer according to all possible sequence contexts.
The final application in Chapter 13 is about a groove width computation. In particular,
we show how to compute and identify the major and minor grooves width for an arbi-
trary sequence by mimicking the methodology proposed in [38] but now within the
cgDNA+ coarse—grain model, which allows many possible sequence to be considered.
In particular we can study the sequence context dependence of both grooves using a
simplified yet faster method for detecting major and minor grooves widths.

The thesis is closed with a discussion of our conclusions, and outlook for further model
development and applications
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Introduction to DNA

In this chapter we introduce basic facts about right-handed B-form DNA. In particular
we cover the basic aspects of the chemical structure of the DNA that will be useful for
our modelling, as well as the main features of the double helix such as the grooves.

A DNA molecule has four nucleic bases, two purines A and G and two pyrimidines T and
C. The purines, or simply R, are bigger (two very rigid rings), while the pyrimidines, or,
are smaller (one rigid ring). In standard DNA, A pairs with T with two hydrogen bonds,
while C pairs with G with three hydrogen bonds, in both cases forming a base—pair. In
this work we will only consider these four base types along with the aforementioned
pairing, also called Crick—-Watson pairing. The double helix of the DNA molecule is
composed of two interacting anti—parallel strands. Each strand is itself composed of
repetitions of a unit called a nucleotide formed by a base, a sugar ring, and a phosphate
group. The chain formed by the repeated pattern of a sugar ring and a phosphate
group is called a backbone. It has a specific direction, given by the sugar group, called
the 5’ — 3’ direction. A DNA molecule is associated to a list of bases X € {A,T,G,C}
called a sequence, denoted here by S = X;Xs--- X, where N € N is the length of
sequence counted in number of base—pairs. The sequence is actually the list of bases
composing one of the two strands, written in the 5 — 3’ direction. That strand is called
the reading strand while its anti-parallel is called the complementary strand. In this
work we also refer to the reading strand as the Watson strand and to the complementary
strand as the Crick strand. The sequence of the complementary strand is denoted by
S = X1 X3 -- Xy where X, is the Crick-Watson complement of Xy_, ;1. Sequences
that satisfy S = S are called palindromes and will play an important role in this work.
In an idealized, first, approximation B—form DNA is a uniform double helical structure
with a straight centreline. The double helix has one full turn every 10.5 base pairs
or so, i.e. the DNA double helix as an high intrinsic twist. Moreover, the average
distance between two consecutive base—pair is about 3.4 A. The distance between the
two backbone is not constant and forms two distinct regions called the minor groove
and the major groove . The DNA grooves could play an important role in the readout
process of the sequence from the proteins. Now, the B-form DNA is far from being
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a simple uniform double helical structure, in fact the different stacking interactions
between purines and pyrimidines, and because of the different numbers of hydrogen
bonds in the Crick-Watson pairing, the sequence modulates both the intrinsic shape,
and local rigidity of the molecule in a biologically significant way.

Recapping we have presented three nucleic acid structures of the DNA:

e Primary structure: The single stranded linear chain of a string or word in the
alphabet {A, T, G, C} nucleotides represented by a DNA sequence

¢ Secondary structure: Crick-Watson pairing defining the interactions between
bases on different strands. In case of B-form DNA two strands with an overall
structure is a double helix.

e Tertiary structure: The physical properties of the double helix such as its intrin-
sic shape and its rigidity as a function of the sequence.

There is also a quaternary structure that refers to DNA—protein complexes and their
interactions. In this work the nucleic acid tertiary structure is of main interest and its
study and understanding is our major goal.

In the next sections we focus on two further different notions related to the backbone
and its chemical structure that will be of importance.

1.1 Torsional angles

The backbone is a chain composed by two main units repeated in an alternating way.
The first unit is the sugar ring and the second is the phosphate group. In figure 1.1 we
show a schematic representation of part of a backbone composed by a sugar ring and
two phosphate groups. As a first remark one can notice that the sugar ring is separated
from the phosphate group. On the right-hand side, by a single covalent bond while
it is connected by two bonds to the left hand side phosphate group. This asymmetry
identifies the 5’ — 3’ orientation using the schematic representation. In the figure we
label only the oxygen atoms O and the phosphorous atoms P while the non-labelled
atoms are carbons C and hydrogen are not shown at all. Now starting from the oxygen
atom we count the carbon atoms clockwise. In this manner the third and the fifth
carbon atoms define the 5" — 3’ direction. We have that, with respect to the sugar ring,
the left-hand side phosphate group is the 5 phosphate group while the right-hand
side one is the 3’ phosphate group. In figure 1.1 we show also six angles called the
backbone torsion angles which are related to four consecutive covalently bonded atoms.
In general, let { A, B, C, D} be a group of four atoms, the torsion angle ¢ associated to
the group of atoms is define as the angle between the plane passing through {4, B, C}
and the plane passing through { B, C, D}. In table 1.1 for each torsion angle we report
the associated group of atoms. For sake of completeness in table 1.1 we report also

4



1.2. Sugar ring puckering

Torsion angle Group of atoms
« O, —P—-0f—-Ct
8 P— 0, Ct—Cj
ol O5 —C5 — C) — Cy
5 Ci—Cy—C5—0;
£ Cy—C;—05—P
¢ C3— 03— P — 05
X O} —C] — Nyg — Coa

Table 1.1 — Torsional angle and related group of atoms. For the torsion angle x two
choices are possible for the third and fourth atoms depending on whether the base is

R or Y. In italics we report the atom number in case of a base Y and in bold in case of a
base R.

the torsion angle x which is related to the relative orientation between a sugar group
and its base. As the chemical structure of the base changes between pyrimidine and
purine, the x torsion angle is defined for two different atoms groups, both reported in
table 1.1.

The ¢ and ( torsional angles have been associated to the so called BI-BII junction
conformations which are characterised by two distinct positions of the phosphate
group [23]. The value of the difference € — ¢ identifies the conformation of the junction.
More precisely if the difference is negative the junction is in the BI conformation, which
on the contrary, if the difference is positive the junction is in the BII conformation.

0 4, En
........... 0 (a7 0 0 C’n O
7\ Bn In Z&P/ -
0/ 0 0// \0

Figure 1.1 — Torsional angle of the backbone

1.2 Sugar ring puckering

We will also need more specific features of the sugar group. One of the main properties
of the sugar ring is that, due to its chemical structure, its configuration cannot be
planar. In fact, the spatial conformations of the sugar ring are of two kinds called
envelope and twist. The envelope configuration is characterised by four atoms being
planar and one being out of plane, while the twist conformation is associated to three
atoms being planar and two being out of plane one opposite to the other. In figure
1.2 we show a schematic representation of an envelope and a twist configuration. In

5
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general we refer to sugar ring puckering any sugar ring conformation.
The sugar ring puckering can be completely characterise by five endocycling tor-

LTSN

Planar Envelope Twist

Figure 1.2 — Three possible configuration of the sugar ring: the planar which never
occurs, the envelope, and the twist. The red dots do not lay in the same plane formed
by the black dots.

sion angles normally called v,,, n = 0,...,4. The atoms forming the sugar ring are
{0}, C1, CY%, C%, C)} and the relation to the torsion angles are reported in table 1.2. Us-
ing the torsion angle we can compute a pseudorotation parameter that can be used to
infer the sugar puckering mode: the pseudorotation phase angle P. There are at least
two slightly different ways for computing these pseudorotation parameters:

tan P — S0 —O;sin(dn(i — )) 31, LD
S0 1 Bicos(im(i— 1))
tanp — —atv) = (s tvo) oo (1.2)

209 (mn ( ) + sin (gﬂ'))
Once P is computed using the arctangent in both cases it is converted to degrees. For

Name Definition

’1)001'94 C&—Oa—Ci—Cé
’U101'05 OZ-C{-Cé—Cé
’1)201'01 Ci—Cé—Cé—CZL
U301'02 Cé—Cé—Cfl—Oﬁl
’U4OI'93 Cé—CZL—OZL—Ci

Table 1.2 - Naming and definition of the endocyclic sugar torsion angles.

the second definition if P < 0 then P = P + 360°. Finally by using the pseudo-rotation
cycle in figure 1.3 the value of the pseudo-rotation phase angle is used to label the
sugar puckering modes. In either envelope or twist conformations the atoms with the
biggest displacement names the configuration and the labels endo and exo indicate in
which direction the atoms is displaced.

1.3 Rigid-body configuration of ideal nucleic acid bases

It as been observed that the bases { A, T', G, C'} are incredibly close to being rigid. Thus
it is common to assume that the atoms forming a nucleic base lie in the same plane.
During the so called Tsukuba meeting, the participants established a reference system
of the bases. For the aim of this work the Tsukuba convention [50] is the definition

6



1.3. Rigid-body configuration of ideal nucleic acid bases

Cl—exo Cl-endo

Figure 1.3 — Pseudorotation phase angle wheel. Each 36° the sugar puckering mode
changes. The label of the puckering mode is given by the name of the atoms with the
biggest displacement and the direction of the displacement is named endo or exo.

of idealised nucleic acid bases described by a pair composed by an atom type and
associated three dimensional Cartesian coordinates. For the sake of completeness in
the appendix we report in table A.1 the detailed Tsukuba convention.

The rigidity assumption implies that a single base can be interpreted as a box con-
taining the atoms. A box can be described by a single point called the reference point
and its orientation. In the context of the ideal bases of DNA [38] described a proce-
dure to compute the ideal base reference point and the ideal base orientation. For
completeness we report the entire procedure in [38], but we first make two remarks.
The first is that the procedure is mathematically the same for purine and pyrimidine
bases, but the atoms to be used vary between the two base types. In table 1.3 we report
the parameters used in the computations. The second remark is about mathematical
notation of the configuration of a rigid object. In particular its orientation is expressed
by a proper rotation matrix R € R3*3 and its position is given by a three dimensional
vector r € R. In this work we will denote by g = (R, ) a rigid-body configuration of
arigid object. The mathematical object g will be better introduced and discussed in
the next chapter, as well as the definition of proper rotation matrix. In the following
paragraph we present how to compute the rigid-body configuration of an ideal basis,
whose atoms coordinates are given by the Tsukuba convention.

Leta,b € R3 and d € R, compute Rs = a x b, where x is the vector product, then
define R3 = Hgill and c = dﬁ, where d € R and ||-|| is the euclidean norm. Compute
r = Q(Rs, 71 )c where Q(Rs3, 1) is a matrix which rotates the vector c around the unitary
axis I3 thought the angle ;. In section 2.1 we give explicit formula for computing
Q(R3,m1). Next we compute Ry = Q(R3,72)c, Ri = Ry X Rs, and Ry = Hg—z”. The
base reference position is given by € R while the base reference orientation is given
by the matrix R which column are the unitary vectors R,,, n = 1,2, 3, denoted by
R = (R1|R2|R3).
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parameter | definition
a z(Nyj9) — x(C1)
b 2(N1s9) — 2(Cz/a)
d 4.702 A
T 2,4691 rad (141.47°)
T1 -0,9496 rad (-54.41°)

Table 1.3 - Definition of the parameters used for the computation of the base reference
point and base reference orientation. The notation z(A) stands for the Cartesian
coordinates of the atoms A given by the Tsukuba convention [50] table A.1.

Finally in table 1.3 we report the definition of all the parameters that have been used
in the above method. Finally let aX € R3"x be the set of nx ideal atom coordinates for
the base X € {A,T, G, C}. With the above procedure we can compute the rigid-body
configuration gX = (R, rX), thus for each base we have the following couple (a*, g*)
of ideal coordinates and ideal rigid—body configuration.



2 Mathematics behind coarse-grain DNA

models

This chapter is dedicated to the main mathematical notions that will be used through-
out this work. More precisely we first introduce basic mathematical notation for matrix
and probability calculus. Then we focus on the special euclidean group SE(3) for
which we describe the structure and most important properties that will be useful here.
We then apply the SE(3) group to the coarse—graining process of double stranded
DNA by presenting briefly a classic polymer physics model, and an introduction to
persistence length. We continue to the mathematical modelling of more realistic DNA
by presenting the bichain representation of double stranded DNA introduced in [21].
We denote A, B € R™*" two real n times n matrix, and use the following notation

A: B =trace(B"A) = ) AyByi, 2.1)
i,j=1

for the Frobenius inner product, where the subscripts indicate the ij entries of the
matrices, the superscript 7 indicate the transpose matrix, and trace is the usual trace
of the matrix. The norm induced by the Frobenius inner product will be denoted

Al = VA: A, 2.2)

and will be called the Frobenius norm. The Frobenius inner product (2.1) is related
to the Euclidean inner product by vectorising both matrices A, B € R"*" using the
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following rule

vec(A) = | Ay, |, (2.3)
Ay

ATLTL

so that we have the equivalence of inner products
A: B =vec(A)-vec(B). (2.4)

The determinant of the square matrix A is denoted simply | A|. The principal square
root of a matrix A is defined by Az. The expectation of an observable F' : R — R™
with respect to a probability density function is

(Plu)), = [ Flup(w)dv. 2.5

A multivariate normally distributed random variable in R™ will be noted by X =~
N(u, C), where ;i € R™ is the mean and 0 < C = CT € R"*" is the covariance matrix.
The probability density function of X will be denoted by
1 1
plwip, K) = — exp{~5 (w—p) - K (w = u)}, (2.6)
Z = |2rC| 2, 2.7)

where K = C~!is called the precision matrix, or, in the context of this work, thestiffness
matrix. Depending on need, sometimes a more pertinent parametric notation for p
will be used, more precisely,

p(w; p, K) = p(w; 0), (2.8)

where § € R"*"” is a vector containing all the entries of ; and K. We will use the
following notation

e R (2.9)

0 := param(u, vec(K)) = [veclzK)

For the sake of simplicity in this work the vector # contains all the entries in K even if
in the case of Gaussian probability distributions the precision matrix is symmetric.

10



2.1. The groups SO(3) and SE(3)

2.1 The groups SO(3) and SE(3)

We start by introducing the special orthogonal matrix group denoted SO(3) that is
defined by

SO(3)={RecR¥*>3RTR=RRT =1, |R| = 1}, (2.10)

where I € R3*3 is the identity matrix. The group SO(3) represents the group of all
proper rotations in euclidean space. Rodrigues’ rotation formula [61] characterises a
right-handed rotation around the unit vector x through an angle 0 < fleqm:

R(x,0) := I +sin(8)[zx] + (1 — cos(h))[zx]* € SO(3), (2.11)

where [-x] : R? — R3*3 denotes the linear mapping defined by

0 —xI3 xT9
[tx]=| 23 0 —=z], 2.12)
— X9 T 0

for any arbitrary vector 2 € R3, called the skew-operator . Clearly, if S is a skew matrix,
we have that S = [ux] with u = (S33 S13 So1) € R3. As SO(3) is a Lie group it admits a
linear algebra, denoted by so(3), defined by

s0(3) = {S € R*3|S = [xx], with z € R3}. (2.13)

Hence, so(3) is the set of all three dimensional skew matrices. In Lie group theory the
Lie group and the Lie algebra are related by two transformations called the exponential
and the logarithm. The exponential map, exp : so(3) — SO(3) is defined by (2.11)
where for any u € R3, exp([ux]) = R(z, ), where 0 is the norm of v and x = u/0. We
stress the fact that the mapping exp is defined for any arbitrary vector « but exp([ux]) =
exp([ax]) where |i| = |u/mod(27). The logarithm map is, instead, defined by log :
SO(3) — so(3):

— 4 _ pT
log(R) = 55n(d) (R—R"), (2.14)

where 6 satisfies 1+2 cos(f) = trace(R) and log(R) = [ux] with ||u|| = 0. For SO(3) both
mappings are in fact the actual matrix exponential and matrix logarithm functions.
Another parametrization for rotations of interest in this work, is the Cayley vector
representation in the specific sense defined in [36] [55] . Let cay : R? — SO(3),

cava(m =T+ —22 (Lo L px?) acr 2.15)
yan - 4Oé2+|77|2 an 2a2n Y . .

11
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For n € R? with ||n|| = 2« tan(g) we have that cay,(n) = R(z,0) where x = ﬁ The
scalar factor « in (2.15) is in general equal to one but in the context of DNA o = 5. The
inverse transformation cay—! : SO(3) — R3is

cayy ' (R) = 27avec(R — R (2.16)

« 1 + trace(R) ' '

Depending on the context we will use both parametrisations of the rotation group.
The matrix group SO(3), being a Lie group, is also equipped with a differential structure
and thus, for a differentiable curve R(t) C SO(3), for t € R we have that

d
SR() = [0, X]R() @17)

= R(t)[¢a(t)x], (2.18)

where ¢4(t), pa(t) € R? are the Darboux vectors. The Darboux vector ¢,(t) satisfying
(2.17) for all ¢ is called the left infinitesimal generator while ¢4(t) satisfying (2.18)
is called the right infinitesimal generator. For the SO(3) Lie group, left and right
infinitesimal generators satisfy the following relationship

R(t)pa(t) = ¢g(t), Vt. (2.19)

The homogeneous matrix representation of the special euclidean group, denoted by
SE(3), is the Lie group of rigid body transformations defined by

R r

o 1| = (R,r)with R € SO(3) and r € R3} . (2.20)

SE(3) = {g e RY|g =

where, for an arbitrary element g, the rotational part is represented by the matrix R
and the translational part is described by the vector r. The product of two element in
SE(3) is given by standard matrix multiplication, i.e, for g,, g8, € SE(3),

RiRy Ryra+
A R (2.21)
0 1
while the inverse of a rigid body transformation g is given by
RT —RTy
= 2.22
& 0 1 ( )

The Lie algebra, denoted se(3), is defined by

[ux] v

se(3) = {T eRYT =T(¢) = [ 0 0] , with ¢ = (u,v) and u,v € R3} , (2.23)

12
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where we can introduce the operator 7 : R® — R*** defined by

T = [[UOX} g] , with ¢ = (u,v), (2.24)

so that an arbitrary element 7' = T'(¢) € se(3) can be simply written as 7'(¢) = T ¢.
The operator (2.24) is called the tangent operator and admits a unique adjoint operator
T* : R*** — RS defined by

(X x)  [Vect(X)
(55 ().

where
X3z — Xo3
Vect(X) = | X153 — X1 |, VX € R3S, (2.26)
Xo1 — X192

Let g € SE(3); then we define the right infinitesimal generator as

d_ _ _ [RO[6F()x] R(t)ey(t)
8= 8T¢a= [ 0 0 ] : (2.27)
and the left infinitesimal generator of g as
R R T
g 76,08~ [wg ORG) [9xIre) +9 <t>] | (2.28)

Just as for the SO(3) group we have a linear relationship between left and right in-
finitesimal generators

. R(t) 0
t) =Ad t th Ady(, = t. 2.29
The Ad operator has two useful properties
Adg g, = Adg Adg,, (2.30)
RT 0
—1 . o
Adg' =Adgr =| 7 rx] RT| (2.31)

Letnow g, (t),8,(t) € SE(3) withleftinfinitesimal generator defined by ¢, 1) (%), ¢(4,2)(t),
ie

d .
8= T g0 (t)8;(t), i =1,2. (2.32)

13
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Assume now that g(t) € SE(3) satisfies £g(t) = T ¢,(t)g(t) and that it can be written
as g(t) = g,(1)8,(t). We can relate ¢4(t) to ¢, ;) via the equation

Gg(t) = d(g,1)(t) + Adg, (1)B(g,2) (1) (2.33)

and by using equation (2.29) we can rewrite the above expression for the right infinites-
imal generator, namely

$a(t) = Adg-1 () P(a,1) (1) + P(a,2) (1)- (2.34)

We now briefly introduce the natural exponential map, Exp : se(3) — SE(3) as defined
in [12]:

(2.35)

exp(u) ([ + UmeosO) ] 4 (9#0“(9))[%”2) v]
0 1 ’

Exp(T¢) = [

for ¢ = (u,v) and 0 = |u|, x = %, and exp(u) as defined in (2.11) and (2.35) is in fact
equivalent to the standard exponential for matrices of the form 7¢. The standard
definition is used to define the neighbour rigid body transformation of a given one,
noted g, by truncating the power series at a chosen order, for example the second order
(left) approximation of a neighbour of g is defined by

g§= <I+T¢g + ;<T¢g>2)g+0<r¢912>. (2.36)

We refer to [21] for more detail about matrix calculus.

2.2 Polymer physics and persistence length

A polymer can be modelled by a linear chain of rigid bodies represented by a set of
rigid body configurations g = {g,}", € SE(3)", withg, = (R,,r,) € SE(3). One
classic observable in polymer physics is the relative rigid body displacement

0 1

RYR, RY(r,— ro)]
where g, = (Ro, 70) is a reference frame that usually is taken to be away from the end

of the chain. It is common to define from (2.37) two different expectations:

the Flory vector [17]: (RZ (r,, — r0)), (2.38)
tangent-tangent correlation : <(R0TRn)(3,3)> = (tg - tp), (2.39)

where (-) denotes the expectation with respect to an underlying equilibrium distribu-
tion. We observe that both expectations are functions of the chain index» > 1 and are
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2.2. Polymer physics and persistence length

respectively a vector and a scalar.

A classic simple polymer model is the discrete version of the Kratky-Porod wormlike—
chain (WLC) [64] [32] where the chain is assumed to be composed by rigid links and
with the same length b, in such a way that the configuration of an NV long polymer

chain can be described by means of a set of unitary tangent vector {t,}""!, where
1
t, = g(rnﬂ —ry,). The free energy associated to the WLC is assumed to be
N-1
B
32 (1=t tu1) (2.40)

=1

3

where B is a constant bending rigidity parameter. We remark that the ground-state, or
state of minimal energy, of such a model is intrinsically straight, meaning that all the
unit tangent vectors are aligned. We further assume that the equilibrium distribution
of the WLC is Boltzmann, i.e, it can be written as p(g) = exp{3E(g)} with 371 = k,T.
With this simple model, both the Flory vector and the tangent-tangent correlation
functions, can be computed analytically:

(Rf (rn —10))p = by <1 — exp (—Z)) es, (2.41)
D
(to - t,), = exp <—Z> : (2.42)
P

where e3 = (0,0,1)7, and the exponential decay parameter ¢, is called the persistence
length, here expressed in base—pairs. Moreover, in the WLC model we naturally find
that b/, = 5B which represents the persistence length in arc length units of b. As a
last comment we stress that both expressions in (2.41) are exact in the continuous
limit of the WLC model, for which the quantity b/, stays constant while b — 0, N — oo,
Nb — L,and nb — s € [0 L], where L is the length of the polymer in arc-length units.
In the context of DNA the chemical composition of the polymer chain is a function of
a specific sequence S in the {A, T, G, C'} alphabet which implies that both the Flory
vector and the tangent-tangent correlation function will be function also of S. For more
detail we refer to [18] [45]. Hereafter we briefly introduce the sequence dependent and
sequence average generalization of (2.41):

06(8) = Tim [[(R (v — 7)1l o (g ) Fow @
Tr = lim | {RY (r — o)}, oo (L) =), 2o
P

where {-}, is an average over an ensemble of sequences, ¢ (S) is the sequence-dependent
Flory persistence length, (. is the sequence average Flory persistence length, (,,(S) is the
sequence—dependent persistence length, (,, is the sequence average persistence length,
and ~ signifies that ¢, (S) is the negative reciprocal of the slope of the linear fit through
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Chapter 2. Mathematics behind coarse-grain DNA models

the origin of log((t,, - ty)) vs n. For sake of simplicity ¢,(S) will denote the tangent—
tangent correlation persistence length and we do not introduce a specific notation for
that. But, it should be remarked that, /(S) and ¢,(S) are now not in principle the same
due to the non-trivial intrinsic shape of DNA. For example it is known that sequences
containing phased A-tracts [44] [65][60] tend to have a high intrinsic curvature which
implies a non-linear decay in the log-tangent-tangent correlation leading to a poor
approximation of /,(S). In section (4.3), we will present a few examples of computa-
tions of /,(S). Furthermore, in [18] [45], the concept of dynamic persistence length is
presented and studied. In [74] the authors proposed the following sequence-averaged
decomposition of the persistence length:

1

==+

1
— = — 2.45
T (2.45)

1

E)
where, following [45], Zp is renamed to the apparent persistence length, (, is the static
persistence length, and / is the dynamic persistence length. Equation (2.45) states that
the apparent persistence length can be decomposed into two contribution, a static one
related to intrinsic shape, and a dynamic one related to thermal fluctuations. The static

contribution can be computed as the sequence ensemble average of the deterministic
form of (2.44),, defined by

exp (—Z) ~ {t, - t}, (2.46)

where t, is evaluated on the ground-state configuration for each sequence in the
ensemble. Finally in [45] the authors generalized the sequence-averaged dynamic
persistence length of [74] in the following sequence—dependent dynamic persistence
length

(t, - to) exp <_€d?8)> ~ (t, - ). (2.47)

Hence, /4(S) can be computed from the linear fit of a plot of In(t,, - t) — In(t,, - ty) as
function of n. The quality of the latter fit has been shown [18, 45] to be always better
then its analogous (2.43), which make /;(S) more robust as a proxy for the "rigidity" of
different DNA sequences.

2.3 From atoms to rigid-bodies

In this section we present the classic approach underlying the coarse-graining of
double stranded DNA molecules. The first step is to set the level of coarse graining to
consider in the model, meaning that some group of atoms will be considered as part of
the same unit and others will be not explicitly considered in the model. For example
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2.3. From atoms to rigid-bodies

we will consider that each base of the DNA molecule is an individual rigid unit. In the
following we will present the standard methodology used to associate a rigid—-body to
each unit. Consider two set of atoms coordinates a* = {a;*}7, and p = {p;} ", with a
one-to-one correspondence between a; and p;, in the sense that they represent the
same atom type. We will refer to a as ideal atoms and to p as observed atoms and we
are interested in associating a rigid body to the observed atoms. In the DNA context
the ideal atoms are fixed coordinates for each type of bases and are planar. In [50] the
authors give the list of atoms type and Cartesian coordinates forming the ideal bases
for the nucleic acid bases A, T, G, and C. Moreover, in [38] the authors give a way of
associating a rigid body g, to each ideal atoms groups a. In general, for the ideal atom
group a we have a couple (g,,a) where g, € SE(3) has the matrix form described in
(2.20). Now, mathematically the assumption of rigidity of the observed atoms p imply
that there exists a rigid—body transformation g = (R, r) € SE(3) such that

q = Ria; +7r;, Vi=1,...,m, (2.48)

with (R, r) satisfying
(R,r)= argmin > |lg — pill”, (2.49)
QESO(3),teR3 12,
and finally we compute the rigid body associated to p by right rigid body transforma-
tion

g’ =gg,, (2.50)

where g = (R, 7). The least square system (2.49) can be solved by defining S = XY7”
where the column of X and Y are given by

1 m

X, =a; —a, izl,...,m,ﬁzEZai,
k=1
1 m

}/Z:pz_ﬁ) izlu"'vmap:m;p%

and by computing the singular value decomposition of S = UX V7. Then the rotation
matrix R is computed as

10 0
R=VDUT withD= |0 1 0 :
0 0 ||[VUT|
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Chapter 2. Mathematics behind coarse-grain DNA models

where ||[VU?|| = 41 guarantees that R € SO(3). Finally the translational part r is
r=p— Ra.

For all the details about the derivation of the above computation we refer to [67].
Let us consider a NV base—pair long DNA fragment with sequence S and assume that

p(S) = (pl, R ,pL)(S) S RBL,

with p; € R? is the Cartesian coordinates of the i—th atom and L the total number of
atoms in the DNA. We first coarse—grain p(S) by forming units with some of the atoms
and by neglecting the rest. For example, by coarse—-graining at the level of single bases,
we obtain the following map

r(S) = (Px,Px) = (P,...,pXV, p%, ... p*V) e R¥, (2.51)

where S = X1 Xy Xn, X; € {A,T,G,C}, p¥i = (p{(i, .. ,an;) € R3" are the atoms
considered for the base X;, X denote the Crick-Watson complementary base of X,
and ¢ = Zi]\il (n; +m;). We can now apply (2.49) to (py, Px) in the following way

R (Px.Px) = (8- 8N 8- .BN) = (8", 87)(S) € SE(3)*, (2.52)

where g and g are the rigid body associated, respectively to p*» and p~X» computed
by (2.50). In the context of rigid-base modelling of DNA it is in fact more convenient to
work with both base frames having the d3 axis along approximately the same direction,
see figure 2.1, thus we introduce the matrix P € O(3) defined by

1 0 0
P=0 -1 0], (2.53)
0 0 -1

and we define

R (px.Px) = (87.87)(S) € SE(3)*, (2.54)
where
g, = (R, ,r) = (Ry P,7t),vn. (2.55)

As a final remark, we stress the fact that the mapping R is not invertible because a
least square fitting is involved. But the atomistic resolution of only the coarse-grain
units, can be retrieved approximately by using the transformation described in (2.48).
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2.4. Bichain interpretation of DNA

[ o

Figure 2.1 — Example of rigid body, in black, fitted to two complementary bases. In
the context of rigid-base coarse-graining, it is more convenient to rotate the frame g
along the d; axis by P € O(3), see (2.53) and (2.55), to obtain the blue frame .

2.4 Bichain interpretation of DNA

When coarse—grained to the level of bases, a molecule of double stranded DNA can
be interpreted as a double chain of rigid bodies. In this section we will recall the basic
concept and notation for rigid-body double chain configurations and we will present
its relationship to the bichain representation of coarse-grain double stranded DNA.
More detail can be found in [21].

Formally, a rigid—-body double-chain configuration is denoted by the couple

g".87)=(g .85.....8%.8.8,....8y) € SE(3)*".

In the context of DNA g+, g~ represent respectively the reading strand and comple-
mentary strand where each strand is described by a single chain of rigid bodies. A more
convenient way for interpreting a molecule of DNA is in fact the rigid—body bichain
interpretation. A bichain configuration of a N base—pair long fragment of DNA can
be described by a macrostructure and a microstructure respectively noted g and P.
Hence (g, P) € SE(3)*" will be used to denote a bichain configuration. In the DNA
context, the macrostructure configuration g = (g;,...,8y) € SE(3)" describe the po-
sition and orientation of each base-pair along the molecule, while the microstructure
configuration P = (Py,...,Py) € SE(3)" describes the relative configuration of the
complementary bases in the same base—pair level. Clearly, the microstructure configu-
rations do not form a chain and this concept can be useful in some applications.
From coarse—grained MD trajectories we actually observe times series of double chain
configurations of DNA, but there is an invertible mapping between both interpreta-
tions. Indeed, for any double chain configuration we can define the invertible mapping
R:SE3)2N — SE(3)2N defined by

Rl(gh,g7) = (8. P), (2.56)
where
— 1T p+\2 1.+ —
8, = (Rn,mn) = R"([R"O] B2 Q(T”jrn) : (2.57)
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Chapter 2. Mathematics behind coarse-grain DNA models

where g, represent the nth base—pair rigid body along the chain. Its definition is in
fact the half point along the geodesic going from g, to g, when the left invariant
Riemannian metrix is considered. The microstructure, instead, is defined as the rigid
body displacement between the two strands at the same base—pair level, i.e,

[R,1"R} RE(r}t —ry)

0 1 (2.58)

Pn = (Pn,pn) = g;gz =

2.4.1 Internal coordinates for (g, P)

We can now introduce the set of internal coordinates for a bichain configuration. In
this representation the internal coordinates naturally split into coordinates for the
macrostructure and coordinates for the microstructure. For defining the macrostruc-
ture coordinates, also called inter coordinates, we have to introduce the inter base-pair
junction displacements

_ Qn n
ap = [ 0 1] (2.59)

that satisfy g, ; = g,a,. The inter coordinates are, in fact, a parametrization of
the junction displacement. Hence, let z,, = (u,,v,) € R® be a set of coordinates
parametrizing a,, = a,(z,) = (Qn, ¢»)(x,) Where
Qn = Quy) = cayo(uy), a =5, (2.60)
1
gn = Qn(umvn) = Qi(un)vm (2.61)

where cay, is defined in (2.15). Finally we have a reconstruction rule for the chain part
of the bichain representation,

x = (x1,29,...,2y) € ROV s o) = (g,,...,8y) € SEB)Y, (2.62)

by using the formulas

811 = 8uon =8 |- 2.63)

=1

The set of internal coordinates for the microstructure will be called, intra base-pair co-
ordinates. They parametrise the intra displacement defined by P,,. Let y,, = (n,,, W,,) €
RS be the intra coordinates parametrising P,,, then they satisfy

P(yn) = 0 1

P(nn) P(nn)QWn] 7 (2.64)
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2.4. Bichain interpretation of DNA

where
Py = P(n) = caya(nn), a =5 (2.65)
Pn = pn(nmwn) = P(Un)%wn (2.66)

Finally, by defining

(2,9) = (y1,21,Y2, - - -, TN-1,Yn) € RZNV6 (2.67)

as the bichain internal coordinates we can formally write an invertible reconstruction
rule for a bichain R : R12V=6 — g (3)2V

(z,y) = (8 P)(z,y). (2.68)

The inverse map, noted [9%¥]~!, can then be used to define a mapping between any
double chain configuration and its bichain internal coordinates, which we will denote
by R : SE(3)V — R12V-6  defined by

R(ghg) =Rl (ghg)) = (z,9). (2.69)

2.4.2 Internal Energy for (g, P)

In this paragraph we introduce and discuss the internal energy for bichain con-
figuration along with its first variation, will be important later in this work. But
before we present the results for the bichain we will briefly introduce the equilib-
rium conditions for chains. The equilibrium conditions for a set of rigid bodies
g = (g, -,8v) € SE3)N, g, = (Ry,m) € SE(3), can be written, in a short for-
mat, as

—tin+1(8) + n(8) + A\n=0,Vn=1,...,N (2.70)
with
= mn*;" XM cRe ) = °"+;” bl CR6 o N @71

and py = pun41 = 0.

where m,,, n,, € R? are respectively the total internal couple around r,, and internal
forceon g, from the downstream (along the chain) rigid-body g,,_,. The corresponding
external loads are denoted c,, € R? for the total external couple, around r,,, and f,, € R?
for the total external force acting on g,. Moreover, we set 1 = pn4+1 = 0. The
mapping g — un(g), Yn = 1,..., N, is called the local chain constitutive relations
which together with equations (2.70) form the equilibrium conditions for the chain
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Chapter 2. Mathematics behind coarse-grain DNA models

g= (8, -,8y) € SE(3)". Hereafter we will introduce the local energy for bichains
configurations, compute its first variation and relate it with the balance laws (2.70).
Let us consider a configuration (g,?) € SE(3)2". The bichain internal energy E :
SE(3)N — R for (g, P) of interest is of the form

,P) = Z wn(Pn7 anapn+l>7 (2.72)

in particular, the energy (2.72) has local energy contributions defined at the junction
level 7, = (Py, an, Pn+1). We will refer to this type of energy, with this particular local
interactions, as a nearest neighbour interaction energy. It will be shown to play a major
role in the modelling of DNA, see for instance chapter 4. The first (left) variation of the
internal energy (2.72) reads:

DlE(g7 P)(Gv 073) = DZE(g7 'P) -0 + DZE(gv P) : 073" (273)
where

DIE(g,P)-© = Z —ttn11(8) + 1in(8)) - On, (2.74)

DE(g, P Z pl, - (2.75)
and

6gn:T6ngn’ 9:(‘91’”-7‘91\7)’

6P, = TOIP,, ef = (e7f,...,e%),

pns1(8) = Adg | T* (Da,wnal) € RS, 1 = iy =0, (2.76)

= T* (0p, (wy, + w,—1)Py ) € RS (2.77)

It has been shown in [21] that the configuration (g, P) € SE(3)?" that makes E sta-
tionary, under certain geometric constraints on (g, P), satisfy forn = 1,..., N, the
following bichain balance laws

—Hn+1 (g) + Hn (g) O (2.78)
=0, (2.79)

where the first equation is directly related to the equilibrium conditions for the chain
g = (8, ---,8y) € SE(3)Y, and the second equation is the equilibrium of the mi-
crostructure represented by the intra rigid body displacement P = (Py,...,Py) €
SE(3)N. These two conditions, and in particular the chain part, can be generalized
also to allow external forces and, thus, the equilibrium conditions (2.78) can be rewrit-
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ten has
(DiE(g, P) + A(g)) - 0 + DiE(g, P) - ©F =0, (2.80)
(g, P) € C8 x C, (2.81)
V0 € DC8 and VO” € DC” (2.82)

where C8 and C” are the set of geometric constraint that prescribe a fixed value to,
respectively, a subset of rigid bodies in g and a subset of intra displacements of P. The
geometric constraints define then the spaces of admissible variations DC# and DC”
where, for example,

DC® = {0 € RV |9, = 0if g, is prescribed }. (2.83)
In practice the bichain energy is in general given in term of internal coordinates
w = (x,y) in the following form

N-1
E(z,y) = Y wn(Yn> Tn Ynt1), (2.84)

n=1
which leads to the computationally tractable formulas
pnt1(g(x)) = Adg 'L, 70, w, € RS, (2.85)

pl =1L,70,, (wn +wn_1) € R, (2.86)

The matrix L, has been derived in [21] with respect to the internal coordinates used in
[55]. For z = (u,v) € RS,

]Pl(u) 0
Ly=1| 1 1 , 2.87
QHoxIPa(u) Q2<u>] o
with
40 1 1
Po(u) = (I v Q%(u))_l P (). (2.89)

The matrix Adg s defined in (2.29).
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On molecular dynamics simulation proto-
cols and analysis

3.1 Potential and force field

Molecular dynamics (MD) simulations are nowadays widely used for the study of both
naked DNA in solution and of DNA-ligand complexes as they allow, in a comparatively
short amount of time, the computation of a large number of atomic trajectories. Times
series of microsecond, in simulation times, or billions of time steps are now standard
thanks to the improvement from both a software and hardware engineering point of
view. Given a potential energy E : R3" — R, with L >> 1 representing the total number
of atoms in the system, MD simulation use numerical methods to integrate Newton’s
second law of motion
0 d?

——U(r1,...,rp) = mlﬁ

o ri,Vi=1,...,L, 3.1)

where r; € R? is the Cartesian position of the ith atom, m; € R its mass, and — a% U(r,...

F; € R3 the force acting on it. In past years a lot of effort has been put in the derivation
of accurate potentials U and consequently the derivation of the force field F' [59, 24].
Let us consider a number L of atoms, and letr = (rq, ..., ) be their Cartesian coordi-
nates. The potential energy U (r) is in general assumed to have two distinct contribu-
tions: an energy coming from covalently bonded interactions, denoted by Uy (r), and
anther potential coming from non covalently bonded interactions, denoted U,,;(r). The
potential energy U, (r) is in general defined by

Up(r) = Y ky(dp—dp)*+ Y ka(ba—0a)*+ > %(l—kcos(ndgﬁd—&d)), (3.2)

bonds angles dihedrals

where the first term is a harmonic potential modelling the elastic energy of a covalent
bond, the second term is again a harmonic potential modelling the elastic energy of
angles between two bonds, and the last term accounts for the contribution of dihedral,
torsion, angle potentials. In figure 3.1 we show a schematic representation of the three
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different terms. In [39] one can find the detailed definition of all the parameters.

Figure 3.1 — Schematic representation of four atoms, numbered from 1 to 4. The
dihedral angle between the atoms [1 2 3 4] is denoted ¢4, the bond angle between
atoms [2 3 4] is denoted by 6, and the bond distance between atoms [3 4] is denoted by
dp.

The non-bonded energy potential in general reads

Aij  Bij 4i4;
i<j 4 ij i<y Y

where the first term is the van der Waals force accounting for the attractive and repul-
sive forces between a pair of atoms approximated by the Lennard-Jones potential, and
the second term is related to electrostatic interactions between atoms and is repre-
sented by the Coulomb potential. Again in [39] the reader can find all the details about
the parameters in (3.3). For the full atomistic simulation of DNA the most commonly
used simulation programs are AMBER [53, 11] and CHARMM [10].

3.2 The ABC collaboration and simulation protocol

The Ascona B-DNA consortium, or ABC, was an international collaboration between
groups with the aim to build a shared pool of MD trajectories of linear fragments
of DNA, which we will refer to as the ABC data set. The consortium designed a set
of 39 sequences of length 18 base—pairs in such a way to have multiple instances
of all independent 136 tetramer sub-sequences without counting the end dimers.
In table B.1 one can find the complete list of sequences. An important goal of the
ABC collaboration was also to establish a single, consistent, MD simulation protocol
to be used in all the 39 simulations. In table C.1 we report the most pertinent, for
this work, parameters of the ABC protocol. The ABC collaboration lead to a series of
four articles [52, 37, 8, 15]. The most recent analysed a set of one microsecond MD
simulations of the ABC library. The main conclusions of [52] are that there are indeed
strong sequence effects at the tetranucleotide level on the distributions of the standard
helical parameters, as was already previously observed in shorter duration simulations,
and that microsecond simulations are apparently long enough for the statistics of
many observed quantities to have converged. The longer simulations also confirm a
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phenomenon observed in the previous shorter duration ABC simulations [37, 55, 19],
namely that within some sequence contexts, histograms along the time series of some
of the standard 12 DNA helical parameters deviate in a noticeable way from Gaussian
distributions. The long simulations of [52] allowed the authors to characterise the
deviations from Gaussianity in terms of type of helical parameter and of dinucleotide
step in the purine-pyrimidine alphabet (R/Y"). More precisely, only three of the helical
parameters, namely shift, slide and twist, and only at junctions that are either RR
or Y R dinucleotide steps deviate from Gaussianity, but never at RY steps. The non-
gaussianity is related to a double-well phenomenon at both RR and at Y R steps, with
the relative occupancies of each well strongly linked to the tetranucleotide flanking
sequence of the given dinucleotide step. Moreover the well occupancies are very highly
correlated with a bimodal behaviour of a specific phosphate group (corresponding to
the so-called BI-BII transition of the local backbone angles), with the phosphate being
in the junction between RR steps, and in a neighbouring junction for Y R steps. The
BI-BII transition has been investigated in more detail in [4, 5].

3.3 Analysis of trajectories

The ABC data set comprises a large number of MD trajectories that can be used to
compute, firstly time series of rigid body double chains, and secondly time series
of internal coordinates. Hence, for a sequence S in the ABC data set and for each
snapshot k£ one can compute

R (r(k) (5)) = (g".g)P[S] € SE(3)?, (3.4)
% ((g".87)WIS)) = (@) M(S] = w(8) e RV, 3.5

where R was defined in (2.54) and i in (2.69). Finally for each sequence we obtain
a time series of internal coordinates denoted by {w*)(S)}M ,, M > 1. We can now
compute two standard statistics, namely the first and centred second moment, or
covariance matrix, by computing

1 M
()= 5; > wh(s), (3.6)
n=1
M
c(S) == % > wP(8) — 1(8)" (Wi (S) — @(S)), (3.7)
n=1

(the fact that the estimate (3.7) with weight - is biased is inconsequential for us as
M ~ 10). As both estimations are done for each sequence separately we will refer to
the couple (w, C)[S] as oligomer-based statistics.

Two natural analyse can be done on the oligomer—based statistics: the first has been
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already mentioned in section 3.2, namely the study of the one-dimensional marginal
histogram for each component of the helical parameters, the second is the study of the
inverse of the covariance matrix, or precision matrix or, for us stiffness matrix. For both
cases we show an example in figures 3.2 and 3.3. The sparsity pattern of the observed
inverse covariance is close to 18 times 18 block diagonal with 6 times 6 overlaps. This
behaviour can be observed for any arbitrary sequence, and played a central role in
the derivation of the cgDNA model, see [55, 19] and chapter 4 of this work. In the
next section we will show how to impose the pattern to the observed stiffness matrix.
The one-dimensional histograms reveals that some of the helical parameters deviate
noticeably from Gaussian. As already presented in section (3.2) the non-gaussianity
appears only in the inter-base—pair parameters and for just for some of the helical
parameters. For those parameters the deviation from Gaussianity can be characterised
in terms of its junction step expressed in the purine-pyrimidine alphabet, and in term
of the flanking sequences. The histograms are then quite consistent independent of
the location of the given tetranucleotide sequence contest provided it is sufficiently far
from an ends.

1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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Figure 3.2 — Portion of the inverse covariance matrix observed from 1s simulations for
sequence Sy, see table B.1. The black lines highlights the sparsity pattern correspond-
ing to nearest neighbour interactions.

The computational estimation of higher moments in a high—-dimensional space, such
as RV =6 with N = 18 is far from being a trivial exercise. We therefore, consider only
the two first moments; the mean and the covariance. For example for a sequence S
in the ABC training set we have, thanks to the maximum entropy principle [42, 25, 26,
27, 20], that the Gaussian distribution p(w, (S)) with §(S) = param(u, C~1)[S] is the
distribution that maximizes the entropy function S, defined by

S(p) = — / p(w) log p(w)dw, (3.8)
R12N—6
under the constraint that the distribution matches first and second observed moment,
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Figure 3.3 — We present four examples of histogram computed for a one dimensional
marginal for sequence Sy, see table B.1. The top line corresponds to inter-base—pair
coordinates, while the second are intra—base—pair coordinates. In the first column we
show the rotational coordinates while in the second the translations.

i.e, under the constraint that the distribution belongs to
C(S) = {p(w)| ()p =1, (w)p = p, ((w— )" (w—p)=C}. (3.9)
More precisely

p(w,§(S)) = argmax S(p). (3.10)
peC(S)

In an equivalent way one can also estimate the distribution p(w, (S)) by means of
maximum likelihood estimation. The main difference between the two estimation
procedures is that in the maximum entropy principle we do not assume a priori that
the solution is a Gaussian distribution, while for maximum likelihood we assume a
normal distribution in order to have a tractable problem.

3.3.1 Hydrogen bond filtering

First and second moments are estimated from a time series of internal coordinates
(2.67) extracted from MD simulations. We recall that the rotational components are

29
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computed using the Cayley vector transformation (2.15)). If the relative rigid—body
rotation is closely to being a rotation through 7, the norm of the corresponding Cay-
ley vector tends to the infinity. Such problems arise in the MD simulations of DNA
especially close to the ends of the molecule, where, depending on the end dimer, the
two strands can open and the base—pair hydrogen bonds are consequently broken
quite frequently. In order to avoid significant bias in the estimations of the moments,

----------- G

O T

Figure 3.4 — Schematic representation of the hydrogen bonds between G and C, left,
and between A and 7, right. The yellow circles highlight the atoms that are considered
in the filtering process.

we introduce a filtering step in post—processing the time series data which detects
and discard snapshots with fraying ends or any other anomaly which could lead to
very large Cayley vectors for that configuration. The procedure simply computes the
distances dyp and the bond angles 65 between the atoms forming the base—pair
hydrogen bonds of all the base—pairs in the molecule. Then a hydrogen bond of a
base—pair is declared broken if 1) dyp > 4 A or 2) Oy > 120°. We discard all the
snapshots that have one or more broken hydrogen bonds in any base—pair. In figure 3.4
we show a schematic representation of the atoms considered for the hydrogen bond
filtering for both Crick—-Watson base—pair pairing.

3.4 Estimation of banded stiffness matrix

In the previous section we have presented a way of estimating first and (centred) sec-
ond moments from a time series of internal coordinates. Moreover, in figure 3.2 we
showed an example of a stiffness matrix estimated from a MD time series of internal
coordinates for sequence S, of the ABC training library, see table B.1. In this figure it
is clear that the matrix is not banded, but a consistent block structured pattern, high-
lighted in figure 3.2, suggests that the assumption of nearest-neighbour interactions in
the energy corresponds to overlapping 1818 blocks is a quite accurate approximation.
Thus, the need to estimate banded stiffness matrices from an observed dense one. We
describe now a simple and yet elegant way of doing so in the specific case of the cgDNA
sparsity pattern, i.e, 18 x 18 diagonal blocks with 6 x 6 overlaps. The details and the
general proof for what follows can be found in [18].

Let C(S) € RUIZN=6)x(12N=6) he an observed covariance matrix and let us rename the
blocks forming the cgDNA sparsity pattern by C;, i odd, for the ith 18 x 18 block and
Cj, j even, the jth 6 x 6 overlapping block. In figure 3.5 we show a schematic represen-
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3.4. Estimation of banded stiffness matrix

tation of C'(S) for helping the reader. Moreover, to each block C; we associate a set of
indices ind; € N™ indicating its location in the matrix C(S), where #n; = 6, for i even
and #n; = 18, for i odd. For example ind; = 1,...,18 and thus (C(S))(ind, ind;) = C1-
The procedure to construct a banded stiffness matrix, denoted Ky,,4(S) is given in

(Ca, (13,...,18)|  [(C5,(25,...,42))

| Algorithm 1

C(S) = |

= Khand(S)

Figure 3.5 — Schematic representation of algorithm 1

algorithm 1 and will only use the blocks C; and C; of C(S). The theory behind the

Algorithm 1 Banded stiffness estimation

Given: C(S) € R12n=6)x(12n=6) ., {(C} ind,),...,(Cp,ind,)}, n = 2N — 3,
fork=1:2N —-3do

Compute Ky, = [Cx] ™!

ifk is even then

Ktmp = *Ktmp
end if
(Kband) (indy,,indy) = (Kband) (indy,indy,) + Ktmp
end for

Output: K,ng € RUZN-6x(12N=6) fo . — K ana > 0.

algorithm in fact provide a characterisation of a banded matrix in terms of the entries
of its inverse. More precisely, let us consider C = (Kpanq) *: the theorem that lead to
the derivation of the algorithm 1 reveals that the block outside the stencil of C are all
functions of the blocks inside its stencil. Again more detail can be founded in [18, 20].
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4 cgDNA: a sequence—-dependent rigid-base

model for DNA

In [55, 19] the authors introduced a sequence-dependent, rigid—base, coarse—grain
model of B-form DNA called the cgDNA model. The cgDNA model is parametrized
from full atomistic molecular dynamics simulations of a set of sequences of short
length. Given a parameter set P and an arbitrary DNA sequence S, cgDNA predicts
a Gaussian equilibrium probability density function in configuration space, by re-
constructing the mean p = u(P,S) € RY, or ground-state, and the precision matrix
K = K(P,S) € RV*N or stiffness matrix:

p(w;P,S):1exp{—1(w—,u)-K(w—u)}. (4.1)

Z 2
In this section we briefly review the main assumptions underpinning the cgDNA model
and the reconstruction of the density (4.1). We will then discuss the structure and
properties of the parameter set P and compare predictions of the model and MD
observables. In particular we will present a study on sequence-dependent persistence
length of DNA using the cgDNA model.

4.1 Main assumptions underlying the cgDNA model

The cgDNA model is based on many assumption that will be listed and briefly discussed
hereafter. We start with the assumptions on the chemical structure of the molecule
of DNA and in particular on the form of the DNA. The cgDNA model [55, 19] is based
on molecular dynamics simulations of double stranded B—form DNA fragments and
consider only Crick-Watson pairing for the bases, and the standard alphabet of bases
{A,T,G,C}. The final assumption on the chemical structure is about the rigidity of the
bases, which was already discussed in section 1.3. The Curves+ software [38] is used in
the fitting procedures. The convention about ideal atom coordinates are reported in
appendix A.

As already mentioned the cgDNA model is a rigid-base model of DNA, fixing the level
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Chapter 4. cgDNA: a sequence-dependent rigid-base model for DNA

of coarse graining to single bases. More than an assumption, the latter is a modelling
decision based on observation. In section 2.4 we presented the mathematics behind
bichains and in particular the relation between the rigid body representation and
internal coordinates. When considering a bichain representation of a n base—pair long
DNA sequence S, the internal coordinates w(S) € R127~6 satisfy the following physical
property related to the Crick-Watson symmetry,

w(8S) = Eay_1w(S), (4.2)

where S is the complementary sequence of S and Ey,,_; € R(127—6)x(12n-6) i 3 block,
trailing diagonal matrix composed by 2n—1 copies of E = diag(—1,1,1,—1,1,1) € R6*¢

E

FE
Eop 1 = . ; (4.3)

E

where Fo, 1 = B3, = E;,! |.

The next assumption is motivated by the modelling choice of coarse-graining to the
level of individual rigid bases. In what follow S = X; X, ... X,,, X; € {A,T,G,C}isa
sequence. The internal energy for S will assume to be a shifted quadratic function in
the internal coordinates w = (y1,21,¥2,..,Yn) = (z,¥)

1
Utot(w; S) = i(w —p) - K(w— ), (4.4)

where p = u(S) € R'2"6 is the ground-state of S, or its minimal configuration energy,
and K = KT = K(S) € R(12n=6)x(12n=6) jg 3 positive definite matrix called the stiffness.
Based on observation of statistics estimated from MD trajectories, see for instance
figure 3.2, we assume that the stiffness matrix K is banded, i.e is a sparse matrix in
which non-zeros entries are all close to a diagonal band. More precisely the sparsity
pattern of K is 18 x 18 block diagonal with 6 x 6 overlaps:
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4.1. Main assumptions underlying the cgDNA model

The cgDNA model further assumes that the free energy has local contributions of the
form:

1

n

Ulocal(“’? S) =

N | —

X; X, X X; X, 1 : . ,
(wi_ﬂi +1)'KX1XZ+1(U]Z'—M¢ +1)+Z§(yi_MXL)'KXZ(yi_:U'XZ)

=1

(4.5)

where, w; = (y;, i, y;+1) and the two kind of contributions are: dimer-based and
monomer-based. Now, Uy, can be written as a single shifted quadratic form and can
be compared to Ui. What one finds is that the stiffness matrix K is simply computed
as the sum of the dimer and monomer blocks, as shown in the next scheme,

[] [ ] [

:H [ _H

H: I []

L

and the ground-state is equal to
u=K 1o, (4.6)

where ¢ is a vector which has dimer and monomer contributions defined by

Y. X X; X;
O-XzXz+1 —_ KX1X2+1Mi i z+1’ 4.7)

oXi = KX (4.8)

with the definition of ¢ summarized using the following scheme

We want now to focus on one important point: . has a non local dependence on the
entries of X%+ and ;X due to K1, as the inverse of a band matrix with overlaps
being in general non banded. Moreover, by completing the square in (4.5) a non zero
constant term U will naturally appear reflecting the fact that in the ground-state all the
interactions of each base cannot simultaneously vanish. Hence, the oligomer-based
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Chapter 4. cgDNA: a sequence-dependent rigid-base model for DNA

local energy (4.5) is also a model for frustration. More detail can be found for example
in chapter 6 of [55].

4.2 The cgDNA parameter set

The cgDNA parameter set is the set of weighted shape vectors and symmetric matrices
of the form

P = {0 0", K* K*}, sciarc.cy- (4.9)

By assuming Crick-Watson symmetries we can reduce the size of P to contain only
independent elements. For the monomer-dependent elements « € M = {A, G} and
af € D where D contains the four palindromic dimers and six independent non
palindromic dimers. In particular D must satisfy:

ifaB,af € D = af = af,and (4.10)
ifaBgD=aB.€D (4.11)
Now, given an arbitrary DNA sequence S = X; X5, ..., X,, we can use P to reconstruct

the ground-state © = (P, S) and the stiffness matrix X = K (P, S) using the following
reconstructions rules:

K(P,S) = PFK,P;+ PTK,,Py,, (4.12)

o(P,S) = P{oq+ Plonm (4.13)

w(P,S) = K(P,8) 'o(P,S), (4.14)
where

K = diag(K*1 %2, .. KXn-1Xn),
K,, = diag(KX, ... KX"),
o4 = (O‘XlXQ, B anan)

om = (

O

aXl,...,aX”).
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4.3. Study of persistence length using the cgDNA model

The matrices P; € R18(—1)x(12n—-6) gand p,, e R"*(12n=6) take the following form:

I 00 0O 0
1 - -
0 000 0 I 00 0O 0
0 0rI 00 0

001 00 0
001 0O 0 0000 I 0
0000 I 0

00000 1]
00000 1]

In chapter 5 we will present the methodology used in [55, 19] to derive a best—fit cgDNA
parameter set P trained on the ABC data set. In this chapter we will just show an ex-
ample of comparison between prediction of the cgDNA model and observations from
simulations in the ABC data set. In particular we have (randomly) selected sequence S,
and its MD observed ground-state and stiffness matrix. In figures 4.1 we compare the
predicted cgDNA ground-state with the observed ground-state of S,;. For visualisation
purpose we have divided the shape vectors into rotational and translational compo-
nents of intra— and inter-base—pair variables and plot each component individually.
We remark an excellent agreement between prediction and observation. In order to
compare the stiffness matrix we choose to use the tangent-tangent correlation as way
of comparison.

4.3 Study of persistence length using the cgDNA model

In section 2.2 we introduced the concept of sequence-dependent apparent and dy-
namic persistence length. Evaluation of the persistence length is one way to compare
stiffness, but first some remarks should be made. We first stress that the sequence-
dependent Flory persistence length is computed as the limit of norm of the Flory
persistence vector. In practice the sequence-dependent Flory persistence length can
be computed for DNA fragments with length of order 103. The length of the sequence
simulated in the MD and in particular in the ABC project vary between 12 and 18
base—pairs. Thus, in what follow we will consider only persistence lengths computed
by means of the tangent-tangent correlation function, and we will drop the "sequence-
dependent" adjective in front of persistence length as we are in the framework of the
cgDNA sequence-dependent model.

We reconsider again S, and in particular its cgDNA reconstructed Gaussian p(w; P, Sy) =
pm(w), and the observed banded Gaussian, p(w; S4) = p,(w). We can now numerically
compute the tangent-tangent correlation with respect to p,, and p, along with the
static persistence lengths of both ground-states and plot the results. In figure 4.2, left,
we show the comparison for S, and we can observe that the prediction of the model
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Figure 4.1 - Comparison between cgDNA (solid) and MD (dashed) ground-states for
sequence Sy.

is again in good agreement with the data. The value of the apparent and dynamic
persistence length are respectively 130.4/129.9 base-pairs (bp), 157.3/156.4 bp, where
the bold values are the prediction of cgDNA. Compared to the comparison of the
ground-states done in the previous section, both persistence lengths are non-trivial
functions of the internal coordinate and the stiffness matrix which enhances the diffi-
culty for this kind of comparison. We also recall that the sequence S, was in the training
library used in parameter extraction procedure for obtaining P, but no fitting of the
persistence length was done. Finally, we refer again to [18, 45] for the details about
the convergence of the tangent-tangent correlation as function of number of drawn
configurations. In figure 4.2, right, we present another example of tangent-tangent
correlation computations done using cgDNA reconstructed Gaussian for the sequence
Sa-r = (AsCGCGAsCGGGC)3, where X, means n repetitions of the sequence X, see
figure 4.3. As already mentioned in section 2.2, the approximation of the apparent
persistence length from the log-ttc plot is in general poor for sequences with a high
intrinsic bend, as for example, phased A-tracts sequences. In figure 4.2, right, we also
illustrate the efficiency of the shape factorization which leads to a more linear decay
and thus, to a good and robust approximation of the dynamic persistence length. For
Sa-t we obtained the following values for the persistence length: ¢, = 66 bp, ¢; = 196
bp. We stress again that for bent sequences the apparent persistence length will be in
general an under estimate due to the bad quality of the linear fit in a semi-log plot.
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Figure 4.2 — Example of tangent-tangent correlation in solid and with shape factoriza-
tion in dashed. Left: comparisons for S, between cgDNA and MD. Right: comparison
between (AT)3p and Sa-ir-

To better illustrate better the unreliability of the apparent persistence length approx-
imation we consider the poly dimer sequence (AT)3, whose bichain representation
of the ground-state is shown in figure 4.3. As the ground-state is intrinsically straight
we observe a very linear decay in the log-ttc, see for instance (4.2) right. Moreover, we
obtained the following values for persistence length: ¢, = 137 bp and ¢4 = 147 bp. By
comparing the values of persistence length obtained for the two sequences, Sa-r and
(AT)s3, it is clear that the only comparison that make sense is the one between the
values of /;, and interestingly enough, the A-tract sequence has a higher value.

*iWMNWHMHWHH;Hf_('H.’(uH(”
&ne

Figure 4.3 - Bichain representation of the ground-state of Sy =
(AsCGCGAsCGGGQC)3, the bent one, and (AT)3, the straight one.

In section 2.2 we also introduced the notion of sequence-averaged persistence lengths.
Thus, we randomly generated an ensemble of 10* 220 base—pair long sequences by
assigning the same probability to each base. Then we computed the apparent and
dynamic persistence lengths for every sequence in the ensemble and plotted the
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resulting spectra in figure 4.4. Moreover, we studied also the persistence length of
six independent poly dimer sequences because their ground-states are intrinsically
straight and thus a direct comparison between both definitions of persistence lengths
is possible. In figure 4.4 we show all the results. In blue we have the spectra for ¢,
while in red we have the one for ¢,. The values of ¢, and ¢, for each independent poly
dimer and the sequence average over the ensemble are reported respectively in italic
and bold. The first observation is that the shape of the two spectra are completely
different. In particular the spectra for ¢, is flat and reach very low values (< 120)
which are related to bent sequences. In contrast the spectra of /; is more peaked with
some very large values (> 190). The sequence averaged values of both persistence
lengths are indicated by Avg(= 160 bp) and Avg(= 178 bp) respectively for ¢, and ¢,
see table 4.1 for the values of the poly—-dimers. But, in both cases it is clear that the
sequence—dependence plays a central role in the study of the rigidity of DNA, and thus,
in the context of sequence-dependent modelling of DNA, both sequence-dependent
definition of persistence length could help studying and understanding the mechanical
property of DNA.

T T T T T T T T T T T T T T7 ‘A‘T‘ T T T T T7 ‘C‘G‘ T ‘G‘G‘ T T T T 17 I‘QG‘ T T T T T T T T T T 7 ‘A‘A‘ T
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0.1 .
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length [base—pair]

Figure 4.4 — Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using the cgDNA model (trained on the ABC data set) over a sequence
ensemble of 10K randomly generated sequences of length 220 base pairs. We report
the averaged values (Avg) of both spectras: italic font for the apparent and bold font
for the dynamic persistence length. The values of the persistence lengths for six
independent poly-dimers of length 220 are reported: italic for the apparent and bold
for the dynamic. The positions of the values of the apparent persistence length is given
by a circle while the positions for the dynamic is given by a square.

| AA AG GG TG CG AT | Avg

¢, 220 193 174 169 166 146 || 160
g 1221 194 178 173 168 148 || 178

Table 4.1 — Values of /,, an d ¢, for six poly—-dimers and the sequence-average. The
values are expressed in base—pairs.
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5.1 Kullback-Leibler divergence

Let p(x) and ¢(x) be two continuous multivariate probability density functions defined
on 2 ¢ R¥. The Kullback-Leibler divergence (KLd), or relative entropy, between p and
qis [33, 34]

Dic(pl)sa@)) = [ oo 1og 20 s 5.1
Q q(x)

KLd is in general non symmetric, namely Dg (p(z), q(z)) # Drr(q(x),p(z))), it van-
ishes if and only if p = ¢, and it is positive for any two densities p # ¢, namely
Dkr(p(x),q(x)) > 0. The fact that (5.1) is not symmetric and, moreover, does not
satisfy the triangle inequality, implies that KLd does not define a metric, but only a
premetric on the set of probability density functions. KLd is invariant under rescaling
meaning that if X,,, X, are the random variables associated to p,q and X, = M X,,
Xq = M X, are rescaled random variable respectively associated to p, § we have that

Drr(p(x), q(x)) = Drr(p(x), 4(x)). (5.2)

The latter property has two direct consequences in the context of modelling DNA
mechanics. The first is the rescaling factors introduced in the definition of the Cayley
transformation (2.15), more precisely, the rescaling of the rotational coordinates by a
factor of 5 used in the cgDNA model [55, 19] does not affect the values of (5.1). The
second is the linear relation between the coordinates of a sequence and the coordinates
read from its complementary shown in (4.2), and thus the invariance of the KLd under
change of reading strand.

Another, essential for us, feature of KLd is that is has an explicit algebraic form when
both probability density functions p and ¢ are multivariate normal distributions. More
precisely if p(x) ~ N (up, Cp) and ¢(z) ~ N (g, Cy) the KLd between the two Gaussians
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can be written as

1 _ det K, 1
Dir(p.q) = 9 <tr(Kp qu) +In <det Kp> - N) + 5(#(1 - Mp)TKq(Nq — pp), (5.3)
q

with K, = C land K, = Cy !, The previous expression can be separated into two
parts, i.e D7, = DI + M where

Di(p(x),q(zx)) = % <tr(Kp_1Kq) +1n (jjz §Z> - N> ) (5.4)
Mp(a),a(e) = 5~ 1) Kol — o). 55)

The square root of the second term, v/M, is called the Mahalanobis distance [14] it
measures the distance between the point 4, and the distribution AV (x4, C;;). We recall
that (5.3) can be expressed as a function of the covariance matrices of p and ¢, but can
simple be written in term of their precision matrices, or in our context in terms of their
stiffness matrices.

The non symmetry of the KLd clearly implies two different ways of comparing two
probability density function. For example, KLd can be used as an objective function for
computing parameters of a model density compared to observed ones. More precisely,
if ¢ is considered as an observed pdf one can minimise the KLd in order to find a model
p(+; 0) close to q. But the choice of the ordering in the argument of the KLd function
leads to two different approaches. In particular, the solution of the following problem

réaeigD kr(q(x),p(x;0)), where C is the contraint space for the parameter 6, (5.6)
is equivalent to the maximum log-likelihood of the data whereas the opposite order do
not relate to any other known method. Now, instead of considering only one observed
density we can consider a family of N distinct pdfs denoted by {¢;}}, and again, a
single model pdf noted by p(-; §). We are now interested in the first order conditions
related to the minimisation problem and the two different orderings of the KLd, i.e

N

min ; Dkr(gi(x), p(w;0)) = minF; (6; ), or (5.7)
N

min ; Drr(p(x;0), 4;()) = minF2(6; q), (5.8)

For sake of simplicity we will consider now that all the probability functions in the pre-
vious problems are Gaussian distributions, thus ¢; ~ N (u;, K;) and 6 = (ym,, K;,). Due
to the latter simplification we can use the explicit formulation of the KLd for deriving
explicit algebraic formulation of both sums (5.7-5.8) and we can easily compute the
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first-order conditions for finding explicit forms for the model parameters 1 and K. In
detail, for Gaussians

N N
Fi(6:q) = = (Km : (Z K) 5t — 115) - Ko (pom — u») +NInZ (5.9

i=1 =1

Fa(b;q) =

N~ N

(ks K2 = N K| + (o — [KZ)710%) - K (i — (K] 10%))
(5.10)
where K = YN K, and 0 = Y.V | K,;u;. Then we can compute the first order

necessary conditions for each F;, i = 1,2 to obtain the estimation of the parameter
0 = param(u,, K,,), i.e, we compute

OF _, OFi _

— =0.72=1.2. 5.11
Km0 Oum T (5.11)

We finally obtained the resulting formulas

N N
1 _ 1 _
Hm,1 = &7 Z;Mia Km,ll =N (z; K7 i @ Mz'> — Hm1 @ fm,1 (5.12)
1= 1=
1
pm = [K¥] 1o, Kna= K% (513)

It is interesting to notice first the difference between the estimation of the mean, in
particular the second involves the sigma vectors which have an important role in the
cgDNA model but which are not directly observable from an ensemble of configuration
snapshots generated from MD simulations. The second difference is in the estimation
of the covariance for the maximum likelihood way and the estimation of the stiffness
for the other choice of argument in the KLd. Away from the global minimum of F;
there is no reason to believe that the estimators (5.12) and (5.13) give the same results.

5.2 Estimation of parameters

In this section we denote a Gaussian probability density function with mean p € R"
and stiffness matrix K € R™ " by p(z; ), where § € R" is a vector whose components
are all the entries of ;» and K, and the notation (2.9) will be used

0 = param(u, K).

Let now Lb := {S;}},, be a training of sequences library in which we have computed
statistics from molecular dynamic trajectories as presented in section 3.3. Thus, for
each S; € Lb,i = 1,..., M we have estimated a mean x(S;) and a stiffness K (S;) for
which the associated Gaussian distribution will be denoted by p(z; ;). We recall that a
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cgDNA parameter set is denoted by P = {c?, o8 Ko KB YaeMageD € Protr, where
Ptot — [RG]Q % [86}2 % [R18]10 % [S18]1O, (5.14)

where SV is the set of N x N symmetric matrices. We can refine the parameter space
by using the Crick—-Watson symmetries presented in (4.2). In fact we can define the
subset of Pgeir C Prot

Pseit = {P € Prot | 0% = Byo™®, K% = By K*PE,y, Vap € D'}, (5.15)

where D’ contains only the four palindromic dimers. As the goal of the parameter set
P is to reconstruct the parameters of a Gaussian probability density function, another
subspace of Py, arise naturally by considering the training library. Given the set of
sequences Lb it is rational to consider the following subset

Pain = {P € Piot| K(P,S;) >0, Vi=1,..., M}, (5.16)

where K (P, S;) is reconstructed using the rule defined in (4.12). Finally we define the
parameter space of all admissible cgDNA parameter sets as P = Pgeif N Pirain. Now,
given a family of estimated Gaussian densities {p(x, 0;)}}2,, one for each sequence
in Lb, we defined the best fit cgDNA parameter set P as the solution of the following
optimization problem

P = argmin F(P; Lb) (5.17)
PEP
where F(P; Lb) : P — R is defined as the sum of Kullback-Leibler divergences over the
training library, more precisely

M
F(P;Lb) = Y Drr(p(x, 05(P)), plx,6:)), (5.18)
=1

where p(x; 6;(P)) is the Gaussian probability density function in which parameters are
reconstructed using the parameter set P and the rules (4.12-4.14) , and

0;(P) = param (u(P,S;, ), K(P,S:)), Vi=1,..., M. (5.19)

We stress here that in [55, 19, 20] the choice of order in the KLd is as follows: model in
first position and data in second position, which corresponds to the case (5.8). In order
to solve problem (5.17) the use of numerical methods is necessary. Explicit expressions
for the gradient and Hessian matrix can be computed for the function (5.18), and a
combination of gradient flow and Newton-Broyden methods can be used to solve
(5.17). There were many challenges faced when trying to solve (5.17): the first problem
is clearly the large dimension of the unknown vector, which is of dimension 1592. The
high number of dimensions implies a large number of operations in matrix-vector and
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vector-vector multiplication which slows down the entire computational procedure.
Moreover, the numerical evaluation of the Hessian matrix of (5.18) is costly, which
motivated the use of a quasi-Newton method, namely the Broyden method. Secondly,
find a starting point is not a trivial task, meaning, constructing an initial parameter
set Piy; € P is not, in general an easy exercise. Later in chapter 9 of this work we
will present a new methodology, which allows computations of an admissible initial
guess in a rational and rather simple way. Moreover a new numerical scheme to solve
problem (5.17) will be presented.

5.3 Positiveness of the best-fit parameter set

The main objective of the cgDNA model is to predict a Gaussian distribution for any
arbitrary sequence S. This implies in particular that the reconstructed stiffness matrix
K (S) must be both symmetric and positive definite for any arbitrary sequence S. If a
parameter set P satisfies both conditions for any arbitrary sequence, we will refer to
it as a positive definite parameter set. The symmetry is trivially satisfy by the fact that
symmetry has been imposed on each block in the derivation of the best-fit parameter
set P. Positivity however is not, in general, easy to impose in the numerics, thus an a
posteriori criterion is necessary in order to guarantee the positiveness of any matrix
K (S). In [20] the authors managed to find a set of sufficient conditions for P to be
positive definite, which are satisfied on the actual estimated parameter set. In detail,
let us define the following two matrices

1K® 0 0
K¥ =K+ 0 0 0 (5.20)
’ 0 0 iK?
K* 0 0 |
K=K+ |10 0 0 (5.21)
0 0 1K”

forall o, 3 € M and a8 € D, where D comprises all the 16 dimers. Using Crick-Watson
symmetries it is sufficient to consider ten independent dimer dependent matrices for
(5.20) and just the sixteen for (5.21) because

K3’o¢ﬁ _ EQKB,BEEQ. (5.22)

We can now state that a best-fit parameter set P is positive definite if it satisfies the
following conditions

K >0, VaB € D, (5.23)
2

K > 0,vaB € D. (5.24)
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6 Sensitivity of cgDNA parameter sets to

training data

An MD simulation requires a large ensemble of input parameters that the user should
define. Consequently the cgDNA best-fit parameter set P (4.9) is directly related to
the choices made in the MD protocol used in the training library simulations. In this
chapter we study how mechanical properties of DNA predicted by the cgDNA model
depend upon the training sets constructed in the MD simulations. We define a training
set as the following ensemble of MD variables

MO = (St, Lb, F'f, Io), (6.1)
where

St is the simulation time,

Lb is the training library of sequence,
Ff is the force field,

Iois the ion type and concentration.

All the other input variables have been fixed to the standard ABC protocol [37, 52]. The
methodology we will follow here for comparing different training sets is based on the
simplest well-known one—factor-at-a—time, or just one-at—a—time, sensitivity analysis.
It consists simply in studying how the outcome of a model varies as function of its
input variables. In our context, we will change one-at—a—time the component of D
and the outcome will be some specific predictions of the related cgDNA parameter set
P. In the next section we will introduce the training set we will consider and the chain
of comparisons we will study. Moreover we will also introduce the predictions we will
take into account in order to be able to compare the different parameter sets. Before
going further in the comparison we will briefly discuss how in practice the different
training sets are computed.

For each training set one has to solve numerically the high dimensional optimization
problem (5.17). We have implemented a parameter continuation method in order
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to ensure the finding of a solution and thus in order to automatize the computation
of new cgDNA parameter sets. The parameter continuation technique consists in
studying the solutions of parameter dependent non-linear systems of the form

F(w;e) =0, (6.2)

as the parameter ¢ € R" varies. Let us introduce the weighted objective function
F(P, Lb;w) : P — R defined by

M
F(P,Lbw) = > wiDkL(p(z,0:(P)), p(x, 6;)), (6.3)

i=1

where w € RM are the weights, the first argument of the KL divergence is the Gaussian
defined by the reconstructed parameter 6; for the sequence S; € Lbusing P, and the
second argument is the observed Gaussian estimations for, again, the sequence S,.
For more detail about the latter notation we refer to the chapter 2 of this work. Given
oligomer-based statistics for the libraries Lb; and Lb, and given a best—fit parameter
set P; computed using Lb; we want to compute the best-fit parameter set P, for the
data using the parameter continuation technique on the following function

F(P, Lb;w) = F(P, Lby;wy) + F(P, Lba; wa), (6.4)

where w = (w1,ws), Lb = Lby U Lby. The best-fit cgDNA parameter set P will be
computed using the algorithm (2). The convergence is ensured as long as the total
number of continuation iterations n. € N is large enough. Practically speaking we
have used n. = 200 and, in order to speed up the computation we have computed the
Hessian matrix only twice during the run of algorithm (2): once at iteration £ = 1 and
once at iteration k£ = 100. For detail about the computation of the hessian matrix of a
function of the form (5.17), see section E in appendix.

Algorithm 2 Parameter continuation of function (6.3)

1: Initialize: w; = (1,...,1),ws = (0,...,0), PO =P, e =1/n,, n. €N
2: fork=1:n.do
3: Vary weights: w; = w; — ke, wo = wy + ke
4:  Initial Guess: P(*~1
5: Compute using Broyden: P*) = argminF(P, Lb;w)
PeP

6: end for
7. Finalise: P, = P(n)

50



6.1. Introduction to training data comparison

6.1 Introduction to training data comparison

We consider six different MD training sets: two training sets will have the ABC sequence
library as training library while four will have a library called miniABC. The sequence
library miniABC was designed by M. Pasi and R. Lavery and, as the ABC one, it contains
at least one copy of each of the 136 independent tetra nucleotides. But it is much
compact than ABC; it has 13 sequences each of length 18 base pairs and each with GpC
dimers at both ends. In the following table we list all the sequences in the miniABC
library:

GCAACGTGCTATGGAAGC
GCAATAAGTACCAGGAGC
GCAGAAACAGCTCTGCGC
GCAGGCGCAAGACTGAGC
GCATTGGGGACACTACGC
GCGAACTCAAAGGTTGGC
GCGACCGAATGTAATTGC
GCGGAGGGCCGGGTGGGC
GCGTTAGATTAAAATTGC
GCTACGCGGATCGAGAGC
GCTGATATACGATGCAGC
GCTGGCATGAAGCGACGC
GCTTGTGACGGCTAGGGC

Table 6.1 —- The miniABC training library

The details, along with the naming, of the different training sets, are listed hereafter:

Label St Lb Ff To

ABC 50-100ns ABC bsc0 K+

uABC 1us ABC bscO K+
MABCHK 1us miniABC  bsc0 K+
MABCH 1us miniABC bscl K+
MABCKNe 1us miniABC bscl 50% K+ 50% Na+
MABC{® 1us miniABC bscl Na+

Table 6.2 — Characteristics of the training sets considered in the MD simulations.

In this chapter we will considering three different predictions of the cgDNA model that
will be used to compare the different parameter sets. The first prediction is in fact the
Gaussian distribution predicted by the parameter set for the sequences in the training
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library, and in particular how far these predictions are from the banded observed
distributions. Let us recall that the objective function (5.18) is minimized to extract
a cgDNA parameter set P. We now define a function that will be used to compare
different training sets. Let Dg be the Kullback-Leibler divergence introduced in
(5.3) and let us use the same ordering for the arguments as for parameter extraction,
see (5.18). We define the following averaged Kullback-Leibler function per degree of
freedom for the best-fit parameter set P and the training library Lb

D(P, Lb) = ;fé <ndlofs Dkr, <P(»’Ua 0:(P)), p(z, 9i)>> (6.5)
- }Vi (ndofs D! (o 6:(P)) 9l 60)) + o Mol 6:(P)). pla e»))
= DY (P, Lb) + M(P, Lb). (6.6)

where we use the separation of the KLd presented in (5.4), 6; = param(u(S;), K(S;)),
0;(P) = param(u(P,S;), K(P,S:)), Si € T, and ngots = 12n; — 6 where n; is the
length of S;. We also recall that p(-,0) is a Gaussian distribution parametrized by
0 = param(u, K), see (2.9). Using (6.5) we can quantify the quality of the parameter
set in predicting Gaussian distributions for sequence in the training library Lb and
by using the decomposition (6.6) we can measure the contribution coming from the
stiffness and coming from the ground-state.

For example for the ABC training data presented in chapters 3.2 and 4, we have the
following values for the total D, shape M and stiffness DT parts of the KLd:

Protocol ‘ D Dt M
ABC [3.00-102 1.95-102 1.05-102

Thus, the main contribution to D for the ABC training set comes from Df.

The other criterion we will focus on are based on the persistence lengths previously
presented in section (2.2), and in particular on the apparent and dynamic persistence
lengths, respectively (2.43) and (2.47). We will focus our analysis on the spectra of the
latter over an ensemble of randomly generated sequences of length 220 base—pair. The
sequence ensemble will be fixed throughout the following study. In figure 6.1, left,
we show the spectra of /, and ¢, already presented in section 4.3. In figure 6.1, right,
we show the spectra of differences between the reciprocal of apparent and dynamic
persistences for each sequence in the ensemble. This difference defines the reciprocal
of the static component of the persistence length, see formula 2.45, and is interesting
to analyse because it can be used to look for the most bent ground-states in a sequence
ensemble. More precisely, for an arbitrary sequence with straight ground-state the
difference é — ¢ will be close to zero.

52



6.2. Sensitivity to simulation duration: ABC versus ;ABC

g 171 ‘ 1‘47—“ T 1 ‘ \C(\; \(;G\ ‘ T \AG\ ‘ 171 \A.‘A\ L [ ‘ ‘ 1 1
0.3 Y R T 1t A
Ay TG H r )
- . o . = 102 7
F AT CG GG  AG AA | | i
| ° . |
0.2 B Avg Avg ] : :
. 101 i
0.1 B ] h
07“LL\ 1 | RN o . L1 L1 |
100 120 140 160 180 200 220 0 0.002 0.004 0.006

length [base—pair]

Figure 6.1 — Left: Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the ABC data set, over a sequence ensemble of
10K randomly generated sequences of length 220 base pairs. We report the averaged
values (Avg) of both spectras: italic font for the apparent and bold font for the dynamic
persistence lengths. The values of the persistence lengths for six independent poly—
dimers of length 220 are also reported: italic circle for the apparent and bold square
for the dynamic. Right: Histogram of differences between reciprocals of apparent and
dynamic peristence length computed over the same sequence ensemble used for the
histograms shown on the left. This difference is always positive and the magnitude is a
indication of how bent the sequence is in an overall sense.

We will take the ABC training set as the starting point for our analysis, in more detail
we will consider the following chain of pair wise comparisons:

1. ABCversus pABC

2. uABC versus MABC{

3. MABC{ versus MABCH

4. MABCF versus MABC &

5. MABCK versus MABC}'®

where in particular we will first study the effect of different simulation durations, then
different training libraries, then different force fields, and finally, we will study the
effect of different different ion types and concentrations. Again for more detail about
the different training sets we refer to table (6.2).

6.2 Sensitivity to simulation duration: ABC versus ©ABC

The simulations duration clearly leads to an higher number of trajectory snapshots and
consequently to a larger time series of internal coordinates. The latter observations
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lead simply to the conclusion that with a longer simulation time the convergence
will be better and consequently the overall quality of the data will be better. Thus,
we expect to have better estimators for the oligomer-based stationary mean and
covariance, hence potentially better fits to the equilibrium distribution values. We can
verify the latter by looking at the values for D, see equation (6.6):

Protocol‘ D Dt M
ABC | 3.00-1072 1.95-10"2 1.05-1072
pABC | 2.72-1072 1.77-1072 0.95-1072

The values D decreased meaning that the oligomer-based statistic in the training
data are better predicted by the model. In figure 6.2 we show the spectra of apparent
and dynamic persistence lengths, on the left, and the spectra of the static persistence
length on the right. The are no particular differences when compared to the analogous
plot shown in figure 6.1, though one can observe that the ©tABC protocol leads to lower
values for both sequence averaged persistence lengths:

Protocol ‘ avg. /, [bp] avg. /; [bp]
ABC 160 178
uABC 156 173

Also by looking at the values of £, and ¢, (in base—pairs) for the six poly dimer sequences
one can notice that for yABC data these values tend to be smaller. Thus we can
conjecture that simulating up to one microsecond leads to a better exploration of the
possible coarse—grained configurations which consequently lead to a slightly softer
model.

6.3 Sensitivity to training library: ©ABC versus MABC/

We continue the chain of comparisons by changing the training library and in particular
we will present results for the miniABC training library. We refer to table 6.1 for the
list of the sequences. Before discussing the comparison between the two training sets
we make a few remarks about the training libraries and especially about the statistics
of occurrences of base and dimer sequence sub units contained in both sequence
lists. The first remark is that yABC contains 39 sequences while miniABC contains
just 13, which leads to big differences in the number of instances for different bases
and dimers. In figure 6.3 we show the counting of the instances of bases (top row) and
dimers (bottom row) for ABC (left column) and miniABC (right column). Beyond the
differences in the total numbers of instances, both libraries seems to have equivalent
statistics for both bases and dimers. For our purpose it does not matter if, for example,
there is a large difference between the number of instances of complementary steps e.g.
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Figure 6.2 — Left: Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the yABC data set, over a sequence ensemble of
10K randomly generated sequences of length 220 base pairs. We report the averaged
values (Avg) of both spectras: italic font for the apparent and bold font for the dynamic
persistence lengths. The values of the persistence lengths for six independent poly—
dimers of length 220 are also reported: italic circle for the apparent and bold square
for the dynamic. Right: Histogram of differences between reciprocals of apparent and
dynamic peristence length computed over the same sequence ensemble used for the
histograms shown on the left. This difference is always positive and the magnitude is a
indication of how bent the sequence is in an overall sense.

CC and GG because in the parameter set computation the instances will be summed
by choosing one of the two complementary dimer steps as independent and by using
the Crick-Watson symmetries to transform the dependent one. The same reasoning
works also for the bases. The only dimers that will be under represented will be the
four palindromic ones. In fact one can observe that for miniABC the total number of
instances for the palindromic dimer step is around 10 while for the non—palindromic
ones it is larger than 15.

By using the cgDNA parameter set computed for the nABC we have computed the
best-fit parameter set for the protocol MABCE and, as before, we start by looking at the
values of the averaged Kullback-Leibler divergence per degree of freedom are reported
in the following table:

Protocol ‘ D Dt M
pABC | 2.72-1072 1.77-1072 0.95-1072
MABCE | 2.92-1072 2.01-107%2 0.91-1072

The first thing we observe is that we obtained an higher value of D for the MABC
protocol. It is quite difficult to interpret this result because the value DT is higher
for MABCJ while the value M is lower with respect to zABC protocol. A deeper
investigation on the values of the KLd between reconstructions and oligomer-based
statistics for each sequence in the training libraries reveals that for both protocols there
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Figure 6.3 — The total number of instances of dimer, and base counting on only one
strand for ABC library on the left and muABC library on the right.

are two sequences—(11,28) for ABC and (3,8) for MABCE —that have significantly larger
values for Df. The protocol MABCY is indeed penalized by the fact that the average is
over a smaller ensemble. If we want really to compare both protocols the figure 6.4 is
more pertinent. Again on the left we show the histograms of apparent and dynamic
persistence lengths computed using cgDNA model trained on the MABCE data set
while on the right we show the histogram of the static component. In the following
table we report first the values of the sequence averaged quantities ¢, and ¢,

Protocol ‘ avg. /, [bp] avg. ¢, [bp]
LABC 156 173
MABCE 158 174

By comparing figures 6.2 and 6.4 we notice that MABC{ has a slightly higher value
for both sequence averaged persistence lengths. By inspecting better also the values
of 4, and ¢, for the poly dimer sequences we can observe a difference between the
two protocols. In fact for MABC{ all the values are higher but for poly A it is nearly
unchanged. Thus, for MABCE we have a general trend that leads to a slight increase in
the rigidity of the parameter set that can also be seen in the spectra of static persistence
length, figure 6.4, where one can observe that the tail on the right-hand side of the
histograms get shorter meaning that in the sequence ensemble some sequence will
have a ground-state closer to straight, or at least, not as bent.

6.4 Sensitivity to force field: MABC/' versus MABCH

The next comparison is on the force field and in particular on the switch from bsc0 to
bscl. The authors in [24] highlight many different points where the force field bscl is
actually better then other classical MD force fields. But, in the context of this work, one
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Figure 6.4 — Left: Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the MABC! data set, over a sequence ensemble of
10K randomly generated sequences of length 220 base pairs. We report the averaged
values (Avg) of both spectras: italic font for the apparent and bold font for the dynamic
persistence lengths. The values of the persistence lengths for six independent poly—
dimers of length 220 are also reported: italic circle for the apparent and bold square
for the dynamic. Right: Histogram of differences between reciprocals of apparent and
dynamic peristence length computed over the same sequence ensemble used for the
histograms shown on the left. This difference is always positive and the magnitude is a
indication of how bent the sequence is in an overall sense.

particular aspect captured our interest: the bscl force field provides better stability
at the end of the molecule during the simulation, meaning that it suffers less end
fraying and broken hydrogen bonds. In section 3.3.1 we introduced the hydrogen bond
filtering that we adopted to discard MD snapshots that lead to exceptional outliers in
the internal coordinates—especially in the intra—base—pair rotational components-that
cannot be included in the estimation of first and second moments. Both protocols have
a simulation durations of 1us which converts into 10° snapshots before HB filtering.
The miniABC library has 13 sequence, thus potentially with both protocols we could
reach an accumulated time series of length 13 - 10°. We computed the percentage of
accepted snapshots after HB filtering and we obtained: 71.7 % for MABC{ and even
90.4 % for MABC. In the following table we show the average KLd values:

Protocol ‘ D Dt M
MABCK | 2.92-1072 2.01-107%2 0.91-1072
MABCH | 2581072 1.59-1072 0.99-1072

The first interesting thing is that sequences 3 and 8 do not have as high values of Df
for the bscl protocol as was the case for the bsc0 one. The latter could be explained
by the higher stability of the bsc1 force field that lead to better statistics for the latter
two sequences. Secondly the value of M is higher for protocol MABCK which is again
difficult to interpret. We, thus, move to the second step of comparison: sequence-
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dependent persistence length analysis. In figure 6.5, left, we show the spectra of ¢, and
¢4 and we can say straightaway that both histograms looks qualitatively different from
their analogues for the bsc0 force field. In detail, we notice a substantial shift to the
right of the distribution of ¢, and for ¢, the distribution of the values are more peaked
and the tail of the right-hand side of the spectra vanishes. The sequence-averaged
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Figure 6.5 — Left: Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the MABC data set, over a sequence ensemble of
10K randomly generated sequences of length 220 base pairs. We report the averaged
values (Avg) of both spectras: italic font for the apparent and bold font for the dynamic
persistence lengths. The values of the persistence lengths for six independent poly—
dimers of length 220 are also reported: italic circle for the apparent and bold square
for the dynamic. Right: Histogram of differences between reciprocals of apparent and
dynamic peristence length computed over the same sequence ensemble used for the
histograms shown on the left. This difference is always positive and the magnitude is a
indication of how bent the sequence is in an overall sense.

values of both persistence lengths are:

Protocol ‘ avg. /, [bp] avg. ¢, [bp]
MABCHK 158 174
MABCK 168 179

The data actually confirm the intuition that the protocol MABC¥ lead to an overall
more rigid cgDNA parameter set. Also all the poly dimer sequences have a consistent
shift toward the right of the graph and, for example, poly A reached a value higher then
220 bp. The left plot in (6.5) shows a change in the shape of the distribution off the
reciprocal of the static persistence length with the major feature that the tail on the
right-hand side got shorter, indicating again that the protocol MABCX tends to have
less bent sequences.
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6.5 Sensitivity to ions: MABCY versus MABC} *" versus MABC}'"

In this section we compare two different ion types against the standard potassium. We
recall that the overall ion concentration has been kept the same for all choice of the
protocols. In the following table we reported the values of D along with its two main
contributions:

Protocol D Dt M

MABCHK | 2.58 1072 1.59-1072 0.99-1072
MABCYeK | 2.82.1072 1.73-1072 1.09-1072

MABCY® | 2.88-1072 1.81-10"2 1.07-1072

We notice that changing ion type leads to an increase of approximation error compared
to the baseline values given by the protocol MABCX . In figures 6.6 and 6.7 the sequence—
averaged /), and /, are

Protocol ‘ avg. (, [bp] avg. ¢, [bp]

MABCK 168 179
MABCYNeK 168 179
MABC{@ 169 179

Thus, we basically have no change in the overall rigidity of the model by changing ion
type. There are a few changes in the spectra of the reciprocal of the static persistence
length, left plot in figures 6.6 and 6.7. When adding more sodium ions the trend
seems to be that the distribution of el get more and more peaked to the left, i.e, more
sequences in the ensemble have potentially a straighter ground-state.

6.6 Discussion and Conclusions

We summarize the conclusion of the analysis made in the previous sections:

¢ Simulation time: The major change is in the higher reliability of the data be-
cause longer time series are closer to converged and thus the oligomer-based
equilibrium statistics estimated for the time series will be more accurate. Apart
for the latter point no major differences between the two protocols has been
identified.

¢ Traininglibrary: No important changes have been observed while passing from
#ABC to miniABC libraries for the same MD protocol. Even though both libraries
have at least one instance of all the 136 distinct tetranucleotides, they differ by
the numbers of instances of distinct bases and dimers, which could be a reason
for the small changes between the two associated coarse-grain parameter sets.
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Figure 6.6 — Left: Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the MABCY*¥ data set, over a sequence ensemble
of 10K randomly generated sequences of length 220 base pairs. We report the averaged
values (Avg) of both spectras: italic font for the apparent and bold font for the dynamic
persistence lengths. The values of the persistence lengths for six independent poly—
dimers of length 220 are also reported: italic circle for the apparent and bold square
for the dynamic. Right: Histogram of differences between reciprocals of apparent and
dynamic peristence length computed over the same sequence ensemble used for the
histograms shown on the left. This difference is always positive and the magnitude is a
indication of how bent the sequence is in an overall sense.

¢ Force field: Changing the force field from bsc0 to bscl leads to an increase in
the sequence averaged persistence length with the major increase being in the
sequence averaged /,,. This is due to the fact that in the ensemble of sequences,
the population of sequences with small 7, (bent ground state) decreases, i.e, the
cgDNA model parameters trained on bsc1 simulations lead to coarse-grained
reconstructions that are on average straighter. The increase in /; is less as the
dynamic persistence length depends less on the ground state and more (in a
non linear way) on the stiffness. Moreover the total number of accepted MD
snapshots after HB filtering increased considerably for the protocol MABCE due
to the better stability of the force field at the end of the oligomer.

e Ion type, NaK (50%-50%): No major changes between protocols MABCK and
MABC{ ¥ (50/50) have been identified. Both protocols lead to close values of
sequence averaged ¢, and /.

e Ion type, Na: No major changes between protocols MABCK and MABCY have
been identified. Both protocols lead to close values of sequence averaged ¢,, and
lg.

As the only major observed change is between the two force fields we make some
additional remarks about the changes in the rigidity of the model. For each of the 10*
sequences in the ensemble we can compute the differences in ¢,, and /, computed using
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Figure 6.7 — Left: Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the MABC{'“ data set, over a sequence ensemble
of 10K randomly generated sequences of length 220 base pairs. We report the averaged
values (Avg) of both spectras: italic font for the apparent and bold font for the dynamic
persistence lengths. The values of the persistence lengths for six independent poly—
dimers of length 220 are also reported: italic circle for the apparent and bold square
for the dynamic. Right: Histogram of differences between reciprocals of apparent and
dynamic peristence length computed over the same sequence ensemble used for the
histograms shown on the left. This difference is always positive and the magnitude is a
indication of how bent the sequence is in an overall sense.

the two protocols MABC/ and MABCZ. In figure 6.8 we show the histograms of these
differences: left for apparent persistence length, and right for dynamic persistence
length. The order we chose for the subtraction is "bsc0 values" minus "bscl values".
For the apparent persistence length we can observe that most of the distribution is
located in the negative region of the graph, meaning that most of the ¢, compute with
the bscl protocol have higher values compared to the one computed with the bsc0
protocol. The same observation can be done for the A/, spectra where actually the shift
towards the negative values is much more prominent. In fact ¢, has only contributions
from the stiffness as the ground-state part has been factorised out. This means that the
difference of ¢, in the right-hand side histogram in figure 6.8 actually says something
about the difference in the rigidity between the two force fields. Finally, from these
two histograms it is even more clear that the cgDNA model parametrized with the
bscl protocol is more "rigid" compared to the model parametrized with the protocol
MABCH. We next consider again the A-tracts sequence Sa.¢ = (46CGCGAsCGGGC)3
already mentioned in section 4.3 and compute using the bscl cgDNA parameter set
its tangent-tangent correlation with and without shape factorization. In figure 6.9 left
we plot the ttc (solid line) and its factorized version (dashed line). Moreover in blue
we show the result obtained with the cgDNA parameter set trained with the protocol
MABC{ while in red we show the results obtained with the published bscO cgDNA
parameter set [55, 19] trained on the original ABC protocol. In figure 6.9 on the right,
we also show the rigid—body reconstruction of the ground-state for both protocols.
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Figure 6.8 — Histograms of differences between persistence lengths computed for the
same sequences using bsc0 and bscltrained cgDNA parameter set. We computed bsc0
predictions minus bscl predictions for apparent persistence length, left, and dymanic

persistence length right. The fact that the A/¢; are almost all negative indicates that
bscl id effectivily stiffer than bscO0.

The more bent molecule corresponds to the ground-state reconstructed from the bsc0
parameter set. In conclusion, in the coarse—grained context, the only major changes
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Figure 6.9 — Left: comparison between tangent-tangent correlations (solid)
and factorized tangent-tangent (dashed) computed for the sequence Sp. =
(AsCGCGAsCGGGO)3 using cgDNA trained on MABCK (blue) and ABC data (red).
Right: 3D visualisation of the ground-state of Sy.i predicted by the cgDNA model
trained on MABCX data set (more straight) and ABC data set (more bent). The 3D
figures have been obtained using the web-based viewer for the cgDNA model [13].

in the cgDNA model, and its predictions, is made by the change of force field and in

particular by changing from the bscO0 force field [58] to the state of the art force field
bscl [24].
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7 A Palindromic training library

In the previous chapter we computed cgDNA parameter sets for different MD proto-
cols but we never discussed in detail the convergence of the MD trajectories. More
precisely, we did not discuss the convergence of the first and second (centred) mo-
ments estimated for MD time series of internal coordinates. In fact, using the ABC
(B.1) or the miniABC (B.2) training library and exhaustive convergence test for the
estimators is not possible. The primer goal of this chapter is to introduce a training
library comprising of only palindromic sequences which will allow a convergence test
based on the Crick—-Watson symmetry (4.2), for mean and covariance estimated from
MD time series . We first focus on the designing of this palindromic library and in
particular we present the algorithm developed to construct it. Then, we study the
convergence of the oligomer-based statistics for each sequence of the palindromic
library estimated from MD trajectories of 3us long simulations. Finally we define a
new format for the cgDNA parameter set which contains only dimer-based elements
and comprises dedicated blocks for each dimer end. Finally we compute a cgDNA
parameter set for the new format trained on the 3us palindromic training data and
compare it to a cgDNA parameter set with the old format trained on the same data.

7.1 Designing palindromic libraries
The minimal conditions we want to impose on the library Lbp,ji, are the following:
1. every sequence should be a palindrome,

2. the library should contain at least one instance of all the independent tetramers
without counting end dimers,

3. both ends should be GpC step (for stability against fraying).
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Condition 1 implies that each sequence must have an even total number of base—pairs
and that the central dimer must be a palindrome. Moreover the palindromic conditions
implies simply that one half of the sequence is in fact the Crick-Watson complement
of the other half. Condition 2 implies that in Lby,,;, one should be able to count 136
independent tetramers 16 of which are palindromic. Thus, the remark on condition 1
together with the last statement lead to the choice of placing a palindromic tetramer
in the middle of a palindromic sequences. The library Lb,,;;, will thus contains sixteen
sequences of the following form:

Se pralin =S = GCXN - X1P1P2ﬁgﬁlyl .. YNGC (7.1)

Now, to be able to fulfil condition 2 we will need to find N in the above equation,
one for all the sequences in Lbp,jin. A simple computation show that we need at
least N = 8 which implies that each sequence in the library will be of length 24 and
each palindrome will contain a palindromic tetramer and eight non palindromic
ones. Clearly, there will room for more than 120 tetramer, more precisely 128, thus 8
tetrameters will appear twice. Condition number 3 comes from the fact that GpC step
have been observed to be the most stable end dimers, meaning that that end step has
less probability of broken hydrogen bonds.

Practically to find a library Lb,,;;, which satisfies the three conditions mentioned
earlier, we developed an iterative ad hoc MATLAB algorithm that tries to fill up all the
16 sequences starting from the middle palindromic tetramer. At each iteration it uses a
simple yet efficient way for updating the entire library. Before explaining the algorithm
we will make a few comments on the methodology and fix some notation. The solution
to the problem of finding a library Lb,,,;, satisfying conditions 1-3 is not unique. Thus
in the algorithm it is possible to introduce a random step that will allow us to explore
the space of admissible libraries. As a palindrome is defined just by one of its halves,
the following notation will be used: let S be a palindromic sequence then

S = (XN .. .X1P1P2)2 =Xn.. .lelpgﬁgplyl .. .YN, Pi7Xi € {A,T, G, C} (7.2)

In our algorithm we will start just with sixteen sequences of length 2, one for each dimer.
At each iteration we will extend all the sequences by one base until we have added eight
bases to each of the sixteen initial dimers. We will denote by Si(k) = (X! ... X|P|P})*
the i—th partial palindromic sequence computed after & steps of the algorithm , with
S? € D, where D is the set of all the possible dimer steps. In order to satisfy condition
2 we have to keep track of the added tetramers, thus we introduce four tree structured
graphs, denoted tree(X), with the following form:
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7.1. Designing palindromic libraries

where X € {A,T, G, C}. A path in tree(X) defines a tetramer: for example we have
XA CoGe GCAX S
We then give a score, denoted by
SCORE(X +> A+ C + G) € N,

of zeros to each non-palindromic tetramer in each of the four trees and a score of
9999 to each palindromic tetramer. Whenever the algorithm finds a new tetramer, the
score for that tetramer will be increased by one and the score of its complement will
be increased by 10 (to avoid selecting it in a later iteration). We finally introduce the
notation:

T(S) :X1X2X3,f01'8:X1X2X3...XN, (7.3)

where it just select the first three bases of a sequence S in the 5'-3" direction. Equation
(7.3) is well defined for sequences with length larger than 3. For dimers we define

T(aB) = afp.

We can now introduce the algorithm (3) used to find palindromic libraries. The step
at line number 6 in the algorithm does not always find a unique solution, especially
during the first iterations. One can introduce a random choice for the base X, when
the number of bases that minimise the score of the current tetramer is bigger than one.
By introducing a random step it is clear that each time the algorithm is used it can
produce a different outcome because the palindromic library satisfying conditions 1-3
is not unique. Another modification one can make at line 6 is to introduce a check on
the next tetramer that will assure that by adding the current base X, will not arrive at
a dead end when considering the leaves of the tree X, < X3 <> X4, meaning that by
adding X, there exist at least one base Xpext with SCORE(X3 <> X3 <> Xy <> Xpext)=0.
We have run algorithm (3) with the mentioned modifications and we found 174 dif-
ferent palindromic libraries satisfying the desired conditions. Based on counting
instances of trimers, dimers, and monomers we have chosen the following library:
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Algorithm 3 Palindromic Library

1: Given: {$§°>}ggl, initialize the score for each tree(X), X € {A,T,G,C}
2: Initialize: Lb;’:ﬁn = {SP}18,
3: fork=1:8do
4: for:=1:16do
5 Define: X3 X,X; = T(S*Y)
6 Find:
X, = argmin SCORE(X; +> X2 ¢ X3 ¢ X)
Xe{AT,G,C,}
Update scores:
SCORE(Xl — X9 & X3 & X4)+ =1
SCORE(Xy ¢+ X3 ¢ Xo & X1)+ =10
)

N

Update sequence: Si(k) = X4 Si(kf1

®

9: end for
10  Update library: thpzlfi’n = {SF}IS,
11: end for

12: Finalise library: Lbp,, = {(GC Skyz}16,

GCTTAGTTCAAATTTGAACTAAGC
GCTCTCTGTATTAATACAGAGAGC
GCCCTTGGCGATATCGCCAAGGGC
GCTAAAGCCTTATAAGGCTTTAGC
GCGGTAGAAAACGTTTTCTACCGC
GCCAAGACATTGCAATGTCTTGGC
GCAGATGGTCAGCTGACCATCTGC
GCCTCACCGCTCGAGCGGTGAGGC
GCAGTGGAATCATGATTCCACTGC
GCTTTACTTCGTACGAAGTAAAGC
GCTACCTATGCTAGCATAGGTAGC
GCGCACTGGGGATCCCCAGTGCGC
GCTGAGGAGTCCGGACTCCTCAGC
GCTGCCGTCGGGCCCGACGGCAGC
GCGCACAACACGCGTGTTGTGCGC
GCCTAACCCTGCGCAGGGTTAGGC

—
S0 W

—
(62 I NEN SV V]

—
(=]

Table 7.1 — The 16 palindromic sequences of the palindromic library.

In figure 7.1 we present the aforementioned counting of instances of monomers,
dimers, and trimers. We can observe that in the occurrences for all the trimers, dimers,
and monomers no element is over represented. The latter will be useful for the cgDNA
parameter estimation in section 7.3. Moreover, by reading the sequences from only
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7.2. The palindromic training sets

one strand in each oligomer each of all possible 256 tetramers appears at least once.
In fact the non—palindromic tetramers appear at least twice while the palindromic
tetramer appear only once.
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Figure 7.1 — The total number of trimers, dimers, and bases counting on only one
strand.

7.2 The palindromic training sets

We have performed MD simulations of the palindromic library presented in the previ-
ous section, see table 7.1, using the standard ABC protocol, see appendix C, but with
the bscl force field [24]. We have chosen a simulation time of 3y for each sequence in
the training library plus an additional accumulation of 10us of simulation, for just three
sequences: (1,5,11), see table 7.1. For the additional 10us trajectories we computed 10
independent parallel simulations using random initial velocities. In the next section
we will explain how to use Crick-Watson symmetry to gain insight of the convergence
of these MD simulations of the palindromic sequences.

7.2.1 Assessing convergence of MD simulations

The physical Crick-Watson symmetries for the ground-state and the covariance matrix
of a palindromic sequence S are:

1(S) = Ban—11(S), (7.4)
C(S) = By 1C(S)Eap_1. (7.5)

When the mean and the covariance, are estimated from an MD time series the latter
two conditions are not in general satisfied due to lack of complete convergence of the
time series. We can thus introduce the following error functions for the mean and the
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covariance to measure deviation from palindromy of both estimators:

ERR(u) = [[p — Eon—1pll, (7.6)
and for the covariance we can introduce the error function
ERR(C) = ||C — E2,—1CE2,1]|, (7.7)

where for the sake of simplicity we have dropped the dependence on the sequence S.
For the covariance matrix we can moreover refine the error function by considering
only the entries inside the cgDNA stencil (due to the banded reconstruction technique
(4.12) ) and, as the covariance matrix is symmetric, we can just consider the diagonal
entries plus, for example, the upper triangular part. We introduce then the following
notation: Let C' be a covariance matrix, we define by Csyr, the matrix defined by

(Csym)ij = 0, if ij are outside the stencil or if i < j, (7.8)
(Coym)ij = (C);; otherwise. (7.9)

Moreover, we introduce the notation H = FE,,,_1CEs,_1. We can then redefine the
error function for covariance matrices as follow

The norm in (7.10) is the Frobenius norm introduce in chapter (2) which is equivalent
to the classic 2-norm for vectors. Thus both error functions can be seen as an error
function in R". This property will be useful for the interpretation of different values
of (7.6) and (7.10).Now, suppose that w(S) = {w;(S)}}, is a time series of internal

coordinates for a n base—pair long palindromic sequence. We say that the time series
w(S) converges as function of M/ when

ERR — 0 7.11

) 2.9 (7.11)

ERR(C) — 0, (7.12)
M —+oc0

where 1 and C are the respectively the estimators (3.6) and (3.7) computed from w(S),
and the error functions are respectively defined in (7.6) and (7.10). The first question
we want to pose is:

Do the Crick—Watson errors (7.6) and (7.10) decrease as the
total number of snapshots increases?

We will answer this question by considering the 10us trajectories computed for the
palindromic sequences (1,5,11). We start by evaluating the error function (7.6) for
these three sequences as function of simulation duration. In the following table we
show the errors for the mean estimator:
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#S lus 2us 3us 4us 5us

1 0.5775 0.4596 0.3655 0.3638 0.2425
0.7932 0.3603 0.3232 0.3304 0.3527
11 | 0.7140 0.3146 0.2796 0.2233 0.2163
6us 7us 8us 9us 10us
1 0.1957 0.1941 0.1784 0.1976 0.1740
0.4120 0.4009 0.3057 0.2883 0.2204
11 | 0.2008 0.1996 0.1990 0.1864 0.1631

Table 7.2 — Palindromic error for the mean estimator for palindromic sequence (1,5,11)
as function of simulation duration.

We stress here that the simulation lengths considered are the same for each sequence
but the actual number of snapshots used in the computations varies between sequence
as it depends upon hydrogen bond or HB filtering. Hereafter we have reported the
percentage of trajectories accepted after filtering out the broken HB for the three
sequences (1,5,11) for the simulation lengths considered in (7.2):

#S | lus  2us 3us  4us  5us
0.90 091 090 0.90 0.90
5 094 0389 0388 0.90 091
11 [{0.74 0.83 0.84 0.85 0.82
6us  7us  8us  9us  10us
1 091 090 090 0.90 0.90
0.89 089 0.89 0.90 0.90
11 1 0.84 085 085 0.86 0.86

p—

Table 7.3 — Percentage of accepted snaphots per simulation lengths

We recall that the writing rate from the MD simulation is each 1ps, thus a 1us simula-
tions should lead to a maximum of one million snapshots before HB filtering.
Returning to table (7.2), we notice that the general trend for each sequence is that both
error functions decreases with the increased number of snapshots. We can actually
see a strong convergence for the mean estimators. Now that we have observed that
effectively the convergence error decreases by increasing the number of snapshots
considered a last question arises naturally:

How big is the obtained error?

We have defined the error function (7.6) using the classic 2-norm for vectors, also called
the euclidean norm, thus the convergence errors we have computed can be interpreted
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as an average error per degree of freedom by simply assuming that each component
contribute the same to the norm, meaning that the average error is just the actual
error divided by the square root of the total number of components. For example in
table (7.2) for sequence 1 at 10us we have computed an error of 0.1740: the associated
average per degree of freedom error is 0.0104. Now by considering that the entries in
the mean are translations measured in angstroms, and rotations in fifth of radiants
we obtain that on averaged the mean estimator is off by approximately 1/100A and
1/ 100%, which can be considered as small. A further analysis that can be done is to
consider separately each helical parameter because for example the rise and the twist
tend to have a larger magnitude compared to any of the intra translations and rotations.
Thus in percentage the average error per degree of freedom will be smaller for these two
quantities. Hence in figure 7.2 we show the difference |1.(S) — Ea,—14(S)]| for sequence
1 at 10us where the entries of each helical parameters are plotted separately. We can
observe that the helical parameters buckle, twist, shift and slide have the highest
errors among all the helical parameters and probably not coincidentally the inter
variable twist, shift, and slide are the three variable known to sometimes have bimodal
distributions. Moreover in figure 7.3 we show the comparison between estimated and
1072
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Figure 7.2 — Entry-by-entry palindromic error in the mean estimator at 10us for se-
quence 1.

palindromic symmetrized buckle, shift, twist, and slide, for sequence 1 at 10us. We can
visually see that the Crick-Watson symmetry after 10 microseconds is achieved to a
rather small tolerance for all the degrees of freedom.

We can continue with the analysis of the convergence for the covariance matrix C. The
result for the palindromic error of the covariance matrix as a function of simulation
duration are:
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Figure 7.3 — Estimated (est.) and palindromic means (palin.) for four selected helical
parameters at 10us for sequence 1. Top left: buckle, top right: shift, bottom left: twist,
bottom right: slide.

#S lus 2us 3us 4us 5us
1 0.5496 0.4013 0.3144 0.3303 0.2262
0.6165 0.4204 0.2894 0.2537 0.2573
11 | 0.7499 0.3635 0.2923 0.2429 0.2567
6us 7us 8us 9us 10us
1 0.1790 0.1643 0.1490 0.1564 0.1418
0.2557 0.2440 0.2039 0.1961 0.1598
11 | 0.2366 0.2154 0.2036 0.1897 0.1602

Table 7.4 — Palindromic error in the estimator of the covariance as function of simula-
tion length

Thus for the covariance matrix the trend of the error function (7.10) is to decrease
when the simulation duration increases. However the interpretation of the errors in
table (7.4) using the same reasoning as for the error function of the mean make less
sense because the entries of the covariance are correlations between different degrees
of freedom and thus do not have a direct physical interpretation. But to judge how big
the obtained error is we can introduce a relative covariance error defined by

—— .~ ERR(C)
ERR(C) = [ Heymll

(7.13)

where ERR(C') has been defined in (7.10). For example for sequence 1 we have com-
puted the following relative errors for different simulations lengths:
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lus 2us 3us 4us 5us
0.0764 0.0564 0.0440 0.0458 0.0314

6us 7us 8us us 10us
0.0248 0.0228 0.0207 0.0217 0.0197

which shows that after 10 microseconds the relative error is slightly less than 2%. We
want to stress here that already for 1us the error is lower than 10% which is already
acceptable and it drops down to less than 5% in the first 3us of simulation.

In tables (7.5-7.6) we show respectively the error in the mean and the error in the
covariance for each sequence in the palindromic training library at different simulation
duration. Moreover in table (7.7) we indicate the percentage of accepted snapshot
for each entries in tables (7.5-7.10). We notice that some of the sequences are more
converged than others, but finally we can reasonably conclude that both estimators
are well converged. Certainly it would be better to extend the simulations of all the
palindromic sequences to 10us, or more, but for the purpose of this work we use the
palindromic training data with 3us simulations length.

#S | 100ns lus 2148 3us

1 0.8337 0.5308 0.2104 0.2359
2 1.3790 0.6458 0.3709 0.3544
3 1.1501 0.5190 0.2964 0.2364
4 0.8125 0.7620 0.4284 0.4409
5 3.1382 0.8064 0.4879 0.3797
6 3.1841 0.6203 0.3461 0.2837
7 0.8542 0.8194 0.5507 0.4538
8 0.9575 0.4286 0.3121 0.2786
9 2.1321 0.3649 0.3690 0.2635
10 | 1.2389 0.4776 0.3570 0.5034
11 | 2.9449 1.2054 0.6228 0.5478
12 | 1.4374 0.7056 0.4854 0.4680
13 | 1.0173 0.3367 0.3293 0.2257
14 | 0.6689 0.4699 0.2723 0.2348
15 | 1.6356 0.8731 0.3359 0.3278
16 | 1.1962 0.5761 0.6560 0.3892

Table 7.5 — Palindromic error in the estimator of the mean as function of simulation
length. In table (7.7) one can find the actual percentage of accepted trajectories for
each simulation length and each sequence.

7.2.2 Estimation of 1st and 2nd moments using palindromic symmetry

In statistics it common to take advantage of known symmetries in the analysis of time
series of data. More precisely it is good practice to compute estimators from a times
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#S | 100ns 1us 2us 3us

1 0.7350 0.5820 0.2928 0.2181
2 1.4683 0.5765 0.3530 0.3328
3 0.9808 0.3813 0.3006 0.2560
4 0.8838 0.9820 0.4589 0.4274
5 2.3520 0.7814 0.5258 0.4302
6 1.4567 0.5847 0.3588 0.2689
7 1.0474 0.6137 0.4657 0.4062
8 0.9003 0.4028 0.2604 0.2264
9 1.7451 0.3943 0.3885 0.3129
10 | 1.3966 0.4018 0.2478 0.3549
11 | 1.9304 0.9960 0.5543 0.5571
12 | 1.3977 0.6904 0.5096 0.4084
13 | 1.0167 0.3396 0.3234 0.2613
14 | 0.8852 0.4616 0.3311 0.2753
15 | 1.2996 0.8019 0.3354 0.2977
16 | 1.3265 0.6571 0.6327 0.3853

Table 7.6 — Palindromic error in the estimator of the covariance as a function of simula-
tion duration. In table (7.7) one can find the actual percentage of accepted trajectories
for each simulation length and each sequence.

series of data that satisfy the physical symmetries of the underlying object. In our
context the interpretation of the mean as a ground-state of the considered sequence
makes it sensible to take into account the Crick-Watson symmetry of palindromes. We
can actually define two estimators one for the mean and one the covariance that will
account for Crick-Watson symmetry and that consequently can enhance the quality
of both estimators. Let ¢ and C be the standard estimators for, respectively, mean
and covariance computed from a time series of a simulated palindrome S of length n.
We introduce the following palindromic symmetrised first moment, where for sake of
compactness we have dropped the dependence on S:

1
Upalin = b (1 + Eop—1pt), (7.14)

where Es,,_; € R12n=6x12n=6 hag been introduced in (4.3). In the estimator (7.14) we
have basically doubled our time series by considering also the estimation of the mean
of the complementary sequence. For the symmetrized covariance matrix we first
compute the symmetrized second moment

1
Spalin = 5 (S + Egn_lsEgn_l) , Where S = C + MMT, (7.15)
and then we compute the symmetrized centred second moment as

Cpalin = Opalin — Npalin(ﬂpalin)T- (7.16)
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#S | 100ns  1us 2us  3us
1 0.84 0.79 085 0.87
2 091 092 0.90 0.90
3 0.81 0.84 0.88 0.90
4 091 092 0.92 0.92
5 0.62 091 0.92 0.93
6 0.63 0.90 0.90 0.79
7 0.96 0.93 0.90 0.91
8 0.94 094 093 0.93
9 0.95 0.94 0.88 0.90
10 094 092 093 0.93
11 0.89 0.89 0.90 091
12 0.85 0.92 0.93 0.93
13 0.88 0.92 0.78 0.82
14 0.94 094 093 094
15 0.95 0.90 0.92 0.93
16 0.92 093 0.93 0.93

Table 7.7 — The actual percentage of accepted snapshots per simulation for each
sequence in the training library.

From Cpq;in (S) we then compute a banded stiffness matrix K, using the algorithm
(D).

7.3 Palindromic cgDNA parameter set

In section (7.2.1) we have introduced a notion of convergence for MD simulations
of palindromic sequences based on the classical estimators and we gave also an in-
terpretation of the values of the convergence error that help in understanding how
big the error actually is. For palindromic error we would like to conclude that after
three microseconds all the 16 sequences are rather well converged even if after having
analysed the three sequences with 10us long trajectories it would clearly be better to
extend the simulation lengths for every single palindrome. We also would like to stress
here that the original cgDNA parameter set has been computed on the ABC training set
that contains sequences simulated for a duration from 50 to 100 ns, thus a 3us training
set is already an extreme enhancement in the quality of the data. Thus, for the purpose
of this work we will consider the 3us palindromic data set along with the palindromic
symmetric oligomer-based statistics and in the next section we will compute and show
prediction of the best-fit cgDNA parameter fit. For the sake of simplicity we drop the
notation

Hpalin S) Cpalin (§) and Kpalin (S)
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7.3. Palindromic cgDNA parameter set

to identify the palindromic symmetric estimation of respectively the mean and the
covariance for palindromic sequence S and use the classic notation p(S) and C(S).
Thus, in what follows all oligomer-based statistics should always be interpreted as
palindromically symmetrized.

Before deriving the best—fit parameter set we introduce a new format for the cgDNA
parameter set that we will refer to as the dimer-based parameter set. We no longer
consider the monomer—based stiffness metric blocks and sigma vectors, but add
dedicated independent blocks for each 5’ end dimers. In detail the dimer—based
cgDNA parameter set has the following format:

P = {077, 0o, K708, gor . (7.17)
aBeD,5 aBeD
and the reconstruction scheme for an arbitrary DNA sequence S = X; Xo, ..., X,, reads
simply
K(P,8) = P{ KqPy, (7.18)
o(P,8) = Pf oy, (7.19)
u(P,8) = K(P,8) 'o(P,S), (7.20)
(7.21)
where

: 5/ X1 X XiX; Xn-1Xn3
Ky =diag(K> 22, .. K it o KAnt )

1A . .
o® XlXQ, oo X X"”X”3/),

oq=( ., 0

with P, the matrix defined in (4.15). Moreover the 3’ end parameter set elements are
computed from the corresponding 5’ ones using the Crick-Watson symmetry.
Clearly we have increased considerably the number of independent unknowns in the
parameter set P. The reasons behind this choice can be summarized in two points: 1)
itis rational to have that each local energy (monomer-based and dimer—based) has a
positive definite stiffness matrix. But that is in fact not the case for the current cgDNA
parameter set where the set of conditions (5.20) and (5.21) must be satisfied in order to
prove its positiveness. The conditions themselves suggested a way for transforming
the old cgDNA parameter set format into a dimer-based model one. 2) Dimers at
the ends have been observed to have quite different statistics compared to the same
dimers in the interior. Thus allowing a specific end element in the parameter set can
certainly enhance the quality of the predictions, especially for non GpC ends that have
in general less instances, and thus less data.

We can now compute two best-fit cgDNA parameter: one using the parameter set
format (4.9) and the other using the parameter set (7.17). For sake of simplicity we
will refer to the cgDNA parameter set (4.9) as the old one while the cgDNA parameter
set (7.17) will be called the new one. We recall that the cgDNA parameter set is the
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solution of the optimization problem (5.17), where the objective function is defined by
(5.18). The differences between the two computations will just be in the reconstruction
scheme and in the total number of unknowns. The algorithm (2) implements a param-
eter continuation approach for computing a cgDNA parameter set starting from an
already computed one. We have used this approach to compute the best-fit parameter
set for the old format, denoted by P, 4. For the new format a less direct computation
has been used to construct an admissible initial guess. Once the initial guess has been
computed a combination of gradient descent and Broyden method have been adopted
in order to compute the first cgDNA parameter for the new format, denoted by Ppew.
All the latter computations were carried by O. Gonzalez. On the other hand the new
format was actually proposed in light of the cgDNA+ model implemented in chapter 9
where the end blocks are actually of a different dimension from interior blocks.

With both parameter sets P q and Ppew in hand we start by first comparing the pre-
diction of the ground-state shape vectors at the ends of oligomers for non GpC
dimer ends. For example in figure 7.4 we show the first four bases of the sequence
S = AAGCAAACT AGC which was used for deriving the end block 5’ AA. We can see
that in general the approximation of the helical parameters at the end dimer 5’ AA is
better for the new format of the parameter set. The same results can be observed in any
of the other fifteen non GpC ends. By following the same comparison technique used
in chapter 6, we can compute the averaged Kullback-Leibler divergence per degree
of freedom (6.5) for P,)q and Prew and separately the palindromic sequence library,
denoted PALIN, and the ends sequence library, denoted ENDS:

Format Library D Df M

New PALIN | 2.09-1072 1.31-1072 0.78-1072
New ENDS | 2.25-1072 1.34-1072 0.91-1072
old PALIN | 2.29-1072 1.43-1072 0.86-1072
old ENDS | 3.00-1072 1.79-1072 1.20-102

We can first observe that for the end data we have a better approximation for the
new format which confirms the improved choice of having dedicated parameter set
elements for the end dimers. Secondly we observe that even for the palindromic
sequences the new format of the parameter set is better at predicting the data. We
would like to point the reader to the tables presented in chapter 6 and observe that the
average per degree of freedom values of the Kullback-Leibler for the PALIN Py, is the
lowest obtained value between all the other parameter sets and libraries.

In figure 7.5 we show an example of predictions for sequence number 1 of PALIN using
the parameter set Ppew. As the sequence is a palindrome, and as cgDNA reconstruction
and the MD mean estimator defined by (7.14) both satisfy perfectly the palindromic
symmetries we show the helical parameters for just the half of the sequence. For
Pnew We also compute the spectra of apparent and dynamic persistence length but
over an ensemble of one million randomly generated DNA sequences each of length
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Figure 7.4 — Comparisons of internal coordinates of MD ground-state (black) and
cgDNA predictions with the old parameter set format (blue) and the new format (red).

220. In figure 7.6 we show the two histograms and the values of ¢, and ¢, for the
six independent poly dimers. The first observation is that the overall features of the
histograms are in general the same as the spectra showed in chapter 6, meaning that for
the apparent persistence lengths the histogram is more wide with a long tail spreading
to the low values region of /,, while the histogram for ¢, is more peaked around the
mean, with a thin tail spreading in the direction of high values.

7.3.1 Positiveness of the new format

In the previous section we have presented a new format of the cgDNA parameter set
which in particular is composed of only dimer-based units blocks for the stiffness
matrices and vectors for the weighted shapes. This particular format implies that
there is not an unique solution to the optimization problem (5.17). More precisely, the
linear transformation that maps a parameter set P and a training library Lb to their
respectively reconstruction, is not injective. This concept will be better explored in the
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Figure 7.5 — Comparison between cgDNA (solid) and MD (dashed) ground-states for
sequence 1 in the palindromic library.

context of the cgDNA+ model in chapter 9. In this section we want just to make the
following point: with parameter set format (7.17) the sufficient conditions (5.20) and
(5.21) become simply that each dimer—based stiffness block must be positive definite.
For the best-fit palindromic cgDNA parameter the latter condition is fully satisfied and
thus we can refer to P trained on the palindromic data set as a positive definite cgDNA
parameter set.

In chapter 9 we will discuss the case when the stiffness parameter set blocks are not
positive definite and thus the sufficient conditions are not satisfied. We will then show
how to take advantage of the non—uniqueness of the parameter set in order to be able
to recover the positiveness.
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Figure 7.6 — Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the Palindromic data set, over a sequence ensemble
of 1 million randomly generated sequences of length 220 base pairs. We report the
averaged values (Avg) of both spectras: italic font for the apparent and bold font for the
dynamic persistence length. The values of the persistence lengths for six independent
poly—dimers of length 220 are reported: italic for the apparent and bold for the dynamic.
The positions of the values of the apparent persistence length is given by a circle while
the positions for the dynamic is given by a square.
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Coarse-grain configuration variables for
double stranded DNA

In this chapter, we coarse—grain double-stranded DNA by considering both strands as
single unit chains composed by a repeating pattern of a composite unit comprising a
phosphate group rigid—-body and a nucleic rigid-body. We introduce two representa-
tions of coarse—grain double-stranded DNA: two interacting strands and the tetrachain.
The two coarse—grained models are in analogy with, respectively, the double chain
and bichain description presented in [21]. The main difference between the bichain
and the tetrachain is in the composition of a base—pair level which, for the tetrachain,
is formed by four rigid-bodies and not two as in the bichain model. Consequently,
the definition of the microstructure will also be different. For the tetrachain model,
we define then an internal elastic energy describing nearest-neighbour interactions
and we compute its coordinate free first variation. From the first variation, we then
compute the formulas for the total external loads acting on a single phosphate group,
again, in a coordinate free framework. Finally, we define the internal coordinates for
the tetrachain representation by parametrising the inter— and intra—base—pair relative
displacement using the Cayley transformation for the rotation part and by writing the
translational part in the mid frames. The microstructure of the tetrachain is composed
of two base-to—phosphate group rigid—body transformations which are parametrised
using, again, the Cayley transformation for the rotation part and the translational part
written in the base frame. Thanks to the choice of internal coordinates we can write
explicit formulas for the total external loads acting on a single phosphate group.

8.1 Double stranded DNA configurations with explicit back-
bone treatment

We will consider a double-stranded DNA (dsDNA) molecule as the interaction of two

rigid body chains representing the anti—parallel strands. Each rigid body chain is

formed by the repetition of a phosphate group followed by a nucleic base in the 5 — 3’
direction, as shown in figure 8.1. Let us consider a DNA fragment with sequence
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Chapter 8. Coarse—grain configuration variables for double stranded DNA

Figure 8.1 — Schematic representation of single stranded DNA S fragment composed by
three consecutive nucleotides. In the figure the sugar ring is shown but is only treated
implicitly in the model.

S = X1,Xo,...,Xn, X; € {A,T,G,C}. Mathematically, we will define by S € SE(3)?V
the reading strand and by S € SE(3)?" the complementary strand. By using , gt SE(3)
for the nucleic bases and p£ SE(3), for the phosphate group we formally have that the
two strands can be written as

St=(p*.g")=(p!.8 .ps.85.--..PL.8%) € SE(3)*", (8.1)

and
S"'=®"8) = (P& . P8, ... ph.8L) € SEB)?, (8.2)

where for sake of compactness, each rigid—-body associated to a base, on both strands,
is in fact related to the considered sequence as the bases have different atomistic
composition depending on their base type. For example for the reading strand we
should have written

St = (p+7g+) = (p;rvgir(Xl)’p;’g;r(Xﬁv s 7pJ+V7gJ+V(XN)) € SE(S)zN' (8.3)

On the other hand, all the phosphate groups have the same chemical structure thus
they have no explicit dependence on the sequence. For what follows we have decided
to drop the dependence on the sequence for all the base rigid—bodies in the notation.
We can introduce now the two backbone rigid body displacements a5, o> € SE(3),
along the reading strand, describing the rigid body motion from g, to g ; through
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the phosphate group p;' as
gr—iz_—&-l _ +a+CCL+O‘

—on“n “n »
where

1
@IC = [g:” p'r—’z_—&-lv
a:a = [PIH]_lqu-l'

With the latter notation we have directly the following relation to the double chain
inter rigid body displacement a} = a,}°a;® introduced in [21] For the complementary
strand the notation will be the same but with an over line. The two strands interact at
the level of the bases. Thus we introduce an intra-base—pair rigid—-body displacement.
As both strands are oriented in the 5 — 3’ direction we apply a transformation to
every single base frame on the complementary strand to avoid rotations close to
7 in the intra-base—pair rigid—-body displacement. We denote the intra rigid-body
displacement by b,, € SE(3) defined as

bn = [gxfnJrlt]_lg: = t[g]—’\_ffn+1]_1g:7

where t € O(3) x R3*3 is the re-framing transformation

1 0 0 O
L 0 -1 0 0 7 (8.4)
0 0 -10
0 0 0 1
which satisfies ¢t = ¢~!. For sake of simplicity we introduce the frame
8. =8l
and the corresponding intra rigid—body transformation
bn = t[g, ] 8, (8.5)

where o(n) = N —n + 1. We can also introduce an equivalent transformation for the
phosphate frames on the complementary strand which simply reorder them in the
3’ — 5’ direction, namely:

- _ ot

Pn = Ps(n)
We finally obtain that a dsDNA can be coarse grained using two interacting single
chains (S-,S*), where S* = (gF,p7,...,p3_,, g5) with direct interactions at base-

pair level given by (8.5). The coarse grain model (S—, S™) will be called two interacting
strands. In figure (8.2) we show a schematic representation of a two interacting strands
configuration. The two interacting strand point of view, is an extension of the double-
chain representation of the dsDNA where the phosphate group were not explicitly
included in the model. Thus, we can continue the analogy, by introducing an equiva-
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Figure 8.2 — Schematic representation of two the interacting strands representation of
double stranded DNA. The sugar ring is shown but is not explicitlty modelled.
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lent point of view to the bichain model, see for instance section (2.4), by introducing a
macrostructure and a microstructure. The macro structure will be identified with the
ensemble of base-pair rigid-bodies g € SE(3)" defined as

g, =8, 1P, =g P, ",
where PT ¢ SE(3) is defined by

(IR, ]"R})?
0 1

PH =

The micro structure associated to the two interacting strands configuration contains
the intra-base—pair rigid body displacement introduced in (2.4), just as for the bichain
model, but now additionally with two base-to—phosphate group rigid body displace-
ments. As a nucleic acid base is covalently bonded to two adjacent phosphate groups,
we need to consider two possible different definitions for the microstructure.

8.1.1 Microstructure with explicit treatment of the phosphate group

In order to integrate the phosphate groups into the definition of the micro structure we
have to include two base-to—phosphate group rigid body displacements per base-pair
level. We will use the notion of base—pair level to refer to a unit composed of four rigid
bodies: two complementary bases and two phosphate groups, one on the reading
strand and the other on the complementary strand. Is clear from the schematic repre-
sentation of dsDNA 8.1 that each base is in fact covalently bonded to two phosphate
groups, a 3’ one and a 5’ one. The first possible choice is to consider two units formed
by a base — sugar ring — 3'-phosphate group, formally composed by the following
rigid-body frames:

(P, 18,85, 1) € SE(3)", (8.6)

while the second option is to consider the base—pair level as the set of two nucleotide,
base - sugar ring — 5'-phosphate group. With this approach the nth base—pair level is
formed by the following rigid-body frames:

(p,,.8,.8.p,)) € SE(3)". 8.7)

For simplicity of the Crick—-Watson symmetry transformation (discussed later) it is
important that in both cases the definition of the units has precisely the same chemical
structure on both strands. We define now the local micro structure configuration as
the following ensemble of three rigid—-body, motions associated to the chain of four
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rigid—bodies forming the base-pair:
M, = (BF, P, BF) € SE(3)3, (8.8)

where P, is the standard intra-base-pair displacement, and B;- represents the nth base
to phosphate group rigid—-body motions, according to the strand, + or —, and to the
definition of base—pair level, I or II. In detail:

forl : By =g "'pri By = (8] 'Prys (8.9)
forl1 : Bf=[gf]'p, (8.10)

(3

Without lost of generality we will assume that the base—pair level is always formed by
four rigid bodies, which implies that the composition of the strand should be adapted
according to the base—pair level type. Thus we can introduce fetrachain configurations
(g, M) for double stranded DNA where

M= (My,...,My) € SE3)", andg = (g,,...,8y) € SE(3)". (8.11)

In general, independent of the composition of the base-pairs level, we will have an
invertible mapping between two interacting strand configurations and tetrachain
configurations, i.e,

(8T,87) < (g, M).

8.2 Internal energy for tetrachains

We introduce now the notion of internal energy for tetrachain configurations. The
first assumption on our energy is that the interaction are physical local, and more
precisely, we will consider only nearest neighbour interactions. This assumption of
only local interactions, and thus local contribution to energies, has been already used
for previous models of DNA such as the cgDNA model [55, 19] and the rigid-base—
pair model [51, 78]. In both coarse grain models the total energy of the molecule is
expressed as a sum of local energies defined at the level of single junction (two base-
pairs level). In the previous paragraph we extended the notion of base—pair level from
two complementary bases to two complementary bases plus two phosphate groups.
In fact, this new notion of base—pair level can be seen as an ensemble of two units,
where each unit is composed of a base and an adjacent phosphate group. With the
latter point of view a junction, in a double strand configuration is composed by four
units, and the nearest neighbour assumption will lead to the following statement: each
unit has five nearest neighbours just as in the cgDNA rigid—base model, see chapter 4.
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Mathematically the internal energy E : SE(3)*¥ — R takes the following form

=

1
E(gaM) = wn(MnaanaMrH»l)a (8.12)

n=1

where g = (g,,....8y), M = (My,...,My), M,, are defined in (8.8), and a,, =
g,'8,.1- In equation (8.12) the local contributions w,, to the energy E are given in gen-
eral form but in the context of DNA modelling these contributions will be chosen to be
quadratic in the internal coordinates and, moreover, with local sequence-dependence.

8.2.1 Equilibrium configurations and variational principle

We compute the first variation of the internal elastic energy (8.12) with respect to the
macro structure g and the micro structure M:

D,E(6g,6 M) = D,ESg + D;ESM. (8.13)

For sake of compactness we will use the short notation w,, = w,(M,, an, My+1). The
expression for the first quantity has already been computed in (2.74) and (2.76), thus
we only focus on the first variation of the energy with respect to the microstructure:

N
DESM =T (aB;; (wp + wn_l)[B:[]T> Lor

n=1
+T*(0p, (wy +wn_1)PL) - OF
+T* (0 (wn +wn1)[B,]") - 6,
N
=> it Of +ul - OF +p, -0y, (8.14)

n=1

where

i = T (952 (wn + wa) BT
uh =T (9p, (wn + wa_1)PL), (8.15)

and, by convention, w{! = wj! = 0. We want to emphasize here that the expressions
(8.15) are completely coordinate free, in the sense that no explicit parametrisation
of the relative rigid—body transformation has been introduced yet. This implies a
high level of generality. On the other hand for the computation of (8.14) the use of
exponential coordinates has been adopted for the rigid-body absolute coordinates
representing the bases and the phosphate groups.

89



Chapter 8. Coarse—grain configuration variables for double stranded DNA

8.3 Total force and torque acting on a single phosphate group

The derivation of a close form expression of the total external load acting on a single
phosphate group is obtained as the simplification of the first variation (8.14) under the
following constraints:

Yn=1,...,N

g, isfixed = dg, =760,8,=0 =0, =0,
g-isfixed = ogt = TorgE =0 = 6 =o0.

The latter constraints implies that each intra—base—pair rigid body displacement is also
fixed which, moreover, implies that
Vn=1,...,N

P, is fixed = 6P, =70,P,=0 =06, =0,

If now one wants to consider the total external load acting on the m—th phosphate
group on the Watson strand, and thus one wants to compute the variation of the energy
(8.12) with respect to the rigid—body p;!, two additional constraints should be added:
Vn=1,...,N

p, isfixed = ép,, =79, p, =0 =9, =0,

and
Vn #m

p, isfixed = op,) =TV, p;) =0 =9} =0.

Again by combining the constraints on the bases and on the phosphate groups we can
conclude that,

Yn=1,...,N

B, isfixed = 6B, =70,8, =0 =0, =0, (8.16)
and
Yn #=m

B isfixed = 6B} =TOIB =0 = 6 =0. (8.17)

Thus expression (8.14), under the latter constraint, becomes

(D,E)d; = Ad;f ph ot (8.18)

90



8.4. Internal coordinates for tetrachain configurations

By using the relation between left and right infinitesimal variations
O, = Ad: o, (8.19)

we obtain that the variation, on the right of the energy (8.12) with respect to the m-th
phosphate group on the Watson strand p;’, can be written as:

(D:E)g}, = ATt - o (8.20)
Now we can define the total external load acting on p;;, by
= —AdT T (%rn (Wi + wm,l)[B;;]T) € RS, 8.21)

with

A=

m

(8.22)

o+ [T % fnt]

o

where ¢!, is the external couple, around the phosphate position [r5,]*, and f}, is the
total external force acting on p;}, = ([R5.]*, [rh]T).

8.4 Internal coordinates for tetrachain configurations

In practice the internal energy will be given as a function of internal coordinates and
not as a function of rigid body internal displacements. In this paragraph we define
the internal coordinates associated to tetrachain configurations. First we recall the
notation of the internal coordinates for the intra— and inter- base—pair of bichain
configurations:

Yn = (nnvwn) < P(yn)a Pn

Ty, = (Up,Vp) < a(zy) = ap.

For the base-to-phosphate group coordinates we recall that two definitions are pos-
sible, and, in particular, a base—pair level is composed by three internal coordinates.
For both definitions we have that, in internal coordinates, the micro structure at each
base—pair level is

Mn = (27 Yns 217 (8.23)
where
ZE = (T, wr) ¢ BE(z5) = BE. (8.24)
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The parametrisation of the base-to—phosphate rigid—-body displacement has a different
definition than the one chosen in the inter— and intra- rigid body transformations.
In fact, we have decided to simplify the definition by writing the base-to—phosphate
translation directly in the base frame. We recall that for the cgDNA internal coordinates
the translational parts are written in the mid—frame: i.e. the junction frame for the
inters and the base—pair frame for the intras. The motivation behind the introduction
of the mid—frames in the definition of the translation rely primarily on the fact that
such coordinates lead to a simple linear change of reading strand transformation, see
for instance chapter 4. For the phosphate degrees of freedom the choice of writing
the translation in the base frame will also lead to a simple change of reading strand
transformation that will be detailed in the next section (8.4.1).

In general, let g = (R,r) € SE(3) be a base frame and let p = (RP,r?) € SE(3) be a
phosphate group frame. The base-to—phosphate rigid—body transformation is defined
by

B=g'p= 0 1

RTRP RT(r — r)]

Let z = (n,w) € R such that B = B(z), or,

n = cay, " (R"RP), (8.25)
w=RI(rP —7), (8.26)

where cay; ! : SO(3) — R3 is the inverse Cayley transformation defined by

2c

-1 T

R)=———+— R—-R 8.27

cayo (R) 1 + trace(R) vec( ) (8:27)
with vec(S) = (Ss2, 513, S21) and « = 5 in our context.

Finally the internal coordinates for tetrachain configurations can be concatenated in
the following way, independent of the definition of base—pair level:

24N—18
w=(my,x1, Mo, T2,...,Tn_1,My) € R ) (8.28)

The internal energy (8.12) can then be written in term of the internal coordinates w
associated to the coarse—grained representation (g, M). In fact we have simply the
following relationship

N-1 N-1

E(g M) =Y wn(Mn,an, Mni1) =Y w(mn, n, mns1) = B(w), (8.29)

=1 n=1

3

with the additional property that

Wn (M, apy Mpt1) = 0 (M, Ty Mppy1), Yn=1,...,N — L. (8.30)
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The term-by-term equivalence (8.30) is important for example in order to derive a
tractable expression for (8.15). More precisely, we will derive an analytical expression
for the micro structure internal loads that will depend on the geometric configuration,
the ground-state, and the stiffness matrix. The key to derive such expression is the
linearisation of the expansion of the element of the algebra se(3) in term of the internal
coordinates. More precisely, let B € SE(3) and consider the following expansion of 5
around B

B=(Ii+TO)B+o0(0)). (8.31)

Consider now that B = B(z) and B = B(z), with z,z € RS, thus we have that © = O(=z).
We then linearise the latter equation, meaning that there exist Lz € R%*¢ such that

O(2) = Lz(z — 2) + o]z — 2). (8.32)

For the cgDNA coordinates, the matrix L was computed in [21] and is reported in (2.87).
For the base-to—phosphate internal coordinates presented in this section, the defini-
tion of the matrix L, is straightforward because the rotational and the translational
parts of the coordinates are decoupled. The linear mapping L., for z = (n,w) € RS, is
simply defined by

Pi(n) 0

L., =
N 0 I

e RS, with Py (n) = _ A 1
, 1(n) = 7 | 1+3 nx] ). (8.33)
102+ (1g) °

Finally we compute the first variation on the left for the left-hand side term in (8.30)
and the partial derivative of the right-hand side term of the same equation with respect,
for example, to B} = BT (z;}):

Dy(w,)0; = Ogzwn s TOLBY = dgzwn (BT : TOF = T* (95:walBS]7) - O,

(8.34)

D(w¥)dz! = 9, +wy - Szl

We use now the linearisation assumption (8.32)
o) = L.+ 52%,

and replace it in (8.34), to finally obtain

LT, 7" (%wn [B;{]T> ozt = 0wl -0z,
and

T (OgswalBi)T) = LT 0wy, (8.35)
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The coordinate version of (8.15) reads

pE = ]Lz—faﬁ (wy +wy_y), (8.36)

MZ"L) = ]Ly_nTayn (wg + w'rulj—l) )
where LL_+ is defined in (8.33) while L,,, is defined in (2.87). Consequently we have also
derived explicit formulas for the total external loads acting on a single phosphate by
using (8.36) in (8.18-8.20). We can also rewrite the total external load acting on a single
phosphate as

A= —Ad L 70+ (w +wy_;) € RS, (8.37)

Yn=1,...,N.

8.4.1 Change of reading strand transformation

In chapter 4 we showed the relation between internal coordinates of a sequence S and
its complementary S in the context of bichain configurations. We now just discuss
the analogous relation for the case of tetrachain configurations. In particular the
intra— and the inter— base—pair coordinates still satisfy the linear relations given by
the matrix £ = diag(—1,1,1,—1,1, 1), see for instance (4.2). Formally, for tetrachain
configurations of DNA, the change of reading strand reads:

+

o(n)

and p, =p! ,, Vn=1,...,N, (8.38)

o(n)’

Stis the readingstrand = g, =g

whereo(n) = N —n+1and (§+, S ) denote the double stranded configuration of the
DNA molecule with sequence S. This implies that, for example in the case of base-pair
level of type I, see for instance (8.9):

B, = (8, Py = 85, Py =B,y Vn=1...,N. (8.39)

o(n) o(n)’

which implies the following relation of the internal coordinates:
zZ= = 2y Y =1,...,N. (8.40)

In the case of the base-pair level type 11, see 8.10, the change of reading strand relations
are the same as for type I, and a similar computation, to that leading to (8.39), can be
used to obtain the relations (8.40). Finally, the change of reading strand transformation
for tetrachain internal coordinates is given by:

when (ST,87) — (S7,8")

(x,m) — (z]j\c,, Eoyn, 2%, Eazn, z]j\c,_l, ... ,zf,Egyl, 2 (8.41)
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9 A sequence-dependent coarse—-grain

model of B-DNA with explicit treatment
of the phosphate groups

The cgDNA+ model is a sequence-dependent coarse—grain model of double stranded
B-form DNA with explicit treatment of bases and phosphate groups. The parameters
of the model will be trained on the Palindromic data set. The main goal of the cgDNA+
model is to predict the sequence-dependent ground-state and flexibility of double-
stranded B—form DNA. The cgDNA+ model is a natural extension of the cgDNA model
which relies on the same assumptions presented in section 4.1 with the only addition
assumption on the rigidity of the atoms forming the phosphate group. In this chapter
we present the entire process that goes from extensive molecular dynamics simulations
of palindromic sequences to the estimation of the parameter set of the cgDNA+ model.
Given a parameter set P and an arbitrary DNA sequence S, cgDNA+ predicts a Gaussian
equilibrium probability density function in the configuration space by reconstructing
the ground-state p = p(P,S) € RM and the stiffness matrix K = K(P,S) € RMxM:;

p(w;S,P):;exp{;(wu)~K(wu)}, 9.1)
where M = 24N — 18, with NV the length in base—pairs of the sequence S. Any configu-
ration w € R?*N~18 can be divided into N — 1 inter-base—pair internal coordinates, N
intra-base—pair internal coordinates, and 2(N — 1) base-to—phosphate internal coordi-
nates. As a single internal is represented by a six dimensional vector the total number
of components in the configuration w are 24N — 18. The inter- and intra-base—pairs
coordinates have been already introduced in chapter 2 while the base-to—phosphate
internal coordinates have been introduced in chapter 8 and further discussed in the
next section.

From the MD trajectories we extract time series for the two interacting strand configu-
ration, denoted by (S*, S~ ), where each strand is coarse-grained at the level of base
and phosphate groups. The only atom group that is not explicitly treated in the model
is the sugar ring. For this purpose, we generalize the definitions (2.51) and (2.52). Let
p(S) € R3L be the vector containing all the Cartesian coordinates of the atoms of the
DNA molecule with sequence S of length N. The main modelling decision underlying
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the cgDNA+ model is to coarse—grain the bases and the phosphate group, therefore we
can redefine (2.51) as follow

r(S) — (p8+7p§+) = (I-,X1’pb17 o 7pr71’pXN’pY1’p517 o ,pEN’l,pYN) c R, (9.2)

where p¥i = (p{(i, ...,ppai) € R3" is the atom group considered for the base X; of
S and p¥ = (plf', ...,pki) € R3™i is the atom group for the i-th phosphate group.
Straight away we can introduce a simplification because all the phosphate groups are
composed of the same group of atoms independent of the sequence. Thus we can set
p¥ =p°Vi=1,..., N — 1. The atoms on the complementary bases are distinguished
by the over line notation. We recall that both strands are read in the 5’ — 3’ direction
and thus the numbering of the atoms groups in (pg+, p5+) follow the same rule. Now
we can generalize (2.52) in the following way

R (ps+ Pg+) = (ST.57) € SE3)™,

where St is the coarse-grain representation of the reading strand of S while S* isthe
representation of the complementary strand. We recall that the fitting procedure is
described in section 2.3 and the detail about ideal atoms and ideal frames for both
base and phosphate groups can be founded in section 1.3 and in appendix A. For
convenience we can actually use transformation introduced in section 8.1 that maps
(8+,87) = (8+,57) to redefine % as follows:

R (Ps+.Pg+) = (ST,87) € SE3)'.

9.1 On the base-to—phosphate degrees of freedom

9.1.1 Two possible definitions of internal coordinates

In section (8.4) we introduced the general invertible relationship between internal co-
ordinates and tetrachain configurations and we have explicitly written the two possible
ways of defining the coordinates of the microstructures of tetrachain configurations.
In figure 9.1 we show a schematic representation of the two possible definitions of
the base-to—phosphate degree of freedom. We recall hereafter the general notation
for internal coordinates of tetrachain configurations of double stranded DNA of N
base—pairs:

w = (my, 1, M2, T3, ..., my) € RHANTIE,

where z,, € RS parametrise the inter-base—pair displacement, m,, is the coordinates of
the microstructure defined by

mp = (27, yn, 27) € RIS, 9.3)
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9.1. On the base-to-phosphate degrees of freedom

yn € RS parametrise the intra-base-pair displacement, and z;© ¢ R parametrise the
base-to-phosphate displacements. We recall that the two possible internal coordinates,
denoted by I and II in section 8.1.1 are respectively related to the base-to—3’ phosphate
coordinates and base-to-5' phosphate. In order to choose which one of the two internal

Figure 9.1 — Schematic representation of the two possible base-to—phosphate relative
displacements. One way is base-to—-3’ phosphate (square), called version 1, and the
second is the base-to-5’ phosphate (circle), called version 2.

coordinate definitions to use for the cgDNA+ model we will compute oligomer-based
statistics based on the palindromic data set. In particular we will extract time series
of both internal coordinates from the MD trajectories. Thus, the first simple thing
one can compare between the two version is the one dimensional histogram of all
the components of the coordinates. For the seek of compactness we show just one
example. We have chosen the sequence

S11 = GCTACCTATGCTAGCATAGGTAGC, (9.4)

of the Palindromic Library and in particular the phosphate located in the 16-th junction
ApT. We recall that for version 1 the internal coordinates parametrise the relative
displacement between the base A and the phosphate group in the Ap7 junction while
for version 2 the relative displacement is between the base 7" and the phosphate unit.
In figures (9.2) we show the one dimensional histograms for each component of the
internal coordinates mentioned above. In the first row we can observe the histograms
for version 1 while the ones for version 2 are in the second row. In the first column
one can find the rotational components while in the second columns the translational
one. We can notice that the internal coordinates vary substantially between the two
versions. In particular the translational components for version 2 are way more non-
Gaussian compared to version 1. It is clear here that a direct comparison between the
two versions is not possible but, by looking at the histograms in (9.2), we can gain
some insight about the difference in parametrising a relative displacement between
two rigid bodies that are separated by a different number of covalent bonds, see figure
(9.1) for details about the chemical structure. After a more careful analysis of all the
phosphate coordinates in all the junctions of all the 16 sequences we can conclude that
version 2 of the internal coordinates tend to have one-dimensional histograms of base—
to—phosphate degree of freedom that deviate more from Gaussianity, and in many
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cases, for the translational part, a clear bi-modality is present. This outcome could
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Figure 9.2 - For sequence S;; in the palindromic library we show the one dimensional
histogram of both versions of the base-to-phosphate internal coordinate for the phos-
phate in the 16th junction: ApT'. The first row is version 1 and the second version 2. In
the first column the rotational components, in the second the translational ones.

have been guest beforehand as the extra covalent bond that is parametrised by the
version 2 is related to the BI-BII state already introduced in section 1.1. By recalling,
the transitions between the states BI and BII can be related to the formation of a
sequence- and context-dependent hydrogen bond between a phosphate group and
its 5’ base. In the context of our coarse-grained model we do not have a direct relation
between the percentage of occupancy of Bl and BII and internal coordinates, but it is
not really surprising that the version 2 of coordinates leads to bi-modal behaviour of,
in particular, the translational components.

Moreover, in figure (9.3) we show also the observed stiffness matrix for sequence
S11 and, in particular, its sparsity pattern. One can notice that the major difference
between the two stiffness matrices is in the magnitude of the entries. In fact for version
2 the entries seems to have a bigger magnitude compared to the same entries in
the version 1 stiffness. We can also remark that in both stiffness there are 6 times
6 dimensional blocks with almost zeros entries. We will come back to this remark
later on in this chapter, but at the moment the important thing is that both choices
of internal coordinates bring to stiffness with holes in the same place. On top of the
comment about the differences between the two definition of internal coordinates
we would like to focus the attention of the reader to the particular sparsity pattern of
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Figure 9.3 — Example of the sparsity pattern of observed stiffness matrices obtained
from times series of both internal coordinates: left version 1, right version 2. The
sequence is S11 from the palindromic training library.

both stiffness matrices. In particular, compared to the one showed in figure (3.2) for
the cgDNA internal coordinates, the locality assumption is even more clear when the
phosphate degrees of freedom are explicitly treated. A more detailed description of the
sparsity pattern will be presented later on in this chapter.

Now that we have observed the qualitative differences between the two definitions of
internal coordinates in reproducing some observable of the system we can introduce
the following quantitative procedure. We will first compute the parameters, mean and
banded stiffness, of the banded Gaussian for all sequences in the palindromic data set
and then we will use the Kullback-Leibler divergence, with the maximum likelihood
order for the input arguments, for computing the approximation error between banded
Gaussian and observed Gaussian for both definitions of internal coordinates. First,
the mean of the banded stiffness is the mean of the observed Gaussian, so that in the
KLd the Mahalanobis part (5.4) will be zero. Thus, we can focus our attention only on
the stiffness part and in particular we can use the following sequence averaged per
degrees of freedom definition of the Kullback-Leibler divergence:

D (Ops, Oband) = i Z P(, O (obs,i))s P(Z5 Oband.i)))- (9.5)

ndofs

For helping the reader we have labelled by band the parameter of the banded Gaussian
and by obs the parameter of the observed, raw, Gaussian. The algebraic expression of
DT for two Gaussian can be found in (5.4).

Before going any further we recall that the marginal of a Gaussian distribution is
another Gaussian distribution. For example, let p(w) be a multivariate Gaussian dis-
tribution with mean p = (z,vy, z) € R"™™*? with z, y, 2 vectors of dimension n, m, p,
and covariance matrix C' € R(»+m+p)x(n+m+p) The marginal of p(w) over the compo-
nents y is the Gaussian defined by the mean y, = (z, z) € R"*? and the covariance
C, € RP)x(+p) defined by extracting the z—, z—z and 2—z blocks of C.
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The methodology for quantifying the difference between the two versions involved
also two different level of marginalisations of the Gaussian distributions p(z, (obs,i))
and p(z, O(pand,;)- The first marginalisation is over the base-to-phosphate degrees of
freedom and will be denoted using the super script m. The second marginalisation is
over the base-to—phosphate degree of freedom and the intra—base—pair coordinates
and will be denoted using the super script m?. The reason behind the decision of
comparing also the marginals of the original distribution is to test how much informa-
tion, about the inter— and intra—base-pair degree of freedom, is carried by the banded
stiffness in both cases. In table 9.1 we show the value of (9.5) for the three proposed
comparisons. We can observe that version 2 of coordinates leads to a smaller value

Version | D (0ops, Obana) D07 .07 ) DI, 6 1)

obs’ obs’
1 7.9-1073 29-1073 2.7-1073
2 6.4-1073 2.0-1073 2.0-1073

Table 9.1 — Values of Df, defined in (9.5) for distributions with different degrees of
freedom. The values in the first column quantify the error in the banded approximation
of the observed Gaussian for both cgDNA+ internal coordinates. The Gaussian denoted
by the super script m, second column, are the marginalisation over the phosphate
components and the Gaussian denoted by the super script m?, third column, are the
further marginalisation over the intra-base—pair coordinates.

of (9.5) for all of the three proposed computations. As the first value in table (9.1) is
smaller for version 2 we can conclude that the observed stiffness matrix for that partic-
ular choice of coordinates is in fact closer to the banded assumption. By marginalising
the first and the second time we actually quantify the information that the banded
approximation is carrying. Again from table (9.1) we can conclude that version 2 is
actually a better choice in this sense.

After the considerations made in this section we chose version 2 as the definition of
the internal coordinates for the cgDNA+ model. The motivation underlying the these
decision are summarized as:

1. Version 2 lead to one dimensional marginals for the phosphate degrees of free-
dom that are noticeably more non-Gaussian compared to version I, but the latter
phenomena can be explained by the BI/BII transition. For future development
of the cgDNA+ model the version 2 seems to be the natural choice of internal
coordinates for the study of these transitions.

2. Itisrational to chose the internal coordinates that minimize the banded approxi-
mation error as in any case for the purpose of this work we will deal only with the
Gaussian model and the banded approximation represent the data that is used
for the estimation of the cgDNA+ parameter set. Thus, the closer the banded
distributions are to the observed data, the more accurate the predictions of the
cgDNA+ model should be.
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Finally the cgDNA+ internal coordinates we will consider read
w=(my,x1,m2,x2,...,my) € R24N-18, (9.6)

for a N base-pair long arbitrary sequence, where the microstructure is defined by
myn, = (2,7, yn, 2, ). The phosphate degrees of freedom are defined as follow

7 =C(By) =C (8] 'pn) = (m” wi,P), 9.7)
where, C is defined by
C(B) = (cay([RY]"[RE]Y), [RET([r) " — 7)) € R 9.8)
withgh = (R}, r}) € SE(3), p;, = ([RF]},[rh]T) € SE(3) and
B = ([RiTT(RE] (R (2] =)

The Crick-Watson symmetry for the internal coordinates (9.6) has already been in-
troduced in section (8.4.1), here we just recall that the phosphate coordinates of the
ground-state of a palindromic sequence satisfy

zZ

S+
|

= Zy(n) 9.9)

where o(n) = N — n + 1, N being the total number of base—pair of the sequence.
From the palindromic data set we can extract oligomer-based mean of the internal
coordinates (9.6) and compute the sequence averaged mean of the phosphate degrees
of freedom. In the following table we report the values:

Coord. type | Seq. Avg. MD

m 0.9534 1d
A -3.3880 d
5 -1.7000 d
wh -0.5302 A
wh 9.5188 A

wh -1.72114

Table 9.2 — Sequence—averaged values of the base-to-phosphate components com-
puted from the palindromic 3us long data set. We drop the + notation because we
also averaged Crick and Watson degrees of freedom as all the sequences in the training
library are palindromic.
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9.1.2 On the cgDNA+ sparsity pattern

As anticipated in the previous section, the cgDNA+ degrees of freedom lead to some
interesting properties that we will describe in this section. The first property is actually
inherited from the cgDNA degrees of freedom namely the topological tree structure of
the internal coordinates as in scheme (9.4). It basically shows the connectivity between
rigid-bodies defined by the internal coordinates and it defines also the composition
of a base—pair level. We recall here that Crick and Watson phosphate groups that are
in the same base—pair level are not in the same junction. The latter comment seems
to introduce an asymmetry, but in fact the choice to integrate the phosphate group
through a relative displacement from a base actually preserves the natural orientation
of both strands. The most interesting property of the internal coordinates is the sparsity

Figure 9.4 — Tree structure of the cgDNA+ internal coordinates. The white blocks
represent the bases while the dark grey represent the phosphate groups. The light gray
blocks containing a base and a phosphate group represent a base-phosphate unit.

pattern of the observed stiffness matrix computed as the inverse of the covariance
matrix. In figure (9.5) we show a dinucleotide in the matrix shown on the right-hand
side of figure 9.3. By only considering the entries inside the stencil defined by the
black lines, we can start by presenting the overlap highlighted on the left-hand side
part of figure 9.5 by the green box: its dimension is 18 times 18 and the degrees of
freedom involved are Crick base-to—phosphate, intra—base—pair, and Watson base-to—
phosphate forming the a base—pair level. It is clearly a natural extension of the cgDNA
model in the sense that the overlap is actually composed by the coupling related to the
degrees of freedom defining the base—pair level, or equivalently, the micro structure:

mn = (’27—"’1/_7 yn7 ’Z’f:)'

The cyan highlights the inter-base—pair block which lays in the middle of the 42 times
42 block. Let now fix the attention on the yellow block. This block is related to the
base-to—Crick phosphate group degrees of freedom. On the same line of the matrix
we show in red all the phosphate blocks in the stencil that are coupled with the yellow
base—to—Crick phosphate group mentioned above. Being on the same line of the matrix
means that the entries quantify the coupling between the related degrees of freedom.
From left to right each odd red blocks is the coupling between Crick phosphate in
the downstream and up stream base—pair level, while the even ones are the Watson
phosphate also in the downstream and up stream base—pair level. It is interesting to
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notice that the Crick-Watson physical coupling is really close to be zero, meaning that
Crick phosphate group does not see any of the Watson phosphate from the elastic
interaction point of view. Finally, the big orange box contains the interaction between
three base—pair level that can be interpreted as follow: each base-phosphate unit on
the Watson or Crick strand, interacts with its five nearest neighbour units. For example
if one consider again the schematic representation of the internal coordinates in figure
9.4 the latter comment can be visually explained by fixing, for example, the middle
right light gray box. Its five nearest neighbour are just the other light gray boxes in
the scheme. We recall that a light gray box is in fact a unit composed by a base and a
phosphate group attached to it. The main properties of the interactions between units
is that there is very weak physical coupling between phosphate groups on different
strands.

The last point we want to present is shown in figure 9.6 where we compare the banded
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Figure 9.5 — Left, details of the covariance matrix estimated from time series of internal
coordinates (9.6) for sequence Si1, see sequence list (7.1). Right, we show the same
detail, but for its inverse, the stiffness matrix. Some parts of the stiffness matrix are
highlighted as explained in the text.

stiffness estimation and the observed one. One can remark that the holes correspond-
ing to the Crick phosphate— Watson phosphate degrees of freedom interactions are still
present in the banded stiffness. We recall that in algorithm 1 used for the computation
of the best fit banded stiffness is not possible to impose constraints on the values of the
entries inside the desired stencil. Hence, the fact that the banded stiffness preserves
the physical properties observed in the data could indicate that the origin of this weak
coupling can be explained by the entries of the covariance matrix just inside the stencil.
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Figure 9.6 — Left: observed stiffness matrices Right: banded stiffness best estimate. The
sequence is S1; from the palindromic training library.

9.2 Convergence of the phosphate degrees of freedom

In this section we will generalize the definition of convergence error, in the sense of
palindromic symmetry, of the first and centred second moment estimator given by

ERR(11) = || — Expll, (9.10)
ERR(C) = ||C — ELCEL|, (9.11)

for MD time series of internal coordinates (9.6). The matrix E]f, represent the linear
map of the change of reading strand transformation and its definition has not yet been
explicitly given, it will be discussed in detail in section 9.3. Before proceeding with the
convergence study of the Palindromic sequences in the context of cgDNA+ internal
coordinates, we first consider sequence Si; and focus attention on the phosphate in
the 16-th junction ApT on the reading strand which in fact is the coordinates from base
T to the 5’ phosphate. We recall that for this particular sequence we have simulated
10us which are a total of 10 million snapshots before hydrogen-bond filtering. For
more detail about HB filtering see section 3.3.1. In figure (9.7) we show, in solid lines,
the histograms over all the accepted snapshots for the base-to—phosphate internal
coordinates in the ApT junction. In dashed line we plot its palindromic complement
which actually is the base-to—phosphate degrees of freedom on the Crick strand on
the 8-th base—pair level, see equation (9.9). From the histograms we can observe that
both rotational and translational parts of the coordinates are extremely well converged
even if most of the coordinates present a clear bi-modal behaviour. We now compute
the palindromic error for the mean (9.10 ) for sequences (1,5,11) for which we have up
to 10us of trajectories. In the following table we report the results:

104



9.2. Convergence of the phosphate degrees of freedom

1072
rot; ‘ tral
rot.
wl Of ==
4 |
2 |
0 | \
-5 0 5 10

Figure 9.7 — One dimensional histograms of the base-to—phosphate coordinates in the
16—th junctions on Watson strand (solid line) compared to its palindromic symmetric
degree of freedoms on the Crick strand (dashed line) for sequence S;; over 10us long
simulation. The pairs of curves are virtually indistinguishable.

#S lus 2u8 3us 4us 5us

1 23753 1.7361 1.3174 1.3920 0.9332
2.8186 1.8046 1.1890 1.1418 1.2626
11 | 2.7406 1.1944 1.1404 0.8462 0.8567
6us 7us 8us 9us 10us

1 0.7830 0.7486 0.6460 0.6675 0.5994
1.4387 1.3878 1.0316 0.9691 0.7266
11 | 0.7917 0.7589 0.7510 0.6982 0.6111

Table 9.3 — Palindromic error in the estimator of the mean as function of simulation
length for sequence (1,5,11) of the Palindromic Library.

The interpretation of the latter values can be done using the same methodology pro-
posed in section 7.2.1. But, it is important to take into account two things: 1) is clear
that the palindromic error is bigger for cgDNA+ coordinates because in the error func-
tion we basically add more non-zero terms that correspond to the phosphate degrees
of freedom. 2) From table (9.2) we noticed that the sequence-averaged values for the
phosphates are bigger in magnitude then the intra- or inter-base-pair ones, thus if we
consider the average error per degree of freedom then, we have to take into account
the differences in magnitude. For example, for sequence S;; the error after 10us is
0.7266 which implies an averaged per degree of freedom error of 0.0308. For a better
understanding of the convergence of the mean we extract just the phosphate compo-
nents, and compute the palindromic error just for these degree of freedoms. In the
following table we show the findings:
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#S 1us 2us 3us 4us 5us

1 2.3040 1.6742 1.2657 1.3437 0.9012
5 27047 1.7683 1.1442 1.0929 1.2124
11 | 2.6459 1.1522 1.1056 0.8162 0.8289
68 7us 8us 9us 10us

1 0.7582 0.7231 0.6209 0.6376 0.5736
1.3784 1.3286 0.9853 0.9252 0.6924
11 | 0.7658 0.7322 0.7241 0.6728 0.5890

Table 9.4 — Palindromic error in the phopshate components of the mean estimator as
function of simulation length

We can now better understand which degrees of freedom contribute the most to the
error by simply computing the square of any entry in table (9.3) and then verifying that
it is in fact the sum of the squares for the same entries in tables (7.2) and (9.4). For
example in (9.3) we can read 1.3174 (1.3174% = 1.7355) for S at 3us, and from tables
(7.2) and (9.4) we read that the contributions from the cgDNA degrees of freedom is
0.3655 (0.3655% = 0.1336) which the contribution from the base-to-phosphate coordi-
nates is 1.2657 (1.2657% = 1.6019). Thus, we obtain that in the mean estimator of S; at
3us the major contribution to the palindromic error, for cgDNA+ internal coordinates,
comes from the phosphate degrees of freedom. In figure 9.8, we show the comparison
between Crick and Watson degrees of freedom for sequence S; computed at 10us.
In solid we show the phosphate coordinates for the Crick strand in reverse order to
match the Watson phosphate coordinates showed in dashed line. We can observe an
astonishing match between the two curves.

In conclusion, the cgDNA+ mean estimator converges, in the sense of palindromic
symmetry, with a reasonably high speed even if the error coming from the phosphate
degree of freedom tend to be larger compared to the cgDNA part.

Next, we study the convergence of palindromic error in the estimator of the covariance

5 L ——rotl 10 s | T tral

——rot2 ——tra2
0 ——rot3 ——tra3
EM ot 5

al 9 \\\V/Av\v///\\v—//\g//
NN E HEEEEEE NS
GCTTAGTTCAAATTTGAACTAAGC GCTTAGTTCAAATTTGAACTAAGC

Figure 9.8 — Comparison of Crick and Watson phopshate degrees of freedom for S;
computed at 10us. In solid we show the Crick phosphate coordinates in reverse order,
and in dashed the Watson phosphate degrees of freedom.

matrix. In the following table we report the palindromic error (9.11):
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#S lus 2us 3us 4us 5us

1 12.7157 9.1412 6.7662 7.6078 5.2133
11.8900 8.3603 5.5511 4.7657 5.3002
11 | 14.1163 6.8554 5.9344 4.7001 4.7712
6us 7us 8us 9us 10us

1 4.2848 3.7680 3.3660 3.2651 3.1135
5.2586 5.0496 4.2272 4.3219 3.4921
11 4.4921 3.9930 3.4361 3.2679 2.9514

Table 9.5 — Palindromic error in the estimator of the covariance as function of simula-
tion length

We recall that we only consider the entries of the covariance that are inside the cgDNA+
stencil and, because of the symmetry of the covariance matrix, we consider only the
diagonal entries plus the upper (or lower) triangular part. The first observation of the
results reported in table (9.5) is that the error for the cgDNA+ internal coordinates
is much bigger than the one obtained for cgDNA. Again, it is normal that the error
increases because, in the covariance matrix, there are the additional blocks corre-
sponding to phosphate-phosphate and phosphate-cgDNA correlations. We can again
consider the sub-blocks corresponding to phosphate degrees of freedom, meaning
that we can compute the marginal covariance over the cgDNA components. Once we
have computed the marginal covariance we consider only the phosphate-phosphate
blocks that are inside the stencil. We compute then the following errors:

#S lus 2us 3us 4us 5us

1 12.2666 8.8037 6.5136 7.3374 5.0284
11.5300 8.1239 5.3805 4.5998 5.1328
11 | 13.5723 6.6229 5.7468 4.5436 4.6014
6us 7us 8us 9us 10us

1 4.1397 3.6408 3.2511 3.1492 3.0045
5 5.0939 4.8932 4.0977 4.1819 3.3824
11 | 4.3381 3.8465 3.3017 3.1371 2.8363

Table 9.6 — Palindromic error (9.11) in the phopshate-phosphate covariance sub-blocks
as function of simulation duration.

Here it is important to mention that in the process of marginalisation, the phosphate—
cgDNA blocks are lost. We can retrieve the palindromic error for the phosphate-cgDNA
blocks by subtracting from the square of the entries in table (9.5) the square of the
corresponding values in tables (7.4) and (9.6). By doing this we observe that the
major contribution to the palindromic error for the covariance matrix comes from the
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phosphate—-phosphate blocks, which leads to the conclusion that phosphate blocks
tend to converge slower compared to the cgDNA-cgDNA and the phosphate-cgDNA
ones. Finally in the tables (D.1) and (D.2) of the Appendix we report the palindromic
error for the palindromic data set. We can conclude that for the phosphate coordinates
3us simulation are insufficient and it would be better to extend all the 16 simulations
to 10 microsecond or more. Unfortunately at the moment a data set containing 10us
long simulations of each sequence in the Palindromic library is not available. But, for
the purpose of these work we will again consider the 3us Palindromic data set and
work with it. In fact, we defined the Palindromic data set for the cgDNA+ internal
coordinates by computing palindromic symmetric mean and covariance estimators
of each palindromic sequence as well as the banded stiffness approximation of each
symmetrised second centred moments.

9.2.1 Convergence of oligomer-based Gaussian

In the previous section we studied the convergence of first and second (centred) mo-
ments separately. In this section we will use the Kullback-Leibler divergence per
degree of freedom between observed oligomer-based Gaussian and its palindromic
symmetric Gaussian to assess the convergence of the MD simulation. In detail, for a
palindromic sequence S of the palindromic training library we estimate the oligomer—
based Gaussian p(w;S) which parameters are the mean p(S) estimated using the
standard estimator and the banded stiffness matrix, £ (S), computed from C(S), the
standard estimator for the covariance. The palindromic symmetric Gaussian is de-
note by j(w; S) and its parameter are i(S) = Ej;u(S) and K(S) = EK(S)Ej;. The
Kullback-Leibler divergence per degree of freedom is defined by

1

D (p(w;S), p(w, Sw)) = ndostKL( p(w;S), p(w, Sw)) (9.12)
= L Dt (p(w; ), jlw, Sw)) + —— M (p(w; ), p(w, Sw))
Ndofs Ndofs

9.13)
= Dt (p(w:S), p(w, Sw)) + M (p(w; S), p(w, Sw)),  (9.14)

where Dk (-,-), D'(,-), and M(-, -) where defined in 5.3 and 5.4. In table 9.7 we report
the value of the Kullback-Leibler divergence per degree of freedom (as function of sim-
ulation duration) for each sequence in the palindromic sequence | library. We observed
that the stiffness part Dt contributes the most to the value of D for all palindromic
sequences. Consequently, also in the sequence average values (last row of table 9.7)
we notice that. Finally we can conclude that the stiffness part converge slower, with
respect to (9.14), than the shape part. This is consistent with the conclusions of the
previous section 9.2. But, using the Kullback-Leibler per degree of freedom as error
function we can compare the result of the sequence average values at 3us with the
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1us

2us

3us

~

D

Dt

—

M

~

D

Dt

—

M

~

D

Dt

—

M

0.0689

0.0643

0.0046

0.0149

0.0144

0.0005

0.0098

0.0094

0.0004

0.0616

0.0553

0.0063

0.0297

0.0276

0.0021

0.0205

0.0190

0.0014

0.0357

0.0328

0.0030

0.0108

0.0103

0.0005

0.0082

0.0079

0.0003

0.0465

0.0418

0.0047

0.0193

0.0180

0.0013

0.0169

0.0154

0.0015

0.0764

0.0652

0.0112

0.0227

0.0206

0.0021

0.0117

0.0106

0.0010

0.0574

0.0529

0.0044

0.0223

0.0211

0.0012

0.0136

0.0128

0.0007

0.0587

0.0528

0.0058

0.0237

0.0218

0.0019

0.0141

0.0129

0.0012

0.0264

0.0253

0.0011

0.0135

0.0129

0.0006

0.0066

0.0063

0.0003

O XA B W N~ Cn

0.0341

0.0326

0.0015

0.0161

0.0153

0.0008

0.0123

0.0117

0.0006

0.0370

0.0348

0.0022

0.0147

0.0140

0.0007

0.0156

0.0147

0.0009

—| —
- O

0.1232

0.1021

0.0210

0.0450

0.0409

0.0042

0.0247

0.0223

0.0025

—
[\

0.0516

0.0474

0.0041

0.0378

0.0342

0.0036

0.0223

0.0206

0.0018

—
w

0.0244

0.0234

0.0010

0.0206

0.0196

0.0010

0.0135

0.0129

0.0006

14

0.0200

0.0182

0.0019

0.0106

0.0100

0.0006

0.0127

0.0123

0.0004

15

0.0733

0.0658

0.0075

0.0168

0.0158

0.0010

0.0132

0.0124

0.0008

16

0.0540

0.0505

0.0035

0.0273

0.0251

0.0023

0.0134

0.0123

0.0011

Avg | 0.0531

0.0478

0.0052 | 0.0216

0.0201

0.0015 | 0.0143

0.0133

0.0010

Table 9.7 — Palindromic convergence error computed using the Kullback-Leibler diver-
gence per degree of freedom between observed banded Gaussian and its palindromic
symmetric Gaussian as function of simulation duration. The Avg values are obtained
by averging over all the 16 palidromic sequences. We can observe that at 3us the aver-
age values of the KLdalmost the half of the values of the KLd per degree of freedom
obtained in chapters 6 and 7. The main contribution to the error comes from the
stiffness part of the KLd per degree of freedom.

values obtained in chapters 6 and 7. We actually remark that the palindromic error
is almost half of the total error between model and data. This suggest again that the
simulations of the palindromic library should be extended. In table 9.8 we show the
palindromic error at 10us for the sequences (1, 5, 11) of the palindromic training library
computed using (9.14). We observe that the palindromic errors for the three 10us long
MD simulations decrease substantially. In conclusion the Kullback-Leibler divergence
per degree of freedom (9.14) allows to get a more insight understanding of the conver-
gence of the oligomer-based Gaussian and allows to compare the palindromic error
with the modelling error.

9.3 The cgDNA+ parameter set

The parameter set format for the cgDNA+ model is a natural extension of the cgDNA
one, but with the particular property that the end sigma vector and stiffness matrices
will be of different dimension than the interior ones. In detail the cgDNA+ parameter
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10us
D Dt M
0.0034 0.0033 0.0001
0.0039 0.0037 0.0002
1] 0.0026 0.0025 0.0001

—| ol —|Cn

Table 9.8 — Palindromic convergence computed using the Kullback-Leibler per degree
of freedom (9.14) computed from 10us long MD simulations.

set is defined by

P = {05’6“5 g8 k5B, Kaﬁ} C Peor, 9.15)
apBeD’ 5 apfeD
where Py = [R36]16 x [R42]10 x [S36]16 x [S12]10, and SV is the set of N x N symmetric
matrices. The end sigma vectors are of dimension 36 while the interior ones are of
dimension 42. Equivalently, the stiffness end blocks are of dimension 36 x 36 while
the interior ones are of dimension 42 x 42. The difference in dimension between
interior and end blocks is due to the fact that in the MD simulations the first phosphate
group on both strands is absent. Consequently, the first and last base—pair levels
are composed of only an intra-base—pair degree of freedom and a single base-to—
phosphate set of internal coordinates.
In the following we will mainly focus on the computation of the cgDNA+ parameter
set (9.15). It involves, in particular, the problem of computing an initial guess to
initialise for the optimization problem. But first, we need to introduce the cgDNA+
reconstruction rules for the mean and the stiffness matrix and the parameter extraction
problem.
Let P be a cgDNA+ parameter set of the form (9.15) and let S be a N base—pair long
DNA sequence. We can define the reconstruction rule for the stiffness matrix K (P, S)
and the weighted shape vector ¢(P, S) in the following way:

K(P,S) = P KPy, (9.16)

o(P,S) = P oq, (9.17)

w(P,S) = K(P,S) ta(P,S), (9.18)
where

: 5 X1 X X X; Xn-1Xn3'
Ky =diag(K> 172, . K2 Kot ),

’ . ’
oq=(o7X1X2 | gNiXir g Xn-1Xadhy
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and the matrix P; € R¥2N—12x24N—-18 aqdg

Ig
Ig
his
Ig
P, = Iig
I1s

i I |

(9.19)

where we use the notation I,, for the n-dimensional identity matrix. We recall that the 3’
end blocks for both stiffness and weighted shape can be computed using Crick-Watson

SyTnmetry. More pIECisely,
K?ﬁiﬂ' — E5/K5/Q6E5/

where E* is defined by

EY =

with E = diag(—1,1,1,—1,1,1) € R%, and E ¢ R36*36 satisfy [E5']~! =

R?)G x 36 with

EY =

For the interior blocks the Crick-Watson symmetry rule is given by

K@ — EintKaﬁEint

(9.20)

(9.21)

[E5’]T — E3’ c

(9.22)

(9.23)

111



Chapter 9. A sequence-dependent coarse-grain model of B-DNA with explicit
treatment of the phosphate groups

with
_ I
E
Is
Ent— E , (9.24)
Is
E
_I6 -
which satisfy £" = [E")T = [EMY~1  Finally we have that the complementary
sequence S of S must satisfy
u(P,S) = Egw(P,3),
K(P,S) = E{,K(P,S)EY,
where
- 25
Eint
Ef = B . (9.25)
E¥
The best—fit cgDNA+ parameter set P is defined as
P = argmin F(P; Lb), (9.26)
PeP
with
M
F(P;Lb) = Y Dxr(p(x, 05(P)), plx,6:)), (9.27)
i=1

where Lb is the training library containing M sequences, p(z, ;) is the observed banded
Gaussian for sequence S; and p(z, 6;(P)) is the predicted Gaussian for sequence S;
and parameter set P where 0;(P) = param(o(P,S;), K(P,S;)), see for instance (2.9),
where the weighted shape o and the stiffness matrix K have been reconstructed using
the rules (9.16-9.17). We define the set of admissible cgDNA+ parameter sets by
P = Pseit M Pirain C Prot. We recall that Py is the subset of parameter sets which interior
sigma vectors and stiffness matrices for palindromic dimers satisfy the Crick-Watson
symmetry (9.23). The subset Py, instead, contains only parameter sets P that, for all
S € Lb, reconstruct a positive definite stiffness matrix K (P, S).
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For the numerical resolution of problem (9.27) we need an initial parameter set P;,,; € P.
For this purpose we introduce the Fisher information matrix and its relationship with
Kullback-Leibler divergence.

9.3.1 Fisher information matrix

An interesting and useful feature of the Kullback-Leibler divergence is its relationships
with the Fisher information [28]. We recall first that, under some regularity condi-
tioned, the Fisher information is the second centred moment of F'(x, §) = log p(x; )
conditional to the parameter § € R, namely

82

Z(0)=—-FE wF(:c,@)

9] , (9.28)

where p(z; 0) is a probability density function conditioned on 6. The definition (9.28)
can be extended, again under some regularity conditions, to parameters € R with
N > 1 which leads to the Fisher information matrix defined, entry-by-entry, by

82

[Z(0))i; = —FE 26,06,

F(x,0)

9] ) (9.29)

Now consider p(z; ), a probability density function parametrized by § € RY, and let
9 =0 + 60 € RN with 60 < 1. The KLd between p(z; §) and p(x; ) is

Drcr(p(x; 0), p(x; 0)) = / p(a;0)log 250 gy, 9.30)

Q p(z;0)

A direct computation shows that a first relation between the Fisher information (9.28)
of p(x, ) and the KLd (9.30) is

92 . 92 .
7(0) =~ | plasd) 5 torplas s = S Dslolasd)p(aso)| . 03D
We now expand (9.30) at § = 6:
R R . 9 R
DKL(p(:I}7 9),}7(1‘, 0)) = DKL<p(x7 (9),]9(1', 9)) + %DKL(p(xv 9)7]7(3:; 0)) - o6
=0
1 0? ; 3
+ —00- —=Dkr(p(x,0),p(x,0))| 66+ O(|66]°). (9.32)
2 062 0—0

As the KLd vanishes at § = § and this point is also its global minima, the first and
second term in (9.32) vanish. By using equation (9.31) we can write the second relation
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between KLd and the Fisher information matrix:

Dict(p(,8), p(a, 6+ 68)) = %59 L T(6)56 + O(56%)). 9.33)
Finally we obtain that, for a parametric probability density function p(-, §), its Fisher in-
formation matrix defines a quadratic approximation of the Kullback-Leibler divergence
between p(-, ) and any other probability density function parametrised a neighbour
of §. As a last remark we point out that equation (9.33) holds for both orderings of the
argument in the KLd, meaning that we have also

A~ A~

Dicr(p(z, 6+ 60), pl(a, 6)) = %59 L T(6)56 + O(56%)). 9.34)

The (standard) theory mentioned above can be applied whenever two parametric
probability density functions are close in parametric space. In particular, in the context
of DNA modelling, one can use (9.31) or (9.34) to compute the Kullback-Leibler diver-
gence between two banded Gaussians parametrised respectively by 0,, = (o, Kp,) €
RY and 0; = (04, K4) € RY. But in practice the computation of the Fisher Informa-
tion matrix as the second derivative of the Kullback-Leilber divergence (9.31) is not
trivial and deserves to be better explained. For sake of completeness let us rewrite the
Kullback-Leibler divergence between two banded Gaussians denoted by p,,, = p(x;6,,)
and pg = p(z;6a):

1 det Ky,
Dir(0m,04) =5 (trace(Kﬂ_lle) +In ( © > — N)

det Kd
1 _ _
+ 5(0-771 - de)Kledel(Um - m:ud)
= Dgr(om, Km,04, Kq), (9.35)

where we have explicitly written the second term, namely the Mahalanobis distance, as
a function of o,,,. The important point we want to the describe hereafter is the relation
between variations of (9.35) with respect to o,, and K,,, and its differentiation with
respect to 6,,. The first directional derivative of (9.35) with respect to o, and K,,, in
the direction d = param(\, A) € RNV is

vdDKL = 0xgDgr : A+ 90,Dky, - )\, (9.36)

where, for the sake of compactness, we drop the argument of the KLLd. More details
about the expression (9.36) can be found in appendix E. We define the first derivative
of (9.35) with respect to 6,,, by

GradDKL = param(@UDKL, aKDKL), (937)

where the bijective operator param(-, -) is defined in (2.9) and is the same operator
that maps 6,, to the couple (o,,,, K,,). For the second derivative with respect to 6,,, we
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can proceed in an equivalent way by defining first the second directional derivatives
of the Kullback-Leibler divergence with respect to o, and K, in the directions d =
param(\, A) € RN+N*N and d’ = param(\, /) € RN+V?

VaVaDkr = Oxtrace (A0 Dycr) : A
+ J,trace (AT(?KDKL) Y
+ Oxtrace (N9, D) : A
+ dtrace (A9, Dkp) - N. (9.38)

Again the explicit algebraic expression for all the terms in (9.38) can be found in
appendix E. We rearrange the right-hand side of (9.38) in order to obtain an expression
of the form

VaVaDir = Hic(pms pa)id) : A+ Ho(pm, pa)i d) : . (9.39)

Finally we can define the Hessian matrix of the KLd with respect to the parameter 6,,
columns-wise by

[HessDkL](..5) = param(Hq (pm; pa); €5), Hic(Pm, pd); €5)) (9.40)

where e; € RNV’ is the j-th element of the standard basis of RNV,
Finally, the relation between the Hessian matrix defined column-wise in (9.40) and the
Fisher Information matrix (9.29) is simply given, column-wise, by

] . (9.41)
Om=bal (5)

In the next section we will show how from the standard theory of this paragraph we
can derive an approximation of the Kullback-Leibler divergence when one banded
Gaussian is in fact reconstructed from a cgDNA+ parameter set and a sequence, which
the other probability density function is a banded Gaussian estimated from a MD time
series of internal coordinates of cgDNA+ degrees of freedom for the same sequence.

0?Di 1, (0, 0a)

[I(Gd)](-,j) = 962

9.3.2 Computation of an admissible initial cgDNA+ parameter set

Let P be a cgDNA+ parameter set in the format (9.15) and let S be a N base—pair long
DNA sequence. We assume moreover that o(S) € R*N~-18 and K (S) € R(4N-18)x(24N-18)
are respectively the weighted—shape and the banded stiffness matrix estimated from
a MD time series of cgDNA+ internal coordinates for the sequence S. We denote by
o(P,S) € R?*N-18 and K (P, S) € R(ZAN-18)x(24N-18) the weighted shape and stiffness
matrix reconstructed by a cgDNA+ parameter set P. For sake of simplicity we will use
the notation §; = (¢(S), K(S)) and 0,,, = (¢(P,S), K(P,S)) to denote respectively the
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parameters for the observed banded Gaussian and the parameters of the Gaussian
reconstructed by the cgDNA+ parameter set P. The goal of this section is to derive an
approximate expression for the Kullback-Leibler divergence

Dicr(p(x, 0m(P, S)), plz, 04(S)), 9.42)

between p(x, ;) and p(z, 0,,,). Supplementary detail about the following computation
can be found in appendix E.

The main goal of the next paragraph is to derive an approximation of the Kullback-
Leibler divergence not in terms of perturbation of banded Gaussian but instead as
a function of a cgDNA+ parameter set. For doing that we first start by recalling the
reconstruction map

R(P,S) = (o(P,S),K(P,S)), (9.43)

given by the rules presented in (9.17) and (9.16). An important point to remark here
is that the mapping (9.43) is not invertible because of the overlapping structure of
the cgDNA+ stiffness matrices. Next, we introduce a bijective mapping between the
parameter set P in the format (9.15) and its vectorial form

P =vec(P) € RL, (9.44)

where L is the total number of independent entries in P. The interesting point here is
that we can generalize the reconstruction rule (9.43) for P and 6,,(P) in the following
way

Rvec(PaS) = R(S)P = 9(73’8)’ (9.45)

where the matrix R € RN+N**L js called the parameter reconstruction matrix. It maps
the element of the parameter set to each entry of o and K according to the sequence.
The main consequence of (9.45) is that it shows the linear relationship between the
parameter set P and the Gaussian parameter 6,,(P). Thus, we can easily define the
gradient and the Hessian matrix of the KLd divergence with respect to the parameter
set P:

GradpDyy, := R(S) GradDg, (9.46)
HesspDxr, := R(S)"HessDx 1 R(S). (9.47)

From a computational point of view we never compute the above expression because
of the complexity of defining the matrix R(S) explicitly. In appendix E we present a
more computational efficient way that we have implemented and used in practise.
We now approximate the Kullback-Leibler divergence (9.42) using

1 1
DKL(Gm, ed) ~ §9m ~I(0d)(9m — 0, - I(Qd)ed + §0d . I(@d)ed,
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where 6, = param(o(P,S), K(P,S)) and §; = param(o(S), K(S)). We can now use
the reconstruction rule (9.45) to get the following approximation

D1 (0m,04) = %P “R(S)TZ(04)R(S)P — P - R(S)TZ(04)04 + %ed - Z(64)04. (9.48)

The linear change of variable obtained in the above expression gives a direct relation-
ship between the Fisher information matrix computed for the parameter # and the
Fisher information matrix computed for the cgDNA+ parameter set:

Ip.s)(04) = R(S)TZ(04)R(S). (9.49)

Finally we obtain the following approximation of the Kullback-Leibler divergence
(9.42)

—_

1
Dic(p(@, ). p(w,00)) ~ 5P Lip.5)(00)P = P- R(S) L(00)0+ 504-L(04)-8a. (9.50)

\)

We can now take advantage of the approximation (9.50) for computing a candidate
initial guess. Let us consider the palindromic sequence library Lbp,;, and its cor-
responding oligomer-based statistics {(c(S;), K (S;)|S; € Lbpain }- Then, for a given
cgDNA+ parameter set P consider the following functional

> Diilp(z,6(P,Si), p(x,0(Sy)), (9.51)

and in particular, by using (9.50) on each element of the summation, we obtain the
approximation of (9.42)

16 16
S Dict(p(e, 0P, 8)), p(.6(8)) = 3 3 P Tip s (0a)P — P R(S) T(6:)6 + C

i=1 =1

1
= 5P Lp L) 0)P = P-B+C. (9.52)

where

7) pralm) Z I('p S 9d

B= ZR Z(a)ba,

1
=5 Z 0; - 7(6;)0
i=1
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The candidate initial guess can then be computed by minimizing (9.52) and, conse-
quently, by solving the following least square system, or Fisher system,

Lp, Lbyin) P = B- (9.53)

In equation (9.53) the matrix Z(p 1, . ) is notinvertible because of the non injectivity of
the reconstruction mapping for the cgDNA+ model. Thus, the matrix Zp r;, ... has as
many zero eigenvalues as the dimension of the null-space generated by the parameter
set format and the reconstruction scheme. In section (9.4) we will better present this
null-space, but for the moment we stress that, due to the zero eigenvalues of Z;p, Lbpaiin)?
the solution P in (9.53) is computed using the Moore-Penrose pseudo-inverse. Finally,
we denote

p_ 7t
P B I(Pvapalin)B

a candidate initial guess were AT is the psuedo-inverse of A. Before claiming that
P is an actual initial guess have to verify that it belongs to the space of admissible
parameters set P. Unfortunately there is no known proof that ensures that for an
arbitrary training library Lb the data {(¢(S;), K(S;)|S; € Lb)}M, leads to a solution of
(9.53) that always lies in P. Thus for any set of data one should verify that P — P € P.
If the latter condition is satisfied we will called P an initial guess, denoted Pj,; — Pini,
and it will be used to solve (9.27) numerically.

Practically, we have compute the initial guess by solving (9.53) for the Palindromic data
set and after checking that the parameter set reconstructs positive definite stiffness
matrices for each palindromic sequence, we have computed the averaged Kullback-
Leibler divergence per degrees of freedom (6.6) in order to be able to compare the
accuracy of P;,; to test the results obtained in chapters 6 and 7. We present the findings
in table 9.9.

Pini D D M
PALIN | 5.59-1072 5.44-10~2 0.15-10°2

Table 9.9 — Average Kullback-Leibler divergence per degrees of freedom (6.6) computed
for the initial guess parameter set P;,; and the Palindromic data set.

We notice that the stiffness part of KLd is the major contributor to the overall value of
the error, while the shape part as a surprisingly low value. In conclusion we can state
that P;,,; is a good point from where to start the numerics’ but still too poor to avoiding
the actual resolution of (9.27) by minimisation. In the next section we will focus on a
numerical scheme for computing best-fit cgDNA+ parameter sets.
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9.3.3 Fisher informed gradient

In this paragraph we will expose the methodology used for deriving the first best-fit
cgDNA+ parameter set. The scope of this section is not to analyse the proposed method
but to present the numerical scheme adapted to resolution of problem (9.27) and to
explain its efficacy.
Once the initial guess P;,,; is computed we can start the minimization of (9.27). In this
section we will present a different approach to numerics than the one proposed at the
end of chapter 5 or with the algorithm (2). In particular in 5.2 we presented a scheme
for the equivalent cgDNA problem (9.27) that is divided into two major steps: a gradi-
ent descent stage and a Quasi-Newton method stage using the Broyden method. The
first step aims at decreasing the residue (norm of the gradient computed at the current
iteration) until a certain threshold. This first step can last for multiple days/weeks
especially because the computation is very sensitive on the step size. The second stage
aims at decreasing the residue down until convergence is achieved (residue smaller
then 10~11), which can take a few days. Practically speaking one of the most expensive
steps in the Broyden algorithm is to compute the Hessian matrix. It could take up to 9-
12 hours to get the Hessian matrix on a regular laptop, and up to one hour to compute
the same matrix on a CPU server with 12 cores. The choice of using a Broyden method
was actually motivated by this high cost, in term of time, for computing the Hessian
matrix, which made infeasible the use of a classic Newton method. Historically, the
first cgDNA parameter set was computed using these two-stage procedures described
above by starting from an admissible initial parameter set constructed from the data.
In particular the computation of the initial guess presented in paragraph (9.3.2) was
not known at that time which made the construction of the initial parameter set very
hard and delicate. The computations were very intense and lasted for multiple months:
from the computation of the initial guess to the convergence of the Broyden algorithm.
Once the first parameter set was computed, all the following ones were computed
using the parameter continuation procedure presented in chapter (6), summarized by
the algorithm(2).
For computing the very first cgDNA+ parameter set we changed completely the proce-
dure thanks to the Fisher information matrix (9.49). For the first cgDNA+ parameter
set the gradient descent-Broyden approach could easily take months to converge even
if the initial guess is given by (9.53) as the dimension of the unknown is significantly
larger. We thus implement a different approach that uses the matrix I(Tp’ Lbya) 38 PTE
conditioner in the gradient descent step, defining, at step &, the following updating
scheme

p+1) = pk) _ azgﬂ pralin)GradeF(P(k); Lb), (9.54)
where GradF is the gradient of sum of KLs in (9.27) computed using the gradient of
a single Kullback-Leibler divergence (9.46) and « €]0 1] is the step size. In appendix
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E one can find the detailed computation of the gradient of (9.27) with respect to the
parameter set. The updating scheme (9.54) leads to a preconditioned—-gradient flow
method that we call, Fisher-informed gradient flow. The Fisher-informed gradient
started from the initial guess (9.53) converges very fast which means, in our context,
that in less then one hour we managed to compute the best-fit cgDNA+ parameter set
trained on the Palindromic data set. The computational time refers to the computation
run on a CPU server with 24 cores and MATLAB multi-threaded computations and
initially taking into account only ten independent interior dimers and only GpC end
dimers. In the next paragraph we better explain this point. Even if we are far from
being able to compute in a fast way a cgDNA+ parameter set on an everyday laptop,
the Fisher-informed gradient method improved substantially the entire parameter
extraction procedure and, combined with the computation of the initial guess of
section (9.3.2), it leads to the conclusion that the parameter continuation in the context
of cgDNA+ parameter set is not needed. Meaning that for any new data set it is faster
to compute the initial guess, by solving the Fisher system, (9.53) and by running the
Fisher-Informed gradient method (9.54).

A possible explanation of the efficacy of the Fisher—informed method is that the Fisher
information matrix evaluated at the data brings the additional information of the
curvature of the Gaussian parameters space at the point given by the parameters of the
banded Gaussians. The inverse of the Fisher information matrix then plays the role of
rescaling the gradients by taking into account the geometry of the space around the
solution. For completeness of the discussion we would like to address the attention of
the reader to the fact that the Fisher information matrix as defined in (9.29) defines a
metric on the Riemann manifold whose points are parametric probability measures,
thusitinduces an inner product. Finally, the Fisher information metric is also related to
the Hessian of the KLd with respect to the parameter of the Gaussian. The Hessian we
are considering is actually the second derivative with respect to the cgDNA+ parameter
set thus, the latter theory cannot be directly applied but, nevertheless, the matrix used
in the updating scheme (9.54) helps substantially the convergence of the gradient flow.
This if is for surely related to the fact that the Hessian matrix used in the updating
scheme changes the inner product and, consequently, the geometry of the problem.
The total number of independent entries in the cgDNA+ parameter set (9.15) is, 20,682
which means that this is the size of the optimization problem (9.27). To avoid working
in such a big space we adopted the following technique:

1. We consider only the Palindromic library, meaning only GpC' end blocks.
2. We add each end block independently using the corresponding sequence of the

end library B.4, keeping fixed the values of the interior blocks.

The dimension of the system in 1) is 10152 while the dimension of the system in 2) is
only 702. The main reason underlying the two points presented above is, of course,
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to decrease the dimension of the system. Also because the end sequences are not
palindromic so that a proper convergence test is not feasible. Consequently, we trust
less the estimated mean and covariance for the end data set. On the other end many
applications of the cgDNA model involve localised sequence marginals, so that an
accurate parameter set of end blocks is not so crucial. In conclusion the ends data
should be simulated for longer time in order to enhance the quality of the resulting
oligomer-based statistics. In the next section we will discuss the positiveness of the
best—fit cgDNA+ parameter set.

9.4 Proving positiveness of the best-fit parameter set

Using the palindromic, oligomer-based statistics we have numerically solved problem
(9.27) starting from the admissible initial guess computed by (9.53), see table (9.9) for
the accuracy of the initial guess. We started first by computing the ten interior dimer
elements and only GpC' end dimers. Now, the next step of the cgDNA+ parameter
estimation procedure is to prove that the obtained best-fit parameter set is actually
positive definite, in the sense that, the stiffness matrix predicted for an arbitrary
sequence (with GpC ends) is positive definite. We need to recall that uniqueness of
the best-fit parameter is not satisfied because of the non injectivity of the following
linear map

R : (P,Lb) = {o(P,S;), K(P,S)}Y,, (9.55)

which represents the reconstruction rule (9.17,9.18,9.16) for the sequence library Lb.
More precisely, let P € P be an arbitrary parameter set (9.15) and define I'4, ¢ ¢
R18x18 and 44, & € R!8® respectively two non zero matrices and two non zero vectors.
Define then I'® = E'TET and 4® = E'4® with a = {4, G}, and E defined by

Is
E' = E , E = diag(—1,1,1,-1,1,1).
Is
We can now define a new parameter set P’ whose elements are, for the stiffness part,

K?ﬁ — Kaﬁ + diag(—Fo‘,Og,PB), Kléfoaﬁ — K5’a6 + diag(01s,f‘a), (9.56)

where K% K58 ¢ P, With a similar construction for the weighted shape parameters
o8 and o%'*% using 4%, X = A, T, G, C we obtain a parameter set that will satisfy

R(P, Lb) = R(P', Lb), for any arbitrary set of sequences Lb. (9.57)

We can take advantage of the non trivial null space in the parameter set for proving that
the best-fit parameter set P is actually reconstructing a positive definite matrix for a
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arbitrary sequence. We have already presented in section 7.3.1, that the stiffness block
elements in the cgDNA parameter set (7.17) are all symmetric and positive definite,
but as a matter of fact, the stiffness blocks of the best-fit parameter set are not positive
definite. We can therefore use the freedom given by the null space to find the two
matrices ' and I'“ and use the equations (9.56) to find a positive definite cgDNA+
parameters. set. We present a technique we have designed that searches in the null
space for the I'* elements.

Let K € R™*" be a matrix, with eigenvectors and eigenvalues {z;, A\;}!_;, and further
assume that the eigenvalues are all distinct. Now introduce a small perturbation matrix
dK and the perturbed matrix K’ = K + § K. We can study how much {z;, \; }7; will
change with respect to the perturbation § K. In fact, it is expected that if K is small
enough, the perturbation in the eigenvectors and eigenvalues of K will also be small.
More precisely, we expect that

iL'; = xz; + 0z, (9.59)
foralli = 1,...,n. In the particular case when K is symmetric and positive definite,

explicit formulas for {dz;, d\;}*; can be derived, see for instance [73]. We can now ask
the following questions: can we find two matrices I'4, I'® ¢ R'®*18 and use equation
(9.56) to find a positive defined best-fit parameter set 7. How can we construct such
matrices?

A priori the first question is not answerable because there is no guarantee that a
solution of (9.27) does reconstruct positive definite matrices for any arbitrary sequence,
but an extensive study of the positiveness can be done to be gain insight on the problem.
It is sufficient that positiveness is not satisfied for a single sequence to break any hope
to prove the positiveness of P. Practically, we have used the best—fit cgDNA+ parameter
set to reconstruct stiffness matrices for millions of sequences (with Gp(C) and not a
single indefinite matrix has been found. To prove then that the parameter set is actually
positive definite we used the following approach to construct the elements of the null
space.

Given a best-fit parameter set P = {0*%, 6% % K% K%} scp,

find T4, I'“ € ¢, where
C = {FA,FG e ROG|KP > 0, vaB, K2 >0, V5’aﬁ} , 9.60)
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and K¢, Kﬁlaﬁ , are defined in (9.56). For doing that, one can use a standard algorithm
to minimize the following constrained nonlinear problem

min F(I'4, 1% P), (9.61)

rAréec
with F' : ker(P) — R, with the specific choice of F' as the zero functions. The latter
choice for the objective function implies that one just wants to find an arbitrary ele-
ment of the null space of P, meaning an admissible point of C. As the construction of
an admissible point is not trivial, one must start from a random initial guess for r4
and I'“ and need to iterate by adding the current solution to the previous initial guess.
More precisely, the element in the null space after & + 1 iterations will be computed as

[P = 0% 4 12 ¥, for o € {af}, (9.62)
where [I'2 ]* is the solution after  iterations obtained using the initial guess [I'*]*.
We noticed that, with this strategy, at each iteration i) the total number of negative
eigenvalues ii) the sum of the absolute value of the negative eigenvalues iii) and the
Frobenius norm of I'g. |, decrease in an oscillatory fashion. This means that the proce-
dure is actually lifting up the negative eigenvalues. Unfortunately, the convergence
of the latter procedure is quite slow and another procedure should be used. Starting
from a solution computed after some iteration of the previous strategy, one can use
the following non trivial objective function

FIOATEP) = STIEY e+ D 12 lg, 9.63)
aBeD 5" aBeD

where ||-||r is the Frobenius norm, and continue to compute the element in the null
space in an iterative way. With this non trivial objective function, we found a solution
to (9.60) and thus we can prove a positive best-fit parameter set P trained on the
Palindromic data set.

For the missing end dimers blocks we first reconstructed a large number of sequence
which present all the possible combination of ends dimers. Unfortunately, we con-
cluded that any sequence ending with the dimer blocks GpA or TpG is reconstructed
with an indefinite stiffness matrix. On the other hand, we used the method present
above to find a positive definite cgDNA+ parameter set for ten interior dimer steps
and fourteen ends dimer steps different than GpA or T'pG. We conjectured that in-
definiteness of the two end dimer blocks is related to a lack of convergence of the
corresponding statistics, but unfortunately we do not have more data to prove this
statement. In any case, we already mentioned that reliability of the statistics estimated
for the end data set cannot be verified compared to the palindromic data set for which
we could study the convergence of both, mean and covariance, estimators. But, as
future development, the end data set needs to be extended in simulation duration in
order to ensure that the parameter estimation procedure proposed in the two point
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steps method presented at the end of section 9.3.3 is efficient and reliable. In the fol-
lowing section we will consider the best-fit parameter set P as the parameter estimated
only from the Palindromic data set.

9.5 Assessing the best-fit cgDNA+ parameter set

We can check accuracy of the best-fit cgDNA+ parameter set trained on the palin-
dromic data set. We first start by looking at the average Kullback-Leibler function per
degree of freedom introduced in (6.6):

cgDNA+ D D' M
PALIN | 2.40-1072 2.29:-10°2 0.12-102

It is interesting to see how well approximated the ground-state are, in the sense of the
Mahalanobis distance. In fact, no single comparison done in chapters 6 and 7 with the
cgDNA model has shapes predicted with such a great precision. This implies that most
of the cgDNA+ approximation error is in the stiffness, but it is still in the range of errors
we have obtained in section 7.3. This suggest that the whole process of extracting a
coarse—grained model of DNA from MD trajectories presented in this work is stable
and accurate even for a very large set of parameters such as for the cgDNA+ model. In
the next paragraph we present the comparison between data and reconstruction of
ground-states and tangent-tangent correlations.

9.5.1 Ground-state

The first comparison we make is between ground-states of palindromic sequences in
the training library and the corresponding cgDNA+ predictions. For detailed compari-
son we have selected three sequences: S;, S5, and S1;. For the selected sequences, in
figure 9.9 we show the comparisons of the phosphate degrees of freedom observed
from MD simulations and predicted by the model. As all the sequences are palin-
dromes we can just show the base-to—phosphate coordinates for one of the strand, and
in figure 9.9 we have selected the reading strand. We notice a really good agreement
between predictions and observation for all the selected sequences. For the inter— and
intra-base—pair internal coordinates we decided to show the differences (in absolute
value) between the predictions of the cgDNA parameter set derived in chapter 7 and
cgDNA+ for the same sequences. In figure 9.10 in solid lines we show the errors for
cgDNA+ predictions while in dashed lines we show the error for the cgDNA ones. In
general for each rigid—base—pair degree of freedom the cgDNA+ prediction are closer
to the data. In figure 9.11 we show the same errors for the intra—base—pair internal
coordinates and again in general the cgDNA+ model reduces the error between obser-
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Figure 9.9 — Comparison of base-to—phosphate degrees of freedom, on the reading
strand, between cgDNA+ predictions (solid line) and MD observation (dashed line)
for the sequences (1,5,11) of the Palindromic Library. In the first column we show the
rotational coordinates, while in the second the translations.

vation and predictions.

In conclusion, the ground-states predicted by the cgDNA+ model are in excellent
agreement with the MD observation and in general the cgDNA+ model enhances the
quality of the predictions of the inter— and intra—base—pair components, in addition to
predicting base-to—phosphate degrees of freedom.

9.5.2 Tangent-tangent correlation

In this paragraph we consider the sequences (1, 7, 10, 14) and we compare the tangent-
tangent correlation computed using the training data and using the cgDNA+ predicted
Gaussians. First we recall that for a N base-pair long sequence S the tangent-tangent
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Figure 9.10 — Absolute error between model predicted inter-base—pair degree of fred-
dom and MD obsrvation. In solid, we show the error obtained by the cgDNA+ model
and in dashed the error obtained by the cgDNA model. The sequences considered are
(1,5,11) in the Palindromic Library. If two plots were super imposed they would be
indistinguishable, which is why we chose to plot errors.

correlation function reads:

[ty - to) = / (6 () - to)p(w; S)duw 9.64)
R12N—6

where t; is the tangent vector of a fixed base—pair (usually taken away from an end)
and p(w; S) is a probability density function in the configuration space of S. Since
an analytical expression of (9.64) is not available for a general p(w; S), one can only
approximate it. Therefore, we estimate (9.64) using the Monte Carlo method where the
configuration ensemble to use for the evaluation of the tangent-tangent function will
be generated in two different ways:
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Figure 9.11 — Absolute error between model predicted intra—base—pair degree of free-
dom and MD obsrvation. In solid, we show the error obtained by the cgDNA+ model
and in line the error obtained by the cgDNA model. The sequences considered are
(1,5,11) in the Palindromic Library

1. from the (filtered) MD time series of trajectories of internal coordinates,

2. from direct sampling of the observed Gaussian.

In figure 9.12 we label by MD the tangent-tangent computed from the ensemble
generated by the MD trajectories after hydrogen-bond filtering (see for detail section
3.3.1) while with the label MC the ttc computed using the Monte Carlo method and
direct sampling of the observed Gaussian. We can observe that both ttc curves gives
the same result. By consequence we can conclude that the tangent-tangent correlation
is not influenced by the non—-Gaussian behaviour of configurations in the ensemble
generated from the filtered MD trajectories as its value is totally defined by the first
and second (centred) moments. Moreover, we computed the ttc using the unfiltered
trajectories and noticed that the HB filtering does not influence the ttc computation.
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We decided to omit this curve in figure 9.12 because it is strictly the same as the others
two. From now on we will use the label MD for the ttc computed with method 2)
mentioned above.

In the next comparisons we will consider only direct sampling method from the
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Figure 9.12 - Comparison of tangent-tangent correlation functions computed from an
ensemble of filtered MD trajectories (solid) and computed from an ensemble generated
by direct sampling of the oligomer—based Gaussian of the filtered MD trajectories. The
sequence considered are (1,7,10,14) of the Palindromic Library.

following different Gaussians defined by different sparsity pattern and different degrees
of freedom. We will consider:

1. the observed Gaussian as in figure 9.12 (MD),

2. the truncated approximation of the observed one, with cgDNA+ degree of free-
dom (NN+),

3. the truncated approximation for cgDNA degree of freedom (NN),

4. the truncated version for rigid—base—pair degree of freedom (rbp).
One of the key points is that the integral (9.64) depends only on the inter-base—pair
internal coordinates and thus in practice to estimate the tangent-tangent correlation

function one just needs a distribution on these degree of freedom. In figure 9.13
we show in black the ttc’s for the MD distribution defined on the cgDNA+ internal
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coordinates, but this curve is the same for any other choice of degrees of freedom
as long as it contains the inter-base—pair ones and the covariance is the observed
one. After these observation we can properly compare the consequence of nearest—
neighbour interactions assumption on three different level of coarse-graining. In
figure 9.13 we show: in green the rigid-base-pair model, in red the rigid—base model
and in blue the rigid—base and rigid—phosphate model. It was already observed in
section 9.1 that by adding more detail to the coarse—grain model the more accurate
the assumption of locality is. But here we further show how accurate the banded
Gaussians are in predicting a non-trivial observable from the MD data, and again
the more detailed coarse-grain model performs better. We can finally compare the
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Figure 9.13 — Computation of the tangent-tangent correlation function for different
banded matrices estimated from MD simulations. In black we show the ttc for the
observed distributions, in blue we show the ttc for the banded approximation for rigid—
base rigid-phosphate model, in red the one for rigid—base model, and in green the one
for the rigid—base—pair model. The banded approximation for the three coarse—grain
levels represent the corresponding nearest-neighbour interactions assumption. The
sequence considered are (1,7,10,14) of the Palindromic Library. We conclude that
a more detailed model combined with the nearest-neighbour assumption lead to a
better appriximation of the ttc observed from MD.

performance of the best—fit cgDNA+ parameter set on predicting tangent-tangent
correlation function. In figure 9.14 in blue we plot the cgDNA+ prediction while in
black we show the MD one, and in red the banded oligomer-based Gaussian. We can
see that the prediction of the model stays in the range of the truncation error and
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moreover, it implies that it can predicts really well the rigidity, in the sense of apparent
persistence length, of the data. For sake of completeness in figure (9.15) we show also
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Figure 9.14 — Tangent-tangent correlation functions computed using the observed
Gaussian (black), its banded approximation Gaussian (red), and the predicted cgDNA+
Gaussian (blue). The sequences considered are (1,7,10,14) of the Palindromic Library.
We conclude that the error between ttc predicted by cgDNA+ and ttc observed from
MD is in the range of error of the banded approximation.

the the factorised version of the tangent-tangent correlation where one again observe
that the predictions of the cgDNA+ model are still remarkably good.

9.6 Beyond nearest neighbour interactions

In this section we discuss a possible further development of the cgDNA+ model and
in particular we discuss a possible extension of the band of the stiffness matrix by
introducing the interaction between an inter—base—pair coordinates and its two neigh-
bours. For sake of simplicity in this section we will refer to the cgDNA+ stencil as
the nearest-neighbour (NN) pattern while the extended stencil will be called nextto-
nearest—-neighbour (NNN). In figure 9.16 on the top left panel we show the NN stencil,
in blue, and the NNN sparsity pattern, in red. Moreover we highlighted in dark green
the overlapping blocks while in we highlighted red the inter-base—pair one. The choice
of discussing the NNN sparsity pattern comes simply from the observation made on
the raw stiffness matrices for the palindromic training set. In figure 9.16 we show
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Figure 9.15 — Factorised tangent-tangent correlation function computed using the
observed Gaussian (black), its banded approximation Gaussian (red), and the predicted
cgDNA+ Gaussian (blue). The sequence considered are (1,7,10,14) of the Palindromic
Library.

three different examples of observed stiffness matrices for the palindromic sequences
(7,12,16), chosen arbitrarily, where one can see the extra 6 x 6 blocks that characterise
the NNN sparsity pattern. In the next paragraph we apply a model selection criterion
to study the NNN model on the oligomer-based statistics

In [1, 2] a model selection theory based on the Kullback-Leibler divergence and the
maximum likelihood was developed. The aim of a model selection procedure is, given
some data, to select, from an ensemble of statistical models, the most suitable one.
The rational behind the choice is based upon the context of the theory introduced by
Akaike: suppose that ¢ is a probability density function and that f is the maximum
likelihood estimator given some realisation of ¢, denoted by w = {w;}~_,. The Akaike
information criterion is given by

~

AIC(0) = 2nparam — 2log(L(0), w), (9.65)

where nparam is the total number of parameters to be estimated in 9, and L(+) is the
maximum-likelihood function. Given an ensemble of candidate statistical models
the best one has the minimal value of the AIC within the ensemble. The main goal
of the Akaike information criterion is not only to find the model that best fits the
data, to also avoid over fitting thanks to the penalty term nparam. But, it is important
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Figure 9.16 - In the top left panel we show two different stencils: in blue the nearest—
neighbour stencil used in the cgDNA+ model and in red the next-to—nearest-neighbour
stencil which includes an extra 6 times 6 blocks related to the interactions between
a inter—base—pair degree of freedom and its adjacent one. In dark green we show
the overlaps related to the micro structure and in red the inter—inter interactions. In
the other three panels we show three examples of observed stiffness matrices for the
palindromic sequences (7,12, 16). The extra 6 times 6 blocks outside the blue stencil is
clearly visible in the example, as being the largest addition contribution.

to mention that (9.65) is derived from minimization of Kullback-Leibler divergence,
which in this context is also called Kulback-Leibler information, between an unknown
pdf and different approximations to it: Let ¢ be the unknown pdf and let p(x; 6) an
approximate model, pdf parametrised by a parameter § € R". We recall that the KLd
between p and ¢ reads:

Dri(q,p) = /Q q(z) log <pég(”x§)> da. (9.66)

In this context the above KLd divergence can be interpreted as a measure of discrepancy
between model and data. The best approximation of (9.66) within a statistical model
ensemble {p;(z;0)}~_, should be the one that minimise it. In section 3.4.1 of [29] the
authors show the relatlon between (9.66) and (9.65) by assuming that both unknown
and model distributions are not tractable in the sense that an analytic expression of
(9.66) is not derivable. In our context the unknown pdf is actually the observed (true)
Gaussian distribution, and all the considered model are themselves Gaussian densities
functions. Therefore, we can evaluate (9.66) using its explicit algebraic form. Clearly
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for Gaussian or parametric distributions in general, the KLd (9.66) is minimized when
the parameters of both distribution match.

To apply the KLd for the model selection in DNA context we can estimate from MD
trajectories oligomer-based mean and covariance for the rigid—base—pair degrees of
freedom, meaning that we consider only inter-base—pair internal coordinates. We
then call the obtained Gaussian p(-; f,,s) where 6., € R"™°. We now propose the
following models for approximating the observed Gaussian all which have model
mean coinciding with the oligomer-based observed one. Thus, we consider only
different approximations for the covariance matrix based on different coarse—grain
models and different assumptions on the local interactions. The models we have
selected are:

mq) Diagonal,

ms) 3 x 3 block diagonal,

ms) 6 x 6 block diagonal,

my4) cgDNA marginal,

ms) cgDNA+ marginal,

me) NNN marginal.

The last three approximations are the marginalisation, down to inter-base-pair internal
coordinates, of the banded stiffness matrix estimated from time series of cgDNA
internal coordinates (m4), the NN banded stiffness matrix estimated form time series
of cgDNA+ internal coordinates (m5), and the NNN banded stiffness matrix estimated
from time series of cgDNA+ internal coordinates (mg). From the Palindromic data set
we have computed the KL.d (9.66) between p(-, f,,s) and the Gaussian parametrised
by one of the above approximations of the observed stiffness matrix. In the following
table we have reported the results for three palindromic training library sequences,
randomly chosen. In the last two rows of table (9.10) we have also report the averaged
value over all the palindromic sequences and the total number of estimated parameters
for each of the selected approximation.
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mq mo ms3 my ms me

S1 248836 20.7152 12,9734 5.8152 0.2893 0.1473
Sy 25.6658 21.4481 13.4720 6.2784 0.2203 0.1175
S14 29.5059 25.1930 15.4379 8.0900 0.2254 0.1157

avg | 26.5893 22.5815 14.2088 6.9528 0.2430 0.1348
Nparam 138 276 483 3057 16857 17649

Table 9.10 — In the first three rows we report the value of the KLd between the observed
Gaussian, for the corresponding palindromic sequence, and different Gaussian approx-
imatons. The details about the model m,, can be found in the text. In the fourth row we
reported the value of the average KLd over all the sequences in the Palindromic Library.
In the last row we report the total number of parameters that have been estimated for
each model.

We can observe that the value of the KLd decreases as a function of the complexity of
the model. Next step is to relate the decrease reported in table 9.10 with the increase in
the total number of estimated parameters. For sake of simplicity we will now consider
only the averaged values reported in the last row of table 9.10 and we will define the
increase of accuracy from model m; to model m;,1,7 =1, ..., 5, by the ratio, denoted
r1, between the values of the averaged KLd for m;; and the corresponding one for m;.
We will then compare the obtained results with the ratio, denoted r2, between the total
number of estimated parameters for model m; divided by the number of parameters
in model m; ;. In the following table we report the findings:

mip— Mg Mg — M3 M3 — Mg Mg —> My M5 — Mg
1 1.1775 1.5893 2.0436 28.6098 1.8031
) 2.1562 1.7500 6.3292 5.5142 1.0470

Table 9.11 — In the first row we reported he ratios mLH which quantify the increase
in accuracy of the m;;; model compared to the accuracy of the m; model, or they
quantify the factor of decrease in the Kullback-Leibler divergence between model and
data. In the second row the ratio between the number of estimated parameters for
model m; and the number of estimated parameters m;;; which quantify the factor of

augmentation of complexity of the model.

It is interesting to notice that the even if in the model m; we increase the number of
parameters by a factor 5.5 the decrease in the KLd is impressive.

The primary goal of this section is to discuss the NNN stencil and a possible parameter
set which would take into account an extra coupling between adjacency of inter-base—
pair coordinates. From the oligomer-based study it is totally rational to consider the
NNN, stencil because of the simple fact that a little increase in the number of parame-
ters divides the KLd by almost a factor of two. To better understand the improvement
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in ms — mg one can take as comparison the entries in table 9.11 corresponding to
ms — my where the number of parameters increased by a factor of 6 to get a decrease
of a factor 2.
The discussion in this section is just at the oligomer-based level because a parameter
set reproducing the NNN sparsity pattern is not available, and the derivation of such a
model is beyond the scope of this work. Nevertheless we provide some remarks about
the feasibility of the derivation of such a model. The first step is about assumptions to
be make on the sequence dependence of the extra 6 x 6 blocks, because the latter can
influence the overall feasibility of the parameter estimation. For example assuming
a trimer dependence could be problematic especially for the blocks that are toward
the ends. From a feasibility point of view a suitable assumption would be to treat the
extra blocks as base-dependent which will lead to just four additional 6 x 6 blocks
in the current cgDNA+ parameter set. It seems easy, but there is still the problem of
proving that any reconstructed stiffness matrix with the NNN stencil will be positive
definite for any arbitrary sequence. The latter problem is closely related to the main
assumption about how these extra blocks contribute to the total elastic energy. In fact
a possible way of proceeding would be to consider 12 x 12 blocks of the form

KYXZ _ FK(};,};) KX ] ,

)

[KX]" oK

(9.67)

where KX is the extra 6 x 6 blocks for the base X, and 6 K (3;);; is @ 6 x 6 matrix extracted
from the inter block (z, ) of K¥ . For the positive definiteness of the parameter set
with the extra blocks the condition to be satisfied is the existence of the § K blocks in
(9.67) for any triplet Y X Z such that K¥'*Z > 0. For the moment this problem has not
been explored in any detail.

In conclusion in this section we have shown that at the oligomer—based level the
cgDNA+ stencil carries a large amount of information when marginalised down to
rigid-base—pair degrees of freedom, which implies a good approximation of the data.
Moreover, the NNN stencil improves even more the accuracy of approximation of the
data, which could be a good reason to dedicate more attention to the NNN sparsity
pattern and a possible extension of the cgDNA+ parameter set. The choice of focusing
the analysis only on the rigid—-base—pair internal coordinates is motivated by the fact
that for many applications it is important to have an accurate prediction of the macro
structure, see for example the prediction of the tangent-tangent correlation and the
related computation of the persistence lengths.
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Applications of cgDNA+
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Preliminary remarks

In the following chapters, we present four different applications of the cgDNA+ model.
In chapter 11 we study sequence—-dependent persistence length as done in [18, 45].
This application is not specific to the presence of explicit phosphate groups, but it has
the purpose of showing that the overall rigidity of the best-fit cgDNA+ parameter set,
trained on the palindromic training data, and of comparing it to the analysis done in
section 7.3 for the cgDNA model. In contrast, the applications presented in chapters
11,12, and 13 are original and are specific to the cgDNA+ model. The main motivation
is to present how to take advantage of the phosphate group rigid body configurations
to study sequence—-dependent mechanical properties of B-form DNA. We use the
mathematical tools introduced in previous chapters in the applications. The primary
objective is more methodological than scientific in the sense that we focus attention
more toward the techniques rather than the scientific conclusions. We believe that a
more in-depth knowledge of chemical and biological aspects are needed in order to
better understand and interpret the outcomes. Moreover, we stress that the cgDNA+
model is a sequence-dependent coarse—grain model train on MD simulations. In this
work we have made the conscious decision of considering only AMBER molecular
dynamics simulations with the bscl force field for the training library. Therefore, any
sequence—dependent mechanical property studied using the cgDNA+ model should
only be interpreted as the coarse-grain consequence of the considered MD protocol.
In particular, the cgDNA family of coarse—grain models represent a precise and detailed
paradigm of mathematical modelling of double-stranded DNA which (must) assume
as a starting point some specific MD simulation training library.
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10 Study of sequence-dependent persistence

lengths using cgDNA+

In this chapter we will use the cgDNA+ model to study the sequence-dependent rigid-
ity of B-form DNA by computing the apparent and dynamic persistence lengths. We
start by recalling the main concept related to both definitions of persistence length in
the context of the cgDNA+ model, see for more detail chapter 2.

Consider an N base-pair long sequence S. Using the cgDNA+ model we can predict its
ground-state u(P,S) € R**N-18 and its stiffness matrix K (P, S) € R(Z4N-18)x(24N-18)
by using the reconstruction rules described in (9.16-9.18). We recall that the in-
ternal coordinates can be divided into inter-base—pair internal coordinates, x =
(z1,...,zy_1) € RS- and micro structure internal coordinates, m = (m1, ..., my) €
R¥N=12 in the following manner

w(P,S) = (x,m) = (m1, 1, mp, Ta,...,xx_1, my) € RZV1E, (10.1)

where the micro structure m,, € R'® contains two base-to—phosphate degrees of
freedom and intra-base—pair relative coordinates forn = 2, ..., N — 1, while the first
and last micro structure internal coordinates contain only only one base-to—phosphate
relative coordinates and an intra—base—pair degree of freedom. Moreover the inter—
base—pair internal coordinates are related to the macro structure of the DNA molecule
represented by a chain of rigid bodies denoted by g(z) = (g, ..,8x) € SE(3)V. The
relation between z and g is given by the following recursion relation

n—1
gn = g1 [ ] alaw), (10.2)
k=1
where the rigid body transformation a(zy) is given by

a(wg) =

[Q(Uk) Q(Uk)évk] (10.3)
0 1 ’
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with z, = (’U,k,Uk) € RS and

4a? 1 1 2
Q(u) = cayq(u) =1+ 102+ up <a[u><] + ﬁ[ux] ) , (10.4)
with o = 5. This is the parametrisation of the rotation group used in [55, 19] where the
factor 5 is used in order to introduce a better scaling between rotation and translation
stiffnesses. There is a freedom in choosing the first rigid body absolute coordinates g,
and, in general, we chose the identity matrix I € R**4,
In order to compute persistence lengths the key quantity to evaluate is the following
function of the inter-base—pair internal coordinates:

F(x;i) = (R} (z)Ro()) (3.3 = ta(2) - to(2), (10.5)

where Ry(x) € SO(3) is the orientation of the reference, fixed, rigid body g, R;(x) €
SO(3) is the orientation of the i—th rigid body g, € SE(3) along the chain g following
the reference rigid body g,. In (10.5) the (-, ) notation selects one entry of the 3 by
3 matrix, which, in this application, is the (3,3) entry. The (3,3) entry can also be
obtained as the inner product between the third column of Ry and the third column of
R; denoted respectively by ty and t;. The reference rigid—body orientation R, can be
chosen to be any rigid body along the chain. In practice for a DNA fragment of length
N > 10 the reference rigid body is chosen to be at least the third rigid body (g,) to
avoid any significant end effect.

For the sequence S we can now introduce the tangent-tangent correlation as the
expectation of (10.5) with respect to an underlying distribution which, in our context,
will be the cgDNA+ Gaussian probability density function p(w; i, K) predicted by P for
the sequence S

(F(231)) = / t(2) - to(2)p(ws o, K )dw, with w = (z,m) € R*N-15. (10.6)
R24N—18

The integral (10.6) can be approximated numerically using the Monte Carlo method
which consist in generating an ensemble of configurationw = (x,m) = {(z(®), m®)) }24:1
directly for the Gaussian p(wj; i, K') and then computing the average

M
F(x,i) = % > i), (10.7)
k=1

Clearly the value of the average (10.7) depends upon the number of generated configu-
ration M. In [18, 45] it has been shown that (10.7) converge well for values of M > 10° of
configurations sampled by predicted cgDNA density functions. For more detail about
the Monte Carlo method and the computation of (10.6) we refer to [18]. For the follow-
ing computations we used M = 10°. The apparent persistence length is then computed
as the negative reciprocal of the slope of the linear fit, passing through zero, to the
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observation ({i,log F'(x,4)}|i =0, ..., N). The dynamic persistence length is obtained
similarly but the linear fit is made to the data ({i,log F(x,i) — logt; - t}|i = 0,...,N),
where t; - to is computed on the ground-state (P, S).

We consider now the following 24 base-pair long palindromic sequence

S17 = GCGACTCATAGGCCTATGAGTCGC.

We use the same MD protocol as in the palindromic data set for generating 3 microsec-
ond trajectories for S;7. After hydrogen bond filtering, see for instance section 3.3.1,
we obtained the percentage of accepted snap shots and palindromic errors reported in
table 10.1. We can observe that the palindromic errors for S;7 are in the same range as
obtained for the palindromic training set, see for instance tables D.1-D.2-9.7. In figure
10.1 we compare the cgDNA+ ground-states reconstructed (solid line) for S;7 and the
mean configuration observed from MD (dashed line). We can remark that the cgDNA+
prediction is in excellent agreement with the observation.

We compute now the tangent-tangent correlation (10.6) for the cgDNA+ predicted

acc. snap. err(u) err(C) D
Si7| 7244%  1.2520 6.3703 0.0163

Table 10.1 — Palindromic errors for the sequence Sy7.

Gaussian and the MD observed Gaussian of figure 10.2. We can again observe that
the cgDNA+ model predicts with good agreement both factorised and non-factorised
tangent—tangent correlations functions. For sake of completeness in figure 10.2 we
also show the prediction obtained with the cgDNA model trained on the palindromic
data set. The cgDNA+ model performs significantly better then cgDNA.
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Figure 10.1 — Comparison between the ground-state components predicted by cgDNA+
(solid) and observed from MD simulation (dashed) grouped as inters, intras, and
base-to—phosphate degrees of freedom from top to bottom with rotations on left and
translations on right. The sequence considered is a 24 bp palindrome which is not
part of the palindromic training data set simulated for 3us. Due to the palindromic
symmetry of the internal coordinates we show just the half of the sequence for the
inter and intras component and just the base-to—phosphate degrees of freedom of the
reading strand. The MD palindromic error is totally negligible.
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Figure 10.2 — Comparison between tangent-tangent correlation predicted by Monte
Carlo simulation on cgDNA (black), cgDNA+ (blue), and computed using the Gaussian
estimated from MD time series (red). The sequence considered is a 24 bp palindrome
simulated for 3us which is not part of the palindromic training data set. The first three
base—pairs have been dropped to avoid end effects.

We also randomly generated an ensemble of 1 million sequences of length 220 base—
pairs, by using equal probabilities for each nucleic bases {A, T, G, C'}, and computed
apparent and dynamic persistence lengths. In figure 10.3 we show the obtained his-
tograms. The first remark is that, compared to the histograms obtained with cgDNA
trained on the palindromic data set, see for instance figure 7.6, both spectra have
shifted considerably toward the right implying that the sequence average apparent and
dynamic persistence lengths increase. In the following table we report the value of the
sequence-averaged apparent and dynamic persistence lengths obtained for cgDNA
and cgDNA+ trained on the palindromic data set:
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Model | 7, [bp] ¢4 [bp]
cgDNA | 158 174
cgDNA+ | 204 217

Table 10.2 — Values of sequence-averaged apparent and dynamic persistence lengths
(in base—pairs) predicted by cgDNA and cgDNA+. Both model parameter set were
trained on the same palindromic data library.

Moreover in table 10.3 we compare the value of apparent and dynamic persistence
lengths computed for six poly dimer sequences of length 220 base—pairs using the
cgDNA and cgDNA+ models. Again one can observe that the values predicted for
cgDNA+ are substantially higher compared to the one obtained for cgDNA. Between
all the comparisons done in chapters 6-7 among all the considered sequences, the
ApA poly dimer is consistently the sequence with the highest dynamic persistence
length while poly Ap7T is the sequence with the lowest value of dynamic persistence
length. The latter statements stay true also for the cgDNA+ model.
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Figure 10.3 — Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA+, trained on the Palindromic data set, over an ensemble of
1 million randomly generated sequences each of length 220 base pairs. We report
the averaged values (Avg) of both spectras: italic font for apparent and bold font for
dynamic persistence length. The values of the persistence lengths for six independent
poly-dimer sequences of length 220 are alsos reported: again italic for apparent and
bold for dynamic. The values of apparent persistence length is given by a circle, while
dynamic is given by a square.
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Model AA AG GG TG CG AT
cgDNA | 216/218 197/198 180/182 165/167 174/175 145/145
cgDNA+ | 249/252 234/235 212/215 209/213 213/215 188/189

Table 10.3 — Values of apparent (italic) and dynamic (bold) persistence length (in base—
pairs) for six poly dimer sequences as predicted by cgDNA and cgDNA+. Both models
were trained on the same palindromic data library.

In conclusion we studied the rigidity of B-form DNA, in terms of apparent and dynamic
persistence lengths, using the cgDNA+ model. We concluded that the cgDNA+ model
is more rigid (in the sense of apparent and dynamic persistence lengths) compared
to the cgDNA model, when both models are trained on the same MD trajectories.
We have also shown how accurately the cgDNA+ can predict the tangent-tangent
correlation function, with and without shape factorization, for a sequence not included
in the MD training library. The latter experiment suggests that the apparent and
dynamic persistence lengths predicted by cgDNA+ are of the right order and, even if
the conclusion is just on one sequence, it suggests that we can trust the computation
of the persistence length spectra over an ensemble of 1 million sequences. Moreover,
in chapter 9 we remarked that the hydrogen bond filtering, see section 3.3.1, has no
impact on the overall process leading to a cgDNA+ parameter set.
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Crystal structure packing forces

One of the major advantages of having the explicit rigid—body configuration of the
phosphate groups is the possibility of evaluating total external loads acting on them.
Because some protein-DNA binding interactions implies the formation of hydrogen
bonds between phosphate groups of the DNA and the protein, the cgDNA+ model
could in fact help in quantifying the magnitude of such interactions. In particular
it could help in identifying which phosphate groups in a DNA—protein complex are
actually bonded. Some prior work [7, 6] studied exactly the aforementioned problem,
but the coarse-grain model exploited was a rigid—base—pair model [51, 35, 78] and
thus only total external forces acting on the, non—physical, base—pair frames could be
computed and studied. In this chapter we will present how to practically compute the
total external loads acting on the phosphate groups. The following analysis can also be
done at the level of nucleic bases, but we have decided to focus our attention just on
the phosphate groups. Appendix F provides the explicit formulas for computing the
total external loads acting on a single base, as well as all the calculations leading to it.
Instead of trying to replicate the analysis of [7, 6] we want to show how to use the
cgDNA+ model to compute crystal packing forces in PDB structures of naked DNA.
Practically speaking we will select some crystal structure of naked DNA [70], and re-
construct the cgDNA+ ground-state and stiffness matrix for the considered sequences.
The packing forces for a particular PDB structure will then be a consequence of the
deviation of the shape of the PDB structure with respect to its cgDNA+ ground-state
weighted by its stiffness matrix. In more detail, given a PDB structure of naked DNA
we will use Curves+ [38] to extract frames for each base and each phosphate group
on both strands in order to obtain a coarse—grained representation of the molecule as
introduced in section 8.1. From the coarse-grained representation we then compute
the cgDNA+ internal coordinates of the PDB structure, see for instance the definition
(9.6). The initial step of the analysis is the comparison between the PDB internal
coordinates and the cgDNA+ reconstructed ground-state, and the second step consists
in the computation of the packing forces of the PBD structure.

The PDB crystal structure of, for example, a naked linear fragment of DNA is obtained

149



Chapter 11. Crystal structure packing forces

Figure 11.1 — Left: representative (mean) molecule for the 1bna structure. Center: unit
cell of the 1bna crystal structure. Right: Partial view of the crystal.

by the X-ray diffraction method which, from a crystal formed by multiple copies of
the DNA molecule, see for instance figure 11.1 and its caption, extracts the Cartesian
coordinates of all the atoms of the molecule.

Before presenting the PDB structures chosen for the analysis we recall the expression
for the total external load on phosphate groups in the specific case of the cgDNA+
model. Let S be a N base-pair long DNA sequence and let (P, S), K(P,S) be respec-
tively its ground-state and its stiffness matrix. The related elastic energy is defined as

E(w) = 3w — u(P,S)) K(P,8)(w ~ u(P,S)) a1

Letnow w = (z,m) = (m1,21,ma,...,2x_1,my) € R?*N~18 be a configuration of S
different from the ground-state. We recall that m; = (z;",y;,2;) € R'® is the i-th
base—pair level defining the microstructure. The total external load acting on the m~th
phosphate group on the Watson strand for the configuration w reads:

A = —Ad I L0, B(w) (11.2)

where the components of ;! are written in the rigid-body of the corresponding phos-
phate group, the m~th base-to-phosphate coordinates is denoted by z;',,

2 = (nh, Wi,) € RS,
By, = Clzm) = (caya (i), W) € SE(3).
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The scaled Cayley transform is defined in (2.15), in our context « = 5 and, the matrix
L_+ has already been introduced in section 8.4

Py(nt) 0 . 402 1 .

Finally the adjoint operator matrix for an element g = (R, r) is defined by

Ady = R 0 |
[rx]R R
with inverse
RT 0
Ad;! = Ad,-
8 &' |—RT[rx] RT

The two PDB crystal structures considered are for the Drew-Dickerson dodecamer:
1bna [68] (1.9 A res.) and 4c64 [40] (1.32 A res.). We extracted the internal coordinates
from both crystal structures and compared them to the internal coordinates recon-
structed by cgDNA+. In figures 11.2 and 11.3 we compare, respectively, the phosphate
degrees of freedom and the rigid-base degrees of freedom. In solid line, we show the
cgDNA+ coordinates, in dashed line the one from 1bna, and in dash-dotted the one
from 4c64. We can observe that there are many discrepancies between cgDNA+ and
the crystal structure and, moreover, we can notice that between the two PDB structures
there are also some important differences.

PDB E(w) err(w)
4c64 | 4.79-10° 25.1467
1bna | 4.72-10% 23.7398

Table 11.1 - Second column: value of the cgDNA+ energy E(w) evaluated on the internal
coordinates of the PDB structures 1bna and 4c64. Third column: palindromic error
err(u) of the PDB structures.

We should also point out that the Drew-Dickerson dodecamer is a palindromic se-
quence, but the internal coordinates extracted from the two PDB structures do not
satisfy the palindromic symmetry. In table 11.1 we report the cgDNA+ energy eval-
uated on the internal coordinates of the PDB structures and the palindromic error.
We notice that the energy values and the palindromic error of both crystal structures
are of the same order and, moreover, the palindromic error is significantly larger than
the palindromic error of the mean value of the internal coordinates computed on 3us
of MD trajectories. We want to focus the attention of the reader on the fact that the
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Chapter 11. Crystal structure packing forces

value of the energy depends upon the parameter set P and hence depends upon the
data used to train the model. However, the palindromic error reported in table 11.1 is
model independent because the palindromic property is a physical property of double
stranded DNA. Therefore in the PDB structure, both DNA fragments are frozen in a
position imposed by the crystal packing structure, see for instance figure 11.1 to see
how the structure 1bna is packed in the crystal.

4 ——rotl ——tral
——tra2
—tra3

——tral
——tra2
——tra3

Figure 11.2 — Comparison of base-to—phosphate degrees of freedom for the Drew—
Dickerson dodecamer in its ground-state as reconstructed by cgDNA+ (solid), ex-
tracted from the 1bna (dashed), and 4c64 (dash-dotted) PDB structures.

In the context of the cgDNA+ model the crystal structures considered are not in a state
of minimal energy, thus some external packing forces constrain the DNA fragments in a
configuration that, moreover, need not satisfy the palindromic symmetries that are per-
fectly satisfied by the cgDNA+ reconstructed ground-state for S;;. Using formula (11.2)
and its equivalent for the complementary strand we can compute the total external
load acting on each individual phosphate group. In figures 11.4 and 11.5 we report the
values of the components of the total external couple (left column) and total external
force (right column) acting on the phosphate groups on the Watson strand (first row)
and the Crick strand (second row). In the third row, we report the norm of the total
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Figure 11.3 — Comparison of inter and intra degrees of freedom for the Drew-Dickerson
dodecamer in its ground-state as recontructed by cgDNA+ (solid), extracted from the
1bna (dashed), and 4c64 (dash-dotted) PDB structures.

couple and force. The interpretation of figures 11.4 and 11.5 is not straightforward,
but we describe the findings. A first remark is that the crystal environment acts on
the DNA fragment in a non-symmetrical way, as the signals obtained for the Watson
strand are not palindromically symmetric to the signals computed for the Crick strand.
That was already clear from the fact that the internal coordinates extracted from the
crystal structure do not satisfy the palindromic symmetry. Another straightforward
conclusion for comparing figures 11.4 and 11.5 is that the crystal packing loads in
the structure 1bna act on the DNA fragment in a different way to the ones in 1c64
as there is no clear similarity between the signals. In figure 11.6 the total external
torque and force for 1bna as a vector with origin at the corresponding phosphate group
position, and the colour encodes magnitude, darker the higher the magnitude. Again
an interpretation is not straightforward, especially for the couple components.
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Figure 11.4 — Total external couples and force acting on each phosphate group in each
strand computed for the 1bna crystal structure.
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Figure 11.5 — Total external couples and forces acting on each phosphate group in each
strand computed for the 4c64 crystal structure.

In conclusion, the cgDNA+ model can be used to compute the packing forces acting
on a naked DNA crystal structure in order to study more precisely how the crystal
act on the molecule. The interpretation of the obtained signals is not trivial as, we
believe, a deeper and more robust knowledge of the X-ray diffraction method and
X-ray structure analysis is needed. The example here are only provided as a proof of
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Chapter 11. Crystal structure packing forces

concept. The only point we want to discuss in more detail is the magnitude of such
external loads. In particular the magnitude seems elevated. In chapter 10 we have
shown how well cgDNA+ can predict the tangent-tangent correlation for a sequence
which was not part of the training library so we can reasonably claim that the cgDNA+
predicted energy is on the right scale, and thus the values obtained for the external
loads are consistent. Thus, the reason behind the high values of the external load rely
on the high rigidity of the cgDNA+ model, and thus on the rigidity inherited from the
MD force field, and the fact that the DNA fragment in the PDB structure is kept, by the
crystal, in a configuration which is very far from its (MD) ground-state. However, the
values of the external load could be analysed in a better way by trying to smooth out
large load values, using the uncertainty related to the position of each atom of the PDB
structure. The Cartesian coordinates of the crystal structure are the mean values of a
distribution with a standard deviation given by the r—factor. The r-factor represents,
consequently, the level of uncertainty of the PDB structure. Thus, a sensible and inter-
esting computation would be the minimisation or relaxation of the cgDNA+ energy in a
subspace of configurations defined by the uncertainty on the coordinates of the atoms,
meaning that the embedded atoms relate to the solution of such a problem would lie
within that uncertainty. Unfortunately, such a method has not been implemented yet,
and is still an active topic of research. The main purpose of this section was just to
illustrate how we can use the cgDNA+ predicted ground-state and stiffness to study the
external forces as extra tools for comparing two configurations of the same sequence.
The two examples we have treated are packing forces in PDB crystal structures of
naked DNA. As mentioned at the beginning of this chapter, we could also apply our
methodology to the study of PDB structures of protein-DNA complexes. We extend
this type of application to the study of external loads on averaged protein—-DNA config-
urations computed from large scale MD simulations. With this approach, one could
gain some significant insight on the DNA-protein binding dynamics for the external
forces without having to deal with packing forces.
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Figure 11.6 — 3D visualisation of the total torques (first column) and forces (second
column) acting on each phosphate group from four different points of view. The
vectors are coloured as a function of their magnitude. Higher the norm, darker the
arrow.

157






12 Fine-graining of cgDNA+ ground-state

backbone configurations

12.1 Computation of sugar configurations and sugar pucker-
ing modes

The cgDNA+ model can predict the ground-state configuration of the coarse-grain
internal variable for any arbitrary sequence. From any ground-state given in internal
coordinates one can then reconstruct the absolute positions and orientations of each
base rigid-body and each phosphate group rigid body. From the absolute coordinates,
one can then re-embed idealised atoms localised for all bases and phosphate groups to
get an atomistic representation of any arbitrary sequence. However, the DNA structure
will not be fully represented because the sugar group is not explicitly considered in the
cgDNA+ model. We show here that, by knowing the position of each base and each
phosphate group we can compute the configuration of the sugar rings. This, in this
chapter, we will present a simple computation that will allow the reconstruction of the
entire atomistic configuration of any arbitrary sequence starting from the atomistic
configuration for the bases and the phosphate groups as predicted by cgDNA+.
Formally, the strategy we adopt to retrieve the positions of each sugar ring atoms r® of a
given arbitrary sequence is to minimise the force field potential given by the following
function

U(r’;c) = Uy(r®;c) + Upp(r®, c), (12.1)

under the assumption that some atoms c are fixed. The potential U, accounts for the
energies coming from covalently bonded interactions while U,;is the potential which
contributions come from the non covalently bonded interactions. In section (3.1)
one can find all the detail about U, and U,,;, for any given set of atom positions. In
order to compute the position and configuration of the sugar ring along both strands
we need to identify the group of atoms for which we will define the potential (12.1),
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Chapter 12. Fine-graining of cgDNA+ ground-state backbone configurations

meaning that we need to introduce the sugar ring atoms position r® and we also need
to identify which atom positions ¢ will be considered as fixed. In figure 12.1 we show
a schematic representation of an Adenine nucleic acid base, a sugar ring, and two
phosphate groups. We highlighted with a red circle all the atoms that are fixed in
positions that can be predicted using the cgDNA+ model. Hence in the scheme the
non-highlighted atoms are the ones that we should compute. The sugar ring atomistic
composition is sequence-independent, which implies that we need to compute the
Cartesian coordinates of the following atoms:

0., Ch, C,, C, CL. (12.2)

The next step is to identify which fixed atoms should be considered in order to cover all
possible covalently and non—covalently bonded interactions of the system. Again, by
examining the scheme in figure 12.1 one can convince oneself that all the red dotted
atoms present in the scheme are enough in order to express all the interactions of the
system. In fact the only fixed atoms of the bases we will consider are: C, Ny, Cy4, Cy
for purines and C7, Ny, Cy, Cs for pyrimidines. On the other hand, we will consider
all the atoms of both phosphate groups attached to a sugar ring.

We can now define the problem in a more precise mathematical way. Let S be

Figure 12.1 — Schematic representation of a base and the backbone composed of two
phosphate groups and a sugar ring.

a N base-pair long DNA sequence and u(P,S) € R?*V~18 be the cgDNA+ recon-
structed ground-state using a parameter set P and the sequence S. Let now define
by (S*,57) € SE(3)*¥~2 the configuration containing the absolute positions and
orientations of each base and phosphate group rigid body reconstructed from the
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12.1. Computation of sugar configurations and sugar puckering modes

ground-state p(P, S) where
ST =(8.P5 8 - Pr1.8,) € SEE) L (12.3)

We now define the ideal atoms for each base type X € {4, T,G,C}bya* = (af',...,a;, ) €
R3"x where nx € N and nx could vary between base types. The ideal atoms for the
phosphate groups are sequence independent and are denoted by p = {af,...,al,} €
R37%», The details about the atom names and atomic ideal coordinates that are consid-
ered for each base type and the phosphate group are reported in appendix A.

As said before we want to compute each sugar ring absolute positions and orientations
by taking advantages of the Cartesian coordinates of the embedded ideal atoms of
the bases and the phosphate group. This goal can be achieved by computing each
sugar ring separately. Thus, for now on, we will focus only on the m-th sugar ring
along the reading strand. Thus, we will only consider the following three rigid bodies:
(P, 8%, P, 1) € SE(3). Clearly, the rigid body g;', is related to a specific base type,
but for the sake of simplicity we will treat it as general, and thus we will consider an
arbitrary base type X. Finally, we have to define the embedded atoms of the rigid—body
positions and orientations which are computed as the affine transformation of the

ideal atoms:

C}X :g:;*ajx = R%af—l—?“:z,v‘]: 1,...,nx, (12.4)
Cé):p;;*af = B$a§+b;,Vj:1,...,np (12.5)
G ny = Prg1 %05 =By 0] +by Vi =1,....m (12.6)

Finally, given an initial configuration of the sugar ring

rfm' = (Tfa B Tg)a

and the coordinates of the fixed atoms of the adjacent base and phosphates

cX = (c{(,. ,cf ),
c? = (.. b )
we solve
min U(r%; ¢, c?), (12.7)
rscR15

where U(-; ¢¥, ¢?) is the force field potential defined in (12.1) with the Cartesian coor-
dinates of the atoms of the base and the phosphate groups being fixed. Thus the only
unknowns in the system are the Cartesian coordinates of the sugar ring atoms (12.2).

The first example we show in figure 12.2 has been computed from the cgDNA+ recon-
structed ground-state of the palindromic sequence S;. From a pure visualisation point
of view, the resulting full atomistic representation of sequence S; looks astonishingly
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Chapter 12. Fine-graining of cgDNA+ ground-state backbone configurations

Figure 12.2 — In the first row, we show the double interacting strand representation
of the coarse—grain ground-state predicted by cgDNA+ for the sequence S; of the
palindromic library. In the second row we show the atomistic representation where the
base and the phosphate group atoms are just the embeddings of the corresponding
idealise atoms and the sugar rings were computed by solving the problem (12.7)

like actual DNA. A closer look at the atomistic structure reveals that no sugar ring
is planar. In fact, a five atoms covalently bonded cannot have a minimum energy
configuration that is planar [3].

In chapter 11 we have compared the coarse—grain shape extracted from the PDB struc-
tures 1bna and 4c64 of the Drew—Dickerson dodecamer S;; = CGCGAATTCGCG.
Now we can also compare the sugar ring configurations between the two X-ray struc-
tures and the sugar configurations obtained by the cgDNA+ prediction and solving the
optimization problem (12.7).

Before moving to the comparison, we briefly recall a few concepts about sugar rings
already introduced in section 1.2. A five-member ring system composed of a oxygen
atom and four carbon atoms singly covalently bonded is in general not planar [3].
In fact a sugar ring puckers in one of two main forms called envelope or twist. The
envelope form is characterised by four atoms lying in the same plane, with the last
one out of the plane of about 0.5A. While in the twisted form two adjacent atoms have
opposite positions to the plane defined by the other three. In figure 1.2 (section 1.2)
we showed an example for both forms of sugar ring puckering. The classification of
all the sugar ring modes can be done using the so—called pseudorotation cycle, see
for instance figure 1.3 (section 1.2), and in particular, the value of the phase of the
pseudorotation spans every possible conformation of the sugar ring. We recall that
in the context of DNA the sugar ring configurations have preferred puckering modes
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12.1. Computation of sugar configurations and sugar puckering modes

due to the potential energy of the whole DNA structure. Let us recall the endocyclic

sugar torsion angles vy, . . ., v4 whose definitions are reported in the table 12.1. The two
possible definitions of the pseudorotation phase angle P are
5
—0; -1
tan p — izt —isin(smli ). (12.8)

> iy bicos(3m(i — 1))
(v4 +v1) = (v3 + v0) _
2v9 (sm( )+sm(§ ))

tan P = (12.9)

It should be mentioned that the two different definitions for the pseudorotation phase
angle gives slightly different result. Definition (12.9) appears in [77] while (12.8) can
be founded in [3]. Definition (12.9) is implemented in the 3DNA software [41] while
(12.8) is implemented in the Curves+ software [38]. In this work we have used Curves+
for fitting both bases and phosphate groups to atomic coordinates and thus, for con-
sistency, we will also use Curves+ for the computation of the pseudorotation phase
angles for both PDB structures 1bna and 4c64. In table (12.1) we report the definition
of the dihedral angles in (12.8) and (12.9).

Table 12.2 provides results for the sugar rings on the reading strand. We first observe

Name Definition

voorfy | Cy— 0O, —C| —C}
1)101'95 OQ—C{—CQ—C:Q
U20r91 Ci—Cé—Cé—Ci
'1)301'92 Cé—Cé—Cfl—Ofl
U4OI‘93 Cé*Ci*Oﬁl*Ci

Table 12.1 — Name and definition of the endocyclic sugar torsion angles.

that between the two different PDB structures there is no actual agreement in terms of
values of the pseudorotation phase angles in all but one sugar ring. One of the main
reason could lie in the difference between the resolution for which the structure has
been derived: 1.9A for 1bna and 1.32 A for 4¢64. For the cgDNA+ predicted sugar rings
puckering we can observe that again there is no agreement with the PDB structures
data, but as a consistency test, we can observe that the C,—endo mode is the most
represented which is in line with the statement that the latter is the preferred puckering
mode for sugar rings in nucleotides.
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Sugar nbr \ P \ puck. mode H Sugar nbr \ P \ puck. mode

161.6 | C’%-endo 101.5 | O)-endo
1 169.0 | C’%-endo 7 119.8 C}—exo
122.4 Ci—-exo 143.3 Cj—exo
139.8 C]—exo 115.9 C}—exo
2 159.7 | C’-endo 8 115.9 C'-exo
148.1 | C%-endo 132.6 Cj—exo
92.8 O)—-endo 140.7 C}—exo
3 52.2 Cj—exo 9 146.6 | C%-endo
1475 | Cj-endo 181.0 C4—exo
166.6 | C%-endo 146.5 | C%-endo
4 165.5 | C’—endo 10 143.0 C'-exo
124.3 C]—exo 1754 | C%-endo
128.8 Cj—exo 147.7 | C%-endo
5 151.3 | C’%-endo 11 166.2 | C%-endo
108.5 C}—exo 161.5 | C%-endo
127.3 Cj—exo 114.1 C}—exo
6 131.7 Cj—exo 12 38.2 O)—-endo
145.0 | C’%-endo 180.0 | C’%-endo

Table 12.2 — For each sugar group on the reading strand we report the pseudorotation
phase angle P and the corresponding puckering modes computed from three different
set of sugar ring data (from top to bottom): 1bna, 4c64, and cgDNA+ reconstruction.

12.2 A sequence context study of BI-BII backbone conforma-
tions

In the previous section, we have shown how to compute the sugar rings on a given
cgDNA+ predicted ground-state. In this section, we take advantage of this fine graining
property of cgDNA+ reconstructions to study how some torsional angles behave as
a function of the sequence context. In particular we are interested in the torsional
angles ¢ and ( that are defined respectively by the backbone atoms C')-C3-0O5-P and
C4—04—P-0f (upstream). We recall that the torsional angles are the dihedral angles
defined by the related four atoms. The two angles ¢ and ¢ are important quantities
to compute the so—called BI-BII backbone conformations. In figure 12.3 we show an
example of both states.
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BI BII

£

base base s

base base

Figure 12.3 — Example of BI and BII states.

The characterisation of the BI-BII state in terms of the two torsional angles ¢ and ( is
quite simple, namely:

e —( < 0° — Blstate,
e —( > 0° — BIl state..

Next we consider all the possible hexamer sub—sequences, completed to 18mers by
adding on both sides four random bases and GpC ends. We then reconstruct all the
cgDNA+ ground states and compute only the Watson sugar ring for the central dimer.
Once the sugar ring atoms are available we compute the two backbone angles ¢ and ¢
for each sequence. We recall that the base and phosphate atoms are the embeddings
of idealised atom coordinates reported in the tables A.2 and A.3 in appendix A. We
then compute the difference ¢ — (, and identified the related backbone states. We start
by first show the percentage (over sequence) of BI-BII states divided into 16 different
dimers steps in figure 12.4.

100
mm B1

—BII

80| A

60

40

20

AT TA CG GC AA TT CC GG CT TC GA AG GT TG CA AC

Figure 12.4 — Percentage of BI-BII states computed for for each centred dimer step in
alle the possible hexamer contexts.
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It is interesting to note that the Bl states (darker grey) are the most represented states
between all the dimers. We continue the analysis by re-arranging the computed
backbone states using the purine-pyrimidine (R-Y) alphabet for the central dimers
and the flanking bases. In figure 12.5 we show two four-by—four matrices whose entries
are classified as follow: the columns correspond to a specific central dimer in the R-Y
alphabet while the row is the flanking bases also expressed in the R-Y alphabet. On
the left-hand side we show the result for the BI state while on the right-hand side we
visualise the corresponding data for the BII state. By looking at the results from the
purine-pyrimidine perspective, one can remark some combinations of central dimers
and flanking bases that privilege one specific state. For example, the YR central dimer
with R..Y flanking bases is BI state specific while for the same central dimer, but with
Y..R flanking sequence the tendency is to be in the BII configuration. The only two
combinations of the central dimer that are mostly BII have YR central dimers. It is also
interesting to notice that the upstream flanking base seems to be more relevant for the
characterisation of the percentage of BI or BII configuration.

BI state BII state
100%

80%

60%

40%

20%

RR RY YR YY 0% RR RY YR YY

Figure 12.5 — Percentage of BI-BII states in the purine-pyrimidine (R-Y) alphabet for
the central dimers and the flanking bases. On the left we show the Bl state and on the
right the BII state.

In conclusion, thanks to sugar ring reconstruction we study BI-BII states as a function
of the dimer and the flanking sequence. The results reveal an overall preference for the
BI state, but for the YR central dimer and upstream R bases, the BII configuration is
preferred.
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Groove widths prediction

In this chapter, we will show how the cgDNA+ model can be used for studying the
groove widths in DNA ground-state and, in particular, how to measure the width of
the minor and major grooves on the ground-state of any arbitrary sequence. We first
define the minor and major grooves, and then we discuss two approaches to groove
width computations using the cgDNA+ model.

The chemical structure of double-stranded B—form DNA is a double helix structure in
which the distance between backbone varies along the chain consistently and forms
two different grooves: the major groove which is the side of the helix in which the
backbones are far apart, and the minor groove which, reversely, is the side of the helix
where the strands are closer. In figure 13.1, left, we show a double—stranded B—form
DNA, and we indicate the two grooves. One can notice that the major and the minor
grooves form two distinct areas that twist around the DNA oligomer. The minor and
major grooves are believed to play an important role in DNA-protein binding readout
but a complete understanding of this relationship is not yet available [9, 30, 47, 57,
62, 63, 69]. What has been observed is that in DNA-protein complexes the minor and
major groove behave oppositely. In fact, in complexes, the minor groove width tend to
vary while the major groove width tend to stay closer to the value of the major groove
of unbounded DNA [47, 57, 62, 63].

In the context of cgDNA+, one can observe the grooves, for any arbitrary sequence, by
using the same method proposed in the Curves+ article [38] which we now summarise.
Let S be a N base—pairs long sequence, and u.(P, S) its cgDNA+ predicted ground-state.
Recall that there exists an explicit relationship between the internal coordinates ; and
the absolute coordinates of the double-stranded representation denoted (S*,S87).
More precisely, we transform the internal coordinates

o= (m1,1)1,m27 cee 7xN71)mn)7

where z,, € R® are the inter, and m,, = (2, 9,,2,) € R!® are the relative coor-
dinates for the microstructure, into the tetra—chain representation (g, M), where
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g = (8, --,8y) € SE(3)" is the macrostructure, M = (My,..., My) are the mi-
crostructure, and M,, = (B,}, P,,, B;)) € SE(3)? is the nth base—pair level. The follow-
ing transformations rules are used:

n—1

g, = [ (caya(un), caya(im)7va) € SE(3),
k=1

P = Pulyn) = (caya(m), caya(n.)2w,) € SE(3)
Brf = (Caya(nrf)vwriz) € SE(3)

where o« = 5, and the scaled Cayley transformation cay, has been defined in (2.15).
We then compute the absolute coordinates of each phosphate group in the following
manner

P =8P By = ([R]%, [h)F) € SE(3),

with

1
zPiH _ [CGya(ﬁn)i2 i%wn
oy =
1

being the half rigid body motion between the base—pair frames and the base frame.

It is important to understand that foralln = 1,..., N, P,jf 2 #* PﬁfH . The latter state-
ment has some important consequences in, for example, the computation of the total
external forces acting on every single base, see for instance the computations in the
appendix F.

In summary, for a N base—pair long sequence S we reconstruct its cgDNA+ ground-
states expressed in internal coordinates x(P, S). From the internal coordinates we com-
pute the absolute coordinates of the phosphate groups given by pi- = ([RL]%, [rh]F) €

SE(3)foralln =1,...,N. For groove width analysis we just need the positions of the
phosphate groups and thus we introduce the notation for the phosphate group origins
on both strands: O* = ([r})*, ..., [} _,]*) € R*W~=1. Now by following the methodol-

ogy proposed in [38] we compute the cubic spline interpolation of both sets of points:
O™ and O~. In figure 13.1, right, we show the cubic spline interpolation obtained for
the cgDNA+ predicted ground-state of the Drew—Dickerson dodecamer. The next step
is to select an equal number of equidistributed points on both splines and compute all
the pairwise distances between the two set of points. We compute a distance matrix,
denoted by D,,, € R™*™ whose entries (i, j) are the Euclidean distance between the
i—th point on the reading strand spline and the j—th point on the complementary one.
Finally the distance matrix can be visualize as the surface generated by the points

(i7j7 [Dm}(z,])) € RS'

168



Minor

Major

Figure 13.1 — Three dimensional view of the ground-state for the Drew-Dickerson
dodecamer with cubic spline interpolaton of the phosphate group positions. The
blue spline interpolates the phosphate positions on the reading strand while the red
spline interpolates the complementary one. The magenta dots locate each phosphate
positions.

Now consider two sequence-specific sequences: S| = CGCGAATTCGCG and S, =
TATAGGCCTAT A. We study their groove widths by using the method mentioned
above. In figures 13.2 and 13.3 we respectively show the outcome of the groove analysis
for sequence S; and S». The contour lines indicate the distance between two points on
different backbones. One can observe first that the two plots are qualitatively quite
different. Secondly, we can remark that each plot has two local minima which are
located at the contour line levels 10 and 16 (A) for S; and levels 11 and 18 (A) for S».
We can interpret these two numbers as the minor and major groove width of these
two sequences. Thus using cgDNA+ we can easily have the information of the minor
and major groove width by first interpolating the phosphate group positions with a
cubic spline, one spline for each backbone, secondly, we compute the pairwise dis-
tances between points equidistributed along both splines. Finally, we visualise the
surface generated by the obtained distance matrix which we can infer the values of
both grooves width.
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Figure 13.2 — Visualization of grooves width for S; = CGCGAATTCGCG sequence.
The contour lines indicate the value of the distance between a point on a strand and a
point on the complementary one. We recall that the strand are approximate as a cubic
spline passing through the origins of each phosphate group on that strand.
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Figure 13.3 — Visualization of grooves width for So = TATAGGCCT AT A sequence.
The contour lines indicate the value of the distance between a point on a strand and a
point on the complementary one. We recall that the strand are approximate as a cubic
spline passing through the origins of each phosphate group on that strand.

We can simplify the computation of minor and major groove by considering only the
phosphate group positions on both strand and all the associated pairwise distances.
With this approach, the computations are faster allowing the study of many more
sequences. In fact in what follows we want to gain some insight on the sequence de-
pendence of the minor and major groove using the cgDNA+ model. More precisely, we
want to study the minor and major groove by fixing a dimer step and by changing the
surrounding sequence. We thus consider all the 1,048,576 decamers (10 base—pair long
sequences) which we then divided by selecting the sequences sharing the same central
dimer. We thus divided the decamer into 16 sets of 65,536 sequence. Each decamer
is then completed by adding four random bases on each side, and GC ends to obtain
the 16 sets of 65536 sequences of length 22 base—pairs. Using cgDNA+, we have then
reconstructed all the ground-states and computed all the phosphate group positions.
Then we started from the phosphate group in the central dimer and computed the
pairwise distances between the phosphate groups on the opposite strand. Naturally,
we can divide the phosphate on the other strand into two groups: upstream phosphate
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and downstream phosphate. The upstream phosphates are all the phosphates in the
3’-5’ direction on the complementary strand while the downstream phosphates are
the one in the 5’-3’ direction, again, on the complementary strand. Thus, the pairwise
distances between the central phosphate on the reading strand and the phosphate on
the other strand are divided into upstream distances and downstream distances. From
each group, we select the minimum to get the discrete major and minor groove width.
The computations where carried on a standard notebook and took around 1 hour. We
show the result in figure 13.4. It is interesting to see how the minor groove varies in val-
ues: between 10-14 A for GpA, and 10-12 A for ApT. Also, the shape of the histograms
vary considerably: quite peaked for TpG and bimodal for TpT'. On the other hand, the
major groove tends to be quite peaked and locate around 18 A, even if in some case the
values range between 16 and 18 A, see for instance the GpT case. We can now study
the results by collecting the data in another way. Namely, we can select the dimer and
the flanking bases to see how the histograms change. In figure 13.5 we show the result
for four selected central dimers CpT, TpA, GpC, and ApG. We can remark that the
shape of the histograms for the minor groove change substantially revealing multiple
behaviours. A careful reader will remark that the chosen central dimers representatives
of the four possible choices in the purine-pyrimidine alphabet. We thus rearranged the
data using the purine-pyrimidine (R-Y) alphabet for both the central dimers and the
flanking bases to get the figure 13.6. We can notice a few interesting things. The first is
the change in the shape of the major groove histograms which became considerably
less peaked and in some cases a bimodality shows up. Secondly, for the minor groove,
the histogram shapes vary again from a clear bimodality to a single peak. The high
variability of both grooves leads to the conclusion that characterizing them using the
R-Y alphabet is not sufficient in order to understand sequence dependency. Some
possible strategies would be to extend the classification to the flanking dimer or to
considered separately the sequence dependence of the minor and major groove in
order to better explore the hidden structure. It would also be interesting to study the
correlation between the grooves and the BI-BII states that may play an important role
(46, 16, 72].
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Figure 13.4 — Histogram of minor (red) and major (blue) groove width computed for
each central dimers in all the possible tetramer context.
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Figure 13.5 — Histogram of minor (red) and major (blue) groove width computed for
each the central dimers CT, TA, GC, and AG classified by the flanking bases in the
purine pyrimidine alphabet (R-Y).
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Figure 13.6 — Histogram of minor (red) and major (blue) groove width computed for
each the central dimers in the purine-prymidine (R-Y) alphabet classified by the
flanking bases also in the purine pyrimidine alphabet.

In conclusion, we have presented another example of how the cgDNA+ model can
be used, and in particular, we have showed how to compute the groove widths of
B-form DNA by using the phosphate group absolute positions as predicted by cgDNA+.
For a given arbitrary sequence one can approximate each backbone as a cubic spline
passing through the phosphate group position and can then determine the minor and
major groove width by visualising the pairwise distances between an equal number
of equidistributed points along both splines. Another method we have presented is
easier and faster because it does not approximate the backbones but considers only
the pairwise distances between the phosphate group position. We have presented
the study of the grooves by fixing a phosphate of a central dimer and by considering
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all the possible tetramer context which in particular implies the reconstruction of all
the decamer sequences. The findings show that the minor groove varies considerably
as function of the sequence while the major groove has the tendency of varying less.
However, a natural extension of this study would be to cluster the distribution dshowed
in figure 13.6 the the number of the index of the phosphate group associated to the
minor and major groove widths. In fact, we conjecture that the distributions will
naturally split into at least two distinct histograms.
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Future development of the applications

We have proposed four applications of the cgDNA+ model one for each of the follow-
ing topics: sequence-dependent persistence length of DNA, packing forces in crystal
structures, sequence-dependent sugar ring puckering mode, sequence-dependent
BI-BII backbone conformations analysis, and sequence-dependent major and minor
groove width computations. We want to discuss possible future developments of the
latter three applications.

Firstly, we want to stress that there exist analogous explicit formulas for computing the
total external forces acting on a single base, see for instance appendix F. The evaluation
of external forces can be used as an extra tool to compare MD and crystal structures
through a coarse—grain model. The most natural future development is the use of the
cgDNA+ model to study external loads acting on double-stranded DNA computed on
averaged configurations extracted from MD simulations of DNA-protein complexes.
The principal advantages of working with data generated from MD simulations would
be the absence of packing forces.

The study of BI-BII backbone conformations can be extended to an ensemble of con-
figurations drawn from a cgDNA+ predicted Gaussian and thus for the same sequence.
More precisely, the BI-BII states occupancy can be studied within the sequence in
order to understand if the BI-BII configuration computed on the ground-states is the
most common state among its possible configurations.

Again, another next step is to study the distribution of groove widths for single se-
quences using the cgDNA+ predicted Gaussian. The idea consists in computing, using
Monte Carlo, the expectation of major and minor groove width in order to understand
if the groove widths computed on ground-states are averaged values, or if the distribu-
tions of minor and major grooves have interesting sequence-dependent properties.
The relation between the three applications mentioned above is the understanding of
the role of DNA sequence in DNA-protein binding. The computation of the external
forces can be used to study specific cases, while the other two methods can be used for
in extensive study of sequence-dependent structural properties of DNA. In particular,
it would be of great interest to study the relationship between groove widths and BI-BII
backbone conformations [49] in the cgDNA+ context.

In conclusion, we have presented illustrative examples of how the cgDNA+ model
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might be used as a tool for the analyse of many mechanical and structural properties
of the DNA that were not feasible with previous models, and especially in better un-
derstanding the mechanics of DNA-protein binding. In particular the computational
efficiency of the cgDNA+ model allows behaviour over large ensemble of sequences to
be considered
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The original contributions of this work are presented in Parts II, III, and IV.

Part II describes enhancements to the cgDNA model [55, 19].

In chapter 6 we used the parameter continuation algorithm 2 to compute cgDNA
parameter sets for a variety of MD protocols 6.2. The main conclusion of the sensitivity
study is that the force field has the most impact on the parameters of the cgDNA model,
and consequently on its predictions, compared to differences in training libraries
and ion type. We showed that the prediction of apparent and dynamic persistence
lengths for the bscl parameter set tend to be significantly higher compared to those
with the bsc0 force field, see for instance figures 6.4-6.5. The reciprocal of the static
persistence length computed using (2.45) shows a clear changes in rigidity of the bscl
based cgDNA parameters, right-hand side of figures 6.4-6.5. Moreover, we used the
sequence-averaged per—degree of freedom Kullback-Leibler divergence (avgKLd) (6.6)
to assess the quality of the best-fit parameter set in reproducing the data and to allow
a direct comparison between MD protocols.

In chapter 7 we designed a new sequence library, see table 7.1, using the algorithm
3 which comprises only palindromic sequences, and contains at least one instances
of all the possible non—palindromic tetramers. We took advantage of palindromic
symmetry to compute the convergence error for the first (7.6) and second centred
moments (7.10) estimated from MD simulation, see tables 7.5-7.6. We conclude that
the 3us simulation duration is enough to achieve a negligible palindromic error in both
estimators and therefore hopefully an overall negligible error.

We compared the new format dimer-based cgDNA parameter set (7.17) and showed
how it improves the quality of the reconstruction, especially at the ends, see figure
7.4. The excellent performance of the new format of the cgDNA parameter set does
imply the loss of uniqueness of the best-fit parameter set, but in an interesting way.
The main consequence is related to positiveness of the parameter set in the sense
of having the property of reconstructing a positive—definite stiffness matrix for any
arbitrary sequence. A sufficient condition for this property is that the parameter set
is such that each dimer-dependent stiffness block is positive-definite, see section 7.3.1.
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Part III is dedicated to the mathematical background of the cgDNA+ model along
with the computation of the first best—fit cgDNA+ parameter set, i.e, including an
explicit description of the phosphate groups.

In chapter 8 we defined tetrachain configurations of double-stranded DNA by intro-
ducing the base—pair level, (8.6) or (8.7), and the microstructure (8.8). Then, for the
nearest-neighbour internal energy (8.12) we computed its coordinate free, first varia-
tion (8.14) and its coordinate free variation with respect to a single phosphate group
rigid—-body (8.18). In section 8.4 we defined the internal coordinates for tetrachains by
parametrising the base-to—phosphate relative rigid-body motion. We introduced the
linearisation matrix (8.33) specific to the base-to—phosphate degree of freedoms, and
we gave the explicit coordinate dependent formula for the total external forces acting
on a single phosphate group 8.37 in any configuration.

In chapter 9 we introduced the cgDNA+ model. The internal coordinates of the cgDNA+
model are the tetrachain internal coordinates with the modelling choice of parametris-
ing the relative displacement between a base and its 5 phosphate group, see (9.6).
For the chosen internal coordinates we studied firstly the convergence of mean and
covariance estimated from the palindromic MD training library, in particular in tables
9.4 and 9.6, and secondly we compute the convergence error using the Kullback—
Leibler divergence between observed banded Gaussian estimated from MD time series
and its palindromic symmetric Gaussian, see table 9.7. We showed that the base—
to—phosphate entries of the estimators converge slowly compared to the inter— and
intra-base—pair degree of freedom and that the main contribution to palindromic
error comes from the lack of convergence of the covariance. We then introduce the
cgDNA+ parameter set format (9.15) which generalises the cgDNA one. For comput-
ing a best-fit parameter set we first approximated the Kullback-Leibler divergence
between Gaussians predicted by cgDNA+ and the equivalent Gaussian statistics ob-
served from MD, as a quadratic function (9.52) using the fact that Fisher information
is the second derivative of the relative entropy. From the approximation (9.52) we
computed an initial parameter set by solving the linear system (9.53). We then used the
Fisher-informed gradient numerical scheme (9.54) to compute the best-fit parameter
set trained on the palindromic data, which involves the estimation of 10K parameters.
The proposed numerical scheme has proven to be efficient and reliable when com-
puting a parameter set using the palindromic data set. Using the method presented
in section (9.4) we proved that the parameter set is positive—definite. We then used
the end data set to complete the parameter set by solving the system individually for
each end block by fixing all the other elements of the parameter set. We observed that
the dimer blocks T'pG and Gp A always reconstruct indefinite stiffness matrices. Our
conjectured explanation is that the MD simulations of the corresponding sequences
are too short in simulation duration. Further simulations are being pursued to verify
thus conjecture. Finally, we observed that the comparison between components of the
base-to—phosphate internal coordinates predicted by cgDNA+ and observations are as-
tonishingly good, see figure 9.9. In particular, in figure (9.14), we compared predictions
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of tangent-tangent correlation computed with the cgDNA+ predicted Gaussian and
observed from MD and the agreement is surprisingly good. And this is independent
of whether or not the MD time series id filtered for snapshots with broken hydrogen
bonds.

Part IV is dedicated to some first illustrative applications of the cgDNA+ model.

In chapter 10, we showed how well the cgDNA+ model can predict the tangent-tangent
correlation of a sequence which is not included in the palindromic library (figure 10.3)
and we found that the sequence—averaged apparent persistence length is 204 while
the dynamic is 217. Both values are significantly higher than the ones obtained for
cgDNA trained on the same MD data set but, we recall that the cgDNA+ model predicts
tangent-tangent correlations that are closer to those obtained directly from MD. In
particular the fact that we obtain persistence lengths that are rather high when com-
pared to the consensus experimental values is not a potential criticism of the cgDNA+
model. Rather it is a criticism of the MD potentials used to train the cgDNA+ parame-
ter set. In fact, the cgDNA+ model accurately reflects implications of the modelling
MD simulation protocol, and the computational efficiency of cgDNA+ allows much
longer sequence ensembles to be considered that would not be possible with direct
MD simulation. This is an important goal of the cgDNA+ model.

In chapter 11 we computed packing forces as external load applied to the phosphate
groups for two different PDB crystal structures of the Drew—Dickerson dodecamer
sequence. In figures 11.4-11.4, we observed high values of forces and couples exerted
by the crystal on the DNA.

In chapter 12 we show how to fine—grain the ground-states predicted by the cgDNA+
model by solving the small dimensional problem (12.7) to obtain all heavy atom
configurations. We then, computed the sugar puckering modes on the fine-grained
Drew-Dickerson ground-state predicted by cgDNA+ and observed that the modes are
different from the ones extracted from the PDB structure of the same sequence, see
table 12.2. Thanks to the fine—-grained configurations of the ground-state we could
study the sequence-dependence of the BI-BII backbone conformation. The main
conclusion is that BI-BII states have strong sequence context behaviour and that Bl is
the most represented states, see figure 12.5.

In chapter 13 we computed the major and minor groove width on cgDNA ground-
states using the method in [38], see figures 13.2 and 13.3. We observed a strong
sequence-dependence. Then we studied how groove widths behave in different
sequence—context. In figures 13.4,13.5, and 13.6, we observed that the minor groove
width depends more on the sequence compared to the major groove.
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Future development

For completeness the first future development is related to the 7TpG and GpA ends
blocks, which currently lead to indefinite reconstructions. We need to simulate the
related training sequences for longer simulation duration. In addition, we could also
simulate their complementary sequence in order to be able to test their convergence
in the sense of Crick-Watson symmetry. We note however that many potential applica-
tions of the cgDNA+ model involve sequence dependence far from the ends of DNA
sequence. In such applications the pertinent object is a sequence localised marginal
probability density function of cgDNA+. Such marginals are easy to compute and far
from the ends have little dependence on the actual end sequences. In that framework
itis not so important that some end sequence parameter blocks are indefinite, we jut
assume other end sequences.

We can divide the other future development in two, inter related, groups: 1) generalisa-
tion of the model basic assumptions, 2) extension of the applications.

Generalisation of the basic assumptions

The first extension of an assumption underlying the cgDNA+ model has already been
presented in section 9.6. It consists in extending the stiffness stencil to include the
inter—inter interactions of two consecutive junctions. Based on the oligomer-based
analysis summarised in tables 9.10-9.11, we concluded that the bigger stencil en-
hances the quality of the banded approximation with a comparably small number of
additional parameters. We want to highlight here that a careful study of the sequence—
dependence of the extra blocks should be done in order to define the corresponding
parameter set elements.

The second development is on the extension of the alphabet by including the epige-
netic base modifications of methylation, hydroxymethylation, etc, in order to be able to
study their mechanical properties. It has been observed that epigenetic modifications
have an impact on the local property of the double helix, see for examples [66, 48, 56].
The first step in this direction is to construct the appropriately enhanced palindromic
library of MD simulations and this step is in progress of the time of submission of this
thesis.

Extension of the applications

In this work we have presented three illustrative applications of the cgDNA+ model
and we have discussed their potential connections to the study of DNA-protein bind-
ing, with a focus in understanding the role of the DNA sequence. One particularly
interesting application is the study of nucleosomes core particle and associated nu-
cleosome positions sequences. A classic approach is to consider that the center line
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of the base—pairs of the DNA molecule that wrap around the histone octamer is given
by an ideal helix, see for example [75]. Then, given a sequence, the problem is to
compute the energy of its configuration under the constraints that the base-pair lie on
the helix. We propose two possible extension that could be done using cgDNA+. The
first is to constrain only the positions of the phosphate groups that bind to the histone
octamer. The second is to describe a set of external forces acting on the phosphate
group binding sites. Both proposed method are feasible using the cgDNA+ model but
are more challenging from a mathematical point of view, especially the second.
Quantitative and detailed comparison with experimental data remains, as always,
a formidable challenge. In the context of modelling DNA-protein interactions one
important issue to be addressed is that the cgDNA+ model predicts a range of deforma-
tions that can informally be described as ranging from very soft to very stiff modes. As
any experimental observations inevitably will contain noise, it seems to be important
to develop effective techniques to relax the data within the experimental error in order
to decrease the high energy. How to achieve this in a realistic way remain for the
moment an elusive objective, that must be reached before quantitative comparison
with known DNA-protein structures can be achieved.
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A Ideal atom definitions

The Tsukuba convention consists in a set of Cartesian coordinates and atom types that
form an idealised nucleic acid base. In table A.1 we report the tsukuba convention as
reported in [50]. In table A.2 we report the actual atom coordinates and atom types
that are used in the Curves+ software [38] that we have used to fit the fully atomistic
molecular dynamics snapshots. The reader can remark that there is a difference in
the number of atoms considered for each base type and a difference in their Cartesian
coordinates. Moreover in table A.3 we report the reference configuration of the phos-
phate group which have been also used in the fitting procedure in a modified version
of Curves+.

187



Appendix A. Ideal atom definitions

Purine
Adenine Guanine
C]  -2.479 5.346 0.000 || C1  -2.477 5.3990.000
Ng -1.291 4.498 0.000 | N9 -1.289 4.551 0.000
Cy 0.024 4.897 0.000 || Cs 0.023 4.962 0.000
N7 0.877 3.902 0.000 || N7 0.870 3.969 0.000
Cs 0.071 2.771 0.000 || C5 0.071 2.833 0.000
Cs 0.369 1.398 0.000 || Cs 0.424 1.460 0.000
Ng 1.611 0.909 0.000 || Og 1.554 0.955 0.000
Ny -0.668 0.532 0.000 | N; -0.700 0.641 0.000
Cy -1.912 1.023 0.000 || C5 -1.999 1.087 0.000
N3 -2.320 2.290 0.000 || No -2.949 0.139 0.001
Cy -1.267 3.124 0.000 || N3 -2.342 2.364 0.001
Cy -1.265 3.177 0.000

Pyrimidine
Thymine Cytosine
C] -2.481 5.354 0.000 || C{ -2.477 5.402 0.000
N;  -1.284 4.500 0.000 || Ny -1.285 4.542 0.000
Cy -1.462 3.135 0.000 || C; -1.472 3.158 0.000
Oy  -2.562 2.608 0.000 || Oy -2.628 2.709 0.001
N3 -0.298 2.407 0.000 || N3 -0.391 2.344 0.000
Cy 0.994 2.897 0.000 | Cy 0.837 2.868 0.000
Oy 1.944 2.119 0.000 | Ny 1.875 2.027 0.001
Cs 1.106 4.338 0.000 | C5 1.056 4.275 0.000
Csp 2.466 4961 0.001 || Cs -0.023 5.068 0.000
Cs -0.024 5.057 0.000

Table A.1 - Tsukuba convention: Atoms type and Cartesian coordinates for the nucleic
bases A, T, G, and C.
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Purine

Adenine Guanine
C] 1.57340 -2.41044 -0.12190 || C] 1.58195 -2.39594 -0.12320
Ny  0.37786 1.52945 -0.00531 | N9 0.37714 -1.52785 -0.00520
Cs -0.94428 -1.87750 0.15888 || Cg -0.94239 -1.88689 0.15880
N7 -1.75109 -0.86494 0.22638 | N; -1.76708 -0.87080 0.22880
Cs -0.91754 0.23706 0.10110 || C5  -0.93480 0.24071 0.10280
Cs -1.16848 1.61858 0.09523 || Cs  -1.25149 1.62390 0.10480
N; -0.11123 2.43959 -0.04964 || N; -0.10165 2.41153 -0.05020
Cy 1.10298 1.90641 -0.17768 || Cy  1.18367 1.92662 -0.18720
N3 1.45731 0.64079 -0.18694 || N3  1.47916 0.62851 -0.18920
Cy 0.38110 -0.16006 -0.04011 || Cy 0.37551 -0.14975 -0.04020
Pyrimidine
Thymine Cytosine
C7 1.95363 -1.45659 -0.19073 || C7 1.94866 -1.45161 -0.19029
N; 0.75787 -0.57587 -0.07419 | N; 0.74385 -0.58352 -0.07229
Cy 097215 0.78019 -0.13405 || C2  0.93020 0.79520 -0.12929
N3 -0.15841 1.56515 -0.02137 || N3 -0.15547 1.60399 -0.02329
Cy -1.45350 1.11665 0.14102 | Cy  -1.37969 1.08626 0.13371
Cs -1.57773 -0.32139 0.19302 || C5 -1.59254 -0.32937 0.19471
Cs -0.49400 -1.10811 0.08633 || Cs -0.49500 -1.12092 0.08671

Table A.2 — Curves+ convention: Atoms type and Cartesian coordinates for the nucleic
bases A, T, G, and C.

Phosphate group
P 0.000 0.000 0.000
0 1.518 0.000 -0.537
Of -0.759 -1.315 -0.537
OP/ -0.698 1.208 -0.493
OP; 0.000 0.000 1.480

Table A.3 — Convention for the phosphate group ideal atoms and Cartesian Coordinates.
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Training set libraries

In this chapter of the appendix we report the training libraries mentioned in this work.
In table B.1 we report the list of sequences of the ABC training library composed of 39
18 base—pair long sequences designed by R. Lavery for the ABC consortium, see for
example [37, 52]. In table B.2 the list of 13 18 base—pair long sequences in the miniABC
library designed by M. Pasi and R. Lavery. In chapter 7 we discussed how to design a
library which contains only palindromes with each possible tetramer sub-sequence
appearing at least once. In table B.3 we report one palindromic library which satisfies
the aforementioned conditions. Each palindromic sequence has 5’ and 3’ GC ends and
is 24 base—pair long. Finally in table B.4 we report also the so called ends sequence
library which contains all the 15 independent end dimers different then GC. Each
sequence is designed to have a stable end, GC, and another dimer. The ends sequence
library has been designed by D. Petckeviciute.
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Appendix B. Training set libraries

ABC library
Number Sequence
1 GCTATATATATATATAGC
2 GCATTAATTAATTAATGC
3 GCGCATGCATGCATGCGC
4 GCCTAGCTAGCTAGCTGC
5 GCCGCGCGCGCGCGCGGC
6 GCGCCGGCCGGCCGGCGC
7 GCTACGTACGTACGTAGC
8 GCGATCGATCGATCGAGC
9 GCAAAAAAAAAAAAAAGC
10 GCCGAGCGAGCGAGCGGC
11 GCGAAGGAAGGAAGGAGC
12 GCGTAGGTAGGTAGGTGC
13 GCTGAGTGAGTGAGTGGC
14 GCAGCAAGCAAGCAAGGC
15 GCAAGAAAGAAAGAAAGC
16 GCGAGGGAGGGAGGGAGC
17 GCGGGGGGGGGGGGGGGC
18 GCAGTAAGTAAGTAAGGC
19 GCGATGGATGGATGGAGC
20 GCTCTGTCTGTCTGTCGC
21 GCACAAACAAACAAACGC
22 GCAGAGAGAGAGAGAGGC
23 GCGCAGGCAGGCAGGCGC
24 GCTCAGTCAGTCAGTCGC
25 GCATCAATCAATCAATGC
26 GCGTCGGTCGGTCGGTGC
27 GCTGCGTGCGTGCGTGGC
28 GCACGAACGAACGAACGC
29 GCTAGATAGATAGATAGC
30 GCGCGGGCGGGCGGGCGC
31 GCGTGGGTGGGTGGGTGC
32 GCACTAACTAACTAACGC
33 GCGCTGGCTGGCTGGCGC
34 GCTATGTATGTATGTAGC
35 GCTGTGTGTGTGTGTGGC
36 GCGTTGGTTGGTTGGTGC
37 GCATAAATAAATAAATGC
38 GCATGAATGAATGAATGC
39 GCGACGGACGGACGGAGC

Table B.1 — The ABC training library.
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miniABC library
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Number Sequence

GCAACGTGCTATGGAAGC
GCAATAAGTACCAGGAGC
GCAGAAACAGCTCTGCGC
GCAGGCGCAAGACTGAGC
GCATTGGGGACACTACGC
GCGAACTCAAAGGTTGGC
GCGACCGAATGTAATTGC
GCGGAGGGCCGGGTGGGC
GCGTTAGATTAAAATTGC
GCTACGCGGATCGAGAGC
GCTGATATACGATGCAGC
GCTGGCATGAAGCGACGC
GCTTGTGACGGCTAGGGC

Table B.2 - The miniABC training library.

Palindromic library

Number
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Sequence
GCTTAGTTCAAATTTGAACTAAGC
GCTCTCTGTATTAATACAGAGAGC
GCCCTTGGCGATATCGCCAAGGGC
GCTAAAGCCTTATAAGGCTTTAGC
GCGGTAGAAAACGTTTTCTACCGC
GCCAAGACATTGCAATGTCTTGGC
GCAGATGGTCAGCTGACCATCTGC
GCCTCACCGCTCGAGCGGTGAGGC
GCAGTGGAATCATGATTCCACTGC
GCTTTACTTCGTACGAAGTAAAGC
GCTACCTATGCTAGCATAGGTAGC
GCGCACTGGGGATCCCCAGTGCGC
GCTGAGGAGTCCGGACTCCTCAGC
GCTGCCGTCGGGCCCGACGGCAGC
GCGCACAACACGCGTGTTGTGCGC
GCCTAACCCTGCGCAGGGTTAGGC

Table B.3 — The Palindromic training library.
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Appendix B. Training set libraries

End sequence library

Number Sequence
1 AAGCAAACTAGC
2 TTGCGTTTAAGC
3 ACCACCCTAGGC
4 TGCTCGGAGCGC
5 AGCTCAGGTCGC
6 TCGTCTCCAGGC
7 ATGCCCGACGGC
8 TACGATTCTGGC
9 GATATGGCGTGC
10 CTACACCCTAGC
11 CGATGAAGTAGC
12 GGTATAAATAGC
13 CCTGCCCGCGGC
14 GTGTACAATCGC
15 CAGATGCTTGGC

Table B.4 - The ends sequence library.
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C The ABC molecular dynamic protocol

In table C.1 we report the most important parameters of the molecular dynamics
simulation, along with their definitions, which where used in all the simulations done
for the ABC project. In this work we used the ABC protocol as base-line in all the MD
simulations performed. The only changes to the original ABC protocol we have made
concern only: simulation duration, force field, and ion type. In table 6.2 we report the
values of the latter three parameters used for simulating different training libraries.

Parameter detail/value

Software AMBER

Force field param99 with parambsc0 modification
Ion type potassium K

Concentration 150 mM

Water model SPC/E

Time step integration | 2 fs

Simulation duration | 50-100 ns

Writing rate 1ps

Table C.1 - Selection of the some values of the MD parameter used in the ABC project.
More details can be founded in the articles [37, 52].

Label St | Lb Ff Io
uABC 1us | ABC bsc0 K+
MABCK 1ps | miniABC | bsc0 K+
MABCH 1us | miniABC | bscl K+
MABCEVe | 145 | miniABC | bscl | 5 K+ £ Na+
MABCY® | 1us | miniABC | bscl Na+

Table C.2 — Characteristics of the sets of simulations used in the comparisons. The
main protocol is the ABC protocol [37, 52] where simulation duration, force field, and
ions type have been changed one-at-a—time.
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D cgDNA+: complement to the simulation

convergence discussion

In this chapter we report in tables D.1 and D.2 the values of the palindromic errors on
the mean and on the covariance estimators for the six-teen palindromic sequences B.3
when considering the cgDNA+ degree of freedom. In table 7.7 we list the percentage of
accepted snapshots, after hydrogen bond filtering, for different simulation duration.

#S | 100ns lus 2u8 3us

1 2.674 | 1.7078 | 0.75098 | 0.72846
2 5.0809 | 2.954 1.68 1.4631
3 4.1417 | 1.72 | 0.89638 | 0.72616
4 3.0172 | 3.1105 | 1.6639 | 1.6975
5 11.667 | 3.6407 | 2.1639 | 1.6331
6 11.355 | 2.3982 | 1.259 1.02

7 2.8166 | 3.7586 | 2.4523 | 2.0041
8 3.4284 | 1.3654 | 1.0436 | 0.86127

9 7.8926 | 1.2537 | 1.4452 1.048

10 | 4.7561 | 1.7066 | 1.2032 | 1.7445
11 | 10.036 | 4.523 | 2.4275 | 2.2984
12 | 6.199 | 2.7985 | 2.0227 | 1.8517
13 | 3.3691 | 1.1925 | 1.1706 | 0.83372
14 | 2.4161 | 1.8326 | 1.0583 | 0.80795
15 | 6.2364 | 3.9084 | 1.3505 | 1.3305
16 | 4.2067 | 1.8224 | 2.438 1.5513

Table D.1 — Palindromic error in the estimator of the mean as function of simulation
length for cgDNA+ degree of freedom. In table 7.7 one can find the actual percentage
of accepted trajectories for each simulation length and each sequence.
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105

100ns lus 2u8 3us

10.308 | 9.1031 | 4.217 | 3.7444
24.951 | 13.675 | 8.4661 | 7.7868
15.972 | 6.9944 | 4.8431 | 3.8754
13.984 | 14.61 | 8.097 | 7.9871
21.751 | 16.708 | 10.828 | 8.4623
15.533 | 12.717 | 7.0401 | 5.5072
13.344 | 13.173 | 10.478 | 9.2184
14.835 | 6.2428 | 5.4558 | 3.9188
25.878 | 7.0195 | 7.3681 | 6.022
17.471 | 8.3987 | 5.6304 | 7.8423
25.225 | 17.808 | 11.116 | 10.82
22.966 | 13.361 | 10.751 | 8.7409
14.504 | 5.6737 | 6.0145 | 4.7198
12.103 | 9.5461 | 5.5763 | 4.5541
17.945 | 15.639 | 7.2471 | 6.564
19.339 | 9.2026 | 12.241 | 8.074
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Table D.2 — Palindromic error in the estimator of the covariance as function of sim-
ulation length for cgDNA+ degree of freedom. In table 7.7 one can find the actual
percentage of accepted trajectories for each simulation length and each sequence.

#S | 100ns 500ns lus 1.5us 218 2.5us 3us

1 0.8439 | 0.9030 | 0.7895 | 0.8196 | 0.8461 | 0.8581 | 0.8654
2 0.9065 | 0.9217 | 0.9166 | 0.9179 | 0.8959 | 0.9008 | 0.8960
3 0.8098 | 0.9117 | 0.8428 | 0.8623 | 0.8812 | 0.8927 | 0.9000
4 0.91274 | 0.9241 | 0.9239 | 0.9236 | 0.9247 | 0.9167 | 0.9164
5 0.6198 | 0.8775 | 0.9064 | 0.9176 | 0.9211 | 0.9236 | 0.9264
6 0.6253 | 0.8629 | 0.9041 | 0.9189 | 0.9044 | 0.7884 | 0.7930
7 0.9450 | 0.9442 | 0.9291 | 0.9270 | 0.8971 | 0.9071 | 09111
8 0.9372 | 0.9364 | 0.9395 | 0.9373 | 0.9345 | 0.9362 | 0.9340
9 0.9518 | 0.9324 | 0.9387 | 0.8668 | 0.8819 | 0.8946 | 0.8997
10 0.9425 | 0.9038 | 0.9201 | 0.9241 | 0.9268 | 0.9231 | 0.9254
11 0.8865 | 0.8912 | 0.8906 | 0.8953 | 0.9008 | 0.9039 | 0.9068
12 0.8490 | 0.9248 | 0.9177 | 0.9238 | 0.9285 | 0.9306 | 0.9324
13 0.8793 | 0.9166 | 0.9160 | 0.9181 | 0.7846 | 0.8020 | 0.8236
14 0.9441 | 0.9423 | 0.9409 | 0.9319 | 0.9344 | 0.9358 | 0.9367
15 0.9518 | 0.8921 | 0.9049 | 0.9132 | 0.9223 | 0.9209 | 0.9259
16 0.9233 | 0.9288 | 0.9287 | 0.9289 | 0.9276 | 0.9282 | 0.9275

Table D.3 - Percentage of accepted trajectories after HB filetring per simulation lengths
considered in the error computations D.1, D.2.
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#S 1us 2us 3us 4us 5us

1 0.9023 | 0.9134 | 0.8958 | 0.8985 | 0.9035
5 0.9424 | 0.8912 | 0.8837 | 0.8980 | 0.9064
11 | 0.7441 | 0.8295 | 0.8419 | 0.8528 | 0.8248
#S 6us Tus 8us 9us 10us

1 0.9057 | 0.8986 | 0.8998 | 0.9012 | 0.8963
5 0.8874 | 0.8861 | 0.8890 | 0.8933 | 0.8977
11 | 0.8391 | 0.8494 | 0.8525 | 0.8560 | 0.8620

Table D.4 — Percentage of accepted trajectories after HB filetring per simulation lengths
considered in the error computations reported in tables: 9.3 9.4 9.5.
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E Derivatives of KLd, Gradient, and Hessian

matrix

We start by introducing some useful notation. Let /' : R"*™ — R be a real-valued
function with n, m > 1. The derivative of F in the direction d € R"*™ is

AF(A)
9A

VaF(A) = :d=94F(A) : d = trace (dTaAF(A)) ,

and denotes the partial entry-by—entry derivative of the function F' with respect to
the Frobenius inner product (2.1). The special cases we will be using are when n = m,
n > 1 and whenn > 1 and m = 1. For the second case the Frobenius inner produce
coincide with the Euclidean inner product and is denoted by -. The second directional
derivative of F'is defined by

VaVaF(A) = Vgtrace (dTaAF(A)) :

for the two directions d,d’ € R"*™, Finally, the Hessian of the real-valued function F
is the directional derivative of the real-valued function G(4,d) := tr (dTaAF (A)).

In this section we will consider two multivariate normal distributions p(z; u, K) and
p(z; ug, Kq). For sake of compactness we use the short notations p,, := p(z; 1, K) and
pa = p(z; ug, Kgq). The goal of this chapter is to compute the gradient vector and the
Hessian matrix of the Kullback-Leibler divergence (KLd) with respect to the parameters
of the Gaussian in first place of the argument. Let us recall the algebraic expression of
KLd for p,, and pgq

K|

L/
D r(pm: pa) = B (K Y Kg+ ln@ — N+ (pta — ) Kalpa — M))

- DT(pma Pd) + M(ﬂma pd)a
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Appendix E. Derivatives of KLd, Gradient, and Hessian matrix

where

1/ K|
Dt = (K ':Ky+In— — N

M(pm, pa) = %(Md — ) Kapa — ).

Before presenting all the computations we recall that, in the context of the cgDNA+
parameter set extraction, we consider the vector o := K called the weighted shape
vector, instead of the vector u. Thus, for the computation of gradient and Hessian
matrix we replace all the mean vector p with o and we will take the partial derivative
with respect to o and K.

E.1 Firstderivative of the Kullback-Leibler divergence

The first derivative of the KLd with respect to o and K for the directiond := (\,A) €
R™ x R™"*" is defined by

VaDkr(pm: pd) = Ok Dk (pPm, pa) : A+ O Dicr.(Pm, pa) - A (E.1)

For sake of compactness we will drop the arguments (p,,, pq) in all the following com-
putations.

For the stiffness part, we can split the derivation into two quantities, the one coming
from the pure stiffness part, D and the one coming from the Mahalanobis part, M,
thus we can compute

OxDrcp - A = (aKDT + 8KM> LA,

oD : A = %(K‘l — K 'K K YA
OxkM: A=K "Kq(p— pg)p” : A

We hence obtain that
1
OxDkr : A= 3 (K_l — K_leK_l) — K_le(,u — ,ud)),uT : AL (E.2)
For the o part we obtain simply

OsDrcr - A= Oy M - A
= (K 'Ka(p — pa)) - A (E.3)
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E.2. Gradient of the Kullback-Leibler divergence

For the above computations we have used, in particular, the following useful expres-
sions [54]: Let A, B, X € R™*"

dxtrace (AX'B) = — (X 'BAX )"
ox|X|=|X|Xx"!

E.2 Gradient of the Kullback-Leibler divergence

Before defining the gradient we use the relation between the Frobenius inner product
and the Euclidean inner product (2.4) to rewrite the first directional derivative of KLd

A
vec(n)| = PAram (0 Dicr, e Dycr) - param(d), (E4)

Js DKL,
Dy = .
Vd KL [VCC (8KDKL)]

where vec(-) is defined in (2.3) and param(-, -) is defined in (2.9). Now, without loss
of generality we can consider a direction d € R"™* and thus we drop the notation
param(-) in the second term of the right-hand side expression in (E.4). The Gradient
of the KLd is then defined, element-wise by evaluating (E.4) in the canonical base of
R"+* which simply leads to

GradDKL = param (8UDKL, 8KDKL) . (E.5)

E.3 Second derivative of the Kullback-Leibler divergence

The second order directional derivative of KLd, evaluated in the directiond = (A, A) €
R" x R*™" and d’ = (X, A’) € R" x R™*" is defined by

VaVaDkr = Oxtrace (A 0xDycr) : A
+ O,trace (ATOx Dip) - N
+ Oktrace (N9, Dkp) : A
+ dytrace (\T0,Dkr) - N (E.6)

Hereafter we give the explicit term of each second directional derivatives in E.6:

dstrace (ANTOx D) - N = (—KAp — K ATK T Ky(p — pa)) - N. (E.7)
dstrace (AN OxDgr) - N = KX+ X, (E.8)
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Appendix E. Derivatives of KLd, Gradient, and Hessian matrix

where X = K~'K;K~!. For the second directional derivative with respect to the
stiffness we have

Ok trace (ATaKDKL) A = (E.9)
@ (K'AK + KAK ™' — K'AK ™) + /CA;M) N (E.10)
+ (K Ap(p — pa) " Kg K+ p(p — pa) T KK PAKTY) 2 A (E.11)
and
Ortrace (\"9y D) : N = — (KA — pa) " Ka K™+ KAp®) t A (E.12)

For the above computations we have used the following matrix calculus identities [54]:
Leta,b € R" and X € R"*",

Oxa"X b= — (X" X",

E.4 Hessian matrix of the Kullback-Leibler divergence

As we have already done for the Gradient in the (E.5) we vectorise the expression of
second derivatives of the Kullback-Leibler divergence. The Hessian matrix will then be
defined column-wise by evaluating the terms of (E.6) on an element of the canonical
base of R"™*, More precisely, the j—th column of the Hessian will be related to the
base element e; € R"+*, Before giving the explicit expression of the Hessian we point
out that the term (E.11) of dxtrace (Adx Dk ) : A’ is not symmetric under the change
of order between A and A’, meaning that a choice should be made betweend = (\, A)
andd’' = (X, A’) in order to define the column element of the Hessian. We have made
the decision that the directions d’ define the columns. Hereafter we explicitly give each
term of the second derivative after the swap between directions:

1
Hic(pm, pa; d') = 5 (KWK +KNK ™ — KWWK + KA ™
+ KWK Kg(n— pa)p” + K Ka(p— pa)p" ANK™!
— KN p" — K Ka(p— pa) V) K

and

Ho(pm, pa;d) = —K N K VKg(p— pg) — KA p+ KN, (E.13)
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E.5. Derivation of KLd with respect to the parameter set

The Hessian is then defined, column-wise, by

[HessDk L.y = param (Ho(om, pd; €7), Hi (pm, pd; €;)) (E.14)

E.5 Derivation of KLd with respect to the parameter set

Let P = {0%8 078 K% K%} s5cp be a cgDNA+ parameter set and let p,, :=
p(xz,P,S) be a Gaussian predicted by cgDNA+ and p; = p(z,S) be a Gaussian ob-
served from MD simulations of sequence S, and consider again the KLd between p,,
and p,

We can now compute the first derivative of the Kullback-Leibler divergence with
respect to the parameter set P € P. The variation with respect to the parameter set P
corresponds to the variation of each single element in P with respect to the considered
sequence S in p,,. More precisely, assume that the dimer af is not present in the
sequence S, we then expect the gradient with respect to both cgDNA+ parameter set
elements 0®” and K°” to be zero. These remark help in understand that the extra chain
rule that we need to introduce in the computation of the variation of the KL.d with
respect to the parameter set P is linear and is basically a dimer dependent extraction
of vector block and matrix block from the variation of the KLd with respect to ,,, and
K ,,. More precisely, let us introduce the first variation of KLd with respect to P via the
following notation

VpDyp = {vpaaﬁ, Vpo? 8 Vp KB VKD oB } (E.15)
aBeD,5 apBeD’
where D and D’ are respectively the set of 10 independent dimer step and the set
of all the 16 end dimers. For sake of compactness we will present just the following
definition:

VpoXY = Y E"(id)d, Dk (E.16)
ideS(XY)

where 0, D is defined in (E.3), S(XY) is the set of all the positions, in number of
junctions, where there is the dimer step XY in the sequence S. The matrix E(id) €
R24N—-18x42 g called the dimer extraction matrix and has the properties that if S(XY)
is empty then E(()) is a trivial matrix otherwise for id € S(XY), the matrix E(id) is
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defined by
0
E(id) = |I42 (E.17)
L O -

where the identity matrix is of dimension 42 x 42. Finally we get that the gradient with
respect to the parameter set in vectorial format P, see for instance (9.44), is simply

GradpDKL = VCC(V']DDKL) (E.18)

where the operator vec(-) has been definite in (9.44).

For the second derivative of the KLd with respect to the parameter set in vectorial
format P we can combine the computation already done for E.14 and the latter method-
ology used to compute (E.15) and consequently (E.18). In fact, column wise we will
define the second derivative of the KL.d with respect to P in the following way

[HesspDrcr](. ) := vec(Hp(pm., pd; pj)), (E.19)
where p;) = (0(P;,S), K(P;,S)) and P; is in bijection with P; which satisfies
[P]; = 1ifand only if i = j, [P;]; = 0 otherwise.

Then the definition of the right-hand side of (E.19) should again be interpreted as of
the set of cgDNA+ parameter set, denoted by P, which account of the entries of the
Hessian matrix with respect to P (vectorial form). Formally

) — ap 5'af KB K5’aﬂ} E.20
HP(ﬂmdeap])) {HPU y Hpo” 5 Hp  Hp aBeD,5' aBeD! ( )

where, for examples

Hpo™ = > ET(id)Ho (0, 0a; 66;), (E.21)
ideS(XY)

with H, (pm, pa; -) that as been defined in (E.13). We can now define the Hessian matrix
of the KLd with respect to the parameter set P by

[HesspDkL](. ;) = vec(Hp(pm: pa; P;)) (E.22)
withp;) = (o¢(P;,S), K(P;,S)) and P; is in bijection with P; which satisfies

[P]; = lifand only if i = j, [P;]; = 0 otherwise.
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For sake of completeness, in figure (E.1), we report a schematic representation of the
dimer extraction matrix E(a3,S) € RV*42, where N = 24n — 18 for a n long sequence
S.

O:)B

E(aB,S)TK(S)E(aB,S) =[K(S)]as
Figure E.1 - Schematic representation of the product E(a3,S)T0x Dk E(af,S),

E(as,S) is zero but in the blue square which is in fact the identity matrix and 0x Dy,
is in general dense.
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F External load acting on a single base

We first start by presenting some useful computations. Let g € SE(3), we want to find
the relation between the infinitesimal perturbation of g and infinitesimal perturbation
of g~!. In the case of left infinitesimal perturbation, let define /g = g70 and /g~! =
g 7T ¢ and compute

5(g'g) = g 'g+g lig=g 'Tog+g 'gTo (E1)
= TAd,'¢+7T8 (E2)

as §(g~'g) = I we have that the above perturbation should vanish, thus we obtain that
¢ = —Adg6. Now, we can compute

San = ~g,'T (Adg, 0,) 8,1 + 8,7 (Adg,,0n1) 8.
=g,'T (Ady, . ,0n41 — Ady,6,) 8,
= anT (811 — A, 6,

In the above computation we have used the relation between left and right infinitesimal
perturbations (2.29).

E1l Thereading strand case

Let us fix the m—th base on the reading strand. The key point for deriving the total force
and couple acting on a single base, is to use the chain rule on the bichain energy (2.72)
with the additional conditions:

1. the base-pair frames g, does not have to move Vn # m,

2. the base frames g does not have to move Vn # m,
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Appendix E External load acting on a single base

3. the base frames g does not have to move Vn.

The latter conditions implies that the perturbation of these rigid—bodies must be equal
to zeros. More over conditions 2) and 3) implies that the perturbation for the intra—
base—pair rigid—-body displacement should also be zeros for n # m. For n = m the
perturbation of the intra rigid-body motion P,,, will be written simply as

P = PuT (b, — Adp, 6,) = PuT b, = 6l = by (E3)

Under the conditions 1)-3) the first order perturbation of the bichain energy (2.72)
becomes

DTE(gv P)(I)+ = (_Cm—i-l + AdT Cm) ’ ¢m + CZ:L . sttn (F4)

Am—1

where @) = (¢, #;",). The chain rule is not finished yet as we need to find the linear
change of variable that maps the perturbation ¢,, to the perturbation ¢;.. This is
possible using the following equation

gl =g.,Pl, (E5)
where
Pz(n,) 3w
Pp = P (0m, W) = [ S {”] , (E6)

is the "half" rigid body motion defining the base—pair frame. Using equation (E5) we
want to relate the perturbation of g to the perturbation of g,, but we need to find
the relation between perturbation of the rigid body motion P and the perturbation
of the P,,. For sake of simplicity let us first drop the subscripts m in all the following
computations.

E1l.1 SE(3) perturbation of the matrix P’

We first use entry—entry matrix derivation to compute the derivative of P with respect
to the coordinates y = (1, w):

3 1
0, P (o, 6w) = [ayp20("m) ‘%SVV] _

1
(M Pl%ﬁX]PQ %‘éW] . (E7)

We can now write the matrix 9, P (67, dw) as follow

0, P! (51, 6w) = [[M Fomd ‘Ef] PH, (E8)
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E1l. The reading strand case

where X = 1 (6w + [wx]MP;6n). We recognize now that the matrix (E8) can be written
using the linear transformation 7 in the following way

[MP1énx] X | _ MP, 67 B MP 01 s
s ), dmon ([ o []) e

We recall that y = (n, w) are the coordinates for the intra rigid body displacement
P = P(y), and we also know that if 3P = T67 P, the relation between the perturbation
of the coordinates and the perturbation in the group are relate through the linear
mapping, i.e, 7 = L, dy, see for instance (2.87). We expand then the very right part of
equation (E9) to obtain the perturbation of the matrix P in term of the perturbation
of P.

T <[%[wj‘f ilﬂbl 501] [g@]) PH = T(TL,6y)P" = T(T, 67)PH, (E10)
where

T, = A(f ;;] (E11)
We thus obtain that

0" =T = ¢ = Ad,; T Adpo”. (F12)

E1.2 Closed form expression of force and torque on abase g*

Using the relation (E12) for the perturbation on the right of the matrix P and the fact
that under the conditions 1)-3) the perturbation of the intra displacement is totally
defined by the perturbation of the base g*, we obtain

b = (Adpg - T;mAdpm) ot = W,not. (E13)

We obtain finally the expression for the total force and torque acting on a single base
by replacing (E13) into the perturbation (E4),

D, E(g, P)ds, = {Wh (=G +AdL,_ Gu) +Ch} -0, (E14)
where
Cm+1 = L;:{axmwi(l’n)v
Po= Adp LT, (wh(yn) +wl_;(Yn-1)), wo = 0 and wy = 0.
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E2 The complementary strand case
To get the force and torque on a base on the complementary we will first observe state
the new conditions on the bichain :

1c) the basepair frames g, does not have to move Vn # m,

2¢) the base frames g, does not have to move Vn # m,

3c) the base frames g does not have to move Vn.
The first and simple implication is that the perturbation of the intra displacement will
be written as

S = —Adp, dry- (E15)

Under the conditions 1c¢)-3c) and the previous remark the first order perturbation of
the bichain energy become

D, E(g,P)®™ = (—Cmy1 +AdL (o) - dm — pl - o, (E16)

Am—1

where ®,, = (¢, ¢;,,). We will now relate the perturbation of ¢,, to the perturbation
¢, using the relation

& =8Py (E17
where
P2 () —3
Pt =P (0, Win) = [ 0777” _2I’Vm] (F18)

By using the same procedure used to obtain equation (E12) we find that

T
—Pz M 0
T, = : (E19)
v ll[wx]MTM —§P§]

2
and thus that

0 =T,0" <= ¢ =Ad;L, T, Adp¢” = —AdL T, ¢~ (E20)

E2.1 Closed form expression of force and torque on a base g~

Using the relation (E20) for the perturbation on the right of the matrix P,/ and the
fact that under the conditions 1c)-3c) the perturbation of the intra displacement is
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E2. The complementary strand case

totally defined by the perturbation of the base g, , we obtain
¢m = (Adp-n + T, )¢, = Cndy,. (E21)

We obtain finally the expression for the total force and torque at a single base by
replacing (E21) into the perturbation (E16),

D, E(§ P)ér, = {Ch(~Gnar + AdL,_ Gn) — 1 } - 65 (F22)
where
1 = Lyt Ou,win (@),
ur = L;}:@ym (W, (ym) + w¥,_1(ym)), wo = 0and wy = 0.

C,, = AdP;LH + Ty_m‘
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Index

A-tracts, 16

adjoint operator, 13

Akaike information criterion, 131
AMBER, 26

apparent persistence length, 16
Ascona B-DNA consortium, 26
atomistic configuration, 159

backbone, 3

backbone torsion angles, 4
balance laws, 22

banded matrix, 30
base—pair level, 87

base-to-phosphate group coordinates, 91

BI-BII conformations, 5
bichain representation, 19
broken hydrogen bonds, 30

Cayley vector representation, 11
cgDNA parameter set, 36
cgDNA+ sparsity pattern, 102
CHARMM, 26

complementary strand, 3
convergence error function, 68
Convergence of the phosphate, 104
Coulomb potential, 26

Crick strand, 3

Crick-Watson pairing, 3
Curves+ software, 33

Darboux vectors, 12
dimer-based cgDNA parameter set, 75
Drew-Dickerson dodecamer, 151
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dynamic persistence length, 16

endocycling torsion angles, 6
envelope conformation, 5
equilibrium conditions for chains, 21
exponential map, 11

first moment, 27

Fisher information matrix, 113
Fisher system, 118

force field, 25

Frobenius inner product, 9
Frobenius norm, 9

groove widths, 167
ground-state, 34

hydrogen bond filtering, 30

interacting strands, 83

internal couple, 21

internal energy, 34

internal force, 21

intra base—pair coordinates, 20
intra coordinates, 20

KLd, 41
Kratky-Porod wormlike—chain, 15
Kullback-Leibler divergence, 41

Kullback-Leibler per degree of freedom, 52

least square system, 118

left infinitesimal generator, 12
Lennard-Jones potential, 26

Lie algebra, 12

local micro structure configuration, 87
logarithm map, 11



Index

macrostructure, 19 sequence—-dependent persistence length,
major groove, 3 15
MD potential energy, 25 sequence—-dependent rigidity, 141
microstructure, 19 skew—operator, 11
minimal configuration energy, 34 special euclidean group, 12
minor groove, 3 special orthogonal matrix group, 11
Molecular dynamics, 25 static persistence length, 16
stiffness matrix, 34
natural exponential map, 14 sugar ring atoms, 159
nucleic bases, 3 sugar ring puckering, 6
nucleotide, 3 symmetrised first moment, 73
null space, 122 symmetrized centred second moment, 73

symmetrized second moment, 73
oligomer-based statistics, 27

tangent operator, 13

packing forces, 149 tertiary structure, 4
palindrome, 3 tetrachain, 83
Palindromic error, 69 Tsukuba convention, 6
palindromic library, 66 twist conformation, 5
parameter continuation algorithm, 50

PDB structure, 149 van der Waals force, 26

persistence length, 15
polymer, 14

precision matrix, 10
primary structure, 4
pseudorotation phase, 6
purines, 3

pyrimidines, 3

Watson strand, 3

reading strand, 3
reconstructions rules, 36
relative entropy, 41

right infinitesimal generator, 12
Rodrigues’ rotation formula, 11

second centred moment, 27

secondary structure, 4

sequence, 3

sequence average Flory persistence length,
15

sequence average persistence length, 15

sequence—-dependent Flory persistence length,
15
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